LegalizeVectorTypes.cpp revision 520b6e3fa5c9c01ed66e70c925e78d518504a983
1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in two vectors of half the size.  For example, implementing
19// <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//  Result Vector Scalarization: <1 x ty> -> ty.
31//===----------------------------------------------------------------------===//
32
33void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
34  DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
35        N->dump(&DAG);
36        dbgs() << "\n");
37  SDValue R = SDValue();
38
39  switch (N->getOpcode()) {
40  default:
41#ifndef NDEBUG
42    dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
43    N->dump(&DAG);
44    dbgs() << "\n";
45#endif
46    report_fatal_error("Do not know how to scalarize the result of this "
47                       "operator!\n");
48
49  case ISD::MERGE_VALUES:      R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
50  case ISD::BITCAST:           R = ScalarizeVecRes_BITCAST(N); break;
51  case ISD::BUILD_VECTOR:      R = ScalarizeVecRes_BUILD_VECTOR(N); break;
52  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
53  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
54  case ISD::FP_ROUND:          R = ScalarizeVecRes_FP_ROUND(N); break;
55  case ISD::FP_ROUND_INREG:    R = ScalarizeVecRes_InregOp(N); break;
56  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
57  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
58  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
59  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
60  case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
61  case ISD::VSELECT:           R = ScalarizeVecRes_VSELECT(N); break;
62  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
63  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
64  case ISD::SETCC:             R = ScalarizeVecRes_SETCC(N); break;
65  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
66  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
67  case ISD::ANY_EXTEND:
68  case ISD::CTLZ:
69  case ISD::CTPOP:
70  case ISD::CTTZ:
71  case ISD::FABS:
72  case ISD::FCEIL:
73  case ISD::FCOS:
74  case ISD::FEXP:
75  case ISD::FEXP2:
76  case ISD::FFLOOR:
77  case ISD::FLOG:
78  case ISD::FLOG10:
79  case ISD::FLOG2:
80  case ISD::FNEARBYINT:
81  case ISD::FNEG:
82  case ISD::FP_EXTEND:
83  case ISD::FP_TO_SINT:
84  case ISD::FP_TO_UINT:
85  case ISD::FRINT:
86  case ISD::FSIN:
87  case ISD::FSQRT:
88  case ISD::FTRUNC:
89  case ISD::SIGN_EXTEND:
90  case ISD::SINT_TO_FP:
91  case ISD::TRUNCATE:
92  case ISD::UINT_TO_FP:
93  case ISD::ZERO_EXTEND:
94    R = ScalarizeVecRes_UnaryOp(N);
95    break;
96
97  case ISD::ADD:
98  case ISD::AND:
99  case ISD::FADD:
100  case ISD::FDIV:
101  case ISD::FMUL:
102  case ISD::FPOW:
103  case ISD::FREM:
104  case ISD::FSUB:
105  case ISD::MUL:
106  case ISD::OR:
107  case ISD::SDIV:
108  case ISD::SREM:
109  case ISD::SUB:
110  case ISD::UDIV:
111  case ISD::UREM:
112  case ISD::XOR:
113  case ISD::SHL:
114  case ISD::SRA:
115  case ISD::SRL:
116    R = ScalarizeVecRes_BinOp(N);
117    break;
118  case ISD::FMA:
119    R = ScalarizeVecRes_TernaryOp(N);
120    break;
121  }
122
123  // If R is null, the sub-method took care of registering the result.
124  if (R.getNode())
125    SetScalarizedVector(SDValue(N, ResNo), R);
126}
127
128SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
129  SDValue LHS = GetScalarizedVector(N->getOperand(0));
130  SDValue RHS = GetScalarizedVector(N->getOperand(1));
131  return DAG.getNode(N->getOpcode(), SDLoc(N),
132                     LHS.getValueType(), LHS, RHS);
133}
134
135SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
136  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
137  SDValue Op1 = GetScalarizedVector(N->getOperand(1));
138  SDValue Op2 = GetScalarizedVector(N->getOperand(2));
139  return DAG.getNode(N->getOpcode(), SDLoc(N),
140                     Op0.getValueType(), Op0, Op1, Op2);
141}
142
143SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
144                                                       unsigned ResNo) {
145  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
146  return GetScalarizedVector(Op);
147}
148
149SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
150  EVT NewVT = N->getValueType(0).getVectorElementType();
151  return DAG.getNode(ISD::BITCAST, SDLoc(N),
152                     NewVT, N->getOperand(0));
153}
154
155SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
156  EVT EltVT = N->getValueType(0).getVectorElementType();
157  SDValue InOp = N->getOperand(0);
158  // The BUILD_VECTOR operands may be of wider element types and
159  // we may need to truncate them back to the requested return type.
160  if (EltVT.isInteger())
161    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
162  return InOp;
163}
164
165SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
166  EVT NewVT = N->getValueType(0).getVectorElementType();
167  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
168  return DAG.getConvertRndSat(NewVT, SDLoc(N),
169                              Op0, DAG.getValueType(NewVT),
170                              DAG.getValueType(Op0.getValueType()),
171                              N->getOperand(3),
172                              N->getOperand(4),
173                              cast<CvtRndSatSDNode>(N)->getCvtCode());
174}
175
176SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
177  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
178                     N->getValueType(0).getVectorElementType(),
179                     N->getOperand(0), N->getOperand(1));
180}
181
182SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
183  EVT NewVT = N->getValueType(0).getVectorElementType();
184  SDValue Op = GetScalarizedVector(N->getOperand(0));
185  return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
186                     NewVT, Op, N->getOperand(1));
187}
188
189SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
190  SDValue Op = GetScalarizedVector(N->getOperand(0));
191  return DAG.getNode(ISD::FPOWI, SDLoc(N),
192                     Op.getValueType(), Op, N->getOperand(1));
193}
194
195SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
196  // The value to insert may have a wider type than the vector element type,
197  // so be sure to truncate it to the element type if necessary.
198  SDValue Op = N->getOperand(1);
199  EVT EltVT = N->getValueType(0).getVectorElementType();
200  if (Op.getValueType() != EltVT)
201    // FIXME: Can this happen for floating point types?
202    Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
203  return Op;
204}
205
206SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
207  assert(N->isUnindexed() && "Indexed vector load?");
208
209  SDValue Result = DAG.getLoad(ISD::UNINDEXED,
210                               N->getExtensionType(),
211                               N->getValueType(0).getVectorElementType(),
212                               SDLoc(N),
213                               N->getChain(), N->getBasePtr(),
214                               DAG.getUNDEF(N->getBasePtr().getValueType()),
215                               N->getPointerInfo(),
216                               N->getMemoryVT().getVectorElementType(),
217                               N->isVolatile(), N->isNonTemporal(),
218                               N->isInvariant(), N->getOriginalAlignment());
219
220  // Legalized the chain result - switch anything that used the old chain to
221  // use the new one.
222  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
223  return Result;
224}
225
226SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
227  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
228  EVT DestVT = N->getValueType(0).getVectorElementType();
229  SDValue Op = GetScalarizedVector(N->getOperand(0));
230  return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
231}
232
233SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
234  EVT EltVT = N->getValueType(0).getVectorElementType();
235  EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
236  SDValue LHS = GetScalarizedVector(N->getOperand(0));
237  return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
238                     LHS, DAG.getValueType(ExtVT));
239}
240
241SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
242  // If the operand is wider than the vector element type then it is implicitly
243  // truncated.  Make that explicit here.
244  EVT EltVT = N->getValueType(0).getVectorElementType();
245  SDValue InOp = N->getOperand(0);
246  if (InOp.getValueType() != EltVT)
247    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
248  return InOp;
249}
250
251SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
252  SDValue Cond = GetScalarizedVector(N->getOperand(0));
253  SDValue LHS = GetScalarizedVector(N->getOperand(1));
254  TargetLowering::BooleanContent ScalarBool = TLI.getBooleanContents(false);
255  TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true);
256  if (ScalarBool != VecBool) {
257    EVT CondVT = Cond.getValueType();
258    switch (ScalarBool) {
259      case TargetLowering::UndefinedBooleanContent:
260        break;
261      case TargetLowering::ZeroOrOneBooleanContent:
262        assert(VecBool == TargetLowering::UndefinedBooleanContent ||
263               VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
264        // Vector read from all ones, scalar expects a single 1 so mask.
265        Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
266                           Cond, DAG.getConstant(1, CondVT));
267        break;
268      case TargetLowering::ZeroOrNegativeOneBooleanContent:
269        assert(VecBool == TargetLowering::UndefinedBooleanContent ||
270               VecBool == TargetLowering::ZeroOrOneBooleanContent);
271        // Vector reads from a one, scalar from all ones so sign extend.
272        Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
273                           Cond, DAG.getValueType(MVT::i1));
274        break;
275    }
276  }
277  return DAG.getNode(ISD::SELECT, SDLoc(N),
278                     LHS.getValueType(), Cond, LHS,
279                     GetScalarizedVector(N->getOperand(2)));
280}
281
282SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
283  SDValue LHS = GetScalarizedVector(N->getOperand(1));
284  return DAG.getNode(ISD::SELECT, SDLoc(N),
285                     LHS.getValueType(), N->getOperand(0), LHS,
286                     GetScalarizedVector(N->getOperand(2)));
287}
288
289SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
290  SDValue LHS = GetScalarizedVector(N->getOperand(2));
291  return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
292                     N->getOperand(0), N->getOperand(1),
293                     LHS, GetScalarizedVector(N->getOperand(3)),
294                     N->getOperand(4));
295}
296
297SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
298  assert(N->getValueType(0).isVector() ==
299         N->getOperand(0).getValueType().isVector() &&
300         "Scalar/Vector type mismatch");
301
302  if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
303
304  SDValue LHS = GetScalarizedVector(N->getOperand(0));
305  SDValue RHS = GetScalarizedVector(N->getOperand(1));
306  SDLoc DL(N);
307
308  // Turn it into a scalar SETCC.
309  return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
310}
311
312SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
313  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
314}
315
316SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
317  // Figure out if the scalar is the LHS or RHS and return it.
318  SDValue Arg = N->getOperand(2).getOperand(0);
319  if (Arg.getOpcode() == ISD::UNDEF)
320    return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
321  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
322  return GetScalarizedVector(N->getOperand(Op));
323}
324
325SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
326  assert(N->getValueType(0).isVector() &&
327         N->getOperand(0).getValueType().isVector() &&
328         "Operand types must be vectors");
329
330  SDValue LHS = GetScalarizedVector(N->getOperand(0));
331  SDValue RHS = GetScalarizedVector(N->getOperand(1));
332  EVT NVT = N->getValueType(0).getVectorElementType();
333  SDLoc DL(N);
334
335  // Turn it into a scalar SETCC.
336  SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
337                            N->getOperand(2));
338  // Vectors may have a different boolean contents to scalars.  Promote the
339  // value appropriately.
340  ISD::NodeType ExtendCode =
341    TargetLowering::getExtendForContent(TLI.getBooleanContents(true));
342  return DAG.getNode(ExtendCode, DL, NVT, Res);
343}
344
345
346//===----------------------------------------------------------------------===//
347//  Operand Vector Scalarization <1 x ty> -> ty.
348//===----------------------------------------------------------------------===//
349
350bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
351  DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
352        N->dump(&DAG);
353        dbgs() << "\n");
354  SDValue Res = SDValue();
355
356  if (Res.getNode() == 0) {
357    switch (N->getOpcode()) {
358    default:
359#ifndef NDEBUG
360      dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
361      N->dump(&DAG);
362      dbgs() << "\n";
363#endif
364      llvm_unreachable("Do not know how to scalarize this operator's operand!");
365    case ISD::BITCAST:
366      Res = ScalarizeVecOp_BITCAST(N);
367      break;
368    case ISD::ANY_EXTEND:
369    case ISD::ZERO_EXTEND:
370    case ISD::SIGN_EXTEND:
371      Res = ScalarizeVecOp_EXTEND(N);
372      break;
373    case ISD::CONCAT_VECTORS:
374      Res = ScalarizeVecOp_CONCAT_VECTORS(N);
375      break;
376    case ISD::EXTRACT_VECTOR_ELT:
377      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
378      break;
379    case ISD::STORE:
380      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
381      break;
382    }
383  }
384
385  // If the result is null, the sub-method took care of registering results etc.
386  if (!Res.getNode()) return false;
387
388  // If the result is N, the sub-method updated N in place.  Tell the legalizer
389  // core about this.
390  if (Res.getNode() == N)
391    return true;
392
393  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
394         "Invalid operand expansion");
395
396  ReplaceValueWith(SDValue(N, 0), Res);
397  return false;
398}
399
400/// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
401/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
402SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
403  SDValue Elt = GetScalarizedVector(N->getOperand(0));
404  return DAG.getNode(ISD::BITCAST, SDLoc(N),
405                     N->getValueType(0), Elt);
406}
407
408/// ScalarizeVecOp_EXTEND - If the value to extend is a vector that needs
409/// to be scalarized, it must be <1 x ty>.  Extend the element instead.
410SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTEND(SDNode *N) {
411  assert(N->getValueType(0).getVectorNumElements() == 1 &&
412         "Unexected vector type!");
413  SDValue Elt = GetScalarizedVector(N->getOperand(0));
414  SmallVector<SDValue, 1> Ops(1);
415  Ops[0] = DAG.getNode(N->getOpcode(), SDLoc(N),
416                       N->getValueType(0).getScalarType(), Elt);
417  // Revectorize the result so the types line up with what the uses of this
418  // expression expect.
419  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0),
420                     &Ops[0], 1);
421}
422
423/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
424/// use a BUILD_VECTOR instead.
425SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
426  SmallVector<SDValue, 8> Ops(N->getNumOperands());
427  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
428    Ops[i] = GetScalarizedVector(N->getOperand(i));
429  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0),
430                     &Ops[0], Ops.size());
431}
432
433/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
434/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
435/// index.
436SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
437  SDValue Res = GetScalarizedVector(N->getOperand(0));
438  if (Res.getValueType() != N->getValueType(0))
439    Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
440                      Res);
441  return Res;
442}
443
444/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
445/// scalarized, it must be <1 x ty>.  Just store the element.
446SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
447  assert(N->isUnindexed() && "Indexed store of one-element vector?");
448  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
449  SDLoc dl(N);
450
451  if (N->isTruncatingStore())
452    return DAG.getTruncStore(N->getChain(), dl,
453                             GetScalarizedVector(N->getOperand(1)),
454                             N->getBasePtr(), N->getPointerInfo(),
455                             N->getMemoryVT().getVectorElementType(),
456                             N->isVolatile(), N->isNonTemporal(),
457                             N->getAlignment());
458
459  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
460                      N->getBasePtr(), N->getPointerInfo(),
461                      N->isVolatile(), N->isNonTemporal(),
462                      N->getOriginalAlignment());
463}
464
465
466//===----------------------------------------------------------------------===//
467//  Result Vector Splitting
468//===----------------------------------------------------------------------===//
469
470/// SplitVectorResult - This method is called when the specified result of the
471/// specified node is found to need vector splitting.  At this point, the node
472/// may also have invalid operands or may have other results that need
473/// legalization, we just know that (at least) one result needs vector
474/// splitting.
475void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
476  DEBUG(dbgs() << "Split node result: ";
477        N->dump(&DAG);
478        dbgs() << "\n");
479  SDValue Lo, Hi;
480
481  // See if the target wants to custom expand this node.
482  if (CustomLowerNode(N, N->getValueType(ResNo), true))
483    return;
484
485  switch (N->getOpcode()) {
486  default:
487#ifndef NDEBUG
488    dbgs() << "SplitVectorResult #" << ResNo << ": ";
489    N->dump(&DAG);
490    dbgs() << "\n";
491#endif
492    report_fatal_error("Do not know how to split the result of this "
493                       "operator!\n");
494
495  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
496  case ISD::VSELECT:
497  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
498  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
499  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
500  case ISD::BITCAST:           SplitVecRes_BITCAST(N, Lo, Hi); break;
501  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
502  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
503  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
504  case ISD::FP_ROUND_INREG:    SplitVecRes_InregOp(N, Lo, Hi); break;
505  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
506  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
507  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
508  case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
509  case ISD::LOAD:
510    SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
511    break;
512  case ISD::SETCC:
513    SplitVecRes_SETCC(N, Lo, Hi);
514    break;
515  case ISD::VECTOR_SHUFFLE:
516    SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
517    break;
518
519  case ISD::ANY_EXTEND:
520  case ISD::CONVERT_RNDSAT:
521  case ISD::CTLZ:
522  case ISD::CTTZ:
523  case ISD::CTLZ_ZERO_UNDEF:
524  case ISD::CTTZ_ZERO_UNDEF:
525  case ISD::CTPOP:
526  case ISD::FABS:
527  case ISD::FCEIL:
528  case ISD::FCOS:
529  case ISD::FEXP:
530  case ISD::FEXP2:
531  case ISD::FFLOOR:
532  case ISD::FLOG:
533  case ISD::FLOG10:
534  case ISD::FLOG2:
535  case ISD::FNEARBYINT:
536  case ISD::FNEG:
537  case ISD::FP_EXTEND:
538  case ISD::FP_ROUND:
539  case ISD::FP_TO_SINT:
540  case ISD::FP_TO_UINT:
541  case ISD::FRINT:
542  case ISD::FSIN:
543  case ISD::FSQRT:
544  case ISD::FTRUNC:
545  case ISD::SIGN_EXTEND:
546  case ISD::SINT_TO_FP:
547  case ISD::TRUNCATE:
548  case ISD::UINT_TO_FP:
549  case ISD::ZERO_EXTEND:
550    SplitVecRes_UnaryOp(N, Lo, Hi);
551    break;
552
553  case ISD::ADD:
554  case ISD::SUB:
555  case ISD::MUL:
556  case ISD::FADD:
557  case ISD::FSUB:
558  case ISD::FMUL:
559  case ISD::SDIV:
560  case ISD::UDIV:
561  case ISD::FDIV:
562  case ISD::FPOW:
563  case ISD::AND:
564  case ISD::OR:
565  case ISD::XOR:
566  case ISD::SHL:
567  case ISD::SRA:
568  case ISD::SRL:
569  case ISD::UREM:
570  case ISD::SREM:
571  case ISD::FREM:
572    SplitVecRes_BinOp(N, Lo, Hi);
573    break;
574  case ISD::FMA:
575    SplitVecRes_TernaryOp(N, Lo, Hi);
576    break;
577  }
578
579  // If Lo/Hi is null, the sub-method took care of registering results etc.
580  if (Lo.getNode())
581    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
582}
583
584void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
585                                         SDValue &Hi) {
586  SDValue LHSLo, LHSHi;
587  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
588  SDValue RHSLo, RHSHi;
589  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
590  SDLoc dl(N);
591
592  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
593  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
594}
595
596void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
597                                             SDValue &Hi) {
598  SDValue Op0Lo, Op0Hi;
599  GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
600  SDValue Op1Lo, Op1Hi;
601  GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
602  SDValue Op2Lo, Op2Hi;
603  GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
604  SDLoc dl(N);
605
606  Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
607                   Op0Lo, Op1Lo, Op2Lo);
608  Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
609                   Op0Hi, Op1Hi, Op2Hi);
610}
611
612void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
613                                           SDValue &Hi) {
614  // We know the result is a vector.  The input may be either a vector or a
615  // scalar value.
616  EVT LoVT, HiVT;
617  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
618  SDLoc dl(N);
619
620  SDValue InOp = N->getOperand(0);
621  EVT InVT = InOp.getValueType();
622
623  // Handle some special cases efficiently.
624  switch (getTypeAction(InVT)) {
625  case TargetLowering::TypeLegal:
626  case TargetLowering::TypePromoteInteger:
627  case TargetLowering::TypeSoftenFloat:
628  case TargetLowering::TypeScalarizeVector:
629  case TargetLowering::TypeWidenVector:
630    break;
631  case TargetLowering::TypeExpandInteger:
632  case TargetLowering::TypeExpandFloat:
633    // A scalar to vector conversion, where the scalar needs expansion.
634    // If the vector is being split in two then we can just convert the
635    // expanded pieces.
636    if (LoVT == HiVT) {
637      GetExpandedOp(InOp, Lo, Hi);
638      if (TLI.isBigEndian())
639        std::swap(Lo, Hi);
640      Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
641      Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
642      return;
643    }
644    break;
645  case TargetLowering::TypeSplitVector:
646    // If the input is a vector that needs to be split, convert each split
647    // piece of the input now.
648    GetSplitVector(InOp, Lo, Hi);
649    Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
650    Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
651    return;
652  }
653
654  // In the general case, convert the input to an integer and split it by hand.
655  EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
656  EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
657  if (TLI.isBigEndian())
658    std::swap(LoIntVT, HiIntVT);
659
660  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
661
662  if (TLI.isBigEndian())
663    std::swap(Lo, Hi);
664  Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
665  Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
666}
667
668void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
669                                                SDValue &Hi) {
670  EVT LoVT, HiVT;
671  SDLoc dl(N);
672  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
673  unsigned LoNumElts = LoVT.getVectorNumElements();
674  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
675  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
676
677  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
678  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
679}
680
681void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
682                                                  SDValue &Hi) {
683  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
684  SDLoc dl(N);
685  unsigned NumSubvectors = N->getNumOperands() / 2;
686  if (NumSubvectors == 1) {
687    Lo = N->getOperand(0);
688    Hi = N->getOperand(1);
689    return;
690  }
691
692  EVT LoVT, HiVT;
693  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
694
695  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
696  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
697
698  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
699  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
700}
701
702void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
703                                                     SDValue &Hi) {
704  SDValue Vec = N->getOperand(0);
705  SDValue Idx = N->getOperand(1);
706  SDLoc dl(N);
707
708  EVT LoVT, HiVT;
709  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
710
711  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
712  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
713  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
714                   DAG.getIntPtrConstant(IdxVal + LoVT.getVectorNumElements()));
715}
716
717void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
718                                         SDValue &Hi) {
719  SDLoc dl(N);
720  GetSplitVector(N->getOperand(0), Lo, Hi);
721  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
722  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
723}
724
725void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
726                                           SDValue &Hi) {
727  SDValue LHSLo, LHSHi;
728  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
729  SDLoc dl(N);
730
731  EVT LoVT, HiVT;
732  GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT(), LoVT, HiVT);
733
734  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
735                   DAG.getValueType(LoVT));
736  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
737                   DAG.getValueType(HiVT));
738}
739
740void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
741                                                     SDValue &Hi) {
742  SDValue Vec = N->getOperand(0);
743  SDValue Elt = N->getOperand(1);
744  SDValue Idx = N->getOperand(2);
745  SDLoc dl(N);
746  GetSplitVector(Vec, Lo, Hi);
747
748  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
749    unsigned IdxVal = CIdx->getZExtValue();
750    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
751    if (IdxVal < LoNumElts)
752      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
753                       Lo.getValueType(), Lo, Elt, Idx);
754    else
755      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
756                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
757    return;
758  }
759
760  // Spill the vector to the stack.
761  EVT VecVT = Vec.getValueType();
762  EVT EltVT = VecVT.getVectorElementType();
763  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
764  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
765                               MachinePointerInfo(), false, false, 0);
766
767  // Store the new element.  This may be larger than the vector element type,
768  // so use a truncating store.
769  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
770  Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
771  unsigned Alignment =
772    TLI.getDataLayout()->getPrefTypeAlignment(VecType);
773  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
774                            false, false, 0);
775
776  // Load the Lo part from the stack slot.
777  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
778                   false, false, false, 0);
779
780  // Increment the pointer to the other part.
781  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
782  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
783                         DAG.getIntPtrConstant(IncrementSize));
784
785  // Load the Hi part from the stack slot.
786  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
787                   false, false, false, MinAlign(Alignment, IncrementSize));
788}
789
790void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
791                                                    SDValue &Hi) {
792  EVT LoVT, HiVT;
793  SDLoc dl(N);
794  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
795  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
796  Hi = DAG.getUNDEF(HiVT);
797}
798
799void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
800                                        SDValue &Hi) {
801  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
802  EVT LoVT, HiVT;
803  SDLoc dl(LD);
804  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
805
806  ISD::LoadExtType ExtType = LD->getExtensionType();
807  SDValue Ch = LD->getChain();
808  SDValue Ptr = LD->getBasePtr();
809  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
810  EVT MemoryVT = LD->getMemoryVT();
811  unsigned Alignment = LD->getOriginalAlignment();
812  bool isVolatile = LD->isVolatile();
813  bool isNonTemporal = LD->isNonTemporal();
814  bool isInvariant = LD->isInvariant();
815
816  EVT LoMemVT, HiMemVT;
817  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
818
819  Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
820                   LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
821                   isInvariant, Alignment);
822
823  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
824  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
825                    DAG.getIntPtrConstant(IncrementSize));
826  Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
827                   LD->getPointerInfo().getWithOffset(IncrementSize),
828                   HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment);
829
830  // Build a factor node to remember that this load is independent of the
831  // other one.
832  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
833                   Hi.getValue(1));
834
835  // Legalized the chain result - switch anything that used the old chain to
836  // use the new one.
837  ReplaceValueWith(SDValue(LD, 1), Ch);
838}
839
840void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
841  assert(N->getValueType(0).isVector() &&
842         N->getOperand(0).getValueType().isVector() &&
843         "Operand types must be vectors");
844
845  EVT LoVT, HiVT;
846  SDLoc DL(N);
847  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
848
849  // Split the input.
850  EVT InVT = N->getOperand(0).getValueType();
851  SDValue LL, LH, RL, RH;
852  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
853                               LoVT.getVectorNumElements());
854  LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
855                   DAG.getIntPtrConstant(0));
856  LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
857                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
858
859  RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
860                   DAG.getIntPtrConstant(0));
861  RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
862                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
863
864  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
865  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
866}
867
868void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
869                                           SDValue &Hi) {
870  // Get the dest types - they may not match the input types, e.g. int_to_fp.
871  EVT LoVT, HiVT;
872  SDLoc dl(N);
873  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
874
875  // If the input also splits, handle it directly for a compile time speedup.
876  // Otherwise split it by hand.
877  EVT InVT = N->getOperand(0).getValueType();
878  if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
879    GetSplitVector(N->getOperand(0), Lo, Hi);
880  } else {
881    EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
882                                 LoVT.getVectorNumElements());
883    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
884                     DAG.getIntPtrConstant(0));
885    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
886                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
887  }
888
889  if (N->getOpcode() == ISD::FP_ROUND) {
890    Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
891    Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
892  } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
893    SDValue DTyOpLo = DAG.getValueType(LoVT);
894    SDValue DTyOpHi = DAG.getValueType(HiVT);
895    SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
896    SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
897    SDValue RndOp = N->getOperand(3);
898    SDValue SatOp = N->getOperand(4);
899    ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
900    Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
901                              CvtCode);
902    Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
903                              CvtCode);
904  } else {
905    Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
906    Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
907  }
908}
909
910void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
911                                                  SDValue &Lo, SDValue &Hi) {
912  // The low and high parts of the original input give four input vectors.
913  SDValue Inputs[4];
914  SDLoc dl(N);
915  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
916  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
917  EVT NewVT = Inputs[0].getValueType();
918  unsigned NewElts = NewVT.getVectorNumElements();
919
920  // If Lo or Hi uses elements from at most two of the four input vectors, then
921  // express it as a vector shuffle of those two inputs.  Otherwise extract the
922  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
923  SmallVector<int, 16> Ops;
924  for (unsigned High = 0; High < 2; ++High) {
925    SDValue &Output = High ? Hi : Lo;
926
927    // Build a shuffle mask for the output, discovering on the fly which
928    // input vectors to use as shuffle operands (recorded in InputUsed).
929    // If building a suitable shuffle vector proves too hard, then bail
930    // out with useBuildVector set.
931    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
932    unsigned FirstMaskIdx = High * NewElts;
933    bool useBuildVector = false;
934    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
935      // The mask element.  This indexes into the input.
936      int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
937
938      // The input vector this mask element indexes into.
939      unsigned Input = (unsigned)Idx / NewElts;
940
941      if (Input >= array_lengthof(Inputs)) {
942        // The mask element does not index into any input vector.
943        Ops.push_back(-1);
944        continue;
945      }
946
947      // Turn the index into an offset from the start of the input vector.
948      Idx -= Input * NewElts;
949
950      // Find or create a shuffle vector operand to hold this input.
951      unsigned OpNo;
952      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
953        if (InputUsed[OpNo] == Input) {
954          // This input vector is already an operand.
955          break;
956        } else if (InputUsed[OpNo] == -1U) {
957          // Create a new operand for this input vector.
958          InputUsed[OpNo] = Input;
959          break;
960        }
961      }
962
963      if (OpNo >= array_lengthof(InputUsed)) {
964        // More than two input vectors used!  Give up on trying to create a
965        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
966        useBuildVector = true;
967        break;
968      }
969
970      // Add the mask index for the new shuffle vector.
971      Ops.push_back(Idx + OpNo * NewElts);
972    }
973
974    if (useBuildVector) {
975      EVT EltVT = NewVT.getVectorElementType();
976      SmallVector<SDValue, 16> SVOps;
977
978      // Extract the input elements by hand.
979      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
980        // The mask element.  This indexes into the input.
981        int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
982
983        // The input vector this mask element indexes into.
984        unsigned Input = (unsigned)Idx / NewElts;
985
986        if (Input >= array_lengthof(Inputs)) {
987          // The mask element is "undef" or indexes off the end of the input.
988          SVOps.push_back(DAG.getUNDEF(EltVT));
989          continue;
990        }
991
992        // Turn the index into an offset from the start of the input vector.
993        Idx -= Input * NewElts;
994
995        // Extract the vector element by hand.
996        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
997                                    Inputs[Input], DAG.getIntPtrConstant(Idx)));
998      }
999
1000      // Construct the Lo/Hi output using a BUILD_VECTOR.
1001      Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
1002    } else if (InputUsed[0] == -1U) {
1003      // No input vectors were used!  The result is undefined.
1004      Output = DAG.getUNDEF(NewVT);
1005    } else {
1006      SDValue Op0 = Inputs[InputUsed[0]];
1007      // If only one input was used, use an undefined vector for the other.
1008      SDValue Op1 = InputUsed[1] == -1U ?
1009        DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
1010      // At least one input vector was used.  Create a new shuffle vector.
1011      Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
1012    }
1013
1014    Ops.clear();
1015  }
1016}
1017
1018
1019//===----------------------------------------------------------------------===//
1020//  Operand Vector Splitting
1021//===----------------------------------------------------------------------===//
1022
1023/// SplitVectorOperand - This method is called when the specified operand of the
1024/// specified node is found to need vector splitting.  At this point, all of the
1025/// result types of the node are known to be legal, but other operands of the
1026/// node may need legalization as well as the specified one.
1027bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
1028  DEBUG(dbgs() << "Split node operand: ";
1029        N->dump(&DAG);
1030        dbgs() << "\n");
1031  SDValue Res = SDValue();
1032
1033  if (Res.getNode() == 0) {
1034    switch (N->getOpcode()) {
1035    default:
1036#ifndef NDEBUG
1037      dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
1038      N->dump(&DAG);
1039      dbgs() << "\n";
1040#endif
1041      report_fatal_error("Do not know how to split this operator's "
1042                         "operand!\n");
1043
1044    case ISD::SETCC:             Res = SplitVecOp_VSETCC(N); break;
1045    case ISD::BITCAST:           Res = SplitVecOp_BITCAST(N); break;
1046    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
1047    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
1048    case ISD::CONCAT_VECTORS:    Res = SplitVecOp_CONCAT_VECTORS(N); break;
1049    case ISD::TRUNCATE:          Res = SplitVecOp_TRUNCATE(N); break;
1050    case ISD::FP_ROUND:          Res = SplitVecOp_FP_ROUND(N); break;
1051    case ISD::STORE:
1052      Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
1053      break;
1054    case ISD::VSELECT:
1055      Res = SplitVecOp_VSELECT(N, OpNo);
1056      break;
1057    case ISD::CTTZ:
1058    case ISD::CTLZ:
1059    case ISD::CTPOP:
1060    case ISD::FP_EXTEND:
1061    case ISD::FP_TO_SINT:
1062    case ISD::FP_TO_UINT:
1063    case ISD::SINT_TO_FP:
1064    case ISD::UINT_TO_FP:
1065    case ISD::FTRUNC:
1066    case ISD::SIGN_EXTEND:
1067    case ISD::ZERO_EXTEND:
1068    case ISD::ANY_EXTEND:
1069      Res = SplitVecOp_UnaryOp(N);
1070      break;
1071    }
1072  }
1073
1074  // If the result is null, the sub-method took care of registering results etc.
1075  if (!Res.getNode()) return false;
1076
1077  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1078  // core about this.
1079  if (Res.getNode() == N)
1080    return true;
1081
1082  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1083         "Invalid operand expansion");
1084
1085  ReplaceValueWith(SDValue(N, 0), Res);
1086  return false;
1087}
1088
1089SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
1090  // The only possibility for an illegal operand is the mask, since result type
1091  // legalization would have handled this node already otherwise.
1092  assert(OpNo == 0 && "Illegal operand must be mask");
1093
1094  SDValue Mask = N->getOperand(0);
1095  SDValue Src0 = N->getOperand(1);
1096  SDValue Src1 = N->getOperand(2);
1097  SDLoc DL(N);
1098  EVT MaskVT = Mask.getValueType();
1099  assert(MaskVT.isVector() && "VSELECT without a vector mask?");
1100
1101  SDValue Lo, Hi;
1102  GetSplitVector(N->getOperand(0), Lo, Hi);
1103  assert(Lo.getValueType() == Hi.getValueType() &&
1104         "Lo and Hi have differing types");
1105
1106  unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
1107  unsigned HiNumElts = Hi.getValueType().getVectorNumElements();
1108  assert(LoNumElts == HiNumElts && "Asymmetric vector split?");
1109
1110  LLVMContext &Ctx = *DAG.getContext();
1111  SDValue Zero = DAG.getIntPtrConstant(0);
1112  SDValue LoElts = DAG.getIntPtrConstant(LoNumElts);
1113  EVT Src0VT = Src0.getValueType();
1114  EVT Src0EltTy = Src0VT.getVectorElementType();
1115  EVT MaskEltTy = MaskVT.getVectorElementType();
1116
1117  EVT LoOpVT = EVT::getVectorVT(Ctx, Src0EltTy, LoNumElts);
1118  EVT LoMaskVT = EVT::getVectorVT(Ctx, MaskEltTy, LoNumElts);
1119  EVT HiOpVT = EVT::getVectorVT(Ctx, Src0EltTy, HiNumElts);
1120  EVT HiMaskVT = EVT::getVectorVT(Ctx, MaskEltTy, HiNumElts);
1121
1122  SDValue LoOp0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoOpVT, Src0, Zero);
1123  SDValue LoOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoOpVT, Src1, Zero);
1124
1125  SDValue HiOp0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiOpVT, Src0, LoElts);
1126  SDValue HiOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiOpVT, Src1, LoElts);
1127
1128  SDValue LoMask =
1129    DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoMaskVT, Mask, Zero);
1130  SDValue HiMask =
1131    DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiMaskVT, Mask, LoElts);
1132
1133  SDValue LoSelect =
1134    DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
1135  SDValue HiSelect =
1136    DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
1137
1138  return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
1139}
1140
1141SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
1142  // The result has a legal vector type, but the input needs splitting.
1143  EVT ResVT = N->getValueType(0);
1144  SDValue Lo, Hi;
1145  SDLoc dl(N);
1146  GetSplitVector(N->getOperand(0), Lo, Hi);
1147  EVT InVT = Lo.getValueType();
1148
1149  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1150                               InVT.getVectorNumElements());
1151
1152  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
1153  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
1154
1155  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
1156}
1157
1158SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
1159  // For example, i64 = BITCAST v4i16 on alpha.  Typically the vector will
1160  // end up being split all the way down to individual components.  Convert the
1161  // split pieces into integers and reassemble.
1162  SDValue Lo, Hi;
1163  GetSplitVector(N->getOperand(0), Lo, Hi);
1164  Lo = BitConvertToInteger(Lo);
1165  Hi = BitConvertToInteger(Hi);
1166
1167  if (TLI.isBigEndian())
1168    std::swap(Lo, Hi);
1169
1170  return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
1171                     JoinIntegers(Lo, Hi));
1172}
1173
1174SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1175  // We know that the extracted result type is legal.
1176  EVT SubVT = N->getValueType(0);
1177  SDValue Idx = N->getOperand(1);
1178  SDLoc dl(N);
1179  SDValue Lo, Hi;
1180  GetSplitVector(N->getOperand(0), Lo, Hi);
1181
1182  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1183  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1184
1185  if (IdxVal < LoElts) {
1186    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1187           "Extracted subvector crosses vector split!");
1188    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1189  } else {
1190    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1191                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
1192  }
1193}
1194
1195SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1196  SDValue Vec = N->getOperand(0);
1197  SDValue Idx = N->getOperand(1);
1198  EVT VecVT = Vec.getValueType();
1199
1200  if (isa<ConstantSDNode>(Idx)) {
1201    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1202    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1203
1204    SDValue Lo, Hi;
1205    GetSplitVector(Vec, Lo, Hi);
1206
1207    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1208
1209    if (IdxVal < LoElts)
1210      return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
1211    return SDValue(DAG.UpdateNodeOperands(N, Hi,
1212                                  DAG.getConstant(IdxVal - LoElts,
1213                                                  Idx.getValueType())), 0);
1214  }
1215
1216  // Store the vector to the stack.
1217  EVT EltVT = VecVT.getVectorElementType();
1218  SDLoc dl(N);
1219  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1220  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1221                               MachinePointerInfo(), false, false, 0);
1222
1223  // Load back the required element.
1224  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1225  return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
1226                        MachinePointerInfo(), EltVT, false, false, 0);
1227}
1228
1229SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1230  assert(N->isUnindexed() && "Indexed store of vector?");
1231  assert(OpNo == 1 && "Can only split the stored value");
1232  SDLoc DL(N);
1233
1234  bool isTruncating = N->isTruncatingStore();
1235  SDValue Ch  = N->getChain();
1236  SDValue Ptr = N->getBasePtr();
1237  EVT MemoryVT = N->getMemoryVT();
1238  unsigned Alignment = N->getOriginalAlignment();
1239  bool isVol = N->isVolatile();
1240  bool isNT = N->isNonTemporal();
1241  SDValue Lo, Hi;
1242  GetSplitVector(N->getOperand(1), Lo, Hi);
1243
1244  EVT LoMemVT, HiMemVT;
1245  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
1246
1247  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1248
1249  if (isTruncating)
1250    Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1251                           LoMemVT, isVol, isNT, Alignment);
1252  else
1253    Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1254                      isVol, isNT, Alignment);
1255
1256  // Increment the pointer to the other half.
1257  Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1258                    DAG.getIntPtrConstant(IncrementSize));
1259
1260  if (isTruncating)
1261    Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
1262                           N->getPointerInfo().getWithOffset(IncrementSize),
1263                           HiMemVT, isVol, isNT, Alignment);
1264  else
1265    Hi = DAG.getStore(Ch, DL, Hi, Ptr,
1266                      N->getPointerInfo().getWithOffset(IncrementSize),
1267                      isVol, isNT, Alignment);
1268
1269  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1270}
1271
1272SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
1273  SDLoc DL(N);
1274
1275  // The input operands all must have the same type, and we know the result
1276  // type is valid.  Convert this to a buildvector which extracts all the
1277  // input elements.
1278  // TODO: If the input elements are power-two vectors, we could convert this to
1279  // a new CONCAT_VECTORS node with elements that are half-wide.
1280  SmallVector<SDValue, 32> Elts;
1281  EVT EltVT = N->getValueType(0).getVectorElementType();
1282  for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1283    SDValue Op = N->getOperand(op);
1284    for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
1285         i != e; ++i) {
1286      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
1287                                 Op, DAG.getIntPtrConstant(i)));
1288
1289    }
1290  }
1291
1292  return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0),
1293                     &Elts[0], Elts.size());
1294}
1295
1296SDValue DAGTypeLegalizer::SplitVecOp_TRUNCATE(SDNode *N) {
1297  // The result type is legal, but the input type is illegal.  If splitting
1298  // ends up with the result type of each half still being legal, just
1299  // do that.  If, however, that would result in an illegal result type,
1300  // we can try to get more clever with power-two vectors. Specifically,
1301  // split the input type, but also widen the result element size, then
1302  // concatenate the halves and truncate again.  For example, consider a target
1303  // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
1304  // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
1305  //   %inlo = v4i32 extract_subvector %in, 0
1306  //   %inhi = v4i32 extract_subvector %in, 4
1307  //   %lo16 = v4i16 trunc v4i32 %inlo
1308  //   %hi16 = v4i16 trunc v4i32 %inhi
1309  //   %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
1310  //   %res = v8i8 trunc v8i16 %in16
1311  //
1312  // Without this transform, the original truncate would end up being
1313  // scalarized, which is pretty much always a last resort.
1314  SDValue InVec = N->getOperand(0);
1315  EVT InVT = InVec->getValueType(0);
1316  EVT OutVT = N->getValueType(0);
1317  unsigned NumElements = OutVT.getVectorNumElements();
1318  // Widening should have already made sure this is a power-two vector
1319  // if we're trying to split it at all. assert() that's true, just in case.
1320  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
1321
1322  unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
1323  unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
1324
1325  // If the input elements are only 1/2 the width of the result elements,
1326  // just use the normal splitting. Our trick only work if there's room
1327  // to split more than once.
1328  if (InElementSize <= OutElementSize * 2)
1329    return SplitVecOp_UnaryOp(N);
1330  SDLoc DL(N);
1331
1332  // Extract the halves of the input via extract_subvector.
1333  EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
1334                                 InVT.getVectorElementType(), NumElements/2);
1335  SDValue InLoVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, InVec,
1336                                DAG.getIntPtrConstant(0));
1337  SDValue InHiVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, InVec,
1338                                DAG.getIntPtrConstant(NumElements/2));
1339  // Truncate them to 1/2 the element size.
1340  EVT HalfElementVT = EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
1341  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
1342                                NumElements/2);
1343  SDValue HalfLo = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InLoVec);
1344  SDValue HalfHi = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InHiVec);
1345  // Concatenate them to get the full intermediate truncation result.
1346  EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
1347  SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
1348                                 HalfHi);
1349  // Now finish up by truncating all the way down to the original result
1350  // type. This should normally be something that ends up being legal directly,
1351  // but in theory if a target has very wide vectors and an annoyingly
1352  // restricted set of legal types, this split can chain to build things up.
1353  return DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
1354}
1355
1356SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
1357  assert(N->getValueType(0).isVector() &&
1358         N->getOperand(0).getValueType().isVector() &&
1359         "Operand types must be vectors");
1360  // The result has a legal vector type, but the input needs splitting.
1361  SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
1362  SDLoc DL(N);
1363  GetSplitVector(N->getOperand(0), Lo0, Hi0);
1364  GetSplitVector(N->getOperand(1), Lo1, Hi1);
1365  unsigned PartElements = Lo0.getValueType().getVectorNumElements();
1366  EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
1367  EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
1368
1369  LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
1370  HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
1371  SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
1372  return PromoteTargetBoolean(Con, N->getValueType(0));
1373}
1374
1375
1376SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
1377  // The result has a legal vector type, but the input needs splitting.
1378  EVT ResVT = N->getValueType(0);
1379  SDValue Lo, Hi;
1380  SDLoc DL(N);
1381  GetSplitVector(N->getOperand(0), Lo, Hi);
1382  EVT InVT = Lo.getValueType();
1383
1384  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1385                               InVT.getVectorNumElements());
1386
1387  Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
1388  Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
1389
1390  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
1391}
1392
1393
1394
1395//===----------------------------------------------------------------------===//
1396//  Result Vector Widening
1397//===----------------------------------------------------------------------===//
1398
1399void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1400  DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
1401        N->dump(&DAG);
1402        dbgs() << "\n");
1403
1404  // See if the target wants to custom widen this node.
1405  if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
1406    return;
1407
1408  SDValue Res = SDValue();
1409  switch (N->getOpcode()) {
1410  default:
1411#ifndef NDEBUG
1412    dbgs() << "WidenVectorResult #" << ResNo << ": ";
1413    N->dump(&DAG);
1414    dbgs() << "\n";
1415#endif
1416    llvm_unreachable("Do not know how to widen the result of this operator!");
1417
1418  case ISD::MERGE_VALUES:      Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
1419  case ISD::BITCAST:           Res = WidenVecRes_BITCAST(N); break;
1420  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1421  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1422  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1423  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1424  case ISD::FP_ROUND_INREG:    Res = WidenVecRes_InregOp(N); break;
1425  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1426  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1427  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1428  case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
1429  case ISD::VSELECT:
1430  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1431  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1432  case ISD::SETCC:             Res = WidenVecRes_SETCC(N); break;
1433  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1434  case ISD::VECTOR_SHUFFLE:
1435    Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
1436    break;
1437  case ISD::ADD:
1438  case ISD::AND:
1439  case ISD::BSWAP:
1440  case ISD::FADD:
1441  case ISD::FCOPYSIGN:
1442  case ISD::FDIV:
1443  case ISD::FMUL:
1444  case ISD::FPOW:
1445  case ISD::FREM:
1446  case ISD::FSUB:
1447  case ISD::MUL:
1448  case ISD::MULHS:
1449  case ISD::MULHU:
1450  case ISD::OR:
1451  case ISD::SDIV:
1452  case ISD::SREM:
1453  case ISD::UDIV:
1454  case ISD::UREM:
1455  case ISD::SUB:
1456  case ISD::XOR:
1457    Res = WidenVecRes_Binary(N);
1458    break;
1459
1460  case ISD::FPOWI:
1461    Res = WidenVecRes_POWI(N);
1462    break;
1463
1464  case ISD::SHL:
1465  case ISD::SRA:
1466  case ISD::SRL:
1467    Res = WidenVecRes_Shift(N);
1468    break;
1469
1470  case ISD::ANY_EXTEND:
1471  case ISD::FP_EXTEND:
1472  case ISD::FP_ROUND:
1473  case ISD::FP_TO_SINT:
1474  case ISD::FP_TO_UINT:
1475  case ISD::SIGN_EXTEND:
1476  case ISD::SINT_TO_FP:
1477  case ISD::TRUNCATE:
1478  case ISD::UINT_TO_FP:
1479  case ISD::ZERO_EXTEND:
1480    Res = WidenVecRes_Convert(N);
1481    break;
1482
1483  case ISD::CTLZ:
1484  case ISD::CTPOP:
1485  case ISD::CTTZ:
1486  case ISD::FABS:
1487  case ISD::FCEIL:
1488  case ISD::FCOS:
1489  case ISD::FEXP:
1490  case ISD::FEXP2:
1491  case ISD::FFLOOR:
1492  case ISD::FLOG:
1493  case ISD::FLOG10:
1494  case ISD::FLOG2:
1495  case ISD::FNEARBYINT:
1496  case ISD::FNEG:
1497  case ISD::FRINT:
1498  case ISD::FSIN:
1499  case ISD::FSQRT:
1500  case ISD::FTRUNC:
1501    Res = WidenVecRes_Unary(N);
1502    break;
1503  case ISD::FMA:
1504    Res = WidenVecRes_Ternary(N);
1505    break;
1506  }
1507
1508  // If Res is null, the sub-method took care of registering the result.
1509  if (Res.getNode())
1510    SetWidenedVector(SDValue(N, ResNo), Res);
1511}
1512
1513SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
1514  // Ternary op widening.
1515  SDLoc dl(N);
1516  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1517  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1518  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1519  SDValue InOp3 = GetWidenedVector(N->getOperand(2));
1520  return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
1521}
1522
1523SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1524  // Binary op widening.
1525  unsigned Opcode = N->getOpcode();
1526  SDLoc dl(N);
1527  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1528  EVT WidenEltVT = WidenVT.getVectorElementType();
1529  EVT VT = WidenVT;
1530  unsigned NumElts =  VT.getVectorNumElements();
1531  while (!TLI.isTypeLegal(VT) && NumElts != 1) {
1532    NumElts = NumElts / 2;
1533    VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1534  }
1535
1536  if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
1537    // Operation doesn't trap so just widen as normal.
1538    SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1539    SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1540    return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
1541  }
1542
1543  // No legal vector version so unroll the vector operation and then widen.
1544  if (NumElts == 1)
1545    return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
1546
1547  // Since the operation can trap, apply operation on the original vector.
1548  EVT MaxVT = VT;
1549  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1550  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1551  unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
1552
1553  SmallVector<SDValue, 16> ConcatOps(CurNumElts);
1554  unsigned ConcatEnd = 0;  // Current ConcatOps index.
1555  int Idx = 0;        // Current Idx into input vectors.
1556
1557  // NumElts := greatest legal vector size (at most WidenVT)
1558  // while (orig. vector has unhandled elements) {
1559  //   take munches of size NumElts from the beginning and add to ConcatOps
1560  //   NumElts := next smaller supported vector size or 1
1561  // }
1562  while (CurNumElts != 0) {
1563    while (CurNumElts >= NumElts) {
1564      SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
1565                                 DAG.getIntPtrConstant(Idx));
1566      SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
1567                                 DAG.getIntPtrConstant(Idx));
1568      ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2);
1569      Idx += NumElts;
1570      CurNumElts -= NumElts;
1571    }
1572    do {
1573      NumElts = NumElts / 2;
1574      VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1575    } while (!TLI.isTypeLegal(VT) && NumElts != 1);
1576
1577    if (NumElts == 1) {
1578      for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
1579        SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1580                                   InOp1, DAG.getIntPtrConstant(Idx));
1581        SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1582                                   InOp2, DAG.getIntPtrConstant(Idx));
1583        ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
1584                                             EOp1, EOp2);
1585      }
1586      CurNumElts = 0;
1587    }
1588  }
1589
1590  // Check to see if we have a single operation with the widen type.
1591  if (ConcatEnd == 1) {
1592    VT = ConcatOps[0].getValueType();
1593    if (VT == WidenVT)
1594      return ConcatOps[0];
1595  }
1596
1597  // while (Some element of ConcatOps is not of type MaxVT) {
1598  //   From the end of ConcatOps, collect elements of the same type and put
1599  //   them into an op of the next larger supported type
1600  // }
1601  while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
1602    Idx = ConcatEnd - 1;
1603    VT = ConcatOps[Idx--].getValueType();
1604    while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
1605      Idx--;
1606
1607    int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
1608    EVT NextVT;
1609    do {
1610      NextSize *= 2;
1611      NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
1612    } while (!TLI.isTypeLegal(NextVT));
1613
1614    if (!VT.isVector()) {
1615      // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
1616      SDValue VecOp = DAG.getUNDEF(NextVT);
1617      unsigned NumToInsert = ConcatEnd - Idx - 1;
1618      for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
1619        VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
1620                            ConcatOps[OpIdx], DAG.getIntPtrConstant(i));
1621      }
1622      ConcatOps[Idx+1] = VecOp;
1623      ConcatEnd = Idx + 2;
1624    } else {
1625      // Vector type, create a CONCAT_VECTORS of type NextVT
1626      SDValue undefVec = DAG.getUNDEF(VT);
1627      unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
1628      SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
1629      unsigned RealVals = ConcatEnd - Idx - 1;
1630      unsigned SubConcatEnd = 0;
1631      unsigned SubConcatIdx = Idx + 1;
1632      while (SubConcatEnd < RealVals)
1633        SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
1634      while (SubConcatEnd < OpsToConcat)
1635        SubConcatOps[SubConcatEnd++] = undefVec;
1636      ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1637                                            NextVT, &SubConcatOps[0],
1638                                            OpsToConcat);
1639      ConcatEnd = SubConcatIdx + 1;
1640    }
1641  }
1642
1643  // Check to see if we have a single operation with the widen type.
1644  if (ConcatEnd == 1) {
1645    VT = ConcatOps[0].getValueType();
1646    if (VT == WidenVT)
1647      return ConcatOps[0];
1648  }
1649
1650  // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
1651  unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
1652  if (NumOps != ConcatEnd ) {
1653    SDValue UndefVal = DAG.getUNDEF(MaxVT);
1654    for (unsigned j = ConcatEnd; j < NumOps; ++j)
1655      ConcatOps[j] = UndefVal;
1656  }
1657  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0], NumOps);
1658}
1659
1660SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1661  SDValue InOp = N->getOperand(0);
1662  SDLoc DL(N);
1663
1664  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1665  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1666
1667  EVT InVT = InOp.getValueType();
1668  EVT InEltVT = InVT.getVectorElementType();
1669  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1670
1671  unsigned Opcode = N->getOpcode();
1672  unsigned InVTNumElts = InVT.getVectorNumElements();
1673
1674  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
1675    InOp = GetWidenedVector(N->getOperand(0));
1676    InVT = InOp.getValueType();
1677    InVTNumElts = InVT.getVectorNumElements();
1678    if (InVTNumElts == WidenNumElts) {
1679      if (N->getNumOperands() == 1)
1680        return DAG.getNode(Opcode, DL, WidenVT, InOp);
1681      return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1));
1682    }
1683  }
1684
1685  if (TLI.isTypeLegal(InWidenVT)) {
1686    // Because the result and the input are different vector types, widening
1687    // the result could create a legal type but widening the input might make
1688    // it an illegal type that might lead to repeatedly splitting the input
1689    // and then widening it. To avoid this, we widen the input only if
1690    // it results in a legal type.
1691    if (WidenNumElts % InVTNumElts == 0) {
1692      // Widen the input and call convert on the widened input vector.
1693      unsigned NumConcat = WidenNumElts/InVTNumElts;
1694      SmallVector<SDValue, 16> Ops(NumConcat);
1695      Ops[0] = InOp;
1696      SDValue UndefVal = DAG.getUNDEF(InVT);
1697      for (unsigned i = 1; i != NumConcat; ++i)
1698        Ops[i] = UndefVal;
1699      SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT,
1700                                  &Ops[0], NumConcat);
1701      if (N->getNumOperands() == 1)
1702        return DAG.getNode(Opcode, DL, WidenVT, InVec);
1703      return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1));
1704    }
1705
1706    if (InVTNumElts % WidenNumElts == 0) {
1707      SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT,
1708                                  InOp, DAG.getIntPtrConstant(0));
1709      // Extract the input and convert the shorten input vector.
1710      if (N->getNumOperands() == 1)
1711        return DAG.getNode(Opcode, DL, WidenVT, InVal);
1712      return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1));
1713    }
1714  }
1715
1716  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1717  SmallVector<SDValue, 16> Ops(WidenNumElts);
1718  EVT EltVT = WidenVT.getVectorElementType();
1719  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1720  unsigned i;
1721  for (i=0; i < MinElts; ++i) {
1722    SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
1723                              DAG.getIntPtrConstant(i));
1724    if (N->getNumOperands() == 1)
1725      Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
1726    else
1727      Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1));
1728  }
1729
1730  SDValue UndefVal = DAG.getUNDEF(EltVT);
1731  for (; i < WidenNumElts; ++i)
1732    Ops[i] = UndefVal;
1733
1734  return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, &Ops[0], WidenNumElts);
1735}
1736
1737SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
1738  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1739  SDValue InOp = GetWidenedVector(N->getOperand(0));
1740  SDValue ShOp = N->getOperand(1);
1741  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
1742}
1743
1744SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1745  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1746  SDValue InOp = GetWidenedVector(N->getOperand(0));
1747  SDValue ShOp = N->getOperand(1);
1748
1749  EVT ShVT = ShOp.getValueType();
1750  if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
1751    ShOp = GetWidenedVector(ShOp);
1752    ShVT = ShOp.getValueType();
1753  }
1754  EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
1755                                   ShVT.getVectorElementType(),
1756                                   WidenVT.getVectorNumElements());
1757  if (ShVT != ShWidenVT)
1758    ShOp = ModifyToType(ShOp, ShWidenVT);
1759
1760  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
1761}
1762
1763SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1764  // Unary op widening.
1765  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1766  SDValue InOp = GetWidenedVector(N->getOperand(0));
1767  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
1768}
1769
1770SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
1771  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1772  EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
1773                               cast<VTSDNode>(N->getOperand(1))->getVT()
1774                                 .getVectorElementType(),
1775                               WidenVT.getVectorNumElements());
1776  SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
1777  return DAG.getNode(N->getOpcode(), SDLoc(N),
1778                     WidenVT, WidenLHS, DAG.getValueType(ExtVT));
1779}
1780
1781SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
1782  SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
1783  return GetWidenedVector(WidenVec);
1784}
1785
1786SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
1787  SDValue InOp = N->getOperand(0);
1788  EVT InVT = InOp.getValueType();
1789  EVT VT = N->getValueType(0);
1790  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1791  SDLoc dl(N);
1792
1793  switch (getTypeAction(InVT)) {
1794  case TargetLowering::TypeLegal:
1795    break;
1796  case TargetLowering::TypePromoteInteger:
1797    // If the incoming type is a vector that is being promoted, then
1798    // we know that the elements are arranged differently and that we
1799    // must perform the conversion using a stack slot.
1800    if (InVT.isVector())
1801      break;
1802
1803    // If the InOp is promoted to the same size, convert it.  Otherwise,
1804    // fall out of the switch and widen the promoted input.
1805    InOp = GetPromotedInteger(InOp);
1806    InVT = InOp.getValueType();
1807    if (WidenVT.bitsEq(InVT))
1808      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
1809    break;
1810  case TargetLowering::TypeSoftenFloat:
1811  case TargetLowering::TypeExpandInteger:
1812  case TargetLowering::TypeExpandFloat:
1813  case TargetLowering::TypeScalarizeVector:
1814  case TargetLowering::TypeSplitVector:
1815    break;
1816  case TargetLowering::TypeWidenVector:
1817    // If the InOp is widened to the same size, convert it.  Otherwise, fall
1818    // out of the switch and widen the widened input.
1819    InOp = GetWidenedVector(InOp);
1820    InVT = InOp.getValueType();
1821    if (WidenVT.bitsEq(InVT))
1822      // The input widens to the same size. Convert to the widen value.
1823      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
1824    break;
1825  }
1826
1827  unsigned WidenSize = WidenVT.getSizeInBits();
1828  unsigned InSize = InVT.getSizeInBits();
1829  // x86mmx is not an acceptable vector element type, so don't try.
1830  if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
1831    // Determine new input vector type.  The new input vector type will use
1832    // the same element type (if its a vector) or use the input type as a
1833    // vector.  It is the same size as the type to widen to.
1834    EVT NewInVT;
1835    unsigned NewNumElts = WidenSize / InSize;
1836    if (InVT.isVector()) {
1837      EVT InEltVT = InVT.getVectorElementType();
1838      NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
1839                                 WidenSize / InEltVT.getSizeInBits());
1840    } else {
1841      NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
1842    }
1843
1844    if (TLI.isTypeLegal(NewInVT)) {
1845      // Because the result and the input are different vector types, widening
1846      // the result could create a legal type but widening the input might make
1847      // it an illegal type that might lead to repeatedly splitting the input
1848      // and then widening it. To avoid this, we widen the input only if
1849      // it results in a legal type.
1850      SmallVector<SDValue, 16> Ops(NewNumElts);
1851      SDValue UndefVal = DAG.getUNDEF(InVT);
1852      Ops[0] = InOp;
1853      for (unsigned i = 1; i < NewNumElts; ++i)
1854        Ops[i] = UndefVal;
1855
1856      SDValue NewVec;
1857      if (InVT.isVector())
1858        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1859                             NewInVT, &Ops[0], NewNumElts);
1860      else
1861        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1862                             NewInVT, &Ops[0], NewNumElts);
1863      return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
1864    }
1865  }
1866
1867  return CreateStackStoreLoad(InOp, WidenVT);
1868}
1869
1870SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1871  SDLoc dl(N);
1872  // Build a vector with undefined for the new nodes.
1873  EVT VT = N->getValueType(0);
1874  EVT EltVT = VT.getVectorElementType();
1875  unsigned NumElts = VT.getVectorNumElements();
1876
1877  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1878  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1879
1880  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1881  assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
1882  NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
1883
1884  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1885}
1886
1887SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1888  EVT InVT = N->getOperand(0).getValueType();
1889  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1890  SDLoc dl(N);
1891  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1892  unsigned NumInElts = InVT.getVectorNumElements();
1893  unsigned NumOperands = N->getNumOperands();
1894
1895  bool InputWidened = false; // Indicates we need to widen the input.
1896  if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
1897    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1898      // Add undef vectors to widen to correct length.
1899      unsigned NumConcat = WidenVT.getVectorNumElements() /
1900                           InVT.getVectorNumElements();
1901      SDValue UndefVal = DAG.getUNDEF(InVT);
1902      SmallVector<SDValue, 16> Ops(NumConcat);
1903      for (unsigned i=0; i < NumOperands; ++i)
1904        Ops[i] = N->getOperand(i);
1905      for (unsigned i = NumOperands; i != NumConcat; ++i)
1906        Ops[i] = UndefVal;
1907      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1908    }
1909  } else {
1910    InputWidened = true;
1911    if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
1912      // The inputs and the result are widen to the same value.
1913      unsigned i;
1914      for (i=1; i < NumOperands; ++i)
1915        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1916          break;
1917
1918      if (i == NumOperands)
1919        // Everything but the first operand is an UNDEF so just return the
1920        // widened first operand.
1921        return GetWidenedVector(N->getOperand(0));
1922
1923      if (NumOperands == 2) {
1924        // Replace concat of two operands with a shuffle.
1925        SmallVector<int, 16> MaskOps(WidenNumElts, -1);
1926        for (unsigned i = 0; i < NumInElts; ++i) {
1927          MaskOps[i] = i;
1928          MaskOps[i + NumInElts] = i + WidenNumElts;
1929        }
1930        return DAG.getVectorShuffle(WidenVT, dl,
1931                                    GetWidenedVector(N->getOperand(0)),
1932                                    GetWidenedVector(N->getOperand(1)),
1933                                    &MaskOps[0]);
1934      }
1935    }
1936  }
1937
1938  // Fall back to use extracts and build vector.
1939  EVT EltVT = WidenVT.getVectorElementType();
1940  SmallVector<SDValue, 16> Ops(WidenNumElts);
1941  unsigned Idx = 0;
1942  for (unsigned i=0; i < NumOperands; ++i) {
1943    SDValue InOp = N->getOperand(i);
1944    if (InputWidened)
1945      InOp = GetWidenedVector(InOp);
1946    for (unsigned j=0; j < NumInElts; ++j)
1947      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1948                               DAG.getIntPtrConstant(j));
1949  }
1950  SDValue UndefVal = DAG.getUNDEF(EltVT);
1951  for (; Idx < WidenNumElts; ++Idx)
1952    Ops[Idx] = UndefVal;
1953  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1954}
1955
1956SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
1957  SDLoc dl(N);
1958  SDValue InOp  = N->getOperand(0);
1959  SDValue RndOp = N->getOperand(3);
1960  SDValue SatOp = N->getOperand(4);
1961
1962  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1963  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1964
1965  EVT InVT = InOp.getValueType();
1966  EVT InEltVT = InVT.getVectorElementType();
1967  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1968
1969  SDValue DTyOp = DAG.getValueType(WidenVT);
1970  SDValue STyOp = DAG.getValueType(InWidenVT);
1971  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1972
1973  unsigned InVTNumElts = InVT.getVectorNumElements();
1974  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
1975    InOp = GetWidenedVector(InOp);
1976    InVT = InOp.getValueType();
1977    InVTNumElts = InVT.getVectorNumElements();
1978    if (InVTNumElts == WidenNumElts)
1979      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1980                                  SatOp, CvtCode);
1981  }
1982
1983  if (TLI.isTypeLegal(InWidenVT)) {
1984    // Because the result and the input are different vector types, widening
1985    // the result could create a legal type but widening the input might make
1986    // it an illegal type that might lead to repeatedly splitting the input
1987    // and then widening it. To avoid this, we widen the input only if
1988    // it results in a legal type.
1989    if (WidenNumElts % InVTNumElts == 0) {
1990      // Widen the input and call convert on the widened input vector.
1991      unsigned NumConcat = WidenNumElts/InVTNumElts;
1992      SmallVector<SDValue, 16> Ops(NumConcat);
1993      Ops[0] = InOp;
1994      SDValue UndefVal = DAG.getUNDEF(InVT);
1995      for (unsigned i = 1; i != NumConcat; ++i)
1996        Ops[i] = UndefVal;
1997
1998      InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
1999      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2000                                  SatOp, CvtCode);
2001    }
2002
2003    if (InVTNumElts % WidenNumElts == 0) {
2004      // Extract the input and convert the shorten input vector.
2005      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
2006                         DAG.getIntPtrConstant(0));
2007      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2008                                  SatOp, CvtCode);
2009    }
2010  }
2011
2012  // Otherwise unroll into some nasty scalar code and rebuild the vector.
2013  SmallVector<SDValue, 16> Ops(WidenNumElts);
2014  EVT EltVT = WidenVT.getVectorElementType();
2015  DTyOp = DAG.getValueType(EltVT);
2016  STyOp = DAG.getValueType(InEltVT);
2017
2018  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2019  unsigned i;
2020  for (i=0; i < MinElts; ++i) {
2021    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2022                                 DAG.getIntPtrConstant(i));
2023    Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
2024                                  SatOp, CvtCode);
2025  }
2026
2027  SDValue UndefVal = DAG.getUNDEF(EltVT);
2028  for (; i < WidenNumElts; ++i)
2029    Ops[i] = UndefVal;
2030
2031  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
2032}
2033
2034SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
2035  EVT      VT = N->getValueType(0);
2036  EVT      WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2037  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2038  SDValue  InOp = N->getOperand(0);
2039  SDValue  Idx  = N->getOperand(1);
2040  SDLoc dl(N);
2041
2042  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2043    InOp = GetWidenedVector(InOp);
2044
2045  EVT InVT = InOp.getValueType();
2046
2047  // Check if we can just return the input vector after widening.
2048  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
2049  if (IdxVal == 0 && InVT == WidenVT)
2050    return InOp;
2051
2052  // Check if we can extract from the vector.
2053  unsigned InNumElts = InVT.getVectorNumElements();
2054  if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
2055    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
2056
2057  // We could try widening the input to the right length but for now, extract
2058  // the original elements, fill the rest with undefs and build a vector.
2059  SmallVector<SDValue, 16> Ops(WidenNumElts);
2060  EVT EltVT = VT.getVectorElementType();
2061  unsigned NumElts = VT.getVectorNumElements();
2062  unsigned i;
2063  for (i=0; i < NumElts; ++i)
2064    Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2065                         DAG.getIntPtrConstant(IdxVal+i));
2066
2067  SDValue UndefVal = DAG.getUNDEF(EltVT);
2068  for (; i < WidenNumElts; ++i)
2069    Ops[i] = UndefVal;
2070  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
2071}
2072
2073SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
2074  SDValue InOp = GetWidenedVector(N->getOperand(0));
2075  return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
2076                     InOp.getValueType(), InOp,
2077                     N->getOperand(1), N->getOperand(2));
2078}
2079
2080SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
2081  LoadSDNode *LD = cast<LoadSDNode>(N);
2082  ISD::LoadExtType ExtType = LD->getExtensionType();
2083
2084  SDValue Result;
2085  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
2086  if (ExtType != ISD::NON_EXTLOAD)
2087    Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
2088  else
2089    Result = GenWidenVectorLoads(LdChain, LD);
2090
2091  // If we generate a single load, we can use that for the chain.  Otherwise,
2092  // build a factor node to remember the multiple loads are independent and
2093  // chain to that.
2094  SDValue NewChain;
2095  if (LdChain.size() == 1)
2096    NewChain = LdChain[0];
2097  else
2098    NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
2099                           &LdChain[0], LdChain.size());
2100
2101  // Modified the chain - switch anything that used the old chain to use
2102  // the new one.
2103  ReplaceValueWith(SDValue(N, 1), NewChain);
2104
2105  return Result;
2106}
2107
2108SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
2109  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2110  return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
2111                     WidenVT, N->getOperand(0));
2112}
2113
2114SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
2115  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2116  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2117
2118  SDValue Cond1 = N->getOperand(0);
2119  EVT CondVT = Cond1.getValueType();
2120  if (CondVT.isVector()) {
2121    EVT CondEltVT = CondVT.getVectorElementType();
2122    EVT CondWidenVT =  EVT::getVectorVT(*DAG.getContext(),
2123                                        CondEltVT, WidenNumElts);
2124    if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
2125      Cond1 = GetWidenedVector(Cond1);
2126
2127    if (Cond1.getValueType() != CondWidenVT)
2128      Cond1 = ModifyToType(Cond1, CondWidenVT);
2129  }
2130
2131  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2132  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
2133  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
2134  return DAG.getNode(N->getOpcode(), SDLoc(N),
2135                     WidenVT, Cond1, InOp1, InOp2);
2136}
2137
2138SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
2139  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
2140  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
2141  return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
2142                     InOp1.getValueType(), N->getOperand(0),
2143                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
2144}
2145
2146SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
2147  assert(N->getValueType(0).isVector() ==
2148         N->getOperand(0).getValueType().isVector() &&
2149         "Scalar/Vector type mismatch");
2150  if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
2151
2152  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2153  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2154  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2155  return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
2156                     InOp1, InOp2, N->getOperand(2));
2157}
2158
2159SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
2160 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2161 return DAG.getUNDEF(WidenVT);
2162}
2163
2164SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
2165  EVT VT = N->getValueType(0);
2166  SDLoc dl(N);
2167
2168  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2169  unsigned NumElts = VT.getVectorNumElements();
2170  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2171
2172  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2173  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2174
2175  // Adjust mask based on new input vector length.
2176  SmallVector<int, 16> NewMask;
2177  for (unsigned i = 0; i != NumElts; ++i) {
2178    int Idx = N->getMaskElt(i);
2179    if (Idx < (int)NumElts)
2180      NewMask.push_back(Idx);
2181    else
2182      NewMask.push_back(Idx - NumElts + WidenNumElts);
2183  }
2184  for (unsigned i = NumElts; i != WidenNumElts; ++i)
2185    NewMask.push_back(-1);
2186  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
2187}
2188
2189SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
2190  assert(N->getValueType(0).isVector() &&
2191         N->getOperand(0).getValueType().isVector() &&
2192         "Operands must be vectors");
2193  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2194  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2195
2196  SDValue InOp1 = N->getOperand(0);
2197  EVT InVT = InOp1.getValueType();
2198  assert(InVT.isVector() && "can not widen non vector type");
2199  EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
2200                                   InVT.getVectorElementType(), WidenNumElts);
2201  InOp1 = GetWidenedVector(InOp1);
2202  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2203
2204  // Assume that the input and output will be widen appropriately.  If not,
2205  // we will have to unroll it at some point.
2206  assert(InOp1.getValueType() == WidenInVT &&
2207         InOp2.getValueType() == WidenInVT &&
2208         "Input not widened to expected type!");
2209  (void)WidenInVT;
2210  return DAG.getNode(ISD::SETCC, SDLoc(N),
2211                     WidenVT, InOp1, InOp2, N->getOperand(2));
2212}
2213
2214
2215//===----------------------------------------------------------------------===//
2216// Widen Vector Operand
2217//===----------------------------------------------------------------------===//
2218bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
2219  DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
2220        N->dump(&DAG);
2221        dbgs() << "\n");
2222  SDValue Res = SDValue();
2223
2224  // See if the target wants to custom widen this node.
2225  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2226    return false;
2227
2228  switch (N->getOpcode()) {
2229  default:
2230#ifndef NDEBUG
2231    dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
2232    N->dump(&DAG);
2233    dbgs() << "\n";
2234#endif
2235    llvm_unreachable("Do not know how to widen this operator's operand!");
2236
2237  case ISD::BITCAST:            Res = WidenVecOp_BITCAST(N); break;
2238  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
2239  case ISD::EXTRACT_SUBVECTOR:  Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
2240  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
2241  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
2242  case ISD::SETCC:              Res = WidenVecOp_SETCC(N); break;
2243
2244  case ISD::FP_EXTEND:
2245  case ISD::FP_TO_SINT:
2246  case ISD::FP_TO_UINT:
2247  case ISD::SINT_TO_FP:
2248  case ISD::UINT_TO_FP:
2249  case ISD::TRUNCATE:
2250  case ISD::SIGN_EXTEND:
2251  case ISD::ZERO_EXTEND:
2252  case ISD::ANY_EXTEND:
2253    Res = WidenVecOp_Convert(N);
2254    break;
2255  }
2256
2257  // If Res is null, the sub-method took care of registering the result.
2258  if (!Res.getNode()) return false;
2259
2260  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2261  // core about this.
2262  if (Res.getNode() == N)
2263    return true;
2264
2265
2266  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2267         "Invalid operand expansion");
2268
2269  ReplaceValueWith(SDValue(N, 0), Res);
2270  return false;
2271}
2272
2273SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
2274  // Since the result is legal and the input is illegal, it is unlikely
2275  // that we can fix the input to a legal type so unroll the convert
2276  // into some scalar code and create a nasty build vector.
2277  EVT VT = N->getValueType(0);
2278  EVT EltVT = VT.getVectorElementType();
2279  SDLoc dl(N);
2280  unsigned NumElts = VT.getVectorNumElements();
2281  SDValue InOp = N->getOperand(0);
2282  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2283    InOp = GetWidenedVector(InOp);
2284  EVT InVT = InOp.getValueType();
2285  EVT InEltVT = InVT.getVectorElementType();
2286
2287  unsigned Opcode = N->getOpcode();
2288  SmallVector<SDValue, 16> Ops(NumElts);
2289  for (unsigned i=0; i < NumElts; ++i)
2290    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
2291                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2292                                     DAG.getIntPtrConstant(i)));
2293
2294  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
2295}
2296
2297SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
2298  EVT VT = N->getValueType(0);
2299  SDValue InOp = GetWidenedVector(N->getOperand(0));
2300  EVT InWidenVT = InOp.getValueType();
2301  SDLoc dl(N);
2302
2303  // Check if we can convert between two legal vector types and extract.
2304  unsigned InWidenSize = InWidenVT.getSizeInBits();
2305  unsigned Size = VT.getSizeInBits();
2306  // x86mmx is not an acceptable vector element type, so don't try.
2307  if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
2308    unsigned NewNumElts = InWidenSize / Size;
2309    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
2310    if (TLI.isTypeLegal(NewVT)) {
2311      SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
2312      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
2313                         DAG.getIntPtrConstant(0));
2314    }
2315  }
2316
2317  return CreateStackStoreLoad(InOp, VT);
2318}
2319
2320SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
2321  // If the input vector is not legal, it is likely that we will not find a
2322  // legal vector of the same size. Replace the concatenate vector with a
2323  // nasty build vector.
2324  EVT VT = N->getValueType(0);
2325  EVT EltVT = VT.getVectorElementType();
2326  SDLoc dl(N);
2327  unsigned NumElts = VT.getVectorNumElements();
2328  SmallVector<SDValue, 16> Ops(NumElts);
2329
2330  EVT InVT = N->getOperand(0).getValueType();
2331  unsigned NumInElts = InVT.getVectorNumElements();
2332
2333  unsigned Idx = 0;
2334  unsigned NumOperands = N->getNumOperands();
2335  for (unsigned i=0; i < NumOperands; ++i) {
2336    SDValue InOp = N->getOperand(i);
2337    if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2338      InOp = GetWidenedVector(InOp);
2339    for (unsigned j=0; j < NumInElts; ++j)
2340      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2341                               DAG.getIntPtrConstant(j));
2342  }
2343  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
2344}
2345
2346SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
2347  SDValue InOp = GetWidenedVector(N->getOperand(0));
2348  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
2349                     N->getValueType(0), InOp, N->getOperand(1));
2350}
2351
2352SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2353  SDValue InOp = GetWidenedVector(N->getOperand(0));
2354  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
2355                     N->getValueType(0), InOp, N->getOperand(1));
2356}
2357
2358SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
2359  // We have to widen the value but we want only to store the original
2360  // vector type.
2361  StoreSDNode *ST = cast<StoreSDNode>(N);
2362
2363  SmallVector<SDValue, 16> StChain;
2364  if (ST->isTruncatingStore())
2365    GenWidenVectorTruncStores(StChain, ST);
2366  else
2367    GenWidenVectorStores(StChain, ST);
2368
2369  if (StChain.size() == 1)
2370    return StChain[0];
2371  else
2372    return DAG.getNode(ISD::TokenFactor, SDLoc(ST),
2373                       MVT::Other,&StChain[0],StChain.size());
2374}
2375
2376SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
2377  SDValue InOp0 = GetWidenedVector(N->getOperand(0));
2378  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2379  SDLoc dl(N);
2380
2381  // WARNING: In this code we widen the compare instruction with garbage.
2382  // This garbage may contain denormal floats which may be slow. Is this a real
2383  // concern ? Should we zero the unused lanes if this is a float compare ?
2384
2385  // Get a new SETCC node to compare the newly widened operands.
2386  // Only some of the compared elements are legal.
2387  EVT SVT = TLI.getSetCCResultType(*DAG.getContext(), InOp0.getValueType());
2388  SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
2389                     SVT, InOp0, InOp1, N->getOperand(2));
2390
2391  // Extract the needed results from the result vector.
2392  EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
2393                               SVT.getVectorElementType(),
2394                               N->getValueType(0).getVectorNumElements());
2395  SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
2396                           ResVT, WideSETCC, DAG.getIntPtrConstant(0));
2397
2398  return PromoteTargetBoolean(CC, N->getValueType(0));
2399}
2400
2401
2402//===----------------------------------------------------------------------===//
2403// Vector Widening Utilities
2404//===----------------------------------------------------------------------===//
2405
2406// Utility function to find the type to chop up a widen vector for load/store
2407//  TLI:       Target lowering used to determine legal types.
2408//  Width:     Width left need to load/store.
2409//  WidenVT:   The widen vector type to load to/store from
2410//  Align:     If 0, don't allow use of a wider type
2411//  WidenEx:   If Align is not 0, the amount additional we can load/store from.
2412
2413static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
2414                       unsigned Width, EVT WidenVT,
2415                       unsigned Align = 0, unsigned WidenEx = 0) {
2416  EVT WidenEltVT = WidenVT.getVectorElementType();
2417  unsigned WidenWidth = WidenVT.getSizeInBits();
2418  unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
2419  unsigned AlignInBits = Align*8;
2420
2421  // If we have one element to load/store, return it.
2422  EVT RetVT = WidenEltVT;
2423  if (Width == WidenEltWidth)
2424    return RetVT;
2425
2426  // See if there is larger legal integer than the element type to load/store
2427  unsigned VT;
2428  for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
2429       VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
2430    EVT MemVT((MVT::SimpleValueType) VT);
2431    unsigned MemVTWidth = MemVT.getSizeInBits();
2432    if (MemVT.getSizeInBits() <= WidenEltWidth)
2433      break;
2434    if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
2435        isPowerOf2_32(WidenWidth / MemVTWidth) &&
2436        (MemVTWidth <= Width ||
2437         (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2438      RetVT = MemVT;
2439      break;
2440    }
2441  }
2442
2443  // See if there is a larger vector type to load/store that has the same vector
2444  // element type and is evenly divisible with the WidenVT.
2445  for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
2446       VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
2447    EVT MemVT = (MVT::SimpleValueType) VT;
2448    unsigned MemVTWidth = MemVT.getSizeInBits();
2449    if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
2450        (WidenWidth % MemVTWidth) == 0 &&
2451        isPowerOf2_32(WidenWidth / MemVTWidth) &&
2452        (MemVTWidth <= Width ||
2453         (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2454      if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
2455        return MemVT;
2456    }
2457  }
2458
2459  return RetVT;
2460}
2461
2462// Builds a vector type from scalar loads
2463//  VecTy: Resulting Vector type
2464//  LDOps: Load operators to build a vector type
2465//  [Start,End) the list of loads to use.
2466static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
2467                                     SmallVector<SDValue, 16>& LdOps,
2468                                     unsigned Start, unsigned End) {
2469  SDLoc dl(LdOps[Start]);
2470  EVT LdTy = LdOps[Start].getValueType();
2471  unsigned Width = VecTy.getSizeInBits();
2472  unsigned NumElts = Width / LdTy.getSizeInBits();
2473  EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
2474
2475  unsigned Idx = 1;
2476  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
2477
2478  for (unsigned i = Start + 1; i != End; ++i) {
2479    EVT NewLdTy = LdOps[i].getValueType();
2480    if (NewLdTy != LdTy) {
2481      NumElts = Width / NewLdTy.getSizeInBits();
2482      NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
2483      VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
2484      // Readjust position and vector position based on new load type
2485      Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
2486      LdTy = NewLdTy;
2487    }
2488    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
2489                        DAG.getIntPtrConstant(Idx++));
2490  }
2491  return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
2492}
2493
2494SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16> &LdChain,
2495                                              LoadSDNode *LD) {
2496  // The strategy assumes that we can efficiently load powers of two widths.
2497  // The routines chops the vector into the largest vector loads with the same
2498  // element type or scalar loads and then recombines it to the widen vector
2499  // type.
2500  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
2501  unsigned WidenWidth = WidenVT.getSizeInBits();
2502  EVT LdVT    = LD->getMemoryVT();
2503  SDLoc dl(LD);
2504  assert(LdVT.isVector() && WidenVT.isVector());
2505  assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
2506
2507  // Load information
2508  SDValue   Chain = LD->getChain();
2509  SDValue   BasePtr = LD->getBasePtr();
2510  unsigned  Align    = LD->getAlignment();
2511  bool      isVolatile = LD->isVolatile();
2512  bool      isNonTemporal = LD->isNonTemporal();
2513  bool      isInvariant = LD->isInvariant();
2514
2515  int LdWidth = LdVT.getSizeInBits();
2516  int WidthDiff = WidenWidth - LdWidth;          // Difference
2517  unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads
2518
2519  // Find the vector type that can load from.
2520  EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
2521  int NewVTWidth = NewVT.getSizeInBits();
2522  SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
2523                             isVolatile, isNonTemporal, isInvariant, Align);
2524  LdChain.push_back(LdOp.getValue(1));
2525
2526  // Check if we can load the element with one instruction
2527  if (LdWidth <= NewVTWidth) {
2528    if (!NewVT.isVector()) {
2529      unsigned NumElts = WidenWidth / NewVTWidth;
2530      EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
2531      SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2532      return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
2533    }
2534    if (NewVT == WidenVT)
2535      return LdOp;
2536
2537    assert(WidenWidth % NewVTWidth == 0);
2538    unsigned NumConcat = WidenWidth / NewVTWidth;
2539    SmallVector<SDValue, 16> ConcatOps(NumConcat);
2540    SDValue UndefVal = DAG.getUNDEF(NewVT);
2541    ConcatOps[0] = LdOp;
2542    for (unsigned i = 1; i != NumConcat; ++i)
2543      ConcatOps[i] = UndefVal;
2544    return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0],
2545                       NumConcat);
2546  }
2547
2548  // Load vector by using multiple loads from largest vector to scalar
2549  SmallVector<SDValue, 16> LdOps;
2550  LdOps.push_back(LdOp);
2551
2552  LdWidth -= NewVTWidth;
2553  unsigned Offset = 0;
2554
2555  while (LdWidth > 0) {
2556    unsigned Increment = NewVTWidth / 8;
2557    Offset += Increment;
2558    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2559                          DAG.getIntPtrConstant(Increment));
2560
2561    SDValue L;
2562    if (LdWidth < NewVTWidth) {
2563      // Our current type we are using is too large, find a better size
2564      NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
2565      NewVTWidth = NewVT.getSizeInBits();
2566      L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
2567                      LD->getPointerInfo().getWithOffset(Offset), isVolatile,
2568                      isNonTemporal, isInvariant, MinAlign(Align, Increment));
2569      LdChain.push_back(L.getValue(1));
2570      if (L->getValueType(0).isVector()) {
2571        SmallVector<SDValue, 16> Loads;
2572        Loads.push_back(L);
2573        unsigned size = L->getValueSizeInBits(0);
2574        while (size < LdOp->getValueSizeInBits(0)) {
2575          Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
2576          size += L->getValueSizeInBits(0);
2577        }
2578        L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0),
2579                        &Loads[0], Loads.size());
2580      }
2581    } else {
2582      L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
2583                      LD->getPointerInfo().getWithOffset(Offset), isVolatile,
2584                      isNonTemporal, isInvariant, MinAlign(Align, Increment));
2585      LdChain.push_back(L.getValue(1));
2586    }
2587
2588    LdOps.push_back(L);
2589
2590
2591    LdWidth -= NewVTWidth;
2592  }
2593
2594  // Build the vector from the loads operations
2595  unsigned End = LdOps.size();
2596  if (!LdOps[0].getValueType().isVector())
2597    // All the loads are scalar loads.
2598    return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
2599
2600  // If the load contains vectors, build the vector using concat vector.
2601  // All of the vectors used to loads are power of 2 and the scalars load
2602  // can be combined to make a power of 2 vector.
2603  SmallVector<SDValue, 16> ConcatOps(End);
2604  int i = End - 1;
2605  int Idx = End;
2606  EVT LdTy = LdOps[i].getValueType();
2607  // First combine the scalar loads to a vector
2608  if (!LdTy.isVector())  {
2609    for (--i; i >= 0; --i) {
2610      LdTy = LdOps[i].getValueType();
2611      if (LdTy.isVector())
2612        break;
2613    }
2614    ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End);
2615  }
2616  ConcatOps[--Idx] = LdOps[i];
2617  for (--i; i >= 0; --i) {
2618    EVT NewLdTy = LdOps[i].getValueType();
2619    if (NewLdTy != LdTy) {
2620      // Create a larger vector
2621      ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
2622                                     &ConcatOps[Idx], End - Idx);
2623      Idx = End - 1;
2624      LdTy = NewLdTy;
2625    }
2626    ConcatOps[--Idx] = LdOps[i];
2627  }
2628
2629  if (WidenWidth == LdTy.getSizeInBits()*(End - Idx))
2630    return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
2631                       &ConcatOps[Idx], End - Idx);
2632
2633  // We need to fill the rest with undefs to build the vector
2634  unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
2635  SmallVector<SDValue, 16> WidenOps(NumOps);
2636  SDValue UndefVal = DAG.getUNDEF(LdTy);
2637  {
2638    unsigned i = 0;
2639    for (; i != End-Idx; ++i)
2640      WidenOps[i] = ConcatOps[Idx+i];
2641    for (; i != NumOps; ++i)
2642      WidenOps[i] = UndefVal;
2643  }
2644  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &WidenOps[0],NumOps);
2645}
2646
2647SDValue
2648DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
2649                                         LoadSDNode * LD,
2650                                         ISD::LoadExtType ExtType) {
2651  // For extension loads, it may not be more efficient to chop up the vector
2652  // and then extended it.  Instead, we unroll the load and build a new vector.
2653  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
2654  EVT LdVT    = LD->getMemoryVT();
2655  SDLoc dl(LD);
2656  assert(LdVT.isVector() && WidenVT.isVector());
2657
2658  // Load information
2659  SDValue   Chain = LD->getChain();
2660  SDValue   BasePtr = LD->getBasePtr();
2661  unsigned  Align    = LD->getAlignment();
2662  bool      isVolatile = LD->isVolatile();
2663  bool      isNonTemporal = LD->isNonTemporal();
2664
2665  EVT EltVT = WidenVT.getVectorElementType();
2666  EVT LdEltVT = LdVT.getVectorElementType();
2667  unsigned NumElts = LdVT.getVectorNumElements();
2668
2669  // Load each element and widen
2670  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2671  SmallVector<SDValue, 16> Ops(WidenNumElts);
2672  unsigned Increment = LdEltVT.getSizeInBits() / 8;
2673  Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
2674                          LD->getPointerInfo(),
2675                          LdEltVT, isVolatile, isNonTemporal, Align);
2676  LdChain.push_back(Ops[0].getValue(1));
2677  unsigned i = 0, Offset = Increment;
2678  for (i=1; i < NumElts; ++i, Offset += Increment) {
2679    SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
2680                                     BasePtr, DAG.getIntPtrConstant(Offset));
2681    Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
2682                            LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
2683                            isVolatile, isNonTemporal, Align);
2684    LdChain.push_back(Ops[i].getValue(1));
2685  }
2686
2687  // Fill the rest with undefs
2688  SDValue UndefVal = DAG.getUNDEF(EltVT);
2689  for (; i != WidenNumElts; ++i)
2690    Ops[i] = UndefVal;
2691
2692  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
2693}
2694
2695
2696void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
2697                                            StoreSDNode *ST) {
2698  // The strategy assumes that we can efficiently store powers of two widths.
2699  // The routines chops the vector into the largest vector stores with the same
2700  // element type or scalar stores.
2701  SDValue  Chain = ST->getChain();
2702  SDValue  BasePtr = ST->getBasePtr();
2703  unsigned Align = ST->getAlignment();
2704  bool     isVolatile = ST->isVolatile();
2705  bool     isNonTemporal = ST->isNonTemporal();
2706  SDValue  ValOp = GetWidenedVector(ST->getValue());
2707  SDLoc dl(ST);
2708
2709  EVT StVT = ST->getMemoryVT();
2710  unsigned StWidth = StVT.getSizeInBits();
2711  EVT ValVT = ValOp.getValueType();
2712  unsigned ValWidth = ValVT.getSizeInBits();
2713  EVT ValEltVT = ValVT.getVectorElementType();
2714  unsigned ValEltWidth = ValEltVT.getSizeInBits();
2715  assert(StVT.getVectorElementType() == ValEltVT);
2716
2717  int Idx = 0;          // current index to store
2718  unsigned Offset = 0;  // offset from base to store
2719  while (StWidth != 0) {
2720    // Find the largest vector type we can store with
2721    EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
2722    unsigned NewVTWidth = NewVT.getSizeInBits();
2723    unsigned Increment = NewVTWidth / 8;
2724    if (NewVT.isVector()) {
2725      unsigned NumVTElts = NewVT.getVectorNumElements();
2726      do {
2727        SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
2728                                   DAG.getIntPtrConstant(Idx));
2729        StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
2730                                    ST->getPointerInfo().getWithOffset(Offset),
2731                                       isVolatile, isNonTemporal,
2732                                       MinAlign(Align, Offset)));
2733        StWidth -= NewVTWidth;
2734        Offset += Increment;
2735        Idx += NumVTElts;
2736        BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2737                              DAG.getIntPtrConstant(Increment));
2738      } while (StWidth != 0 && StWidth >= NewVTWidth);
2739    } else {
2740      // Cast the vector to the scalar type we can store
2741      unsigned NumElts = ValWidth / NewVTWidth;
2742      EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
2743      SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
2744      // Readjust index position based on new vector type
2745      Idx = Idx * ValEltWidth / NewVTWidth;
2746      do {
2747        SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
2748                      DAG.getIntPtrConstant(Idx++));
2749        StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
2750                                    ST->getPointerInfo().getWithOffset(Offset),
2751                                       isVolatile, isNonTemporal,
2752                                       MinAlign(Align, Offset)));
2753        StWidth -= NewVTWidth;
2754        Offset += Increment;
2755        BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2756                              DAG.getIntPtrConstant(Increment));
2757      } while (StWidth != 0 && StWidth >= NewVTWidth);
2758      // Restore index back to be relative to the original widen element type
2759      Idx = Idx * NewVTWidth / ValEltWidth;
2760    }
2761  }
2762}
2763
2764void
2765DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
2766                                            StoreSDNode *ST) {
2767  // For extension loads, it may not be more efficient to truncate the vector
2768  // and then store it.  Instead, we extract each element and then store it.
2769  SDValue  Chain = ST->getChain();
2770  SDValue  BasePtr = ST->getBasePtr();
2771  unsigned Align = ST->getAlignment();
2772  bool     isVolatile = ST->isVolatile();
2773  bool     isNonTemporal = ST->isNonTemporal();
2774  SDValue  ValOp = GetWidenedVector(ST->getValue());
2775  SDLoc dl(ST);
2776
2777  EVT StVT = ST->getMemoryVT();
2778  EVT ValVT = ValOp.getValueType();
2779
2780  // It must be true that we the widen vector type is bigger than where
2781  // we need to store.
2782  assert(StVT.isVector() && ValOp.getValueType().isVector());
2783  assert(StVT.bitsLT(ValOp.getValueType()));
2784
2785  // For truncating stores, we can not play the tricks of chopping legal
2786  // vector types and bit cast it to the right type.  Instead, we unroll
2787  // the store.
2788  EVT StEltVT  = StVT.getVectorElementType();
2789  EVT ValEltVT = ValVT.getVectorElementType();
2790  unsigned Increment = ValEltVT.getSizeInBits() / 8;
2791  unsigned NumElts = StVT.getVectorNumElements();
2792  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
2793                            DAG.getIntPtrConstant(0));
2794  StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
2795                                      ST->getPointerInfo(), StEltVT,
2796                                      isVolatile, isNonTemporal, Align));
2797  unsigned Offset = Increment;
2798  for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
2799    SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
2800                                     BasePtr, DAG.getIntPtrConstant(Offset));
2801    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
2802                            DAG.getIntPtrConstant(0));
2803    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
2804                                      ST->getPointerInfo().getWithOffset(Offset),
2805                                        StEltVT, isVolatile, isNonTemporal,
2806                                        MinAlign(Align, Offset)));
2807  }
2808}
2809
2810/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
2811/// input vector must have the same element type as NVT.
2812SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
2813  // Note that InOp might have been widened so it might already have
2814  // the right width or it might need be narrowed.
2815  EVT InVT = InOp.getValueType();
2816  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2817         "input and widen element type must match");
2818  SDLoc dl(InOp);
2819
2820  // Check if InOp already has the right width.
2821  if (InVT == NVT)
2822    return InOp;
2823
2824  unsigned InNumElts = InVT.getVectorNumElements();
2825  unsigned WidenNumElts = NVT.getVectorNumElements();
2826  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2827    unsigned NumConcat = WidenNumElts / InNumElts;
2828    SmallVector<SDValue, 16> Ops(NumConcat);
2829    SDValue UndefVal = DAG.getUNDEF(InVT);
2830    Ops[0] = InOp;
2831    for (unsigned i = 1; i != NumConcat; ++i)
2832      Ops[i] = UndefVal;
2833
2834    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2835  }
2836
2837  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2838    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2839                       DAG.getIntPtrConstant(0));
2840
2841  // Fall back to extract and build.
2842  SmallVector<SDValue, 16> Ops(WidenNumElts);
2843  EVT EltVT = NVT.getVectorElementType();
2844  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2845  unsigned Idx;
2846  for (Idx = 0; Idx < MinNumElts; ++Idx)
2847    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2848                           DAG.getIntPtrConstant(Idx));
2849
2850  SDValue UndefVal = DAG.getUNDEF(EltVT);
2851  for ( ; Idx < WidenNumElts; ++Idx)
2852    Ops[Idx] = UndefVal;
2853  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2854}
2855