LegalizeVectorTypes.cpp revision c735c1c2aed2cbaeb61296f4269535b5d13d8b0a
1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in two vectors of half the size.  For example, implementing
19// <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//  Result Vector Scalarization: <1 x ty> -> ty.
31//===----------------------------------------------------------------------===//
32
33void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
34  DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
35        N->dump(&DAG);
36        dbgs() << "\n");
37  SDValue R = SDValue();
38
39  switch (N->getOpcode()) {
40  default:
41#ifndef NDEBUG
42    dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
43    N->dump(&DAG);
44    dbgs() << "\n";
45#endif
46    report_fatal_error("Do not know how to scalarize the result of this "
47                       "operator!\n");
48
49  case ISD::MERGE_VALUES:      R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
50  case ISD::BITCAST:           R = ScalarizeVecRes_BITCAST(N); break;
51  case ISD::BUILD_VECTOR:      R = ScalarizeVecRes_BUILD_VECTOR(N); break;
52  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
53  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
54  case ISD::FP_ROUND:          R = ScalarizeVecRes_FP_ROUND(N); break;
55  case ISD::FP_ROUND_INREG:    R = ScalarizeVecRes_InregOp(N); break;
56  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
57  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
58  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
59  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
60  case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
61  case ISD::VSELECT:           R = ScalarizeVecRes_VSELECT(N); break;
62  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
63  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
64  case ISD::SETCC:             R = ScalarizeVecRes_SETCC(N); break;
65  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
66  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
67  case ISD::ANY_EXTEND:
68  case ISD::CTLZ:
69  case ISD::CTPOP:
70  case ISD::CTTZ:
71  case ISD::FABS:
72  case ISD::FCEIL:
73  case ISD::FCOS:
74  case ISD::FEXP:
75  case ISD::FEXP2:
76  case ISD::FFLOOR:
77  case ISD::FLOG:
78  case ISD::FLOG10:
79  case ISD::FLOG2:
80  case ISD::FNEARBYINT:
81  case ISD::FNEG:
82  case ISD::FP_EXTEND:
83  case ISD::FP_TO_SINT:
84  case ISD::FP_TO_UINT:
85  case ISD::FRINT:
86  case ISD::FSIN:
87  case ISD::FSQRT:
88  case ISD::FTRUNC:
89  case ISD::SIGN_EXTEND:
90  case ISD::SINT_TO_FP:
91  case ISD::TRUNCATE:
92  case ISD::UINT_TO_FP:
93  case ISD::ZERO_EXTEND:
94    R = ScalarizeVecRes_UnaryOp(N);
95    break;
96
97  case ISD::ADD:
98  case ISD::AND:
99  case ISD::FADD:
100  case ISD::FDIV:
101  case ISD::FMUL:
102  case ISD::FPOW:
103  case ISD::FREM:
104  case ISD::FSUB:
105  case ISD::MUL:
106  case ISD::OR:
107  case ISD::SDIV:
108  case ISD::SREM:
109  case ISD::SUB:
110  case ISD::UDIV:
111  case ISD::UREM:
112  case ISD::XOR:
113  case ISD::SHL:
114  case ISD::SRA:
115  case ISD::SRL:
116    R = ScalarizeVecRes_BinOp(N);
117    break;
118  case ISD::FMA:
119    R = ScalarizeVecRes_TernaryOp(N);
120    break;
121  }
122
123  // If R is null, the sub-method took care of registering the result.
124  if (R.getNode())
125    SetScalarizedVector(SDValue(N, ResNo), R);
126}
127
128SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
129  SDValue LHS = GetScalarizedVector(N->getOperand(0));
130  SDValue RHS = GetScalarizedVector(N->getOperand(1));
131  return DAG.getNode(N->getOpcode(), SDLoc(N),
132                     LHS.getValueType(), LHS, RHS);
133}
134
135SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
136  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
137  SDValue Op1 = GetScalarizedVector(N->getOperand(1));
138  SDValue Op2 = GetScalarizedVector(N->getOperand(2));
139  return DAG.getNode(N->getOpcode(), SDLoc(N),
140                     Op0.getValueType(), Op0, Op1, Op2);
141}
142
143SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
144                                                       unsigned ResNo) {
145  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
146  return GetScalarizedVector(Op);
147}
148
149SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
150  EVT NewVT = N->getValueType(0).getVectorElementType();
151  return DAG.getNode(ISD::BITCAST, SDLoc(N),
152                     NewVT, N->getOperand(0));
153}
154
155SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
156  EVT EltVT = N->getValueType(0).getVectorElementType();
157  SDValue InOp = N->getOperand(0);
158  // The BUILD_VECTOR operands may be of wider element types and
159  // we may need to truncate them back to the requested return type.
160  if (EltVT.isInteger())
161    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
162  return InOp;
163}
164
165SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
166  EVT NewVT = N->getValueType(0).getVectorElementType();
167  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
168  return DAG.getConvertRndSat(NewVT, SDLoc(N),
169                              Op0, DAG.getValueType(NewVT),
170                              DAG.getValueType(Op0.getValueType()),
171                              N->getOperand(3),
172                              N->getOperand(4),
173                              cast<CvtRndSatSDNode>(N)->getCvtCode());
174}
175
176SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
177  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
178                     N->getValueType(0).getVectorElementType(),
179                     N->getOperand(0), N->getOperand(1));
180}
181
182SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
183  EVT NewVT = N->getValueType(0).getVectorElementType();
184  SDValue Op = GetScalarizedVector(N->getOperand(0));
185  return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
186                     NewVT, Op, N->getOperand(1));
187}
188
189SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
190  SDValue Op = GetScalarizedVector(N->getOperand(0));
191  return DAG.getNode(ISD::FPOWI, SDLoc(N),
192                     Op.getValueType(), Op, N->getOperand(1));
193}
194
195SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
196  // The value to insert may have a wider type than the vector element type,
197  // so be sure to truncate it to the element type if necessary.
198  SDValue Op = N->getOperand(1);
199  EVT EltVT = N->getValueType(0).getVectorElementType();
200  if (Op.getValueType() != EltVT)
201    // FIXME: Can this happen for floating point types?
202    Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
203  return Op;
204}
205
206SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
207  assert(N->isUnindexed() && "Indexed vector load?");
208
209  SDValue Result = DAG.getLoad(ISD::UNINDEXED,
210                               N->getExtensionType(),
211                               N->getValueType(0).getVectorElementType(),
212                               SDLoc(N),
213                               N->getChain(), N->getBasePtr(),
214                               DAG.getUNDEF(N->getBasePtr().getValueType()),
215                               N->getPointerInfo(),
216                               N->getMemoryVT().getVectorElementType(),
217                               N->isVolatile(), N->isNonTemporal(),
218                               N->isInvariant(), N->getOriginalAlignment());
219
220  // Legalized the chain result - switch anything that used the old chain to
221  // use the new one.
222  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
223  return Result;
224}
225
226SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
227  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
228  EVT DestVT = N->getValueType(0).getVectorElementType();
229  SDValue Op = GetScalarizedVector(N->getOperand(0));
230  return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
231}
232
233SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
234  EVT EltVT = N->getValueType(0).getVectorElementType();
235  EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
236  SDValue LHS = GetScalarizedVector(N->getOperand(0));
237  return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
238                     LHS, DAG.getValueType(ExtVT));
239}
240
241SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
242  // If the operand is wider than the vector element type then it is implicitly
243  // truncated.  Make that explicit here.
244  EVT EltVT = N->getValueType(0).getVectorElementType();
245  SDValue InOp = N->getOperand(0);
246  if (InOp.getValueType() != EltVT)
247    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
248  return InOp;
249}
250
251SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
252  SDValue Cond = GetScalarizedVector(N->getOperand(0));
253  SDValue LHS = GetScalarizedVector(N->getOperand(1));
254  TargetLowering::BooleanContent ScalarBool = TLI.getBooleanContents(false);
255  TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true);
256  if (ScalarBool != VecBool) {
257    EVT CondVT = Cond.getValueType();
258    switch (ScalarBool) {
259      case TargetLowering::UndefinedBooleanContent:
260        break;
261      case TargetLowering::ZeroOrOneBooleanContent:
262        assert(VecBool == TargetLowering::UndefinedBooleanContent ||
263               VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
264        // Vector read from all ones, scalar expects a single 1 so mask.
265        Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
266                           Cond, DAG.getConstant(1, CondVT));
267        break;
268      case TargetLowering::ZeroOrNegativeOneBooleanContent:
269        assert(VecBool == TargetLowering::UndefinedBooleanContent ||
270               VecBool == TargetLowering::ZeroOrOneBooleanContent);
271        // Vector reads from a one, scalar from all ones so sign extend.
272        Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
273                           Cond, DAG.getValueType(MVT::i1));
274        break;
275    }
276  }
277
278  return DAG.getSelect(SDLoc(N),
279                       LHS.getValueType(), Cond, LHS,
280                       GetScalarizedVector(N->getOperand(2)));
281}
282
283SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
284  SDValue LHS = GetScalarizedVector(N->getOperand(1));
285  return DAG.getSelect(SDLoc(N),
286                       LHS.getValueType(), N->getOperand(0), LHS,
287                       GetScalarizedVector(N->getOperand(2)));
288}
289
290SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
291  SDValue LHS = GetScalarizedVector(N->getOperand(2));
292  return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
293                     N->getOperand(0), N->getOperand(1),
294                     LHS, GetScalarizedVector(N->getOperand(3)),
295                     N->getOperand(4));
296}
297
298SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
299  assert(N->getValueType(0).isVector() ==
300         N->getOperand(0).getValueType().isVector() &&
301         "Scalar/Vector type mismatch");
302
303  if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
304
305  SDValue LHS = GetScalarizedVector(N->getOperand(0));
306  SDValue RHS = GetScalarizedVector(N->getOperand(1));
307  SDLoc DL(N);
308
309  // Turn it into a scalar SETCC.
310  return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
311}
312
313SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
314  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
315}
316
317SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
318  // Figure out if the scalar is the LHS or RHS and return it.
319  SDValue Arg = N->getOperand(2).getOperand(0);
320  if (Arg.getOpcode() == ISD::UNDEF)
321    return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
322  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
323  return GetScalarizedVector(N->getOperand(Op));
324}
325
326SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
327  assert(N->getValueType(0).isVector() &&
328         N->getOperand(0).getValueType().isVector() &&
329         "Operand types must be vectors");
330
331  SDValue LHS = GetScalarizedVector(N->getOperand(0));
332  SDValue RHS = GetScalarizedVector(N->getOperand(1));
333  EVT NVT = N->getValueType(0).getVectorElementType();
334  SDLoc DL(N);
335
336  // Turn it into a scalar SETCC.
337  SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
338                            N->getOperand(2));
339  // Vectors may have a different boolean contents to scalars.  Promote the
340  // value appropriately.
341  ISD::NodeType ExtendCode =
342    TargetLowering::getExtendForContent(TLI.getBooleanContents(true));
343  return DAG.getNode(ExtendCode, DL, NVT, Res);
344}
345
346
347//===----------------------------------------------------------------------===//
348//  Operand Vector Scalarization <1 x ty> -> ty.
349//===----------------------------------------------------------------------===//
350
351bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
352  DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
353        N->dump(&DAG);
354        dbgs() << "\n");
355  SDValue Res = SDValue();
356
357  if (Res.getNode() == 0) {
358    switch (N->getOpcode()) {
359    default:
360#ifndef NDEBUG
361      dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
362      N->dump(&DAG);
363      dbgs() << "\n";
364#endif
365      llvm_unreachable("Do not know how to scalarize this operator's operand!");
366    case ISD::BITCAST:
367      Res = ScalarizeVecOp_BITCAST(N);
368      break;
369    case ISD::ANY_EXTEND:
370    case ISD::ZERO_EXTEND:
371    case ISD::SIGN_EXTEND:
372      Res = ScalarizeVecOp_EXTEND(N);
373      break;
374    case ISD::CONCAT_VECTORS:
375      Res = ScalarizeVecOp_CONCAT_VECTORS(N);
376      break;
377    case ISD::EXTRACT_VECTOR_ELT:
378      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
379      break;
380    case ISD::STORE:
381      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
382      break;
383    }
384  }
385
386  // If the result is null, the sub-method took care of registering results etc.
387  if (!Res.getNode()) return false;
388
389  // If the result is N, the sub-method updated N in place.  Tell the legalizer
390  // core about this.
391  if (Res.getNode() == N)
392    return true;
393
394  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
395         "Invalid operand expansion");
396
397  ReplaceValueWith(SDValue(N, 0), Res);
398  return false;
399}
400
401/// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
402/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
403SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
404  SDValue Elt = GetScalarizedVector(N->getOperand(0));
405  return DAG.getNode(ISD::BITCAST, SDLoc(N),
406                     N->getValueType(0), Elt);
407}
408
409/// ScalarizeVecOp_EXTEND - If the value to extend is a vector that needs
410/// to be scalarized, it must be <1 x ty>.  Extend the element instead.
411SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTEND(SDNode *N) {
412  assert(N->getValueType(0).getVectorNumElements() == 1 &&
413         "Unexected vector type!");
414  SDValue Elt = GetScalarizedVector(N->getOperand(0));
415  SmallVector<SDValue, 1> Ops(1);
416  Ops[0] = DAG.getNode(N->getOpcode(), SDLoc(N),
417                       N->getValueType(0).getScalarType(), Elt);
418  // Revectorize the result so the types line up with what the uses of this
419  // expression expect.
420  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0),
421                     &Ops[0], 1);
422}
423
424/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
425/// use a BUILD_VECTOR instead.
426SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
427  SmallVector<SDValue, 8> Ops(N->getNumOperands());
428  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
429    Ops[i] = GetScalarizedVector(N->getOperand(i));
430  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0),
431                     &Ops[0], Ops.size());
432}
433
434/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
435/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
436/// index.
437SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
438  SDValue Res = GetScalarizedVector(N->getOperand(0));
439  if (Res.getValueType() != N->getValueType(0))
440    Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
441                      Res);
442  return Res;
443}
444
445/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
446/// scalarized, it must be <1 x ty>.  Just store the element.
447SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
448  assert(N->isUnindexed() && "Indexed store of one-element vector?");
449  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
450  SDLoc dl(N);
451
452  if (N->isTruncatingStore())
453    return DAG.getTruncStore(N->getChain(), dl,
454                             GetScalarizedVector(N->getOperand(1)),
455                             N->getBasePtr(), N->getPointerInfo(),
456                             N->getMemoryVT().getVectorElementType(),
457                             N->isVolatile(), N->isNonTemporal(),
458                             N->getAlignment());
459
460  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
461                      N->getBasePtr(), N->getPointerInfo(),
462                      N->isVolatile(), N->isNonTemporal(),
463                      N->getOriginalAlignment());
464}
465
466
467//===----------------------------------------------------------------------===//
468//  Result Vector Splitting
469//===----------------------------------------------------------------------===//
470
471/// SplitVectorResult - This method is called when the specified result of the
472/// specified node is found to need vector splitting.  At this point, the node
473/// may also have invalid operands or may have other results that need
474/// legalization, we just know that (at least) one result needs vector
475/// splitting.
476void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
477  DEBUG(dbgs() << "Split node result: ";
478        N->dump(&DAG);
479        dbgs() << "\n");
480  SDValue Lo, Hi;
481
482  // See if the target wants to custom expand this node.
483  if (CustomLowerNode(N, N->getValueType(ResNo), true))
484    return;
485
486  switch (N->getOpcode()) {
487  default:
488#ifndef NDEBUG
489    dbgs() << "SplitVectorResult #" << ResNo << ": ";
490    N->dump(&DAG);
491    dbgs() << "\n";
492#endif
493    report_fatal_error("Do not know how to split the result of this "
494                       "operator!\n");
495
496  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
497  case ISD::VSELECT:
498  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
499  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
500  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
501  case ISD::BITCAST:           SplitVecRes_BITCAST(N, Lo, Hi); break;
502  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
503  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
504  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
505  case ISD::FP_ROUND_INREG:    SplitVecRes_InregOp(N, Lo, Hi); break;
506  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
507  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
508  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
509  case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
510  case ISD::LOAD:
511    SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
512    break;
513  case ISD::SETCC:
514    SplitVecRes_SETCC(N, Lo, Hi);
515    break;
516  case ISD::VECTOR_SHUFFLE:
517    SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
518    break;
519
520  case ISD::ANY_EXTEND:
521  case ISD::CONVERT_RNDSAT:
522  case ISD::CTLZ:
523  case ISD::CTTZ:
524  case ISD::CTLZ_ZERO_UNDEF:
525  case ISD::CTTZ_ZERO_UNDEF:
526  case ISD::CTPOP:
527  case ISD::FABS:
528  case ISD::FCEIL:
529  case ISD::FCOS:
530  case ISD::FEXP:
531  case ISD::FEXP2:
532  case ISD::FFLOOR:
533  case ISD::FLOG:
534  case ISD::FLOG10:
535  case ISD::FLOG2:
536  case ISD::FNEARBYINT:
537  case ISD::FNEG:
538  case ISD::FP_EXTEND:
539  case ISD::FP_ROUND:
540  case ISD::FP_TO_SINT:
541  case ISD::FP_TO_UINT:
542  case ISD::FRINT:
543  case ISD::FSIN:
544  case ISD::FSQRT:
545  case ISD::FTRUNC:
546  case ISD::SIGN_EXTEND:
547  case ISD::SINT_TO_FP:
548  case ISD::TRUNCATE:
549  case ISD::UINT_TO_FP:
550  case ISD::ZERO_EXTEND:
551    SplitVecRes_UnaryOp(N, Lo, Hi);
552    break;
553
554  case ISD::ADD:
555  case ISD::SUB:
556  case ISD::MUL:
557  case ISD::FADD:
558  case ISD::FSUB:
559  case ISD::FMUL:
560  case ISD::SDIV:
561  case ISD::UDIV:
562  case ISD::FDIV:
563  case ISD::FPOW:
564  case ISD::AND:
565  case ISD::OR:
566  case ISD::XOR:
567  case ISD::SHL:
568  case ISD::SRA:
569  case ISD::SRL:
570  case ISD::UREM:
571  case ISD::SREM:
572  case ISD::FREM:
573    SplitVecRes_BinOp(N, Lo, Hi);
574    break;
575  case ISD::FMA:
576    SplitVecRes_TernaryOp(N, Lo, Hi);
577    break;
578  }
579
580  // If Lo/Hi is null, the sub-method took care of registering results etc.
581  if (Lo.getNode())
582    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
583}
584
585void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
586                                         SDValue &Hi) {
587  SDValue LHSLo, LHSHi;
588  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
589  SDValue RHSLo, RHSHi;
590  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
591  SDLoc dl(N);
592
593  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
594  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
595}
596
597void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
598                                             SDValue &Hi) {
599  SDValue Op0Lo, Op0Hi;
600  GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
601  SDValue Op1Lo, Op1Hi;
602  GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
603  SDValue Op2Lo, Op2Hi;
604  GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
605  SDLoc dl(N);
606
607  Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
608                   Op0Lo, Op1Lo, Op2Lo);
609  Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
610                   Op0Hi, Op1Hi, Op2Hi);
611}
612
613void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
614                                           SDValue &Hi) {
615  // We know the result is a vector.  The input may be either a vector or a
616  // scalar value.
617  EVT LoVT, HiVT;
618  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
619  SDLoc dl(N);
620
621  SDValue InOp = N->getOperand(0);
622  EVT InVT = InOp.getValueType();
623
624  // Handle some special cases efficiently.
625  switch (getTypeAction(InVT)) {
626  case TargetLowering::TypeLegal:
627  case TargetLowering::TypePromoteInteger:
628  case TargetLowering::TypeSoftenFloat:
629  case TargetLowering::TypeScalarizeVector:
630  case TargetLowering::TypeWidenVector:
631    break;
632  case TargetLowering::TypeExpandInteger:
633  case TargetLowering::TypeExpandFloat:
634    // A scalar to vector conversion, where the scalar needs expansion.
635    // If the vector is being split in two then we can just convert the
636    // expanded pieces.
637    if (LoVT == HiVT) {
638      GetExpandedOp(InOp, Lo, Hi);
639      if (TLI.isBigEndian())
640        std::swap(Lo, Hi);
641      Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
642      Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
643      return;
644    }
645    break;
646  case TargetLowering::TypeSplitVector:
647    // If the input is a vector that needs to be split, convert each split
648    // piece of the input now.
649    GetSplitVector(InOp, Lo, Hi);
650    Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
651    Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
652    return;
653  }
654
655  // In the general case, convert the input to an integer and split it by hand.
656  EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
657  EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
658  if (TLI.isBigEndian())
659    std::swap(LoIntVT, HiIntVT);
660
661  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
662
663  if (TLI.isBigEndian())
664    std::swap(Lo, Hi);
665  Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
666  Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
667}
668
669void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
670                                                SDValue &Hi) {
671  EVT LoVT, HiVT;
672  SDLoc dl(N);
673  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
674  unsigned LoNumElts = LoVT.getVectorNumElements();
675  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
676  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
677
678  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
679  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
680}
681
682void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
683                                                  SDValue &Hi) {
684  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
685  SDLoc dl(N);
686  unsigned NumSubvectors = N->getNumOperands() / 2;
687  if (NumSubvectors == 1) {
688    Lo = N->getOperand(0);
689    Hi = N->getOperand(1);
690    return;
691  }
692
693  EVT LoVT, HiVT;
694  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
695
696  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
697  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
698
699  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
700  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
701}
702
703void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
704                                                     SDValue &Hi) {
705  SDValue Vec = N->getOperand(0);
706  SDValue Idx = N->getOperand(1);
707  SDLoc dl(N);
708
709  EVT LoVT, HiVT;
710  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
711
712  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
713  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
714  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
715                   DAG.getIntPtrConstant(IdxVal + LoVT.getVectorNumElements()));
716}
717
718void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
719                                         SDValue &Hi) {
720  SDLoc dl(N);
721  GetSplitVector(N->getOperand(0), Lo, Hi);
722  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
723  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
724}
725
726void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
727                                           SDValue &Hi) {
728  SDValue LHSLo, LHSHi;
729  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
730  SDLoc dl(N);
731
732  EVT LoVT, HiVT;
733  GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT(), LoVT, HiVT);
734
735  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
736                   DAG.getValueType(LoVT));
737  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
738                   DAG.getValueType(HiVT));
739}
740
741void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
742                                                     SDValue &Hi) {
743  SDValue Vec = N->getOperand(0);
744  SDValue Elt = N->getOperand(1);
745  SDValue Idx = N->getOperand(2);
746  SDLoc dl(N);
747  GetSplitVector(Vec, Lo, Hi);
748
749  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
750    unsigned IdxVal = CIdx->getZExtValue();
751    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
752    if (IdxVal < LoNumElts)
753      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
754                       Lo.getValueType(), Lo, Elt, Idx);
755    else
756      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
757                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
758    return;
759  }
760
761  // Spill the vector to the stack.
762  EVT VecVT = Vec.getValueType();
763  EVT EltVT = VecVT.getVectorElementType();
764  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
765  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
766                               MachinePointerInfo(), false, false, 0);
767
768  // Store the new element.  This may be larger than the vector element type,
769  // so use a truncating store.
770  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
771  Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
772  unsigned Alignment =
773    TLI.getDataLayout()->getPrefTypeAlignment(VecType);
774  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
775                            false, false, 0);
776
777  // Load the Lo part from the stack slot.
778  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
779                   false, false, false, 0);
780
781  // Increment the pointer to the other part.
782  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
783  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
784                         DAG.getIntPtrConstant(IncrementSize));
785
786  // Load the Hi part from the stack slot.
787  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
788                   false, false, false, MinAlign(Alignment, IncrementSize));
789}
790
791void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
792                                                    SDValue &Hi) {
793  EVT LoVT, HiVT;
794  SDLoc dl(N);
795  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
796  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
797  Hi = DAG.getUNDEF(HiVT);
798}
799
800void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
801                                        SDValue &Hi) {
802  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
803  EVT LoVT, HiVT;
804  SDLoc dl(LD);
805  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
806
807  ISD::LoadExtType ExtType = LD->getExtensionType();
808  SDValue Ch = LD->getChain();
809  SDValue Ptr = LD->getBasePtr();
810  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
811  EVT MemoryVT = LD->getMemoryVT();
812  unsigned Alignment = LD->getOriginalAlignment();
813  bool isVolatile = LD->isVolatile();
814  bool isNonTemporal = LD->isNonTemporal();
815  bool isInvariant = LD->isInvariant();
816
817  EVT LoMemVT, HiMemVT;
818  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
819
820  Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
821                   LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
822                   isInvariant, Alignment);
823
824  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
825  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
826                    DAG.getIntPtrConstant(IncrementSize));
827  Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
828                   LD->getPointerInfo().getWithOffset(IncrementSize),
829                   HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment);
830
831  // Build a factor node to remember that this load is independent of the
832  // other one.
833  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
834                   Hi.getValue(1));
835
836  // Legalized the chain result - switch anything that used the old chain to
837  // use the new one.
838  ReplaceValueWith(SDValue(LD, 1), Ch);
839}
840
841void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
842  assert(N->getValueType(0).isVector() &&
843         N->getOperand(0).getValueType().isVector() &&
844         "Operand types must be vectors");
845
846  EVT LoVT, HiVT;
847  SDLoc DL(N);
848  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
849
850  // Split the input.
851  EVT InVT = N->getOperand(0).getValueType();
852  SDValue LL, LH, RL, RH;
853  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
854                               LoVT.getVectorNumElements());
855  LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
856                   DAG.getIntPtrConstant(0));
857  LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
858                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
859
860  RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
861                   DAG.getIntPtrConstant(0));
862  RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
863                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
864
865  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
866  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
867}
868
869void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
870                                           SDValue &Hi) {
871  // Get the dest types - they may not match the input types, e.g. int_to_fp.
872  EVT LoVT, HiVT;
873  SDLoc dl(N);
874  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
875
876  // If the input also splits, handle it directly for a compile time speedup.
877  // Otherwise split it by hand.
878  EVT InVT = N->getOperand(0).getValueType();
879  if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
880    GetSplitVector(N->getOperand(0), Lo, Hi);
881  } else {
882    EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
883                                 LoVT.getVectorNumElements());
884    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
885                     DAG.getIntPtrConstant(0));
886    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
887                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
888  }
889
890  if (N->getOpcode() == ISD::FP_ROUND) {
891    Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
892    Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
893  } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
894    SDValue DTyOpLo = DAG.getValueType(LoVT);
895    SDValue DTyOpHi = DAG.getValueType(HiVT);
896    SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
897    SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
898    SDValue RndOp = N->getOperand(3);
899    SDValue SatOp = N->getOperand(4);
900    ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
901    Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
902                              CvtCode);
903    Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
904                              CvtCode);
905  } else {
906    Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
907    Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
908  }
909}
910
911void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
912                                                  SDValue &Lo, SDValue &Hi) {
913  // The low and high parts of the original input give four input vectors.
914  SDValue Inputs[4];
915  SDLoc dl(N);
916  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
917  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
918  EVT NewVT = Inputs[0].getValueType();
919  unsigned NewElts = NewVT.getVectorNumElements();
920
921  // If Lo or Hi uses elements from at most two of the four input vectors, then
922  // express it as a vector shuffle of those two inputs.  Otherwise extract the
923  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
924  SmallVector<int, 16> Ops;
925  for (unsigned High = 0; High < 2; ++High) {
926    SDValue &Output = High ? Hi : Lo;
927
928    // Build a shuffle mask for the output, discovering on the fly which
929    // input vectors to use as shuffle operands (recorded in InputUsed).
930    // If building a suitable shuffle vector proves too hard, then bail
931    // out with useBuildVector set.
932    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
933    unsigned FirstMaskIdx = High * NewElts;
934    bool useBuildVector = false;
935    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
936      // The mask element.  This indexes into the input.
937      int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
938
939      // The input vector this mask element indexes into.
940      unsigned Input = (unsigned)Idx / NewElts;
941
942      if (Input >= array_lengthof(Inputs)) {
943        // The mask element does not index into any input vector.
944        Ops.push_back(-1);
945        continue;
946      }
947
948      // Turn the index into an offset from the start of the input vector.
949      Idx -= Input * NewElts;
950
951      // Find or create a shuffle vector operand to hold this input.
952      unsigned OpNo;
953      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
954        if (InputUsed[OpNo] == Input) {
955          // This input vector is already an operand.
956          break;
957        } else if (InputUsed[OpNo] == -1U) {
958          // Create a new operand for this input vector.
959          InputUsed[OpNo] = Input;
960          break;
961        }
962      }
963
964      if (OpNo >= array_lengthof(InputUsed)) {
965        // More than two input vectors used!  Give up on trying to create a
966        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
967        useBuildVector = true;
968        break;
969      }
970
971      // Add the mask index for the new shuffle vector.
972      Ops.push_back(Idx + OpNo * NewElts);
973    }
974
975    if (useBuildVector) {
976      EVT EltVT = NewVT.getVectorElementType();
977      SmallVector<SDValue, 16> SVOps;
978
979      // Extract the input elements by hand.
980      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
981        // The mask element.  This indexes into the input.
982        int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
983
984        // The input vector this mask element indexes into.
985        unsigned Input = (unsigned)Idx / NewElts;
986
987        if (Input >= array_lengthof(Inputs)) {
988          // The mask element is "undef" or indexes off the end of the input.
989          SVOps.push_back(DAG.getUNDEF(EltVT));
990          continue;
991        }
992
993        // Turn the index into an offset from the start of the input vector.
994        Idx -= Input * NewElts;
995
996        // Extract the vector element by hand.
997        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
998                                    Inputs[Input], DAG.getIntPtrConstant(Idx)));
999      }
1000
1001      // Construct the Lo/Hi output using a BUILD_VECTOR.
1002      Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
1003    } else if (InputUsed[0] == -1U) {
1004      // No input vectors were used!  The result is undefined.
1005      Output = DAG.getUNDEF(NewVT);
1006    } else {
1007      SDValue Op0 = Inputs[InputUsed[0]];
1008      // If only one input was used, use an undefined vector for the other.
1009      SDValue Op1 = InputUsed[1] == -1U ?
1010        DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
1011      // At least one input vector was used.  Create a new shuffle vector.
1012      Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
1013    }
1014
1015    Ops.clear();
1016  }
1017}
1018
1019
1020//===----------------------------------------------------------------------===//
1021//  Operand Vector Splitting
1022//===----------------------------------------------------------------------===//
1023
1024/// SplitVectorOperand - This method is called when the specified operand of the
1025/// specified node is found to need vector splitting.  At this point, all of the
1026/// result types of the node are known to be legal, but other operands of the
1027/// node may need legalization as well as the specified one.
1028bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
1029  DEBUG(dbgs() << "Split node operand: ";
1030        N->dump(&DAG);
1031        dbgs() << "\n");
1032  SDValue Res = SDValue();
1033
1034  if (Res.getNode() == 0) {
1035    switch (N->getOpcode()) {
1036    default:
1037#ifndef NDEBUG
1038      dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
1039      N->dump(&DAG);
1040      dbgs() << "\n";
1041#endif
1042      report_fatal_error("Do not know how to split this operator's "
1043                         "operand!\n");
1044
1045    case ISD::SETCC:             Res = SplitVecOp_VSETCC(N); break;
1046    case ISD::BITCAST:           Res = SplitVecOp_BITCAST(N); break;
1047    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
1048    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
1049    case ISD::CONCAT_VECTORS:    Res = SplitVecOp_CONCAT_VECTORS(N); break;
1050    case ISD::TRUNCATE:          Res = SplitVecOp_TRUNCATE(N); break;
1051    case ISD::FP_ROUND:          Res = SplitVecOp_FP_ROUND(N); break;
1052    case ISD::STORE:
1053      Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
1054      break;
1055    case ISD::VSELECT:
1056      Res = SplitVecOp_VSELECT(N, OpNo);
1057      break;
1058    case ISD::CTTZ:
1059    case ISD::CTLZ:
1060    case ISD::CTPOP:
1061    case ISD::FP_EXTEND:
1062    case ISD::FP_TO_SINT:
1063    case ISD::FP_TO_UINT:
1064    case ISD::SINT_TO_FP:
1065    case ISD::UINT_TO_FP:
1066    case ISD::FTRUNC:
1067    case ISD::SIGN_EXTEND:
1068    case ISD::ZERO_EXTEND:
1069    case ISD::ANY_EXTEND:
1070      Res = SplitVecOp_UnaryOp(N);
1071      break;
1072    }
1073  }
1074
1075  // If the result is null, the sub-method took care of registering results etc.
1076  if (!Res.getNode()) return false;
1077
1078  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1079  // core about this.
1080  if (Res.getNode() == N)
1081    return true;
1082
1083  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1084         "Invalid operand expansion");
1085
1086  ReplaceValueWith(SDValue(N, 0), Res);
1087  return false;
1088}
1089
1090SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
1091  // The only possibility for an illegal operand is the mask, since result type
1092  // legalization would have handled this node already otherwise.
1093  assert(OpNo == 0 && "Illegal operand must be mask");
1094
1095  SDValue Mask = N->getOperand(0);
1096  SDValue Src0 = N->getOperand(1);
1097  SDValue Src1 = N->getOperand(2);
1098  SDLoc DL(N);
1099  EVT MaskVT = Mask.getValueType();
1100  assert(MaskVT.isVector() && "VSELECT without a vector mask?");
1101
1102  SDValue Lo, Hi;
1103  GetSplitVector(N->getOperand(0), Lo, Hi);
1104  assert(Lo.getValueType() == Hi.getValueType() &&
1105         "Lo and Hi have differing types");
1106
1107  unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
1108  unsigned HiNumElts = Hi.getValueType().getVectorNumElements();
1109  assert(LoNumElts == HiNumElts && "Asymmetric vector split?");
1110
1111  LLVMContext &Ctx = *DAG.getContext();
1112  SDValue Zero = DAG.getIntPtrConstant(0);
1113  SDValue LoElts = DAG.getIntPtrConstant(LoNumElts);
1114  EVT Src0VT = Src0.getValueType();
1115  EVT Src0EltTy = Src0VT.getVectorElementType();
1116  EVT MaskEltTy = MaskVT.getVectorElementType();
1117
1118  EVT LoOpVT = EVT::getVectorVT(Ctx, Src0EltTy, LoNumElts);
1119  EVT LoMaskVT = EVT::getVectorVT(Ctx, MaskEltTy, LoNumElts);
1120  EVT HiOpVT = EVT::getVectorVT(Ctx, Src0EltTy, HiNumElts);
1121  EVT HiMaskVT = EVT::getVectorVT(Ctx, MaskEltTy, HiNumElts);
1122
1123  SDValue LoOp0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoOpVT, Src0, Zero);
1124  SDValue LoOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoOpVT, Src1, Zero);
1125
1126  SDValue HiOp0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiOpVT, Src0, LoElts);
1127  SDValue HiOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiOpVT, Src1, LoElts);
1128
1129  SDValue LoMask =
1130    DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoMaskVT, Mask, Zero);
1131  SDValue HiMask =
1132    DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HiMaskVT, Mask, LoElts);
1133
1134  SDValue LoSelect =
1135    DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
1136  SDValue HiSelect =
1137    DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
1138
1139  return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
1140}
1141
1142SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
1143  // The result has a legal vector type, but the input needs splitting.
1144  EVT ResVT = N->getValueType(0);
1145  SDValue Lo, Hi;
1146  SDLoc dl(N);
1147  GetSplitVector(N->getOperand(0), Lo, Hi);
1148  EVT InVT = Lo.getValueType();
1149
1150  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1151                               InVT.getVectorNumElements());
1152
1153  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
1154  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
1155
1156  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
1157}
1158
1159SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
1160  // For example, i64 = BITCAST v4i16 on alpha.  Typically the vector will
1161  // end up being split all the way down to individual components.  Convert the
1162  // split pieces into integers and reassemble.
1163  SDValue Lo, Hi;
1164  GetSplitVector(N->getOperand(0), Lo, Hi);
1165  Lo = BitConvertToInteger(Lo);
1166  Hi = BitConvertToInteger(Hi);
1167
1168  if (TLI.isBigEndian())
1169    std::swap(Lo, Hi);
1170
1171  return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
1172                     JoinIntegers(Lo, Hi));
1173}
1174
1175SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1176  // We know that the extracted result type is legal.
1177  EVT SubVT = N->getValueType(0);
1178  SDValue Idx = N->getOperand(1);
1179  SDLoc dl(N);
1180  SDValue Lo, Hi;
1181  GetSplitVector(N->getOperand(0), Lo, Hi);
1182
1183  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1184  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1185
1186  if (IdxVal < LoElts) {
1187    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1188           "Extracted subvector crosses vector split!");
1189    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1190  } else {
1191    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1192                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
1193  }
1194}
1195
1196SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1197  SDValue Vec = N->getOperand(0);
1198  SDValue Idx = N->getOperand(1);
1199  EVT VecVT = Vec.getValueType();
1200
1201  if (isa<ConstantSDNode>(Idx)) {
1202    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1203    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1204
1205    SDValue Lo, Hi;
1206    GetSplitVector(Vec, Lo, Hi);
1207
1208    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1209
1210    if (IdxVal < LoElts)
1211      return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
1212    return SDValue(DAG.UpdateNodeOperands(N, Hi,
1213                                  DAG.getConstant(IdxVal - LoElts,
1214                                                  Idx.getValueType())), 0);
1215  }
1216
1217  // Store the vector to the stack.
1218  EVT EltVT = VecVT.getVectorElementType();
1219  SDLoc dl(N);
1220  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1221  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1222                               MachinePointerInfo(), false, false, 0);
1223
1224  // Load back the required element.
1225  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1226  return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
1227                        MachinePointerInfo(), EltVT, false, false, 0);
1228}
1229
1230SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1231  assert(N->isUnindexed() && "Indexed store of vector?");
1232  assert(OpNo == 1 && "Can only split the stored value");
1233  SDLoc DL(N);
1234
1235  bool isTruncating = N->isTruncatingStore();
1236  SDValue Ch  = N->getChain();
1237  SDValue Ptr = N->getBasePtr();
1238  EVT MemoryVT = N->getMemoryVT();
1239  unsigned Alignment = N->getOriginalAlignment();
1240  bool isVol = N->isVolatile();
1241  bool isNT = N->isNonTemporal();
1242  SDValue Lo, Hi;
1243  GetSplitVector(N->getOperand(1), Lo, Hi);
1244
1245  EVT LoMemVT, HiMemVT;
1246  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
1247
1248  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1249
1250  if (isTruncating)
1251    Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1252                           LoMemVT, isVol, isNT, Alignment);
1253  else
1254    Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1255                      isVol, isNT, Alignment);
1256
1257  // Increment the pointer to the other half.
1258  Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1259                    DAG.getIntPtrConstant(IncrementSize));
1260
1261  if (isTruncating)
1262    Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
1263                           N->getPointerInfo().getWithOffset(IncrementSize),
1264                           HiMemVT, isVol, isNT, Alignment);
1265  else
1266    Hi = DAG.getStore(Ch, DL, Hi, Ptr,
1267                      N->getPointerInfo().getWithOffset(IncrementSize),
1268                      isVol, isNT, Alignment);
1269
1270  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1271}
1272
1273SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
1274  SDLoc DL(N);
1275
1276  // The input operands all must have the same type, and we know the result
1277  // type is valid.  Convert this to a buildvector which extracts all the
1278  // input elements.
1279  // TODO: If the input elements are power-two vectors, we could convert this to
1280  // a new CONCAT_VECTORS node with elements that are half-wide.
1281  SmallVector<SDValue, 32> Elts;
1282  EVT EltVT = N->getValueType(0).getVectorElementType();
1283  for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1284    SDValue Op = N->getOperand(op);
1285    for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
1286         i != e; ++i) {
1287      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
1288                                 Op, DAG.getIntPtrConstant(i)));
1289
1290    }
1291  }
1292
1293  return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0),
1294                     &Elts[0], Elts.size());
1295}
1296
1297SDValue DAGTypeLegalizer::SplitVecOp_TRUNCATE(SDNode *N) {
1298  // The result type is legal, but the input type is illegal.  If splitting
1299  // ends up with the result type of each half still being legal, just
1300  // do that.  If, however, that would result in an illegal result type,
1301  // we can try to get more clever with power-two vectors. Specifically,
1302  // split the input type, but also widen the result element size, then
1303  // concatenate the halves and truncate again.  For example, consider a target
1304  // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
1305  // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
1306  //   %inlo = v4i32 extract_subvector %in, 0
1307  //   %inhi = v4i32 extract_subvector %in, 4
1308  //   %lo16 = v4i16 trunc v4i32 %inlo
1309  //   %hi16 = v4i16 trunc v4i32 %inhi
1310  //   %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
1311  //   %res = v8i8 trunc v8i16 %in16
1312  //
1313  // Without this transform, the original truncate would end up being
1314  // scalarized, which is pretty much always a last resort.
1315  SDValue InVec = N->getOperand(0);
1316  EVT InVT = InVec->getValueType(0);
1317  EVT OutVT = N->getValueType(0);
1318  unsigned NumElements = OutVT.getVectorNumElements();
1319  // Widening should have already made sure this is a power-two vector
1320  // if we're trying to split it at all. assert() that's true, just in case.
1321  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
1322
1323  unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
1324  unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
1325
1326  // If the input elements are only 1/2 the width of the result elements,
1327  // just use the normal splitting. Our trick only work if there's room
1328  // to split more than once.
1329  if (InElementSize <= OutElementSize * 2)
1330    return SplitVecOp_UnaryOp(N);
1331  SDLoc DL(N);
1332
1333  // Extract the halves of the input via extract_subvector.
1334  EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
1335                                 InVT.getVectorElementType(), NumElements/2);
1336  SDValue InLoVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, InVec,
1337                                DAG.getIntPtrConstant(0));
1338  SDValue InHiVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, InVec,
1339                                DAG.getIntPtrConstant(NumElements/2));
1340  // Truncate them to 1/2 the element size.
1341  EVT HalfElementVT = EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
1342  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
1343                                NumElements/2);
1344  SDValue HalfLo = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InLoVec);
1345  SDValue HalfHi = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InHiVec);
1346  // Concatenate them to get the full intermediate truncation result.
1347  EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
1348  SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
1349                                 HalfHi);
1350  // Now finish up by truncating all the way down to the original result
1351  // type. This should normally be something that ends up being legal directly,
1352  // but in theory if a target has very wide vectors and an annoyingly
1353  // restricted set of legal types, this split can chain to build things up.
1354  return DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
1355}
1356
1357SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
1358  assert(N->getValueType(0).isVector() &&
1359         N->getOperand(0).getValueType().isVector() &&
1360         "Operand types must be vectors");
1361  // The result has a legal vector type, but the input needs splitting.
1362  SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
1363  SDLoc DL(N);
1364  GetSplitVector(N->getOperand(0), Lo0, Hi0);
1365  GetSplitVector(N->getOperand(1), Lo1, Hi1);
1366  unsigned PartElements = Lo0.getValueType().getVectorNumElements();
1367  EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
1368  EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
1369
1370  LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
1371  HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
1372  SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
1373  return PromoteTargetBoolean(Con, N->getValueType(0));
1374}
1375
1376
1377SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
1378  // The result has a legal vector type, but the input needs splitting.
1379  EVT ResVT = N->getValueType(0);
1380  SDValue Lo, Hi;
1381  SDLoc DL(N);
1382  GetSplitVector(N->getOperand(0), Lo, Hi);
1383  EVT InVT = Lo.getValueType();
1384
1385  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1386                               InVT.getVectorNumElements());
1387
1388  Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
1389  Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
1390
1391  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
1392}
1393
1394
1395
1396//===----------------------------------------------------------------------===//
1397//  Result Vector Widening
1398//===----------------------------------------------------------------------===//
1399
1400void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1401  DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
1402        N->dump(&DAG);
1403        dbgs() << "\n");
1404
1405  // See if the target wants to custom widen this node.
1406  if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
1407    return;
1408
1409  SDValue Res = SDValue();
1410  switch (N->getOpcode()) {
1411  default:
1412#ifndef NDEBUG
1413    dbgs() << "WidenVectorResult #" << ResNo << ": ";
1414    N->dump(&DAG);
1415    dbgs() << "\n";
1416#endif
1417    llvm_unreachable("Do not know how to widen the result of this operator!");
1418
1419  case ISD::MERGE_VALUES:      Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
1420  case ISD::BITCAST:           Res = WidenVecRes_BITCAST(N); break;
1421  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1422  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1423  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1424  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1425  case ISD::FP_ROUND_INREG:    Res = WidenVecRes_InregOp(N); break;
1426  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1427  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1428  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1429  case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
1430  case ISD::VSELECT:
1431  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1432  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1433  case ISD::SETCC:             Res = WidenVecRes_SETCC(N); break;
1434  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1435  case ISD::VECTOR_SHUFFLE:
1436    Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
1437    break;
1438  case ISD::ADD:
1439  case ISD::AND:
1440  case ISD::BSWAP:
1441  case ISD::FADD:
1442  case ISD::FCOPYSIGN:
1443  case ISD::FDIV:
1444  case ISD::FMUL:
1445  case ISD::FPOW:
1446  case ISD::FREM:
1447  case ISD::FSUB:
1448  case ISD::MUL:
1449  case ISD::MULHS:
1450  case ISD::MULHU:
1451  case ISD::OR:
1452  case ISD::SDIV:
1453  case ISD::SREM:
1454  case ISD::UDIV:
1455  case ISD::UREM:
1456  case ISD::SUB:
1457  case ISD::XOR:
1458    Res = WidenVecRes_Binary(N);
1459    break;
1460
1461  case ISD::FPOWI:
1462    Res = WidenVecRes_POWI(N);
1463    break;
1464
1465  case ISD::SHL:
1466  case ISD::SRA:
1467  case ISD::SRL:
1468    Res = WidenVecRes_Shift(N);
1469    break;
1470
1471  case ISD::ANY_EXTEND:
1472  case ISD::FP_EXTEND:
1473  case ISD::FP_ROUND:
1474  case ISD::FP_TO_SINT:
1475  case ISD::FP_TO_UINT:
1476  case ISD::SIGN_EXTEND:
1477  case ISD::SINT_TO_FP:
1478  case ISD::TRUNCATE:
1479  case ISD::UINT_TO_FP:
1480  case ISD::ZERO_EXTEND:
1481    Res = WidenVecRes_Convert(N);
1482    break;
1483
1484  case ISD::CTLZ:
1485  case ISD::CTPOP:
1486  case ISD::CTTZ:
1487  case ISD::FABS:
1488  case ISD::FCEIL:
1489  case ISD::FCOS:
1490  case ISD::FEXP:
1491  case ISD::FEXP2:
1492  case ISD::FFLOOR:
1493  case ISD::FLOG:
1494  case ISD::FLOG10:
1495  case ISD::FLOG2:
1496  case ISD::FNEARBYINT:
1497  case ISD::FNEG:
1498  case ISD::FRINT:
1499  case ISD::FSIN:
1500  case ISD::FSQRT:
1501  case ISD::FTRUNC:
1502    Res = WidenVecRes_Unary(N);
1503    break;
1504  case ISD::FMA:
1505    Res = WidenVecRes_Ternary(N);
1506    break;
1507  }
1508
1509  // If Res is null, the sub-method took care of registering the result.
1510  if (Res.getNode())
1511    SetWidenedVector(SDValue(N, ResNo), Res);
1512}
1513
1514SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
1515  // Ternary op widening.
1516  SDLoc dl(N);
1517  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1518  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1519  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1520  SDValue InOp3 = GetWidenedVector(N->getOperand(2));
1521  return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
1522}
1523
1524SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1525  // Binary op widening.
1526  unsigned Opcode = N->getOpcode();
1527  SDLoc dl(N);
1528  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1529  EVT WidenEltVT = WidenVT.getVectorElementType();
1530  EVT VT = WidenVT;
1531  unsigned NumElts =  VT.getVectorNumElements();
1532  while (!TLI.isTypeLegal(VT) && NumElts != 1) {
1533    NumElts = NumElts / 2;
1534    VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1535  }
1536
1537  if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
1538    // Operation doesn't trap so just widen as normal.
1539    SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1540    SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1541    return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
1542  }
1543
1544  // No legal vector version so unroll the vector operation and then widen.
1545  if (NumElts == 1)
1546    return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
1547
1548  // Since the operation can trap, apply operation on the original vector.
1549  EVT MaxVT = VT;
1550  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1551  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1552  unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
1553
1554  SmallVector<SDValue, 16> ConcatOps(CurNumElts);
1555  unsigned ConcatEnd = 0;  // Current ConcatOps index.
1556  int Idx = 0;        // Current Idx into input vectors.
1557
1558  // NumElts := greatest legal vector size (at most WidenVT)
1559  // while (orig. vector has unhandled elements) {
1560  //   take munches of size NumElts from the beginning and add to ConcatOps
1561  //   NumElts := next smaller supported vector size or 1
1562  // }
1563  while (CurNumElts != 0) {
1564    while (CurNumElts >= NumElts) {
1565      SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
1566                                 DAG.getIntPtrConstant(Idx));
1567      SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
1568                                 DAG.getIntPtrConstant(Idx));
1569      ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2);
1570      Idx += NumElts;
1571      CurNumElts -= NumElts;
1572    }
1573    do {
1574      NumElts = NumElts / 2;
1575      VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1576    } while (!TLI.isTypeLegal(VT) && NumElts != 1);
1577
1578    if (NumElts == 1) {
1579      for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
1580        SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1581                                   InOp1, DAG.getIntPtrConstant(Idx));
1582        SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1583                                   InOp2, DAG.getIntPtrConstant(Idx));
1584        ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
1585                                             EOp1, EOp2);
1586      }
1587      CurNumElts = 0;
1588    }
1589  }
1590
1591  // Check to see if we have a single operation with the widen type.
1592  if (ConcatEnd == 1) {
1593    VT = ConcatOps[0].getValueType();
1594    if (VT == WidenVT)
1595      return ConcatOps[0];
1596  }
1597
1598  // while (Some element of ConcatOps is not of type MaxVT) {
1599  //   From the end of ConcatOps, collect elements of the same type and put
1600  //   them into an op of the next larger supported type
1601  // }
1602  while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
1603    Idx = ConcatEnd - 1;
1604    VT = ConcatOps[Idx--].getValueType();
1605    while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
1606      Idx--;
1607
1608    int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
1609    EVT NextVT;
1610    do {
1611      NextSize *= 2;
1612      NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
1613    } while (!TLI.isTypeLegal(NextVT));
1614
1615    if (!VT.isVector()) {
1616      // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
1617      SDValue VecOp = DAG.getUNDEF(NextVT);
1618      unsigned NumToInsert = ConcatEnd - Idx - 1;
1619      for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
1620        VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
1621                            ConcatOps[OpIdx], DAG.getIntPtrConstant(i));
1622      }
1623      ConcatOps[Idx+1] = VecOp;
1624      ConcatEnd = Idx + 2;
1625    } else {
1626      // Vector type, create a CONCAT_VECTORS of type NextVT
1627      SDValue undefVec = DAG.getUNDEF(VT);
1628      unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
1629      SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
1630      unsigned RealVals = ConcatEnd - Idx - 1;
1631      unsigned SubConcatEnd = 0;
1632      unsigned SubConcatIdx = Idx + 1;
1633      while (SubConcatEnd < RealVals)
1634        SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
1635      while (SubConcatEnd < OpsToConcat)
1636        SubConcatOps[SubConcatEnd++] = undefVec;
1637      ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1638                                            NextVT, &SubConcatOps[0],
1639                                            OpsToConcat);
1640      ConcatEnd = SubConcatIdx + 1;
1641    }
1642  }
1643
1644  // Check to see if we have a single operation with the widen type.
1645  if (ConcatEnd == 1) {
1646    VT = ConcatOps[0].getValueType();
1647    if (VT == WidenVT)
1648      return ConcatOps[0];
1649  }
1650
1651  // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
1652  unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
1653  if (NumOps != ConcatEnd ) {
1654    SDValue UndefVal = DAG.getUNDEF(MaxVT);
1655    for (unsigned j = ConcatEnd; j < NumOps; ++j)
1656      ConcatOps[j] = UndefVal;
1657  }
1658  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0], NumOps);
1659}
1660
1661SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1662  SDValue InOp = N->getOperand(0);
1663  SDLoc DL(N);
1664
1665  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1666  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1667
1668  EVT InVT = InOp.getValueType();
1669  EVT InEltVT = InVT.getVectorElementType();
1670  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1671
1672  unsigned Opcode = N->getOpcode();
1673  unsigned InVTNumElts = InVT.getVectorNumElements();
1674
1675  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
1676    InOp = GetWidenedVector(N->getOperand(0));
1677    InVT = InOp.getValueType();
1678    InVTNumElts = InVT.getVectorNumElements();
1679    if (InVTNumElts == WidenNumElts) {
1680      if (N->getNumOperands() == 1)
1681        return DAG.getNode(Opcode, DL, WidenVT, InOp);
1682      return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1));
1683    }
1684  }
1685
1686  if (TLI.isTypeLegal(InWidenVT)) {
1687    // Because the result and the input are different vector types, widening
1688    // the result could create a legal type but widening the input might make
1689    // it an illegal type that might lead to repeatedly splitting the input
1690    // and then widening it. To avoid this, we widen the input only if
1691    // it results in a legal type.
1692    if (WidenNumElts % InVTNumElts == 0) {
1693      // Widen the input and call convert on the widened input vector.
1694      unsigned NumConcat = WidenNumElts/InVTNumElts;
1695      SmallVector<SDValue, 16> Ops(NumConcat);
1696      Ops[0] = InOp;
1697      SDValue UndefVal = DAG.getUNDEF(InVT);
1698      for (unsigned i = 1; i != NumConcat; ++i)
1699        Ops[i] = UndefVal;
1700      SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT,
1701                                  &Ops[0], NumConcat);
1702      if (N->getNumOperands() == 1)
1703        return DAG.getNode(Opcode, DL, WidenVT, InVec);
1704      return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1));
1705    }
1706
1707    if (InVTNumElts % WidenNumElts == 0) {
1708      SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT,
1709                                  InOp, DAG.getIntPtrConstant(0));
1710      // Extract the input and convert the shorten input vector.
1711      if (N->getNumOperands() == 1)
1712        return DAG.getNode(Opcode, DL, WidenVT, InVal);
1713      return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1));
1714    }
1715  }
1716
1717  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1718  SmallVector<SDValue, 16> Ops(WidenNumElts);
1719  EVT EltVT = WidenVT.getVectorElementType();
1720  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1721  unsigned i;
1722  for (i=0; i < MinElts; ++i) {
1723    SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
1724                              DAG.getIntPtrConstant(i));
1725    if (N->getNumOperands() == 1)
1726      Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
1727    else
1728      Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1));
1729  }
1730
1731  SDValue UndefVal = DAG.getUNDEF(EltVT);
1732  for (; i < WidenNumElts; ++i)
1733    Ops[i] = UndefVal;
1734
1735  return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, &Ops[0], WidenNumElts);
1736}
1737
1738SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
1739  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1740  SDValue InOp = GetWidenedVector(N->getOperand(0));
1741  SDValue ShOp = N->getOperand(1);
1742  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
1743}
1744
1745SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1746  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1747  SDValue InOp = GetWidenedVector(N->getOperand(0));
1748  SDValue ShOp = N->getOperand(1);
1749
1750  EVT ShVT = ShOp.getValueType();
1751  if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
1752    ShOp = GetWidenedVector(ShOp);
1753    ShVT = ShOp.getValueType();
1754  }
1755  EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
1756                                   ShVT.getVectorElementType(),
1757                                   WidenVT.getVectorNumElements());
1758  if (ShVT != ShWidenVT)
1759    ShOp = ModifyToType(ShOp, ShWidenVT);
1760
1761  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
1762}
1763
1764SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1765  // Unary op widening.
1766  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1767  SDValue InOp = GetWidenedVector(N->getOperand(0));
1768  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
1769}
1770
1771SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
1772  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1773  EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
1774                               cast<VTSDNode>(N->getOperand(1))->getVT()
1775                                 .getVectorElementType(),
1776                               WidenVT.getVectorNumElements());
1777  SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
1778  return DAG.getNode(N->getOpcode(), SDLoc(N),
1779                     WidenVT, WidenLHS, DAG.getValueType(ExtVT));
1780}
1781
1782SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
1783  SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
1784  return GetWidenedVector(WidenVec);
1785}
1786
1787SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
1788  SDValue InOp = N->getOperand(0);
1789  EVT InVT = InOp.getValueType();
1790  EVT VT = N->getValueType(0);
1791  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1792  SDLoc dl(N);
1793
1794  switch (getTypeAction(InVT)) {
1795  case TargetLowering::TypeLegal:
1796    break;
1797  case TargetLowering::TypePromoteInteger:
1798    // If the incoming type is a vector that is being promoted, then
1799    // we know that the elements are arranged differently and that we
1800    // must perform the conversion using a stack slot.
1801    if (InVT.isVector())
1802      break;
1803
1804    // If the InOp is promoted to the same size, convert it.  Otherwise,
1805    // fall out of the switch and widen the promoted input.
1806    InOp = GetPromotedInteger(InOp);
1807    InVT = InOp.getValueType();
1808    if (WidenVT.bitsEq(InVT))
1809      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
1810    break;
1811  case TargetLowering::TypeSoftenFloat:
1812  case TargetLowering::TypeExpandInteger:
1813  case TargetLowering::TypeExpandFloat:
1814  case TargetLowering::TypeScalarizeVector:
1815  case TargetLowering::TypeSplitVector:
1816    break;
1817  case TargetLowering::TypeWidenVector:
1818    // If the InOp is widened to the same size, convert it.  Otherwise, fall
1819    // out of the switch and widen the widened input.
1820    InOp = GetWidenedVector(InOp);
1821    InVT = InOp.getValueType();
1822    if (WidenVT.bitsEq(InVT))
1823      // The input widens to the same size. Convert to the widen value.
1824      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
1825    break;
1826  }
1827
1828  unsigned WidenSize = WidenVT.getSizeInBits();
1829  unsigned InSize = InVT.getSizeInBits();
1830  // x86mmx is not an acceptable vector element type, so don't try.
1831  if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
1832    // Determine new input vector type.  The new input vector type will use
1833    // the same element type (if its a vector) or use the input type as a
1834    // vector.  It is the same size as the type to widen to.
1835    EVT NewInVT;
1836    unsigned NewNumElts = WidenSize / InSize;
1837    if (InVT.isVector()) {
1838      EVT InEltVT = InVT.getVectorElementType();
1839      NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
1840                                 WidenSize / InEltVT.getSizeInBits());
1841    } else {
1842      NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
1843    }
1844
1845    if (TLI.isTypeLegal(NewInVT)) {
1846      // Because the result and the input are different vector types, widening
1847      // the result could create a legal type but widening the input might make
1848      // it an illegal type that might lead to repeatedly splitting the input
1849      // and then widening it. To avoid this, we widen the input only if
1850      // it results in a legal type.
1851      SmallVector<SDValue, 16> Ops(NewNumElts);
1852      SDValue UndefVal = DAG.getUNDEF(InVT);
1853      Ops[0] = InOp;
1854      for (unsigned i = 1; i < NewNumElts; ++i)
1855        Ops[i] = UndefVal;
1856
1857      SDValue NewVec;
1858      if (InVT.isVector())
1859        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1860                             NewInVT, &Ops[0], NewNumElts);
1861      else
1862        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1863                             NewInVT, &Ops[0], NewNumElts);
1864      return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
1865    }
1866  }
1867
1868  return CreateStackStoreLoad(InOp, WidenVT);
1869}
1870
1871SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1872  SDLoc dl(N);
1873  // Build a vector with undefined for the new nodes.
1874  EVT VT = N->getValueType(0);
1875
1876  // Integer BUILD_VECTOR operands may be larger than the node's vector element
1877  // type. The UNDEFs need to have the same type as the existing operands.
1878  EVT EltVT = N->getOperand(0).getValueType();
1879  unsigned NumElts = VT.getVectorNumElements();
1880
1881  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1882  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1883
1884  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1885  assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
1886  NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
1887
1888  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1889}
1890
1891SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1892  EVT InVT = N->getOperand(0).getValueType();
1893  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1894  SDLoc dl(N);
1895  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1896  unsigned NumInElts = InVT.getVectorNumElements();
1897  unsigned NumOperands = N->getNumOperands();
1898
1899  bool InputWidened = false; // Indicates we need to widen the input.
1900  if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
1901    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1902      // Add undef vectors to widen to correct length.
1903      unsigned NumConcat = WidenVT.getVectorNumElements() /
1904                           InVT.getVectorNumElements();
1905      SDValue UndefVal = DAG.getUNDEF(InVT);
1906      SmallVector<SDValue, 16> Ops(NumConcat);
1907      for (unsigned i=0; i < NumOperands; ++i)
1908        Ops[i] = N->getOperand(i);
1909      for (unsigned i = NumOperands; i != NumConcat; ++i)
1910        Ops[i] = UndefVal;
1911      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1912    }
1913  } else {
1914    InputWidened = true;
1915    if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
1916      // The inputs and the result are widen to the same value.
1917      unsigned i;
1918      for (i=1; i < NumOperands; ++i)
1919        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1920          break;
1921
1922      if (i == NumOperands)
1923        // Everything but the first operand is an UNDEF so just return the
1924        // widened first operand.
1925        return GetWidenedVector(N->getOperand(0));
1926
1927      if (NumOperands == 2) {
1928        // Replace concat of two operands with a shuffle.
1929        SmallVector<int, 16> MaskOps(WidenNumElts, -1);
1930        for (unsigned i = 0; i < NumInElts; ++i) {
1931          MaskOps[i] = i;
1932          MaskOps[i + NumInElts] = i + WidenNumElts;
1933        }
1934        return DAG.getVectorShuffle(WidenVT, dl,
1935                                    GetWidenedVector(N->getOperand(0)),
1936                                    GetWidenedVector(N->getOperand(1)),
1937                                    &MaskOps[0]);
1938      }
1939    }
1940  }
1941
1942  // Fall back to use extracts and build vector.
1943  EVT EltVT = WidenVT.getVectorElementType();
1944  SmallVector<SDValue, 16> Ops(WidenNumElts);
1945  unsigned Idx = 0;
1946  for (unsigned i=0; i < NumOperands; ++i) {
1947    SDValue InOp = N->getOperand(i);
1948    if (InputWidened)
1949      InOp = GetWidenedVector(InOp);
1950    for (unsigned j=0; j < NumInElts; ++j)
1951      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1952                               DAG.getIntPtrConstant(j));
1953  }
1954  SDValue UndefVal = DAG.getUNDEF(EltVT);
1955  for (; Idx < WidenNumElts; ++Idx)
1956    Ops[Idx] = UndefVal;
1957  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1958}
1959
1960SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
1961  SDLoc dl(N);
1962  SDValue InOp  = N->getOperand(0);
1963  SDValue RndOp = N->getOperand(3);
1964  SDValue SatOp = N->getOperand(4);
1965
1966  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1967  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1968
1969  EVT InVT = InOp.getValueType();
1970  EVT InEltVT = InVT.getVectorElementType();
1971  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1972
1973  SDValue DTyOp = DAG.getValueType(WidenVT);
1974  SDValue STyOp = DAG.getValueType(InWidenVT);
1975  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1976
1977  unsigned InVTNumElts = InVT.getVectorNumElements();
1978  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
1979    InOp = GetWidenedVector(InOp);
1980    InVT = InOp.getValueType();
1981    InVTNumElts = InVT.getVectorNumElements();
1982    if (InVTNumElts == WidenNumElts)
1983      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1984                                  SatOp, CvtCode);
1985  }
1986
1987  if (TLI.isTypeLegal(InWidenVT)) {
1988    // Because the result and the input are different vector types, widening
1989    // the result could create a legal type but widening the input might make
1990    // it an illegal type that might lead to repeatedly splitting the input
1991    // and then widening it. To avoid this, we widen the input only if
1992    // it results in a legal type.
1993    if (WidenNumElts % InVTNumElts == 0) {
1994      // Widen the input and call convert on the widened input vector.
1995      unsigned NumConcat = WidenNumElts/InVTNumElts;
1996      SmallVector<SDValue, 16> Ops(NumConcat);
1997      Ops[0] = InOp;
1998      SDValue UndefVal = DAG.getUNDEF(InVT);
1999      for (unsigned i = 1; i != NumConcat; ++i)
2000        Ops[i] = UndefVal;
2001
2002      InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
2003      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2004                                  SatOp, CvtCode);
2005    }
2006
2007    if (InVTNumElts % WidenNumElts == 0) {
2008      // Extract the input and convert the shorten input vector.
2009      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
2010                         DAG.getIntPtrConstant(0));
2011      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2012                                  SatOp, CvtCode);
2013    }
2014  }
2015
2016  // Otherwise unroll into some nasty scalar code and rebuild the vector.
2017  SmallVector<SDValue, 16> Ops(WidenNumElts);
2018  EVT EltVT = WidenVT.getVectorElementType();
2019  DTyOp = DAG.getValueType(EltVT);
2020  STyOp = DAG.getValueType(InEltVT);
2021
2022  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2023  unsigned i;
2024  for (i=0; i < MinElts; ++i) {
2025    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2026                                 DAG.getIntPtrConstant(i));
2027    Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
2028                                  SatOp, CvtCode);
2029  }
2030
2031  SDValue UndefVal = DAG.getUNDEF(EltVT);
2032  for (; i < WidenNumElts; ++i)
2033    Ops[i] = UndefVal;
2034
2035  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
2036}
2037
2038SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
2039  EVT      VT = N->getValueType(0);
2040  EVT      WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2041  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2042  SDValue  InOp = N->getOperand(0);
2043  SDValue  Idx  = N->getOperand(1);
2044  SDLoc dl(N);
2045
2046  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2047    InOp = GetWidenedVector(InOp);
2048
2049  EVT InVT = InOp.getValueType();
2050
2051  // Check if we can just return the input vector after widening.
2052  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
2053  if (IdxVal == 0 && InVT == WidenVT)
2054    return InOp;
2055
2056  // Check if we can extract from the vector.
2057  unsigned InNumElts = InVT.getVectorNumElements();
2058  if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
2059    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
2060
2061  // We could try widening the input to the right length but for now, extract
2062  // the original elements, fill the rest with undefs and build a vector.
2063  SmallVector<SDValue, 16> Ops(WidenNumElts);
2064  EVT EltVT = VT.getVectorElementType();
2065  unsigned NumElts = VT.getVectorNumElements();
2066  unsigned i;
2067  for (i=0; i < NumElts; ++i)
2068    Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2069                         DAG.getIntPtrConstant(IdxVal+i));
2070
2071  SDValue UndefVal = DAG.getUNDEF(EltVT);
2072  for (; i < WidenNumElts; ++i)
2073    Ops[i] = UndefVal;
2074  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
2075}
2076
2077SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
2078  SDValue InOp = GetWidenedVector(N->getOperand(0));
2079  return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
2080                     InOp.getValueType(), InOp,
2081                     N->getOperand(1), N->getOperand(2));
2082}
2083
2084SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
2085  LoadSDNode *LD = cast<LoadSDNode>(N);
2086  ISD::LoadExtType ExtType = LD->getExtensionType();
2087
2088  SDValue Result;
2089  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
2090  if (ExtType != ISD::NON_EXTLOAD)
2091    Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
2092  else
2093    Result = GenWidenVectorLoads(LdChain, LD);
2094
2095  // If we generate a single load, we can use that for the chain.  Otherwise,
2096  // build a factor node to remember the multiple loads are independent and
2097  // chain to that.
2098  SDValue NewChain;
2099  if (LdChain.size() == 1)
2100    NewChain = LdChain[0];
2101  else
2102    NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
2103                           &LdChain[0], LdChain.size());
2104
2105  // Modified the chain - switch anything that used the old chain to use
2106  // the new one.
2107  ReplaceValueWith(SDValue(N, 1), NewChain);
2108
2109  return Result;
2110}
2111
2112SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
2113  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2114  return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
2115                     WidenVT, N->getOperand(0));
2116}
2117
2118SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
2119  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2120  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2121
2122  SDValue Cond1 = N->getOperand(0);
2123  EVT CondVT = Cond1.getValueType();
2124  if (CondVT.isVector()) {
2125    EVT CondEltVT = CondVT.getVectorElementType();
2126    EVT CondWidenVT =  EVT::getVectorVT(*DAG.getContext(),
2127                                        CondEltVT, WidenNumElts);
2128    if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
2129      Cond1 = GetWidenedVector(Cond1);
2130
2131    if (Cond1.getValueType() != CondWidenVT)
2132      Cond1 = ModifyToType(Cond1, CondWidenVT);
2133  }
2134
2135  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2136  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
2137  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
2138  return DAG.getNode(N->getOpcode(), SDLoc(N),
2139                     WidenVT, Cond1, InOp1, InOp2);
2140}
2141
2142SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
2143  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
2144  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
2145  return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
2146                     InOp1.getValueType(), N->getOperand(0),
2147                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
2148}
2149
2150SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
2151  assert(N->getValueType(0).isVector() ==
2152         N->getOperand(0).getValueType().isVector() &&
2153         "Scalar/Vector type mismatch");
2154  if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
2155
2156  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2157  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2158  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2159  return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
2160                     InOp1, InOp2, N->getOperand(2));
2161}
2162
2163SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
2164 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2165 return DAG.getUNDEF(WidenVT);
2166}
2167
2168SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
2169  EVT VT = N->getValueType(0);
2170  SDLoc dl(N);
2171
2172  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2173  unsigned NumElts = VT.getVectorNumElements();
2174  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2175
2176  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2177  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2178
2179  // Adjust mask based on new input vector length.
2180  SmallVector<int, 16> NewMask;
2181  for (unsigned i = 0; i != NumElts; ++i) {
2182    int Idx = N->getMaskElt(i);
2183    if (Idx < (int)NumElts)
2184      NewMask.push_back(Idx);
2185    else
2186      NewMask.push_back(Idx - NumElts + WidenNumElts);
2187  }
2188  for (unsigned i = NumElts; i != WidenNumElts; ++i)
2189    NewMask.push_back(-1);
2190  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
2191}
2192
2193SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
2194  assert(N->getValueType(0).isVector() &&
2195         N->getOperand(0).getValueType().isVector() &&
2196         "Operands must be vectors");
2197  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2198  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2199
2200  SDValue InOp1 = N->getOperand(0);
2201  EVT InVT = InOp1.getValueType();
2202  assert(InVT.isVector() && "can not widen non vector type");
2203  EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
2204                                   InVT.getVectorElementType(), WidenNumElts);
2205  InOp1 = GetWidenedVector(InOp1);
2206  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2207
2208  // Assume that the input and output will be widen appropriately.  If not,
2209  // we will have to unroll it at some point.
2210  assert(InOp1.getValueType() == WidenInVT &&
2211         InOp2.getValueType() == WidenInVT &&
2212         "Input not widened to expected type!");
2213  (void)WidenInVT;
2214  return DAG.getNode(ISD::SETCC, SDLoc(N),
2215                     WidenVT, InOp1, InOp2, N->getOperand(2));
2216}
2217
2218
2219//===----------------------------------------------------------------------===//
2220// Widen Vector Operand
2221//===----------------------------------------------------------------------===//
2222bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
2223  DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
2224        N->dump(&DAG);
2225        dbgs() << "\n");
2226  SDValue Res = SDValue();
2227
2228  // See if the target wants to custom widen this node.
2229  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2230    return false;
2231
2232  switch (N->getOpcode()) {
2233  default:
2234#ifndef NDEBUG
2235    dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
2236    N->dump(&DAG);
2237    dbgs() << "\n";
2238#endif
2239    llvm_unreachable("Do not know how to widen this operator's operand!");
2240
2241  case ISD::BITCAST:            Res = WidenVecOp_BITCAST(N); break;
2242  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
2243  case ISD::EXTRACT_SUBVECTOR:  Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
2244  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
2245  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
2246  case ISD::SETCC:              Res = WidenVecOp_SETCC(N); break;
2247
2248  case ISD::FP_EXTEND:
2249  case ISD::FP_TO_SINT:
2250  case ISD::FP_TO_UINT:
2251  case ISD::SINT_TO_FP:
2252  case ISD::UINT_TO_FP:
2253  case ISD::TRUNCATE:
2254  case ISD::SIGN_EXTEND:
2255  case ISD::ZERO_EXTEND:
2256  case ISD::ANY_EXTEND:
2257    Res = WidenVecOp_Convert(N);
2258    break;
2259  }
2260
2261  // If Res is null, the sub-method took care of registering the result.
2262  if (!Res.getNode()) return false;
2263
2264  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2265  // core about this.
2266  if (Res.getNode() == N)
2267    return true;
2268
2269
2270  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2271         "Invalid operand expansion");
2272
2273  ReplaceValueWith(SDValue(N, 0), Res);
2274  return false;
2275}
2276
2277SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
2278  // Since the result is legal and the input is illegal, it is unlikely
2279  // that we can fix the input to a legal type so unroll the convert
2280  // into some scalar code and create a nasty build vector.
2281  EVT VT = N->getValueType(0);
2282  EVT EltVT = VT.getVectorElementType();
2283  SDLoc dl(N);
2284  unsigned NumElts = VT.getVectorNumElements();
2285  SDValue InOp = N->getOperand(0);
2286  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2287    InOp = GetWidenedVector(InOp);
2288  EVT InVT = InOp.getValueType();
2289  EVT InEltVT = InVT.getVectorElementType();
2290
2291  unsigned Opcode = N->getOpcode();
2292  SmallVector<SDValue, 16> Ops(NumElts);
2293  for (unsigned i=0; i < NumElts; ++i)
2294    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
2295                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2296                                     DAG.getIntPtrConstant(i)));
2297
2298  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
2299}
2300
2301SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
2302  EVT VT = N->getValueType(0);
2303  SDValue InOp = GetWidenedVector(N->getOperand(0));
2304  EVT InWidenVT = InOp.getValueType();
2305  SDLoc dl(N);
2306
2307  // Check if we can convert between two legal vector types and extract.
2308  unsigned InWidenSize = InWidenVT.getSizeInBits();
2309  unsigned Size = VT.getSizeInBits();
2310  // x86mmx is not an acceptable vector element type, so don't try.
2311  if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
2312    unsigned NewNumElts = InWidenSize / Size;
2313    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
2314    if (TLI.isTypeLegal(NewVT)) {
2315      SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
2316      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
2317                         DAG.getIntPtrConstant(0));
2318    }
2319  }
2320
2321  return CreateStackStoreLoad(InOp, VT);
2322}
2323
2324SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
2325  // If the input vector is not legal, it is likely that we will not find a
2326  // legal vector of the same size. Replace the concatenate vector with a
2327  // nasty build vector.
2328  EVT VT = N->getValueType(0);
2329  EVT EltVT = VT.getVectorElementType();
2330  SDLoc dl(N);
2331  unsigned NumElts = VT.getVectorNumElements();
2332  SmallVector<SDValue, 16> Ops(NumElts);
2333
2334  EVT InVT = N->getOperand(0).getValueType();
2335  unsigned NumInElts = InVT.getVectorNumElements();
2336
2337  unsigned Idx = 0;
2338  unsigned NumOperands = N->getNumOperands();
2339  for (unsigned i=0; i < NumOperands; ++i) {
2340    SDValue InOp = N->getOperand(i);
2341    if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2342      InOp = GetWidenedVector(InOp);
2343    for (unsigned j=0; j < NumInElts; ++j)
2344      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2345                               DAG.getIntPtrConstant(j));
2346  }
2347  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
2348}
2349
2350SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
2351  SDValue InOp = GetWidenedVector(N->getOperand(0));
2352  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
2353                     N->getValueType(0), InOp, N->getOperand(1));
2354}
2355
2356SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2357  SDValue InOp = GetWidenedVector(N->getOperand(0));
2358  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
2359                     N->getValueType(0), InOp, N->getOperand(1));
2360}
2361
2362SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
2363  // We have to widen the value but we want only to store the original
2364  // vector type.
2365  StoreSDNode *ST = cast<StoreSDNode>(N);
2366
2367  SmallVector<SDValue, 16> StChain;
2368  if (ST->isTruncatingStore())
2369    GenWidenVectorTruncStores(StChain, ST);
2370  else
2371    GenWidenVectorStores(StChain, ST);
2372
2373  if (StChain.size() == 1)
2374    return StChain[0];
2375  else
2376    return DAG.getNode(ISD::TokenFactor, SDLoc(ST),
2377                       MVT::Other,&StChain[0],StChain.size());
2378}
2379
2380SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
2381  SDValue InOp0 = GetWidenedVector(N->getOperand(0));
2382  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2383  SDLoc dl(N);
2384
2385  // WARNING: In this code we widen the compare instruction with garbage.
2386  // This garbage may contain denormal floats which may be slow. Is this a real
2387  // concern ? Should we zero the unused lanes if this is a float compare ?
2388
2389  // Get a new SETCC node to compare the newly widened operands.
2390  // Only some of the compared elements are legal.
2391  EVT SVT = TLI.getSetCCResultType(*DAG.getContext(), InOp0.getValueType());
2392  SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
2393                     SVT, InOp0, InOp1, N->getOperand(2));
2394
2395  // Extract the needed results from the result vector.
2396  EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
2397                               SVT.getVectorElementType(),
2398                               N->getValueType(0).getVectorNumElements());
2399  SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
2400                           ResVT, WideSETCC, DAG.getIntPtrConstant(0));
2401
2402  return PromoteTargetBoolean(CC, N->getValueType(0));
2403}
2404
2405
2406//===----------------------------------------------------------------------===//
2407// Vector Widening Utilities
2408//===----------------------------------------------------------------------===//
2409
2410// Utility function to find the type to chop up a widen vector for load/store
2411//  TLI:       Target lowering used to determine legal types.
2412//  Width:     Width left need to load/store.
2413//  WidenVT:   The widen vector type to load to/store from
2414//  Align:     If 0, don't allow use of a wider type
2415//  WidenEx:   If Align is not 0, the amount additional we can load/store from.
2416
2417static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
2418                       unsigned Width, EVT WidenVT,
2419                       unsigned Align = 0, unsigned WidenEx = 0) {
2420  EVT WidenEltVT = WidenVT.getVectorElementType();
2421  unsigned WidenWidth = WidenVT.getSizeInBits();
2422  unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
2423  unsigned AlignInBits = Align*8;
2424
2425  // If we have one element to load/store, return it.
2426  EVT RetVT = WidenEltVT;
2427  if (Width == WidenEltWidth)
2428    return RetVT;
2429
2430  // See if there is larger legal integer than the element type to load/store
2431  unsigned VT;
2432  for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
2433       VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
2434    EVT MemVT((MVT::SimpleValueType) VT);
2435    unsigned MemVTWidth = MemVT.getSizeInBits();
2436    if (MemVT.getSizeInBits() <= WidenEltWidth)
2437      break;
2438    if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
2439        isPowerOf2_32(WidenWidth / MemVTWidth) &&
2440        (MemVTWidth <= Width ||
2441         (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2442      RetVT = MemVT;
2443      break;
2444    }
2445  }
2446
2447  // See if there is a larger vector type to load/store that has the same vector
2448  // element type and is evenly divisible with the WidenVT.
2449  for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
2450       VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
2451    EVT MemVT = (MVT::SimpleValueType) VT;
2452    unsigned MemVTWidth = MemVT.getSizeInBits();
2453    if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
2454        (WidenWidth % MemVTWidth) == 0 &&
2455        isPowerOf2_32(WidenWidth / MemVTWidth) &&
2456        (MemVTWidth <= Width ||
2457         (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2458      if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
2459        return MemVT;
2460    }
2461  }
2462
2463  return RetVT;
2464}
2465
2466// Builds a vector type from scalar loads
2467//  VecTy: Resulting Vector type
2468//  LDOps: Load operators to build a vector type
2469//  [Start,End) the list of loads to use.
2470static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
2471                                     SmallVectorImpl<SDValue> &LdOps,
2472                                     unsigned Start, unsigned End) {
2473  SDLoc dl(LdOps[Start]);
2474  EVT LdTy = LdOps[Start].getValueType();
2475  unsigned Width = VecTy.getSizeInBits();
2476  unsigned NumElts = Width / LdTy.getSizeInBits();
2477  EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
2478
2479  unsigned Idx = 1;
2480  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
2481
2482  for (unsigned i = Start + 1; i != End; ++i) {
2483    EVT NewLdTy = LdOps[i].getValueType();
2484    if (NewLdTy != LdTy) {
2485      NumElts = Width / NewLdTy.getSizeInBits();
2486      NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
2487      VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
2488      // Readjust position and vector position based on new load type
2489      Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
2490      LdTy = NewLdTy;
2491    }
2492    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
2493                        DAG.getIntPtrConstant(Idx++));
2494  }
2495  return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
2496}
2497
2498SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
2499                                              LoadSDNode *LD) {
2500  // The strategy assumes that we can efficiently load powers of two widths.
2501  // The routines chops the vector into the largest vector loads with the same
2502  // element type or scalar loads and then recombines it to the widen vector
2503  // type.
2504  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
2505  unsigned WidenWidth = WidenVT.getSizeInBits();
2506  EVT LdVT    = LD->getMemoryVT();
2507  SDLoc dl(LD);
2508  assert(LdVT.isVector() && WidenVT.isVector());
2509  assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
2510
2511  // Load information
2512  SDValue   Chain = LD->getChain();
2513  SDValue   BasePtr = LD->getBasePtr();
2514  unsigned  Align    = LD->getAlignment();
2515  bool      isVolatile = LD->isVolatile();
2516  bool      isNonTemporal = LD->isNonTemporal();
2517  bool      isInvariant = LD->isInvariant();
2518
2519  int LdWidth = LdVT.getSizeInBits();
2520  int WidthDiff = WidenWidth - LdWidth;          // Difference
2521  unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads
2522
2523  // Find the vector type that can load from.
2524  EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
2525  int NewVTWidth = NewVT.getSizeInBits();
2526  SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
2527                             isVolatile, isNonTemporal, isInvariant, Align);
2528  LdChain.push_back(LdOp.getValue(1));
2529
2530  // Check if we can load the element with one instruction
2531  if (LdWidth <= NewVTWidth) {
2532    if (!NewVT.isVector()) {
2533      unsigned NumElts = WidenWidth / NewVTWidth;
2534      EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
2535      SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2536      return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
2537    }
2538    if (NewVT == WidenVT)
2539      return LdOp;
2540
2541    assert(WidenWidth % NewVTWidth == 0);
2542    unsigned NumConcat = WidenWidth / NewVTWidth;
2543    SmallVector<SDValue, 16> ConcatOps(NumConcat);
2544    SDValue UndefVal = DAG.getUNDEF(NewVT);
2545    ConcatOps[0] = LdOp;
2546    for (unsigned i = 1; i != NumConcat; ++i)
2547      ConcatOps[i] = UndefVal;
2548    return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0],
2549                       NumConcat);
2550  }
2551
2552  // Load vector by using multiple loads from largest vector to scalar
2553  SmallVector<SDValue, 16> LdOps;
2554  LdOps.push_back(LdOp);
2555
2556  LdWidth -= NewVTWidth;
2557  unsigned Offset = 0;
2558
2559  while (LdWidth > 0) {
2560    unsigned Increment = NewVTWidth / 8;
2561    Offset += Increment;
2562    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2563                          DAG.getIntPtrConstant(Increment));
2564
2565    SDValue L;
2566    if (LdWidth < NewVTWidth) {
2567      // Our current type we are using is too large, find a better size
2568      NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
2569      NewVTWidth = NewVT.getSizeInBits();
2570      L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
2571                      LD->getPointerInfo().getWithOffset(Offset), isVolatile,
2572                      isNonTemporal, isInvariant, MinAlign(Align, Increment));
2573      LdChain.push_back(L.getValue(1));
2574      if (L->getValueType(0).isVector()) {
2575        SmallVector<SDValue, 16> Loads;
2576        Loads.push_back(L);
2577        unsigned size = L->getValueSizeInBits(0);
2578        while (size < LdOp->getValueSizeInBits(0)) {
2579          Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
2580          size += L->getValueSizeInBits(0);
2581        }
2582        L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0),
2583                        &Loads[0], Loads.size());
2584      }
2585    } else {
2586      L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
2587                      LD->getPointerInfo().getWithOffset(Offset), isVolatile,
2588                      isNonTemporal, isInvariant, MinAlign(Align, Increment));
2589      LdChain.push_back(L.getValue(1));
2590    }
2591
2592    LdOps.push_back(L);
2593
2594
2595    LdWidth -= NewVTWidth;
2596  }
2597
2598  // Build the vector from the loads operations
2599  unsigned End = LdOps.size();
2600  if (!LdOps[0].getValueType().isVector())
2601    // All the loads are scalar loads.
2602    return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
2603
2604  // If the load contains vectors, build the vector using concat vector.
2605  // All of the vectors used to loads are power of 2 and the scalars load
2606  // can be combined to make a power of 2 vector.
2607  SmallVector<SDValue, 16> ConcatOps(End);
2608  int i = End - 1;
2609  int Idx = End;
2610  EVT LdTy = LdOps[i].getValueType();
2611  // First combine the scalar loads to a vector
2612  if (!LdTy.isVector())  {
2613    for (--i; i >= 0; --i) {
2614      LdTy = LdOps[i].getValueType();
2615      if (LdTy.isVector())
2616        break;
2617    }
2618    ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End);
2619  }
2620  ConcatOps[--Idx] = LdOps[i];
2621  for (--i; i >= 0; --i) {
2622    EVT NewLdTy = LdOps[i].getValueType();
2623    if (NewLdTy != LdTy) {
2624      // Create a larger vector
2625      ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
2626                                     &ConcatOps[Idx], End - Idx);
2627      Idx = End - 1;
2628      LdTy = NewLdTy;
2629    }
2630    ConcatOps[--Idx] = LdOps[i];
2631  }
2632
2633  if (WidenWidth == LdTy.getSizeInBits()*(End - Idx))
2634    return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
2635                       &ConcatOps[Idx], End - Idx);
2636
2637  // We need to fill the rest with undefs to build the vector
2638  unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
2639  SmallVector<SDValue, 16> WidenOps(NumOps);
2640  SDValue UndefVal = DAG.getUNDEF(LdTy);
2641  {
2642    unsigned i = 0;
2643    for (; i != End-Idx; ++i)
2644      WidenOps[i] = ConcatOps[Idx+i];
2645    for (; i != NumOps; ++i)
2646      WidenOps[i] = UndefVal;
2647  }
2648  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &WidenOps[0],NumOps);
2649}
2650
2651SDValue
2652DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
2653                                         LoadSDNode *LD,
2654                                         ISD::LoadExtType ExtType) {
2655  // For extension loads, it may not be more efficient to chop up the vector
2656  // and then extended it.  Instead, we unroll the load and build a new vector.
2657  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
2658  EVT LdVT    = LD->getMemoryVT();
2659  SDLoc dl(LD);
2660  assert(LdVT.isVector() && WidenVT.isVector());
2661
2662  // Load information
2663  SDValue   Chain = LD->getChain();
2664  SDValue   BasePtr = LD->getBasePtr();
2665  unsigned  Align    = LD->getAlignment();
2666  bool      isVolatile = LD->isVolatile();
2667  bool      isNonTemporal = LD->isNonTemporal();
2668
2669  EVT EltVT = WidenVT.getVectorElementType();
2670  EVT LdEltVT = LdVT.getVectorElementType();
2671  unsigned NumElts = LdVT.getVectorNumElements();
2672
2673  // Load each element and widen
2674  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2675  SmallVector<SDValue, 16> Ops(WidenNumElts);
2676  unsigned Increment = LdEltVT.getSizeInBits() / 8;
2677  Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
2678                          LD->getPointerInfo(),
2679                          LdEltVT, isVolatile, isNonTemporal, Align);
2680  LdChain.push_back(Ops[0].getValue(1));
2681  unsigned i = 0, Offset = Increment;
2682  for (i=1; i < NumElts; ++i, Offset += Increment) {
2683    SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
2684                                     BasePtr, DAG.getIntPtrConstant(Offset));
2685    Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
2686                            LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
2687                            isVolatile, isNonTemporal, Align);
2688    LdChain.push_back(Ops[i].getValue(1));
2689  }
2690
2691  // Fill the rest with undefs
2692  SDValue UndefVal = DAG.getUNDEF(EltVT);
2693  for (; i != WidenNumElts; ++i)
2694    Ops[i] = UndefVal;
2695
2696  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
2697}
2698
2699
2700void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
2701                                            StoreSDNode *ST) {
2702  // The strategy assumes that we can efficiently store powers of two widths.
2703  // The routines chops the vector into the largest vector stores with the same
2704  // element type or scalar stores.
2705  SDValue  Chain = ST->getChain();
2706  SDValue  BasePtr = ST->getBasePtr();
2707  unsigned Align = ST->getAlignment();
2708  bool     isVolatile = ST->isVolatile();
2709  bool     isNonTemporal = ST->isNonTemporal();
2710  SDValue  ValOp = GetWidenedVector(ST->getValue());
2711  SDLoc dl(ST);
2712
2713  EVT StVT = ST->getMemoryVT();
2714  unsigned StWidth = StVT.getSizeInBits();
2715  EVT ValVT = ValOp.getValueType();
2716  unsigned ValWidth = ValVT.getSizeInBits();
2717  EVT ValEltVT = ValVT.getVectorElementType();
2718  unsigned ValEltWidth = ValEltVT.getSizeInBits();
2719  assert(StVT.getVectorElementType() == ValEltVT);
2720
2721  int Idx = 0;          // current index to store
2722  unsigned Offset = 0;  // offset from base to store
2723  while (StWidth != 0) {
2724    // Find the largest vector type we can store with
2725    EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
2726    unsigned NewVTWidth = NewVT.getSizeInBits();
2727    unsigned Increment = NewVTWidth / 8;
2728    if (NewVT.isVector()) {
2729      unsigned NumVTElts = NewVT.getVectorNumElements();
2730      do {
2731        SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
2732                                   DAG.getIntPtrConstant(Idx));
2733        StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
2734                                    ST->getPointerInfo().getWithOffset(Offset),
2735                                       isVolatile, isNonTemporal,
2736                                       MinAlign(Align, Offset)));
2737        StWidth -= NewVTWidth;
2738        Offset += Increment;
2739        Idx += NumVTElts;
2740        BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2741                              DAG.getIntPtrConstant(Increment));
2742      } while (StWidth != 0 && StWidth >= NewVTWidth);
2743    } else {
2744      // Cast the vector to the scalar type we can store
2745      unsigned NumElts = ValWidth / NewVTWidth;
2746      EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
2747      SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
2748      // Readjust index position based on new vector type
2749      Idx = Idx * ValEltWidth / NewVTWidth;
2750      do {
2751        SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
2752                      DAG.getIntPtrConstant(Idx++));
2753        StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
2754                                    ST->getPointerInfo().getWithOffset(Offset),
2755                                       isVolatile, isNonTemporal,
2756                                       MinAlign(Align, Offset)));
2757        StWidth -= NewVTWidth;
2758        Offset += Increment;
2759        BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2760                              DAG.getIntPtrConstant(Increment));
2761      } while (StWidth != 0 && StWidth >= NewVTWidth);
2762      // Restore index back to be relative to the original widen element type
2763      Idx = Idx * NewVTWidth / ValEltWidth;
2764    }
2765  }
2766}
2767
2768void
2769DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
2770                                            StoreSDNode *ST) {
2771  // For extension loads, it may not be more efficient to truncate the vector
2772  // and then store it.  Instead, we extract each element and then store it.
2773  SDValue  Chain = ST->getChain();
2774  SDValue  BasePtr = ST->getBasePtr();
2775  unsigned Align = ST->getAlignment();
2776  bool     isVolatile = ST->isVolatile();
2777  bool     isNonTemporal = ST->isNonTemporal();
2778  SDValue  ValOp = GetWidenedVector(ST->getValue());
2779  SDLoc dl(ST);
2780
2781  EVT StVT = ST->getMemoryVT();
2782  EVT ValVT = ValOp.getValueType();
2783
2784  // It must be true that we the widen vector type is bigger than where
2785  // we need to store.
2786  assert(StVT.isVector() && ValOp.getValueType().isVector());
2787  assert(StVT.bitsLT(ValOp.getValueType()));
2788
2789  // For truncating stores, we can not play the tricks of chopping legal
2790  // vector types and bit cast it to the right type.  Instead, we unroll
2791  // the store.
2792  EVT StEltVT  = StVT.getVectorElementType();
2793  EVT ValEltVT = ValVT.getVectorElementType();
2794  unsigned Increment = ValEltVT.getSizeInBits() / 8;
2795  unsigned NumElts = StVT.getVectorNumElements();
2796  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
2797                            DAG.getIntPtrConstant(0));
2798  StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
2799                                      ST->getPointerInfo(), StEltVT,
2800                                      isVolatile, isNonTemporal, Align));
2801  unsigned Offset = Increment;
2802  for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
2803    SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
2804                                     BasePtr, DAG.getIntPtrConstant(Offset));
2805    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
2806                            DAG.getIntPtrConstant(0));
2807    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
2808                                      ST->getPointerInfo().getWithOffset(Offset),
2809                                        StEltVT, isVolatile, isNonTemporal,
2810                                        MinAlign(Align, Offset)));
2811  }
2812}
2813
2814/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
2815/// input vector must have the same element type as NVT.
2816SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
2817  // Note that InOp might have been widened so it might already have
2818  // the right width or it might need be narrowed.
2819  EVT InVT = InOp.getValueType();
2820  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2821         "input and widen element type must match");
2822  SDLoc dl(InOp);
2823
2824  // Check if InOp already has the right width.
2825  if (InVT == NVT)
2826    return InOp;
2827
2828  unsigned InNumElts = InVT.getVectorNumElements();
2829  unsigned WidenNumElts = NVT.getVectorNumElements();
2830  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2831    unsigned NumConcat = WidenNumElts / InNumElts;
2832    SmallVector<SDValue, 16> Ops(NumConcat);
2833    SDValue UndefVal = DAG.getUNDEF(InVT);
2834    Ops[0] = InOp;
2835    for (unsigned i = 1; i != NumConcat; ++i)
2836      Ops[i] = UndefVal;
2837
2838    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2839  }
2840
2841  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2842    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2843                       DAG.getIntPtrConstant(0));
2844
2845  // Fall back to extract and build.
2846  SmallVector<SDValue, 16> Ops(WidenNumElts);
2847  EVT EltVT = NVT.getVectorElementType();
2848  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2849  unsigned Idx;
2850  for (Idx = 0; Idx < MinNumElts; ++Idx)
2851    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2852                           DAG.getIntPtrConstant(Idx));
2853
2854  SDValue UndefVal = DAG.getUNDEF(EltVT);
2855  for ( ; Idx < WidenNumElts; ++Idx)
2856    Ops[Idx] = UndefVal;
2857  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2858}
2859