LegalizeVectorTypes.cpp revision 8c899ee031481dbece5f111379a274c848cb5902
1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in multiple vectors of a smaller type.  For example,
19// implementing <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Target/TargetData.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  Result Vector Scalarization: <1 x ty> -> ty.
30//===----------------------------------------------------------------------===//
31
32void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
33  DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
34        cerr << "\n");
35  SDValue R = SDValue();
36
37  switch (N->getOpcode()) {
38  default:
39#ifndef NDEBUG
40    cerr << "ScalarizeVectorResult #" << ResNo << ": ";
41    N->dump(&DAG); cerr << "\n";
42#endif
43    assert(0 && "Do not know how to scalarize the result of this operator!");
44    abort();
45
46  case ISD::BIT_CONVERT:       R = ScalarizeVecRes_BIT_CONVERT(N); break;
47  case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
48  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
49  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
50  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
51  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
52  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
53  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
54  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
55  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
56  case ISD::SETCC:             R = ScalarizeVecRes_SETCC(N); break;
57  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
58  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
59  case ISD::VSETCC:            R = ScalarizeVecRes_VSETCC(N); break;
60
61  case ISD::CTLZ:
62  case ISD::CTPOP:
63  case ISD::CTTZ:
64  case ISD::FABS:
65  case ISD::FCOS:
66  case ISD::FNEG:
67  case ISD::FP_TO_SINT:
68  case ISD::FP_TO_UINT:
69  case ISD::FSIN:
70  case ISD::FSQRT:
71  case ISD::FTRUNC:
72  case ISD::FFLOOR:
73  case ISD::FCEIL:
74  case ISD::FRINT:
75  case ISD::FNEARBYINT:
76  case ISD::UINT_TO_FP:
77  case ISD::SINT_TO_FP:
78  case ISD::TRUNCATE:
79  case ISD::SIGN_EXTEND:
80  case ISD::ZERO_EXTEND:
81  case ISD::ANY_EXTEND:
82    R = ScalarizeVecRes_UnaryOp(N);
83    break;
84
85  case ISD::ADD:
86  case ISD::AND:
87  case ISD::FADD:
88  case ISD::FDIV:
89  case ISD::FMUL:
90  case ISD::FPOW:
91  case ISD::FREM:
92  case ISD::FSUB:
93  case ISD::MUL:
94  case ISD::OR:
95  case ISD::SDIV:
96  case ISD::SREM:
97  case ISD::SUB:
98  case ISD::UDIV:
99  case ISD::UREM:
100  case ISD::XOR:
101  case ISD::SHL:
102  case ISD::SRA:
103  case ISD::SRL:
104    R = ScalarizeVecRes_BinOp(N);
105    break;
106  }
107
108  // If R is null, the sub-method took care of registering the result.
109  if (R.getNode())
110    SetScalarizedVector(SDValue(N, ResNo), R);
111}
112
113SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
114  SDValue LHS = GetScalarizedVector(N->getOperand(0));
115  SDValue RHS = GetScalarizedVector(N->getOperand(1));
116  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
117                     LHS.getValueType(), LHS, RHS);
118}
119
120SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
121  MVT NewVT = N->getValueType(0).getVectorElementType();
122  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
123                     NewVT, N->getOperand(0));
124}
125
126SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
127  MVT NewVT = N->getValueType(0).getVectorElementType();
128  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
129  return DAG.getConvertRndSat(NewVT, N->getDebugLoc(),
130                              Op0, DAG.getValueType(NewVT),
131                              DAG.getValueType(Op0.getValueType()),
132                              N->getOperand(3),
133                              N->getOperand(4),
134                              cast<CvtRndSatSDNode>(N)->getCvtCode());
135}
136
137SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
138  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
139                     N->getValueType(0).getVectorElementType(),
140                     N->getOperand(0), N->getOperand(1));
141}
142
143SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
144  SDValue Op = GetScalarizedVector(N->getOperand(0));
145  return DAG.getNode(ISD::FPOWI, N->getDebugLoc(),
146                     Op.getValueType(), Op, N->getOperand(1));
147}
148
149SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
150  // The value to insert may have a wider type than the vector element type,
151  // so be sure to truncate it to the element type if necessary.
152  SDValue Op = N->getOperand(1);
153  MVT EltVT = N->getValueType(0).getVectorElementType();
154  if (Op.getValueType() != EltVT)
155    // FIXME: Can this happen for floating point types?
156    Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
157  return Op;
158}
159
160SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
161  assert(N->isUnindexed() && "Indexed vector load?");
162
163  SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getDebugLoc(),
164                               N->getExtensionType(),
165                               N->getValueType(0).getVectorElementType(),
166                               N->getChain(), N->getBasePtr(),
167                               DAG.getUNDEF(N->getBasePtr().getValueType()),
168                               N->getSrcValue(), N->getSrcValueOffset(),
169                               N->getMemoryVT().getVectorElementType(),
170                               N->isVolatile(), N->getAlignment());
171
172  // Legalized the chain result - switch anything that used the old chain to
173  // use the new one.
174  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
175  return Result;
176}
177
178SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
179  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
180  MVT DestVT = N->getValueType(0).getVectorElementType();
181  SDValue Op = GetScalarizedVector(N->getOperand(0));
182  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
183}
184
185SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
186  // If the operand is wider than the vector element type then it is implicitly
187  // truncated.  Make that explicit here.
188  MVT EltVT = N->getValueType(0).getVectorElementType();
189  SDValue InOp = N->getOperand(0);
190  if (InOp.getValueType() != EltVT)
191    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, InOp);
192  return InOp;
193}
194
195SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
196  SDValue LHS = GetScalarizedVector(N->getOperand(1));
197  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
198                     LHS.getValueType(), N->getOperand(0), LHS,
199                     GetScalarizedVector(N->getOperand(2)));
200}
201
202SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
203  SDValue LHS = GetScalarizedVector(N->getOperand(2));
204  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(),
205                     N->getOperand(0), N->getOperand(1),
206                     LHS, GetScalarizedVector(N->getOperand(3)),
207                     N->getOperand(4));
208}
209
210SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
211  SDValue LHS = GetScalarizedVector(N->getOperand(0));
212  SDValue RHS = GetScalarizedVector(N->getOperand(1));
213  DebugLoc DL = N->getDebugLoc();
214
215  // Turn it into a scalar SETCC.
216  return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
217}
218
219SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
220  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
221}
222
223SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
224  // Figure out if the scalar is the LHS or RHS and return it.
225  SDValue Arg = N->getOperand(2).getOperand(0);
226  if (Arg.getOpcode() == ISD::UNDEF)
227    return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
228  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
229  return GetScalarizedVector(N->getOperand(Op));
230}
231
232SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
233  SDValue LHS = GetScalarizedVector(N->getOperand(0));
234  SDValue RHS = GetScalarizedVector(N->getOperand(1));
235  MVT NVT = N->getValueType(0).getVectorElementType();
236  MVT SVT = TLI.getSetCCResultType(LHS.getValueType());
237  DebugLoc DL = N->getDebugLoc();
238
239  // Turn it into a scalar SETCC.
240  SDValue Res = DAG.getNode(ISD::SETCC, DL, SVT, LHS, RHS, N->getOperand(2));
241
242  // VSETCC always returns a sign-extended value, while SETCC may not.  The
243  // SETCC result type may not match the vector element type.  Correct these.
244  if (NVT.bitsLE(SVT)) {
245    // The SETCC result type is bigger than the vector element type.
246    // Ensure the SETCC result is sign-extended.
247    if (TLI.getBooleanContents() !=
248        TargetLowering::ZeroOrNegativeOneBooleanContent)
249      Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, SVT, Res,
250                        DAG.getValueType(MVT::i1));
251    // Truncate to the final type.
252    return DAG.getNode(ISD::TRUNCATE, DL, NVT, Res);
253  }
254
255  // The SETCC result type is smaller than the vector element type.
256  // If the SetCC result is not sign-extended, chop it down to MVT::i1.
257  if (TLI.getBooleanContents() !=
258        TargetLowering::ZeroOrNegativeOneBooleanContent)
259    Res = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Res);
260  // Sign extend to the final type.
261  return DAG.getNode(ISD::SIGN_EXTEND, DL, NVT, Res);
262}
263
264
265//===----------------------------------------------------------------------===//
266//  Operand Vector Scalarization <1 x ty> -> ty.
267//===----------------------------------------------------------------------===//
268
269bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
270  DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
271        cerr << "\n");
272  SDValue Res = SDValue();
273
274  if (Res.getNode() == 0) {
275    switch (N->getOpcode()) {
276    default:
277#ifndef NDEBUG
278      cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
279      N->dump(&DAG); cerr << "\n";
280#endif
281      assert(0 && "Do not know how to scalarize this operator's operand!");
282    case ISD::BIT_CONVERT:
283      Res = ScalarizeVecOp_BIT_CONVERT(N);
284      break;
285    case ISD::CONCAT_VECTORS:
286      Res = ScalarizeVecOp_CONCAT_VECTORS(N);
287      break;
288    case ISD::EXTRACT_VECTOR_ELT:
289      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
290      break;
291    case ISD::STORE:
292      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
293      break;
294    }
295  }
296
297  // If the result is null, the sub-method took care of registering results etc.
298  if (!Res.getNode()) return false;
299
300  // If the result is N, the sub-method updated N in place.  Tell the legalizer
301  // core about this.
302  if (Res.getNode() == N)
303    return true;
304
305  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
306         "Invalid operand expansion");
307
308  ReplaceValueWith(SDValue(N, 0), Res);
309  return false;
310}
311
312/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
313/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
314SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
315  SDValue Elt = GetScalarizedVector(N->getOperand(0));
316  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
317                     N->getValueType(0), Elt);
318}
319
320/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
321/// use a BUILD_VECTOR instead.
322SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
323  SmallVector<SDValue, 8> Ops(N->getNumOperands());
324  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
325    Ops[i] = GetScalarizedVector(N->getOperand(i));
326  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0),
327                     &Ops[0], Ops.size());
328}
329
330/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
331/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
332/// index.
333SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
334  return GetScalarizedVector(N->getOperand(0));
335}
336
337/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
338/// scalarized, it must be <1 x ty>.  Just store the element.
339SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
340  assert(N->isUnindexed() && "Indexed store of one-element vector?");
341  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
342  DebugLoc dl = N->getDebugLoc();
343
344  if (N->isTruncatingStore())
345    return DAG.getTruncStore(N->getChain(), dl,
346                             GetScalarizedVector(N->getOperand(1)),
347                             N->getBasePtr(),
348                             N->getSrcValue(), N->getSrcValueOffset(),
349                             N->getMemoryVT().getVectorElementType(),
350                             N->isVolatile(), N->getAlignment());
351
352  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
353                      N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
354                      N->isVolatile(), N->getAlignment());
355}
356
357
358//===----------------------------------------------------------------------===//
359//  Result Vector Splitting
360//===----------------------------------------------------------------------===//
361
362/// SplitVectorResult - This method is called when the specified result of the
363/// specified node is found to need vector splitting.  At this point, the node
364/// may also have invalid operands or may have other results that need
365/// legalization, we just know that (at least) one result needs vector
366/// splitting.
367void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
368  DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
369  SDValue Lo, Hi;
370
371  switch (N->getOpcode()) {
372  default:
373#ifndef NDEBUG
374    cerr << "SplitVectorResult #" << ResNo << ": ";
375    N->dump(&DAG); cerr << "\n";
376#endif
377    assert(0 && "Do not know how to split the result of this operator!");
378    abort();
379
380  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
381  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
382  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
383  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
384
385  case ISD::BIT_CONVERT:       SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
386  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
387  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
388  case ISD::CONVERT_RNDSAT:    SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
389  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
390  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
391  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
392  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
393  case ISD::LOAD:
394    SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
395    break;
396  case ISD::SETCC:
397  case ISD::VSETCC:
398    SplitVecRes_SETCC(N, Lo, Hi);
399    break;
400  case ISD::VECTOR_SHUFFLE:
401    SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
402    break;
403
404  case ISD::CTTZ:
405  case ISD::CTLZ:
406  case ISD::CTPOP:
407  case ISD::FNEG:
408  case ISD::FABS:
409  case ISD::FSQRT:
410  case ISD::FSIN:
411  case ISD::FCOS:
412  case ISD::FTRUNC:
413  case ISD::FFLOOR:
414  case ISD::FCEIL:
415  case ISD::FRINT:
416  case ISD::FNEARBYINT:
417  case ISD::FP_TO_SINT:
418  case ISD::FP_TO_UINT:
419  case ISD::SINT_TO_FP:
420  case ISD::UINT_TO_FP:
421  case ISD::TRUNCATE:
422  case ISD::SIGN_EXTEND:
423  case ISD::ZERO_EXTEND:
424  case ISD::ANY_EXTEND:
425    SplitVecRes_UnaryOp(N, Lo, Hi);
426    break;
427
428  case ISD::ADD:
429  case ISD::SUB:
430  case ISD::MUL:
431  case ISD::FADD:
432  case ISD::FSUB:
433  case ISD::FMUL:
434  case ISD::SDIV:
435  case ISD::UDIV:
436  case ISD::FDIV:
437  case ISD::FPOW:
438  case ISD::AND:
439  case ISD::OR:
440  case ISD::XOR:
441  case ISD::SHL:
442  case ISD::SRA:
443  case ISD::SRL:
444  case ISD::UREM:
445  case ISD::SREM:
446  case ISD::FREM:
447    SplitVecRes_BinOp(N, Lo, Hi);
448    break;
449  }
450
451  // If Lo/Hi is null, the sub-method took care of registering results etc.
452  if (Lo.getNode())
453    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
454}
455
456void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
457                                         SDValue &Hi) {
458  SDValue LHSLo, LHSHi;
459  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
460  SDValue RHSLo, RHSHi;
461  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
462  DebugLoc dl = N->getDebugLoc();
463
464  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
465  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
466}
467
468void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
469                                               SDValue &Hi) {
470  // We know the result is a vector.  The input may be either a vector or a
471  // scalar value.
472  MVT LoVT, HiVT;
473  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
474  DebugLoc dl = N->getDebugLoc();
475
476  SDValue InOp = N->getOperand(0);
477  MVT InVT = InOp.getValueType();
478
479  // Handle some special cases efficiently.
480  switch (getTypeAction(InVT)) {
481  default:
482    assert(false && "Unknown type action!");
483  case Legal:
484  case PromoteInteger:
485  case SoftenFloat:
486  case ScalarizeVector:
487    break;
488  case ExpandInteger:
489  case ExpandFloat:
490    // A scalar to vector conversion, where the scalar needs expansion.
491    // If the vector is being split in two then we can just convert the
492    // expanded pieces.
493    if (LoVT == HiVT) {
494      GetExpandedOp(InOp, Lo, Hi);
495      if (TLI.isBigEndian())
496        std::swap(Lo, Hi);
497      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
498      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
499      return;
500    }
501    break;
502  case SplitVector:
503    // If the input is a vector that needs to be split, convert each split
504    // piece of the input now.
505    GetSplitVector(InOp, Lo, Hi);
506    Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
507    Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
508    return;
509  }
510
511  // In the general case, convert the input to an integer and split it by hand.
512  MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
513  MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
514  if (TLI.isBigEndian())
515    std::swap(LoIntVT, HiIntVT);
516
517  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
518
519  if (TLI.isBigEndian())
520    std::swap(Lo, Hi);
521  Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
522  Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
523}
524
525void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
526                                                SDValue &Hi) {
527  MVT LoVT, HiVT;
528  DebugLoc dl = N->getDebugLoc();
529  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
530  unsigned LoNumElts = LoVT.getVectorNumElements();
531  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
532  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
533
534  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
535  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
536}
537
538void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
539                                                  SDValue &Hi) {
540  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
541  DebugLoc dl = N->getDebugLoc();
542  unsigned NumSubvectors = N->getNumOperands() / 2;
543  if (NumSubvectors == 1) {
544    Lo = N->getOperand(0);
545    Hi = N->getOperand(1);
546    return;
547  }
548
549  MVT LoVT, HiVT;
550  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
551
552  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
553  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
554
555  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
556  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
557}
558
559void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
560                                                  SDValue &Hi) {
561  MVT LoVT, HiVT;
562  DebugLoc dl = N->getDebugLoc();
563  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
564
565  SDValue DTyOpLo =  DAG.getValueType(LoVT);
566  SDValue DTyOpHi =  DAG.getValueType(HiVT);
567
568  SDValue RndOp = N->getOperand(3);
569  SDValue SatOp = N->getOperand(4);
570  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
571
572  // Split the input.
573  SDValue VLo, VHi;
574  MVT InVT = N->getOperand(0).getValueType();
575  switch (getTypeAction(InVT)) {
576  default: assert(0 && "Unexpected type action!");
577  case Legal: {
578    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
579    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
580                                 LoVT.getVectorNumElements());
581    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
582                      DAG.getIntPtrConstant(0));
583    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
584                      DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
585    break;
586  }
587  case SplitVector:
588    GetSplitVector(N->getOperand(0), VLo, VHi);
589    break;
590  case WidenVector: {
591    // If the result needs to be split and the input needs to be widened,
592    // the two types must have different lengths. Use the widened result
593    // and extract from it to do the split.
594    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
595    SDValue InOp = GetWidenedVector(N->getOperand(0));
596    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
597                                 LoVT.getVectorNumElements());
598    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
599                     DAG.getIntPtrConstant(0));
600    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
601                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
602    break;
603  }
604  }
605
606  SDValue STyOpLo =  DAG.getValueType(VLo.getValueType());
607  SDValue STyOpHi =  DAG.getValueType(VHi.getValueType());
608
609  Lo = DAG.getConvertRndSat(LoVT, dl, VLo, DTyOpLo, STyOpLo, RndOp, SatOp,
610                            CvtCode);
611  Hi = DAG.getConvertRndSat(HiVT, dl, VHi, DTyOpHi, STyOpHi, RndOp, SatOp,
612                            CvtCode);
613}
614
615void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
616                                                     SDValue &Hi) {
617  SDValue Vec = N->getOperand(0);
618  SDValue Idx = N->getOperand(1);
619  MVT IdxVT = Idx.getValueType();
620  DebugLoc dl = N->getDebugLoc();
621
622  MVT LoVT, HiVT;
623  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
624  // The indices are not guaranteed to be a multiple of the new vector
625  // size unless the original vector type was split in two.
626  assert(LoVT == HiVT && "Non power-of-two vectors not supported!");
627
628  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
629  Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
630                    DAG.getConstant(LoVT.getVectorNumElements(), IdxVT));
631  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, Idx);
632}
633
634void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
635                                         SDValue &Hi) {
636  DebugLoc dl = N->getDebugLoc();
637  GetSplitVector(N->getOperand(0), Lo, Hi);
638  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
639  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
640}
641
642void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
643                                                     SDValue &Hi) {
644  SDValue Vec = N->getOperand(0);
645  SDValue Elt = N->getOperand(1);
646  SDValue Idx = N->getOperand(2);
647  DebugLoc dl = N->getDebugLoc();
648  GetSplitVector(Vec, Lo, Hi);
649
650  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
651    unsigned IdxVal = CIdx->getZExtValue();
652    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
653    if (IdxVal < LoNumElts)
654      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
655                       Lo.getValueType(), Lo, Elt, Idx);
656    else
657      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
658                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
659    return;
660  }
661
662  // Spill the vector to the stack.
663  MVT VecVT = Vec.getValueType();
664  MVT EltVT = VecVT.getVectorElementType();
665  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
666  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
667
668  // Store the new element.  This may be larger than the vector element type,
669  // so use a truncating store.
670  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
671  unsigned Alignment =
672    TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForMVT());
673  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, NULL, 0, EltVT);
674
675  // Load the Lo part from the stack slot.
676  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, NULL, 0);
677
678  // Increment the pointer to the other part.
679  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
680  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
681                         DAG.getIntPtrConstant(IncrementSize));
682
683  // Load the Hi part from the stack slot.
684  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, NULL, 0, false,
685                   MinAlign(Alignment, IncrementSize));
686}
687
688void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
689                                                    SDValue &Hi) {
690  MVT LoVT, HiVT;
691  DebugLoc dl = N->getDebugLoc();
692  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
693  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
694  Hi = DAG.getUNDEF(HiVT);
695}
696
697void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
698                                        SDValue &Hi) {
699  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
700  MVT LoVT, HiVT;
701  DebugLoc dl = LD->getDebugLoc();
702  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
703
704  ISD::LoadExtType ExtType = LD->getExtensionType();
705  SDValue Ch = LD->getChain();
706  SDValue Ptr = LD->getBasePtr();
707  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
708  const Value *SV = LD->getSrcValue();
709  int SVOffset = LD->getSrcValueOffset();
710  MVT MemoryVT = LD->getMemoryVT();
711  unsigned Alignment = LD->getAlignment();
712  bool isVolatile = LD->isVolatile();
713
714  MVT LoMemVT, HiMemVT;
715  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
716
717  Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, LoVT, Ch, Ptr, Offset,
718                   SV, SVOffset, LoMemVT, isVolatile, Alignment);
719
720  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
721  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
722                    DAG.getIntPtrConstant(IncrementSize));
723  SVOffset += IncrementSize;
724  Alignment = MinAlign(Alignment, IncrementSize);
725  Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, HiVT, Ch, Ptr, Offset,
726                   SV, SVOffset, HiMemVT, isVolatile, Alignment);
727
728  // Build a factor node to remember that this load is independent of the
729  // other one.
730  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
731                   Hi.getValue(1));
732
733  // Legalized the chain result - switch anything that used the old chain to
734  // use the new one.
735  ReplaceValueWith(SDValue(LD, 1), Ch);
736}
737
738void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
739  MVT LoVT, HiVT;
740  DebugLoc DL = N->getDebugLoc();
741  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
742
743  // Split the input.
744  MVT InVT = N->getOperand(0).getValueType();
745  SDValue LL, LH, RL, RH;
746  switch (getTypeAction(InVT)) {
747  default: assert(0 && "Unexpected type action!");
748  case WidenVector: assert(0 && "Unimp");
749  case Legal: {
750    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
751    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
752                                 LoVT.getVectorNumElements());
753    LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
754                     DAG.getIntPtrConstant(0));
755    LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
756                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
757
758    RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
759                     DAG.getIntPtrConstant(0));
760    RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
761                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
762    break;
763  }
764  case SplitVector:
765    GetSplitVector(N->getOperand(0), LL, LH);
766    GetSplitVector(N->getOperand(1), RL, RH);
767    break;
768  }
769
770  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
771  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
772}
773
774void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
775                                           SDValue &Hi) {
776  // Get the dest types - they may not match the input types, e.g. int_to_fp.
777  MVT LoVT, HiVT;
778  DebugLoc dl = N->getDebugLoc();
779  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
780
781  // Split the input.
782  MVT InVT = N->getOperand(0).getValueType();
783  switch (getTypeAction(InVT)) {
784  default: assert(0 && "Unexpected type action!");
785  case Legal: {
786    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
787    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
788                                 LoVT.getVectorNumElements());
789    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
790                     DAG.getIntPtrConstant(0));
791    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
792                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
793    break;
794  }
795  case SplitVector:
796    GetSplitVector(N->getOperand(0), Lo, Hi);
797    break;
798  case WidenVector: {
799    // If the result needs to be split and the input needs to be widened,
800    // the two types must have different lengths. Use the widened result
801    // and extract from it to do the split.
802    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
803    SDValue InOp = GetWidenedVector(N->getOperand(0));
804    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
805                                 LoVT.getVectorNumElements());
806    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
807                     DAG.getIntPtrConstant(0));
808    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
809                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
810    break;
811  }
812  }
813
814  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
815  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
816}
817
818void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
819                                                  SDValue &Lo, SDValue &Hi) {
820  // The low and high parts of the original input give four input vectors.
821  SDValue Inputs[4];
822  DebugLoc dl = N->getDebugLoc();
823  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
824  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
825  MVT NewVT = Inputs[0].getValueType();
826  unsigned NewElts = NewVT.getVectorNumElements();
827  assert(NewVT == Inputs[1].getValueType() &&
828         "Non power-of-two vectors not supported!");
829
830  // If Lo or Hi uses elements from at most two of the four input vectors, then
831  // express it as a vector shuffle of those two inputs.  Otherwise extract the
832  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
833  SmallVector<int, 16> Ops;
834  for (unsigned High = 0; High < 2; ++High) {
835    SDValue &Output = High ? Hi : Lo;
836
837    // Build a shuffle mask for the output, discovering on the fly which
838    // input vectors to use as shuffle operands (recorded in InputUsed).
839    // If building a suitable shuffle vector proves too hard, then bail
840    // out with useBuildVector set.
841    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
842    unsigned FirstMaskIdx = High * NewElts;
843    bool useBuildVector = false;
844    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
845      // The mask element.  This indexes into the input.
846      int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
847
848      // The input vector this mask element indexes into.
849      unsigned Input = (unsigned)Idx / NewElts;
850
851      if (Input >= array_lengthof(Inputs)) {
852        // The mask element does not index into any input vector.
853        Ops.push_back(-1);
854        continue;
855      }
856
857      // Turn the index into an offset from the start of the input vector.
858      Idx -= Input * NewElts;
859
860      // Find or create a shuffle vector operand to hold this input.
861      unsigned OpNo;
862      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
863        if (InputUsed[OpNo] == Input) {
864          // This input vector is already an operand.
865          break;
866        } else if (InputUsed[OpNo] == -1U) {
867          // Create a new operand for this input vector.
868          InputUsed[OpNo] = Input;
869          break;
870        }
871      }
872
873      if (OpNo >= array_lengthof(InputUsed)) {
874        // More than two input vectors used!  Give up on trying to create a
875        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
876        useBuildVector = true;
877        break;
878      }
879
880      // Add the mask index for the new shuffle vector.
881      Ops.push_back(Idx + OpNo * NewElts);
882    }
883
884    if (useBuildVector) {
885      MVT EltVT = NewVT.getVectorElementType();
886      SmallVector<SDValue, 16> SVOps;
887
888      // Extract the input elements by hand.
889      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
890        // The mask element.  This indexes into the input.
891        int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
892
893        // The input vector this mask element indexes into.
894        unsigned Input = (unsigned)Idx / NewElts;
895
896        if (Input >= array_lengthof(Inputs)) {
897          // The mask element is "undef" or indexes off the end of the input.
898          SVOps.push_back(DAG.getUNDEF(EltVT));
899          continue;
900        }
901
902        // Turn the index into an offset from the start of the input vector.
903        Idx -= Input * NewElts;
904
905        // Extract the vector element by hand.
906        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
907                                    Inputs[Input], DAG.getIntPtrConstant(Idx)));
908      }
909
910      // Construct the Lo/Hi output using a BUILD_VECTOR.
911      Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
912    } else if (InputUsed[0] == -1U) {
913      // No input vectors were used!  The result is undefined.
914      Output = DAG.getUNDEF(NewVT);
915    } else {
916      SDValue Op0 = Inputs[InputUsed[0]];
917      // If only one input was used, use an undefined vector for the other.
918      SDValue Op1 = InputUsed[1] == -1U ?
919        DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
920      // At least one input vector was used.  Create a new shuffle vector.
921      Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
922    }
923
924    Ops.clear();
925  }
926}
927
928
929//===----------------------------------------------------------------------===//
930//  Operand Vector Splitting
931//===----------------------------------------------------------------------===//
932
933/// SplitVectorOperand - This method is called when the specified operand of the
934/// specified node is found to need vector splitting.  At this point, all of the
935/// result types of the node are known to be legal, but other operands of the
936/// node may need legalization as well as the specified one.
937bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
938  DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
939  SDValue Res = SDValue();
940
941  if (Res.getNode() == 0) {
942    switch (N->getOpcode()) {
943    default:
944#ifndef NDEBUG
945      cerr << "SplitVectorOperand Op #" << OpNo << ": ";
946      N->dump(&DAG); cerr << "\n";
947#endif
948      assert(0 && "Do not know how to split this operator's operand!");
949      abort();
950
951    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
952    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
953    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
954    case ISD::STORE:
955      Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
956      break;
957
958    case ISD::CTTZ:
959    case ISD::CTLZ:
960    case ISD::CTPOP:
961    case ISD::FP_TO_SINT:
962    case ISD::FP_TO_UINT:
963    case ISD::SINT_TO_FP:
964    case ISD::UINT_TO_FP:
965    case ISD::TRUNCATE:
966    case ISD::SIGN_EXTEND:
967    case ISD::ZERO_EXTEND:
968    case ISD::ANY_EXTEND:
969      Res = SplitVecOp_UnaryOp(N);
970      break;
971    }
972  }
973
974  // If the result is null, the sub-method took care of registering results etc.
975  if (!Res.getNode()) return false;
976
977  // If the result is N, the sub-method updated N in place.  Tell the legalizer
978  // core about this.
979  if (Res.getNode() == N)
980    return true;
981
982  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
983         "Invalid operand expansion");
984
985  ReplaceValueWith(SDValue(N, 0), Res);
986  return false;
987}
988
989SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
990  // The result has a legal vector type, but the input needs splitting.
991  MVT ResVT = N->getValueType(0);
992  SDValue Lo, Hi;
993  DebugLoc dl = N->getDebugLoc();
994  GetSplitVector(N->getOperand(0), Lo, Hi);
995  assert(Lo.getValueType() == Hi.getValueType() &&
996         "Returns legal non-power-of-two vector type?");
997  MVT InVT = Lo.getValueType();
998
999  MVT OutVT = MVT::getVectorVT(ResVT.getVectorElementType(),
1000                               InVT.getVectorNumElements());
1001
1002  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
1003  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
1004
1005  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
1006}
1007
1008SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
1009  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
1010  // end up being split all the way down to individual components.  Convert the
1011  // split pieces into integers and reassemble.
1012  SDValue Lo, Hi;
1013  GetSplitVector(N->getOperand(0), Lo, Hi);
1014  Lo = BitConvertToInteger(Lo);
1015  Hi = BitConvertToInteger(Hi);
1016
1017  if (TLI.isBigEndian())
1018    std::swap(Lo, Hi);
1019
1020  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
1021                     JoinIntegers(Lo, Hi));
1022}
1023
1024SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1025  // We know that the extracted result type is legal.  For now, assume the index
1026  // is a constant.
1027  MVT SubVT = N->getValueType(0);
1028  SDValue Idx = N->getOperand(1);
1029  DebugLoc dl = N->getDebugLoc();
1030  SDValue Lo, Hi;
1031  GetSplitVector(N->getOperand(0), Lo, Hi);
1032
1033  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1034  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1035
1036  if (IdxVal < LoElts) {
1037    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1038           "Extracted subvector crosses vector split!");
1039    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1040  } else {
1041    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1042                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
1043  }
1044}
1045
1046SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1047  SDValue Vec = N->getOperand(0);
1048  SDValue Idx = N->getOperand(1);
1049  MVT VecVT = Vec.getValueType();
1050
1051  if (isa<ConstantSDNode>(Idx)) {
1052    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1053    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1054
1055    SDValue Lo, Hi;
1056    GetSplitVector(Vec, Lo, Hi);
1057
1058    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1059
1060    if (IdxVal < LoElts)
1061      return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
1062    return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
1063                                  DAG.getConstant(IdxVal - LoElts,
1064                                                  Idx.getValueType()));
1065  }
1066
1067  // Store the vector to the stack.
1068  MVT EltVT = VecVT.getVectorElementType();
1069  DebugLoc dl = N->getDebugLoc();
1070  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1071  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1072  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1073  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, SV, 0);
1074
1075  // Load back the required element.
1076  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1077  return DAG.getLoad(EltVT, dl, Store, StackPtr, SV, 0);
1078}
1079
1080SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1081  assert(N->isUnindexed() && "Indexed store of vector?");
1082  assert(OpNo == 1 && "Can only split the stored value");
1083  DebugLoc dl = N->getDebugLoc();
1084
1085  bool isTruncating = N->isTruncatingStore();
1086  SDValue Ch  = N->getChain();
1087  SDValue Ptr = N->getBasePtr();
1088  int SVOffset = N->getSrcValueOffset();
1089  MVT MemoryVT = N->getMemoryVT();
1090  unsigned Alignment = N->getAlignment();
1091  bool isVol = N->isVolatile();
1092  SDValue Lo, Hi;
1093  GetSplitVector(N->getOperand(1), Lo, Hi);
1094
1095  MVT LoMemVT, HiMemVT;
1096  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
1097
1098  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1099
1100  if (isTruncating)
1101    Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1102                           LoMemVT, isVol, Alignment);
1103  else
1104    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1105                      isVol, Alignment);
1106
1107  // Increment the pointer to the other half.
1108  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1109                    DAG.getIntPtrConstant(IncrementSize));
1110
1111  if (isTruncating)
1112    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
1113                           N->getSrcValue(), SVOffset+IncrementSize,
1114                           HiMemVT,
1115                           isVol, MinAlign(Alignment, IncrementSize));
1116  else
1117    Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
1118                      isVol, MinAlign(Alignment, IncrementSize));
1119
1120  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1121}
1122
1123
1124//===----------------------------------------------------------------------===//
1125//  Result Vector Widening
1126//===----------------------------------------------------------------------===//
1127
1128void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1129  DEBUG(cerr << "Widen node result " << ResNo << ": "; N->dump(&DAG);
1130        cerr << "\n");
1131  SDValue Res = SDValue();
1132
1133  switch (N->getOpcode()) {
1134  default:
1135#ifndef NDEBUG
1136    cerr << "WidenVectorResult #" << ResNo << ": ";
1137    N->dump(&DAG); cerr << "\n";
1138#endif
1139    assert(0 && "Do not know how to widen the result of this operator!");
1140    abort();
1141
1142  case ISD::BIT_CONVERT:       Res = WidenVecRes_BIT_CONVERT(N); break;
1143  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1144  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1145  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1146  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1147  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1148  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1149  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1150  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1151  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1152  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1153  case ISD::VECTOR_SHUFFLE:
1154    Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
1155    break;
1156  case ISD::VSETCC:
1157    Res = WidenVecRes_VSETCC(N);
1158    break;
1159
1160  case ISD::ADD:
1161  case ISD::AND:
1162  case ISD::BSWAP:
1163  case ISD::FADD:
1164  case ISD::FCOPYSIGN:
1165  case ISD::FDIV:
1166  case ISD::FMUL:
1167  case ISD::FPOW:
1168  case ISD::FPOWI:
1169  case ISD::FREM:
1170  case ISD::FSUB:
1171  case ISD::MUL:
1172  case ISD::MULHS:
1173  case ISD::MULHU:
1174  case ISD::OR:
1175  case ISD::SDIV:
1176  case ISD::SREM:
1177  case ISD::UDIV:
1178  case ISD::UREM:
1179  case ISD::SUB:
1180  case ISD::XOR:
1181    Res = WidenVecRes_Binary(N);
1182    break;
1183
1184  case ISD::SHL:
1185  case ISD::SRA:
1186  case ISD::SRL:
1187    Res = WidenVecRes_Shift(N);
1188    break;
1189
1190  case ISD::FP_ROUND:
1191  case ISD::FP_TO_SINT:
1192  case ISD::FP_TO_UINT:
1193  case ISD::SINT_TO_FP:
1194  case ISD::UINT_TO_FP:
1195  case ISD::TRUNCATE:
1196  case ISD::SIGN_EXTEND:
1197  case ISD::ZERO_EXTEND:
1198  case ISD::ANY_EXTEND:
1199    Res = WidenVecRes_Convert(N);
1200    break;
1201
1202  case ISD::CTLZ:
1203  case ISD::CTPOP:
1204  case ISD::CTTZ:
1205  case ISD::FABS:
1206  case ISD::FCOS:
1207  case ISD::FNEG:
1208  case ISD::FSIN:
1209  case ISD::FSQRT:
1210    Res = WidenVecRes_Unary(N);
1211    break;
1212  }
1213
1214  // If Res is null, the sub-method took care of registering the result.
1215  if (Res.getNode())
1216    SetWidenedVector(SDValue(N, ResNo), Res);
1217}
1218
1219SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1220  // Binary op widening.
1221  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1222  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1223  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1224  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp1, InOp2);
1225}
1226
1227SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1228  SDValue InOp = N->getOperand(0);
1229  DebugLoc dl = N->getDebugLoc();
1230
1231  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1232  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1233
1234  MVT InVT = InOp.getValueType();
1235  MVT InEltVT = InVT.getVectorElementType();
1236  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1237
1238  unsigned Opcode = N->getOpcode();
1239  unsigned InVTNumElts = InVT.getVectorNumElements();
1240
1241  if (getTypeAction(InVT) == WidenVector) {
1242    InOp = GetWidenedVector(N->getOperand(0));
1243    InVT = InOp.getValueType();
1244    InVTNumElts = InVT.getVectorNumElements();
1245    if (InVTNumElts == WidenNumElts)
1246      return DAG.getNode(Opcode, dl, WidenVT, InOp);
1247  }
1248
1249  if (TLI.isTypeLegal(InWidenVT)) {
1250    // Because the result and the input are different vector types, widening
1251    // the result could create a legal type but widening the input might make
1252    // it an illegal type that might lead to repeatedly splitting the input
1253    // and then widening it. To avoid this, we widen the input only if
1254    // it results in a legal type.
1255    if (WidenNumElts % InVTNumElts == 0) {
1256      // Widen the input and call convert on the widened input vector.
1257      unsigned NumConcat = WidenNumElts/InVTNumElts;
1258      SmallVector<SDValue, 16> Ops(NumConcat);
1259      Ops[0] = InOp;
1260      SDValue UndefVal = DAG.getUNDEF(InVT);
1261      for (unsigned i = 1; i != NumConcat; ++i)
1262        Ops[i] = UndefVal;
1263      return DAG.getNode(Opcode, dl, WidenVT,
1264                         DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT,
1265                         &Ops[0], NumConcat));
1266    }
1267
1268    if (InVTNumElts % WidenNumElts == 0) {
1269      // Extract the input and convert the shorten input vector.
1270      return DAG.getNode(Opcode, dl, WidenVT,
1271                         DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT,
1272                                     InOp, DAG.getIntPtrConstant(0)));
1273    }
1274  }
1275
1276  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1277  SmallVector<SDValue, 16> Ops(WidenNumElts);
1278  MVT EltVT = WidenVT.getVectorElementType();
1279  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1280  unsigned i;
1281  for (i=0; i < MinElts; ++i)
1282    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1283                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1284                                     DAG.getIntPtrConstant(i)));
1285
1286  SDValue UndefVal = DAG.getUNDEF(EltVT);
1287  for (; i < WidenNumElts; ++i)
1288    Ops[i] = UndefVal;
1289
1290  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1291}
1292
1293SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1294  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1295  SDValue InOp = GetWidenedVector(N->getOperand(0));
1296  SDValue ShOp = N->getOperand(1);
1297
1298  MVT ShVT = ShOp.getValueType();
1299  if (getTypeAction(ShVT) == WidenVector) {
1300    ShOp = GetWidenedVector(ShOp);
1301    ShVT = ShOp.getValueType();
1302  }
1303  MVT ShWidenVT = MVT::getVectorVT(ShVT.getVectorElementType(),
1304                                   WidenVT.getVectorNumElements());
1305  if (ShVT != ShWidenVT)
1306    ShOp = ModifyToType(ShOp, ShWidenVT);
1307
1308  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
1309}
1310
1311SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1312  // Unary op widening.
1313  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1314  SDValue InOp = GetWidenedVector(N->getOperand(0));
1315  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
1316}
1317
1318SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
1319  SDValue InOp = N->getOperand(0);
1320  MVT InVT = InOp.getValueType();
1321  MVT VT = N->getValueType(0);
1322  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1323  DebugLoc dl = N->getDebugLoc();
1324
1325  switch (getTypeAction(InVT)) {
1326  default:
1327    assert(false && "Unknown type action!");
1328    break;
1329  case Legal:
1330    break;
1331  case PromoteInteger:
1332    // If the InOp is promoted to the same size, convert it.  Otherwise,
1333    // fall out of the switch and widen the promoted input.
1334    InOp = GetPromotedInteger(InOp);
1335    InVT = InOp.getValueType();
1336    if (WidenVT.bitsEq(InVT))
1337      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1338    break;
1339  case SoftenFloat:
1340  case ExpandInteger:
1341  case ExpandFloat:
1342  case ScalarizeVector:
1343  case SplitVector:
1344    break;
1345  case WidenVector:
1346    // If the InOp is widened to the same size, convert it.  Otherwise, fall
1347    // out of the switch and widen the widened input.
1348    InOp = GetWidenedVector(InOp);
1349    InVT = InOp.getValueType();
1350    if (WidenVT.bitsEq(InVT))
1351      // The input widens to the same size. Convert to the widen value.
1352      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1353    break;
1354  }
1355
1356  unsigned WidenSize = WidenVT.getSizeInBits();
1357  unsigned InSize = InVT.getSizeInBits();
1358  if (WidenSize % InSize == 0) {
1359    // Determine new input vector type.  The new input vector type will use
1360    // the same element type (if its a vector) or use the input type as a
1361    // vector.  It is the same size as the type to widen to.
1362    MVT NewInVT;
1363    unsigned NewNumElts = WidenSize / InSize;
1364    if (InVT.isVector()) {
1365      MVT InEltVT = InVT.getVectorElementType();
1366      NewInVT= MVT::getVectorVT(InEltVT, WidenSize / InEltVT.getSizeInBits());
1367    } else {
1368      NewInVT = MVT::getVectorVT(InVT, NewNumElts);
1369    }
1370
1371    if (TLI.isTypeLegal(NewInVT)) {
1372      // Because the result and the input are different vector types, widening
1373      // the result could create a legal type but widening the input might make
1374      // it an illegal type that might lead to repeatedly splitting the input
1375      // and then widening it. To avoid this, we widen the input only if
1376      // it results in a legal type.
1377      SmallVector<SDValue, 16> Ops(NewNumElts);
1378      SDValue UndefVal = DAG.getUNDEF(InVT);
1379      Ops[0] = InOp;
1380      for (unsigned i = 1; i < NewNumElts; ++i)
1381        Ops[i] = UndefVal;
1382
1383      SDValue NewVec;
1384      if (InVT.isVector())
1385        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1386                             NewInVT, &Ops[0], NewNumElts);
1387      else
1388        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1389                             NewInVT, &Ops[0], NewNumElts);
1390      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, NewVec);
1391    }
1392  }
1393
1394  // This should occur rarely. Lower the bit-convert to a store/load
1395  // from the stack. Create the stack frame object.  Make sure it is aligned
1396  // for both the source and destination types.
1397  SDValue FIPtr = DAG.CreateStackTemporary(InVT, WidenVT);
1398  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1399  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1400
1401  // Emit a store to the stack slot.
1402  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1403
1404  // Result is a load from the stack slot.
1405  return DAG.getLoad(WidenVT, dl, Store, FIPtr, SV, 0);
1406}
1407
1408SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1409  DebugLoc dl = N->getDebugLoc();
1410  // Build a vector with undefined for the new nodes.
1411  MVT VT = N->getValueType(0);
1412  MVT EltVT = VT.getVectorElementType();
1413  unsigned NumElts = VT.getVectorNumElements();
1414
1415  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1416  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1417
1418  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1419  NewOps.reserve(WidenNumElts);
1420  for (unsigned i = NumElts; i < WidenNumElts; ++i)
1421    NewOps.push_back(DAG.getUNDEF(EltVT));
1422
1423  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1424}
1425
1426SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1427  MVT InVT = N->getOperand(0).getValueType();
1428  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1429  DebugLoc dl = N->getDebugLoc();
1430  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1431  unsigned NumOperands = N->getNumOperands();
1432
1433  bool InputWidened = false; // Indicates we need to widen the input.
1434  if (getTypeAction(InVT) != WidenVector) {
1435    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1436      // Add undef vectors to widen to correct length.
1437      unsigned NumConcat = WidenVT.getVectorNumElements() /
1438                           InVT.getVectorNumElements();
1439      SDValue UndefVal = DAG.getUNDEF(InVT);
1440      SmallVector<SDValue, 16> Ops(NumConcat);
1441      for (unsigned i=0; i < NumOperands; ++i)
1442        Ops[i] = N->getOperand(i);
1443      for (unsigned i = NumOperands; i != NumConcat; ++i)
1444        Ops[i] = UndefVal;
1445      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1446    }
1447  } else {
1448    InputWidened = true;
1449    if (WidenVT == TLI.getTypeToTransformTo(InVT)) {
1450      // The inputs and the result are widen to the same value.
1451      unsigned i;
1452      for (i=1; i < NumOperands; ++i)
1453        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1454          break;
1455
1456      if (i > NumOperands)
1457        // Everything but the first operand is an UNDEF so just return the
1458        // widened first operand.
1459        return GetWidenedVector(N->getOperand(0));
1460
1461      if (NumOperands == 2) {
1462        // Replace concat of two operands with a shuffle.
1463        SmallVector<int, 16> MaskOps(WidenNumElts);
1464        for (unsigned i=0; i < WidenNumElts/2; ++i) {
1465          MaskOps[i] = i;
1466          MaskOps[i+WidenNumElts/2] = i+WidenNumElts;
1467        }
1468        return DAG.getVectorShuffle(WidenVT, dl,
1469                                    GetWidenedVector(N->getOperand(0)),
1470                                    GetWidenedVector(N->getOperand(1)),
1471                                    &MaskOps[0]);
1472      }
1473    }
1474  }
1475
1476  // Fall back to use extracts and build vector.
1477  MVT EltVT = WidenVT.getVectorElementType();
1478  unsigned NumInElts = InVT.getVectorNumElements();
1479  SmallVector<SDValue, 16> Ops(WidenNumElts);
1480  unsigned Idx = 0;
1481  for (unsigned i=0; i < NumOperands; ++i) {
1482    SDValue InOp = N->getOperand(i);
1483    if (InputWidened)
1484      InOp = GetWidenedVector(InOp);
1485    for (unsigned j=0; j < NumInElts; ++j)
1486        Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1487                                 DAG.getIntPtrConstant(j));
1488  }
1489  SDValue UndefVal = DAG.getUNDEF(EltVT);
1490  for (; Idx < WidenNumElts; ++Idx)
1491    Ops[Idx] = UndefVal;
1492  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1493}
1494
1495SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
1496  DebugLoc dl = N->getDebugLoc();
1497  SDValue InOp  = N->getOperand(0);
1498  SDValue RndOp = N->getOperand(3);
1499  SDValue SatOp = N->getOperand(4);
1500
1501  MVT      WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1502  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1503
1504  MVT InVT = InOp.getValueType();
1505  MVT InEltVT = InVT.getVectorElementType();
1506  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1507
1508  SDValue DTyOp = DAG.getValueType(WidenVT);
1509  SDValue STyOp = DAG.getValueType(InWidenVT);
1510  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1511
1512  unsigned InVTNumElts = InVT.getVectorNumElements();
1513  if (getTypeAction(InVT) == WidenVector) {
1514    InOp = GetWidenedVector(InOp);
1515    InVT = InOp.getValueType();
1516    InVTNumElts = InVT.getVectorNumElements();
1517    if (InVTNumElts == WidenNumElts)
1518      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1519                                  SatOp, CvtCode);
1520  }
1521
1522  if (TLI.isTypeLegal(InWidenVT)) {
1523    // Because the result and the input are different vector types, widening
1524    // the result could create a legal type but widening the input might make
1525    // it an illegal type that might lead to repeatedly splitting the input
1526    // and then widening it. To avoid this, we widen the input only if
1527    // it results in a legal type.
1528    if (WidenNumElts % InVTNumElts == 0) {
1529      // Widen the input and call convert on the widened input vector.
1530      unsigned NumConcat = WidenNumElts/InVTNumElts;
1531      SmallVector<SDValue, 16> Ops(NumConcat);
1532      Ops[0] = InOp;
1533      SDValue UndefVal = DAG.getUNDEF(InVT);
1534      for (unsigned i = 1; i != NumConcat; ++i) {
1535        Ops[i] = UndefVal;
1536      }
1537      InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
1538      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1539                                  SatOp, CvtCode);
1540    }
1541
1542    if (InVTNumElts % WidenNumElts == 0) {
1543      // Extract the input and convert the shorten input vector.
1544      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
1545                         DAG.getIntPtrConstant(0));
1546      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1547                                SatOp, CvtCode);
1548    }
1549  }
1550
1551  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1552  SmallVector<SDValue, 16> Ops(WidenNumElts);
1553  MVT EltVT = WidenVT.getVectorElementType();
1554  DTyOp = DAG.getValueType(EltVT);
1555  STyOp = DAG.getValueType(InEltVT);
1556
1557  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1558  unsigned i;
1559  for (i=0; i < MinElts; ++i) {
1560    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1561                                 DAG.getIntPtrConstant(i));
1562    Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
1563                                        SatOp, CvtCode);
1564  }
1565
1566  SDValue UndefVal = DAG.getUNDEF(EltVT);
1567  for (; i < WidenNumElts; ++i)
1568    Ops[i] = UndefVal;
1569
1570  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1571}
1572
1573SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
1574  MVT      VT = N->getValueType(0);
1575  MVT      WidenVT = TLI.getTypeToTransformTo(VT);
1576  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1577  SDValue  InOp = N->getOperand(0);
1578  SDValue  Idx  = N->getOperand(1);
1579  DebugLoc dl = N->getDebugLoc();
1580
1581  if (getTypeAction(InOp.getValueType()) == WidenVector)
1582    InOp = GetWidenedVector(InOp);
1583
1584  MVT InVT = InOp.getValueType();
1585
1586  ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
1587  if (CIdx) {
1588    unsigned IdxVal = CIdx->getZExtValue();
1589    // Check if we can just return the input vector after widening.
1590    if (IdxVal == 0 && InVT == WidenVT)
1591      return InOp;
1592
1593    // Check if we can extract from the vector.
1594    unsigned InNumElts = InVT.getVectorNumElements();
1595    if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
1596        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
1597  }
1598
1599  // We could try widening the input to the right length but for now, extract
1600  // the original elements, fill the rest with undefs and build a vector.
1601  SmallVector<SDValue, 16> Ops(WidenNumElts);
1602  MVT EltVT = VT.getVectorElementType();
1603  MVT IdxVT = Idx.getValueType();
1604  unsigned NumElts = VT.getVectorNumElements();
1605  unsigned i;
1606  if (CIdx) {
1607    unsigned IdxVal = CIdx->getZExtValue();
1608    for (i=0; i < NumElts; ++i)
1609      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1610                           DAG.getConstant(IdxVal+i, IdxVT));
1611  } else {
1612    Ops[0] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, Idx);
1613    for (i=1; i < NumElts; ++i) {
1614      SDValue NewIdx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1615                                   DAG.getConstant(i, IdxVT));
1616      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, NewIdx);
1617    }
1618  }
1619
1620  SDValue UndefVal = DAG.getUNDEF(EltVT);
1621  for (; i < WidenNumElts; ++i)
1622    Ops[i] = UndefVal;
1623  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1624}
1625
1626SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
1627  SDValue InOp = GetWidenedVector(N->getOperand(0));
1628  return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(),
1629                     InOp.getValueType(), InOp,
1630                     N->getOperand(1), N->getOperand(2));
1631}
1632
1633SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
1634  LoadSDNode *LD = cast<LoadSDNode>(N);
1635  MVT WidenVT = TLI.getTypeToTransformTo(LD->getValueType(0));
1636  MVT LdVT    = LD->getMemoryVT();
1637  DebugLoc dl = N->getDebugLoc();
1638  assert(LdVT.isVector() && WidenVT.isVector());
1639
1640  // Load information
1641  SDValue   Chain = LD->getChain();
1642  SDValue   BasePtr = LD->getBasePtr();
1643  int       SVOffset = LD->getSrcValueOffset();
1644  unsigned  Align    = LD->getAlignment();
1645  bool      isVolatile = LD->isVolatile();
1646  const Value *SV = LD->getSrcValue();
1647  ISD::LoadExtType ExtType = LD->getExtensionType();
1648
1649  SDValue Result;
1650  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
1651  if (ExtType != ISD::NON_EXTLOAD) {
1652    // For extension loads, we can not play the tricks of chopping legal
1653    // vector types and bit cast it to the right type.  Instead, we unroll
1654    // the load and build a vector.
1655    MVT EltVT = WidenVT.getVectorElementType();
1656    MVT LdEltVT = LdVT.getVectorElementType();
1657    unsigned NumElts = LdVT.getVectorNumElements();
1658
1659    // Load each element and widen
1660    unsigned WidenNumElts = WidenVT.getVectorNumElements();
1661    SmallVector<SDValue, 16> Ops(WidenNumElts);
1662    unsigned Increment = LdEltVT.getSizeInBits() / 8;
1663    Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, SV, SVOffset,
1664                            LdEltVT, isVolatile, Align);
1665    LdChain.push_back(Ops[0].getValue(1));
1666    unsigned i = 0, Offset = Increment;
1667    for (i=1; i < NumElts; ++i, Offset += Increment) {
1668      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1669                                       BasePtr, DAG.getIntPtrConstant(Offset));
1670      Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, SV,
1671                              SVOffset + Offset, LdEltVT, isVolatile, Align);
1672      LdChain.push_back(Ops[i].getValue(1));
1673    }
1674
1675    // Fill the rest with undefs
1676    SDValue UndefVal = DAG.getUNDEF(EltVT);
1677    for (; i != WidenNumElts; ++i)
1678      Ops[i] = UndefVal;
1679
1680    Result =  DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
1681  } else {
1682    assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
1683    unsigned int LdWidth = LdVT.getSizeInBits();
1684    Result = GenWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
1685                                 Align, isVolatile, LdWidth, WidenVT, dl);
1686  }
1687
1688 // If we generate a single load, we can use that for the chain.  Otherwise,
1689 // build a factor node to remember the multiple loads are independent and
1690 // chain to that.
1691 SDValue NewChain;
1692 if (LdChain.size() == 1)
1693   NewChain = LdChain[0];
1694 else
1695   NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LdChain[0],
1696                          LdChain.size());
1697
1698  // Modified the chain - switch anything that used the old chain to use
1699  // the new one.
1700  ReplaceValueWith(SDValue(N, 1), Chain);
1701
1702  return Result;
1703}
1704
1705SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
1706  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1707  return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
1708                     WidenVT, N->getOperand(0));
1709}
1710
1711SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
1712  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1713  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1714
1715  SDValue Cond1 = N->getOperand(0);
1716  MVT CondVT = Cond1.getValueType();
1717  if (CondVT.isVector()) {
1718    MVT CondEltVT = CondVT.getVectorElementType();
1719    MVT CondWidenVT =  MVT::getVectorVT(CondEltVT, WidenNumElts);
1720    if (getTypeAction(CondVT) == WidenVector)
1721      Cond1 = GetWidenedVector(Cond1);
1722
1723    if (Cond1.getValueType() != CondWidenVT)
1724       Cond1 = ModifyToType(Cond1, CondWidenVT);
1725  }
1726
1727  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
1728  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
1729  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
1730  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
1731                     WidenVT, Cond1, InOp1, InOp2);
1732}
1733
1734SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
1735  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
1736  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
1737  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
1738                     InOp1.getValueType(), N->getOperand(0),
1739                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
1740}
1741
1742SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
1743 MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1744 return DAG.getUNDEF(WidenVT);
1745}
1746
1747SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
1748  MVT VT = N->getValueType(0);
1749  DebugLoc dl = N->getDebugLoc();
1750
1751  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1752  unsigned NumElts = VT.getVectorNumElements();
1753  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1754
1755  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1756  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1757
1758  // Adjust mask based on new input vector length.
1759  SmallVector<int, 16> NewMask;
1760  for (unsigned i = 0; i != NumElts; ++i) {
1761    int Idx = N->getMaskElt(i);
1762    if (Idx < (int)NumElts)
1763      NewMask.push_back(Idx);
1764    else
1765      NewMask.push_back(Idx - NumElts + WidenNumElts);
1766  }
1767  for (unsigned i = NumElts; i != WidenNumElts; ++i)
1768    NewMask.push_back(-1);
1769  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
1770}
1771
1772SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
1773  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1774  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1775
1776  SDValue InOp1 = N->getOperand(0);
1777  MVT InVT = InOp1.getValueType();
1778  assert(InVT.isVector() && "can not widen non vector type");
1779  MVT WidenInVT = MVT::getVectorVT(InVT.getVectorElementType(), WidenNumElts);
1780  InOp1 = GetWidenedVector(InOp1);
1781  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1782
1783  // Assume that the input and output will be widen appropriately.  If not,
1784  // we will have to unroll it at some point.
1785  assert(InOp1.getValueType() == WidenInVT &&
1786         InOp2.getValueType() == WidenInVT &&
1787         "Input not widened to expected type!");
1788  return DAG.getNode(ISD::VSETCC, N->getDebugLoc(),
1789                     WidenVT, InOp1, InOp2, N->getOperand(2));
1790}
1791
1792
1793//===----------------------------------------------------------------------===//
1794// Widen Vector Operand
1795//===----------------------------------------------------------------------===//
1796bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
1797  DEBUG(cerr << "Widen node operand " << ResNo << ": "; N->dump(&DAG);
1798        cerr << "\n");
1799  SDValue Res = SDValue();
1800
1801  switch (N->getOpcode()) {
1802  default:
1803#ifndef NDEBUG
1804    cerr << "WidenVectorOperand op #" << ResNo << ": ";
1805    N->dump(&DAG); cerr << "\n";
1806#endif
1807    assert(0 && "Do not know how to widen this operator's operand!");
1808    abort();
1809
1810  case ISD::BIT_CONVERT:        Res = WidenVecOp_BIT_CONVERT(N); break;
1811  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
1812  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
1813  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
1814
1815  case ISD::FP_ROUND:
1816  case ISD::FP_TO_SINT:
1817  case ISD::FP_TO_UINT:
1818  case ISD::SINT_TO_FP:
1819  case ISD::UINT_TO_FP:
1820  case ISD::TRUNCATE:
1821  case ISD::SIGN_EXTEND:
1822  case ISD::ZERO_EXTEND:
1823  case ISD::ANY_EXTEND:
1824    Res = WidenVecOp_Convert(N);
1825    break;
1826  }
1827
1828  // If Res is null, the sub-method took care of registering the result.
1829  if (!Res.getNode()) return false;
1830
1831  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1832  // core about this.
1833  if (Res.getNode() == N)
1834    return true;
1835
1836
1837  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1838         "Invalid operand expansion");
1839
1840  ReplaceValueWith(SDValue(N, 0), Res);
1841  return false;
1842}
1843
1844SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
1845  // Since the result is legal and the input is illegal, it is unlikely
1846  // that we can fix the input to a legal type so unroll the convert
1847  // into some scalar code and create a nasty build vector.
1848  MVT VT = N->getValueType(0);
1849  MVT EltVT = VT.getVectorElementType();
1850  DebugLoc dl = N->getDebugLoc();
1851  unsigned NumElts = VT.getVectorNumElements();
1852  SDValue InOp = N->getOperand(0);
1853  if (getTypeAction(InOp.getValueType()) == WidenVector)
1854    InOp = GetWidenedVector(InOp);
1855  MVT InVT = InOp.getValueType();
1856  MVT InEltVT = InVT.getVectorElementType();
1857
1858  unsigned Opcode = N->getOpcode();
1859  SmallVector<SDValue, 16> Ops(NumElts);
1860  for (unsigned i=0; i < NumElts; ++i)
1861    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1862                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1863                                     DAG.getIntPtrConstant(i)));
1864
1865  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1866}
1867
1868SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
1869  MVT VT = N->getValueType(0);
1870  SDValue InOp = GetWidenedVector(N->getOperand(0));
1871  MVT InWidenVT = InOp.getValueType();
1872  DebugLoc dl = N->getDebugLoc();
1873
1874  // Check if we can convert between two legal vector types and extract.
1875  unsigned InWidenSize = InWidenVT.getSizeInBits();
1876  unsigned Size = VT.getSizeInBits();
1877  if (InWidenSize % Size == 0 && !VT.isVector()) {
1878    unsigned NewNumElts = InWidenSize / Size;
1879    MVT NewVT = MVT::getVectorVT(VT, NewNumElts);
1880    if (TLI.isTypeLegal(NewVT)) {
1881      SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
1882      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
1883                         DAG.getIntPtrConstant(0));
1884    }
1885  }
1886
1887  // Lower the bit-convert to a store/load from the stack. Create the stack
1888  // frame object.  Make sure it is aligned for both the source and destination
1889  // types.
1890  SDValue FIPtr = DAG.CreateStackTemporary(InWidenVT, VT);
1891  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1892  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1893
1894  // Emit a store to the stack slot.
1895  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1896
1897  // Result is a load from the stack slot.
1898  return DAG.getLoad(VT, dl, Store, FIPtr, SV, 0);
1899}
1900
1901SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
1902  // If the input vector is not legal, it is likely that we will not find a
1903  // legal vector of the same size. Replace the concatenate vector with a
1904  // nasty build vector.
1905  MVT VT = N->getValueType(0);
1906  MVT EltVT = VT.getVectorElementType();
1907  DebugLoc dl = N->getDebugLoc();
1908  unsigned NumElts = VT.getVectorNumElements();
1909  SmallVector<SDValue, 16> Ops(NumElts);
1910
1911  MVT InVT = N->getOperand(0).getValueType();
1912  unsigned NumInElts = InVT.getVectorNumElements();
1913
1914  unsigned Idx = 0;
1915  unsigned NumOperands = N->getNumOperands();
1916  for (unsigned i=0; i < NumOperands; ++i) {
1917    SDValue InOp = N->getOperand(i);
1918    if (getTypeAction(InOp.getValueType()) == WidenVector)
1919      InOp = GetWidenedVector(InOp);
1920    for (unsigned j=0; j < NumInElts; ++j)
1921      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1922                               DAG.getIntPtrConstant(j));
1923  }
1924  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1925}
1926
1927SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1928  SDValue InOp = GetWidenedVector(N->getOperand(0));
1929  MVT EltVT = InOp.getValueType().getVectorElementType();
1930  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
1931                     EltVT, InOp, N->getOperand(1));
1932}
1933
1934SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
1935  // We have to widen the value but we want only to store the original
1936  // vector type.
1937  StoreSDNode *ST = cast<StoreSDNode>(N);
1938  SDValue  Chain = ST->getChain();
1939  SDValue  BasePtr = ST->getBasePtr();
1940  const    Value *SV = ST->getSrcValue();
1941  int      SVOffset = ST->getSrcValueOffset();
1942  unsigned Align = ST->getAlignment();
1943  bool     isVolatile = ST->isVolatile();
1944  SDValue  ValOp = GetWidenedVector(ST->getValue());
1945  DebugLoc dl = N->getDebugLoc();
1946
1947  MVT StVT = ST->getMemoryVT();
1948  MVT ValVT = ValOp.getValueType();
1949  // It must be true that we the widen vector type is bigger than where
1950  // we need to store.
1951  assert(StVT.isVector() && ValOp.getValueType().isVector());
1952  assert(StVT.bitsLT(ValOp.getValueType()));
1953
1954  SmallVector<SDValue, 16> StChain;
1955  if (ST->isTruncatingStore()) {
1956    // For truncating stores, we can not play the tricks of chopping legal
1957    // vector types and bit cast it to the right type.  Instead, we unroll
1958    // the store.
1959    MVT StEltVT  = StVT.getVectorElementType();
1960    MVT ValEltVT = ValVT.getVectorElementType();
1961    unsigned Increment = ValEltVT.getSizeInBits() / 8;
1962    unsigned NumElts = StVT.getVectorNumElements();
1963    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1964                              DAG.getIntPtrConstant(0));
1965    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, SV,
1966                                        SVOffset, StEltVT,
1967                                        isVolatile, Align));
1968    unsigned Offset = Increment;
1969    for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
1970      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1971                                       BasePtr, DAG.getIntPtrConstant(Offset));
1972      SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1973                              DAG.getIntPtrConstant(0));
1974      StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, SV,
1975                                          SVOffset + Offset, StEltVT,
1976                                          isVolatile, MinAlign(Align, Offset)));
1977    }
1978  }
1979  else {
1980    assert(StVT.getVectorElementType() == ValVT.getVectorElementType());
1981    // Store value
1982    GenWidenVectorStores(StChain, Chain, BasePtr, SV, SVOffset,
1983                         Align, isVolatile, ValOp, StVT.getSizeInBits(), dl);
1984  }
1985  if (StChain.size() == 1)
1986    return StChain[0];
1987  else
1988    return DAG.getNode(ISD::TokenFactor, dl,
1989                       MVT::Other,&StChain[0],StChain.size());
1990}
1991
1992//===----------------------------------------------------------------------===//
1993// Vector Widening Utilities
1994//===----------------------------------------------------------------------===//
1995
1996
1997// Utility function to find a vector type and its associated element
1998// type from a preferred width and whose vector type must be the same size
1999// as the VecVT.
2000//  TLI:   Target lowering used to determine legal types.
2001//  Width: Preferred width to store.
2002//  VecVT: Vector value type whose size we must match.
2003// Returns NewVecVT and NewEltVT - the vector type and its associated
2004// element type.
2005static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
2006                                  MVT VecVT,
2007                                  MVT& NewEltVT, MVT& NewVecVT) {
2008  unsigned EltWidth = Width + 1;
2009  if (TLI.isTypeLegal(VecVT)) {
2010    // We start with the preferred with, making it a power of 2 and find a
2011    // legal vector type of that width.  If not, we reduce it by another of 2.
2012    // For incoming type is legal, this process will end as a vector of the
2013    // smallest loadable type should always be legal.
2014    do {
2015      assert(EltWidth > 0);
2016      EltWidth = 1 << Log2_32(EltWidth - 1);
2017      NewEltVT = MVT::getIntegerVT(EltWidth);
2018      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
2019      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
2020    } while (!TLI.isTypeLegal(NewVecVT) ||
2021             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
2022  } else {
2023    // The incoming vector type is illegal and is the result of widening
2024    // a vector to a power of 2. In this case, we will use the preferred
2025    // with as long as it is a multiple of the incoming vector length.
2026    // The legalization process will eventually make this into a legal type
2027    // and remove the illegal bit converts (which would turn to stack converts
2028    // if they are allow to exist).
2029     do {
2030      assert(EltWidth > 0);
2031      EltWidth = 1 << Log2_32(EltWidth - 1);
2032      NewEltVT = MVT::getIntegerVT(EltWidth);
2033      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
2034      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
2035    } while (!TLI.isTypeLegal(NewEltVT) ||
2036             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
2037  }
2038}
2039
2040SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
2041                                              SDValue      Chain,
2042                                              SDValue      BasePtr,
2043                                              const Value *SV,
2044                                              int          SVOffset,
2045                                              unsigned     Alignment,
2046                                              bool         isVolatile,
2047                                              unsigned     LdWidth,
2048                                              MVT          ResType,
2049                                              DebugLoc     dl) {
2050  // The strategy assumes that we can efficiently load powers of two widths.
2051  // The routines chops the vector into the largest power of 2 load and
2052  // can be inserted into a legal vector and then cast the result into the
2053  // vector type we want.  This avoids unnecessary stack converts.
2054
2055  // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
2056  //       the load is nonvolatile, we an use a wider load for the value.
2057
2058  // Find the vector type that can load from.
2059  MVT NewEltVT, NewVecVT;
2060  unsigned NewEltVTWidth;
2061  FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2062  NewEltVTWidth = NewEltVT.getSizeInBits();
2063
2064  SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV, SVOffset,
2065                             isVolatile, Alignment);
2066  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2067  LdChain.push_back(LdOp.getValue(1));
2068
2069  // Check if we can load the element with one instruction
2070  if (LdWidth == NewEltVTWidth) {
2071    return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2072  }
2073
2074  unsigned Idx = 1;
2075  LdWidth -= NewEltVTWidth;
2076  unsigned Offset = 0;
2077
2078  while (LdWidth > 0) {
2079    unsigned Increment = NewEltVTWidth / 8;
2080    Offset += Increment;
2081    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2082                          DAG.getIntPtrConstant(Increment));
2083
2084    if (LdWidth < NewEltVTWidth) {
2085      // Our current type we are using is too large, use a smaller size by
2086      // using a smaller power of 2
2087      unsigned oNewEltVTWidth = NewEltVTWidth;
2088      FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2089      NewEltVTWidth = NewEltVT.getSizeInBits();
2090      // Readjust position and vector position based on new load type
2091      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2092      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2093    }
2094
2095    SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV,
2096                                 SVOffset+Offset, isVolatile,
2097                                 MinAlign(Alignment, Offset));
2098    LdChain.push_back(LdOp.getValue(1));
2099    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOp,
2100                        DAG.getIntPtrConstant(Idx++));
2101
2102    LdWidth -= NewEltVTWidth;
2103  }
2104
2105  return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2106}
2107
2108void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
2109                                            SDValue   Chain,
2110                                            SDValue   BasePtr,
2111                                            const Value *SV,
2112                                            int         SVOffset,
2113                                            unsigned    Alignment,
2114                                            bool        isVolatile,
2115                                            SDValue     ValOp,
2116                                            unsigned    StWidth,
2117                                            DebugLoc    dl) {
2118  // Breaks the stores into a series of power of 2 width stores.  For any
2119  // width, we convert the vector to the vector of element size that we
2120  // want to store.  This avoids requiring a stack convert.
2121
2122  // Find a width of the element type we can store with
2123  MVT WidenVT = ValOp.getValueType();
2124  MVT NewEltVT, NewVecVT;
2125
2126  FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2127  unsigned NewEltVTWidth = NewEltVT.getSizeInBits();
2128
2129  SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
2130  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2131                            DAG.getIntPtrConstant(0));
2132  SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset,
2133                               isVolatile, Alignment);
2134  StChain.push_back(StOp);
2135
2136  // Check if we are done
2137  if (StWidth == NewEltVTWidth) {
2138    return;
2139  }
2140
2141  unsigned Idx = 1;
2142  StWidth -= NewEltVTWidth;
2143  unsigned Offset = 0;
2144
2145  while (StWidth > 0) {
2146    unsigned Increment = NewEltVTWidth / 8;
2147    Offset += Increment;
2148    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2149                          DAG.getIntPtrConstant(Increment));
2150
2151    if (StWidth < NewEltVTWidth) {
2152      // Our current type we are using is too large, use a smaller size by
2153      // using a smaller power of 2
2154      unsigned oNewEltVTWidth = NewEltVTWidth;
2155      FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2156      NewEltVTWidth = NewEltVT.getSizeInBits();
2157      // Readjust position and vector position based on new load type
2158      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2159      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2160    }
2161
2162    EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2163                      DAG.getIntPtrConstant(Idx++));
2164    StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV,
2165                                   SVOffset + Offset, isVolatile,
2166                                   MinAlign(Alignment, Offset)));
2167    StWidth -= NewEltVTWidth;
2168  }
2169}
2170
2171/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
2172/// input vector must have the same element type as NVT.
2173SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, MVT NVT) {
2174  // Note that InOp might have been widened so it might already have
2175  // the right width or it might need be narrowed.
2176  MVT InVT = InOp.getValueType();
2177  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2178         "input and widen element type must match");
2179  DebugLoc dl = InOp.getDebugLoc();
2180
2181  // Check if InOp already has the right width.
2182  if (InVT == NVT)
2183    return InOp;
2184
2185  unsigned InNumElts = InVT.getVectorNumElements();
2186  unsigned WidenNumElts = NVT.getVectorNumElements();
2187  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2188    unsigned NumConcat = WidenNumElts / InNumElts;
2189    SmallVector<SDValue, 16> Ops(NumConcat);
2190    SDValue UndefVal = DAG.getUNDEF(InVT);
2191    Ops[0] = InOp;
2192    for (unsigned i = 1; i != NumConcat; ++i)
2193      Ops[i] = UndefVal;
2194
2195    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2196  }
2197
2198  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2199    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2200                       DAG.getIntPtrConstant(0));
2201
2202  // Fall back to extract and build.
2203  SmallVector<SDValue, 16> Ops(WidenNumElts);
2204  MVT EltVT = NVT.getVectorElementType();
2205  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2206  unsigned Idx;
2207  for (Idx = 0; Idx < MinNumElts; ++Idx)
2208    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2209                           DAG.getIntPtrConstant(Idx));
2210
2211  SDValue UndefVal = DAG.getUNDEF(EltVT);
2212  for ( ; Idx < WidenNumElts; ++Idx)
2213    Ops[Idx] = UndefVal;
2214  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2215}
2216