LegalizeVectorTypes.cpp revision e53009f0f4d85d1e9c3a2f902bf7fc672765d5a8
1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in multiple vectors of a smaller type.  For example,
19// implementing <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Target/TargetData.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  Result Vector Scalarization: <1 x ty> -> ty.
30//===----------------------------------------------------------------------===//
31
32void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
33  DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
34        cerr << "\n");
35  SDValue R = SDValue();
36
37  switch (N->getOpcode()) {
38  default:
39#ifndef NDEBUG
40    cerr << "ScalarizeVectorResult #" << ResNo << ": ";
41    N->dump(&DAG); cerr << "\n";
42#endif
43    assert(0 && "Do not know how to scalarize the result of this operator!");
44    abort();
45
46  case ISD::BIT_CONVERT:       R = ScalarizeVecRes_BIT_CONVERT(N); break;
47  case ISD::BUILD_VECTOR:      R = N->getOperand(0); break;
48  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
49  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
50  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
51  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
52  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
53  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
54  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
55  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
56  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
57  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
58  case ISD::VSETCC:            R = ScalarizeVecRes_VSETCC(N); break;
59
60  case ISD::CTLZ:
61  case ISD::CTPOP:
62  case ISD::CTTZ:
63  case ISD::FABS:
64  case ISD::FCOS:
65  case ISD::FNEG:
66  case ISD::FP_TO_SINT:
67  case ISD::FP_TO_UINT:
68  case ISD::FSIN:
69  case ISD::FSQRT:
70  case ISD::FTRUNC:
71  case ISD::FFLOOR:
72  case ISD::FCEIL:
73  case ISD::FRINT:
74  case ISD::FNEARBYINT:
75  case ISD::UINT_TO_FP:
76  case ISD::SINT_TO_FP:
77  case ISD::TRUNCATE:
78  case ISD::SIGN_EXTEND:
79  case ISD::ZERO_EXTEND:
80  case ISD::ANY_EXTEND:
81    R = ScalarizeVecRes_UnaryOp(N);
82    break;
83
84  case ISD::ADD:
85  case ISD::AND:
86  case ISD::FADD:
87  case ISD::FDIV:
88  case ISD::FMUL:
89  case ISD::FPOW:
90  case ISD::FREM:
91  case ISD::FSUB:
92  case ISD::MUL:
93  case ISD::OR:
94  case ISD::SDIV:
95  case ISD::SREM:
96  case ISD::SUB:
97  case ISD::UDIV:
98  case ISD::UREM:
99  case ISD::XOR:
100    R = ScalarizeVecRes_BinOp(N);
101    break;
102
103  case ISD::SHL:
104  case ISD::SRA:
105  case ISD::SRL:
106    R = ScalarizeVecRes_ShiftOp(N);
107    break;
108  }
109
110  // If R is null, the sub-method took care of registering the result.
111  if (R.getNode())
112    SetScalarizedVector(SDValue(N, ResNo), R);
113}
114
115SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
116  SDValue LHS = GetScalarizedVector(N->getOperand(0));
117  SDValue RHS = GetScalarizedVector(N->getOperand(1));
118  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
119                     LHS.getValueType(), LHS, RHS);
120}
121
122SDValue DAGTypeLegalizer::ScalarizeVecRes_ShiftOp(SDNode *N) {
123  SDValue LHS = GetScalarizedVector(N->getOperand(0));
124  SDValue ShiftAmt = GetScalarizedVector(N->getOperand(1));
125  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
126                     LHS.getValueType(), LHS, ShiftAmt);
127}
128
129SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
130  MVT NewVT = N->getValueType(0).getVectorElementType();
131  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
132                     NewVT, N->getOperand(0));
133}
134
135SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
136  MVT NewVT = N->getValueType(0).getVectorElementType();
137  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
138  return DAG.getConvertRndSat(NewVT, N->getDebugLoc(),
139                              Op0, DAG.getValueType(NewVT),
140                              DAG.getValueType(Op0.getValueType()),
141                              N->getOperand(3),
142                              N->getOperand(4),
143                              cast<CvtRndSatSDNode>(N)->getCvtCode());
144}
145
146SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
147  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
148                     N->getValueType(0).getVectorElementType(),
149                     N->getOperand(0), N->getOperand(1));
150}
151
152SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
153  SDValue Op = GetScalarizedVector(N->getOperand(0));
154  return DAG.getNode(ISD::FPOWI, N->getDebugLoc(),
155                     Op.getValueType(), Op, N->getOperand(1));
156}
157
158SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
159  // The value to insert may have a wider type than the vector element type,
160  // so be sure to truncate it to the element type if necessary.
161  SDValue Op = N->getOperand(1);
162  MVT EltVT = N->getValueType(0).getVectorElementType();
163  if (Op.getValueType() != EltVT)
164    // FIXME: Can this happen for floating point types?
165    Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
166  return Op;
167}
168
169SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
170  assert(N->isUnindexed() && "Indexed vector load?");
171
172  SDValue Result = DAG.getLoad(ISD::UNINDEXED, N->getDebugLoc(),
173                               N->getExtensionType(),
174                               N->getValueType(0).getVectorElementType(),
175                               N->getChain(), N->getBasePtr(),
176                               DAG.getUNDEF(N->getBasePtr().getValueType()),
177                               N->getSrcValue(), N->getSrcValueOffset(),
178                               N->getMemoryVT().getVectorElementType(),
179                               N->isVolatile(), N->getAlignment());
180
181  // Legalized the chain result - switch anything that used the old chain to
182  // use the new one.
183  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
184  return Result;
185}
186
187SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
188  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
189  MVT DestVT = N->getValueType(0).getVectorElementType();
190  SDValue Op = GetScalarizedVector(N->getOperand(0));
191  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
192}
193
194SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
195  // If the operand is wider than the vector element type then it is implicitly
196  // truncated.  Make that explicit here.
197  MVT EltVT = N->getValueType(0).getVectorElementType();
198  SDValue InOp = N->getOperand(0);
199  if (InOp.getValueType() != EltVT)
200    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, InOp);
201  return InOp;
202}
203
204SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
205  SDValue LHS = GetScalarizedVector(N->getOperand(1));
206  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
207                     LHS.getValueType(), N->getOperand(0), LHS,
208                     GetScalarizedVector(N->getOperand(2)));
209}
210
211SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
212  SDValue LHS = GetScalarizedVector(N->getOperand(2));
213  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(),
214                     N->getOperand(0), N->getOperand(1),
215                     LHS, GetScalarizedVector(N->getOperand(3)),
216                     N->getOperand(4));
217}
218
219SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
220  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
221}
222
223SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
224  // Figure out if the scalar is the LHS or RHS and return it.
225  SDValue Arg = N->getOperand(2).getOperand(0);
226  if (Arg.getOpcode() == ISD::UNDEF)
227    return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
228  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
229  return GetScalarizedVector(N->getOperand(Op));
230}
231
232SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
233  SDValue LHS = GetScalarizedVector(N->getOperand(0));
234  SDValue RHS = GetScalarizedVector(N->getOperand(1));
235  MVT NVT = N->getValueType(0).getVectorElementType();
236  MVT SVT = TLI.getSetCCResultType(LHS.getValueType());
237  DebugLoc dl = N->getDebugLoc();
238
239  // Turn it into a scalar SETCC.
240  SDValue Res = DAG.getNode(ISD::SETCC, dl, SVT, LHS, RHS, N->getOperand(2));
241
242  // VSETCC always returns a sign-extended value, while SETCC may not.  The
243  // SETCC result type may not match the vector element type.  Correct these.
244  if (NVT.bitsLE(SVT)) {
245    // The SETCC result type is bigger than the vector element type.
246    // Ensure the SETCC result is sign-extended.
247    if (TLI.getBooleanContents() !=
248        TargetLowering::ZeroOrNegativeOneBooleanContent)
249      Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, SVT, Res,
250                        DAG.getValueType(MVT::i1));
251    // Truncate to the final type.
252    return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
253  } else {
254    // The SETCC result type is smaller than the vector element type.
255    // If the SetCC result is not sign-extended, chop it down to MVT::i1.
256    if (TLI.getBooleanContents() !=
257        TargetLowering::ZeroOrNegativeOneBooleanContent)
258      Res = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Res);
259    // Sign extend to the final type.
260    return DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Res);
261  }
262}
263
264
265//===----------------------------------------------------------------------===//
266//  Operand Vector Scalarization <1 x ty> -> ty.
267//===----------------------------------------------------------------------===//
268
269bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
270  DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
271        cerr << "\n");
272  SDValue Res = SDValue();
273
274  if (Res.getNode() == 0) {
275    switch (N->getOpcode()) {
276    default:
277#ifndef NDEBUG
278      cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
279      N->dump(&DAG); cerr << "\n";
280#endif
281      assert(0 && "Do not know how to scalarize this operator's operand!");
282      abort();
283
284    case ISD::BIT_CONVERT:
285      Res = ScalarizeVecOp_BIT_CONVERT(N); break;
286
287    case ISD::CONCAT_VECTORS:
288      Res = ScalarizeVecOp_CONCAT_VECTORS(N); break;
289
290    case ISD::EXTRACT_VECTOR_ELT:
291      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break;
292
293    case ISD::STORE:
294      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break;
295    }
296  }
297
298  // If the result is null, the sub-method took care of registering results etc.
299  if (!Res.getNode()) return false;
300
301  // If the result is N, the sub-method updated N in place.  Tell the legalizer
302  // core about this.
303  if (Res.getNode() == N)
304    return true;
305
306  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
307         "Invalid operand expansion");
308
309  ReplaceValueWith(SDValue(N, 0), Res);
310  return false;
311}
312
313/// ScalarizeVecOp_BIT_CONVERT - If the value to convert is a vector that needs
314/// to be scalarized, it must be <1 x ty>.  Convert the element instead.
315SDValue DAGTypeLegalizer::ScalarizeVecOp_BIT_CONVERT(SDNode *N) {
316  SDValue Elt = GetScalarizedVector(N->getOperand(0));
317  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
318                     N->getValueType(0), Elt);
319}
320
321/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
322/// use a BUILD_VECTOR instead.
323SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
324  SmallVector<SDValue, 8> Ops(N->getNumOperands());
325  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
326    Ops[i] = GetScalarizedVector(N->getOperand(i));
327  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0),
328                     &Ops[0], Ops.size());
329}
330
331/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
332/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
333/// index.
334SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
335  return GetScalarizedVector(N->getOperand(0));
336}
337
338/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
339/// scalarized, it must be <1 x ty>.  Just store the element.
340SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
341  assert(N->isUnindexed() && "Indexed store of one-element vector?");
342  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
343  DebugLoc dl = N->getDebugLoc();
344
345  if (N->isTruncatingStore())
346    return DAG.getTruncStore(N->getChain(), dl,
347                             GetScalarizedVector(N->getOperand(1)),
348                             N->getBasePtr(),
349                             N->getSrcValue(), N->getSrcValueOffset(),
350                             N->getMemoryVT().getVectorElementType(),
351                             N->isVolatile(), N->getAlignment());
352
353  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
354                      N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
355                      N->isVolatile(), N->getAlignment());
356}
357
358
359//===----------------------------------------------------------------------===//
360//  Result Vector Splitting
361//===----------------------------------------------------------------------===//
362
363/// SplitVectorResult - This method is called when the specified result of the
364/// specified node is found to need vector splitting.  At this point, the node
365/// may also have invalid operands or may have other results that need
366/// legalization, we just know that (at least) one result needs vector
367/// splitting.
368void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
369  DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
370  SDValue Lo, Hi;
371
372  switch (N->getOpcode()) {
373  default:
374#ifndef NDEBUG
375    cerr << "SplitVectorResult #" << ResNo << ": ";
376    N->dump(&DAG); cerr << "\n";
377#endif
378    assert(0 && "Do not know how to split the result of this operator!");
379    abort();
380
381  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
382  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
383  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
384  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
385
386  case ISD::BIT_CONVERT:       SplitVecRes_BIT_CONVERT(N, Lo, Hi); break;
387  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
388  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
389  case ISD::CONVERT_RNDSAT:    SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
390  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
391  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
392  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
393  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
394  case ISD::LOAD:              SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);break;
395  case ISD::VECTOR_SHUFFLE:
396      SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi); break;
397  case ISD::VSETCC:            SplitVecRes_VSETCC(N, Lo, Hi); break;
398
399  case ISD::CTTZ:
400  case ISD::CTLZ:
401  case ISD::CTPOP:
402  case ISD::FNEG:
403  case ISD::FABS:
404  case ISD::FSQRT:
405  case ISD::FSIN:
406  case ISD::FCOS:
407  case ISD::FTRUNC:
408  case ISD::FFLOOR:
409  case ISD::FCEIL:
410  case ISD::FRINT:
411  case ISD::FNEARBYINT:
412  case ISD::FP_TO_SINT:
413  case ISD::FP_TO_UINT:
414  case ISD::SINT_TO_FP:
415  case ISD::UINT_TO_FP:
416  case ISD::TRUNCATE:
417  case ISD::SIGN_EXTEND:
418  case ISD::ZERO_EXTEND:
419  case ISD::ANY_EXTEND:
420    SplitVecRes_UnaryOp(N, Lo, Hi);
421    break;
422
423  case ISD::ADD:
424  case ISD::SUB:
425  case ISD::MUL:
426  case ISD::FADD:
427  case ISD::FSUB:
428  case ISD::FMUL:
429  case ISD::SDIV:
430  case ISD::UDIV:
431  case ISD::FDIV:
432  case ISD::FPOW:
433  case ISD::AND:
434  case ISD::OR:
435  case ISD::XOR:
436  case ISD::SHL:
437  case ISD::SRA:
438  case ISD::SRL:
439  case ISD::UREM:
440  case ISD::SREM:
441  case ISD::FREM:
442    SplitVecRes_BinOp(N, Lo, Hi);
443    break;
444  }
445
446  // If Lo/Hi is null, the sub-method took care of registering results etc.
447  if (Lo.getNode())
448    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
449}
450
451void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
452                                         SDValue &Hi) {
453  SDValue LHSLo, LHSHi;
454  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
455  SDValue RHSLo, RHSHi;
456  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
457  DebugLoc dl = N->getDebugLoc();
458
459  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
460  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
461}
462
463void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
464                                               SDValue &Hi) {
465  // We know the result is a vector.  The input may be either a vector or a
466  // scalar value.
467  MVT LoVT, HiVT;
468  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
469  DebugLoc dl = N->getDebugLoc();
470
471  SDValue InOp = N->getOperand(0);
472  MVT InVT = InOp.getValueType();
473
474  // Handle some special cases efficiently.
475  switch (getTypeAction(InVT)) {
476  default:
477    assert(false && "Unknown type action!");
478  case Legal:
479  case PromoteInteger:
480  case SoftenFloat:
481  case ScalarizeVector:
482    break;
483  case ExpandInteger:
484  case ExpandFloat:
485    // A scalar to vector conversion, where the scalar needs expansion.
486    // If the vector is being split in two then we can just convert the
487    // expanded pieces.
488    if (LoVT == HiVT) {
489      GetExpandedOp(InOp, Lo, Hi);
490      if (TLI.isBigEndian())
491        std::swap(Lo, Hi);
492      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
493      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
494      return;
495    }
496    break;
497  case SplitVector:
498    // If the input is a vector that needs to be split, convert each split
499    // piece of the input now.
500    GetSplitVector(InOp, Lo, Hi);
501    Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
502    Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
503    return;
504  }
505
506  // In the general case, convert the input to an integer and split it by hand.
507  MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
508  MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
509  if (TLI.isBigEndian())
510    std::swap(LoIntVT, HiIntVT);
511
512  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
513
514  if (TLI.isBigEndian())
515    std::swap(Lo, Hi);
516  Lo = DAG.getNode(ISD::BIT_CONVERT, dl, LoVT, Lo);
517  Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HiVT, Hi);
518}
519
520void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
521                                                SDValue &Hi) {
522  MVT LoVT, HiVT;
523  DebugLoc dl = N->getDebugLoc();
524  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
525  unsigned LoNumElts = LoVT.getVectorNumElements();
526  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
527  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
528
529  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
530  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
531}
532
533void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
534                                                  SDValue &Hi) {
535  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
536  DebugLoc dl = N->getDebugLoc();
537  unsigned NumSubvectors = N->getNumOperands() / 2;
538  if (NumSubvectors == 1) {
539    Lo = N->getOperand(0);
540    Hi = N->getOperand(1);
541    return;
542  }
543
544  MVT LoVT, HiVT;
545  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
546
547  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
548  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
549
550  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
551  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
552}
553
554void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
555                                                  SDValue &Hi) {
556  MVT LoVT, HiVT;
557  DebugLoc dl = N->getDebugLoc();
558  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
559
560  SDValue DTyOpLo =  DAG.getValueType(LoVT);
561  SDValue DTyOpHi =  DAG.getValueType(HiVT);
562
563  SDValue RndOp = N->getOperand(3);
564  SDValue SatOp = N->getOperand(4);
565  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
566
567  // Split the input.
568  SDValue VLo, VHi;
569  MVT InVT = N->getOperand(0).getValueType();
570  switch (getTypeAction(InVT)) {
571  default: assert(0 && "Unexpected type action!");
572  case Legal: {
573    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
574    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
575                                 LoVT.getVectorNumElements());
576    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
577                      DAG.getIntPtrConstant(0));
578    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
579                      DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
580    break;
581  }
582  case SplitVector:
583    GetSplitVector(N->getOperand(0), VLo, VHi);
584    break;
585  case WidenVector: {
586    // If the result needs to be split and the input needs to be widened,
587    // the two types must have different lengths. Use the widened result
588    // and extract from it to do the split.
589    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
590    SDValue InOp = GetWidenedVector(N->getOperand(0));
591    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
592                                 LoVT.getVectorNumElements());
593    VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
594                     DAG.getIntPtrConstant(0));
595    VHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
596                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
597    break;
598  }
599  }
600
601  SDValue STyOpLo =  DAG.getValueType(VLo.getValueType());
602  SDValue STyOpHi =  DAG.getValueType(VHi.getValueType());
603
604  Lo = DAG.getConvertRndSat(LoVT, dl, VLo, DTyOpLo, STyOpLo, RndOp, SatOp,
605                            CvtCode);
606  Hi = DAG.getConvertRndSat(HiVT, dl, VHi, DTyOpHi, STyOpHi, RndOp, SatOp,
607                            CvtCode);
608}
609
610void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
611                                                     SDValue &Hi) {
612  SDValue Vec = N->getOperand(0);
613  SDValue Idx = N->getOperand(1);
614  MVT IdxVT = Idx.getValueType();
615  DebugLoc dl = N->getDebugLoc();
616
617  MVT LoVT, HiVT;
618  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
619  // The indices are not guaranteed to be a multiple of the new vector
620  // size unless the original vector type was split in two.
621  assert(LoVT == HiVT && "Non power-of-two vectors not supported!");
622
623  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
624  Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
625                    DAG.getConstant(LoVT.getVectorNumElements(), IdxVT));
626  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, Idx);
627}
628
629void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
630                                         SDValue &Hi) {
631  DebugLoc dl = N->getDebugLoc();
632  GetSplitVector(N->getOperand(0), Lo, Hi);
633  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
634  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
635}
636
637void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
638                                                     SDValue &Hi) {
639  SDValue Vec = N->getOperand(0);
640  SDValue Elt = N->getOperand(1);
641  SDValue Idx = N->getOperand(2);
642  DebugLoc dl = N->getDebugLoc();
643  GetSplitVector(Vec, Lo, Hi);
644
645  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
646    unsigned IdxVal = CIdx->getZExtValue();
647    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
648    if (IdxVal < LoNumElts)
649      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
650                       Lo.getValueType(), Lo, Elt, Idx);
651    else
652      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
653                       DAG.getIntPtrConstant(IdxVal - LoNumElts));
654    return;
655  }
656
657  // Spill the vector to the stack.
658  MVT VecVT = Vec.getValueType();
659  MVT EltVT = VecVT.getVectorElementType();
660  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
661  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
662
663  // Store the new element.  This may be larger than the vector element type,
664  // so use a truncating store.
665  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
666  unsigned Alignment =
667    TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForMVT());
668  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, NULL, 0, EltVT);
669
670  // Load the Lo part from the stack slot.
671  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, NULL, 0);
672
673  // Increment the pointer to the other part.
674  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
675  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
676                         DAG.getIntPtrConstant(IncrementSize));
677
678  // Load the Hi part from the stack slot.
679  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, NULL, 0, false,
680                   MinAlign(Alignment, IncrementSize));
681}
682
683void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
684                                                    SDValue &Hi) {
685  MVT LoVT, HiVT;
686  DebugLoc dl = N->getDebugLoc();
687  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
688  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
689  Hi = DAG.getUNDEF(HiVT);
690}
691
692void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
693                                        SDValue &Hi) {
694  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
695  MVT LoVT, HiVT;
696  DebugLoc dl = LD->getDebugLoc();
697  GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
698
699  ISD::LoadExtType ExtType = LD->getExtensionType();
700  SDValue Ch = LD->getChain();
701  SDValue Ptr = LD->getBasePtr();
702  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
703  const Value *SV = LD->getSrcValue();
704  int SVOffset = LD->getSrcValueOffset();
705  MVT MemoryVT = LD->getMemoryVT();
706  unsigned Alignment = LD->getAlignment();
707  bool isVolatile = LD->isVolatile();
708
709  MVT LoMemVT, HiMemVT;
710  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
711
712  Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, LoVT, Ch, Ptr, Offset,
713                   SV, SVOffset, LoMemVT, isVolatile, Alignment);
714
715  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
716  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
717                    DAG.getIntPtrConstant(IncrementSize));
718  SVOffset += IncrementSize;
719  Alignment = MinAlign(Alignment, IncrementSize);
720  Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, HiVT, Ch, Ptr, Offset,
721                   SV, SVOffset, HiMemVT, isVolatile, Alignment);
722
723  // Build a factor node to remember that this load is independent of the
724  // other one.
725  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
726                   Hi.getValue(1));
727
728  // Legalized the chain result - switch anything that used the old chain to
729  // use the new one.
730  ReplaceValueWith(SDValue(LD, 1), Ch);
731}
732
733void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
734                                           SDValue &Hi) {
735  // Get the dest types - they may not match the input types, e.g. int_to_fp.
736  MVT LoVT, HiVT;
737  DebugLoc dl = N->getDebugLoc();
738  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
739
740  // Split the input.
741  MVT InVT = N->getOperand(0).getValueType();
742  switch (getTypeAction(InVT)) {
743  default: assert(0 && "Unexpected type action!");
744  case Legal: {
745    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
746    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
747                                 LoVT.getVectorNumElements());
748    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
749                     DAG.getIntPtrConstant(0));
750    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
751                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
752    break;
753  }
754  case SplitVector:
755    GetSplitVector(N->getOperand(0), Lo, Hi);
756    break;
757  case WidenVector: {
758    // If the result needs to be split and the input needs to be widened,
759    // the two types must have different lengths. Use the widened result
760    // and extract from it to do the split.
761    assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
762    SDValue InOp = GetWidenedVector(N->getOperand(0));
763    MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
764                                 LoVT.getVectorNumElements());
765    Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
766                     DAG.getIntPtrConstant(0));
767    Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
768                     DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
769    break;
770  }
771  }
772
773  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
774  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
775}
776
777void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
778                                                  SDValue &Lo, SDValue &Hi) {
779  // The low and high parts of the original input give four input vectors.
780  SDValue Inputs[4];
781  DebugLoc dl = N->getDebugLoc();
782  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
783  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
784  MVT NewVT = Inputs[0].getValueType();
785  unsigned NewElts = NewVT.getVectorNumElements();
786  assert(NewVT == Inputs[1].getValueType() &&
787         "Non power-of-two vectors not supported!");
788
789  // If Lo or Hi uses elements from at most two of the four input vectors, then
790  // express it as a vector shuffle of those two inputs.  Otherwise extract the
791  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
792  SmallVector<int, 16> Ops;
793  for (unsigned High = 0; High < 2; ++High) {
794    SDValue &Output = High ? Hi : Lo;
795
796    // Build a shuffle mask for the output, discovering on the fly which
797    // input vectors to use as shuffle operands (recorded in InputUsed).
798    // If building a suitable shuffle vector proves too hard, then bail
799    // out with useBuildVector set.
800    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
801    unsigned FirstMaskIdx = High * NewElts;
802    bool useBuildVector = false;
803    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
804      // The mask element.  This indexes into the input.
805      int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
806
807      // The input vector this mask element indexes into.
808      unsigned Input = (unsigned)Idx / NewElts;
809
810      if (Input >= array_lengthof(Inputs)) {
811        // The mask element does not index into any input vector.
812        Ops.push_back(-1);
813        continue;
814      }
815
816      // Turn the index into an offset from the start of the input vector.
817      Idx -= Input * NewElts;
818
819      // Find or create a shuffle vector operand to hold this input.
820      unsigned OpNo;
821      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
822        if (InputUsed[OpNo] == Input) {
823          // This input vector is already an operand.
824          break;
825        } else if (InputUsed[OpNo] == -1U) {
826          // Create a new operand for this input vector.
827          InputUsed[OpNo] = Input;
828          break;
829        }
830      }
831
832      if (OpNo >= array_lengthof(InputUsed)) {
833        // More than two input vectors used!  Give up on trying to create a
834        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
835        useBuildVector = true;
836        break;
837      }
838
839      // Add the mask index for the new shuffle vector.
840      Ops.push_back(Idx + OpNo * NewElts);
841    }
842
843    if (useBuildVector) {
844      MVT EltVT = NewVT.getVectorElementType();
845      SmallVector<SDValue, 16> SVOps;
846
847      // Extract the input elements by hand.
848      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
849        // The mask element.  This indexes into the input.
850        int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
851
852        // The input vector this mask element indexes into.
853        unsigned Input = (unsigned)Idx / NewElts;
854
855        if (Input >= array_lengthof(Inputs)) {
856          // The mask element is "undef" or indexes off the end of the input.
857          SVOps.push_back(DAG.getUNDEF(EltVT));
858          continue;
859        }
860
861        // Turn the index into an offset from the start of the input vector.
862        Idx -= Input * NewElts;
863
864        // Extract the vector element by hand.
865        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
866                                    Inputs[Input], DAG.getIntPtrConstant(Idx)));
867      }
868
869      // Construct the Lo/Hi output using a BUILD_VECTOR.
870      Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
871    } else if (InputUsed[0] == -1U) {
872      // No input vectors were used!  The result is undefined.
873      Output = DAG.getUNDEF(NewVT);
874    } else {
875      SDValue Op0 = Inputs[InputUsed[0]];
876      // If only one input was used, use an undefined vector for the other.
877      SDValue Op1 = InputUsed[1] == -1U ?
878        DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
879      // At least one input vector was used.  Create a new shuffle vector.
880      Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
881    }
882
883    Ops.clear();
884  }
885}
886
887void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
888                                          SDValue &Hi) {
889  MVT LoVT, HiVT;
890  DebugLoc dl = N->getDebugLoc();
891  GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
892
893  SDValue LL, LH, RL, RH;
894  GetSplitVector(N->getOperand(0), LL, LH);
895  GetSplitVector(N->getOperand(1), RL, RH);
896
897  Lo = DAG.getNode(ISD::VSETCC, dl, LoVT, LL, RL, N->getOperand(2));
898  Hi = DAG.getNode(ISD::VSETCC, dl, HiVT, LH, RH, N->getOperand(2));
899}
900
901
902//===----------------------------------------------------------------------===//
903//  Operand Vector Splitting
904//===----------------------------------------------------------------------===//
905
906/// SplitVectorOperand - This method is called when the specified operand of the
907/// specified node is found to need vector splitting.  At this point, all of the
908/// result types of the node are known to be legal, but other operands of the
909/// node may need legalization as well as the specified one.
910bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
911  DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
912  SDValue Res = SDValue();
913
914  if (Res.getNode() == 0) {
915    switch (N->getOpcode()) {
916    default:
917#ifndef NDEBUG
918      cerr << "SplitVectorOperand Op #" << OpNo << ": ";
919      N->dump(&DAG); cerr << "\n";
920#endif
921      assert(0 && "Do not know how to split this operator's operand!");
922      abort();
923
924    case ISD::BIT_CONVERT:       Res = SplitVecOp_BIT_CONVERT(N); break;
925    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
926    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
927    case ISD::STORE:
928      Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
929      break;
930
931    case ISD::CTTZ:
932    case ISD::CTLZ:
933    case ISD::CTPOP:
934    case ISD::FP_TO_SINT:
935    case ISD::FP_TO_UINT:
936    case ISD::SINT_TO_FP:
937    case ISD::UINT_TO_FP:
938    case ISD::TRUNCATE:
939    case ISD::SIGN_EXTEND:
940    case ISD::ZERO_EXTEND:
941    case ISD::ANY_EXTEND:
942      Res = SplitVecOp_UnaryOp(N);
943      break;
944    }
945  }
946
947  // If the result is null, the sub-method took care of registering results etc.
948  if (!Res.getNode()) return false;
949
950  // If the result is N, the sub-method updated N in place.  Tell the legalizer
951  // core about this.
952  if (Res.getNode() == N)
953    return true;
954
955  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
956         "Invalid operand expansion");
957
958  ReplaceValueWith(SDValue(N, 0), Res);
959  return false;
960}
961
962SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
963  // The result has a legal vector type, but the input needs splitting.
964  MVT ResVT = N->getValueType(0);
965  SDValue Lo, Hi;
966  DebugLoc dl = N->getDebugLoc();
967  GetSplitVector(N->getOperand(0), Lo, Hi);
968  assert(Lo.getValueType() == Hi.getValueType() &&
969         "Returns legal non-power-of-two vector type?");
970  MVT InVT = Lo.getValueType();
971
972  MVT OutVT = MVT::getVectorVT(ResVT.getVectorElementType(),
973                               InVT.getVectorNumElements());
974
975  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
976  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
977
978  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
979}
980
981SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
982  // For example, i64 = BIT_CONVERT v4i16 on alpha.  Typically the vector will
983  // end up being split all the way down to individual components.  Convert the
984  // split pieces into integers and reassemble.
985  SDValue Lo, Hi;
986  GetSplitVector(N->getOperand(0), Lo, Hi);
987  Lo = BitConvertToInteger(Lo);
988  Hi = BitConvertToInteger(Hi);
989
990  if (TLI.isBigEndian())
991    std::swap(Lo, Hi);
992
993  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), N->getValueType(0),
994                     JoinIntegers(Lo, Hi));
995}
996
997SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
998  // We know that the extracted result type is legal.  For now, assume the index
999  // is a constant.
1000  MVT SubVT = N->getValueType(0);
1001  SDValue Idx = N->getOperand(1);
1002  DebugLoc dl = N->getDebugLoc();
1003  SDValue Lo, Hi;
1004  GetSplitVector(N->getOperand(0), Lo, Hi);
1005
1006  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1007  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1008
1009  if (IdxVal < LoElts) {
1010    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1011           "Extracted subvector crosses vector split!");
1012    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1013  } else {
1014    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1015                       DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
1016  }
1017}
1018
1019SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1020  SDValue Vec = N->getOperand(0);
1021  SDValue Idx = N->getOperand(1);
1022  MVT VecVT = Vec.getValueType();
1023
1024  if (isa<ConstantSDNode>(Idx)) {
1025    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1026    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1027
1028    SDValue Lo, Hi;
1029    GetSplitVector(Vec, Lo, Hi);
1030
1031    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1032
1033    if (IdxVal < LoElts)
1034      return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
1035    else
1036      return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
1037                                    DAG.getConstant(IdxVal - LoElts,
1038                                                    Idx.getValueType()));
1039  }
1040
1041  // Store the vector to the stack.
1042  MVT EltVT = VecVT.getVectorElementType();
1043  DebugLoc dl = N->getDebugLoc();
1044  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1045  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1046  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1047  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, SV, 0);
1048
1049  // Load back the required element.
1050  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1051  return DAG.getLoad(EltVT, dl, Store, StackPtr, SV, 0);
1052}
1053
1054SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1055  assert(N->isUnindexed() && "Indexed store of vector?");
1056  assert(OpNo == 1 && "Can only split the stored value");
1057  DebugLoc dl = N->getDebugLoc();
1058
1059  bool isTruncating = N->isTruncatingStore();
1060  SDValue Ch  = N->getChain();
1061  SDValue Ptr = N->getBasePtr();
1062  int SVOffset = N->getSrcValueOffset();
1063  MVT MemoryVT = N->getMemoryVT();
1064  unsigned Alignment = N->getAlignment();
1065  bool isVol = N->isVolatile();
1066  SDValue Lo, Hi;
1067  GetSplitVector(N->getOperand(1), Lo, Hi);
1068
1069  MVT LoMemVT, HiMemVT;
1070  GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
1071
1072  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1073
1074  if (isTruncating)
1075    Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1076                           LoMemVT, isVol, Alignment);
1077  else
1078    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getSrcValue(), SVOffset,
1079                      isVol, Alignment);
1080
1081  // Increment the pointer to the other half.
1082  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1083                    DAG.getIntPtrConstant(IncrementSize));
1084
1085  if (isTruncating)
1086    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
1087                           N->getSrcValue(), SVOffset+IncrementSize,
1088                           HiMemVT,
1089                           isVol, MinAlign(Alignment, IncrementSize));
1090  else
1091    Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
1092                      isVol, MinAlign(Alignment, IncrementSize));
1093
1094  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1095}
1096
1097
1098//===----------------------------------------------------------------------===//
1099//  Result Vector Widening
1100//===----------------------------------------------------------------------===//
1101
1102void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1103  DEBUG(cerr << "Widen node result " << ResNo << ": "; N->dump(&DAG);
1104        cerr << "\n");
1105  SDValue Res = SDValue();
1106
1107  switch (N->getOpcode()) {
1108  default:
1109#ifndef NDEBUG
1110    cerr << "WidenVectorResult #" << ResNo << ": ";
1111    N->dump(&DAG); cerr << "\n";
1112#endif
1113    assert(0 && "Do not know how to widen the result of this operator!");
1114    abort();
1115
1116  case ISD::BIT_CONVERT:       Res = WidenVecRes_BIT_CONVERT(N); break;
1117  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1118  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1119  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1120  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1121  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1122  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1123  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1124  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1125  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1126  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1127  case ISD::VECTOR_SHUFFLE:
1128      Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N)); break;
1129  case ISD::VSETCC:            Res = WidenVecRes_VSETCC(N); break;
1130
1131  case ISD::ADD:
1132  case ISD::AND:
1133  case ISD::BSWAP:
1134  case ISD::FADD:
1135  case ISD::FCOPYSIGN:
1136  case ISD::FDIV:
1137  case ISD::FMUL:
1138  case ISD::FPOW:
1139  case ISD::FPOWI:
1140  case ISD::FREM:
1141  case ISD::FSUB:
1142  case ISD::MUL:
1143  case ISD::MULHS:
1144  case ISD::MULHU:
1145  case ISD::OR:
1146  case ISD::SDIV:
1147  case ISD::SREM:
1148  case ISD::UDIV:
1149  case ISD::UREM:
1150  case ISD::SUB:
1151  case ISD::XOR:
1152    Res = WidenVecRes_Binary(N);
1153    break;
1154
1155  case ISD::SHL:
1156  case ISD::SRA:
1157  case ISD::SRL:
1158    Res = WidenVecRes_Shift(N);
1159    break;
1160
1161  case ISD::FP_ROUND:
1162  case ISD::FP_TO_SINT:
1163  case ISD::FP_TO_UINT:
1164  case ISD::SINT_TO_FP:
1165  case ISD::UINT_TO_FP:
1166  case ISD::TRUNCATE:
1167  case ISD::SIGN_EXTEND:
1168  case ISD::ZERO_EXTEND:
1169  case ISD::ANY_EXTEND:
1170    Res = WidenVecRes_Convert(N);
1171    break;
1172
1173  case ISD::CTLZ:
1174  case ISD::CTPOP:
1175  case ISD::CTTZ:
1176  case ISD::FABS:
1177  case ISD::FCOS:
1178  case ISD::FNEG:
1179  case ISD::FSIN:
1180  case ISD::FSQRT:
1181    Res = WidenVecRes_Unary(N);
1182    break;
1183  }
1184
1185  // If Res is null, the sub-method took care of registering the result.
1186  if (Res.getNode())
1187    SetWidenedVector(SDValue(N, ResNo), Res);
1188}
1189
1190SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1191  // Binary op widening.
1192  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1193  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1194  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1195  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp1, InOp2);
1196}
1197
1198SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1199  SDValue InOp = N->getOperand(0);
1200  DebugLoc dl = N->getDebugLoc();
1201
1202  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1203  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1204
1205  MVT InVT = InOp.getValueType();
1206  MVT InEltVT = InVT.getVectorElementType();
1207  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1208
1209  unsigned Opcode = N->getOpcode();
1210  unsigned InVTNumElts = InVT.getVectorNumElements();
1211
1212  if (getTypeAction(InVT) == WidenVector) {
1213    InOp = GetWidenedVector(N->getOperand(0));
1214    InVT = InOp.getValueType();
1215    InVTNumElts = InVT.getVectorNumElements();
1216    if (InVTNumElts == WidenNumElts)
1217      return DAG.getNode(Opcode, dl, WidenVT, InOp);
1218  }
1219
1220  if (TLI.isTypeLegal(InWidenVT)) {
1221    // Because the result and the input are different vector types, widening
1222    // the result could create a legal type but widening the input might make
1223    // it an illegal type that might lead to repeatedly splitting the input
1224    // and then widening it. To avoid this, we widen the input only if
1225    // it results in a legal type.
1226    if (WidenNumElts % InVTNumElts == 0) {
1227      // Widen the input and call convert on the widened input vector.
1228      unsigned NumConcat = WidenNumElts/InVTNumElts;
1229      SmallVector<SDValue, 16> Ops(NumConcat);
1230      Ops[0] = InOp;
1231      SDValue UndefVal = DAG.getUNDEF(InVT);
1232      for (unsigned i = 1; i != NumConcat; ++i)
1233        Ops[i] = UndefVal;
1234      return DAG.getNode(Opcode, dl, WidenVT,
1235                         DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT,
1236                         &Ops[0], NumConcat));
1237    }
1238
1239    if (InVTNumElts % WidenNumElts == 0) {
1240      // Extract the input and convert the shorten input vector.
1241      return DAG.getNode(Opcode, dl, WidenVT,
1242                         DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT,
1243                                     InOp, DAG.getIntPtrConstant(0)));
1244    }
1245  }
1246
1247  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1248  SmallVector<SDValue, 16> Ops(WidenNumElts);
1249  MVT EltVT = WidenVT.getVectorElementType();
1250  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1251  unsigned i;
1252  for (i=0; i < MinElts; ++i)
1253    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1254                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1255                                     DAG.getIntPtrConstant(i)));
1256
1257  SDValue UndefVal = DAG.getUNDEF(EltVT);
1258  for (; i < WidenNumElts; ++i)
1259    Ops[i] = UndefVal;
1260
1261  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1262}
1263
1264SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1265  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1266  SDValue InOp = GetWidenedVector(N->getOperand(0));
1267  SDValue ShOp = N->getOperand(1);
1268
1269  MVT ShVT = ShOp.getValueType();
1270  if (getTypeAction(ShVT) == WidenVector) {
1271    ShOp = GetWidenedVector(ShOp);
1272    ShVT = ShOp.getValueType();
1273  }
1274  MVT ShWidenVT = MVT::getVectorVT(ShVT.getVectorElementType(),
1275                                   WidenVT.getVectorNumElements());
1276  if (ShVT != ShWidenVT)
1277    ShOp = ModifyToType(ShOp, ShWidenVT);
1278
1279  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
1280}
1281
1282SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1283  // Unary op widening.
1284  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1285  SDValue InOp = GetWidenedVector(N->getOperand(0));
1286  return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
1287}
1288
1289SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
1290  SDValue InOp = N->getOperand(0);
1291  MVT InVT = InOp.getValueType();
1292  MVT VT = N->getValueType(0);
1293  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1294  DebugLoc dl = N->getDebugLoc();
1295
1296  switch (getTypeAction(InVT)) {
1297  default:
1298    assert(false && "Unknown type action!");
1299    break;
1300  case Legal:
1301    break;
1302  case PromoteInteger:
1303    // If the InOp is promoted to the same size, convert it.  Otherwise,
1304    // fall out of the switch and widen the promoted input.
1305    InOp = GetPromotedInteger(InOp);
1306    InVT = InOp.getValueType();
1307    if (WidenVT.bitsEq(InVT))
1308      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1309    break;
1310  case SoftenFloat:
1311  case ExpandInteger:
1312  case ExpandFloat:
1313  case ScalarizeVector:
1314  case SplitVector:
1315    break;
1316  case WidenVector:
1317    // If the InOp is widened to the same size, convert it.  Otherwise, fall
1318    // out of the switch and widen the widened input.
1319    InOp = GetWidenedVector(InOp);
1320    InVT = InOp.getValueType();
1321    if (WidenVT.bitsEq(InVT))
1322      // The input widens to the same size. Convert to the widen value.
1323      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, InOp);
1324    break;
1325  }
1326
1327  unsigned WidenSize = WidenVT.getSizeInBits();
1328  unsigned InSize = InVT.getSizeInBits();
1329  if (WidenSize % InSize == 0) {
1330    // Determine new input vector type.  The new input vector type will use
1331    // the same element type (if its a vector) or use the input type as a
1332    // vector.  It is the same size as the type to widen to.
1333    MVT NewInVT;
1334    unsigned NewNumElts = WidenSize / InSize;
1335    if (InVT.isVector()) {
1336      MVT InEltVT = InVT.getVectorElementType();
1337      NewInVT= MVT::getVectorVT(InEltVT, WidenSize / InEltVT.getSizeInBits());
1338    } else {
1339      NewInVT = MVT::getVectorVT(InVT, NewNumElts);
1340    }
1341
1342    if (TLI.isTypeLegal(NewInVT)) {
1343      // Because the result and the input are different vector types, widening
1344      // the result could create a legal type but widening the input might make
1345      // it an illegal type that might lead to repeatedly splitting the input
1346      // and then widening it. To avoid this, we widen the input only if
1347      // it results in a legal type.
1348      SmallVector<SDValue, 16> Ops(NewNumElts);
1349      SDValue UndefVal = DAG.getUNDEF(InVT);
1350      Ops[0] = InOp;
1351      for (unsigned i = 1; i < NewNumElts; ++i)
1352        Ops[i] = UndefVal;
1353
1354      SDValue NewVec;
1355      if (InVT.isVector())
1356        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1357                             NewInVT, &Ops[0], NewNumElts);
1358      else
1359        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1360                             NewInVT, &Ops[0], NewNumElts);
1361      return DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, NewVec);
1362    }
1363  }
1364
1365  // This should occur rarely. Lower the bit-convert to a store/load
1366  // from the stack. Create the stack frame object.  Make sure it is aligned
1367  // for both the source and destination types.
1368  SDValue FIPtr = DAG.CreateStackTemporary(InVT, WidenVT);
1369  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1370  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1371
1372  // Emit a store to the stack slot.
1373  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1374
1375  // Result is a load from the stack slot.
1376  return DAG.getLoad(WidenVT, dl, Store, FIPtr, SV, 0);
1377}
1378
1379SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1380  DebugLoc dl = N->getDebugLoc();
1381  // Build a vector with undefined for the new nodes.
1382  MVT VT = N->getValueType(0);
1383  MVT EltVT = VT.getVectorElementType();
1384  unsigned NumElts = VT.getVectorNumElements();
1385
1386  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1387  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1388
1389  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1390  NewOps.reserve(WidenNumElts);
1391  for (unsigned i = NumElts; i < WidenNumElts; ++i)
1392    NewOps.push_back(DAG.getUNDEF(EltVT));
1393
1394  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1395}
1396
1397SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1398  MVT InVT = N->getOperand(0).getValueType();
1399  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1400  DebugLoc dl = N->getDebugLoc();
1401  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1402  unsigned NumOperands = N->getNumOperands();
1403
1404  bool InputWidened = false; // Indicates we need to widen the input.
1405  if (getTypeAction(InVT) != WidenVector) {
1406    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1407      // Add undef vectors to widen to correct length.
1408      unsigned NumConcat = WidenVT.getVectorNumElements() /
1409                           InVT.getVectorNumElements();
1410      SDValue UndefVal = DAG.getUNDEF(InVT);
1411      SmallVector<SDValue, 16> Ops(NumConcat);
1412      for (unsigned i=0; i < NumOperands; ++i)
1413        Ops[i] = N->getOperand(i);
1414      for (unsigned i = NumOperands; i != NumConcat; ++i)
1415        Ops[i] = UndefVal;
1416      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1417    }
1418  } else {
1419    InputWidened = true;
1420    if (WidenVT == TLI.getTypeToTransformTo(InVT)) {
1421      // The inputs and the result are widen to the same value.
1422      unsigned i;
1423      for (i=1; i < NumOperands; ++i)
1424        if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1425          break;
1426
1427      if (i > NumOperands)
1428        // Everything but the first operand is an UNDEF so just return the
1429        // widened first operand.
1430        return GetWidenedVector(N->getOperand(0));
1431
1432      if (NumOperands == 2) {
1433        // Replace concat of two operands with a shuffle.
1434        SmallVector<int, 16> MaskOps(WidenNumElts);
1435        for (unsigned i=0; i < WidenNumElts/2; ++i) {
1436          MaskOps[i] = i;
1437          MaskOps[i+WidenNumElts/2] = i+WidenNumElts;
1438        }
1439        return DAG.getVectorShuffle(WidenVT, dl,
1440                                    GetWidenedVector(N->getOperand(0)),
1441                                    GetWidenedVector(N->getOperand(1)),
1442                                    &MaskOps[0]);
1443      }
1444    }
1445  }
1446
1447  // Fall back to use extracts and build vector.
1448  MVT EltVT = WidenVT.getVectorElementType();
1449  unsigned NumInElts = InVT.getVectorNumElements();
1450  SmallVector<SDValue, 16> Ops(WidenNumElts);
1451  unsigned Idx = 0;
1452  for (unsigned i=0; i < NumOperands; ++i) {
1453    SDValue InOp = N->getOperand(i);
1454    if (InputWidened)
1455      InOp = GetWidenedVector(InOp);
1456    for (unsigned j=0; j < NumInElts; ++j)
1457        Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1458                                 DAG.getIntPtrConstant(j));
1459  }
1460  SDValue UndefVal = DAG.getUNDEF(EltVT);
1461  for (; Idx < WidenNumElts; ++Idx)
1462    Ops[Idx] = UndefVal;
1463  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1464}
1465
1466SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
1467  DebugLoc dl = N->getDebugLoc();
1468  SDValue InOp  = N->getOperand(0);
1469  SDValue RndOp = N->getOperand(3);
1470  SDValue SatOp = N->getOperand(4);
1471
1472  MVT      WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1473  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1474
1475  MVT InVT = InOp.getValueType();
1476  MVT InEltVT = InVT.getVectorElementType();
1477  MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
1478
1479  SDValue DTyOp = DAG.getValueType(WidenVT);
1480  SDValue STyOp = DAG.getValueType(InWidenVT);
1481  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1482
1483  unsigned InVTNumElts = InVT.getVectorNumElements();
1484  if (getTypeAction(InVT) == WidenVector) {
1485    InOp = GetWidenedVector(InOp);
1486    InVT = InOp.getValueType();
1487    InVTNumElts = InVT.getVectorNumElements();
1488    if (InVTNumElts == WidenNumElts)
1489      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1490                                  SatOp, CvtCode);
1491  }
1492
1493  if (TLI.isTypeLegal(InWidenVT)) {
1494    // Because the result and the input are different vector types, widening
1495    // the result could create a legal type but widening the input might make
1496    // it an illegal type that might lead to repeatedly splitting the input
1497    // and then widening it. To avoid this, we widen the input only if
1498    // it results in a legal type.
1499    if (WidenNumElts % InVTNumElts == 0) {
1500      // Widen the input and call convert on the widened input vector.
1501      unsigned NumConcat = WidenNumElts/InVTNumElts;
1502      SmallVector<SDValue, 16> Ops(NumConcat);
1503      Ops[0] = InOp;
1504      SDValue UndefVal = DAG.getUNDEF(InVT);
1505      for (unsigned i = 1; i != NumConcat; ++i) {
1506        Ops[i] = UndefVal;
1507      }
1508      InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
1509      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1510                                  SatOp, CvtCode);
1511    }
1512
1513    if (InVTNumElts % WidenNumElts == 0) {
1514      // Extract the input and convert the shorten input vector.
1515      InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
1516                         DAG.getIntPtrConstant(0));
1517      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
1518                                SatOp, CvtCode);
1519    }
1520  }
1521
1522  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1523  SmallVector<SDValue, 16> Ops(WidenNumElts);
1524  MVT EltVT = WidenVT.getVectorElementType();
1525  DTyOp = DAG.getValueType(EltVT);
1526  STyOp = DAG.getValueType(InEltVT);
1527
1528  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1529  unsigned i;
1530  for (i=0; i < MinElts; ++i) {
1531    SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1532                                 DAG.getIntPtrConstant(i));
1533    Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
1534                                        SatOp, CvtCode);
1535  }
1536
1537  SDValue UndefVal = DAG.getUNDEF(EltVT);
1538  for (; i < WidenNumElts; ++i)
1539    Ops[i] = UndefVal;
1540
1541  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1542}
1543
1544SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
1545  MVT      VT = N->getValueType(0);
1546  MVT      WidenVT = TLI.getTypeToTransformTo(VT);
1547  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1548  SDValue  InOp = N->getOperand(0);
1549  SDValue  Idx  = N->getOperand(1);
1550  DebugLoc dl = N->getDebugLoc();
1551
1552  if (getTypeAction(InOp.getValueType()) == WidenVector)
1553    InOp = GetWidenedVector(InOp);
1554
1555  MVT InVT = InOp.getValueType();
1556
1557  ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
1558  if (CIdx) {
1559    unsigned IdxVal = CIdx->getZExtValue();
1560    // Check if we can just return the input vector after widening.
1561    if (IdxVal == 0 && InVT == WidenVT)
1562      return InOp;
1563
1564    // Check if we can extract from the vector.
1565    unsigned InNumElts = InVT.getVectorNumElements();
1566    if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
1567        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
1568  }
1569
1570  // We could try widening the input to the right length but for now, extract
1571  // the original elements, fill the rest with undefs and build a vector.
1572  SmallVector<SDValue, 16> Ops(WidenNumElts);
1573  MVT EltVT = VT.getVectorElementType();
1574  MVT IdxVT = Idx.getValueType();
1575  unsigned NumElts = VT.getVectorNumElements();
1576  unsigned i;
1577  if (CIdx) {
1578    unsigned IdxVal = CIdx->getZExtValue();
1579    for (i=0; i < NumElts; ++i)
1580      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1581                           DAG.getConstant(IdxVal+i, IdxVT));
1582  } else {
1583    Ops[0] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, Idx);
1584    for (i=1; i < NumElts; ++i) {
1585      SDValue NewIdx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1586                                   DAG.getConstant(i, IdxVT));
1587      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, NewIdx);
1588    }
1589  }
1590
1591  SDValue UndefVal = DAG.getUNDEF(EltVT);
1592  for (; i < WidenNumElts; ++i)
1593    Ops[i] = UndefVal;
1594  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
1595}
1596
1597SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
1598  SDValue InOp = GetWidenedVector(N->getOperand(0));
1599  return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(),
1600                     InOp.getValueType(), InOp,
1601                     N->getOperand(1), N->getOperand(2));
1602}
1603
1604SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
1605  LoadSDNode *LD = cast<LoadSDNode>(N);
1606  MVT WidenVT = TLI.getTypeToTransformTo(LD->getValueType(0));
1607  MVT LdVT    = LD->getMemoryVT();
1608  DebugLoc dl = N->getDebugLoc();
1609  assert(LdVT.isVector() && WidenVT.isVector());
1610
1611  // Load information
1612  SDValue   Chain = LD->getChain();
1613  SDValue   BasePtr = LD->getBasePtr();
1614  int       SVOffset = LD->getSrcValueOffset();
1615  unsigned  Align    = LD->getAlignment();
1616  bool      isVolatile = LD->isVolatile();
1617  const Value *SV = LD->getSrcValue();
1618  ISD::LoadExtType ExtType = LD->getExtensionType();
1619
1620  SDValue Result;
1621  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
1622  if (ExtType != ISD::NON_EXTLOAD) {
1623    // For extension loads, we can not play the tricks of chopping legal
1624    // vector types and bit cast it to the right type.  Instead, we unroll
1625    // the load and build a vector.
1626    MVT EltVT = WidenVT.getVectorElementType();
1627    MVT LdEltVT = LdVT.getVectorElementType();
1628    unsigned NumElts = LdVT.getVectorNumElements();
1629
1630    // Load each element and widen
1631    unsigned WidenNumElts = WidenVT.getVectorNumElements();
1632    SmallVector<SDValue, 16> Ops(WidenNumElts);
1633    unsigned Increment = LdEltVT.getSizeInBits() / 8;
1634    Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, SV, SVOffset,
1635                            LdEltVT, isVolatile, Align);
1636    LdChain.push_back(Ops[0].getValue(1));
1637    unsigned i = 0, Offset = Increment;
1638    for (i=1; i < NumElts; ++i, Offset += Increment) {
1639      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1640                                       BasePtr, DAG.getIntPtrConstant(Offset));
1641      Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, SV,
1642                              SVOffset + Offset, LdEltVT, isVolatile, Align);
1643      LdChain.push_back(Ops[i].getValue(1));
1644    }
1645
1646    // Fill the rest with undefs
1647    SDValue UndefVal = DAG.getUNDEF(EltVT);
1648    for (; i != WidenNumElts; ++i)
1649      Ops[i] = UndefVal;
1650
1651    Result =  DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
1652  } else {
1653    assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
1654    unsigned int LdWidth = LdVT.getSizeInBits();
1655    Result = GenWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
1656                                 Align, isVolatile, LdWidth, WidenVT, dl);
1657  }
1658
1659 // If we generate a single load, we can use that for the chain.  Otherwise,
1660 // build a factor node to remember the multiple loads are independent and
1661 // chain to that.
1662 SDValue NewChain;
1663 if (LdChain.size() == 1)
1664   NewChain = LdChain[0];
1665 else
1666   NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LdChain[0],
1667                          LdChain.size());
1668
1669  // Modified the chain - switch anything that used the old chain to use
1670  // the new one.
1671  ReplaceValueWith(SDValue(N, 1), Chain);
1672
1673  return Result;
1674}
1675
1676SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
1677  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1678  return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
1679                     WidenVT, N->getOperand(0));
1680}
1681
1682SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
1683  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1684  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1685
1686  SDValue Cond1 = N->getOperand(0);
1687  MVT CondVT = Cond1.getValueType();
1688  if (CondVT.isVector()) {
1689    MVT CondEltVT = CondVT.getVectorElementType();
1690    MVT CondWidenVT =  MVT::getVectorVT(CondEltVT, WidenNumElts);
1691    if (getTypeAction(CondVT) == WidenVector)
1692      Cond1 = GetWidenedVector(Cond1);
1693
1694    if (Cond1.getValueType() != CondWidenVT)
1695       Cond1 = ModifyToType(Cond1, CondWidenVT);
1696  }
1697
1698  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
1699  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
1700  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
1701  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
1702                     WidenVT, Cond1, InOp1, InOp2);
1703}
1704
1705SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
1706  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
1707  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
1708  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
1709                     InOp1.getValueType(), N->getOperand(0),
1710                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
1711}
1712
1713SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
1714 MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1715 return DAG.getUNDEF(WidenVT);
1716}
1717
1718SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
1719  MVT VT = N->getValueType(0);
1720  DebugLoc dl = N->getDebugLoc();
1721
1722  MVT WidenVT = TLI.getTypeToTransformTo(VT);
1723  unsigned NumElts = VT.getVectorNumElements();
1724  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1725
1726  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1727  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1728
1729  // Adjust mask based on new input vector length.
1730  SmallVector<int, 16> NewMask;
1731  for (unsigned i = 0; i != NumElts; ++i) {
1732    int Idx = N->getMaskElt(i);
1733    if (Idx < (int)NumElts)
1734      NewMask.push_back(Idx);
1735    else
1736      NewMask.push_back(Idx - NumElts + WidenNumElts);
1737  }
1738  for (unsigned i = NumElts; i != WidenNumElts; ++i)
1739    NewMask.push_back(-1);
1740  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
1741}
1742
1743SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
1744  MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
1745  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1746
1747  SDValue InOp1 = N->getOperand(0);
1748  MVT InVT = InOp1.getValueType();
1749  assert(InVT.isVector() && "can not widen non vector type");
1750  MVT WidenInVT = MVT::getVectorVT(InVT.getVectorElementType(), WidenNumElts);
1751  InOp1 = GetWidenedVector(InOp1);
1752  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1753
1754  // Assume that the input and output will be widen appropriately.  If not,
1755  // we will have to unroll it at some point.
1756  assert(InOp1.getValueType() == WidenInVT &&
1757         InOp2.getValueType() == WidenInVT &&
1758         "Input not widened to expected type!");
1759  return DAG.getNode(ISD::VSETCC, N->getDebugLoc(),
1760                     WidenVT, InOp1, InOp2, N->getOperand(2));
1761}
1762
1763
1764//===----------------------------------------------------------------------===//
1765// Widen Vector Operand
1766//===----------------------------------------------------------------------===//
1767bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
1768  DEBUG(cerr << "Widen node operand " << ResNo << ": "; N->dump(&DAG);
1769        cerr << "\n");
1770  SDValue Res = SDValue();
1771
1772  switch (N->getOpcode()) {
1773  default:
1774#ifndef NDEBUG
1775    cerr << "WidenVectorOperand op #" << ResNo << ": ";
1776    N->dump(&DAG); cerr << "\n";
1777#endif
1778    assert(0 && "Do not know how to widen this operator's operand!");
1779    abort();
1780
1781  case ISD::BIT_CONVERT:        Res = WidenVecOp_BIT_CONVERT(N); break;
1782  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
1783  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
1784  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
1785
1786  case ISD::FP_ROUND:
1787  case ISD::FP_TO_SINT:
1788  case ISD::FP_TO_UINT:
1789  case ISD::SINT_TO_FP:
1790  case ISD::UINT_TO_FP:
1791  case ISD::TRUNCATE:
1792  case ISD::SIGN_EXTEND:
1793  case ISD::ZERO_EXTEND:
1794  case ISD::ANY_EXTEND:
1795    Res = WidenVecOp_Convert(N);
1796    break;
1797  }
1798
1799  // If Res is null, the sub-method took care of registering the result.
1800  if (!Res.getNode()) return false;
1801
1802  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1803  // core about this.
1804  if (Res.getNode() == N)
1805    return true;
1806
1807
1808  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1809         "Invalid operand expansion");
1810
1811  ReplaceValueWith(SDValue(N, 0), Res);
1812  return false;
1813}
1814
1815SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
1816  // Since the result is legal and the input is illegal, it is unlikely
1817  // that we can fix the input to a legal type so unroll the convert
1818  // into some scalar code and create a nasty build vector.
1819  MVT VT = N->getValueType(0);
1820  MVT EltVT = VT.getVectorElementType();
1821  DebugLoc dl = N->getDebugLoc();
1822  unsigned NumElts = VT.getVectorNumElements();
1823  SDValue InOp = N->getOperand(0);
1824  if (getTypeAction(InOp.getValueType()) == WidenVector)
1825    InOp = GetWidenedVector(InOp);
1826  MVT InVT = InOp.getValueType();
1827  MVT InEltVT = InVT.getVectorElementType();
1828
1829  unsigned Opcode = N->getOpcode();
1830  SmallVector<SDValue, 16> Ops(NumElts);
1831  for (unsigned i=0; i < NumElts; ++i)
1832    Ops[i] = DAG.getNode(Opcode, dl, EltVT,
1833                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
1834                                     DAG.getIntPtrConstant(i)));
1835
1836  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1837}
1838
1839SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
1840  MVT VT = N->getValueType(0);
1841  SDValue InOp = GetWidenedVector(N->getOperand(0));
1842  MVT InWidenVT = InOp.getValueType();
1843  DebugLoc dl = N->getDebugLoc();
1844
1845  // Check if we can convert between two legal vector types and extract.
1846  unsigned InWidenSize = InWidenVT.getSizeInBits();
1847  unsigned Size = VT.getSizeInBits();
1848  if (InWidenSize % Size == 0 && !VT.isVector()) {
1849    unsigned NewNumElts = InWidenSize / Size;
1850    MVT NewVT = MVT::getVectorVT(VT, NewNumElts);
1851    if (TLI.isTypeLegal(NewVT)) {
1852      SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
1853      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
1854                         DAG.getIntPtrConstant(0));
1855    }
1856  }
1857
1858  // Lower the bit-convert to a store/load from the stack. Create the stack
1859  // frame object.  Make sure it is aligned for both the source and destination
1860  // types.
1861  SDValue FIPtr = DAG.CreateStackTemporary(InWidenVT, VT);
1862  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1863  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1864
1865  // Emit a store to the stack slot.
1866  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
1867
1868  // Result is a load from the stack slot.
1869  return DAG.getLoad(VT, dl, Store, FIPtr, SV, 0);
1870}
1871
1872SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
1873  // If the input vector is not legal, it is likely that we will not find a
1874  // legal vector of the same size. Replace the concatenate vector with a
1875  // nasty build vector.
1876  MVT VT = N->getValueType(0);
1877  MVT EltVT = VT.getVectorElementType();
1878  DebugLoc dl = N->getDebugLoc();
1879  unsigned NumElts = VT.getVectorNumElements();
1880  SmallVector<SDValue, 16> Ops(NumElts);
1881
1882  MVT InVT = N->getOperand(0).getValueType();
1883  unsigned NumInElts = InVT.getVectorNumElements();
1884
1885  unsigned Idx = 0;
1886  unsigned NumOperands = N->getNumOperands();
1887  for (unsigned i=0; i < NumOperands; ++i) {
1888    SDValue InOp = N->getOperand(i);
1889    if (getTypeAction(InOp.getValueType()) == WidenVector)
1890      InOp = GetWidenedVector(InOp);
1891    for (unsigned j=0; j < NumInElts; ++j)
1892      Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
1893                               DAG.getIntPtrConstant(j));
1894  }
1895  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
1896}
1897
1898SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1899  SDValue InOp = GetWidenedVector(N->getOperand(0));
1900  MVT EltVT = InOp.getValueType().getVectorElementType();
1901  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
1902                     EltVT, InOp, N->getOperand(1));
1903}
1904
1905SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
1906  // We have to widen the value but we want only to store the original
1907  // vector type.
1908  StoreSDNode *ST = cast<StoreSDNode>(N);
1909  SDValue  Chain = ST->getChain();
1910  SDValue  BasePtr = ST->getBasePtr();
1911  const    Value *SV = ST->getSrcValue();
1912  int      SVOffset = ST->getSrcValueOffset();
1913  unsigned Align = ST->getAlignment();
1914  bool     isVolatile = ST->isVolatile();
1915  SDValue  ValOp = GetWidenedVector(ST->getValue());
1916  DebugLoc dl = N->getDebugLoc();
1917
1918  MVT StVT = ST->getMemoryVT();
1919  MVT ValVT = ValOp.getValueType();
1920  // It must be true that we the widen vector type is bigger than where
1921  // we need to store.
1922  assert(StVT.isVector() && ValOp.getValueType().isVector());
1923  assert(StVT.bitsLT(ValOp.getValueType()));
1924
1925  SmallVector<SDValue, 16> StChain;
1926  if (ST->isTruncatingStore()) {
1927    // For truncating stores, we can not play the tricks of chopping legal
1928    // vector types and bit cast it to the right type.  Instead, we unroll
1929    // the store.
1930    MVT StEltVT  = StVT.getVectorElementType();
1931    MVT ValEltVT = ValVT.getVectorElementType();
1932    unsigned Increment = ValEltVT.getSizeInBits() / 8;
1933    unsigned NumElts = StVT.getVectorNumElements();
1934    SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1935                              DAG.getIntPtrConstant(0));
1936    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, SV,
1937                                        SVOffset, StEltVT,
1938                                        isVolatile, Align));
1939    unsigned Offset = Increment;
1940    for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
1941      SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
1942                                       BasePtr, DAG.getIntPtrConstant(Offset));
1943      SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
1944                              DAG.getIntPtrConstant(0));
1945      StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, SV,
1946                                          SVOffset + Offset, StEltVT,
1947                                          isVolatile, MinAlign(Align, Offset)));
1948    }
1949  }
1950  else {
1951    assert(StVT.getVectorElementType() == ValVT.getVectorElementType());
1952    // Store value
1953    GenWidenVectorStores(StChain, Chain, BasePtr, SV, SVOffset,
1954                         Align, isVolatile, ValOp, StVT.getSizeInBits(), dl);
1955  }
1956  if (StChain.size() == 1)
1957    return StChain[0];
1958  else
1959    return DAG.getNode(ISD::TokenFactor, dl,
1960                       MVT::Other,&StChain[0],StChain.size());
1961}
1962
1963//===----------------------------------------------------------------------===//
1964// Vector Widening Utilities
1965//===----------------------------------------------------------------------===//
1966
1967
1968// Utility function to find a vector type and its associated element
1969// type from a preferred width and whose vector type must be the same size
1970// as the VecVT.
1971//  TLI:   Target lowering used to determine legal types.
1972//  Width: Preferred width to store.
1973//  VecVT: Vector value type whose size we must match.
1974// Returns NewVecVT and NewEltVT - the vector type and its associated
1975// element type.
1976static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
1977                                  MVT VecVT,
1978                                  MVT& NewEltVT, MVT& NewVecVT) {
1979  unsigned EltWidth = Width + 1;
1980  if (TLI.isTypeLegal(VecVT)) {
1981    // We start with the preferred with, making it a power of 2 and find a
1982    // legal vector type of that width.  If not, we reduce it by another of 2.
1983    // For incoming type is legal, this process will end as a vector of the
1984    // smallest loadable type should always be legal.
1985    do {
1986      assert(EltWidth > 0);
1987      EltWidth = 1 << Log2_32(EltWidth - 1);
1988      NewEltVT = MVT::getIntegerVT(EltWidth);
1989      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
1990      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
1991    } while (!TLI.isTypeLegal(NewVecVT) ||
1992             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
1993  } else {
1994    // The incoming vector type is illegal and is the result of widening
1995    // a vector to a power of 2. In this case, we will use the preferred
1996    // with as long as it is a multiple of the incoming vector length.
1997    // The legalization process will eventually make this into a legal type
1998    // and remove the illegal bit converts (which would turn to stack converts
1999    // if they are allow to exist).
2000     do {
2001      assert(EltWidth > 0);
2002      EltWidth = 1 << Log2_32(EltWidth - 1);
2003      NewEltVT = MVT::getIntegerVT(EltWidth);
2004      unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
2005      NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
2006    } while (!TLI.isTypeLegal(NewEltVT) ||
2007             VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
2008  }
2009}
2010
2011SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
2012                                              SDValue      Chain,
2013                                              SDValue      BasePtr,
2014                                              const Value *SV,
2015                                              int          SVOffset,
2016                                              unsigned     Alignment,
2017                                              bool         isVolatile,
2018                                              unsigned     LdWidth,
2019                                              MVT          ResType,
2020                                              DebugLoc     dl) {
2021  // The strategy assumes that we can efficiently load powers of two widths.
2022  // The routines chops the vector into the largest power of 2 load and
2023  // can be inserted into a legal vector and then cast the result into the
2024  // vector type we want.  This avoids unnecessary stack converts.
2025
2026  // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
2027  //       the load is nonvolatile, we an use a wider load for the value.
2028
2029  // Find the vector type that can load from.
2030  MVT NewEltVT, NewVecVT;
2031  unsigned NewEltVTWidth;
2032  FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2033  NewEltVTWidth = NewEltVT.getSizeInBits();
2034
2035  SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV, SVOffset,
2036                             isVolatile, Alignment);
2037  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2038  LdChain.push_back(LdOp.getValue(1));
2039
2040  // Check if we can load the element with one instruction
2041  if (LdWidth == NewEltVTWidth) {
2042    return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2043  }
2044
2045  unsigned Idx = 1;
2046  LdWidth -= NewEltVTWidth;
2047  unsigned Offset = 0;
2048
2049  while (LdWidth > 0) {
2050    unsigned Increment = NewEltVTWidth / 8;
2051    Offset += Increment;
2052    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2053                          DAG.getIntPtrConstant(Increment));
2054
2055    if (LdWidth < NewEltVTWidth) {
2056      // Our current type we are using is too large, use a smaller size by
2057      // using a smaller power of 2
2058      unsigned oNewEltVTWidth = NewEltVTWidth;
2059      FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
2060      NewEltVTWidth = NewEltVT.getSizeInBits();
2061      // Readjust position and vector position based on new load type
2062      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2063      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2064    }
2065
2066    SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV,
2067                                 SVOffset+Offset, isVolatile,
2068                                 MinAlign(Alignment, Offset));
2069    LdChain.push_back(LdOp.getValue(1));
2070    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOp,
2071                        DAG.getIntPtrConstant(Idx++));
2072
2073    LdWidth -= NewEltVTWidth;
2074  }
2075
2076  return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
2077}
2078
2079void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
2080                                            SDValue   Chain,
2081                                            SDValue   BasePtr,
2082                                            const Value *SV,
2083                                            int         SVOffset,
2084                                            unsigned    Alignment,
2085                                            bool        isVolatile,
2086                                            SDValue     ValOp,
2087                                            unsigned    StWidth,
2088                                            DebugLoc    dl) {
2089  // Breaks the stores into a series of power of 2 width stores.  For any
2090  // width, we convert the vector to the vector of element size that we
2091  // want to store.  This avoids requiring a stack convert.
2092
2093  // Find a width of the element type we can store with
2094  MVT WidenVT = ValOp.getValueType();
2095  MVT NewEltVT, NewVecVT;
2096
2097  FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2098  unsigned NewEltVTWidth = NewEltVT.getSizeInBits();
2099
2100  SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
2101  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2102                            DAG.getIntPtrConstant(0));
2103  SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset,
2104                               isVolatile, Alignment);
2105  StChain.push_back(StOp);
2106
2107  // Check if we are done
2108  if (StWidth == NewEltVTWidth) {
2109    return;
2110  }
2111
2112  unsigned Idx = 1;
2113  StWidth -= NewEltVTWidth;
2114  unsigned Offset = 0;
2115
2116  while (StWidth > 0) {
2117    unsigned Increment = NewEltVTWidth / 8;
2118    Offset += Increment;
2119    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2120                          DAG.getIntPtrConstant(Increment));
2121
2122    if (StWidth < NewEltVTWidth) {
2123      // Our current type we are using is too large, use a smaller size by
2124      // using a smaller power of 2
2125      unsigned oNewEltVTWidth = NewEltVTWidth;
2126      FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
2127      NewEltVTWidth = NewEltVT.getSizeInBits();
2128      // Readjust position and vector position based on new load type
2129      Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
2130      VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, VecOp);
2131    }
2132
2133    EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, VecOp,
2134                      DAG.getIntPtrConstant(Idx++));
2135    StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV,
2136                                   SVOffset + Offset, isVolatile,
2137                                   MinAlign(Alignment, Offset)));
2138    StWidth -= NewEltVTWidth;
2139  }
2140}
2141
2142/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
2143/// input vector must have the same element type as NVT.
2144SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, MVT NVT) {
2145  // Note that InOp might have been widened so it might already have
2146  // the right width or it might need be narrowed.
2147  MVT InVT = InOp.getValueType();
2148  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2149         "input and widen element type must match");
2150  DebugLoc dl = InOp.getDebugLoc();
2151
2152  // Check if InOp already has the right width.
2153  if (InVT == NVT)
2154    return InOp;
2155
2156  unsigned InNumElts = InVT.getVectorNumElements();
2157  unsigned WidenNumElts = NVT.getVectorNumElements();
2158  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2159    unsigned NumConcat = WidenNumElts / InNumElts;
2160    SmallVector<SDValue, 16> Ops(NumConcat);
2161    SDValue UndefVal = DAG.getUNDEF(InVT);
2162    Ops[0] = InOp;
2163    for (unsigned i = 1; i != NumConcat; ++i)
2164      Ops[i] = UndefVal;
2165
2166    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2167  }
2168
2169  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2170    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2171                       DAG.getIntPtrConstant(0));
2172
2173  // Fall back to extract and build.
2174  SmallVector<SDValue, 16> Ops(WidenNumElts);
2175  MVT EltVT = NVT.getVectorElementType();
2176  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2177  unsigned Idx;
2178  for (Idx = 0; Idx < MinNumElts; ++Idx)
2179    Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2180                           DAG.getIntPtrConstant(Idx));
2181
2182  SDValue UndefVal = DAG.getUNDEF(EltVT);
2183  for ( ; Idx < WidenNumElts; ++Idx)
2184    Ops[Idx] = UndefVal;
2185  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2186}
2187