LegalizeVectorTypes.cpp revision 9008ca6b6b4f638cfafccb593cbc5b1d3f5ab877
1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in multiple vectors of a smaller type.  For example,
19// implementing <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Target/TargetData.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  Result Vector Scalarization: <1 x ty> -> ty.
30//===----------------------------------------------------------------------===//
31
32void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
33  DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
34        cerr << "\n");
35  SDValue R = SDValue();
36
37  switch (N->getOpcode()) {
38  default:
39#ifndef NDEBUG
40    cerr << "ScalarizeVectorResult #" << ResNo << ": ";
41    N->dump(&DAG); cerr << "\n";
42#endif
43    assert(0 && "Do not know how to scalarize the result of this operator!");
44    abort();
45
46  case ISD::BIT_CONVERT:       R = ScalarizeVecRes_BIT_CONVERT(N); break;
47  case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
48  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
49  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
50  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
51  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
52  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
53  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
54  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
55  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
56  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
57  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
58  case ISD::VSETCC:            R = ScalarizeVecRes_VSETCC(N); break;
59
60  case ISD::CTLZ:
61  case ISD::CTPOP:
62  case ISD::CTTZ:
63  case ISD::FABS:
64  case ISD::FCOS:
65  case ISD::FNEG:
66  case ISD::FP_TO_SINT:
67  case ISD::FP_TO_UINT:
68  case ISD::FSIN:
69  case ISD::FSQRT:
70  case ISD::FTRUNC:
71  case ISD::FFLOOR:
72  case ISD::FCEIL:
73  case ISD::FRINT:
74  case ISD::FNEARBYINT:
75  case ISD::SINT_TO_FP:
76  case ISD::TRUNCATE:
77  case ISD::UINT_TO_FP: R = ScalarizeVecRes_UnaryOp(N); break;
78
79  case ISD::ADD:
80  case ISD::AND:
81  case ISD::FADD:
82  case ISD::FDIV:
83  case ISD::FMUL:
84  case ISD::FPOW:
85  case ISD::FREM:
86  case ISD::FSUB:
87  case ISD::MUL:
88  case ISD::OR:
89  case ISD::SDIV:
90  case ISD::SREM:
91  case ISD::SUB:
92  case ISD::UDIV:
93  case ISD::UREM:
94  case ISD::XOR:  R = ScalarizeVecRes_BinOp(N); break;
95
96  case ISD::SHL:
97  case ISD::SRA:
98  case ISD::SRL: R = ScalarizeVecRes_ShiftOp(N); break;
99  }
100
101  // If R is null, the sub-method took care of registering the result.
102  if (R.getNode())
103    SetScalarizedVector(SDValue(N, ResNo), R);
104}
105
106SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
107  SDValue LHS = GetScalarizedVector(N->getOperand(0));
108  SDValue RHS = GetScalarizedVector(N->getOperand(1));
109  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
110                     LHS.getValueType(), LHS, RHS);
111}
112
113SDValue DAGTypeLegalizer::ScalarizeVecRes_ShiftOp(SDNode *N) {
114  SDValue LHS = GetScalarizedVector(N->getOperand(0));
115  SDValue ShiftAmt = GetScalarizedVector(N->getOperand(1));
116  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
117                     LHS.getValueType(), LHS, ShiftAmt);
118}
119
120SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
121  MVT NewVT = N->getValueType(0).getVectorElementType();
122  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
123                     NewVT, N->getOperand(0));
124}
125
126SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
127  MVT NewVT = N->getValueType(0).getVectorElementType();
128  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
129  return DAG.getConvertRndSat(NewVT, N->getDebugLoc(),
130                              Op0, DAG.getValueType(NewVT),
131                              DAG.getValueType(Op0.getValueType()),
132                              N->getOperand(3),
133                              N->getOperand(4),
134                              cast<CvtRndSatSDNode>(N)->getCvtCode());
135}
136
137SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
138  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
139                     N->getValueType(0).getVectorElementType(),
140                     N->getOperand(0), N->getOperand(1));
141}
142
143SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
144  SDValue Op = GetScalarizedVector(N->getOperand(0));
145  return DAG.getNode(ISD::FPOWI, N->getDebugLoc(),
146                     Op.getValueType(), Op, N->getOperand(1));
147}
148
149SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
150  // The value to insert may have a wider type than the vector element type,
151  // so be sure to truncate it to the element type if necessary.
152  SDValue Op = N->getOperand(1);
153  MVT EltVT = N->getValueType(0).getVectorElementType();
154  if (Op.getValueType() != EltVT)
155    // FIXME: Can this happen for floating point types?
156    Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
157  return Op;
158}
159
160SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
161  assert(N->isUnindexed() && "Indexed vector load?");
162
163  SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getDebugLoc(),
164                               N->getExtensionType(),
165                               N->getValueType(0).getVectorElementType(),
166                               N->getChain(), N->getBasePtr(),
167                               DAG.getUNDEF(N->getBasePtr().getValueType()),
168                               N->getSrcValue(), N->getSrcValueOffset(),
169                               N->getMemoryVT().getVectorElementType(),
170                               N->isVolatile(), N->getAlignment());
171
172  // Legalized the chain result - switch anything that used the old chain to
173  // use the new one.
174  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
175  return Result;
176}
177
178SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
179  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
180  MVT DestVT = N->getValueType(0).getVectorElementType();
181  SDValue Op = GetScalarizedVector(N->getOperand(0));
182  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
183}
184
185SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
186  // If the operand is wider than the vector element type then it is implicitly
187  // truncated.  Make that explicit here.
188  MVT EltVT = N->getValueType(0).getVectorElementType();
189  SDValue InOp = N->getOperand(0);
190  if (InOp.getValueType() != EltVT)
191    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, InOp);
192  return InOp;
193}
194
195SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
196  SDValue LHS = GetScalarizedVector(N->getOperand(1));
197  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
198                     LHS.getValueType(), N->getOperand(0), LHS,
199                     GetScalarizedVector(N->getOperand(2)));
200}
201
202SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
203  SDValue LHS = GetScalarizedVector(N->getOperand(2));
204  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(),
205                     N->getOperand(0), N->getOperand(1),
206                     LHS, GetScalarizedVector(N->getOperand(3)),
207                     N->getOperand(4));
208}
209
210SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
211  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
212}
213
214SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
215  // Figure out if the scalar is the LHS or RHS and return it.
216  SDValue Arg = N->getOperand(2).getOperand(0);
217  if (Arg.getOpcode() == ISD::UNDEF)
218    return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
219  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
220  return GetScalarizedVector(N->getOperand(Op));
221}
222
223SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
224  SDValue LHS = GetScalarizedVector(N->getOperand(0));
225  SDValue RHS = GetScalarizedVector(N->getOperand(1));
226  MVT NVT = N->getValueType(0).getVectorElementType();
227  MVT SVT = TLI.getSetCCResultType(LHS.getValueType());
228  DebugLoc dl = N->getDebugLoc();
229
230  // Turn it into a scalar SETCC.
231  SDValue Res = DAG.getNode(ISD::SETCC, dl, SVT, LHS, RHS, N->getOperand(2));
232
233  // VSETCC always returns a sign-extended value, while SETCC may not.  The
234  // SETCC result type may not match the vector element type.  Correct these.
235  if (NVT.bitsLE(SVT)) {
236    // The SETCC result type is bigger than the vector element type.
237    // Ensure the SETCC result is sign-extended.
238    if (TLI.getBooleanContents() !=
239        TargetLowering::ZeroOrNegativeOneBooleanContent)
240      Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, SVT, Res,
241                        DAG.getValueType(MVT::i1));
242    // Truncate to the final type.
243    return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
244  } else {
245    // The SETCC result type is smaller than the vector element type.
246    // If the SetCC result is not sign-extended, chop it down to MVT::i1.
247    if (TLI.getBooleanContents() !=
248        TargetLowering::ZeroOrNegativeOneBooleanContent)
249      Res = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Res);
250    // Sign extend to the final type.
251    return DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Res);
252  }
253}
254
255
256//===----------------------------------------------------------------------===//
257//  Operand Vector Scalarization <1 x ty> -> ty.
258//===----------------------------------------------------------------------===//
259
260bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
261  DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
262        cerr << "\n");
263  SDValue Res = SDValue();
264
265  if (Res.getNode() == 0) {
266    switch (N->getOpcode()) {
267    default:
268#ifndef NDEBUG
269      cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
270      N->dump(&DAG); cerr << "\n";
271#endif
272      assert(0 && "Do not know how to scalarize this operator's operand!");
273      abort();
274
275    case ISD::BIT_CONVERT:
276      Res = ScalarizeVecOp_BIT_CONVERT(N); break;
277
278    case ISD::CONCAT_VECTORS:
279      Res = ScalarizeVecOp_CONCAT_VECTORS(N); break;
280
281    case ISD::EXTRACT_VECTOR_ELT:
282      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break;
283
284    case ISD::STORE:
285      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break;
286    }
287  }
288
289  // If the result is null, the sub-method took care of registering results etc.
290  if (!Res.getNode()) return false;
291
292  // If the result is N, the sub-method updated N in place.  Tell the legalizer
293  // core about this.
294  if (Res.getNode() == N)
295    return true;
296
297  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
298         "Invalid operand expansion");
299
300  ReplaceValueWith(SDValue(N, 0), Res);
301  return false;
302}
303
304/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
305/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
306SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
307  SDValue Elt = GetScalarizedVector(N->getOperand(0));
308  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
309                     N->getValueType(0), Elt);
310}
311
312/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
313/// use a BUILD_VECTOR instead.
314SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
315  SmallVector<SDValue, 8> Ops(N->getNumOperands());
316  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
317    Ops[i] = GetScalarizedVector(N->getOperand(i));
318  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0),
319                     &Ops[0], Ops.size());
320}
321
322/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
323/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
324/// index.
325SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
326  return GetScalarizedVector(N->getOperand(0));
327}
328
329/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
330/// scalarized, it must be <1 x ty>.  Just store the element.
331SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
332  assert(N->isUnindexed() && "Indexed store of one-element vector?");
333  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
334  DebugLoc dl = N->getDebugLoc();
335
336  if (N->isTruncatingStore())
337    return DAG.getTruncStore(N->getChain(), dl,
338                             GetScalarizedVector(N->getOperand(1)),
339                             N->getBasePtr(),
340                             N->getSrcValue(), N->getSrcValueOffset(),
341                             N->getMemoryVT().getVectorElementType(),
342                             N->isVolatile(), N->getAlignment());
343
344  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
345                      N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
346                      N->isVolatile(), N->getAlignment());
347}
348
349
350//===----------------------------------------------------------------------===//
351//  Result Vector Splitting
352//===----------------------------------------------------------------------===//
353
354/// SplitVectorResult - This method is called when the specified result of the
355/// specified node is found to need vector splitting.  At this point, the node
356/// may also have invalid operands or may have other results that need
357/// legalization, we just know that (at least) one result needs vector
358/// splitting.
359void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
360  DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
361  SDValue Lo, Hi;
362
363  switch (N->getOpcode()) {
364  default:
365#ifndef NDEBUG
366    cerr << "SplitVectorResult #" << ResNo << ": ";
367    N->dump(&DAG); cerr << "\n";
368#endif
369    assert(0 && "Do not know how to split the result of this operator!");
370    abort();
371
372  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
373  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
374  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
375  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
376
377  case ISD::BIT_CONVERT:       SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
378  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
379  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
380  case ISD::CONVERT_RNDSAT:    SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
381  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
382  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
383  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
384  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
385  case ISD::LOAD:              SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);break;
386  case ISD::VECTOR_SHUFFLE:    SplitVecRes_VECTOR_SHUFFLE(N, Lo, Hi); break;
387  case ISD::VSETCC:            SplitVecRes_VSETCC(N, Lo, Hi); break;
388
389  case ISD::CTTZ:
390  case ISD::CTLZ:
391  case ISD::CTPOP:
392  case ISD::FNEG:
393  case ISD::FABS:
394  case ISD::FSQRT:
395  case ISD::FSIN:
396  case ISD::FCOS:
397  case ISD::FTRUNC:
398  case ISD::FFLOOR:
399  case ISD::FCEIL:
400  case ISD::FRINT:
401  case ISD::FNEARBYINT:
402  case ISD::FP_TO_SINT:
403  case ISD::FP_TO_UINT:
404  case ISD::SINT_TO_FP:
405  case ISD::TRUNCATE:
406  case ISD::UINT_TO_FP: SplitVecRes_UnaryOp(N, Lo, Hi); break;
407
408  case ISD::ADD:
409  case ISD::SUB:
410  case ISD::MUL:
411  case ISD::FADD:
412  case ISD::FSUB:
413  case ISD::FMUL:
414  case ISD::SDIV:
415  case ISD::UDIV:
416  case ISD::FDIV:
417  case ISD::FPOW:
418  case ISD::AND:
419  case ISD::OR:
420  case ISD::XOR:
421  case ISD::SHL:
422  case ISD::SRA:
423  case ISD::SRL:
424  case ISD::UREM:
425  case ISD::SREM:
426  case ISD::FREM: SplitVecRes_BinOp(N, Lo, Hi); break;
427  }
428
429  // If Lo/Hi is null, the sub-method took care of registering results etc.
430  if (Lo.getNode())
431    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
432}
433
434void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
435                                         SDValue &Hi) {
436  SDValue LHSLo, LHSHi;
437  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
438  SDValue RHSLo, RHSHi;
439  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
440  DebugLoc dl = N->getDebugLoc();
441
442  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
443  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
444}
445
446void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
447                                               SDValue &Hi) {
448  // We know the result is a vector.  The input may be either a vector or a
449  // scalar value.
450  MVT LoVT, HiVT;
451  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
452  DebugLoc dl = N->getDebugLoc();
453
454  SDValue InOp = N->getOperand(0);
455  MVT InVT = InOp.getValueType();
456
457  // Handle some special cases efficiently.
458  switch (getTypeAction(InVT)) {
459  default:
460    assert(false && "Unknown type action!");
461  case Legal:
462  case PromoteInteger:
463  case SoftenFloat:
464  case ScalarizeVector:
465    break;
466  case ExpandInteger:
467  case ExpandFloat:
468    // A scalar to vector conversion, where the scalar needs expansion.
469    // If the vector is being split in two then we can just convert the
470    // expanded pieces.
471    if (LoVT == HiVT) {
472      GetExpandedOp(InOp, Lo, Hi);
473      if (TLI.isBigEndian())
474        std::swap(Lo, Hi);
475      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
476      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
477      return;
478    }
479    break;
480  case SplitVector:
481    // If the input is a vector that needs to be split, convert each split
482    // piece of the input now.
483    GetSplitVector(InOp, Lo, Hi);
484    Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
485    Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
486    return;
487  }
488
489  // In the general case, convert the input to an integer and split it by hand.
490  MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
491  MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
492  if (TLI.isBigEndian())
493    std::swap(LoIntVT, HiIntVT);
494
495  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
496
497  if (TLI.isBigEndian())
498    std::swap(Lo, Hi);
499  Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
500  Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
501}
502
503void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
504                                                SDValue &Hi) {
505  MVT LoVT, HiVT;
506  DebugLoc dl = N->getDebugLoc();
507  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
508  unsigned LoNumElts = LoVT.getVectorNumElements();
509  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
510  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
511
512  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
513  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
514}
515
516void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
517                                                  SDValue &Hi) {
518  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
519  DebugLoc dl = N->getDebugLoc();
520  unsigned NumSubvectors = N->getNumOperands() / 2;
521  if (NumSubvectors == 1) {
522    Lo = N->getOperand(0);
523    Hi = N->getOperand(1);
524    return;
525  }
526
527  MVT LoVT, HiVT;
528  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
529
530  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
531  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
532
533  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
534  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
535}
536
537void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
538                                                  SDValue &Hi) {
539  MVT LoVT, HiVT;
540  DebugLoc dl = N->getDebugLoc();
541  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
542
543  SDValue DTyOpLo =  DAG.getValueType(LoVT);
544  SDValue DTyOpHi =  DAG.getValueType(HiVT);
545
546  SDValue RndOp = N->getOperand(3);
547  SDValue SatOp = N->getOperand(4);
548  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
549
550  // Split the input.
551  SDValue VLo, VHi;
552  MVT InVT = N->getOperand(0).getValueType();
553  switch (getTypeAction(InVT)) {
554  default: assert(0 && "Unexpected type action!");
555  case Legal: {
556    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
557    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
558                                 LoVT.getVectorNumElements());
559    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
560                      DAG.getIntPtrConstant(0));
561    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
562                      DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
563    break;
564  }
565  case SplitVector:
566    GetSplitVector(N->getOperand(0), VLo, VHi);
567    break;
568  case WidenVector: {
569    // If the result needs to be split and the input needs to be widened,
570    // the two types must have different lengths. Use the widened result
571    // and extract from it to do the split.
572    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
573    SDValue InOp = GetWidenedVector(N->getOperand(0));
574    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
575                                 LoVT.getVectorNumElements());
576    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
577                     DAG.getIntPtrConstant(0));
578    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
579                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
580    break;
581  }
582  }
583
584  SDValue STyOpLo =  DAG.getValueType(VLo.getValueType());
585  SDValue STyOpHi =  DAG.getValueType(VHi.getValueType());
586
587  Lo = DAG.getConvertRndSat(LoVT, dl, VLo, DTyOpLo, STyOpLo, RndOp, SatOp,
588                            CvtCode);
589  Hi = DAG.getConvertRndSat(HiVT, dl, VHi, DTyOpHi, STyOpHi, RndOp, SatOp,
590                            CvtCode);
591}
592
593void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
594                                                     SDValue &Hi) {
595  SDValue Vec = N->getOperand(0);
596  SDValue Idx = N->getOperand(1);
597  MVT IdxVT = Idx.getValueType();
598  DebugLoc dl = N->getDebugLoc();
599
600  MVT LoVT, HiVT;
601  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
602  // The indices are not guaranteed to be a multiple of the new vector
603  // size unless the original vector type was split in two.
604  assert(LoVT == HiVT && "Non power-of-two vectors not supported!");
605
606  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
607  Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
608                    DAG.getConstant(LoVT.getVectorNumElements(), IdxVT));
609  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, Idx);
610}
611
612void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
613                                         SDValue &Hi) {
614  DebugLoc dl = N->getDebugLoc();
615  GetSplitVector(N->getOperand(0), Lo, Hi);
616  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
617  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
618}
619
620void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
621                                                     SDValue &Hi) {
622  SDValue Vec = N->getOperand(0);
623  SDValue Elt = N->getOperand(1);
624  SDValue Idx = N->getOperand(2);
625  DebugLoc dl = N->getDebugLoc();
626  GetSplitVector(Vec, Lo, Hi);
627
628  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
629    unsigned IdxVal = CIdx->getZExtValue();
630    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
631    if (IdxVal < LoNumElts)
632      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
633                       Lo.getValueType(), Lo, Elt, Idx);
634    else
635      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
636                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
637    return;
638  }
639
640  // Spill the vector to the stack.
641  MVT VecVT = Vec.getValueType();
642  MVT EltVT = VecVT.getVectorElementType();
643  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
644  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
645
646  // Store the new element.  This may be larger than the vector element type,
647  // so use a truncating store.
648  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
649  unsigned Alignment =
650    TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForMVT());
651  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, NULL, 0, EltVT);
652
653  // Load the Lo part from the stack slot.
654  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, NULL, 0);
655
656  // Increment the pointer to the other part.
657  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
658  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
659                         DAG.getIntPtrConstant(IncrementSize));
660
661  // Load the Hi part from the stack slot.
662  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, NULL, 0, false,
663                   MinAlign(Alignment, IncrementSize));
664}
665
666void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
667                                                    SDValue &Hi) {
668  MVT LoVT, HiVT;
669  DebugLoc dl = N->getDebugLoc();
670  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
671  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
672  Hi = DAG.getUNDEF(HiVT);
673}
674
675void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
676                                        SDValue &Hi) {
677  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
678  MVT LoVT, HiVT;
679  DebugLoc dl = LD->getDebugLoc();
680  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
681
682  ISD::LoadExtType ExtType = LD->getExtensionType();
683  SDValue Ch = LD->getChain();
684  SDValue Ptr = LD->getBasePtr();
685  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
686  const Value *SV = LD->getSrcValue();
687  int SVOffset = LD->getSrcValueOffset();
688  MVT MemoryVT = LD->getMemoryVT();
689  unsigned Alignment = LD->getAlignment();
690  bool isVolatile = LD->isVolatile();
691
692  MVT LoMemVT, HiMemVT;
693  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
694
695  Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, LoVT, Ch, Ptr, Offset,
696                   SV, SVOffset, LoMemVT, isVolatile, Alignment);
697
698  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
699  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
700                    DAG.getIntPtrConstant(IncrementSize));
701  SVOffset += IncrementSize;
702  Alignment = MinAlign(Alignment, IncrementSize);
703  Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, HiVT, Ch, Ptr, Offset,
704                   SV, SVOffset, HiMemVT, isVolatile, Alignment);
705
706  // Build a factor node to remember that this load is independent of the
707  // other one.
708  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
709                   Hi.getValue(1));
710
711  // Legalized the chain result - switch anything that used the old chain to
712  // use the new one.
713  ReplaceValueWith(SDValue(LD, 1), Ch);
714}
715
716void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
717                                           SDValue &Hi) {
718  // Get the dest types - they may not match the input types, e.g. int_to_fp.
719  MVT LoVT, HiVT;
720  DebugLoc dl = N->getDebugLoc();
721  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
722
723  // Split the input.
724  MVT InVT = N->getOperand(0).getValueType();
725  switch (getTypeAction(InVT)) {
726  default: assert(0 && "Unexpected type action!");
727  case Legal: {
728    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
729    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
730                                 LoVT.getVectorNumElements());
731    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
732                     DAG.getIntPtrConstant(0));
733    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
734                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
735    break;
736  }
737  case SplitVector:
738    GetSplitVector(N->getOperand(0), Lo, Hi);
739    break;
740  case WidenVector: {
741    // If the result needs to be split and the input needs to be widened,
742    // the two types must have different lengths. Use the widened result
743    // and extract from it to do the split.
744    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
745    SDValue InOp = GetWidenedVector(N->getOperand(0));
746    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
747                                 LoVT.getVectorNumElements());
748    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
749                     DAG.getIntPtrConstant(0));
750    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
751                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
752    break;
753  }
754  }
755
756  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
757  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
758}
759
760void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo,
761                                                  SDValue &Hi) {
762  // The low and high parts of the original input give four input vectors.
763  SDValue Inputs[4];
764  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
765  DebugLoc dl = N->getDebugLoc();
766  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
767  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
768  MVT NewVT = Inputs[0].getValueType();
769  unsigned NewElts = NewVT.getVectorNumElements();
770  assert(NewVT == Inputs[1].getValueType() &&
771         "Non power-of-two vectors not supported!");
772
773  // If Lo or Hi uses elements from at most two of the four input vectors, then
774  // express it as a vector shuffle of those two inputs.  Otherwise extract the
775  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
776  SmallVector<int, 16> Ops;
777  for (unsigned High = 0; High < 2; ++High) {
778    SDValue &Output = High ? Hi : Lo;
779
780    // Build a shuffle mask for the output, discovering on the fly which
781    // input vectors to use as shuffle operands (recorded in InputUsed).
782    // If building a suitable shuffle vector proves too hard, then bail
783    // out with useBuildVector set.
784    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
785    unsigned FirstMaskIdx = High * NewElts;
786    bool useBuildVector = false;
787    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
788      // The mask element.  This indexes into the input.
789      int Idx = SVN->getMaskElt(FirstMaskIdx + MaskOffset);
790
791      // The input vector this mask element indexes into.
792      unsigned Input = (unsigned)Idx / NewElts;
793
794      if (Input >= array_lengthof(Inputs)) {
795        // The mask element does not index into any input vector.
796        Ops.push_back(-1);
797        continue;
798      }
799
800      // Turn the index into an offset from the start of the input vector.
801      Idx -= Input * NewElts;
802
803      // Find or create a shuffle vector operand to hold this input.
804      unsigned OpNo;
805      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
806        if (InputUsed[OpNo] == Input) {
807          // This input vector is already an operand.
808          break;
809        } else if (InputUsed[OpNo] == -1U) {
810          // Create a new operand for this input vector.
811          InputUsed[OpNo] = Input;
812          break;
813        }
814      }
815
816      if (OpNo >= array_lengthof(InputUsed)) {
817        // More than two input vectors used!  Give up on trying to create a
818        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
819        useBuildVector = true;
820        break;
821      }
822
823      // Add the mask index for the new shuffle vector.
824      Ops.push_back(Idx + OpNo * NewElts);
825    }
826
827    if (useBuildVector) {
828      MVT EltVT = NewVT.getVectorElementType();
829      SmallVector<SDValue, 16> SVOps;
830
831      // Extract the input elements by hand.
832      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
833        // The mask element.  This indexes into the input.
834        int Idx = SVN->getMaskElt(FirstMaskIdx + MaskOffset);
835
836        // The input vector this mask element indexes into.
837        unsigned Input = (unsigned)Idx / NewElts;
838
839        if (Input >= array_lengthof(Inputs)) {
840          // The mask element is "undef" or indexes off the end of the input.
841          SVOps.push_back(DAG.getUNDEF(EltVT));
842          continue;
843        }
844
845        // Turn the index into an offset from the start of the input vector.
846        Idx -= Input * NewElts;
847
848        // Extract the vector element by hand.
849        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
850                                    Inputs[Input], DAG.getIntPtrConstant(Idx)));
851      }
852
853      // Construct the Lo/Hi output using a BUILD_VECTOR.
854      Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
855    } else if (InputUsed[0] == -1U) {
856      // No input vectors were used!  The result is undefined.
857      Output = DAG.getUNDEF(NewVT);
858    } else {
859      SDValue Op0 = Inputs[InputUsed[0]];
860      // If only one input was used, use an undefined vector for the other.
861      SDValue Op1 = InputUsed[1] == -1U ?
862        DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
863      // At least one input vector was used.  Create a new shuffle vector.
864      Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
865    }
866
867    Ops.clear();
868  }
869}
870
871void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
872                                          SDValue &Hi) {
873  MVT LoVT, HiVT;
874  DebugLoc dl = N->getDebugLoc();
875  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
876
877  SDValue LL, LH, RL, RH;
878  GetSplitVector(N->getOperand(0), LL, LH);
879  GetSplitVector(N->getOperand(1), RL, RH);
880
881  Lo = DAG.getNode(ISD::VSETCC, dl, LoVT, LL, RL, N->getOperand(2));
882  Hi = DAG.getNode(ISD::VSETCC, dl, HiVT, LH, RH, N->getOperand(2));
883}
884
885
886//===----------------------------------------------------------------------===//
887//  Operand Vector Splitting
888//===----------------------------------------------------------------------===//
889
890/// SplitVectorOperand - This method is called when the specified operand of the
891/// specified node is found to need vector splitting.  At this point, all of the
892/// result types of the node are known to be legal, but other operands of the
893/// node may need legalization as well as the specified one.
894bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
895  DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
896  SDValue Res = SDValue();
897
898  if (Res.getNode() == 0) {
899    switch (N->getOpcode()) {
900    default:
901#ifndef NDEBUG
902      cerr << "SplitVectorOperand Op #" << OpNo << ": ";
903      N->dump(&DAG); cerr << "\n";
904#endif
905      assert(0 && "Do not know how to split this operator's operand!");
906      abort();
907
908    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
909    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
910    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
911    case ISD::STORE:             Res = SplitVecOp_STORE(cast<StoreSDNode>(N),
912                                                        OpNo); break;
913    case ISD::VECTOR_SHUFFLE:    Res = SplitVecOp_VECTOR_SHUFFLE(N, OpNo);break;
914
915    case ISD::CTTZ:
916    case ISD::CTLZ:
917    case ISD::CTPOP:
918    case ISD::FP_TO_SINT:
919    case ISD::FP_TO_UINT:
920    case ISD::SINT_TO_FP:
921    case ISD::TRUNCATE:
922    case ISD::UINT_TO_FP: Res = SplitVecOp_UnaryOp(N); break;
923    }
924  }
925
926  // If the result is null, the sub-method took care of registering results etc.
927  if (!Res.getNode()) return false;
928
929  // If the result is N, the sub-method updated N in place.  Tell the legalizer
930  // core about this.
931  if (Res.getNode() == N)
932    return true;
933
934  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
935         "Invalid operand expansion");
936
937  ReplaceValueWith(SDValue(N, 0), Res);
938  return false;
939}
940
941SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
942  // The result has a legal vector type, but the input needs splitting.
943  MVT ResVT = N->getValueType(0);
944  SDValue Lo, Hi;
945  DebugLoc dl = N->getDebugLoc();
946  GetSplitVector(N->getOperand(0), Lo, Hi);
947  assert(Lo.getValueType() == Hi.getValueType() &&
948         "Returns legal non-power-of-two vector type?");
949  MVT InVT = Lo.getValueType();
950
951  MVT OutVT = MVT::getVectorVT(ResVT.getVectorElementType(),
952                               InVT.getVectorNumElements());
953
954  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
955  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
956
957  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
958}
959
960SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
961  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
962  // end up being split all the way down to individual components.  Convert the
963  // split pieces into integers and reassemble.
964  SDValue Lo, Hi;
965  GetSplitVector(N->getOperand(0), Lo, Hi);
966  Lo = BitConvertToInteger(Lo);
967  Hi = BitConvertToInteger(Hi);
968
969  if (TLI.isBigEndian())
970    std::swap(Lo, Hi);
971
972  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
973                     JoinIntegers(Lo, Hi));
974}
975
976SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
977  // We know that the extracted result type is legal.  For now, assume the index
978  // is a constant.
979  MVT SubVT = N->getValueType(0);
980  SDValue Idx = N->getOperand(1);
981  DebugLoc dl = N->getDebugLoc();
982  SDValue Lo, Hi;
983  GetSplitVector(N->getOperand(0), Lo, Hi);
984
985  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
986  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
987
988  if (IdxVal < LoElts) {
989    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
990           "Extracted subvector crosses vector split!");
991    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
992  } else {
993    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
994                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
995  }
996}
997
998SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
999  SDValue Vec = N->getOperand(0);
1000  SDValue Idx = N->getOperand(1);
1001  MVT VecVT = Vec.getValueType();
1002
1003  if (isa<ConstantSDNode>(Idx)) {
1004    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1005    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1006
1007    SDValue Lo, Hi;
1008    GetSplitVector(Vec, Lo, Hi);
1009
1010    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1011
1012    if (IdxVal < LoElts)
1013      return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
1014    else
1015      return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
1016                                    DAG.getConstant(IdxVal - LoElts,
1017                                                    Idx.getValueType()));
1018  }
1019
1020  // Store the vector to the stack.
1021  MVT EltVT = VecVT.getVectorElementType();
1022  DebugLoc dl = N->getDebugLoc();
1023  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1024  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1025  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1026  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, SV, 0);
1027
1028  // Load back the required element.
1029  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1030  return DAG.getLoad(EltVT, dl, Store, StackPtr, SV, 0);
1031}
1032
1033SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1034  assert(N->isUnindexed() && "Indexed store of vector?");
1035  assert(OpNo == 1 && "Can only split the stored value");
1036  DebugLoc dl = N->getDebugLoc();
1037
1038  bool isTruncating = N->isTruncatingStore();
1039  SDValue Ch  = N->getChain();
1040  SDValue Ptr = N->getBasePtr();
1041  int SVOffset = N->getSrcValueOffset();
1042  MVT MemoryVT = N->getMemoryVT();
1043  unsigned Alignment = N->getAlignment();
1044  bool isVol = N->isVolatile();
1045  SDValue Lo, Hi;
1046  GetSplitVector(N->getOperand(1), Lo, Hi);
1047
1048  MVT LoMemVT, HiMemVT;
1049  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
1050
1051  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1052
1053  if (isTruncating)
1054    Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1055                           LoMemVT, isVol, Alignment);
1056  else
1057    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1058                      isVol, Alignment);
1059
1060  // Increment the pointer to the other half.
1061  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1062                    DAG.getIntPtrConstant(IncrementSize));
1063
1064  if (isTruncating)
1065    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
1066                           N->getSrcValue(), SVOffset+IncrementSize,
1067                           HiMemVT,
1068                           isVol, MinAlign(Alignment, IncrementSize));
1069  else
1070    Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
1071                      isVol, MinAlign(Alignment, IncrementSize));
1072
1073  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1074}
1075
1076SDValue DAGTypeLegalizer::SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo) {
1077  assert(OpNo == 2 && "Shuffle source type differs from result type?");
1078  SDValue Mask = N->getOperand(2);
1079  DebugLoc dl = N->getDebugLoc();
1080  unsigned MaskLength = Mask.getValueType().getVectorNumElements();
1081  unsigned LargestMaskEntryPlusOne = 2 * MaskLength;
1082  unsigned MinimumBitWidth = Log2_32_Ceil(LargestMaskEntryPlusOne);
1083
1084  // Look for a legal vector type to place the mask values in.
1085  // Note that there may not be *any* legal vector-of-integer
1086  // type for which the element type is legal!
1087  for (MVT::SimpleValueType EltVT = MVT::FIRST_INTEGER_VALUETYPE;
1088       EltVT <= MVT::LAST_INTEGER_VALUETYPE;
1089       // Integer values types are consecutively numbered.  Exploit this.
1090       EltVT = MVT::SimpleValueType(EltVT + 1)) {
1091
1092    // Is the element type big enough to hold the values?
1093    if (MVT(EltVT).getSizeInBits() < MinimumBitWidth)
1094      // Nope.
1095      continue;
1096
1097    // Is the vector type legal?
1098    MVT VecVT = MVT::getVectorVT(EltVT, MaskLength);
1099    if (!isTypeLegal(VecVT))
1100      // Nope.
1101      continue;
1102
1103    // If the element type is not legal, find a larger legal type to use for
1104    // the BUILD_VECTOR operands.  This is an ugly hack, but seems to work!
1105    // FIXME: The real solution is to change VECTOR_SHUFFLE into a variadic
1106    // node where the shuffle mask is a list of integer operands, #2 .. #2+n.
1107    for (MVT::SimpleValueType OpVT = EltVT; OpVT <= MVT::LAST_INTEGER_VALUETYPE;
1108         // Integer values types are consecutively numbered.  Exploit this.
1109         OpVT = MVT::SimpleValueType(OpVT + 1)) {
1110      if (!isTypeLegal(OpVT))
1111        continue;
1112
1113      // Success!  Rebuild the vector using the legal types.
1114      SmallVector<SDValue, 16> Ops(MaskLength);
1115      for (unsigned i = 0; i < MaskLength; ++i) {
1116        SDValue Arg = Mask.getOperand(i);
1117        if (Arg.getOpcode() == ISD::UNDEF) {
1118          Ops[i] = DAG.getUNDEF(OpVT);
1119        } else {
1120          uint64_t Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
1121          Ops[i] = DAG.getConstant(Idx, OpVT);
1122        }
1123      }
1124      return DAG.UpdateNodeOperands(SDValue(N,0),
1125                                    N->getOperand(0), N->getOperand(1),
1126                                    DAG.getNode(ISD::BUILD_VECTOR, dl,
1127                                                VecVT, &Ops[0], Ops.size()));
1128    }
1129
1130    // Continuing is pointless - failure is certain.
1131    break;
1132  }
1133  assert(false && "Failed to find an appropriate mask type!");
1134  return SDValue(N, 0);
1135}
1136
1137
1138//===----------------------------------------------------------------------===//
1139//  Result Vector Widening
1140//===----------------------------------------------------------------------===//
1141
1142void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1143  DEBUG(cerr << "Widen node result " << ResNo << ": "; N->dump(&DAG);
1144        cerr << "\n");
1145  SDValue Res = SDValue();
1146
1147  switch (N->getOpcode()) {
1148  default:
1149#ifndef NDEBUG
1150    cerr << "WidenVectorResult #" << ResNo << ": ";
1151    N->dump(&DAG); cerr << "\n";
1152#endif
1153    assert(0 && "Do not know how to widen the result of this operator!");
1154    abort();
1155
1156  case ISD::BIT_CONVERT:       Res = WidenVecRes_BIT_CONVERT(N); break;
1157  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1158  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1159  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1160  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1161  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1162  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1163  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1164  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1165  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1166  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1167  case ISD::VECTOR_SHUFFLE:    Res = WidenVecRes_VECTOR_SHUFFLE(N); break;
1168  case ISD::VSETCC:            Res = WidenVecRes_VSETCC(N); break;
1169
1170  case ISD::ADD:
1171  case ISD::AND:
1172  case ISD::BSWAP:
1173  case ISD::FADD:
1174  case ISD::FCOPYSIGN:
1175  case ISD::FDIV:
1176  case ISD::FMUL:
1177  case ISD::FPOW:
1178  case ISD::FPOWI:
1179  case ISD::FREM:
1180  case ISD::FSUB:
1181  case ISD::MUL:
1182  case ISD::MULHS:
1183  case ISD::MULHU:
1184  case ISD::OR:
1185  case ISD::SDIV:
1186  case ISD::SREM:
1187  case ISD::UDIV:
1188  case ISD::UREM:
1189  case ISD::SUB:
1190  case ISD::XOR:               Res = WidenVecRes_Binary(N); break;
1191
1192  case ISD::SHL:
1193  case ISD::SRA:
1194  case ISD::SRL:               Res = WidenVecRes_Shift(N); break;
1195
1196  case ISD::ANY_EXTEND:
1197  case ISD::FP_ROUND:
1198  case ISD::FP_TO_SINT:
1199  case ISD::FP_TO_UINT:
1200  case ISD::SIGN_EXTEND:
1201  case ISD::SINT_TO_FP:
1202  case ISD::TRUNCATE:
1203  case ISD::ZERO_EXTEND:
1204  case ISD::UINT_TO_FP:        Res = WidenVecRes_Convert(N); break;
1205
1206  case ISD::CTLZ:
1207  case ISD::CTPOP:
1208  case ISD::CTTZ:
1209  case ISD::FABS:
1210  case ISD::FCOS:
1211  case ISD::FNEG:
1212  case ISD::FSIN:
1213  case ISD::FSQRT:             Res = WidenVecRes_Unary(N); break;
1214  }
1215
1216  // If Res is null, the sub-method took care of registering the result.
1217  if (Res.getNode())
1218    SetWidenedVector(SDValue(N, ResNo), Res);
1219}
1220
1221SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1222  // Binary op widening.
1223  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1224  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1225  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1226  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp1, InOp2);
1227}
1228
1229SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1230  SDValue InOp = N->getOperand(0);
1231  DebugLoc dl = N->getDebugLoc();
1232
1233  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1234  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1235
1236  MVT InVT = InOp.getValueType();
1237  MVT InEltVT = InVT.getVectorElementType();
1238  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1239
1240  unsigned Opcode = N->getOpcode();
1241  unsigned InVTNumElts = InVT.getVectorNumElements();
1242
1243  if (getTypeAction(InVT) == WidenVector) {
1244    InOp = GetWidenedVector(N->getOperand(0));
1245    InVT = InOp.getValueType();
1246    InVTNumElts = InVT.getVectorNumElements();
1247    if (InVTNumElts == WidenNumElts)
1248      return DAG.getNode(Opcode, dl, WidenVT, InOp);
1249  }
1250
1251  if (TLI.isTypeLegal(InWidenVT)) {
1252    // Because the result and the input are different vector types, widening
1253    // the result could create a legal type but widening the input might make
1254    // it an illegal type that might lead to repeatedly splitting the input
1255    // and then widening it. To avoid this, we widen the input only if
1256    // it results in a legal type.
1257    if (WidenNumElts % InVTNumElts == 0) {
1258      // Widen the input and call convert on the widened input vector.
1259      unsigned NumConcat = WidenNumElts/InVTNumElts;
1260      SmallVector<SDValue, 16> Ops(NumConcat);
1261      Ops[0] = InOp;
1262      SDValue UndefVal = DAG.getUNDEF(InVT);
1263      for (unsigned i = 1; i != NumConcat; ++i)
1264        Ops[i] = UndefVal;
1265      return DAG.getNode(Opcode, dl, WidenVT,
1266                         DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT,
1267                         &Ops[0], NumConcat));
1268    }
1269
1270    if (InVTNumElts % WidenNumElts == 0) {
1271      // Extract the input and convert the shorten input vector.
1272      return DAG.getNode(Opcode, dl, WidenVT,
1273                         DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT,
1274                                     InOp, DAG.getIntPtrConstant(0)));
1275    }
1276  }
1277
1278  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1279  SmallVector<SDValue, 16> Ops(WidenNumElts);
1280  MVT EltVT = WidenVT.getVectorElementType();
1281  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1282  unsigned i;
1283  for (i=0; i < MinElts; ++i)
1284    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1285                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1286                                     DAG.getIntPtrConstant(i)));
1287
1288  SDValue UndefVal = DAG.getUNDEF(EltVT);
1289  for (; i < WidenNumElts; ++i)
1290    Ops[i] = UndefVal;
1291
1292  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1293}
1294
1295SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1296  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1297  SDValue InOp = GetWidenedVector(N->getOperand(0));
1298  SDValue ShOp = N->getOperand(1);
1299
1300  MVT ShVT = ShOp.getValueType();
1301  if (getTypeAction(ShVT) == WidenVector) {
1302    ShOp = GetWidenedVector(ShOp);
1303    ShVT = ShOp.getValueType();
1304  }
1305  MVT ShWidenVT = MVT::getVectorVT(ShVT.getVectorElementType(),
1306                                   WidenVT.getVectorNumElements());
1307  if (ShVT != ShWidenVT)
1308    ShOp = ModifyToType(ShOp, ShWidenVT);
1309
1310  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
1311}
1312
1313SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1314  // Unary op widening.
1315  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1316  SDValue InOp = GetWidenedVector(N->getOperand(0));
1317  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
1318}
1319
1320SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
1321  SDValue InOp = N->getOperand(0);
1322  MVT InVT = InOp.getValueType();
1323  MVT VT = N->getValueType(0);
1324  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1325  DebugLoc dl = N->getDebugLoc();
1326
1327  switch (getTypeAction(InVT)) {
1328  default:
1329    assert(false && "Unknown type action!");
1330    break;
1331  case Legal:
1332    break;
1333  case PromoteInteger:
1334    // If the InOp is promoted to the same size, convert it.  Otherwise,
1335    // fall out of the switch and widen the promoted input.
1336    InOp = GetPromotedInteger(InOp);
1337    InVT = InOp.getValueType();
1338    if (WidenVT.bitsEq(InVT))
1339      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1340    break;
1341  case SoftenFloat:
1342  case ExpandInteger:
1343  case ExpandFloat:
1344  case ScalarizeVector:
1345  case SplitVector:
1346    break;
1347  case WidenVector:
1348    // If the InOp is widened to the same size, convert it.  Otherwise, fall
1349    // out of the switch and widen the widened input.
1350    InOp = GetWidenedVector(InOp);
1351    InVT = InOp.getValueType();
1352    if (WidenVT.bitsEq(InVT))
1353      // The input widens to the same size. Convert to the widen value.
1354      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1355    break;
1356  }
1357
1358  unsigned WidenSize = WidenVT.getSizeInBits();
1359  unsigned InSize = InVT.getSizeInBits();
1360  if (WidenSize % InSize == 0) {
1361    // Determine new input vector type.  The new input vector type will use
1362    // the same element type (if its a vector) or use the input type as a
1363    // vector.  It is the same size as the type to widen to.
1364    MVT NewInVT;
1365    unsigned NewNumElts = WidenSize / InSize;
1366    if (InVT.isVector()) {
1367      MVT InEltVT = InVT.getVectorElementType();
1368      NewInVT= MVT::getVectorVT(InEltVT, WidenSize / InEltVT.getSizeInBits());
1369    } else {
1370      NewInVT = MVT::getVectorVT(InVT, NewNumElts);
1371    }
1372
1373    if (TLI.isTypeLegal(NewInVT)) {
1374      // Because the result and the input are different vector types, widening
1375      // the result could create a legal type but widening the input might make
1376      // it an illegal type that might lead to repeatedly splitting the input
1377      // and then widening it. To avoid this, we widen the input only if
1378      // it results in a legal type.
1379      SmallVector<SDValue, 16> Ops(NewNumElts);
1380      SDValue UndefVal = DAG.getUNDEF(InVT);
1381      Ops[0] = InOp;
1382      for (unsigned i = 1; i < NewNumElts; ++i)
1383        Ops[i] = UndefVal;
1384
1385      SDValue NewVec;
1386      if (InVT.isVector())
1387        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1388                             NewInVT, &Ops[0], NewNumElts);
1389      else
1390        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1391                             NewInVT, &Ops[0], NewNumElts);
1392      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, NewVec);
1393    }
1394  }
1395
1396  // This should occur rarely. Lower the bit-convert to a store/load
1397  // from the stack. Create the stack frame object.  Make sure it is aligned
1398  // for both the source and destination types.
1399  SDValue FIPtr = DAG.CreateStackTemporary(InVT, WidenVT);
1400  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1401  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1402
1403  // Emit a store to the stack slot.
1404  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1405
1406  // Result is a load from the stack slot.
1407  return DAG.getLoad(WidenVT, dl, Store, FIPtr, SV, 0);
1408}
1409
1410SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1411  DebugLoc dl = N->getDebugLoc();
1412  // Build a vector with undefined for the new nodes.
1413  MVT VT = N->getValueType(0);
1414  MVT EltVT = VT.getVectorElementType();
1415  unsigned NumElts = VT.getVectorNumElements();
1416
1417  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1418  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1419
1420  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1421  NewOps.reserve(WidenNumElts);
1422  for (unsigned i = NumElts; i < WidenNumElts; ++i)
1423    NewOps.push_back(DAG.getUNDEF(EltVT));
1424
1425  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1426}
1427
1428SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1429  MVT InVT = N->getOperand(0).getValueType();
1430  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1431  DebugLoc dl = N->getDebugLoc();
1432  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1433  unsigned NumOperands = N->getNumOperands();
1434
1435  bool InputWidened = false; // Indicates we need to widen the input.
1436  if (getTypeAction(InVT) != WidenVector) {
1437    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1438      // Add undef vectors to widen to correct length.
1439      unsigned NumConcat = WidenVT.getVectorNumElements() /
1440                           InVT.getVectorNumElements();
1441      SDValue UndefVal = DAG.getUNDEF(InVT);
1442      SmallVector<SDValue, 16> Ops(NumConcat);
1443      for (unsigned i=0; i < NumOperands; ++i)
1444        Ops[i] = N->getOperand(i);
1445      for (unsigned i = NumOperands; i != NumConcat; ++i)
1446        Ops[i] = UndefVal;
1447      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1448    }
1449  } else {
1450    InputWidened = true;
1451    if (WidenVT == TLI.getTypeToTransformTo(InVT)) {
1452      // The inputs and the result are widen to the same value.
1453      unsigned i;
1454      for (i=1; i < NumOperands; ++i)
1455        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1456          break;
1457
1458      if (i > NumOperands)
1459        // Everything but the first operand is an UNDEF so just return the
1460        // widened first operand.
1461        return GetWidenedVector(N->getOperand(0));
1462
1463      if (NumOperands == 2) {
1464        // Replace concat of two operands with a shuffle.
1465        SmallVector<int, 16> MaskOps(WidenNumElts);
1466        for (unsigned i=0; i < WidenNumElts/2; ++i) {
1467          MaskOps[i] = i;
1468          MaskOps[i+WidenNumElts/2] = i+WidenNumElts;
1469        }
1470        return DAG.getVectorShuffle(WidenVT, dl,
1471                                    GetWidenedVector(N->getOperand(0)),
1472                                    GetWidenedVector(N->getOperand(1)),
1473                                    &MaskOps[0]);
1474      }
1475    }
1476  }
1477
1478  // Fall back to use extracts and build vector.
1479  MVT EltVT = WidenVT.getVectorElementType();
1480  unsigned NumInElts = InVT.getVectorNumElements();
1481  SmallVector<SDValue, 16> Ops(WidenNumElts);
1482  unsigned Idx = 0;
1483  for (unsigned i=0; i < NumOperands; ++i) {
1484    SDValue InOp = N->getOperand(i);
1485    if (InputWidened)
1486      InOp = GetWidenedVector(InOp);
1487    for (unsigned j=0; j < NumInElts; ++j)
1488        Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1489                                 DAG.getIntPtrConstant(j));
1490  }
1491  SDValue UndefVal = DAG.getUNDEF(EltVT);
1492  for (; Idx < WidenNumElts; ++Idx)
1493    Ops[Idx] = UndefVal;
1494  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1495}
1496
1497SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
1498  DebugLoc dl = N->getDebugLoc();
1499  SDValue InOp  = N->getOperand(0);
1500  SDValue RndOp = N->getOperand(3);
1501  SDValue SatOp = N->getOperand(4);
1502
1503  MVT      WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1504  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1505
1506  MVT InVT = InOp.getValueType();
1507  MVT InEltVT = InVT.getVectorElementType();
1508  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1509
1510  SDValue DTyOp = DAG.getValueType(WidenVT);
1511  SDValue STyOp = DAG.getValueType(InWidenVT);
1512  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1513
1514  unsigned InVTNumElts = InVT.getVectorNumElements();
1515  if (getTypeAction(InVT) == WidenVector) {
1516    InOp = GetWidenedVector(InOp);
1517    InVT = InOp.getValueType();
1518    InVTNumElts = InVT.getVectorNumElements();
1519    if (InVTNumElts == WidenNumElts)
1520      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1521                                  SatOp, CvtCode);
1522  }
1523
1524  if (TLI.isTypeLegal(InWidenVT)) {
1525    // Because the result and the input are different vector types, widening
1526    // the result could create a legal type but widening the input might make
1527    // it an illegal type that might lead to repeatedly splitting the input
1528    // and then widening it. To avoid this, we widen the input only if
1529    // it results in a legal type.
1530    if (WidenNumElts % InVTNumElts == 0) {
1531      // Widen the input and call convert on the widened input vector.
1532      unsigned NumConcat = WidenNumElts/InVTNumElts;
1533      SmallVector<SDValue, 16> Ops(NumConcat);
1534      Ops[0] = InOp;
1535      SDValue UndefVal = DAG.getUNDEF(InVT);
1536      for (unsigned i = 1; i != NumConcat; ++i) {
1537        Ops[i] = UndefVal;
1538      }
1539      InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
1540      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1541                                  SatOp, CvtCode);
1542    }
1543
1544    if (InVTNumElts % WidenNumElts == 0) {
1545      // Extract the input and convert the shorten input vector.
1546      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
1547                         DAG.getIntPtrConstant(0));
1548      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1549                                SatOp, CvtCode);
1550    }
1551  }
1552
1553  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1554  SmallVector<SDValue, 16> Ops(WidenNumElts);
1555  MVT EltVT = WidenVT.getVectorElementType();
1556  DTyOp = DAG.getValueType(EltVT);
1557  STyOp = DAG.getValueType(InEltVT);
1558
1559  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1560  unsigned i;
1561  for (i=0; i < MinElts; ++i) {
1562    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1563                                 DAG.getIntPtrConstant(i));
1564    Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
1565                                        SatOp, CvtCode);
1566  }
1567
1568  SDValue UndefVal = DAG.getUNDEF(EltVT);
1569  for (; i < WidenNumElts; ++i)
1570    Ops[i] = UndefVal;
1571
1572  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1573}
1574
1575SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
1576  MVT      VT = N->getValueType(0);
1577  MVT      WidenVT = TLI.getTypeToTransformTo(VT);
1578  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1579  SDValue  InOp = N->getOperand(0);
1580  SDValue  Idx  = N->getOperand(1);
1581  DebugLoc dl = N->getDebugLoc();
1582
1583  if (getTypeAction(InOp.getValueType()) == WidenVector)
1584    InOp = GetWidenedVector(InOp);
1585
1586  MVT InVT = InOp.getValueType();
1587
1588  ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
1589  if (CIdx) {
1590    unsigned IdxVal = CIdx->getZExtValue();
1591    // Check if we can just return the input vector after widening.
1592    if (IdxVal == 0 && InVT == WidenVT)
1593      return InOp;
1594
1595    // Check if we can extract from the vector.
1596    unsigned InNumElts = InVT.getVectorNumElements();
1597    if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
1598        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
1599  }
1600
1601  // We could try widening the input to the right length but for now, extract
1602  // the original elements, fill the rest with undefs and build a vector.
1603  SmallVector<SDValue, 16> Ops(WidenNumElts);
1604  MVT EltVT = VT.getVectorElementType();
1605  MVT IdxVT = Idx.getValueType();
1606  unsigned NumElts = VT.getVectorNumElements();
1607  unsigned i;
1608  if (CIdx) {
1609    unsigned IdxVal = CIdx->getZExtValue();
1610    for (i=0; i < NumElts; ++i)
1611      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1612                           DAG.getConstant(IdxVal+i, IdxVT));
1613  } else {
1614    Ops[0] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, Idx);
1615    for (i=1; i < NumElts; ++i) {
1616      SDValue NewIdx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1617                                   DAG.getConstant(i, IdxVT));
1618      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, NewIdx);
1619    }
1620  }
1621
1622  SDValue UndefVal = DAG.getUNDEF(EltVT);
1623  for (; i < WidenNumElts; ++i)
1624    Ops[i] = UndefVal;
1625  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1626}
1627
1628SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
1629  SDValue InOp = GetWidenedVector(N->getOperand(0));
1630  return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(),
1631                     InOp.getValueType(), InOp,
1632                     N->getOperand(1), N->getOperand(2));
1633}
1634
1635SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
1636  LoadSDNode *LD = cast<LoadSDNode>(N);
1637  MVT WidenVT = TLI.getTypeToTransformTo(LD->getValueType(0));
1638  MVT LdVT    = LD->getMemoryVT();
1639  DebugLoc dl = N->getDebugLoc();
1640  assert(LdVT.isVector() && WidenVT.isVector());
1641
1642  // Load information
1643  SDValue   Chain = LD->getChain();
1644  SDValue   BasePtr = LD->getBasePtr();
1645  int       SVOffset = LD->getSrcValueOffset();
1646  unsigned  Align    = LD->getAlignment();
1647  bool      isVolatile = LD->isVolatile();
1648  const Value *SV = LD->getSrcValue();
1649  ISD::LoadExtType ExtType = LD->getExtensionType();
1650
1651  SDValue Result;
1652  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
1653  if (ExtType != ISD::NON_EXTLOAD) {
1654    // For extension loads, we can not play the tricks of chopping legal
1655    // vector types and bit cast it to the right type.  Instead, we unroll
1656    // the load and build a vector.
1657    MVT EltVT = WidenVT.getVectorElementType();
1658    MVT LdEltVT = LdVT.getVectorElementType();
1659    unsigned NumElts = LdVT.getVectorNumElements();
1660
1661    // Load each element and widen
1662    unsigned WidenNumElts = WidenVT.getVectorNumElements();
1663    SmallVector<SDValue, 16> Ops(WidenNumElts);
1664    unsigned Increment = LdEltVT.getSizeInBits() / 8;
1665    Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, SV, SVOffset,
1666                            LdEltVT, isVolatile, Align);
1667    LdChain.push_back(Ops[0].getValue(1));
1668    unsigned i = 0, Offset = Increment;
1669    for (i=1; i < NumElts; ++i, Offset += Increment) {
1670      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1671                                       BasePtr, DAG.getIntPtrConstant(Offset));
1672      Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, SV,
1673                              SVOffset + Offset, LdEltVT, isVolatile, Align);
1674      LdChain.push_back(Ops[i].getValue(1));
1675    }
1676
1677    // Fill the rest with undefs
1678    SDValue UndefVal = DAG.getUNDEF(EltVT);
1679    for (; i != WidenNumElts; ++i)
1680      Ops[i] = UndefVal;
1681
1682    Result =  DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
1683  } else {
1684    assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
1685    unsigned int LdWidth = LdVT.getSizeInBits();
1686    Result = GenWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
1687                                 Align, isVolatile, LdWidth, WidenVT, dl);
1688  }
1689
1690 // If we generate a single load, we can use that for the chain.  Otherwise,
1691 // build a factor node to remember the multiple loads are independent and
1692 // chain to that.
1693 SDValue NewChain;
1694 if (LdChain.size() == 1)
1695   NewChain = LdChain[0];
1696 else
1697   NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LdChain[0],
1698                          LdChain.size());
1699
1700  // Modified the chain - switch anything that used the old chain to use
1701  // the new one.
1702  ReplaceValueWith(SDValue(N, 1), Chain);
1703
1704  return Result;
1705}
1706
1707SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
1708  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1709  return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
1710                     WidenVT, N->getOperand(0));
1711}
1712
1713SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
1714  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1715  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1716
1717  SDValue Cond1 = N->getOperand(0);
1718  MVT CondVT = Cond1.getValueType();
1719  if (CondVT.isVector()) {
1720    MVT CondEltVT = CondVT.getVectorElementType();
1721    MVT CondWidenVT =  MVT::getVectorVT(CondEltVT, WidenNumElts);
1722    if (getTypeAction(CondVT) == WidenVector)
1723      Cond1 = GetWidenedVector(Cond1);
1724
1725    if (Cond1.getValueType() != CondWidenVT)
1726       Cond1 = ModifyToType(Cond1, CondWidenVT);
1727  }
1728
1729  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
1730  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
1731  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
1732  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
1733                     WidenVT, Cond1, InOp1, InOp2);
1734}
1735
1736SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
1737  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
1738  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
1739  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
1740                     InOp1.getValueType(), N->getOperand(0),
1741                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
1742}
1743
1744SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
1745 MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1746 return DAG.getUNDEF(WidenVT);
1747}
1748
1749SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(SDNode *N) {
1750  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
1751  MVT VT = N->getValueType(0);
1752  int NumElts = VT.getVectorNumElements();
1753  DebugLoc dl = N->getDebugLoc();
1754
1755  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1756  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1757
1758  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1759  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1760
1761  // Adjust mask based on new input vector length.
1762  SmallVector<int, 16> NewMask;
1763  for (int i = 0; i < NumElts; ++i) {
1764    int Idx = SVN->getMaskElt(i);
1765    if (Idx < NumElts)
1766      NewMask.push_back(Idx);
1767    else
1768      NewMask.push_back(Idx - NumElts + WidenNumElts);
1769  }
1770  for (unsigned i = NumElts; i < WidenNumElts; ++i)
1771    NewMask.push_back(-1);
1772  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
1773}
1774
1775SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
1776  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1777  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1778
1779  SDValue InOp1 = N->getOperand(0);
1780  MVT InVT = InOp1.getValueType();
1781  assert(InVT.isVector() && "can not widen non vector type");
1782  MVT WidenInVT = MVT::getVectorVT(InVT.getVectorElementType(), WidenNumElts);
1783  InOp1 = GetWidenedVector(InOp1);
1784  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1785
1786  // Assume that the input and output will be widen appropriately.  If not,
1787  // we will have to unroll it at some point.
1788  assert(InOp1.getValueType() == WidenInVT &&
1789         InOp2.getValueType() == WidenInVT &&
1790         "Input not widened to expected type!");
1791  return DAG.getNode(ISD::VSETCC, N->getDebugLoc(),
1792                     WidenVT, InOp1, InOp2, N->getOperand(2));
1793}
1794
1795
1796//===----------------------------------------------------------------------===//
1797// Widen Vector Operand
1798//===----------------------------------------------------------------------===//
1799bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
1800  DEBUG(cerr << "Widen node operand " << ResNo << ": "; N->dump(&DAG);
1801        cerr << "\n");
1802  SDValue Res = SDValue();
1803
1804  switch (N->getOpcode()) {
1805  default:
1806#ifndef NDEBUG
1807    cerr << "WidenVectorOperand op #" << ResNo << ": ";
1808    N->dump(&DAG); cerr << "\n";
1809#endif
1810    assert(0 && "Do not know how to widen this operator's operand!");
1811    abort();
1812
1813  case ISD::BIT_CONVERT:        Res = WidenVecOp_BIT_CONVERT(N); break;
1814  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
1815  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
1816  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
1817
1818  case ISD::FP_ROUND:
1819  case ISD::FP_TO_SINT:
1820  case ISD::FP_TO_UINT:
1821  case ISD::SINT_TO_FP:
1822  case ISD::TRUNCATE:
1823  case ISD::UINT_TO_FP:         Res = WidenVecOp_Convert(N); break;
1824  }
1825
1826  // If Res is null, the sub-method took care of registering the result.
1827  if (!Res.getNode()) return false;
1828
1829  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1830  // core about this.
1831  if (Res.getNode() == N)
1832    return true;
1833
1834
1835  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1836         "Invalid operand expansion");
1837
1838  ReplaceValueWith(SDValue(N, 0), Res);
1839  return false;
1840}
1841
1842SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
1843  // Since the result is legal and the input is illegal, it is unlikely
1844  // that we can fix the input to a legal type so unroll the convert
1845  // into some scalar code and create a nasty build vector.
1846  MVT VT = N->getValueType(0);
1847  MVT EltVT = VT.getVectorElementType();
1848  DebugLoc dl = N->getDebugLoc();
1849  unsigned NumElts = VT.getVectorNumElements();
1850  SDValue InOp = N->getOperand(0);
1851  if (getTypeAction(InOp.getValueType()) == WidenVector)
1852    InOp = GetWidenedVector(InOp);
1853  MVT InVT = InOp.getValueType();
1854  MVT InEltVT = InVT.getVectorElementType();
1855
1856  unsigned Opcode = N->getOpcode();
1857  SmallVector<SDValue, 16> Ops(NumElts);
1858  for (unsigned i=0; i < NumElts; ++i)
1859    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1860                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1861                                     DAG.getIntPtrConstant(i)));
1862
1863  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1864}
1865
1866SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
1867  MVT VT = N->getValueType(0);
1868  SDValue InOp = GetWidenedVector(N->getOperand(0));
1869  MVT InWidenVT = InOp.getValueType();
1870  DebugLoc dl = N->getDebugLoc();
1871
1872  // Check if we can convert between two legal vector types and extract.
1873  unsigned InWidenSize = InWidenVT.getSizeInBits();
1874  unsigned Size = VT.getSizeInBits();
1875  if (InWidenSize % Size == 0 && !VT.isVector()) {
1876    unsigned NewNumElts = InWidenSize / Size;
1877    MVT NewVT = MVT::getVectorVT(VT, NewNumElts);
1878    if (TLI.isTypeLegal(NewVT)) {
1879      SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
1880      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
1881                         DAG.getIntPtrConstant(0));
1882    }
1883  }
1884
1885  // Lower the bit-convert to a store/load from the stack. Create the stack
1886  // frame object.  Make sure it is aligned for both the source and destination
1887  // types.
1888  SDValue FIPtr = DAG.CreateStackTemporary(InWidenVT, VT);
1889  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1890  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1891
1892  // Emit a store to the stack slot.
1893  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1894
1895  // Result is a load from the stack slot.
1896  return DAG.getLoad(VT, dl, Store, FIPtr, SV, 0);
1897}
1898
1899SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
1900  // If the input vector is not legal, it is likely that we will not find a
1901  // legal vector of the same size. Replace the concatenate vector with a
1902  // nasty build vector.
1903  MVT VT = N->getValueType(0);
1904  MVT EltVT = VT.getVectorElementType();
1905  DebugLoc dl = N->getDebugLoc();
1906  unsigned NumElts = VT.getVectorNumElements();
1907  SmallVector<SDValue, 16> Ops(NumElts);
1908
1909  MVT InVT = N->getOperand(0).getValueType();
1910  unsigned NumInElts = InVT.getVectorNumElements();
1911
1912  unsigned Idx = 0;
1913  unsigned NumOperands = N->getNumOperands();
1914  for (unsigned i=0; i < NumOperands; ++i) {
1915    SDValue InOp = N->getOperand(i);
1916    if (getTypeAction(InOp.getValueType()) == WidenVector)
1917      InOp = GetWidenedVector(InOp);
1918    for (unsigned j=0; j < NumInElts; ++j)
1919      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1920                               DAG.getIntPtrConstant(j));
1921  }
1922  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1923}
1924
1925SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1926  SDValue InOp = GetWidenedVector(N->getOperand(0));
1927  MVT EltVT = InOp.getValueType().getVectorElementType();
1928  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
1929                     EltVT, InOp, N->getOperand(1));
1930}
1931
1932SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
1933  // We have to widen the value but we want only to store the original
1934  // vector type.
1935  StoreSDNode *ST = cast<StoreSDNode>(N);
1936  SDValue  Chain = ST->getChain();
1937  SDValue  BasePtr = ST->getBasePtr();
1938  const    Value *SV = ST->getSrcValue();
1939  int      SVOffset = ST->getSrcValueOffset();
1940  unsigned Align = ST->getAlignment();
1941  bool     isVolatile = ST->isVolatile();
1942  SDValue  ValOp = GetWidenedVector(ST->getValue());
1943  DebugLoc dl = N->getDebugLoc();
1944
1945  MVT StVT = ST->getMemoryVT();
1946  MVT ValVT = ValOp.getValueType();
1947  // It must be true that we the widen vector type is bigger than where
1948  // we need to store.
1949  assert(StVT.isVector() && ValOp.getValueType().isVector());
1950  assert(StVT.bitsLT(ValOp.getValueType()));
1951
1952  SmallVector<SDValue, 16> StChain;
1953  if (ST->isTruncatingStore()) {
1954    // For truncating stores, we can not play the tricks of chopping legal
1955    // vector types and bit cast it to the right type.  Instead, we unroll
1956    // the store.
1957    MVT StEltVT  = StVT.getVectorElementType();
1958    MVT ValEltVT = ValVT.getVectorElementType();
1959    unsigned Increment = ValEltVT.getSizeInBits() / 8;
1960    unsigned NumElts = StVT.getVectorNumElements();
1961    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1962                              DAG.getIntPtrConstant(0));
1963    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, SV,
1964                                        SVOffset, StEltVT,
1965                                        isVolatile, Align));
1966    unsigned Offset = Increment;
1967    for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
1968      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1969                                       BasePtr, DAG.getIntPtrConstant(Offset));
1970      SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1971                              DAG.getIntPtrConstant(0));
1972      StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, SV,
1973                                          SVOffset + Offset, StEltVT,
1974                                          isVolatile, MinAlign(Align, Offset)));
1975    }
1976  }
1977  else {
1978    assert(StVT.getVectorElementType() == ValVT.getVectorElementType());
1979    // Store value
1980    GenWidenVectorStores(StChain, Chain, BasePtr, SV, SVOffset,
1981                         Align, isVolatile, ValOp, StVT.getSizeInBits(), dl);
1982  }
1983  if (StChain.size() == 1)
1984    return StChain[0];
1985  else
1986    return DAG.getNode(ISD::TokenFactor, dl,
1987                       MVT::Other,&StChain[0],StChain.size());
1988}
1989
1990//===----------------------------------------------------------------------===//
1991// Vector Widening Utilities
1992//===----------------------------------------------------------------------===//
1993
1994
1995// Utility function to find a vector type and its associated element
1996// type from a preferred width and whose vector type must be the same size
1997// as the VecVT.
1998//  TLI:   Target lowering used to determine legal types.
1999//  Width: Preferred width to store.
2000//  VecVT: Vector value type whose size we must match.
2001// Returns NewVecVT and NewEltVT - the vector type and its associated
2002// element type.
2003static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
2004                                  MVT VecVT,
2005                                  MVT& NewEltVT, MVT& NewVecVT) {
2006  unsigned EltWidth = Width + 1;
2007  if (TLI.isTypeLegal(VecVT)) {
2008    // We start with the preferred with, making it a power of 2 and find a
2009    // legal vector type of that width.  If not, we reduce it by another of 2.
2010    // For incoming type is legal, this process will end as a vector of the
2011    // smallest loadable type should always be legal.
2012    do {
2013      assert(EltWidth > 0);
2014      EltWidth = 1 << Log2_32(EltWidth - 1);
2015      NewEltVT = MVT::getIntegerVT(EltWidth);
2016      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
2017      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
2018    } while (!TLI.isTypeLegal(NewVecVT) ||
2019             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
2020  } else {
2021    // The incoming vector type is illegal and is the result of widening
2022    // a vector to a power of 2. In this case, we will use the preferred
2023    // with as long as it is a multiple of the incoming vector length.
2024    // The legalization process will eventually make this into a legal type
2025    // and remove the illegal bit converts (which would turn to stack converts
2026    // if they are allow to exist).
2027     do {
2028      assert(EltWidth > 0);
2029      EltWidth = 1 << Log2_32(EltWidth - 1);
2030      NewEltVT = MVT::getIntegerVT(EltWidth);
2031      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
2032      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
2033    } while (!TLI.isTypeLegal(NewEltVT) ||
2034             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
2035  }
2036}
2037
2038SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
2039                                              SDValue      Chain,
2040                                              SDValue      BasePtr,
2041                                              const Value *SV,
2042                                              int          SVOffset,
2043                                              unsigned     Alignment,
2044                                              bool         isVolatile,
2045                                              unsigned     LdWidth,
2046                                              MVT          ResType,
2047                                              DebugLoc     dl) {
2048  // The strategy assumes that we can efficiently load powers of two widths.
2049  // The routines chops the vector into the largest power of 2 load and
2050  // can be inserted into a legal vector and then cast the result into the
2051  // vector type we want.  This avoids unnecessary stack converts.
2052
2053  // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
2054  //       the load is nonvolatile, we an use a wider load for the value.
2055
2056  // Find the vector type that can load from.
2057  MVT NewEltVT, NewVecVT;
2058  unsigned NewEltVTWidth;
2059  FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2060  NewEltVTWidth = NewEltVT.getSizeInBits();
2061
2062  SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV, SVOffset,
2063                             isVolatile, Alignment);
2064  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2065  LdChain.push_back(LdOp.getValue(1));
2066
2067  // Check if we can load the element with one instruction
2068  if (LdWidth == NewEltVTWidth) {
2069    return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2070  }
2071
2072  unsigned Idx = 1;
2073  LdWidth -= NewEltVTWidth;
2074  unsigned Offset = 0;
2075
2076  while (LdWidth > 0) {
2077    unsigned Increment = NewEltVTWidth / 8;
2078    Offset += Increment;
2079    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2080                          DAG.getIntPtrConstant(Increment));
2081
2082    if (LdWidth < NewEltVTWidth) {
2083      // Our current type we are using is too large, use a smaller size by
2084      // using a smaller power of 2
2085      unsigned oNewEltVTWidth = NewEltVTWidth;
2086      FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2087      NewEltVTWidth = NewEltVT.getSizeInBits();
2088      // Readjust position and vector position based on new load type
2089      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2090      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2091    }
2092
2093    SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV,
2094                                 SVOffset+Offset, isVolatile,
2095                                 MinAlign(Alignment, Offset));
2096    LdChain.push_back(LdOp.getValue(1));
2097    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOp,
2098                        DAG.getIntPtrConstant(Idx++));
2099
2100    LdWidth -= NewEltVTWidth;
2101  }
2102
2103  return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2104}
2105
2106void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
2107                                            SDValue   Chain,
2108                                            SDValue   BasePtr,
2109                                            const Value *SV,
2110                                            int         SVOffset,
2111                                            unsigned    Alignment,
2112                                            bool        isVolatile,
2113                                            SDValue     ValOp,
2114                                            unsigned    StWidth,
2115                                            DebugLoc    dl) {
2116  // Breaks the stores into a series of power of 2 width stores.  For any
2117  // width, we convert the vector to the vector of element size that we
2118  // want to store.  This avoids requiring a stack convert.
2119
2120  // Find a width of the element type we can store with
2121  MVT WidenVT = ValOp.getValueType();
2122  MVT NewEltVT, NewVecVT;
2123
2124  FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2125  unsigned NewEltVTWidth = NewEltVT.getSizeInBits();
2126
2127  SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
2128  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2129                            DAG.getIntPtrConstant(0));
2130  SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset,
2131                               isVolatile, Alignment);
2132  StChain.push_back(StOp);
2133
2134  // Check if we are done
2135  if (StWidth == NewEltVTWidth) {
2136    return;
2137  }
2138
2139  unsigned Idx = 1;
2140  StWidth -= NewEltVTWidth;
2141  unsigned Offset = 0;
2142
2143  while (StWidth > 0) {
2144    unsigned Increment = NewEltVTWidth / 8;
2145    Offset += Increment;
2146    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2147                          DAG.getIntPtrConstant(Increment));
2148
2149    if (StWidth < NewEltVTWidth) {
2150      // Our current type we are using is too large, use a smaller size by
2151      // using a smaller power of 2
2152      unsigned oNewEltVTWidth = NewEltVTWidth;
2153      FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2154      NewEltVTWidth = NewEltVT.getSizeInBits();
2155      // Readjust position and vector position based on new load type
2156      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2157      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2158    }
2159
2160    EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2161                      DAG.getIntPtrConstant(Idx++));
2162    StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV,
2163                                   SVOffset + Offset, isVolatile,
2164                                   MinAlign(Alignment, Offset)));
2165    StWidth -= NewEltVTWidth;
2166  }
2167}
2168
2169/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
2170/// input vector must have the same element type as NVT.
2171SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, MVT NVT) {
2172  // Note that InOp might have been widened so it might already have
2173  // the right width or it might need be narrowed.
2174  MVT InVT = InOp.getValueType();
2175  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2176         "input and widen element type must match");
2177  DebugLoc dl = InOp.getDebugLoc();
2178
2179  // Check if InOp already has the right width.
2180  if (InVT == NVT)
2181    return InOp;
2182
2183  unsigned InNumElts = InVT.getVectorNumElements();
2184  unsigned WidenNumElts = NVT.getVectorNumElements();
2185  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2186    unsigned NumConcat = WidenNumElts / InNumElts;
2187    SmallVector<SDValue, 16> Ops(NumConcat);
2188    SDValue UndefVal = DAG.getUNDEF(InVT);
2189    Ops[0] = InOp;
2190    for (unsigned i = 1; i != NumConcat; ++i)
2191      Ops[i] = UndefVal;
2192
2193    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2194  }
2195
2196  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2197    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2198                       DAG.getIntPtrConstant(0));
2199
2200  // Fall back to extract and build.
2201  SmallVector<SDValue, 16> Ops(WidenNumElts);
2202  MVT EltVT = NVT.getVectorElementType();
2203  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2204  unsigned Idx;
2205  for (Idx = 0; Idx < MinNumElts; ++Idx)
2206    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2207                           DAG.getIntPtrConstant(Idx));
2208
2209  SDValue UndefVal = DAG.getUNDEF(EltVT);
2210  for ( ; Idx < WidenNumElts; ++Idx)
2211    Ops[Idx] = UndefVal;
2212  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2213}
2214