LegalizeVectorTypes.cpp revision c82bf9b268eb63f7cf6f435d9ea222ddb8e3c5a8
1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in multiple vectors of a smaller type.  For example,
19// implementing <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Target/TargetData.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  Result Vector Scalarization: <1 x ty> -> ty.
30//===----------------------------------------------------------------------===//
31
32void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
33  DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
34        cerr << "\n");
35  SDValue R = SDValue();
36
37  switch (N->getOpcode()) {
38  default:
39#ifndef NDEBUG
40    cerr << "ScalarizeVectorResult #" << ResNo << ": ";
41    N->dump(&DAG); cerr << "\n";
42#endif
43    assert(0 && "Do not know how to scalarize the result of this operator!");
44    abort();
45
46  case ISD::BIT_CONVERT:       R = ScalarizeVecRes_BIT_CONVERT(N); break;
47  case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
48  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
49  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
50  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
51  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
52  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
53  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
54  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
55  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
56  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
57  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
58  case ISD::VSETCC:            R = ScalarizeVecRes_VSETCC(N); break;
59
60  case ISD::CTLZ:
61  case ISD::CTPOP:
62  case ISD::CTTZ:
63  case ISD::FABS:
64  case ISD::FCOS:
65  case ISD::FNEG:
66  case ISD::FP_TO_SINT:
67  case ISD::FP_TO_UINT:
68  case ISD::FSIN:
69  case ISD::FSQRT:
70  case ISD::FTRUNC:
71  case ISD::FFLOOR:
72  case ISD::FCEIL:
73  case ISD::FRINT:
74  case ISD::FNEARBYINT:
75  case ISD::SINT_TO_FP:
76  case ISD::TRUNCATE:
77  case ISD::UINT_TO_FP: R = ScalarizeVecRes_UnaryOp(N); break;
78
79  case ISD::ADD:
80  case ISD::AND:
81  case ISD::FADD:
82  case ISD::FDIV:
83  case ISD::FMUL:
84  case ISD::FPOW:
85  case ISD::FREM:
86  case ISD::FSUB:
87  case ISD::MUL:
88  case ISD::OR:
89  case ISD::SDIV:
90  case ISD::SREM:
91  case ISD::SUB:
92  case ISD::UDIV:
93  case ISD::UREM:
94  case ISD::XOR:  R = ScalarizeVecRes_BinOp(N); break;
95
96  case ISD::SHL:
97  case ISD::SRA:
98  case ISD::SRL: R = ScalarizeVecRes_ShiftOp(N); break;
99  }
100
101  // If R is null, the sub-method took care of registering the result.
102  if (R.getNode())
103    SetScalarizedVector(SDValue(N, ResNo), R);
104}
105
106SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
107  SDValue LHS = GetScalarizedVector(N->getOperand(0));
108  SDValue RHS = GetScalarizedVector(N->getOperand(1));
109  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
110                     LHS.getValueType(), LHS, RHS);
111}
112
113SDValue DAGTypeLegalizer::ScalarizeVecRes_ShiftOp(SDNode *N) {
114  SDValue LHS = GetScalarizedVector(N->getOperand(0));
115  SDValue ShiftAmt = GetScalarizedVector(N->getOperand(1));
116  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
117                     LHS.getValueType(), LHS, ShiftAmt);
118}
119
120SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
121  MVT NewVT = N->getValueType(0).getVectorElementType();
122  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
123                     NewVT, N->getOperand(0));
124}
125
126SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
127  MVT NewVT = N->getValueType(0).getVectorElementType();
128  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
129  return DAG.getConvertRndSat(NewVT, Op0, DAG.getValueType(NewVT),
130                              DAG.getValueType(Op0.getValueType()),
131                              N->getOperand(3),
132                              N->getOperand(4),
133                              cast<CvtRndSatSDNode>(N)->getCvtCode());
134}
135
136SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
137  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
138                     N->getValueType(0).getVectorElementType(),
139                     N->getOperand(0), N->getOperand(1));
140}
141
142SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
143  SDValue Op = GetScalarizedVector(N->getOperand(0));
144  return DAG.getNode(ISD::FPOWI, N->getDebugLoc(),
145                     Op.getValueType(), Op, N->getOperand(1));
146}
147
148SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
149  // The value to insert may have a wider type than the vector element type,
150  // so be sure to truncate it to the element type if necessary.
151  SDValue Op = N->getOperand(1);
152  MVT EltVT = N->getValueType(0).getVectorElementType();
153  if (Op.getValueType() != EltVT)
154    // FIXME: Can this happen for floating point types?
155    Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
156  return Op;
157}
158
159SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
160  assert(N->isUnindexed() && "Indexed vector load?");
161
162  SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getDebugLoc(),
163                               N->getExtensionType(),
164                               N->getValueType(0).getVectorElementType(),
165                               N->getChain(), N->getBasePtr(),
166                               DAG.getNode(ISD::UNDEF, N->getDebugLoc(),
167                                           N->getBasePtr().getValueType()),
168                               N->getSrcValue(), N->getSrcValueOffset(),
169                               N->getMemoryVT().getVectorElementType(),
170                               N->isVolatile(), N->getAlignment());
171
172  // Legalized the chain result - switch anything that used the old chain to
173  // use the new one.
174  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
175  return Result;
176}
177
178SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
179  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
180  MVT DestVT = N->getValueType(0).getVectorElementType();
181  SDValue Op = GetScalarizedVector(N->getOperand(0));
182  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
183}
184
185SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
186  return N->getOperand(0);
187}
188
189SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
190  SDValue LHS = GetScalarizedVector(N->getOperand(1));
191  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
192                     LHS.getValueType(), N->getOperand(0), LHS,
193                     GetScalarizedVector(N->getOperand(2)));
194}
195
196SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
197  SDValue LHS = GetScalarizedVector(N->getOperand(2));
198  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(),
199                     N->getOperand(0), N->getOperand(1),
200                     LHS, GetScalarizedVector(N->getOperand(3)),
201                     N->getOperand(4));
202}
203
204SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
205  return DAG.getNode(ISD::UNDEF, N->getDebugLoc(),
206                     N->getValueType(0).getVectorElementType());
207}
208
209SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
210  // Figure out if the scalar is the LHS or RHS and return it.
211  SDValue Arg = N->getOperand(2).getOperand(0);
212  if (Arg.getOpcode() == ISD::UNDEF)
213    return DAG.getNode(ISD::UNDEF, N->getDebugLoc(),
214                       N->getValueType(0).getVectorElementType());
215  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
216  return GetScalarizedVector(N->getOperand(Op));
217}
218
219SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
220  SDValue LHS = GetScalarizedVector(N->getOperand(0));
221  SDValue RHS = GetScalarizedVector(N->getOperand(1));
222  MVT NVT = N->getValueType(0).getVectorElementType();
223  MVT SVT = TLI.getSetCCResultType(LHS.getValueType());
224  DebugLoc dl = N->getDebugLoc();
225
226  // Turn it into a scalar SETCC.
227  SDValue Res = DAG.getNode(ISD::SETCC, dl, SVT, LHS, RHS, N->getOperand(2));
228
229  // VSETCC always returns a sign-extended value, while SETCC may not.  The
230  // SETCC result type may not match the vector element type.  Correct these.
231  if (NVT.bitsLE(SVT)) {
232    // The SETCC result type is bigger than the vector element type.
233    // Ensure the SETCC result is sign-extended.
234    if (TLI.getBooleanContents() !=
235        TargetLowering::ZeroOrNegativeOneBooleanContent)
236      Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, SVT, Res,
237                        DAG.getValueType(MVT::i1));
238    // Truncate to the final type.
239    return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
240  } else {
241    // The SETCC result type is smaller than the vector element type.
242    // If the SetCC result is not sign-extended, chop it down to MVT::i1.
243    if (TLI.getBooleanContents() !=
244        TargetLowering::ZeroOrNegativeOneBooleanContent)
245      Res = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Res);
246    // Sign extend to the final type.
247    return DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Res);
248  }
249}
250
251
252//===----------------------------------------------------------------------===//
253//  Operand Vector Scalarization <1 x ty> -> ty.
254//===----------------------------------------------------------------------===//
255
256bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
257  DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
258        cerr << "\n");
259  SDValue Res = SDValue();
260
261  if (Res.getNode() == 0) {
262    switch (N->getOpcode()) {
263    default:
264#ifndef NDEBUG
265      cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
266      N->dump(&DAG); cerr << "\n";
267#endif
268      assert(0 && "Do not know how to scalarize this operator's operand!");
269      abort();
270
271    case ISD::BIT_CONVERT:
272      Res = ScalarizeVecOp_BIT_CONVERT(N); break;
273
274    case ISD::CONCAT_VECTORS:
275      Res = ScalarizeVecOp_CONCAT_VECTORS(N); break;
276
277    case ISD::EXTRACT_VECTOR_ELT:
278      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break;
279
280    case ISD::STORE:
281      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break;
282    }
283  }
284
285  // If the result is null, the sub-method took care of registering results etc.
286  if (!Res.getNode()) return false;
287
288  // If the result is N, the sub-method updated N in place.  Tell the legalizer
289  // core about this.
290  if (Res.getNode() == N)
291    return true;
292
293  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
294         "Invalid operand expansion");
295
296  ReplaceValueWith(SDValue(N, 0), Res);
297  return false;
298}
299
300/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
301/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
302SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
303  SDValue Elt = GetScalarizedVector(N->getOperand(0));
304  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
305                     N->getValueType(0), Elt);
306}
307
308/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
309/// use a BUILD_VECTOR instead.
310SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
311  SmallVector<SDValue, 8> Ops(N->getNumOperands());
312  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
313    Ops[i] = GetScalarizedVector(N->getOperand(i));
314  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0),
315                     &Ops[0], Ops.size());
316}
317
318/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
319/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
320/// index.
321SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
322  return GetScalarizedVector(N->getOperand(0));
323}
324
325/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
326/// scalarized, it must be <1 x ty>.  Just store the element.
327SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
328  assert(N->isUnindexed() && "Indexed store of one-element vector?");
329  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
330  DebugLoc dl = N->getDebugLoc();
331
332  if (N->isTruncatingStore())
333    return DAG.getTruncStore(N->getChain(), dl,
334                             GetScalarizedVector(N->getOperand(1)),
335                             N->getBasePtr(),
336                             N->getSrcValue(), N->getSrcValueOffset(),
337                             N->getMemoryVT().getVectorElementType(),
338                             N->isVolatile(), N->getAlignment());
339
340  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
341                      N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
342                      N->isVolatile(), N->getAlignment());
343}
344
345
346//===----------------------------------------------------------------------===//
347//  Result Vector Splitting
348//===----------------------------------------------------------------------===//
349
350/// SplitVectorResult - This method is called when the specified result of the
351/// specified node is found to need vector splitting.  At this point, the node
352/// may also have invalid operands or may have other results that need
353/// legalization, we just know that (at least) one result needs vector
354/// splitting.
355void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
356  DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
357  SDValue Lo, Hi;
358
359  switch (N->getOpcode()) {
360  default:
361#ifndef NDEBUG
362    cerr << "SplitVectorResult #" << ResNo << ": ";
363    N->dump(&DAG); cerr << "\n";
364#endif
365    assert(0 && "Do not know how to split the result of this operator!");
366    abort();
367
368  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
369  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
370  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
371  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
372
373  case ISD::BIT_CONVERT:       SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
374  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
375  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
376  case ISD::CONVERT_RNDSAT:    SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
377  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
378  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
379  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
380  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
381  case ISD::LOAD:              SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);break;
382  case ISD::VECTOR_SHUFFLE:    SplitVecRes_VECTOR_SHUFFLE(N, Lo, Hi); break;
383  case ISD::VSETCC:            SplitVecRes_VSETCC(N, Lo, Hi); break;
384
385  case ISD::CTTZ:
386  case ISD::CTLZ:
387  case ISD::CTPOP:
388  case ISD::FNEG:
389  case ISD::FABS:
390  case ISD::FSQRT:
391  case ISD::FSIN:
392  case ISD::FCOS:
393  case ISD::FTRUNC:
394  case ISD::FFLOOR:
395  case ISD::FCEIL:
396  case ISD::FRINT:
397  case ISD::FNEARBYINT:
398  case ISD::FP_TO_SINT:
399  case ISD::FP_TO_UINT:
400  case ISD::SINT_TO_FP:
401  case ISD::TRUNCATE:
402  case ISD::UINT_TO_FP: SplitVecRes_UnaryOp(N, Lo, Hi); break;
403
404  case ISD::ADD:
405  case ISD::SUB:
406  case ISD::MUL:
407  case ISD::FADD:
408  case ISD::FSUB:
409  case ISD::FMUL:
410  case ISD::SDIV:
411  case ISD::UDIV:
412  case ISD::FDIV:
413  case ISD::FPOW:
414  case ISD::AND:
415  case ISD::OR:
416  case ISD::XOR:
417  case ISD::SHL:
418  case ISD::SRA:
419  case ISD::SRL:
420  case ISD::UREM:
421  case ISD::SREM:
422  case ISD::FREM: SplitVecRes_BinOp(N, Lo, Hi); break;
423  }
424
425  // If Lo/Hi is null, the sub-method took care of registering results etc.
426  if (Lo.getNode())
427    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
428}
429
430void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
431                                         SDValue &Hi) {
432  SDValue LHSLo, LHSHi;
433  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
434  SDValue RHSLo, RHSHi;
435  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
436  DebugLoc dl = N->getDebugLoc();
437
438  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
439  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
440}
441
442void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
443                                               SDValue &Hi) {
444  // We know the result is a vector.  The input may be either a vector or a
445  // scalar value.
446  MVT LoVT, HiVT;
447  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
448  DebugLoc dl = N->getDebugLoc();
449
450  SDValue InOp = N->getOperand(0);
451  MVT InVT = InOp.getValueType();
452
453  // Handle some special cases efficiently.
454  switch (getTypeAction(InVT)) {
455  default:
456    assert(false && "Unknown type action!");
457  case Legal:
458  case PromoteInteger:
459  case SoftenFloat:
460  case ScalarizeVector:
461    break;
462  case ExpandInteger:
463  case ExpandFloat:
464    // A scalar to vector conversion, where the scalar needs expansion.
465    // If the vector is being split in two then we can just convert the
466    // expanded pieces.
467    if (LoVT == HiVT) {
468      GetExpandedOp(InOp, Lo, Hi);
469      if (TLI.isBigEndian())
470        std::swap(Lo, Hi);
471      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
472      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
473      return;
474    }
475    break;
476  case SplitVector:
477    // If the input is a vector that needs to be split, convert each split
478    // piece of the input now.
479    GetSplitVector(InOp, Lo, Hi);
480    Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
481    Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
482    return;
483  }
484
485  // In the general case, convert the input to an integer and split it by hand.
486  MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
487  MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
488  if (TLI.isBigEndian())
489    std::swap(LoIntVT, HiIntVT);
490
491  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
492
493  if (TLI.isBigEndian())
494    std::swap(Lo, Hi);
495  Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
496  Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
497}
498
499void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
500                                                SDValue &Hi) {
501  MVT LoVT, HiVT;
502  DebugLoc dl = N->getDebugLoc();
503  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
504  unsigned LoNumElts = LoVT.getVectorNumElements();
505  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
506  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
507
508  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
509  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
510}
511
512void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
513                                                  SDValue &Hi) {
514  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
515  DebugLoc dl = N->getDebugLoc();
516  unsigned NumSubvectors = N->getNumOperands() / 2;
517  if (NumSubvectors == 1) {
518    Lo = N->getOperand(0);
519    Hi = N->getOperand(1);
520    return;
521  }
522
523  MVT LoVT, HiVT;
524  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
525
526  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
527  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
528
529  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
530  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
531}
532
533void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
534                                                  SDValue &Hi) {
535  MVT LoVT, HiVT;
536  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
537  SDValue VLo, VHi;
538  GetSplitVector(N->getOperand(0), VLo, VHi);
539  SDValue DTyOpLo =  DAG.getValueType(LoVT);
540  SDValue DTyOpHi =  DAG.getValueType(HiVT);
541  SDValue STyOpLo =  DAG.getValueType(VLo.getValueType());
542  SDValue STyOpHi =  DAG.getValueType(VHi.getValueType());
543
544  SDValue RndOp = N->getOperand(3);
545  SDValue SatOp = N->getOperand(4);
546  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
547
548  Lo = DAG.getConvertRndSat(LoVT, VLo, DTyOpLo, STyOpLo, RndOp, SatOp, CvtCode);
549  Hi = DAG.getConvertRndSat(HiVT, VHi, DTyOpHi, STyOpHi, RndOp, SatOp, CvtCode);
550}
551
552void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
553                                                     SDValue &Hi) {
554  SDValue Vec = N->getOperand(0);
555  SDValue Idx = N->getOperand(1);
556  MVT IdxVT = Idx.getValueType();
557  DebugLoc dl = N->getDebugLoc();
558
559  MVT LoVT, HiVT;
560  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
561  // The indices are not guaranteed to be a multiple of the new vector
562  // size unless the original vector type was split in two.
563  assert(LoVT == HiVT && "Non power-of-two vectors not supported!");
564
565  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
566  Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
567                    DAG.getConstant(LoVT.getVectorNumElements(), IdxVT));
568  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, Idx);
569}
570
571void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
572                                         SDValue &Hi) {
573  DebugLoc dl = N->getDebugLoc();
574  GetSplitVector(N->getOperand(0), Lo, Hi);
575  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
576  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
577}
578
579void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
580                                                     SDValue &Hi) {
581  SDValue Vec = N->getOperand(0);
582  SDValue Elt = N->getOperand(1);
583  SDValue Idx = N->getOperand(2);
584  DebugLoc dl = N->getDebugLoc();
585  GetSplitVector(Vec, Lo, Hi);
586
587  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
588    unsigned IdxVal = CIdx->getZExtValue();
589    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
590    if (IdxVal < LoNumElts)
591      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
592                       Lo.getValueType(), Lo, Elt, Idx);
593    else
594      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
595                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
596    return;
597  }
598
599  // Spill the vector to the stack.
600  MVT VecVT = Vec.getValueType();
601  MVT EltVT = VecVT.getVectorElementType();
602  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
603  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
604
605  // Store the new element.  This may be larger than the vector element type,
606  // so use a truncating store.
607  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
608  unsigned Alignment =
609    TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForMVT());
610  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, NULL, 0, EltVT);
611
612  // Load the Lo part from the stack slot.
613  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, NULL, 0);
614
615  // Increment the pointer to the other part.
616  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
617  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
618                         DAG.getIntPtrConstant(IncrementSize));
619
620  // Load the Hi part from the stack slot.
621  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, NULL, 0, false,
622                   MinAlign(Alignment, IncrementSize));
623}
624
625void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
626                                                    SDValue &Hi) {
627  MVT LoVT, HiVT;
628  DebugLoc dl = N->getDebugLoc();
629  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
630  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
631  Hi = DAG.getNode(ISD::UNDEF, dl, HiVT);
632}
633
634void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
635                                        SDValue &Hi) {
636  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
637  MVT LoVT, HiVT;
638  DebugLoc dl = LD->getDebugLoc();
639  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
640
641  ISD::LoadExtType ExtType = LD->getExtensionType();
642  SDValue Ch = LD->getChain();
643  SDValue Ptr = LD->getBasePtr();
644  SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType());
645  const Value *SV = LD->getSrcValue();
646  int SVOffset = LD->getSrcValueOffset();
647  MVT MemoryVT = LD->getMemoryVT();
648  unsigned Alignment = LD->getAlignment();
649  bool isVolatile = LD->isVolatile();
650
651  MVT LoMemVT, HiMemVT;
652  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
653
654  Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, LoVT, Ch, Ptr, Offset,
655                   SV, SVOffset, LoMemVT, isVolatile, Alignment);
656
657  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
658  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
659                    DAG.getIntPtrConstant(IncrementSize));
660  SVOffset += IncrementSize;
661  Alignment = MinAlign(Alignment, IncrementSize);
662  Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, HiVT, Ch, Ptr, Offset,
663                   SV, SVOffset, HiMemVT, isVolatile, Alignment);
664
665  // Build a factor node to remember that this load is independent of the
666  // other one.
667  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
668                   Hi.getValue(1));
669
670  // Legalized the chain result - switch anything that used the old chain to
671  // use the new one.
672  ReplaceValueWith(SDValue(LD, 1), Ch);
673}
674
675void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
676                                           SDValue &Hi) {
677  // Get the dest types - they may not match the input types, e.g. int_to_fp.
678  MVT LoVT, HiVT;
679  DebugLoc dl = N->getDebugLoc();
680  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
681
682  // Split the input.
683  MVT InVT = N->getOperand(0).getValueType();
684  switch (getTypeAction(InVT)) {
685  default: assert(0 && "Unexpected type action!");
686  case Legal: {
687    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
688    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
689                                 LoVT.getVectorNumElements());
690    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
691                     DAG.getIntPtrConstant(0));
692    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
693                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
694    break;
695  }
696  case SplitVector:
697    GetSplitVector(N->getOperand(0), Lo, Hi);
698    break;
699  }
700
701  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
702  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
703}
704
705void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo,
706                                                  SDValue &Hi) {
707  // The low and high parts of the original input give four input vectors.
708  SDValue Inputs[4];
709  DebugLoc dl = N->getDebugLoc();
710  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
711  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
712  MVT NewVT = Inputs[0].getValueType();
713  unsigned NewElts = NewVT.getVectorNumElements();
714  assert(NewVT == Inputs[1].getValueType() &&
715         "Non power-of-two vectors not supported!");
716
717  // If Lo or Hi uses elements from at most two of the four input vectors, then
718  // express it as a vector shuffle of those two inputs.  Otherwise extract the
719  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
720  SDValue Mask = N->getOperand(2);
721  MVT IdxVT = Mask.getValueType().getVectorElementType();
722  SmallVector<SDValue, 16> Ops;
723  Ops.reserve(NewElts);
724  for (unsigned High = 0; High < 2; ++High) {
725    SDValue &Output = High ? Hi : Lo;
726
727    // Build a shuffle mask for the output, discovering on the fly which
728    // input vectors to use as shuffle operands (recorded in InputUsed).
729    // If building a suitable shuffle vector proves too hard, then bail
730    // out with useBuildVector set.
731    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
732    unsigned FirstMaskIdx = High * NewElts;
733    bool useBuildVector = false;
734    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
735      SDValue Arg = Mask.getOperand(FirstMaskIdx + MaskOffset);
736
737      // The mask element.  This indexes into the input.
738      unsigned Idx = Arg.getOpcode() == ISD::UNDEF ?
739        -1U : cast<ConstantSDNode>(Arg)->getZExtValue();
740
741      // The input vector this mask element indexes into.
742      unsigned Input = Idx / NewElts;
743
744      if (Input >= array_lengthof(Inputs)) {
745        // The mask element does not index into any input vector.
746        Ops.push_back(DAG.getNode(ISD::UNDEF, dl, IdxVT));
747        continue;
748      }
749
750      // Turn the index into an offset from the start of the input vector.
751      Idx -= Input * NewElts;
752
753      // Find or create a shuffle vector operand to hold this input.
754      unsigned OpNo;
755      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
756        if (InputUsed[OpNo] == Input) {
757          // This input vector is already an operand.
758          break;
759        } else if (InputUsed[OpNo] == -1U) {
760          // Create a new operand for this input vector.
761          InputUsed[OpNo] = Input;
762          break;
763        }
764      }
765
766      if (OpNo >= array_lengthof(InputUsed)) {
767        // More than two input vectors used!  Give up on trying to create a
768        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
769        useBuildVector = true;
770        break;
771      }
772
773      // Add the mask index for the new shuffle vector.
774      Ops.push_back(DAG.getConstant(Idx + OpNo * NewElts, IdxVT));
775    }
776
777    if (useBuildVector) {
778      MVT EltVT = NewVT.getVectorElementType();
779      Ops.clear();
780
781      // Extract the input elements by hand.
782      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
783        SDValue Arg = Mask.getOperand(FirstMaskIdx + MaskOffset);
784
785        // The mask element.  This indexes into the input.
786        unsigned Idx = Arg.getOpcode() == ISD::UNDEF ?
787          -1U : cast<ConstantSDNode>(Arg)->getZExtValue();
788
789        // The input vector this mask element indexes into.
790        unsigned Input = Idx / NewElts;
791
792        if (Input >= array_lengthof(Inputs)) {
793          // The mask element is "undef" or indexes off the end of the input.
794          Ops.push_back(DAG.getNode(ISD::UNDEF, dl, EltVT));
795          continue;
796        }
797
798        // Turn the index into an offset from the start of the input vector.
799        Idx -= Input * NewElts;
800
801        // Extract the vector element by hand.
802        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
803                                  Inputs[Input], DAG.getIntPtrConstant(Idx)));
804      }
805
806      // Construct the Lo/Hi output using a BUILD_VECTOR.
807      Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, &Ops[0], Ops.size());
808    } else if (InputUsed[0] == -1U) {
809      // No input vectors were used!  The result is undefined.
810      Output = DAG.getNode(ISD::UNDEF, dl, NewVT);
811    } else {
812      // At least one input vector was used.  Create a new shuffle vector.
813      SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR, dl,
814                                    MVT::getVectorVT(IdxVT, Ops.size()),
815                                    &Ops[0], Ops.size());
816      SDValue Op0 = Inputs[InputUsed[0]];
817      // If only one input was used, use an undefined vector for the other.
818      SDValue Op1 = InputUsed[1] == -1U ?
819        DAG.getNode(ISD::UNDEF, dl, NewVT) : Inputs[InputUsed[1]];
820      Output = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, NewVT, Op0, Op1, NewMask);
821    }
822
823    Ops.clear();
824  }
825}
826
827void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
828                                          SDValue &Hi) {
829  MVT LoVT, HiVT;
830  DebugLoc dl = N->getDebugLoc();
831  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
832
833  SDValue LL, LH, RL, RH;
834  GetSplitVector(N->getOperand(0), LL, LH);
835  GetSplitVector(N->getOperand(1), RL, RH);
836
837  Lo = DAG.getNode(ISD::VSETCC, dl, LoVT, LL, RL, N->getOperand(2));
838  Hi = DAG.getNode(ISD::VSETCC, dl, HiVT, LH, RH, N->getOperand(2));
839}
840
841
842//===----------------------------------------------------------------------===//
843//  Operand Vector Splitting
844//===----------------------------------------------------------------------===//
845
846/// SplitVectorOperand - This method is called when the specified operand of the
847/// specified node is found to need vector splitting.  At this point, all of the
848/// result types of the node are known to be legal, but other operands of the
849/// node may need legalization as well as the specified one.
850bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
851  DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
852  SDValue Res = SDValue();
853
854  if (Res.getNode() == 0) {
855    switch (N->getOpcode()) {
856    default:
857#ifndef NDEBUG
858      cerr << "SplitVectorOperand Op #" << OpNo << ": ";
859      N->dump(&DAG); cerr << "\n";
860#endif
861      assert(0 && "Do not know how to split this operator's operand!");
862      abort();
863
864    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
865    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
866    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
867    case ISD::STORE:             Res = SplitVecOp_STORE(cast<StoreSDNode>(N),
868                                                        OpNo); break;
869    case ISD::VECTOR_SHUFFLE:    Res = SplitVecOp_VECTOR_SHUFFLE(N, OpNo);break;
870
871    case ISD::CTTZ:
872    case ISD::CTLZ:
873    case ISD::CTPOP:
874    case ISD::FP_TO_SINT:
875    case ISD::FP_TO_UINT:
876    case ISD::SINT_TO_FP:
877    case ISD::TRUNCATE:
878    case ISD::UINT_TO_FP: Res = SplitVecOp_UnaryOp(N); break;
879    }
880  }
881
882  // If the result is null, the sub-method took care of registering results etc.
883  if (!Res.getNode()) return false;
884
885  // If the result is N, the sub-method updated N in place.  Tell the legalizer
886  // core about this.
887  if (Res.getNode() == N)
888    return true;
889
890  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
891         "Invalid operand expansion");
892
893  ReplaceValueWith(SDValue(N, 0), Res);
894  return false;
895}
896
897SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
898  // The result has a legal vector type, but the input needs splitting.
899  MVT ResVT = N->getValueType(0);
900  SDValue Lo, Hi;
901  DebugLoc dl = N->getDebugLoc();
902  GetSplitVector(N->getOperand(0), Lo, Hi);
903  assert(Lo.getValueType() == Hi.getValueType() &&
904         "Returns legal non-power-of-two vector type?");
905  MVT InVT = Lo.getValueType();
906
907  MVT OutVT = MVT::getVectorVT(ResVT.getVectorElementType(),
908                               InVT.getVectorNumElements());
909
910  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
911  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
912
913  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
914}
915
916SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
917  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
918  // end up being split all the way down to individual components.  Convert the
919  // split pieces into integers and reassemble.
920  SDValue Lo, Hi;
921  GetSplitVector(N->getOperand(0), Lo, Hi);
922  Lo = BitConvertToInteger(Lo);
923  Hi = BitConvertToInteger(Hi);
924
925  if (TLI.isBigEndian())
926    std::swap(Lo, Hi);
927
928  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
929                     JoinIntegers(Lo, Hi));
930}
931
932SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
933  // We know that the extracted result type is legal.  For now, assume the index
934  // is a constant.
935  MVT SubVT = N->getValueType(0);
936  SDValue Idx = N->getOperand(1);
937  DebugLoc dl = N->getDebugLoc();
938  SDValue Lo, Hi;
939  GetSplitVector(N->getOperand(0), Lo, Hi);
940
941  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
942  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
943
944  if (IdxVal < LoElts) {
945    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
946           "Extracted subvector crosses vector split!");
947    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
948  } else {
949    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
950                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
951  }
952}
953
954SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
955  SDValue Vec = N->getOperand(0);
956  SDValue Idx = N->getOperand(1);
957  MVT VecVT = Vec.getValueType();
958
959  if (isa<ConstantSDNode>(Idx)) {
960    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
961    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
962
963    SDValue Lo, Hi;
964    GetSplitVector(Vec, Lo, Hi);
965
966    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
967
968    if (IdxVal < LoElts)
969      return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
970    else
971      return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
972                                    DAG.getConstant(IdxVal - LoElts,
973                                                    Idx.getValueType()));
974  }
975
976  // Store the vector to the stack.
977  MVT EltVT = VecVT.getVectorElementType();
978  DebugLoc dl = N->getDebugLoc();
979  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
980  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
981  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
982  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, SV, 0);
983
984  // Load back the required element.
985  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
986  return DAG.getLoad(EltVT, dl, Store, StackPtr, SV, 0);
987}
988
989SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
990  assert(N->isUnindexed() && "Indexed store of vector?");
991  assert(OpNo == 1 && "Can only split the stored value");
992  DebugLoc dl = N->getDebugLoc();
993
994  bool isTruncating = N->isTruncatingStore();
995  SDValue Ch  = N->getChain();
996  SDValue Ptr = N->getBasePtr();
997  int SVOffset = N->getSrcValueOffset();
998  MVT MemoryVT = N->getMemoryVT();
999  unsigned Alignment = N->getAlignment();
1000  bool isVol = N->isVolatile();
1001  SDValue Lo, Hi;
1002  GetSplitVector(N->getOperand(1), Lo, Hi);
1003
1004  MVT LoMemVT, HiMemVT;
1005  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
1006
1007  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1008
1009  if (isTruncating)
1010    Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1011                           LoMemVT, isVol, Alignment);
1012  else
1013    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1014                      isVol, Alignment);
1015
1016  // Increment the pointer to the other half.
1017  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1018                    DAG.getIntPtrConstant(IncrementSize));
1019
1020  if (isTruncating)
1021    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
1022                           N->getSrcValue(), SVOffset+IncrementSize,
1023                           HiMemVT,
1024                           isVol, MinAlign(Alignment, IncrementSize));
1025  else
1026    Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
1027                      isVol, MinAlign(Alignment, IncrementSize));
1028
1029  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1030}
1031
1032SDValue DAGTypeLegalizer::SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo) {
1033  assert(OpNo == 2 && "Shuffle source type differs from result type?");
1034  SDValue Mask = N->getOperand(2);
1035  DebugLoc dl = N->getDebugLoc();
1036  unsigned MaskLength = Mask.getValueType().getVectorNumElements();
1037  unsigned LargestMaskEntryPlusOne = 2 * MaskLength;
1038  unsigned MinimumBitWidth = Log2_32_Ceil(LargestMaskEntryPlusOne);
1039
1040  // Look for a legal vector type to place the mask values in.
1041  // Note that there may not be *any* legal vector-of-integer
1042  // type for which the element type is legal!
1043  for (MVT::SimpleValueType EltVT = MVT::FIRST_INTEGER_VALUETYPE;
1044       EltVT <= MVT::LAST_INTEGER_VALUETYPE;
1045       // Integer values types are consecutively numbered.  Exploit this.
1046       EltVT = MVT::SimpleValueType(EltVT + 1)) {
1047
1048    // Is the element type big enough to hold the values?
1049    if (MVT(EltVT).getSizeInBits() < MinimumBitWidth)
1050      // Nope.
1051      continue;
1052
1053    // Is the vector type legal?
1054    MVT VecVT = MVT::getVectorVT(EltVT, MaskLength);
1055    if (!isTypeLegal(VecVT))
1056      // Nope.
1057      continue;
1058
1059    // If the element type is not legal, find a larger legal type to use for
1060    // the BUILD_VECTOR operands.  This is an ugly hack, but seems to work!
1061    // FIXME: The real solution is to change VECTOR_SHUFFLE into a variadic
1062    // node where the shuffle mask is a list of integer operands, #2 .. #2+n.
1063    for (MVT::SimpleValueType OpVT = EltVT; OpVT <= MVT::LAST_INTEGER_VALUETYPE;
1064         // Integer values types are consecutively numbered.  Exploit this.
1065         OpVT = MVT::SimpleValueType(OpVT + 1)) {
1066      if (!isTypeLegal(OpVT))
1067        continue;
1068
1069      // Success!  Rebuild the vector using the legal types.
1070      SmallVector<SDValue, 16> Ops(MaskLength);
1071      for (unsigned i = 0; i < MaskLength; ++i) {
1072        SDValue Arg = Mask.getOperand(i);
1073        if (Arg.getOpcode() == ISD::UNDEF) {
1074          Ops[i] = DAG.getNode(ISD::UNDEF, dl, OpVT);
1075        } else {
1076          uint64_t Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
1077          Ops[i] = DAG.getConstant(Idx, OpVT);
1078        }
1079      }
1080      return DAG.UpdateNodeOperands(SDValue(N,0),
1081                                    N->getOperand(0), N->getOperand(1),
1082                                    DAG.getNode(ISD::BUILD_VECTOR, dl,
1083                                                VecVT, &Ops[0], Ops.size()));
1084    }
1085
1086    // Continuing is pointless - failure is certain.
1087    break;
1088  }
1089  assert(false && "Failed to find an appropriate mask type!");
1090  return SDValue(N, 0);
1091}
1092
1093
1094//===----------------------------------------------------------------------===//
1095//  Result Vector Widening
1096//===----------------------------------------------------------------------===//
1097
1098void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1099  DEBUG(cerr << "Widen node result " << ResNo << ": "; N->dump(&DAG);
1100        cerr << "\n");
1101  SDValue Res = SDValue();
1102
1103  switch (N->getOpcode()) {
1104  default:
1105#ifndef NDEBUG
1106    cerr << "WidenVectorResult #" << ResNo << ": ";
1107    N->dump(&DAG); cerr << "\n";
1108#endif
1109    assert(0 && "Do not know how to widen the result of this operator!");
1110    abort();
1111
1112  case ISD::BIT_CONVERT:       Res = WidenVecRes_BIT_CONVERT(N); break;
1113  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1114  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1115  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1116  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1117  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1118  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1119  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1120  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1121  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1122  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1123  case ISD::VECTOR_SHUFFLE:    Res = WidenVecRes_VECTOR_SHUFFLE(N); break;
1124  case ISD::VSETCC:            Res = WidenVecRes_VSETCC(N); break;
1125
1126  case ISD::ADD:
1127  case ISD::AND:
1128  case ISD::BSWAP:
1129  case ISD::FADD:
1130  case ISD::FCOPYSIGN:
1131  case ISD::FDIV:
1132  case ISD::FMUL:
1133  case ISD::FPOW:
1134  case ISD::FPOWI:
1135  case ISD::FREM:
1136  case ISD::FSUB:
1137  case ISD::MUL:
1138  case ISD::MULHS:
1139  case ISD::MULHU:
1140  case ISD::OR:
1141  case ISD::SDIV:
1142  case ISD::SREM:
1143  case ISD::UDIV:
1144  case ISD::UREM:
1145  case ISD::SUB:
1146  case ISD::XOR:               Res = WidenVecRes_Binary(N); break;
1147
1148  case ISD::SHL:
1149  case ISD::SRA:
1150  case ISD::SRL:               Res = WidenVecRes_Shift(N); break;
1151
1152  case ISD::ANY_EXTEND:
1153  case ISD::FP_ROUND:
1154  case ISD::FP_TO_SINT:
1155  case ISD::FP_TO_UINT:
1156  case ISD::SIGN_EXTEND:
1157  case ISD::SINT_TO_FP:
1158  case ISD::TRUNCATE:
1159  case ISD::ZERO_EXTEND:
1160  case ISD::UINT_TO_FP:        Res = WidenVecRes_Convert(N); break;
1161
1162  case ISD::CTLZ:
1163  case ISD::CTPOP:
1164  case ISD::CTTZ:
1165  case ISD::FABS:
1166  case ISD::FCOS:
1167  case ISD::FNEG:
1168  case ISD::FSIN:
1169  case ISD::FSQRT:             Res = WidenVecRes_Unary(N); break;
1170  }
1171
1172  // If Res is null, the sub-method took care of registering the result.
1173  if (Res.getNode())
1174    SetWidenedVector(SDValue(N, ResNo), Res);
1175}
1176
1177SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1178  // Binary op widening.
1179  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1180  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1181  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1182  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp1, InOp2);
1183}
1184
1185SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1186  SDValue InOp = N->getOperand(0);
1187  DebugLoc dl = N->getDebugLoc();
1188
1189  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1190  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1191
1192  MVT InVT = InOp.getValueType();
1193  MVT InEltVT = InVT.getVectorElementType();
1194  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1195
1196  unsigned Opcode = N->getOpcode();
1197  unsigned InVTNumElts = InVT.getVectorNumElements();
1198
1199  if (getTypeAction(InVT) == WidenVector) {
1200    InOp = GetWidenedVector(N->getOperand(0));
1201    InVT = InOp.getValueType();
1202    InVTNumElts = InVT.getVectorNumElements();
1203    if (InVTNumElts == WidenNumElts)
1204      return DAG.getNode(Opcode, dl, WidenVT, InOp);
1205  }
1206
1207  if (TLI.isTypeLegal(InWidenVT)) {
1208    // Because the result and the input are different vector types, widening
1209    // the result could create a legal type but widening the input might make
1210    // it an illegal type that might lead to repeatedly splitting the input
1211    // and then widening it. To avoid this, we widen the input only if
1212    // it results in a legal type.
1213    if (WidenNumElts % InVTNumElts == 0) {
1214      // Widen the input and call convert on the widened input vector.
1215      unsigned NumConcat = WidenNumElts/InVTNumElts;
1216      SmallVector<SDValue, 16> Ops(NumConcat);
1217      Ops[0] = InOp;
1218      SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, InVT);
1219      for (unsigned i = 1; i != NumConcat; ++i)
1220        Ops[i] = UndefVal;
1221      return DAG.getNode(Opcode, dl, WidenVT,
1222                         DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT,
1223                         &Ops[0], NumConcat));
1224    }
1225
1226    if (InVTNumElts % WidenNumElts == 0) {
1227      // Extract the input and convert the shorten input vector.
1228      return DAG.getNode(Opcode, dl, WidenVT,
1229                         DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT,
1230                                     InOp, DAG.getIntPtrConstant(0)));
1231    }
1232  }
1233
1234  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1235  SmallVector<SDValue, 16> Ops(WidenNumElts);
1236  MVT EltVT = WidenVT.getVectorElementType();
1237  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1238  unsigned i;
1239  for (i=0; i < MinElts; ++i)
1240    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1241                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1242                                     DAG.getIntPtrConstant(i)));
1243
1244  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
1245  for (; i < WidenNumElts; ++i)
1246    Ops[i] = UndefVal;
1247
1248  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1249}
1250
1251SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1252  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1253  SDValue InOp = GetWidenedVector(N->getOperand(0));
1254  SDValue ShOp = N->getOperand(1);
1255
1256  MVT ShVT = ShOp.getValueType();
1257  if (getTypeAction(ShVT) == WidenVector) {
1258    ShOp = GetWidenedVector(ShOp);
1259    ShVT = ShOp.getValueType();
1260  }
1261  MVT ShWidenVT = MVT::getVectorVT(ShVT.getVectorElementType(),
1262                                   WidenVT.getVectorNumElements());
1263  if (ShVT != ShWidenVT)
1264    ShOp = ModifyToType(ShOp, ShWidenVT);
1265
1266  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
1267}
1268
1269SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1270  // Unary op widening.
1271  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1272  SDValue InOp = GetWidenedVector(N->getOperand(0));
1273  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
1274}
1275
1276SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
1277  SDValue InOp = N->getOperand(0);
1278  MVT InVT = InOp.getValueType();
1279  MVT VT = N->getValueType(0);
1280  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1281  DebugLoc dl = N->getDebugLoc();
1282
1283  switch (getTypeAction(InVT)) {
1284  default:
1285    assert(false && "Unknown type action!");
1286    break;
1287  case Legal:
1288    break;
1289  case PromoteInteger:
1290    // If the InOp is promoted to the same size, convert it.  Otherwise,
1291    // fall out of the switch and widen the promoted input.
1292    InOp = GetPromotedInteger(InOp);
1293    InVT = InOp.getValueType();
1294    if (WidenVT.bitsEq(InVT))
1295      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1296    break;
1297  case SoftenFloat:
1298  case ExpandInteger:
1299  case ExpandFloat:
1300  case ScalarizeVector:
1301  case SplitVector:
1302    break;
1303  case WidenVector:
1304    // If the InOp is widened to the same size, convert it.  Otherwise, fall
1305    // out of the switch and widen the widened input.
1306    InOp = GetWidenedVector(InOp);
1307    InVT = InOp.getValueType();
1308    if (WidenVT.bitsEq(InVT))
1309      // The input widens to the same size. Convert to the widen value.
1310      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1311    break;
1312  }
1313
1314  unsigned WidenSize = WidenVT.getSizeInBits();
1315  unsigned InSize = InVT.getSizeInBits();
1316  if (WidenSize % InSize == 0) {
1317    // Determine new input vector type.  The new input vector type will use
1318    // the same element type (if its a vector) or use the input type as a
1319    // vector.  It is the same size as the type to widen to.
1320    MVT NewInVT;
1321    unsigned NewNumElts = WidenSize / InSize;
1322    if (InVT.isVector()) {
1323      MVT InEltVT = InVT.getVectorElementType();
1324      NewInVT= MVT::getVectorVT(InEltVT, WidenSize / InEltVT.getSizeInBits());
1325    } else {
1326      NewInVT = MVT::getVectorVT(InVT, NewNumElts);
1327    }
1328
1329    if (TLI.isTypeLegal(NewInVT)) {
1330      // Because the result and the input are different vector types, widening
1331      // the result could create a legal type but widening the input might make
1332      // it an illegal type that might lead to repeatedly splitting the input
1333      // and then widening it. To avoid this, we widen the input only if
1334      // it results in a legal type.
1335      SmallVector<SDValue, 16> Ops(NewNumElts);
1336      SDValue UndefVal = DAG.getNode(ISD::UNDEF, InVT);
1337      Ops[0] = InOp;
1338      for (unsigned i = 1; i < NewNumElts; ++i)
1339        Ops[i] = UndefVal;
1340
1341      SDValue NewVec;
1342      if (InVT.isVector())
1343        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1344                             NewInVT, &Ops[0], NewNumElts);
1345      else
1346        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1347                             NewInVT, &Ops[0], NewNumElts);
1348      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, NewVec);
1349    }
1350  }
1351
1352  // This should occur rarely. Lower the bit-convert to a store/load
1353  // from the stack. Create the stack frame object.  Make sure it is aligned
1354  // for both the source and destination types.
1355  SDValue FIPtr = DAG.CreateStackTemporary(InVT, WidenVT);
1356  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1357  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1358
1359  // Emit a store to the stack slot.
1360  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1361
1362  // Result is a load from the stack slot.
1363  return DAG.getLoad(WidenVT, dl, Store, FIPtr, SV, 0);
1364}
1365
1366SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1367  DebugLoc dl = N->getDebugLoc();
1368  // Build a vector with undefined for the new nodes.
1369  MVT VT = N->getValueType(0);
1370  MVT EltVT = VT.getVectorElementType();
1371  unsigned NumElts = VT.getVectorNumElements();
1372
1373  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1374  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1375
1376  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1377  NewOps.reserve(WidenNumElts);
1378  for (unsigned i = NumElts; i < WidenNumElts; ++i)
1379    NewOps.push_back(DAG.getNode(ISD::UNDEF, dl, EltVT));
1380
1381  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1382}
1383
1384SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1385  MVT InVT = N->getOperand(0).getValueType();
1386  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1387  DebugLoc dl = N->getDebugLoc();
1388  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1389  unsigned NumOperands = N->getNumOperands();
1390
1391  bool InputWidened = false; // Indicates we need to widen the input.
1392  if (getTypeAction(InVT) != WidenVector) {
1393    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1394      // Add undef vectors to widen to correct length.
1395      unsigned NumConcat = WidenVT.getVectorNumElements() /
1396                           InVT.getVectorNumElements();
1397      SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, InVT);
1398      SmallVector<SDValue, 16> Ops(NumConcat);
1399      for (unsigned i=0; i < NumOperands; ++i)
1400        Ops[i] = N->getOperand(i);
1401      for (unsigned i = NumOperands; i != NumConcat; ++i)
1402        Ops[i] = UndefVal;
1403      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1404    }
1405  } else {
1406    InputWidened = true;
1407    if (WidenVT == TLI.getTypeToTransformTo(InVT)) {
1408      // The inputs and the result are widen to the same value.
1409      unsigned i;
1410      for (i=1; i < NumOperands; ++i)
1411        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1412          break;
1413
1414      if (i > NumOperands)
1415        // Everything but the first operand is an UNDEF so just return the
1416        // widened first operand.
1417        return GetWidenedVector(N->getOperand(0));
1418
1419      if (NumOperands == 2) {
1420        // Replace concat of two operands with a shuffle.
1421        MVT PtrVT = TLI.getPointerTy();
1422        SmallVector<SDValue, 16> MaskOps(WidenNumElts);
1423        for (unsigned i=0; i < WidenNumElts/2; ++i) {
1424          MaskOps[i] = DAG.getConstant(i, PtrVT);
1425          MaskOps[i+WidenNumElts/2] = DAG.getConstant(i+WidenNumElts, PtrVT);
1426        }
1427        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl,
1428                                   MVT::getVectorVT(PtrVT, WidenNumElts),
1429                                   &MaskOps[0], WidenNumElts);
1430        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, WidenVT,
1431                           GetWidenedVector(N->getOperand(0)),
1432                           GetWidenedVector(N->getOperand(1)), Mask);
1433      }
1434    }
1435  }
1436
1437  // Fall back to use extracts and build vector.
1438  MVT EltVT = WidenVT.getVectorElementType();
1439  unsigned NumInElts = InVT.getVectorNumElements();
1440  SmallVector<SDValue, 16> Ops(WidenNumElts);
1441  unsigned Idx = 0;
1442  for (unsigned i=0; i < NumOperands; ++i) {
1443    SDValue InOp = N->getOperand(i);
1444    if (InputWidened)
1445      InOp = GetWidenedVector(InOp);
1446    for (unsigned j=0; j < NumInElts; ++j)
1447        Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1448                                 DAG.getIntPtrConstant(j));
1449  }
1450  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
1451  for (; Idx < WidenNumElts; ++Idx)
1452    Ops[Idx] = UndefVal;
1453  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1454}
1455
1456SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
1457  SDValue InOp  = N->getOperand(0);
1458  SDValue RndOp = N->getOperand(3);
1459  SDValue SatOp = N->getOperand(4);
1460
1461  MVT      WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1462  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1463
1464  MVT InVT = InOp.getValueType();
1465  MVT InEltVT = InVT.getVectorElementType();
1466  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1467
1468  SDValue DTyOp = DAG.getValueType(WidenVT);
1469  SDValue STyOp = DAG.getValueType(InWidenVT);
1470  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1471
1472  unsigned InVTNumElts = InVT.getVectorNumElements();
1473  if (getTypeAction(InVT) == WidenVector) {
1474    InOp = GetWidenedVector(InOp);
1475    InVT = InOp.getValueType();
1476    InVTNumElts = InVT.getVectorNumElements();
1477    if (InVTNumElts == WidenNumElts)
1478      return DAG.getConvertRndSat(WidenVT, InOp, DTyOp, STyOp, RndOp,
1479                                  SatOp, CvtCode);
1480  }
1481
1482  if (TLI.isTypeLegal(InWidenVT)) {
1483    // Because the result and the input are different vector types, widening
1484    // the result could create a legal type but widening the input might make
1485    // it an illegal type that might lead to repeatedly splitting the input
1486    // and then widening it. To avoid this, we widen the input only if
1487    // it results in a legal type.
1488    if (WidenNumElts % InVTNumElts == 0) {
1489      // Widen the input and call convert on the widened input vector.
1490      unsigned NumConcat = WidenNumElts/InVTNumElts;
1491      SmallVector<SDValue, 16> Ops(NumConcat);
1492      Ops[0] = InOp;
1493      SDValue UndefVal = DAG.getNode(ISD::UNDEF, InVT);
1494      for (unsigned i = 1; i != NumConcat; ++i) {
1495        Ops[i] = UndefVal;
1496      }
1497      InOp = DAG.getNode(ISD::CONCAT_VECTORS, InWidenVT, &Ops[0], NumConcat);
1498      return DAG.getConvertRndSat(WidenVT, InOp, DTyOp, STyOp, RndOp,
1499                                  SatOp, CvtCode);
1500    }
1501
1502    if (InVTNumElts % WidenNumElts == 0) {
1503      // Extract the input and convert the shorten input vector.
1504      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, InWidenVT, InOp,
1505                         DAG.getIntPtrConstant(0));
1506      return DAG.getConvertRndSat(WidenVT, InOp, DTyOp, STyOp, RndOp,
1507                                SatOp, CvtCode);
1508    }
1509  }
1510
1511  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1512  SmallVector<SDValue, 16> Ops(WidenNumElts);
1513  MVT EltVT = WidenVT.getVectorElementType();
1514  DTyOp = DAG.getValueType(EltVT);
1515  STyOp = DAG.getValueType(InEltVT);
1516
1517  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1518  unsigned i;
1519  for (i=0; i < MinElts; ++i) {
1520    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, InEltVT, InOp,
1521                                 DAG.getIntPtrConstant(i));
1522    Ops[i] = DAG.getConvertRndSat(WidenVT, ExtVal, DTyOp, STyOp, RndOp,
1523                                        SatOp, CvtCode);
1524  }
1525
1526  SDValue UndefVal = DAG.getNode(ISD::UNDEF, EltVT);
1527  for (; i < WidenNumElts; ++i)
1528    Ops[i] = UndefVal;
1529
1530  return DAG.getNode(ISD::BUILD_VECTOR, WidenVT, &Ops[0], WidenNumElts);
1531}
1532
1533SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
1534  MVT      VT = N->getValueType(0);
1535  MVT      WidenVT = TLI.getTypeToTransformTo(VT);
1536  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1537  SDValue  InOp = N->getOperand(0);
1538  SDValue  Idx  = N->getOperand(1);
1539  DebugLoc dl = N->getDebugLoc();
1540
1541  if (getTypeAction(InOp.getValueType()) == WidenVector)
1542    InOp = GetWidenedVector(InOp);
1543
1544  MVT InVT = InOp.getValueType();
1545
1546  ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
1547  if (CIdx) {
1548    unsigned IdxVal = CIdx->getZExtValue();
1549    // Check if we can just return the input vector after widening.
1550    if (IdxVal == 0 && InVT == WidenVT)
1551      return InOp;
1552
1553    // Check if we can extract from the vector.
1554    unsigned InNumElts = InVT.getVectorNumElements();
1555    if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
1556        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
1557  }
1558
1559  // We could try widening the input to the right length but for now, extract
1560  // the original elements, fill the rest with undefs and build a vector.
1561  SmallVector<SDValue, 16> Ops(WidenNumElts);
1562  MVT EltVT = VT.getVectorElementType();
1563  MVT IdxVT = Idx.getValueType();
1564  unsigned NumElts = VT.getVectorNumElements();
1565  unsigned i;
1566  if (CIdx) {
1567    unsigned IdxVal = CIdx->getZExtValue();
1568    for (i=0; i < NumElts; ++i)
1569      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1570                           DAG.getConstant(IdxVal+i, IdxVT));
1571  } else {
1572    Ops[0] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, Idx);
1573    for (i=1; i < NumElts; ++i) {
1574      SDValue NewIdx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1575                                   DAG.getConstant(i, IdxVT));
1576      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, NewIdx);
1577    }
1578  }
1579
1580  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
1581  for (; i < WidenNumElts; ++i)
1582    Ops[i] = UndefVal;
1583  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1584}
1585
1586SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
1587  SDValue InOp = GetWidenedVector(N->getOperand(0));
1588  return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(),
1589                     InOp.getValueType(), InOp,
1590                     N->getOperand(1), N->getOperand(2));
1591}
1592
1593SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
1594  LoadSDNode *LD = cast<LoadSDNode>(N);
1595  MVT WidenVT = TLI.getTypeToTransformTo(LD->getValueType(0));
1596  MVT LdVT    = LD->getMemoryVT();
1597  DebugLoc dl = N->getDebugLoc();
1598  assert(LdVT.isVector() && WidenVT.isVector());
1599
1600  // Load information
1601  SDValue   Chain = LD->getChain();
1602  SDValue   BasePtr = LD->getBasePtr();
1603  int       SVOffset = LD->getSrcValueOffset();
1604  unsigned  Align    = LD->getAlignment();
1605  bool      isVolatile = LD->isVolatile();
1606  const Value *SV = LD->getSrcValue();
1607  ISD::LoadExtType ExtType = LD->getExtensionType();
1608
1609  SDValue Result;
1610  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
1611  if (ExtType != ISD::NON_EXTLOAD) {
1612    // For extension loads, we can not play the tricks of chopping legal
1613    // vector types and bit cast it to the right type.  Instead, we unroll
1614    // the load and build a vector.
1615    MVT EltVT = WidenVT.getVectorElementType();
1616    MVT LdEltVT = LdVT.getVectorElementType();
1617    unsigned NumElts = LdVT.getVectorNumElements();
1618
1619    // Load each element and widen
1620    unsigned WidenNumElts = WidenVT.getVectorNumElements();
1621    SmallVector<SDValue, 16> Ops(WidenNumElts);
1622    unsigned Increment = LdEltVT.getSizeInBits() / 8;
1623    Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, SV, SVOffset,
1624                            LdEltVT, isVolatile, Align);
1625    LdChain.push_back(Ops[0].getValue(1));
1626    unsigned i = 0, Offset = Increment;
1627    for (i=1; i < NumElts; ++i, Offset += Increment) {
1628      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1629                                       BasePtr, DAG.getIntPtrConstant(Offset));
1630      Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, SV,
1631                              SVOffset + Offset, LdEltVT, isVolatile, Align);
1632      LdChain.push_back(Ops[i].getValue(1));
1633    }
1634
1635    // Fill the rest with undefs
1636    SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
1637    for (; i != WidenNumElts; ++i)
1638      Ops[i] = UndefVal;
1639
1640    Result =  DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
1641  } else {
1642    assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
1643    unsigned int LdWidth = LdVT.getSizeInBits();
1644    Result = GenWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
1645                                 Align, isVolatile, LdWidth, WidenVT, dl);
1646  }
1647
1648 // If we generate a single load, we can use that for the chain.  Otherwise,
1649 // build a factor node to remember the multiple loads are independent and
1650 // chain to that.
1651 SDValue NewChain;
1652 if (LdChain.size() == 1)
1653   NewChain = LdChain[0];
1654 else
1655   NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LdChain[0],
1656                          LdChain.size());
1657
1658  // Modified the chain - switch anything that used the old chain to use
1659  // the new one.
1660  ReplaceValueWith(SDValue(N, 1), Chain);
1661
1662  return Result;
1663}
1664
1665SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
1666  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1667  return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
1668                     WidenVT, N->getOperand(0));
1669}
1670
1671SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
1672  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1673  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1674
1675  SDValue Cond1 = N->getOperand(0);
1676  MVT CondVT = Cond1.getValueType();
1677  if (CondVT.isVector()) {
1678    MVT CondEltVT = CondVT.getVectorElementType();
1679    MVT CondWidenVT =  MVT::getVectorVT(CondEltVT, WidenNumElts);
1680    if (getTypeAction(CondVT) == WidenVector)
1681      Cond1 = GetWidenedVector(Cond1);
1682
1683    if (Cond1.getValueType() != CondWidenVT)
1684       Cond1 = ModifyToType(Cond1, CondWidenVT);
1685  }
1686
1687  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
1688  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
1689  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
1690  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
1691                     WidenVT, Cond1, InOp1, InOp2);
1692}
1693
1694SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
1695  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
1696  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
1697  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
1698                     InOp1.getValueType(), N->getOperand(0),
1699                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
1700}
1701
1702SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
1703 MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1704 return DAG.getNode(ISD::UNDEF, N->getDebugLoc(), WidenVT);
1705}
1706
1707SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(SDNode *N) {
1708  MVT VT = N->getValueType(0);
1709  unsigned NumElts = VT.getVectorNumElements();
1710  DebugLoc dl = N->getDebugLoc();
1711
1712  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1713  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1714
1715  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1716  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1717
1718  // Adjust mask based on new input vector length.
1719  SDValue Mask = N->getOperand(2);
1720  SmallVector<SDValue, 16> MaskOps(WidenNumElts);
1721  MVT IdxVT = Mask.getValueType().getVectorElementType();
1722  for (unsigned i = 0; i < NumElts; ++i) {
1723    SDValue Arg = Mask.getOperand(i);
1724    if (Arg.getOpcode() == ISD::UNDEF)
1725      MaskOps[i] = Arg;
1726    else {
1727      unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
1728      if (Idx < NumElts)
1729        MaskOps[i] = Arg;
1730      else
1731        MaskOps[i] = DAG.getConstant(Idx - NumElts + WidenNumElts, IdxVT);
1732    }
1733  }
1734  for (unsigned i = NumElts; i < WidenNumElts; ++i)
1735    MaskOps[i] = DAG.getNode(ISD::UNDEF, dl, IdxVT);
1736  SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR, dl,
1737                                MVT::getVectorVT(IdxVT, WidenNumElts),
1738                                &MaskOps[0], WidenNumElts);
1739
1740  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, WidenVT, InOp1, InOp2, NewMask);
1741}
1742
1743SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
1744  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1745  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1746
1747  SDValue InOp1 = N->getOperand(0);
1748  MVT InVT = InOp1.getValueType();
1749  assert(InVT.isVector() && "can not widen non vector type");
1750  MVT WidenInVT = MVT::getVectorVT(InVT.getVectorElementType(), WidenNumElts);
1751  InOp1 = GetWidenedVector(InOp1);
1752  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1753
1754  // Assume that the input and output will be widen appropriately.  If not,
1755  // we will have to unroll it at some point.
1756  assert(InOp1.getValueType() == WidenInVT &&
1757         InOp2.getValueType() == WidenInVT &&
1758         "Input not widened to expected type!");
1759  return DAG.getNode(ISD::VSETCC, N->getDebugLoc(),
1760                     WidenVT, InOp1, InOp2, N->getOperand(2));
1761}
1762
1763
1764//===----------------------------------------------------------------------===//
1765// Widen Vector Operand
1766//===----------------------------------------------------------------------===//
1767bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
1768  DEBUG(cerr << "Widen node operand " << ResNo << ": "; N->dump(&DAG);
1769        cerr << "\n");
1770  SDValue Res = SDValue();
1771
1772  switch (N->getOpcode()) {
1773  default:
1774#ifndef NDEBUG
1775    cerr << "WidenVectorOperand op #" << ResNo << ": ";
1776    N->dump(&DAG); cerr << "\n";
1777#endif
1778    assert(0 && "Do not know how to widen this operator's operand!");
1779    abort();
1780
1781  case ISD::BIT_CONVERT:        Res = WidenVecOp_BIT_CONVERT(N); break;
1782  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
1783  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
1784  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
1785
1786  case ISD::FP_ROUND:
1787  case ISD::FP_TO_SINT:
1788  case ISD::FP_TO_UINT:
1789  case ISD::SINT_TO_FP:
1790  case ISD::TRUNCATE:
1791  case ISD::UINT_TO_FP:         Res = WidenVecOp_Convert(N); break;
1792  }
1793
1794  // If Res is null, the sub-method took care of registering the result.
1795  if (!Res.getNode()) return false;
1796
1797  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1798  // core about this.
1799  if (Res.getNode() == N)
1800    return true;
1801
1802
1803  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1804         "Invalid operand expansion");
1805
1806  ReplaceValueWith(SDValue(N, 0), Res);
1807  return false;
1808}
1809
1810SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
1811  // Since the result is legal and the input is illegal, it is unlikely
1812  // that we can fix the input to a legal type so unroll the convert
1813  // into some scalar code and create a nasty build vector.
1814  MVT VT = N->getValueType(0);
1815  MVT EltVT = VT.getVectorElementType();
1816  DebugLoc dl = N->getDebugLoc();
1817  unsigned NumElts = VT.getVectorNumElements();
1818  SDValue InOp = N->getOperand(0);
1819  if (getTypeAction(InOp.getValueType()) == WidenVector)
1820    InOp = GetWidenedVector(InOp);
1821  MVT InVT = InOp.getValueType();
1822  MVT InEltVT = InVT.getVectorElementType();
1823
1824  unsigned Opcode = N->getOpcode();
1825  SmallVector<SDValue, 16> Ops(NumElts);
1826  for (unsigned i=0; i < NumElts; ++i)
1827    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1828                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1829                                     DAG.getIntPtrConstant(i)));
1830
1831  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1832}
1833
1834SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
1835  MVT VT = N->getValueType(0);
1836  SDValue InOp = GetWidenedVector(N->getOperand(0));
1837  MVT InWidenVT = InOp.getValueType();
1838  DebugLoc dl = N->getDebugLoc();
1839
1840  // Check if we can convert between two legal vector types and extract.
1841  unsigned InWidenSize = InWidenVT.getSizeInBits();
1842  unsigned Size = VT.getSizeInBits();
1843  if (InWidenSize % Size == 0 && !VT.isVector()) {
1844    unsigned NewNumElts = InWidenSize / Size;
1845    MVT NewVT = MVT::getVectorVT(VT, NewNumElts);
1846    if (TLI.isTypeLegal(NewVT)) {
1847      SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
1848      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
1849                         DAG.getIntPtrConstant(0));
1850    }
1851  }
1852
1853  // Lower the bit-convert to a store/load from the stack. Create the stack
1854  // frame object.  Make sure it is aligned for both the source and destination
1855  // types.
1856  SDValue FIPtr = DAG.CreateStackTemporary(InWidenVT, VT);
1857  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1858  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1859
1860  // Emit a store to the stack slot.
1861  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1862
1863  // Result is a load from the stack slot.
1864  return DAG.getLoad(VT, dl, Store, FIPtr, SV, 0);
1865}
1866
1867SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
1868  // If the input vector is not legal, it is likely that we will not find a
1869  // legal vector of the same size. Replace the concatenate vector with a
1870  // nasty build vector.
1871  MVT VT = N->getValueType(0);
1872  MVT EltVT = VT.getVectorElementType();
1873  DebugLoc dl = N->getDebugLoc();
1874  unsigned NumElts = VT.getVectorNumElements();
1875  SmallVector<SDValue, 16> Ops(NumElts);
1876
1877  MVT InVT = N->getOperand(0).getValueType();
1878  unsigned NumInElts = InVT.getVectorNumElements();
1879
1880  unsigned Idx = 0;
1881  unsigned NumOperands = N->getNumOperands();
1882  for (unsigned i=0; i < NumOperands; ++i) {
1883    SDValue InOp = N->getOperand(i);
1884    if (getTypeAction(InOp.getValueType()) == WidenVector)
1885      InOp = GetWidenedVector(InOp);
1886    for (unsigned j=0; j < NumInElts; ++j)
1887      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1888                               DAG.getIntPtrConstant(j));
1889  }
1890  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1891}
1892
1893SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1894  SDValue InOp = GetWidenedVector(N->getOperand(0));
1895  MVT EltVT = InOp.getValueType().getVectorElementType();
1896  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
1897                     EltVT, InOp, N->getOperand(1));
1898}
1899
1900SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
1901  // We have to widen the value but we want only to store the original
1902  // vector type.
1903  StoreSDNode *ST = cast<StoreSDNode>(N);
1904  SDValue  Chain = ST->getChain();
1905  SDValue  BasePtr = ST->getBasePtr();
1906  const    Value *SV = ST->getSrcValue();
1907  int      SVOffset = ST->getSrcValueOffset();
1908  unsigned Align = ST->getAlignment();
1909  bool     isVolatile = ST->isVolatile();
1910  SDValue  ValOp = GetWidenedVector(ST->getValue());
1911  DebugLoc dl = N->getDebugLoc();
1912
1913  MVT StVT = ST->getMemoryVT();
1914  MVT ValVT = ValOp.getValueType();
1915  // It must be true that we the widen vector type is bigger than where
1916  // we need to store.
1917  assert(StVT.isVector() && ValOp.getValueType().isVector());
1918  assert(StVT.bitsLT(ValOp.getValueType()));
1919
1920  SmallVector<SDValue, 16> StChain;
1921  if (ST->isTruncatingStore()) {
1922    // For truncating stores, we can not play the tricks of chopping legal
1923    // vector types and bit cast it to the right type.  Instead, we unroll
1924    // the store.
1925    MVT StEltVT  = StVT.getVectorElementType();
1926    MVT ValEltVT = ValVT.getVectorElementType();
1927    unsigned Increment = ValEltVT.getSizeInBits() / 8;
1928    unsigned NumElts = StVT.getVectorNumElements();
1929    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1930                              DAG.getIntPtrConstant(0));
1931    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, SV,
1932                                        SVOffset, StEltVT,
1933                                        isVolatile, Align));
1934    unsigned Offset = Increment;
1935    for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
1936      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1937                                       BasePtr, DAG.getIntPtrConstant(Offset));
1938      SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1939                              DAG.getIntPtrConstant(0));
1940      StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, SV,
1941                                          SVOffset + Offset, StEltVT,
1942                                          isVolatile, MinAlign(Align, Offset)));
1943    }
1944  }
1945  else {
1946    assert(StVT.getVectorElementType() == ValVT.getVectorElementType());
1947    // Store value
1948    GenWidenVectorStores(StChain, Chain, BasePtr, SV, SVOffset,
1949                         Align, isVolatile, ValOp, StVT.getSizeInBits(), dl);
1950  }
1951  if (StChain.size() == 1)
1952    return StChain[0];
1953  else
1954    return DAG.getNode(ISD::TokenFactor, dl,
1955                       MVT::Other,&StChain[0],StChain.size());
1956}
1957
1958//===----------------------------------------------------------------------===//
1959// Vector Widening Utilities
1960//===----------------------------------------------------------------------===//
1961
1962
1963// Utility function to find a vector type and its associated element
1964// type from a preferred width and whose vector type must be the same size
1965// as the VecVT.
1966//  TLI:   Target lowering used to determine legal types.
1967//  Width: Preferred width to store.
1968//  VecVT: Vector value type whose size we must match.
1969// Returns NewVecVT and NewEltVT - the vector type and its associated
1970// element type.
1971static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
1972                                  MVT VecVT,
1973                                  MVT& NewEltVT, MVT& NewVecVT) {
1974  unsigned EltWidth = Width + 1;
1975  if (TLI.isTypeLegal(VecVT)) {
1976    // We start with the preferred with, making it a power of 2 and find a
1977    // legal vector type of that width.  If not, we reduce it by another of 2.
1978    // For incoming type is legal, this process will end as a vector of the
1979    // smallest loadable type should always be legal.
1980    do {
1981      assert(EltWidth > 0);
1982      EltWidth = 1 << Log2_32(EltWidth - 1);
1983      NewEltVT = MVT::getIntegerVT(EltWidth);
1984      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
1985      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
1986    } while (!TLI.isTypeLegal(NewVecVT) ||
1987             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
1988  } else {
1989    // The incoming vector type is illegal and is the result of widening
1990    // a vector to a power of 2. In this case, we will use the preferred
1991    // with as long as it is a multiple of the incoming vector length.
1992    // The legalization process will eventually make this into a legal type
1993    // and remove the illegal bit converts (which would turn to stack converts
1994    // if they are allow to exist).
1995     do {
1996      assert(EltWidth > 0);
1997      EltWidth = 1 << Log2_32(EltWidth - 1);
1998      NewEltVT = MVT::getIntegerVT(EltWidth);
1999      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
2000      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
2001    } while (!TLI.isTypeLegal(NewEltVT) ||
2002             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
2003  }
2004}
2005
2006SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
2007                                              SDValue      Chain,
2008                                              SDValue      BasePtr,
2009                                              const Value *SV,
2010                                              int          SVOffset,
2011                                              unsigned     Alignment,
2012                                              bool         isVolatile,
2013                                              unsigned     LdWidth,
2014                                              MVT          ResType,
2015                                              DebugLoc     dl) {
2016  // The strategy assumes that we can efficiently load powers of two widths.
2017  // The routines chops the vector into the largest power of 2 load and
2018  // can be inserted into a legal vector and then cast the result into the
2019  // vector type we want.  This avoids unnecessary stack converts.
2020
2021  // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
2022  //       the load is nonvolatile, we an use a wider load for the value.
2023
2024  // Find the vector type that can load from.
2025  MVT NewEltVT, NewVecVT;
2026  unsigned NewEltVTWidth;
2027  FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2028  NewEltVTWidth = NewEltVT.getSizeInBits();
2029
2030  SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV, SVOffset,
2031                             isVolatile, Alignment);
2032  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2033  LdChain.push_back(LdOp.getValue(1));
2034
2035  // Check if we can load the element with one instruction
2036  if (LdWidth == NewEltVTWidth) {
2037    return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2038  }
2039
2040  unsigned Idx = 1;
2041  LdWidth -= NewEltVTWidth;
2042  unsigned Offset = 0;
2043
2044  while (LdWidth > 0) {
2045    unsigned Increment = NewEltVTWidth / 8;
2046    Offset += Increment;
2047    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2048                          DAG.getIntPtrConstant(Increment));
2049
2050    if (LdWidth < NewEltVTWidth) {
2051      // Our current type we are using is too large, use a smaller size by
2052      // using a smaller power of 2
2053      unsigned oNewEltVTWidth = NewEltVTWidth;
2054      FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2055      NewEltVTWidth = NewEltVT.getSizeInBits();
2056      // Readjust position and vector position based on new load type
2057      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2058      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2059    }
2060
2061    SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV,
2062                                 SVOffset+Offset, isVolatile,
2063                                 MinAlign(Alignment, Offset));
2064    LdChain.push_back(LdOp.getValue(1));
2065    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOp,
2066                        DAG.getIntPtrConstant(Idx++));
2067
2068    LdWidth -= NewEltVTWidth;
2069  }
2070
2071  return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2072}
2073
2074void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
2075                                            SDValue   Chain,
2076                                            SDValue   BasePtr,
2077                                            const Value *SV,
2078                                            int         SVOffset,
2079                                            unsigned    Alignment,
2080                                            bool        isVolatile,
2081                                            SDValue     ValOp,
2082                                            unsigned    StWidth,
2083                                            DebugLoc    dl) {
2084  // Breaks the stores into a series of power of 2 width stores.  For any
2085  // width, we convert the vector to the vector of element size that we
2086  // want to store.  This avoids requiring a stack convert.
2087
2088  // Find a width of the element type we can store with
2089  MVT WidenVT = ValOp.getValueType();
2090  MVT NewEltVT, NewVecVT;
2091
2092  FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2093  unsigned NewEltVTWidth = NewEltVT.getSizeInBits();
2094
2095  SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
2096  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2097                            DAG.getIntPtrConstant(0));
2098  SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset,
2099                               isVolatile, Alignment);
2100  StChain.push_back(StOp);
2101
2102  // Check if we are done
2103  if (StWidth == NewEltVTWidth) {
2104    return;
2105  }
2106
2107  unsigned Idx = 1;
2108  StWidth -= NewEltVTWidth;
2109  unsigned Offset = 0;
2110
2111  while (StWidth > 0) {
2112    unsigned Increment = NewEltVTWidth / 8;
2113    Offset += Increment;
2114    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2115                          DAG.getIntPtrConstant(Increment));
2116
2117    if (StWidth < NewEltVTWidth) {
2118      // Our current type we are using is too large, use a smaller size by
2119      // using a smaller power of 2
2120      unsigned oNewEltVTWidth = NewEltVTWidth;
2121      FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2122      NewEltVTWidth = NewEltVT.getSizeInBits();
2123      // Readjust position and vector position based on new load type
2124      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2125      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2126    }
2127
2128    EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2129                      DAG.getIntPtrConstant(Idx++));
2130    StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV,
2131                                   SVOffset + Offset, isVolatile,
2132                                   MinAlign(Alignment, Offset)));
2133    StWidth -= NewEltVTWidth;
2134  }
2135}
2136
2137/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
2138/// input vector must have the same element type as NVT.
2139SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, MVT NVT) {
2140  // Note that InOp might have been widened so it might already have
2141  // the right width or it might need be narrowed.
2142  MVT InVT = InOp.getValueType();
2143  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2144         "input and widen element type must match");
2145  DebugLoc dl = InOp.getNode()->getDebugLoc();
2146
2147  // Check if InOp already has the right width.
2148  if (InVT == NVT)
2149    return InOp;
2150
2151  unsigned InNumElts = InVT.getVectorNumElements();
2152  unsigned WidenNumElts = NVT.getVectorNumElements();
2153  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2154    unsigned NumConcat = WidenNumElts / InNumElts;
2155    SmallVector<SDValue, 16> Ops(NumConcat);
2156    SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, InVT);
2157    Ops[0] = InOp;
2158    for (unsigned i = 1; i != NumConcat; ++i)
2159      Ops[i] = UndefVal;
2160
2161    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2162  }
2163
2164  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2165    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2166                       DAG.getIntPtrConstant(0));
2167
2168  // Fall back to extract and build.
2169  SmallVector<SDValue, 16> Ops(WidenNumElts);
2170  MVT EltVT = NVT.getVectorElementType();
2171  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2172  unsigned Idx;
2173  for (Idx = 0; Idx < MinNumElts; ++Idx)
2174    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2175                           DAG.getIntPtrConstant(Idx));
2176
2177  SDValue UndefVal = DAG.getNode(ISD::UNDEF, dl, EltVT);
2178  for ( ; Idx < WidenNumElts; ++Idx)
2179    Ops[Idx] = UndefVal;
2180  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2181}
2182