LegalizeVectorTypes.cpp revision da58ebcc2659fad293f11e4cd48f9d92b7fc594b
1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in two vectors of half the size.  For example, implementing
19// <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30//===----------------------------------------------------------------------===//
31//  Result Vector Scalarization: <1 x ty> -> ty.
32//===----------------------------------------------------------------------===//
33
34void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
35  DEBUG(errs() << "Scalarize node result " << ResNo << ": ";
36        N->dump(&DAG);
37        errs() << "\n");
38  SDValue R = SDValue();
39
40  switch (N->getOpcode()) {
41  default:
42#ifndef NDEBUG
43    errs() << "ScalarizeVectorResult #" << ResNo << ": ";
44    N->dump(&DAG);
45    errs() << "\n";
46#endif
47    llvm_unreachable("Do not know how to scalarize the result of this operator!");
48
49  case ISD::BIT_CONVERT:       R = ScalarizeVecRes_BIT_CONVERT(N); break;
50  case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
51  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
52  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
53  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
54  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
55  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
56  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
57  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
58  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
59  case ISD::SETCC:             R = ScalarizeVecRes_SETCC(N); break;
60  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
61  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
62  case ISD::VSETCC:            R = ScalarizeVecRes_VSETCC(N); break;
63
64  case ISD::CTLZ:
65  case ISD::CTPOP:
66  case ISD::CTTZ:
67  case ISD::FABS:
68  case ISD::FCOS:
69  case ISD::FNEG:
70  case ISD::FP_TO_SINT:
71  case ISD::FP_TO_UINT:
72  case ISD::FSIN:
73  case ISD::FSQRT:
74  case ISD::FTRUNC:
75  case ISD::FFLOOR:
76  case ISD::FCEIL:
77  case ISD::FRINT:
78  case ISD::FNEARBYINT:
79  case ISD::UINT_TO_FP:
80  case ISD::SINT_TO_FP:
81  case ISD::TRUNCATE:
82  case ISD::SIGN_EXTEND:
83  case ISD::ZERO_EXTEND:
84  case ISD::ANY_EXTEND:
85    R = ScalarizeVecRes_UnaryOp(N);
86    break;
87
88  case ISD::ADD:
89  case ISD::AND:
90  case ISD::FADD:
91  case ISD::FDIV:
92  case ISD::FMUL:
93  case ISD::FPOW:
94  case ISD::FREM:
95  case ISD::FSUB:
96  case ISD::MUL:
97  case ISD::OR:
98  case ISD::SDIV:
99  case ISD::SREM:
100  case ISD::SUB:
101  case ISD::UDIV:
102  case ISD::UREM:
103  case ISD::XOR:
104  case ISD::SHL:
105  case ISD::SRA:
106  case ISD::SRL:
107    R = ScalarizeVecRes_BinOp(N);
108    break;
109  }
110
111  // If R is null, the sub-method took care of registering the result.
112  if (R.getNode())
113    SetScalarizedVector(SDValue(N, ResNo), R);
114}
115
116SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
117  SDValue LHS = GetScalarizedVector(N->getOperand(0));
118  SDValue RHS = GetScalarizedVector(N->getOperand(1));
119  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
120                     LHS.getValueType(), LHS, RHS);
121}
122
123SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
124  EVT NewVT = N->getValueType(0).getVectorElementType();
125  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
126                     NewVT, N->getOperand(0));
127}
128
129SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
130  EVT NewVT = N->getValueType(0).getVectorElementType();
131  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
132  return DAG.getConvertRndSat(NewVT, N->getDebugLoc(),
133                              Op0, DAG.getValueType(NewVT),
134                              DAG.getValueType(Op0.getValueType()),
135                              N->getOperand(3),
136                              N->getOperand(4),
137                              cast<CvtRndSatSDNode>(N)->getCvtCode());
138}
139
140SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
141  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
142                     N->getValueType(0).getVectorElementType(),
143                     N->getOperand(0), N->getOperand(1));
144}
145
146SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
147  SDValue Op = GetScalarizedVector(N->getOperand(0));
148  return DAG.getNode(ISD::FPOWI, N->getDebugLoc(),
149                     Op.getValueType(), Op, N->getOperand(1));
150}
151
152SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
153  // The value to insert may have a wider type than the vector element type,
154  // so be sure to truncate it to the element type if necessary.
155  SDValue Op = N->getOperand(1);
156  EVT EltVT = N->getValueType(0).getVectorElementType();
157  if (Op.getValueType() != EltVT)
158    // FIXME: Can this happen for floating point types?
159    Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
160  return Op;
161}
162
163SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
164  assert(N->isUnindexed() && "Indexed vector load?");
165
166  SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getDebugLoc(),
167                               N->getExtensionType(),
168                               N->getValueType(0).getVectorElementType(),
169                               N->getChain(), N->getBasePtr(),
170                               DAG.getUNDEF(N->getBasePtr().getValueType()),
171                               N->getSrcValue(), N->getSrcValueOffset(),
172                               N->getMemoryVT().getVectorElementType(),
173                               N->isVolatile(), N->getAlignment());
174
175  // Legalized the chain result - switch anything that used the old chain to
176  // use the new one.
177  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
178  return Result;
179}
180
181SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
182  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
183  EVT DestVT = N->getValueType(0).getVectorElementType();
184  SDValue Op = GetScalarizedVector(N->getOperand(0));
185  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
186}
187
188SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
189  // If the operand is wider than the vector element type then it is implicitly
190  // truncated.  Make that explicit here.
191  EVT EltVT = N->getValueType(0).getVectorElementType();
192  SDValue InOp = N->getOperand(0);
193  if (InOp.getValueType() != EltVT)
194    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, InOp);
195  return InOp;
196}
197
198SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
199  SDValue LHS = GetScalarizedVector(N->getOperand(1));
200  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
201                     LHS.getValueType(), N->getOperand(0), LHS,
202                     GetScalarizedVector(N->getOperand(2)));
203}
204
205SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
206  SDValue LHS = GetScalarizedVector(N->getOperand(2));
207  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(),
208                     N->getOperand(0), N->getOperand(1),
209                     LHS, GetScalarizedVector(N->getOperand(3)),
210                     N->getOperand(4));
211}
212
213SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
214  SDValue LHS = GetScalarizedVector(N->getOperand(0));
215  SDValue RHS = GetScalarizedVector(N->getOperand(1));
216  DebugLoc DL = N->getDebugLoc();
217
218  // Turn it into a scalar SETCC.
219  return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
220}
221
222SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
223  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
224}
225
226SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
227  // Figure out if the scalar is the LHS or RHS and return it.
228  SDValue Arg = N->getOperand(2).getOperand(0);
229  if (Arg.getOpcode() == ISD::UNDEF)
230    return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
231  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
232  return GetScalarizedVector(N->getOperand(Op));
233}
234
235SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
236  SDValue LHS = GetScalarizedVector(N->getOperand(0));
237  SDValue RHS = GetScalarizedVector(N->getOperand(1));
238  EVT NVT = N->getValueType(0).getVectorElementType();
239  EVT SVT = TLI.getSetCCResultType(LHS.getValueType());
240  DebugLoc DL = N->getDebugLoc();
241
242  // Turn it into a scalar SETCC.
243  SDValue Res = DAG.getNode(ISD::SETCC, DL, SVT, LHS, RHS, N->getOperand(2));
244
245  // VSETCC always returns a sign-extended value, while SETCC may not.  The
246  // SETCC result type may not match the vector element type.  Correct these.
247  if (NVT.bitsLE(SVT)) {
248    // The SETCC result type is bigger than the vector element type.
249    // Ensure the SETCC result is sign-extended.
250    if (TLI.getBooleanContents() !=
251        TargetLowering::ZeroOrNegativeOneBooleanContent)
252      Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, SVT, Res,
253                        DAG.getValueType(MVT::i1));
254    // Truncate to the final type.
255    return DAG.getNode(ISD::TRUNCATE, DL, NVT, Res);
256  }
257
258  // The SETCC result type is smaller than the vector element type.
259  // If the SetCC result is not sign-extended, chop it down to MVT::i1.
260  if (TLI.getBooleanContents() !=
261        TargetLowering::ZeroOrNegativeOneBooleanContent)
262    Res = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Res);
263  // Sign extend to the final type.
264  return DAG.getNode(ISD::SIGN_EXTEND, DL, NVT, Res);
265}
266
267
268//===----------------------------------------------------------------------===//
269//  Operand Vector Scalarization <1 x ty> -> ty.
270//===----------------------------------------------------------------------===//
271
272bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
273  DEBUG(errs() << "Scalarize node operand " << OpNo << ": ";
274        N->dump(&DAG);
275        errs() << "\n");
276  SDValue Res = SDValue();
277
278  if (Res.getNode() == 0) {
279    switch (N->getOpcode()) {
280    default:
281#ifndef NDEBUG
282      errs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
283      N->dump(&DAG);
284      errs() << "\n";
285#endif
286      llvm_unreachable("Do not know how to scalarize this operator's operand!");
287    case ISD::BIT_CONVERT:
288      Res = ScalarizeVecOp_BIT_CONVERT(N);
289      break;
290    case ISD::CONCAT_VECTORS:
291      Res = ScalarizeVecOp_CONCAT_VECTORS(N);
292      break;
293    case ISD::EXTRACT_VECTOR_ELT:
294      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
295      break;
296    case ISD::STORE:
297      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
298      break;
299    }
300  }
301
302  // If the result is null, the sub-method took care of registering results etc.
303  if (!Res.getNode()) return false;
304
305  // If the result is N, the sub-method updated N in place.  Tell the legalizer
306  // core about this.
307  if (Res.getNode() == N)
308    return true;
309
310  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
311         "Invalid operand expansion");
312
313  ReplaceValueWith(SDValue(N, 0), Res);
314  return false;
315}
316
317/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
318/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
319SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
320  SDValue Elt = GetScalarizedVector(N->getOperand(0));
321  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
322                     N->getValueType(0), Elt);
323}
324
325/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
326/// use a BUILD_VECTOR instead.
327SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
328  SmallVector<SDValue, 8> Ops(N->getNumOperands());
329  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
330    Ops[i] = GetScalarizedVector(N->getOperand(i));
331  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0),
332                     &Ops[0], Ops.size());
333}
334
335/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
336/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
337/// index.
338SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
339  SDValue Res = GetScalarizedVector(N->getOperand(0));
340  if (Res.getValueType() != N->getValueType(0))
341    Res = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0),
342                      Res);
343  return Res;
344}
345
346/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
347/// scalarized, it must be <1 x ty>.  Just store the element.
348SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
349  assert(N->isUnindexed() && "Indexed store of one-element vector?");
350  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
351  DebugLoc dl = N->getDebugLoc();
352
353  if (N->isTruncatingStore())
354    return DAG.getTruncStore(N->getChain(), dl,
355                             GetScalarizedVector(N->getOperand(1)),
356                             N->getBasePtr(),
357                             N->getSrcValue(), N->getSrcValueOffset(),
358                             N->getMemoryVT().getVectorElementType(),
359                             N->isVolatile(), N->getAlignment());
360
361  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
362                      N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
363                      N->isVolatile(), N->getAlignment());
364}
365
366
367//===----------------------------------------------------------------------===//
368//  Result Vector Splitting
369//===----------------------------------------------------------------------===//
370
371/// SplitVectorResult - This method is called when the specified result of the
372/// specified node is found to need vector splitting.  At this point, the node
373/// may also have invalid operands or may have other results that need
374/// legalization, we just know that (at least) one result needs vector
375/// splitting.
376void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
377  DEBUG(errs() << "Split node result: ";
378        N->dump(&DAG);
379        errs() << "\n");
380  SDValue Lo, Hi;
381
382  switch (N->getOpcode()) {
383  default:
384#ifndef NDEBUG
385    errs() << "SplitVectorResult #" << ResNo << ": ";
386    N->dump(&DAG);
387    errs() << "\n";
388#endif
389    llvm_unreachable("Do not know how to split the result of this operator!");
390
391  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
392  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
393  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
394  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
395
396  case ISD::BIT_CONVERT:       SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
397  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
398  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
399  case ISD::CONVERT_RNDSAT:    SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
400  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
401  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
402  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
403  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
404  case ISD::LOAD:
405    SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
406    break;
407  case ISD::SETCC:
408  case ISD::VSETCC:
409    SplitVecRes_SETCC(N, Lo, Hi);
410    break;
411  case ISD::VECTOR_SHUFFLE:
412    SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
413    break;
414
415  case ISD::CTTZ:
416  case ISD::CTLZ:
417  case ISD::CTPOP:
418  case ISD::FNEG:
419  case ISD::FABS:
420  case ISD::FSQRT:
421  case ISD::FSIN:
422  case ISD::FCOS:
423  case ISD::FTRUNC:
424  case ISD::FFLOOR:
425  case ISD::FCEIL:
426  case ISD::FRINT:
427  case ISD::FNEARBYINT:
428  case ISD::FP_TO_SINT:
429  case ISD::FP_TO_UINT:
430  case ISD::SINT_TO_FP:
431  case ISD::UINT_TO_FP:
432  case ISD::TRUNCATE:
433  case ISD::SIGN_EXTEND:
434  case ISD::ZERO_EXTEND:
435  case ISD::ANY_EXTEND:
436    SplitVecRes_UnaryOp(N, Lo, Hi);
437    break;
438
439  case ISD::ADD:
440  case ISD::SUB:
441  case ISD::MUL:
442  case ISD::FADD:
443  case ISD::FSUB:
444  case ISD::FMUL:
445  case ISD::SDIV:
446  case ISD::UDIV:
447  case ISD::FDIV:
448  case ISD::FPOW:
449  case ISD::AND:
450  case ISD::OR:
451  case ISD::XOR:
452  case ISD::SHL:
453  case ISD::SRA:
454  case ISD::SRL:
455  case ISD::UREM:
456  case ISD::SREM:
457  case ISD::FREM:
458    SplitVecRes_BinOp(N, Lo, Hi);
459    break;
460  }
461
462  // If Lo/Hi is null, the sub-method took care of registering results etc.
463  if (Lo.getNode())
464    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
465}
466
467void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
468                                         SDValue &Hi) {
469  SDValue LHSLo, LHSHi;
470  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
471  SDValue RHSLo, RHSHi;
472  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
473  DebugLoc dl = N->getDebugLoc();
474
475  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
476  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
477}
478
479void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
480                                               SDValue &Hi) {
481  // We know the result is a vector.  The input may be either a vector or a
482  // scalar value.
483  EVT LoVT, HiVT;
484  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
485  DebugLoc dl = N->getDebugLoc();
486
487  SDValue InOp = N->getOperand(0);
488  EVT InVT = InOp.getValueType();
489
490  // Handle some special cases efficiently.
491  switch (getTypeAction(InVT)) {
492  default:
493    assert(false && "Unknown type action!");
494  case Legal:
495  case PromoteInteger:
496  case SoftenFloat:
497  case ScalarizeVector:
498    break;
499  case ExpandInteger:
500  case ExpandFloat:
501    // A scalar to vector conversion, where the scalar needs expansion.
502    // If the vector is being split in two then we can just convert the
503    // expanded pieces.
504    if (LoVT == HiVT) {
505      GetExpandedOp(InOp, Lo, Hi);
506      if (TLI.isBigEndian())
507        std::swap(Lo, Hi);
508      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
509      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
510      return;
511    }
512    break;
513  case SplitVector:
514    // If the input is a vector that needs to be split, convert each split
515    // piece of the input now.
516    GetSplitVector(InOp, Lo, Hi);
517    Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
518    Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
519    return;
520  }
521
522  // In the general case, convert the input to an integer and split it by hand.
523  EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
524  EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
525  if (TLI.isBigEndian())
526    std::swap(LoIntVT, HiIntVT);
527
528  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
529
530  if (TLI.isBigEndian())
531    std::swap(Lo, Hi);
532  Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
533  Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
534}
535
536void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
537                                                SDValue &Hi) {
538  EVT LoVT, HiVT;
539  DebugLoc dl = N->getDebugLoc();
540  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
541  unsigned LoNumElts = LoVT.getVectorNumElements();
542  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
543  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
544
545  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
546  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
547}
548
549void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
550                                                  SDValue &Hi) {
551  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
552  DebugLoc dl = N->getDebugLoc();
553  unsigned NumSubvectors = N->getNumOperands() / 2;
554  if (NumSubvectors == 1) {
555    Lo = N->getOperand(0);
556    Hi = N->getOperand(1);
557    return;
558  }
559
560  EVT LoVT, HiVT;
561  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
562
563  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
564  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
565
566  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
567  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
568}
569
570void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
571                                                  SDValue &Hi) {
572  EVT LoVT, HiVT;
573  DebugLoc dl = N->getDebugLoc();
574  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
575
576  SDValue DTyOpLo =  DAG.getValueType(LoVT);
577  SDValue DTyOpHi =  DAG.getValueType(HiVT);
578
579  SDValue RndOp = N->getOperand(3);
580  SDValue SatOp = N->getOperand(4);
581  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
582
583  // Split the input.
584  SDValue VLo, VHi;
585  EVT InVT = N->getOperand(0).getValueType();
586  switch (getTypeAction(InVT)) {
587  default: llvm_unreachable("Unexpected type action!");
588  case Legal: {
589    EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
590                                 LoVT.getVectorNumElements());
591    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
592                      DAG.getIntPtrConstant(0));
593    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
594                      DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
595    break;
596  }
597  case SplitVector:
598    GetSplitVector(N->getOperand(0), VLo, VHi);
599    break;
600  case WidenVector: {
601    // If the result needs to be split and the input needs to be widened,
602    // the two types must have different lengths. Use the widened result
603    // and extract from it to do the split.
604    SDValue InOp = GetWidenedVector(N->getOperand(0));
605    EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
606                                 LoVT.getVectorNumElements());
607    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
608                     DAG.getIntPtrConstant(0));
609    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
610                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
611    break;
612  }
613  }
614
615  SDValue STyOpLo =  DAG.getValueType(VLo.getValueType());
616  SDValue STyOpHi =  DAG.getValueType(VHi.getValueType());
617
618  Lo = DAG.getConvertRndSat(LoVT, dl, VLo, DTyOpLo, STyOpLo, RndOp, SatOp,
619                            CvtCode);
620  Hi = DAG.getConvertRndSat(HiVT, dl, VHi, DTyOpHi, STyOpHi, RndOp, SatOp,
621                            CvtCode);
622}
623
624void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
625                                                     SDValue &Hi) {
626  SDValue Vec = N->getOperand(0);
627  SDValue Idx = N->getOperand(1);
628  EVT IdxVT = Idx.getValueType();
629  DebugLoc dl = N->getDebugLoc();
630
631  EVT LoVT, HiVT;
632  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
633
634  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
635  Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
636                    DAG.getConstant(LoVT.getVectorNumElements(), IdxVT));
637  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, Idx);
638}
639
640void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
641                                         SDValue &Hi) {
642  DebugLoc dl = N->getDebugLoc();
643  GetSplitVector(N->getOperand(0), Lo, Hi);
644  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
645  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
646}
647
648void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
649                                                     SDValue &Hi) {
650  SDValue Vec = N->getOperand(0);
651  SDValue Elt = N->getOperand(1);
652  SDValue Idx = N->getOperand(2);
653  DebugLoc dl = N->getDebugLoc();
654  GetSplitVector(Vec, Lo, Hi);
655
656  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
657    unsigned IdxVal = CIdx->getZExtValue();
658    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
659    if (IdxVal < LoNumElts)
660      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
661                       Lo.getValueType(), Lo, Elt, Idx);
662    else
663      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
664                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
665    return;
666  }
667
668  // Spill the vector to the stack.
669  EVT VecVT = Vec.getValueType();
670  EVT EltVT = VecVT.getVectorElementType();
671  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
672  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
673
674  // Store the new element.  This may be larger than the vector element type,
675  // so use a truncating store.
676  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
677  unsigned Alignment =
678    TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForEVT(*DAG.getContext()));
679  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, NULL, 0, EltVT);
680
681  // Load the Lo part from the stack slot.
682  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, NULL, 0);
683
684  // Increment the pointer to the other part.
685  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
686  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
687                         DAG.getIntPtrConstant(IncrementSize));
688
689  // Load the Hi part from the stack slot.
690  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, NULL, 0, false,
691                   MinAlign(Alignment, IncrementSize));
692}
693
694void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
695                                                    SDValue &Hi) {
696  EVT LoVT, HiVT;
697  DebugLoc dl = N->getDebugLoc();
698  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
699  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
700  Hi = DAG.getUNDEF(HiVT);
701}
702
703void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
704                                        SDValue &Hi) {
705  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
706  EVT LoVT, HiVT;
707  DebugLoc dl = LD->getDebugLoc();
708  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
709
710  ISD::LoadExtType ExtType = LD->getExtensionType();
711  SDValue Ch = LD->getChain();
712  SDValue Ptr = LD->getBasePtr();
713  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
714  const Value *SV = LD->getSrcValue();
715  int SVOffset = LD->getSrcValueOffset();
716  EVT MemoryVT = LD->getMemoryVT();
717  unsigned Alignment = LD->getAlignment();
718  bool isVolatile = LD->isVolatile();
719
720  EVT LoMemVT, HiMemVT;
721  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
722
723  Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, LoVT, Ch, Ptr, Offset,
724                   SV, SVOffset, LoMemVT, isVolatile, Alignment);
725
726  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
727  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
728                    DAG.getIntPtrConstant(IncrementSize));
729  SVOffset += IncrementSize;
730  Alignment = MinAlign(Alignment, IncrementSize);
731  Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, HiVT, Ch, Ptr, Offset,
732                   SV, SVOffset, HiMemVT, isVolatile, Alignment);
733
734  // Build a factor node to remember that this load is independent of the
735  // other one.
736  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
737                   Hi.getValue(1));
738
739  // Legalized the chain result - switch anything that used the old chain to
740  // use the new one.
741  ReplaceValueWith(SDValue(LD, 1), Ch);
742}
743
744void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
745  EVT LoVT, HiVT;
746  DebugLoc DL = N->getDebugLoc();
747  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
748
749  // Split the input.
750  EVT InVT = N->getOperand(0).getValueType();
751  SDValue LL, LH, RL, RH;
752  EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
753                               LoVT.getVectorNumElements());
754  LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
755                   DAG.getIntPtrConstant(0));
756  LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
757                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
758
759  RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
760                   DAG.getIntPtrConstant(0));
761  RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
762                   DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
763
764  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
765  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
766}
767
768void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
769                                           SDValue &Hi) {
770  // Get the dest types - they may not match the input types, e.g. int_to_fp.
771  EVT LoVT, HiVT;
772  DebugLoc dl = N->getDebugLoc();
773  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
774
775  // Split the input.
776  EVT InVT = N->getOperand(0).getValueType();
777  switch (getTypeAction(InVT)) {
778  default: llvm_unreachable("Unexpected type action!");
779  case Legal: {
780    EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
781                                 LoVT.getVectorNumElements());
782    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
783                     DAG.getIntPtrConstant(0));
784    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
785                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
786    break;
787  }
788  case SplitVector:
789    GetSplitVector(N->getOperand(0), Lo, Hi);
790    break;
791  case WidenVector: {
792    // If the result needs to be split and the input needs to be widened,
793    // the two types must have different lengths. Use the widened result
794    // and extract from it to do the split.
795    SDValue InOp = GetWidenedVector(N->getOperand(0));
796    EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
797                                 LoVT.getVectorNumElements());
798    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
799                     DAG.getIntPtrConstant(0));
800    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
801                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
802    break;
803  }
804  }
805
806  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
807  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
808}
809
810void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
811                                                  SDValue &Lo, SDValue &Hi) {
812  // The low and high parts of the original input give four input vectors.
813  SDValue Inputs[4];
814  DebugLoc dl = N->getDebugLoc();
815  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
816  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
817  EVT NewVT = Inputs[0].getValueType();
818  unsigned NewElts = NewVT.getVectorNumElements();
819
820  // If Lo or Hi uses elements from at most two of the four input vectors, then
821  // express it as a vector shuffle of those two inputs.  Otherwise extract the
822  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
823  SmallVector<int, 16> Ops;
824  for (unsigned High = 0; High < 2; ++High) {
825    SDValue &Output = High ? Hi : Lo;
826
827    // Build a shuffle mask for the output, discovering on the fly which
828    // input vectors to use as shuffle operands (recorded in InputUsed).
829    // If building a suitable shuffle vector proves too hard, then bail
830    // out with useBuildVector set.
831    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
832    unsigned FirstMaskIdx = High * NewElts;
833    bool useBuildVector = false;
834    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
835      // The mask element.  This indexes into the input.
836      int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
837
838      // The input vector this mask element indexes into.
839      unsigned Input = (unsigned)Idx / NewElts;
840
841      if (Input >= array_lengthof(Inputs)) {
842        // The mask element does not index into any input vector.
843        Ops.push_back(-1);
844        continue;
845      }
846
847      // Turn the index into an offset from the start of the input vector.
848      Idx -= Input * NewElts;
849
850      // Find or create a shuffle vector operand to hold this input.
851      unsigned OpNo;
852      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
853        if (InputUsed[OpNo] == Input) {
854          // This input vector is already an operand.
855          break;
856        } else if (InputUsed[OpNo] == -1U) {
857          // Create a new operand for this input vector.
858          InputUsed[OpNo] = Input;
859          break;
860        }
861      }
862
863      if (OpNo >= array_lengthof(InputUsed)) {
864        // More than two input vectors used!  Give up on trying to create a
865        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
866        useBuildVector = true;
867        break;
868      }
869
870      // Add the mask index for the new shuffle vector.
871      Ops.push_back(Idx + OpNo * NewElts);
872    }
873
874    if (useBuildVector) {
875      EVT EltVT = NewVT.getVectorElementType();
876      SmallVector<SDValue, 16> SVOps;
877
878      // Extract the input elements by hand.
879      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
880        // The mask element.  This indexes into the input.
881        int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
882
883        // The input vector this mask element indexes into.
884        unsigned Input = (unsigned)Idx / NewElts;
885
886        if (Input >= array_lengthof(Inputs)) {
887          // The mask element is "undef" or indexes off the end of the input.
888          SVOps.push_back(DAG.getUNDEF(EltVT));
889          continue;
890        }
891
892        // Turn the index into an offset from the start of the input vector.
893        Idx -= Input * NewElts;
894
895        // Extract the vector element by hand.
896        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
897                                    Inputs[Input], DAG.getIntPtrConstant(Idx)));
898      }
899
900      // Construct the Lo/Hi output using a BUILD_VECTOR.
901      Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
902    } else if (InputUsed[0] == -1U) {
903      // No input vectors were used!  The result is undefined.
904      Output = DAG.getUNDEF(NewVT);
905    } else {
906      SDValue Op0 = Inputs[InputUsed[0]];
907      // If only one input was used, use an undefined vector for the other.
908      SDValue Op1 = InputUsed[1] == -1U ?
909        DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
910      // At least one input vector was used.  Create a new shuffle vector.
911      Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
912    }
913
914    Ops.clear();
915  }
916}
917
918
919//===----------------------------------------------------------------------===//
920//  Operand Vector Splitting
921//===----------------------------------------------------------------------===//
922
923/// SplitVectorOperand - This method is called when the specified operand of the
924/// specified node is found to need vector splitting.  At this point, all of the
925/// result types of the node are known to be legal, but other operands of the
926/// node may need legalization as well as the specified one.
927bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
928  DEBUG(errs() << "Split node operand: ";
929        N->dump(&DAG);
930        errs() << "\n");
931  SDValue Res = SDValue();
932
933  if (Res.getNode() == 0) {
934    switch (N->getOpcode()) {
935    default:
936#ifndef NDEBUG
937      errs() << "SplitVectorOperand Op #" << OpNo << ": ";
938      N->dump(&DAG);
939      errs() << "\n";
940#endif
941      llvm_unreachable("Do not know how to split this operator's operand!");
942
943    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
944    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
945    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
946    case ISD::STORE:
947      Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
948      break;
949
950    case ISD::CTTZ:
951    case ISD::CTLZ:
952    case ISD::CTPOP:
953    case ISD::FP_TO_SINT:
954    case ISD::FP_TO_UINT:
955    case ISD::SINT_TO_FP:
956    case ISD::UINT_TO_FP:
957    case ISD::TRUNCATE:
958    case ISD::SIGN_EXTEND:
959    case ISD::ZERO_EXTEND:
960    case ISD::ANY_EXTEND:
961      Res = SplitVecOp_UnaryOp(N);
962      break;
963    }
964  }
965
966  // If the result is null, the sub-method took care of registering results etc.
967  if (!Res.getNode()) return false;
968
969  // If the result is N, the sub-method updated N in place.  Tell the legalizer
970  // core about this.
971  if (Res.getNode() == N)
972    return true;
973
974  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
975         "Invalid operand expansion");
976
977  ReplaceValueWith(SDValue(N, 0), Res);
978  return false;
979}
980
981SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
982  // The result has a legal vector type, but the input needs splitting.
983  EVT ResVT = N->getValueType(0);
984  SDValue Lo, Hi;
985  DebugLoc dl = N->getDebugLoc();
986  GetSplitVector(N->getOperand(0), Lo, Hi);
987  EVT InVT = Lo.getValueType();
988
989  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
990                               InVT.getVectorNumElements());
991
992  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
993  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
994
995  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
996}
997
998SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
999  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
1000  // end up being split all the way down to individual components.  Convert the
1001  // split pieces into integers and reassemble.
1002  SDValue Lo, Hi;
1003  GetSplitVector(N->getOperand(0), Lo, Hi);
1004  Lo = BitConvertToInteger(Lo);
1005  Hi = BitConvertToInteger(Hi);
1006
1007  if (TLI.isBigEndian())
1008    std::swap(Lo, Hi);
1009
1010  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
1011                     JoinIntegers(Lo, Hi));
1012}
1013
1014SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1015  // We know that the extracted result type is legal.  For now, assume the index
1016  // is a constant.
1017  EVT SubVT = N->getValueType(0);
1018  SDValue Idx = N->getOperand(1);
1019  DebugLoc dl = N->getDebugLoc();
1020  SDValue Lo, Hi;
1021  GetSplitVector(N->getOperand(0), Lo, Hi);
1022
1023  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1024  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1025
1026  if (IdxVal < LoElts) {
1027    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1028           "Extracted subvector crosses vector split!");
1029    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1030  } else {
1031    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1032                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
1033  }
1034}
1035
1036SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1037  SDValue Vec = N->getOperand(0);
1038  SDValue Idx = N->getOperand(1);
1039  EVT VecVT = Vec.getValueType();
1040
1041  if (isa<ConstantSDNode>(Idx)) {
1042    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1043    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1044
1045    SDValue Lo, Hi;
1046    GetSplitVector(Vec, Lo, Hi);
1047
1048    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1049
1050    if (IdxVal < LoElts)
1051      return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
1052    return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
1053                                  DAG.getConstant(IdxVal - LoElts,
1054                                                  Idx.getValueType()));
1055  }
1056
1057  // Store the vector to the stack.
1058  EVT EltVT = VecVT.getVectorElementType();
1059  DebugLoc dl = N->getDebugLoc();
1060  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1061  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1062  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1063  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, SV, 0);
1064
1065  // Load back the required element.
1066  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1067  return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
1068                        SV, 0, EltVT);
1069}
1070
1071SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1072  assert(N->isUnindexed() && "Indexed store of vector?");
1073  assert(OpNo == 1 && "Can only split the stored value");
1074  DebugLoc dl = N->getDebugLoc();
1075
1076  bool isTruncating = N->isTruncatingStore();
1077  SDValue Ch  = N->getChain();
1078  SDValue Ptr = N->getBasePtr();
1079  int SVOffset = N->getSrcValueOffset();
1080  EVT MemoryVT = N->getMemoryVT();
1081  unsigned Alignment = N->getAlignment();
1082  bool isVol = N->isVolatile();
1083  SDValue Lo, Hi;
1084  GetSplitVector(N->getOperand(1), Lo, Hi);
1085
1086  EVT LoMemVT, HiMemVT;
1087  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
1088
1089  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1090
1091  if (isTruncating)
1092    Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1093                           LoMemVT, isVol, Alignment);
1094  else
1095    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1096                      isVol, Alignment);
1097
1098  // Increment the pointer to the other half.
1099  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1100                    DAG.getIntPtrConstant(IncrementSize));
1101
1102  if (isTruncating)
1103    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
1104                           N->getSrcValue(), SVOffset+IncrementSize,
1105                           HiMemVT,
1106                           isVol, MinAlign(Alignment, IncrementSize));
1107  else
1108    Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
1109                      isVol, MinAlign(Alignment, IncrementSize));
1110
1111  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1112}
1113
1114
1115//===----------------------------------------------------------------------===//
1116//  Result Vector Widening
1117//===----------------------------------------------------------------------===//
1118
1119void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1120  DEBUG(errs() << "Widen node result " << ResNo << ": ";
1121        N->dump(&DAG);
1122        errs() << "\n");
1123  SDValue Res = SDValue();
1124
1125  switch (N->getOpcode()) {
1126  default:
1127#ifndef NDEBUG
1128    errs() << "WidenVectorResult #" << ResNo << ": ";
1129    N->dump(&DAG);
1130    errs() << "\n";
1131#endif
1132    llvm_unreachable("Do not know how to widen the result of this operator!");
1133
1134  case ISD::BIT_CONVERT:       Res = WidenVecRes_BIT_CONVERT(N); break;
1135  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1136  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1137  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1138  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1139  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1140  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1141  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1142  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1143  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1144  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1145  case ISD::VECTOR_SHUFFLE:
1146    Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
1147    break;
1148  case ISD::VSETCC:
1149    Res = WidenVecRes_VSETCC(N);
1150    break;
1151
1152  case ISD::ADD:
1153  case ISD::AND:
1154  case ISD::BSWAP:
1155  case ISD::FADD:
1156  case ISD::FCOPYSIGN:
1157  case ISD::FDIV:
1158  case ISD::FMUL:
1159  case ISD::FPOW:
1160  case ISD::FPOWI:
1161  case ISD::FREM:
1162  case ISD::FSUB:
1163  case ISD::MUL:
1164  case ISD::MULHS:
1165  case ISD::MULHU:
1166  case ISD::OR:
1167  case ISD::SDIV:
1168  case ISD::SREM:
1169  case ISD::UDIV:
1170  case ISD::UREM:
1171  case ISD::SUB:
1172  case ISD::XOR:
1173    Res = WidenVecRes_Binary(N);
1174    break;
1175
1176  case ISD::SHL:
1177  case ISD::SRA:
1178  case ISD::SRL:
1179    Res = WidenVecRes_Shift(N);
1180    break;
1181
1182  case ISD::FP_ROUND:
1183  case ISD::FP_TO_SINT:
1184  case ISD::FP_TO_UINT:
1185  case ISD::SINT_TO_FP:
1186  case ISD::UINT_TO_FP:
1187  case ISD::TRUNCATE:
1188  case ISD::SIGN_EXTEND:
1189  case ISD::ZERO_EXTEND:
1190  case ISD::ANY_EXTEND:
1191    Res = WidenVecRes_Convert(N);
1192    break;
1193
1194  case ISD::CTLZ:
1195  case ISD::CTPOP:
1196  case ISD::CTTZ:
1197  case ISD::FABS:
1198  case ISD::FCOS:
1199  case ISD::FNEG:
1200  case ISD::FSIN:
1201  case ISD::FSQRT:
1202    Res = WidenVecRes_Unary(N);
1203    break;
1204  }
1205
1206  // If Res is null, the sub-method took care of registering the result.
1207  if (Res.getNode())
1208    SetWidenedVector(SDValue(N, ResNo), Res);
1209}
1210
1211SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1212  // Binary op widening.
1213  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1214  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1215  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1216  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp1, InOp2);
1217}
1218
1219SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1220  SDValue InOp = N->getOperand(0);
1221  DebugLoc dl = N->getDebugLoc();
1222
1223  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1224  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1225
1226  EVT InVT = InOp.getValueType();
1227  EVT InEltVT = InVT.getVectorElementType();
1228  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1229
1230  unsigned Opcode = N->getOpcode();
1231  unsigned InVTNumElts = InVT.getVectorNumElements();
1232
1233  if (getTypeAction(InVT) == WidenVector) {
1234    InOp = GetWidenedVector(N->getOperand(0));
1235    InVT = InOp.getValueType();
1236    InVTNumElts = InVT.getVectorNumElements();
1237    if (InVTNumElts == WidenNumElts)
1238      return DAG.getNode(Opcode, dl, WidenVT, InOp);
1239  }
1240
1241  if (TLI.isTypeLegal(InWidenVT)) {
1242    // Because the result and the input are different vector types, widening
1243    // the result could create a legal type but widening the input might make
1244    // it an illegal type that might lead to repeatedly splitting the input
1245    // and then widening it. To avoid this, we widen the input only if
1246    // it results in a legal type.
1247    if (WidenNumElts % InVTNumElts == 0) {
1248      // Widen the input and call convert on the widened input vector.
1249      unsigned NumConcat = WidenNumElts/InVTNumElts;
1250      SmallVector<SDValue, 16> Ops(NumConcat);
1251      Ops[0] = InOp;
1252      SDValue UndefVal = DAG.getUNDEF(InVT);
1253      for (unsigned i = 1; i != NumConcat; ++i)
1254        Ops[i] = UndefVal;
1255      return DAG.getNode(Opcode, dl, WidenVT,
1256                         DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT,
1257                         &Ops[0], NumConcat));
1258    }
1259
1260    if (InVTNumElts % WidenNumElts == 0) {
1261      // Extract the input and convert the shorten input vector.
1262      return DAG.getNode(Opcode, dl, WidenVT,
1263                         DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT,
1264                                     InOp, DAG.getIntPtrConstant(0)));
1265    }
1266  }
1267
1268  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1269  SmallVector<SDValue, 16> Ops(WidenNumElts);
1270  EVT EltVT = WidenVT.getVectorElementType();
1271  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1272  unsigned i;
1273  for (i=0; i < MinElts; ++i)
1274    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1275                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1276                                     DAG.getIntPtrConstant(i)));
1277
1278  SDValue UndefVal = DAG.getUNDEF(EltVT);
1279  for (; i < WidenNumElts; ++i)
1280    Ops[i] = UndefVal;
1281
1282  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1283}
1284
1285SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1286  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1287  SDValue InOp = GetWidenedVector(N->getOperand(0));
1288  SDValue ShOp = N->getOperand(1);
1289
1290  EVT ShVT = ShOp.getValueType();
1291  if (getTypeAction(ShVT) == WidenVector) {
1292    ShOp = GetWidenedVector(ShOp);
1293    ShVT = ShOp.getValueType();
1294  }
1295  EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(), ShVT.getVectorElementType(),
1296                                   WidenVT.getVectorNumElements());
1297  if (ShVT != ShWidenVT)
1298    ShOp = ModifyToType(ShOp, ShWidenVT);
1299
1300  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
1301}
1302
1303SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1304  // Unary op widening.
1305  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1306  SDValue InOp = GetWidenedVector(N->getOperand(0));
1307  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
1308}
1309
1310SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
1311  SDValue InOp = N->getOperand(0);
1312  EVT InVT = InOp.getValueType();
1313  EVT VT = N->getValueType(0);
1314  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1315  DebugLoc dl = N->getDebugLoc();
1316
1317  switch (getTypeAction(InVT)) {
1318  default:
1319    assert(false && "Unknown type action!");
1320    break;
1321  case Legal:
1322    break;
1323  case PromoteInteger:
1324    // If the InOp is promoted to the same size, convert it.  Otherwise,
1325    // fall out of the switch and widen the promoted input.
1326    InOp = GetPromotedInteger(InOp);
1327    InVT = InOp.getValueType();
1328    if (WidenVT.bitsEq(InVT))
1329      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1330    break;
1331  case SoftenFloat:
1332  case ExpandInteger:
1333  case ExpandFloat:
1334  case ScalarizeVector:
1335  case SplitVector:
1336    break;
1337  case WidenVector:
1338    // If the InOp is widened to the same size, convert it.  Otherwise, fall
1339    // out of the switch and widen the widened input.
1340    InOp = GetWidenedVector(InOp);
1341    InVT = InOp.getValueType();
1342    if (WidenVT.bitsEq(InVT))
1343      // The input widens to the same size. Convert to the widen value.
1344      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1345    break;
1346  }
1347
1348  unsigned WidenSize = WidenVT.getSizeInBits();
1349  unsigned InSize = InVT.getSizeInBits();
1350  if (WidenSize % InSize == 0) {
1351    // Determine new input vector type.  The new input vector type will use
1352    // the same element type (if its a vector) or use the input type as a
1353    // vector.  It is the same size as the type to widen to.
1354    EVT NewInVT;
1355    unsigned NewNumElts = WidenSize / InSize;
1356    if (InVT.isVector()) {
1357      EVT InEltVT = InVT.getVectorElementType();
1358      NewInVT= EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenSize / InEltVT.getSizeInBits());
1359    } else {
1360      NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
1361    }
1362
1363    if (TLI.isTypeLegal(NewInVT)) {
1364      // Because the result and the input are different vector types, widening
1365      // the result could create a legal type but widening the input might make
1366      // it an illegal type that might lead to repeatedly splitting the input
1367      // and then widening it. To avoid this, we widen the input only if
1368      // it results in a legal type.
1369      SmallVector<SDValue, 16> Ops(NewNumElts);
1370      SDValue UndefVal = DAG.getUNDEF(InVT);
1371      Ops[0] = InOp;
1372      for (unsigned i = 1; i < NewNumElts; ++i)
1373        Ops[i] = UndefVal;
1374
1375      SDValue NewVec;
1376      if (InVT.isVector())
1377        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1378                             NewInVT, &Ops[0], NewNumElts);
1379      else
1380        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1381                             NewInVT, &Ops[0], NewNumElts);
1382      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, NewVec);
1383    }
1384  }
1385
1386  return CreateStackStoreLoad(InOp, WidenVT);
1387}
1388
1389SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1390  DebugLoc dl = N->getDebugLoc();
1391  // Build a vector with undefined for the new nodes.
1392  EVT VT = N->getValueType(0);
1393  EVT EltVT = VT.getVectorElementType();
1394  unsigned NumElts = VT.getVectorNumElements();
1395
1396  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1397  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1398
1399  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1400  NewOps.reserve(WidenNumElts);
1401  for (unsigned i = NumElts; i < WidenNumElts; ++i)
1402    NewOps.push_back(DAG.getUNDEF(EltVT));
1403
1404  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1405}
1406
1407SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1408  EVT InVT = N->getOperand(0).getValueType();
1409  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1410  DebugLoc dl = N->getDebugLoc();
1411  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1412  unsigned NumOperands = N->getNumOperands();
1413
1414  bool InputWidened = false; // Indicates we need to widen the input.
1415  if (getTypeAction(InVT) != WidenVector) {
1416    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1417      // Add undef vectors to widen to correct length.
1418      unsigned NumConcat = WidenVT.getVectorNumElements() /
1419                           InVT.getVectorNumElements();
1420      SDValue UndefVal = DAG.getUNDEF(InVT);
1421      SmallVector<SDValue, 16> Ops(NumConcat);
1422      for (unsigned i=0; i < NumOperands; ++i)
1423        Ops[i] = N->getOperand(i);
1424      for (unsigned i = NumOperands; i != NumConcat; ++i)
1425        Ops[i] = UndefVal;
1426      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1427    }
1428  } else {
1429    InputWidened = true;
1430    if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
1431      // The inputs and the result are widen to the same value.
1432      unsigned i;
1433      for (i=1; i < NumOperands; ++i)
1434        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1435          break;
1436
1437      if (i > NumOperands)
1438        // Everything but the first operand is an UNDEF so just return the
1439        // widened first operand.
1440        return GetWidenedVector(N->getOperand(0));
1441
1442      if (NumOperands == 2) {
1443        // Replace concat of two operands with a shuffle.
1444        SmallVector<int, 16> MaskOps(WidenNumElts);
1445        for (unsigned i=0; i < WidenNumElts/2; ++i) {
1446          MaskOps[i] = i;
1447          MaskOps[i+WidenNumElts/2] = i+WidenNumElts;
1448        }
1449        return DAG.getVectorShuffle(WidenVT, dl,
1450                                    GetWidenedVector(N->getOperand(0)),
1451                                    GetWidenedVector(N->getOperand(1)),
1452                                    &MaskOps[0]);
1453      }
1454    }
1455  }
1456
1457  // Fall back to use extracts and build vector.
1458  EVT EltVT = WidenVT.getVectorElementType();
1459  unsigned NumInElts = InVT.getVectorNumElements();
1460  SmallVector<SDValue, 16> Ops(WidenNumElts);
1461  unsigned Idx = 0;
1462  for (unsigned i=0; i < NumOperands; ++i) {
1463    SDValue InOp = N->getOperand(i);
1464    if (InputWidened)
1465      InOp = GetWidenedVector(InOp);
1466    for (unsigned j=0; j < NumInElts; ++j)
1467        Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1468                                 DAG.getIntPtrConstant(j));
1469  }
1470  SDValue UndefVal = DAG.getUNDEF(EltVT);
1471  for (; Idx < WidenNumElts; ++Idx)
1472    Ops[Idx] = UndefVal;
1473  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1474}
1475
1476SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
1477  DebugLoc dl = N->getDebugLoc();
1478  SDValue InOp  = N->getOperand(0);
1479  SDValue RndOp = N->getOperand(3);
1480  SDValue SatOp = N->getOperand(4);
1481
1482  EVT      WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1483  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1484
1485  EVT InVT = InOp.getValueType();
1486  EVT InEltVT = InVT.getVectorElementType();
1487  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1488
1489  SDValue DTyOp = DAG.getValueType(WidenVT);
1490  SDValue STyOp = DAG.getValueType(InWidenVT);
1491  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1492
1493  unsigned InVTNumElts = InVT.getVectorNumElements();
1494  if (getTypeAction(InVT) == WidenVector) {
1495    InOp = GetWidenedVector(InOp);
1496    InVT = InOp.getValueType();
1497    InVTNumElts = InVT.getVectorNumElements();
1498    if (InVTNumElts == WidenNumElts)
1499      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1500                                  SatOp, CvtCode);
1501  }
1502
1503  if (TLI.isTypeLegal(InWidenVT)) {
1504    // Because the result and the input are different vector types, widening
1505    // the result could create a legal type but widening the input might make
1506    // it an illegal type that might lead to repeatedly splitting the input
1507    // and then widening it. To avoid this, we widen the input only if
1508    // it results in a legal type.
1509    if (WidenNumElts % InVTNumElts == 0) {
1510      // Widen the input and call convert on the widened input vector.
1511      unsigned NumConcat = WidenNumElts/InVTNumElts;
1512      SmallVector<SDValue, 16> Ops(NumConcat);
1513      Ops[0] = InOp;
1514      SDValue UndefVal = DAG.getUNDEF(InVT);
1515      for (unsigned i = 1; i != NumConcat; ++i) {
1516        Ops[i] = UndefVal;
1517      }
1518      InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
1519      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1520                                  SatOp, CvtCode);
1521    }
1522
1523    if (InVTNumElts % WidenNumElts == 0) {
1524      // Extract the input and convert the shorten input vector.
1525      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
1526                         DAG.getIntPtrConstant(0));
1527      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1528                                SatOp, CvtCode);
1529    }
1530  }
1531
1532  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1533  SmallVector<SDValue, 16> Ops(WidenNumElts);
1534  EVT EltVT = WidenVT.getVectorElementType();
1535  DTyOp = DAG.getValueType(EltVT);
1536  STyOp = DAG.getValueType(InEltVT);
1537
1538  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1539  unsigned i;
1540  for (i=0; i < MinElts; ++i) {
1541    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1542                                 DAG.getIntPtrConstant(i));
1543    Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
1544                                        SatOp, CvtCode);
1545  }
1546
1547  SDValue UndefVal = DAG.getUNDEF(EltVT);
1548  for (; i < WidenNumElts; ++i)
1549    Ops[i] = UndefVal;
1550
1551  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1552}
1553
1554SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
1555  EVT      VT = N->getValueType(0);
1556  EVT      WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1557  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1558  SDValue  InOp = N->getOperand(0);
1559  SDValue  Idx  = N->getOperand(1);
1560  DebugLoc dl = N->getDebugLoc();
1561
1562  if (getTypeAction(InOp.getValueType()) == WidenVector)
1563    InOp = GetWidenedVector(InOp);
1564
1565  EVT InVT = InOp.getValueType();
1566
1567  ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
1568  if (CIdx) {
1569    unsigned IdxVal = CIdx->getZExtValue();
1570    // Check if we can just return the input vector after widening.
1571    if (IdxVal == 0 && InVT == WidenVT)
1572      return InOp;
1573
1574    // Check if we can extract from the vector.
1575    unsigned InNumElts = InVT.getVectorNumElements();
1576    if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
1577        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
1578  }
1579
1580  // We could try widening the input to the right length but for now, extract
1581  // the original elements, fill the rest with undefs and build a vector.
1582  SmallVector<SDValue, 16> Ops(WidenNumElts);
1583  EVT EltVT = VT.getVectorElementType();
1584  EVT IdxVT = Idx.getValueType();
1585  unsigned NumElts = VT.getVectorNumElements();
1586  unsigned i;
1587  if (CIdx) {
1588    unsigned IdxVal = CIdx->getZExtValue();
1589    for (i=0; i < NumElts; ++i)
1590      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1591                           DAG.getConstant(IdxVal+i, IdxVT));
1592  } else {
1593    Ops[0] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, Idx);
1594    for (i=1; i < NumElts; ++i) {
1595      SDValue NewIdx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1596                                   DAG.getConstant(i, IdxVT));
1597      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, NewIdx);
1598    }
1599  }
1600
1601  SDValue UndefVal = DAG.getUNDEF(EltVT);
1602  for (; i < WidenNumElts; ++i)
1603    Ops[i] = UndefVal;
1604  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1605}
1606
1607SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
1608  SDValue InOp = GetWidenedVector(N->getOperand(0));
1609  return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(),
1610                     InOp.getValueType(), InOp,
1611                     N->getOperand(1), N->getOperand(2));
1612}
1613
1614SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
1615  LoadSDNode *LD = cast<LoadSDNode>(N);
1616  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0));
1617  EVT LdVT    = LD->getMemoryVT();
1618  DebugLoc dl = N->getDebugLoc();
1619  assert(LdVT.isVector() && WidenVT.isVector());
1620
1621  // Load information
1622  SDValue   Chain = LD->getChain();
1623  SDValue   BasePtr = LD->getBasePtr();
1624  int       SVOffset = LD->getSrcValueOffset();
1625  unsigned  Align    = LD->getAlignment();
1626  bool      isVolatile = LD->isVolatile();
1627  const Value *SV = LD->getSrcValue();
1628  ISD::LoadExtType ExtType = LD->getExtensionType();
1629
1630  SDValue Result;
1631  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
1632  if (ExtType != ISD::NON_EXTLOAD) {
1633    // For extension loads, we can not play the tricks of chopping legal
1634    // vector types and bit cast it to the right type.  Instead, we unroll
1635    // the load and build a vector.
1636    EVT EltVT = WidenVT.getVectorElementType();
1637    EVT LdEltVT = LdVT.getVectorElementType();
1638    unsigned NumElts = LdVT.getVectorNumElements();
1639
1640    // Load each element and widen
1641    unsigned WidenNumElts = WidenVT.getVectorNumElements();
1642    SmallVector<SDValue, 16> Ops(WidenNumElts);
1643    unsigned Increment = LdEltVT.getSizeInBits() / 8;
1644    Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, SV, SVOffset,
1645                            LdEltVT, isVolatile, Align);
1646    LdChain.push_back(Ops[0].getValue(1));
1647    unsigned i = 0, Offset = Increment;
1648    for (i=1; i < NumElts; ++i, Offset += Increment) {
1649      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1650                                       BasePtr, DAG.getIntPtrConstant(Offset));
1651      Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, SV,
1652                              SVOffset + Offset, LdEltVT, isVolatile, Align);
1653      LdChain.push_back(Ops[i].getValue(1));
1654    }
1655
1656    // Fill the rest with undefs
1657    SDValue UndefVal = DAG.getUNDEF(EltVT);
1658    for (; i != WidenNumElts; ++i)
1659      Ops[i] = UndefVal;
1660
1661    Result =  DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
1662  } else {
1663    assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
1664    unsigned int LdWidth = LdVT.getSizeInBits();
1665    Result = GenWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
1666                                 Align, isVolatile, LdWidth, WidenVT, dl);
1667  }
1668
1669 // If we generate a single load, we can use that for the chain.  Otherwise,
1670 // build a factor node to remember the multiple loads are independent and
1671 // chain to that.
1672 SDValue NewChain;
1673 if (LdChain.size() == 1)
1674   NewChain = LdChain[0];
1675 else
1676   NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LdChain[0],
1677                          LdChain.size());
1678
1679  // Modified the chain - switch anything that used the old chain to use
1680  // the new one.
1681  ReplaceValueWith(SDValue(N, 1), NewChain);
1682
1683  return Result;
1684}
1685
1686SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
1687  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1688  return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
1689                     WidenVT, N->getOperand(0));
1690}
1691
1692SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
1693  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1694  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1695
1696  SDValue Cond1 = N->getOperand(0);
1697  EVT CondVT = Cond1.getValueType();
1698  if (CondVT.isVector()) {
1699    EVT CondEltVT = CondVT.getVectorElementType();
1700    EVT CondWidenVT =  EVT::getVectorVT(*DAG.getContext(), CondEltVT, WidenNumElts);
1701    if (getTypeAction(CondVT) == WidenVector)
1702      Cond1 = GetWidenedVector(Cond1);
1703
1704    if (Cond1.getValueType() != CondWidenVT)
1705       Cond1 = ModifyToType(Cond1, CondWidenVT);
1706  }
1707
1708  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
1709  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
1710  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
1711  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
1712                     WidenVT, Cond1, InOp1, InOp2);
1713}
1714
1715SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
1716  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
1717  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
1718  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
1719                     InOp1.getValueType(), N->getOperand(0),
1720                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
1721}
1722
1723SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
1724 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1725 return DAG.getUNDEF(WidenVT);
1726}
1727
1728SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
1729  EVT VT = N->getValueType(0);
1730  DebugLoc dl = N->getDebugLoc();
1731
1732  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1733  unsigned NumElts = VT.getVectorNumElements();
1734  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1735
1736  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1737  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1738
1739  // Adjust mask based on new input vector length.
1740  SmallVector<int, 16> NewMask;
1741  for (unsigned i = 0; i != NumElts; ++i) {
1742    int Idx = N->getMaskElt(i);
1743    if (Idx < (int)NumElts)
1744      NewMask.push_back(Idx);
1745    else
1746      NewMask.push_back(Idx - NumElts + WidenNumElts);
1747  }
1748  for (unsigned i = NumElts; i != WidenNumElts; ++i)
1749    NewMask.push_back(-1);
1750  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
1751}
1752
1753SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
1754  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1755  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1756
1757  SDValue InOp1 = N->getOperand(0);
1758  EVT InVT = InOp1.getValueType();
1759  assert(InVT.isVector() && "can not widen non vector type");
1760  EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), WidenNumElts);
1761  InOp1 = GetWidenedVector(InOp1);
1762  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1763
1764  // Assume that the input and output will be widen appropriately.  If not,
1765  // we will have to unroll it at some point.
1766  assert(InOp1.getValueType() == WidenInVT &&
1767         InOp2.getValueType() == WidenInVT &&
1768         "Input not widened to expected type!");
1769  return DAG.getNode(ISD::VSETCC, N->getDebugLoc(),
1770                     WidenVT, InOp1, InOp2, N->getOperand(2));
1771}
1772
1773
1774//===----------------------------------------------------------------------===//
1775// Widen Vector Operand
1776//===----------------------------------------------------------------------===//
1777bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
1778  DEBUG(errs() << "Widen node operand " << ResNo << ": ";
1779        N->dump(&DAG);
1780        errs() << "\n");
1781  SDValue Res = SDValue();
1782
1783  switch (N->getOpcode()) {
1784  default:
1785#ifndef NDEBUG
1786    errs() << "WidenVectorOperand op #" << ResNo << ": ";
1787    N->dump(&DAG);
1788    errs() << "\n";
1789#endif
1790    llvm_unreachable("Do not know how to widen this operator's operand!");
1791
1792  case ISD::BIT_CONVERT:        Res = WidenVecOp_BIT_CONVERT(N); break;
1793  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
1794  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
1795  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
1796
1797  case ISD::FP_ROUND:
1798  case ISD::FP_TO_SINT:
1799  case ISD::FP_TO_UINT:
1800  case ISD::SINT_TO_FP:
1801  case ISD::UINT_TO_FP:
1802  case ISD::TRUNCATE:
1803  case ISD::SIGN_EXTEND:
1804  case ISD::ZERO_EXTEND:
1805  case ISD::ANY_EXTEND:
1806    Res = WidenVecOp_Convert(N);
1807    break;
1808  }
1809
1810  // If Res is null, the sub-method took care of registering the result.
1811  if (!Res.getNode()) return false;
1812
1813  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1814  // core about this.
1815  if (Res.getNode() == N)
1816    return true;
1817
1818
1819  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1820         "Invalid operand expansion");
1821
1822  ReplaceValueWith(SDValue(N, 0), Res);
1823  return false;
1824}
1825
1826SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
1827  // Since the result is legal and the input is illegal, it is unlikely
1828  // that we can fix the input to a legal type so unroll the convert
1829  // into some scalar code and create a nasty build vector.
1830  EVT VT = N->getValueType(0);
1831  EVT EltVT = VT.getVectorElementType();
1832  DebugLoc dl = N->getDebugLoc();
1833  unsigned NumElts = VT.getVectorNumElements();
1834  SDValue InOp = N->getOperand(0);
1835  if (getTypeAction(InOp.getValueType()) == WidenVector)
1836    InOp = GetWidenedVector(InOp);
1837  EVT InVT = InOp.getValueType();
1838  EVT InEltVT = InVT.getVectorElementType();
1839
1840  unsigned Opcode = N->getOpcode();
1841  SmallVector<SDValue, 16> Ops(NumElts);
1842  for (unsigned i=0; i < NumElts; ++i)
1843    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1844                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1845                                     DAG.getIntPtrConstant(i)));
1846
1847  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1848}
1849
1850SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
1851  EVT VT = N->getValueType(0);
1852  SDValue InOp = GetWidenedVector(N->getOperand(0));
1853  EVT InWidenVT = InOp.getValueType();
1854  DebugLoc dl = N->getDebugLoc();
1855
1856  // Check if we can convert between two legal vector types and extract.
1857  unsigned InWidenSize = InWidenVT.getSizeInBits();
1858  unsigned Size = VT.getSizeInBits();
1859  if (InWidenSize % Size == 0 && !VT.isVector()) {
1860    unsigned NewNumElts = InWidenSize / Size;
1861    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
1862    if (TLI.isTypeLegal(NewVT)) {
1863      SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
1864      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
1865                         DAG.getIntPtrConstant(0));
1866    }
1867  }
1868
1869  return CreateStackStoreLoad(InOp, VT);
1870}
1871
1872SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
1873  // If the input vector is not legal, it is likely that we will not find a
1874  // legal vector of the same size. Replace the concatenate vector with a
1875  // nasty build vector.
1876  EVT VT = N->getValueType(0);
1877  EVT EltVT = VT.getVectorElementType();
1878  DebugLoc dl = N->getDebugLoc();
1879  unsigned NumElts = VT.getVectorNumElements();
1880  SmallVector<SDValue, 16> Ops(NumElts);
1881
1882  EVT InVT = N->getOperand(0).getValueType();
1883  unsigned NumInElts = InVT.getVectorNumElements();
1884
1885  unsigned Idx = 0;
1886  unsigned NumOperands = N->getNumOperands();
1887  for (unsigned i=0; i < NumOperands; ++i) {
1888    SDValue InOp = N->getOperand(i);
1889    if (getTypeAction(InOp.getValueType()) == WidenVector)
1890      InOp = GetWidenedVector(InOp);
1891    for (unsigned j=0; j < NumInElts; ++j)
1892      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1893                               DAG.getIntPtrConstant(j));
1894  }
1895  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1896}
1897
1898SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1899  SDValue InOp = GetWidenedVector(N->getOperand(0));
1900  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
1901                     N->getValueType(0), InOp, N->getOperand(1));
1902}
1903
1904SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
1905  // We have to widen the value but we want only to store the original
1906  // vector type.
1907  StoreSDNode *ST = cast<StoreSDNode>(N);
1908  SDValue  Chain = ST->getChain();
1909  SDValue  BasePtr = ST->getBasePtr();
1910  const    Value *SV = ST->getSrcValue();
1911  int      SVOffset = ST->getSrcValueOffset();
1912  unsigned Align = ST->getAlignment();
1913  bool     isVolatile = ST->isVolatile();
1914  SDValue  ValOp = GetWidenedVector(ST->getValue());
1915  DebugLoc dl = N->getDebugLoc();
1916
1917  EVT StVT = ST->getMemoryVT();
1918  EVT ValVT = ValOp.getValueType();
1919  // It must be true that we the widen vector type is bigger than where
1920  // we need to store.
1921  assert(StVT.isVector() && ValOp.getValueType().isVector());
1922  assert(StVT.bitsLT(ValOp.getValueType()));
1923
1924  SmallVector<SDValue, 16> StChain;
1925  if (ST->isTruncatingStore()) {
1926    // For truncating stores, we can not play the tricks of chopping legal
1927    // vector types and bit cast it to the right type.  Instead, we unroll
1928    // the store.
1929    EVT StEltVT  = StVT.getVectorElementType();
1930    EVT ValEltVT = ValVT.getVectorElementType();
1931    unsigned Increment = ValEltVT.getSizeInBits() / 8;
1932    unsigned NumElts = StVT.getVectorNumElements();
1933    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1934                              DAG.getIntPtrConstant(0));
1935    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, SV,
1936                                        SVOffset, StEltVT,
1937                                        isVolatile, Align));
1938    unsigned Offset = Increment;
1939    for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
1940      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1941                                       BasePtr, DAG.getIntPtrConstant(Offset));
1942      SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1943                              DAG.getIntPtrConstant(0));
1944      StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, SV,
1945                                          SVOffset + Offset, StEltVT,
1946                                          isVolatile, MinAlign(Align, Offset)));
1947    }
1948  }
1949  else {
1950    assert(StVT.getVectorElementType() == ValVT.getVectorElementType());
1951    // Store value
1952    GenWidenVectorStores(StChain, Chain, BasePtr, SV, SVOffset,
1953                         Align, isVolatile, ValOp, StVT.getSizeInBits(), dl);
1954  }
1955  if (StChain.size() == 1)
1956    return StChain[0];
1957  else
1958    return DAG.getNode(ISD::TokenFactor, dl,
1959                       MVT::Other,&StChain[0],StChain.size());
1960}
1961
1962//===----------------------------------------------------------------------===//
1963// Vector Widening Utilities
1964//===----------------------------------------------------------------------===//
1965
1966
1967// Utility function to find a vector type and its associated element
1968// type from a preferred width and whose vector type must be the same size
1969// as the VecVT.
1970//  TLI:   Target lowering used to determine legal types.
1971//  Width: Preferred width to store.
1972//  VecVT: Vector value type whose size we must match.
1973// Returns NewVecVT and NewEltVT - the vector type and its associated
1974// element type.
1975static void FindAssocWidenVecType(SelectionDAG& DAG,
1976                                  const TargetLowering &TLI, unsigned Width,
1977                                  EVT VecVT,
1978                                  EVT& NewEltVT, EVT& NewVecVT) {
1979  unsigned EltWidth = Width + 1;
1980  if (TLI.isTypeLegal(VecVT)) {
1981    // We start with the preferred with, making it a power of 2 and find a
1982    // legal vector type of that width.  If not, we reduce it by another of 2.
1983    // For incoming type is legal, this process will end as a vector of the
1984    // smallest loadable type should always be legal.
1985    do {
1986      assert(EltWidth > 0);
1987      EltWidth = 1 << Log2_32(EltWidth - 1);
1988      NewEltVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
1989      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
1990      NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, NumElts);
1991    } while (!TLI.isTypeLegal(NewVecVT) ||
1992             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
1993  } else {
1994    // The incoming vector type is illegal and is the result of widening
1995    // a vector to a power of 2. In this case, we will use the preferred
1996    // with as long as it is a multiple of the incoming vector length.
1997    // The legalization process will eventually make this into a legal type
1998    // and remove the illegal bit converts (which would turn to stack converts
1999    // if they are allow to exist).
2000     do {
2001      assert(EltWidth > 0);
2002      EltWidth = 1 << Log2_32(EltWidth - 1);
2003      NewEltVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
2004      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
2005      NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, NumElts);
2006    } while (!TLI.isTypeLegal(NewEltVT) ||
2007             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
2008  }
2009}
2010
2011SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
2012                                              SDValue      Chain,
2013                                              SDValue      BasePtr,
2014                                              const Value *SV,
2015                                              int          SVOffset,
2016                                              unsigned     Alignment,
2017                                              bool         isVolatile,
2018                                              unsigned     LdWidth,
2019                                              EVT          ResType,
2020                                              DebugLoc     dl) {
2021  // The strategy assumes that we can efficiently load powers of two widths.
2022  // The routines chops the vector into the largest power of 2 load and
2023  // can be inserted into a legal vector and then cast the result into the
2024  // vector type we want.  This avoids unnecessary stack converts.
2025
2026  // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
2027  //       the load is nonvolatile, we an use a wider load for the value.
2028
2029  // Find the vector type that can load from.
2030  EVT NewEltVT, NewVecVT;
2031  unsigned NewEltVTWidth;
2032  FindAssocWidenVecType(DAG, TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2033  NewEltVTWidth = NewEltVT.getSizeInBits();
2034
2035  SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV, SVOffset,
2036                             isVolatile, Alignment);
2037  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2038  LdChain.push_back(LdOp.getValue(1));
2039
2040  // Check if we can load the element with one instruction
2041  if (LdWidth == NewEltVTWidth) {
2042    return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2043  }
2044
2045  unsigned Idx = 1;
2046  LdWidth -= NewEltVTWidth;
2047  unsigned Offset = 0;
2048
2049  while (LdWidth > 0) {
2050    unsigned Increment = NewEltVTWidth / 8;
2051    Offset += Increment;
2052    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2053                          DAG.getIntPtrConstant(Increment));
2054
2055    if (LdWidth < NewEltVTWidth) {
2056      // Our current type we are using is too large, use a smaller size by
2057      // using a smaller power of 2
2058      unsigned oNewEltVTWidth = NewEltVTWidth;
2059      FindAssocWidenVecType(DAG, TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2060      NewEltVTWidth = NewEltVT.getSizeInBits();
2061      // Readjust position and vector position based on new load type
2062      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2063      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2064    }
2065
2066    SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV,
2067                                 SVOffset+Offset, isVolatile,
2068                                 MinAlign(Alignment, Offset));
2069    LdChain.push_back(LdOp.getValue(1));
2070    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOp,
2071                        DAG.getIntPtrConstant(Idx++));
2072
2073    LdWidth -= NewEltVTWidth;
2074  }
2075
2076  return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2077}
2078
2079void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
2080                                            SDValue   Chain,
2081                                            SDValue   BasePtr,
2082                                            const Value *SV,
2083                                            int         SVOffset,
2084                                            unsigned    Alignment,
2085                                            bool        isVolatile,
2086                                            SDValue     ValOp,
2087                                            unsigned    StWidth,
2088                                            DebugLoc    dl) {
2089  // Breaks the stores into a series of power of 2 width stores.  For any
2090  // width, we convert the vector to the vector of element size that we
2091  // want to store.  This avoids requiring a stack convert.
2092
2093  // Find a width of the element type we can store with
2094  EVT WidenVT = ValOp.getValueType();
2095  EVT NewEltVT, NewVecVT;
2096
2097  FindAssocWidenVecType(DAG, TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2098  unsigned NewEltVTWidth = NewEltVT.getSizeInBits();
2099
2100  SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
2101  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2102                            DAG.getIntPtrConstant(0));
2103  SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset,
2104                               isVolatile, Alignment);
2105  StChain.push_back(StOp);
2106
2107  // Check if we are done
2108  if (StWidth == NewEltVTWidth) {
2109    return;
2110  }
2111
2112  unsigned Idx = 1;
2113  StWidth -= NewEltVTWidth;
2114  unsigned Offset = 0;
2115
2116  while (StWidth > 0) {
2117    unsigned Increment = NewEltVTWidth / 8;
2118    Offset += Increment;
2119    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2120                          DAG.getIntPtrConstant(Increment));
2121
2122    if (StWidth < NewEltVTWidth) {
2123      // Our current type we are using is too large, use a smaller size by
2124      // using a smaller power of 2
2125      unsigned oNewEltVTWidth = NewEltVTWidth;
2126      FindAssocWidenVecType(DAG, TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2127      NewEltVTWidth = NewEltVT.getSizeInBits();
2128      // Readjust position and vector position based on new load type
2129      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2130      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2131    }
2132
2133    EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2134                      DAG.getIntPtrConstant(Idx++));
2135    StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV,
2136                                   SVOffset + Offset, isVolatile,
2137                                   MinAlign(Alignment, Offset)));
2138    StWidth -= NewEltVTWidth;
2139  }
2140}
2141
2142/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
2143/// input vector must have the same element type as NVT.
2144SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
2145  // Note that InOp might have been widened so it might already have
2146  // the right width or it might need be narrowed.
2147  EVT InVT = InOp.getValueType();
2148  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2149         "input and widen element type must match");
2150  DebugLoc dl = InOp.getDebugLoc();
2151
2152  // Check if InOp already has the right width.
2153  if (InVT == NVT)
2154    return InOp;
2155
2156  unsigned InNumElts = InVT.getVectorNumElements();
2157  unsigned WidenNumElts = NVT.getVectorNumElements();
2158  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2159    unsigned NumConcat = WidenNumElts / InNumElts;
2160    SmallVector<SDValue, 16> Ops(NumConcat);
2161    SDValue UndefVal = DAG.getUNDEF(InVT);
2162    Ops[0] = InOp;
2163    for (unsigned i = 1; i != NumConcat; ++i)
2164      Ops[i] = UndefVal;
2165
2166    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2167  }
2168
2169  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2170    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2171                       DAG.getIntPtrConstant(0));
2172
2173  // Fall back to extract and build.
2174  SmallVector<SDValue, 16> Ops(WidenNumElts);
2175  EVT EltVT = NVT.getVectorElementType();
2176  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2177  unsigned Idx;
2178  for (Idx = 0; Idx < MinNumElts; ++Idx)
2179    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2180                           DAG.getIntPtrConstant(Idx));
2181
2182  SDValue UndefVal = DAG.getUNDEF(EltVT);
2183  for ( ; Idx < WidenNumElts; ++Idx)
2184    Ops[Idx] = UndefVal;
2185  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2186}
2187