LegalizeTypes.h revision fa963a885c074b3b0d6cc2466036297c476f7103
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Target/TargetLowering.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
36  const TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60
61  /// ValueTypeActions - This is a bitvector that contains two bits for each
62  /// simple value type, where the two bits correspond to the LegalizeAction
63  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
64  TargetLowering::ValueTypeActionImpl ValueTypeActions;
65
66  /// getTypeAction - Return how we should legalize values of this type.
67  TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
68    return TLI.getTypeAction(*DAG.getContext(), VT);
69  }
70
71  /// isTypeLegal - Return true if this type is legal on this target.
72  bool isTypeLegal(EVT VT) const {
73    return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
74  }
75
76  /// IgnoreNodeResults - Pretend all of this node's results are legal.
77  bool IgnoreNodeResults(SDNode *N) const {
78    return N->getOpcode() == ISD::TargetConstant;
79  }
80
81  /// PromotedIntegers - For integer nodes that are below legal width, this map
82  /// indicates what promoted value to use.
83  SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
84
85  /// ExpandedIntegers - For integer nodes that need to be expanded this map
86  /// indicates which operands are the expanded version of the input.
87  SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
88
89  /// SoftenedFloats - For floating point nodes converted to integers of
90  /// the same size, this map indicates the converted value to use.
91  SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
92
93  /// ExpandedFloats - For float nodes that need to be expanded this map
94  /// indicates which operands are the expanded version of the input.
95  SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
96
97  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
98  /// scalar value of type 'ty' to use.
99  SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
100
101  /// SplitVectors - For nodes that need to be split this map indicates
102  /// which operands are the expanded version of the input.
103  SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
104
105  /// WidenedVectors - For vector nodes that need to be widened, indicates
106  /// the widened value to use.
107  SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
108
109  /// ReplacedValues - For values that have been replaced with another,
110  /// indicates the replacement value to use.
111  SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
112
113  /// Worklist - This defines a worklist of nodes to process.  In order to be
114  /// pushed onto this worklist, all operands of a node must have already been
115  /// processed.
116  SmallVector<SDNode*, 128> Worklist;
117
118public:
119  explicit DAGTypeLegalizer(SelectionDAG &dag)
120    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
121    ValueTypeActions(TLI.getValueTypeActions()) {
122    assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
123           "Too many value types for ValueTypeActions to hold!");
124  }
125
126  /// run - This is the main entry point for the type legalizer.  This does a
127  /// top-down traversal of the dag, legalizing types as it goes.  Returns
128  /// "true" if it made any changes.
129  bool run();
130
131  void NoteDeletion(SDNode *Old, SDNode *New) {
132    ExpungeNode(Old);
133    ExpungeNode(New);
134    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
135      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
136  }
137
138  SelectionDAG &getDAG() const { return DAG; }
139
140private:
141  SDNode *AnalyzeNewNode(SDNode *N);
142  void AnalyzeNewValue(SDValue &Val);
143  void ExpungeNode(SDNode *N);
144  void PerformExpensiveChecks();
145  void RemapValue(SDValue &N);
146
147  // Common routines.
148  SDValue BitConvertToInteger(SDValue Op);
149  SDValue BitConvertVectorToIntegerVector(SDValue Op);
150  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
151  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
152  bool CustomWidenLowerNode(SDNode *N, EVT VT);
153
154  /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
155  /// node with the corresponding input operand, except for the result 'ResNo',
156  /// for which the corresponding input operand is returned.
157  SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
158
159  SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
160  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
161  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
162
163  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
164                                                 SDNode *Node, bool isSigned);
165  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
166
167  SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
168  void ReplaceValueWith(SDValue From, SDValue To);
169  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
170  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
171                    SDValue &Lo, SDValue &Hi);
172
173  //===--------------------------------------------------------------------===//
174  // Integer Promotion Support: LegalizeIntegerTypes.cpp
175  //===--------------------------------------------------------------------===//
176
177  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
178  /// larger integer type, this returns the promoted value.  The low bits of the
179  /// promoted value corresponding to the original type are exactly equal to Op.
180  /// The extra bits contain rubbish, so the promoted value may need to be zero-
181  /// or sign-extended from the original type before it is usable (the helpers
182  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
183  /// For example, if Op is an i16 and was promoted to an i32, then this method
184  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
185  /// 16 bits of which contain rubbish.
186  SDValue GetPromotedInteger(SDValue Op) {
187    SDValue &PromotedOp = PromotedIntegers[Op];
188    RemapValue(PromotedOp);
189    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
190    return PromotedOp;
191  }
192  void SetPromotedInteger(SDValue Op, SDValue Result);
193
194  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
195  /// final size.
196  SDValue SExtPromotedInteger(SDValue Op) {
197    EVT OldVT = Op.getValueType();
198    DebugLoc dl = Op.getDebugLoc();
199    Op = GetPromotedInteger(Op);
200    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
201                       DAG.getValueType(OldVT));
202  }
203
204  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
205  /// final size.
206  SDValue ZExtPromotedInteger(SDValue Op) {
207    EVT OldVT = Op.getValueType();
208    DebugLoc dl = Op.getDebugLoc();
209    Op = GetPromotedInteger(Op);
210    return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
211  }
212
213  // Integer Result Promotion.
214  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
215  SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
216  SDValue PromoteIntRes_AssertSext(SDNode *N);
217  SDValue PromoteIntRes_AssertZext(SDNode *N);
218  SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
219  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
220  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
221  SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
222  SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
223  SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
224  SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
225  SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
226  SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
227  SDValue PromoteIntRes_BITCAST(SDNode *N);
228  SDValue PromoteIntRes_BSWAP(SDNode *N);
229  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
230  SDValue PromoteIntRes_Constant(SDNode *N);
231  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
232  SDValue PromoteIntRes_CTLZ(SDNode *N);
233  SDValue PromoteIntRes_CTPOP(SDNode *N);
234  SDValue PromoteIntRes_CTTZ(SDNode *N);
235  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
236  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
237  SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
238  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
239  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
240  SDValue PromoteIntRes_Overflow(SDNode *N);
241  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
242  SDValue PromoteIntRes_SDIV(SDNode *N);
243  SDValue PromoteIntRes_SELECT(SDNode *N);
244  SDValue PromoteIntRes_VSELECT(SDNode *N);
245  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
246  SDValue PromoteIntRes_SETCC(SDNode *N);
247  SDValue PromoteIntRes_SHL(SDNode *N);
248  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
249  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
250  SDValue PromoteIntRes_SRA(SDNode *N);
251  SDValue PromoteIntRes_SRL(SDNode *N);
252  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
253  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
254  SDValue PromoteIntRes_UDIV(SDNode *N);
255  SDValue PromoteIntRes_UNDEF(SDNode *N);
256  SDValue PromoteIntRes_VAARG(SDNode *N);
257  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
258
259  // Integer Operand Promotion.
260  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
261  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
262  SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
263  SDValue PromoteIntOp_BITCAST(SDNode *N);
264  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
265  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
266  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
267  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
268  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
269  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
270  SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
271  SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
272  SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
273  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
274  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
275  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
276  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
277  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
278  SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
279  SDValue PromoteIntOp_Shift(SDNode *N);
280  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
281  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
282  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
283  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
284  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
285  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
286
287  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
288
289  //===--------------------------------------------------------------------===//
290  // Integer Expansion Support: LegalizeIntegerTypes.cpp
291  //===--------------------------------------------------------------------===//
292
293  /// GetExpandedInteger - Given a processed operand Op which was expanded into
294  /// two integers of half the size, this returns the two halves.  The low bits
295  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
296  /// For example, if Op is an i64 which was expanded into two i32's, then this
297  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
298  /// Op, and Hi being equal to the upper 32 bits.
299  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
300  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
301
302  // Integer Result Expansion.
303  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
304  void ExpandIntRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
305                                       SDValue &Lo, SDValue &Hi);
306  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
307  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
308  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
309  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
310  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
311  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
312  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
313  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
314  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
315  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
316  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
317  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
318  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
319  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
320
321  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
322  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
323  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
328  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
329  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
332
333  void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
334  void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
335  void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
336
337  void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
338
339  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
340                             SDValue &Lo, SDValue &Hi);
341  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
342  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
343
344  // Integer Operand Expansion.
345  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
346  SDValue ExpandIntOp_BITCAST(SDNode *N);
347  SDValue ExpandIntOp_BR_CC(SDNode *N);
348  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
349  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
350  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
351  SDValue ExpandIntOp_SETCC(SDNode *N);
352  SDValue ExpandIntOp_Shift(SDNode *N);
353  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
354  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
355  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
356  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
357  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
358  SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
359
360  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
361                                  ISD::CondCode &CCCode, DebugLoc dl);
362
363  //===--------------------------------------------------------------------===//
364  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
365  //===--------------------------------------------------------------------===//
366
367  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
368  /// integer of the same size, this returns the integer.  The integer contains
369  /// exactly the same bits as Op - only the type changed.  For example, if Op
370  /// is an f32 which was softened to an i32, then this method returns an i32,
371  /// the bits of which coincide with those of Op.
372  SDValue GetSoftenedFloat(SDValue Op) {
373    SDValue &SoftenedOp = SoftenedFloats[Op];
374    RemapValue(SoftenedOp);
375    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
376    return SoftenedOp;
377  }
378  void SetSoftenedFloat(SDValue Op, SDValue Result);
379
380  // Result Float to Integer Conversion.
381  void SoftenFloatResult(SDNode *N, unsigned OpNo);
382  SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
383  SDValue SoftenFloatRes_BITCAST(SDNode *N);
384  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
385  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
386  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
387  SDValue SoftenFloatRes_FABS(SDNode *N);
388  SDValue SoftenFloatRes_FADD(SDNode *N);
389  SDValue SoftenFloatRes_FCEIL(SDNode *N);
390  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
391  SDValue SoftenFloatRes_FCOS(SDNode *N);
392  SDValue SoftenFloatRes_FDIV(SDNode *N);
393  SDValue SoftenFloatRes_FEXP(SDNode *N);
394  SDValue SoftenFloatRes_FEXP2(SDNode *N);
395  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
396  SDValue SoftenFloatRes_FLOG(SDNode *N);
397  SDValue SoftenFloatRes_FLOG2(SDNode *N);
398  SDValue SoftenFloatRes_FLOG10(SDNode *N);
399  SDValue SoftenFloatRes_FMA(SDNode *N);
400  SDValue SoftenFloatRes_FMUL(SDNode *N);
401  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
402  SDValue SoftenFloatRes_FNEG(SDNode *N);
403  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
404  SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
405  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
406  SDValue SoftenFloatRes_FPOW(SDNode *N);
407  SDValue SoftenFloatRes_FPOWI(SDNode *N);
408  SDValue SoftenFloatRes_FREM(SDNode *N);
409  SDValue SoftenFloatRes_FRINT(SDNode *N);
410  SDValue SoftenFloatRes_FSIN(SDNode *N);
411  SDValue SoftenFloatRes_FSQRT(SDNode *N);
412  SDValue SoftenFloatRes_FSUB(SDNode *N);
413  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
414  SDValue SoftenFloatRes_LOAD(SDNode *N);
415  SDValue SoftenFloatRes_SELECT(SDNode *N);
416  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
417  SDValue SoftenFloatRes_UNDEF(SDNode *N);
418  SDValue SoftenFloatRes_VAARG(SDNode *N);
419  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
420
421  // Operand Float to Integer Conversion.
422  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
423  SDValue SoftenFloatOp_BITCAST(SDNode *N);
424  SDValue SoftenFloatOp_BR_CC(SDNode *N);
425  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
426  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
427  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
428  SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
429  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
430  SDValue SoftenFloatOp_SETCC(SDNode *N);
431  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
432
433  //===--------------------------------------------------------------------===//
434  // Float Expansion Support: LegalizeFloatTypes.cpp
435  //===--------------------------------------------------------------------===//
436
437  /// GetExpandedFloat - Given a processed operand Op which was expanded into
438  /// two floating point values of half the size, this returns the two halves.
439  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
440  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
441  /// into two f64's, then this method returns the two f64's, with Lo being
442  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
443  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
444  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
445
446  // Float Result Expansion.
447  void ExpandFloatResult(SDNode *N, unsigned ResNo);
448  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
449  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
450  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
451  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
470  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
471  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
472  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
473  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
474  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
475
476  // Float Operand Expansion.
477  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
478  SDValue ExpandFloatOp_BR_CC(SDNode *N);
479  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
480  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
481  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
482  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
483  SDValue ExpandFloatOp_SETCC(SDNode *N);
484  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
485
486  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
487                                ISD::CondCode &CCCode, DebugLoc dl);
488
489  //===--------------------------------------------------------------------===//
490  // Scalarization Support: LegalizeVectorTypes.cpp
491  //===--------------------------------------------------------------------===//
492
493  /// GetScalarizedVector - Given a processed one-element vector Op which was
494  /// scalarized to its element type, this returns the element.  For example,
495  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
496  SDValue GetScalarizedVector(SDValue Op) {
497    SDValue &ScalarizedOp = ScalarizedVectors[Op];
498    RemapValue(ScalarizedOp);
499    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
500    return ScalarizedOp;
501  }
502  void SetScalarizedVector(SDValue Op, SDValue Result);
503
504  // Vector Result Scalarization: <1 x ty> -> ty.
505  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
506  SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
507  SDValue ScalarizeVecRes_BinOp(SDNode *N);
508  SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
509  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
510  SDValue ScalarizeVecRes_InregOp(SDNode *N);
511
512  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
513  SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
514  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
515  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
516  SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
517  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
518  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
519  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
520  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
521  SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
522  SDValue ScalarizeVecRes_VSELECT(SDNode *N);
523  SDValue ScalarizeVecRes_SELECT(SDNode *N);
524  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
525  SDValue ScalarizeVecRes_SETCC(SDNode *N);
526  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
527  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
528  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
529
530  // Vector Operand Scalarization: <1 x ty> -> ty.
531  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
532  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
533  SDValue ScalarizeVecOp_EXTEND(SDNode *N);
534  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
535  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
536  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
537
538  //===--------------------------------------------------------------------===//
539  // Vector Splitting Support: LegalizeVectorTypes.cpp
540  //===--------------------------------------------------------------------===//
541
542  /// GetSplitVector - Given a processed vector Op which was split into vectors
543  /// of half the size, this method returns the halves.  The first elements of
544  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
545  /// with the elements of Hi: Op is what you would get by concatenating Lo and
546  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
547  /// this method returns the two v4i32's, with Lo corresponding to the first 4
548  /// elements of Op, and Hi to the last 4 elements.
549  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
550  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
551
552  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
553  void SplitVectorResult(SDNode *N, unsigned OpNo);
554  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
555  void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
556  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
557  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
558
559  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
560  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
561  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
562  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
563  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
564  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
565  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
566  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
567  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
568  void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
569  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
570  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
571  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
572                                  SDValue &Hi);
573
574  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
575  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
576  SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
577  SDValue SplitVecOp_UnaryOp(SDNode *N);
578
579  SDValue SplitVecOp_BITCAST(SDNode *N);
580  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
581  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
582  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
583  SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
584  SDValue SplitVecOp_VSETCC(SDNode *N);
585  SDValue SplitVecOp_FP_ROUND(SDNode *N);
586
587  //===--------------------------------------------------------------------===//
588  // Vector Widening Support: LegalizeVectorTypes.cpp
589  //===--------------------------------------------------------------------===//
590
591  /// GetWidenedVector - Given a processed vector Op which was widened into a
592  /// larger vector, this method returns the larger vector.  The elements of
593  /// the returned vector consist of the elements of Op followed by elements
594  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
595  /// v4i32, then this method returns a v4i32 for which the first two elements
596  /// are the same as those of Op, while the last two elements contain rubbish.
597  SDValue GetWidenedVector(SDValue Op) {
598    SDValue &WidenedOp = WidenedVectors[Op];
599    RemapValue(WidenedOp);
600    assert(WidenedOp.getNode() && "Operand wasn't widened?");
601    return WidenedOp;
602  }
603  void SetWidenedVector(SDValue Op, SDValue Result);
604
605  // Widen Vector Result Promotion.
606  void WidenVectorResult(SDNode *N, unsigned ResNo);
607  SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
608  SDValue WidenVecRes_BITCAST(SDNode* N);
609  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
610  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
611  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
612  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
613  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
614  SDValue WidenVecRes_LOAD(SDNode* N);
615  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
616  SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
617  SDValue WidenVecRes_SELECT(SDNode* N);
618  SDValue WidenVecRes_SELECT_CC(SDNode* N);
619  SDValue WidenVecRes_SETCC(SDNode* N);
620  SDValue WidenVecRes_UNDEF(SDNode *N);
621  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
622  SDValue WidenVecRes_VSETCC(SDNode* N);
623
624  SDValue WidenVecRes_Ternary(SDNode *N);
625  SDValue WidenVecRes_Binary(SDNode *N);
626  SDValue WidenVecRes_Convert(SDNode *N);
627  SDValue WidenVecRes_POWI(SDNode *N);
628  SDValue WidenVecRes_Shift(SDNode *N);
629  SDValue WidenVecRes_Unary(SDNode *N);
630  SDValue WidenVecRes_InregOp(SDNode *N);
631
632  // Widen Vector Operand.
633  bool WidenVectorOperand(SDNode *N, unsigned OpNo);
634  SDValue WidenVecOp_BITCAST(SDNode *N);
635  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
636  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
637  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
638  SDValue WidenVecOp_STORE(SDNode* N);
639  SDValue WidenVecOp_SETCC(SDNode* N);
640
641  SDValue WidenVecOp_Convert(SDNode *N);
642
643  //===--------------------------------------------------------------------===//
644  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
645  //===--------------------------------------------------------------------===//
646
647  /// Helper GenWidenVectorLoads - Helper function to generate a set of
648  /// loads to load a vector with a resulting wider type. It takes
649  ///   LdChain: list of chains for the load to be generated.
650  ///   Ld:      load to widen
651  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
652                              LoadSDNode *LD);
653
654  /// GenWidenVectorExtLoads - Helper function to generate a set of extension
655  /// loads to load a ector with a resulting wider type.  It takes
656  ///   LdChain: list of chains for the load to be generated.
657  ///   Ld:      load to widen
658  ///   ExtType: extension element type
659  SDValue GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
660                                 LoadSDNode *LD, ISD::LoadExtType ExtType);
661
662  /// Helper genWidenVectorStores - Helper function to generate a set of
663  /// stores to store a widen vector into non widen memory
664  ///   StChain: list of chains for the stores we have generated
665  ///   ST:      store of a widen value
666  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST);
667
668  /// Helper genWidenVectorTruncStores - Helper function to generate a set of
669  /// stores to store a truncate widen vector into non widen memory
670  ///   StChain: list of chains for the stores we have generated
671  ///   ST:      store of a widen value
672  void GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
673                                 StoreSDNode *ST);
674
675  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
676  /// input vector must have the same element type as NVT.
677  SDValue ModifyToType(SDValue InOp, EVT WidenVT);
678
679
680  //===--------------------------------------------------------------------===//
681  // Generic Splitting: LegalizeTypesGeneric.cpp
682  //===--------------------------------------------------------------------===//
683
684  // Legalization methods which only use that the illegal type is split into two
685  // not necessarily identical types.  As such they can be used for splitting
686  // vectors and expanding integers and floats.
687
688  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
689    if (Op.getValueType().isVector())
690      GetSplitVector(Op, Lo, Hi);
691    else if (Op.getValueType().isInteger())
692      GetExpandedInteger(Op, Lo, Hi);
693    else
694      GetExpandedFloat(Op, Lo, Hi);
695  }
696
697  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
698  /// which is split (or expanded) into two not necessarily identical pieces.
699  void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
700
701  /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
702  /// high parts of the given value.
703  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
704
705  // Generic Result Splitting.
706  void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
707                             SDValue &Lo, SDValue &Hi);
708  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
709  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
710  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
711
712  //===--------------------------------------------------------------------===//
713  // Generic Expansion: LegalizeTypesGeneric.cpp
714  //===--------------------------------------------------------------------===//
715
716  // Legalization methods which only use that the illegal type is split into two
717  // identical types of half the size, and that the Lo/Hi part is stored first
718  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
719  // such they can be used for expanding integers and floats.
720
721  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
722    if (Op.getValueType().isInteger())
723      GetExpandedInteger(Op, Lo, Hi);
724    else
725      GetExpandedFloat(Op, Lo, Hi);
726  }
727
728  // Generic Result Expansion.
729  void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
730                                    SDValue &Lo, SDValue &Hi);
731  void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
732  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
733  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
734  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
735  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
736  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
737
738  // Generic Operand Expansion.
739  SDValue ExpandOp_BITCAST          (SDNode *N);
740  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
741  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
742  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
743  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
744  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
745};
746
747} // end namespace llvm.
748
749#endif
750