ScheduleDAGFast.cpp revision 17adafc6c179f3bad757f932a13522851ee5171f
1//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a fast scheduler.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "pre-RA-sched"
15#include "ScheduleDAGSDNodes.h"
16#include "llvm/InlineAsm.h"
17#include "llvm/CodeGen/SchedulerRegistry.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30STATISTIC(NumUnfolds,    "Number of nodes unfolded");
31STATISTIC(NumDups,       "Number of duplicated nodes");
32STATISTIC(NumPRCopies,   "Number of physical copies");
33
34static RegisterScheduler
35  fastDAGScheduler("fast", "Fast suboptimal list scheduling",
36                   createFastDAGScheduler);
37
38namespace {
39  /// FastPriorityQueue - A degenerate priority queue that considers
40  /// all nodes to have the same priority.
41  ///
42  struct FastPriorityQueue {
43    SmallVector<SUnit *, 16> Queue;
44
45    bool empty() const { return Queue.empty(); }
46
47    void push(SUnit *U) {
48      Queue.push_back(U);
49    }
50
51    SUnit *pop() {
52      if (empty()) return NULL;
53      SUnit *V = Queue.back();
54      Queue.pop_back();
55      return V;
56    }
57  };
58
59//===----------------------------------------------------------------------===//
60/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
61///
62class ScheduleDAGFast : public ScheduleDAGSDNodes {
63private:
64  /// AvailableQueue - The priority queue to use for the available SUnits.
65  FastPriorityQueue AvailableQueue;
66
67  /// LiveRegDefs - A set of physical registers and their definition
68  /// that are "live". These nodes must be scheduled before any other nodes that
69  /// modifies the registers can be scheduled.
70  unsigned NumLiveRegs;
71  std::vector<SUnit*> LiveRegDefs;
72  std::vector<unsigned> LiveRegCycles;
73
74public:
75  ScheduleDAGFast(MachineFunction &mf)
76    : ScheduleDAGSDNodes(mf) {}
77
78  void Schedule();
79
80  /// AddPred - adds a predecessor edge to SUnit SU.
81  /// This returns true if this is a new predecessor.
82  void AddPred(SUnit *SU, const SDep &D) {
83    SU->addPred(D);
84  }
85
86  /// RemovePred - removes a predecessor edge from SUnit SU.
87  /// This returns true if an edge was removed.
88  void RemovePred(SUnit *SU, const SDep &D) {
89    SU->removePred(D);
90  }
91
92private:
93  void ReleasePred(SUnit *SU, SDep *PredEdge);
94  void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
95  void ScheduleNodeBottomUp(SUnit*, unsigned);
96  SUnit *CopyAndMoveSuccessors(SUnit*);
97  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
98                                const TargetRegisterClass*,
99                                const TargetRegisterClass*,
100                                SmallVector<SUnit*, 2>&);
101  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
102  void ListScheduleBottomUp();
103
104  /// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
105  bool ForceUnitLatencies() const { return true; }
106};
107}  // end anonymous namespace
108
109
110/// Schedule - Schedule the DAG using list scheduling.
111void ScheduleDAGFast::Schedule() {
112  DEBUG(dbgs() << "********** List Scheduling **********\n");
113
114  NumLiveRegs = 0;
115  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
116  LiveRegCycles.resize(TRI->getNumRegs(), 0);
117
118  // Build the scheduling graph.
119  BuildSchedGraph(NULL);
120
121  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
122          SUnits[su].dumpAll(this));
123
124  // Execute the actual scheduling loop.
125  ListScheduleBottomUp();
126}
127
128//===----------------------------------------------------------------------===//
129//  Bottom-Up Scheduling
130//===----------------------------------------------------------------------===//
131
132/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
133/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
134void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
135  SUnit *PredSU = PredEdge->getSUnit();
136
137#ifndef NDEBUG
138  if (PredSU->NumSuccsLeft == 0) {
139    dbgs() << "*** Scheduling failed! ***\n";
140    PredSU->dump(this);
141    dbgs() << " has been released too many times!\n";
142    llvm_unreachable(0);
143  }
144#endif
145  --PredSU->NumSuccsLeft;
146
147  // If all the node's successors are scheduled, this node is ready
148  // to be scheduled. Ignore the special EntrySU node.
149  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
150    PredSU->isAvailable = true;
151    AvailableQueue.push(PredSU);
152  }
153}
154
155void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
156  // Bottom up: release predecessors
157  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
158       I != E; ++I) {
159    ReleasePred(SU, &*I);
160    if (I->isAssignedRegDep()) {
161      // This is a physical register dependency and it's impossible or
162      // expensive to copy the register. Make sure nothing that can
163      // clobber the register is scheduled between the predecessor and
164      // this node.
165      if (!LiveRegDefs[I->getReg()]) {
166        ++NumLiveRegs;
167        LiveRegDefs[I->getReg()] = I->getSUnit();
168        LiveRegCycles[I->getReg()] = CurCycle;
169      }
170    }
171  }
172}
173
174/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
175/// count of its predecessors. If a predecessor pending count is zero, add it to
176/// the Available queue.
177void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
178  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
179  DEBUG(SU->dump(this));
180
181  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
182  SU->setHeightToAtLeast(CurCycle);
183  Sequence.push_back(SU);
184
185  ReleasePredecessors(SU, CurCycle);
186
187  // Release all the implicit physical register defs that are live.
188  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
189       I != E; ++I) {
190    if (I->isAssignedRegDep()) {
191      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
192        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
193        assert(LiveRegDefs[I->getReg()] == SU &&
194               "Physical register dependency violated?");
195        --NumLiveRegs;
196        LiveRegDefs[I->getReg()] = NULL;
197        LiveRegCycles[I->getReg()] = 0;
198      }
199    }
200  }
201
202  SU->isScheduled = true;
203}
204
205/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
206/// successors to the newly created node.
207SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
208  if (SU->getNode()->getGluedNode())
209    return NULL;
210
211  SDNode *N = SU->getNode();
212  if (!N)
213    return NULL;
214
215  SUnit *NewSU;
216  bool TryUnfold = false;
217  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
218    EVT VT = N->getValueType(i);
219    if (VT == MVT::Glue)
220      return NULL;
221    else if (VT == MVT::Other)
222      TryUnfold = true;
223  }
224  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
225    const SDValue &Op = N->getOperand(i);
226    EVT VT = Op.getNode()->getValueType(Op.getResNo());
227    if (VT == MVT::Glue)
228      return NULL;
229  }
230
231  if (TryUnfold) {
232    SmallVector<SDNode*, 2> NewNodes;
233    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
234      return NULL;
235
236    DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
237    assert(NewNodes.size() == 2 && "Expected a load folding node!");
238
239    N = NewNodes[1];
240    SDNode *LoadNode = NewNodes[0];
241    unsigned NumVals = N->getNumValues();
242    unsigned OldNumVals = SU->getNode()->getNumValues();
243    for (unsigned i = 0; i != NumVals; ++i)
244      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
245    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
246                                   SDValue(LoadNode, 1));
247
248    SUnit *NewSU = NewSUnit(N);
249    assert(N->getNodeId() == -1 && "Node already inserted!");
250    N->setNodeId(NewSU->NodeNum);
251
252    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
253    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
254      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
255        NewSU->isTwoAddress = true;
256        break;
257      }
258    }
259    if (TID.isCommutable())
260      NewSU->isCommutable = true;
261
262    // LoadNode may already exist. This can happen when there is another
263    // load from the same location and producing the same type of value
264    // but it has different alignment or volatileness.
265    bool isNewLoad = true;
266    SUnit *LoadSU;
267    if (LoadNode->getNodeId() != -1) {
268      LoadSU = &SUnits[LoadNode->getNodeId()];
269      isNewLoad = false;
270    } else {
271      LoadSU = NewSUnit(LoadNode);
272      LoadNode->setNodeId(LoadSU->NodeNum);
273    }
274
275    SDep ChainPred;
276    SmallVector<SDep, 4> ChainSuccs;
277    SmallVector<SDep, 4> LoadPreds;
278    SmallVector<SDep, 4> NodePreds;
279    SmallVector<SDep, 4> NodeSuccs;
280    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
281         I != E; ++I) {
282      if (I->isCtrl())
283        ChainPred = *I;
284      else if (I->getSUnit()->getNode() &&
285               I->getSUnit()->getNode()->isOperandOf(LoadNode))
286        LoadPreds.push_back(*I);
287      else
288        NodePreds.push_back(*I);
289    }
290    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
291         I != E; ++I) {
292      if (I->isCtrl())
293        ChainSuccs.push_back(*I);
294      else
295        NodeSuccs.push_back(*I);
296    }
297
298    if (ChainPred.getSUnit()) {
299      RemovePred(SU, ChainPred);
300      if (isNewLoad)
301        AddPred(LoadSU, ChainPred);
302    }
303    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
304      const SDep &Pred = LoadPreds[i];
305      RemovePred(SU, Pred);
306      if (isNewLoad) {
307        AddPred(LoadSU, Pred);
308      }
309    }
310    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
311      const SDep &Pred = NodePreds[i];
312      RemovePred(SU, Pred);
313      AddPred(NewSU, Pred);
314    }
315    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
316      SDep D = NodeSuccs[i];
317      SUnit *SuccDep = D.getSUnit();
318      D.setSUnit(SU);
319      RemovePred(SuccDep, D);
320      D.setSUnit(NewSU);
321      AddPred(SuccDep, D);
322    }
323    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
324      SDep D = ChainSuccs[i];
325      SUnit *SuccDep = D.getSUnit();
326      D.setSUnit(SU);
327      RemovePred(SuccDep, D);
328      if (isNewLoad) {
329        D.setSUnit(LoadSU);
330        AddPred(SuccDep, D);
331      }
332    }
333    if (isNewLoad) {
334      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
335    }
336
337    ++NumUnfolds;
338
339    if (NewSU->NumSuccsLeft == 0) {
340      NewSU->isAvailable = true;
341      return NewSU;
342    }
343    SU = NewSU;
344  }
345
346  DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
347  NewSU = Clone(SU);
348
349  // New SUnit has the exact same predecessors.
350  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
351       I != E; ++I)
352    if (!I->isArtificial())
353      AddPred(NewSU, *I);
354
355  // Only copy scheduled successors. Cut them from old node's successor
356  // list and move them over.
357  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
358  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
359       I != E; ++I) {
360    if (I->isArtificial())
361      continue;
362    SUnit *SuccSU = I->getSUnit();
363    if (SuccSU->isScheduled) {
364      SDep D = *I;
365      D.setSUnit(NewSU);
366      AddPred(SuccSU, D);
367      D.setSUnit(SU);
368      DelDeps.push_back(std::make_pair(SuccSU, D));
369    }
370  }
371  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
372    RemovePred(DelDeps[i].first, DelDeps[i].second);
373
374  ++NumDups;
375  return NewSU;
376}
377
378/// InsertCopiesAndMoveSuccs - Insert register copies and move all
379/// scheduled successors of the given SUnit to the last copy.
380void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
381                                              const TargetRegisterClass *DestRC,
382                                              const TargetRegisterClass *SrcRC,
383                                               SmallVector<SUnit*, 2> &Copies) {
384  SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
385  CopyFromSU->CopySrcRC = SrcRC;
386  CopyFromSU->CopyDstRC = DestRC;
387
388  SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
389  CopyToSU->CopySrcRC = DestRC;
390  CopyToSU->CopyDstRC = SrcRC;
391
392  // Only copy scheduled successors. Cut them from old node's successor
393  // list and move them over.
394  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
395  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
396       I != E; ++I) {
397    if (I->isArtificial())
398      continue;
399    SUnit *SuccSU = I->getSUnit();
400    if (SuccSU->isScheduled) {
401      SDep D = *I;
402      D.setSUnit(CopyToSU);
403      AddPred(SuccSU, D);
404      DelDeps.push_back(std::make_pair(SuccSU, *I));
405    }
406  }
407  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
408    RemovePred(DelDeps[i].first, DelDeps[i].second);
409  }
410
411  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
412  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
413
414  Copies.push_back(CopyFromSU);
415  Copies.push_back(CopyToSU);
416
417  ++NumPRCopies;
418}
419
420/// getPhysicalRegisterVT - Returns the ValueType of the physical register
421/// definition of the specified node.
422/// FIXME: Move to SelectionDAG?
423static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
424                                 const TargetInstrInfo *TII) {
425  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
426  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
427  unsigned NumRes = TID.getNumDefs();
428  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
429    if (Reg == *ImpDef)
430      break;
431    ++NumRes;
432  }
433  return N->getValueType(NumRes);
434}
435
436/// CheckForLiveRegDef - Return true and update live register vector if the
437/// specified register def of the specified SUnit clobbers any "live" registers.
438static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
439                               std::vector<SUnit*> &LiveRegDefs,
440                               SmallSet<unsigned, 4> &RegAdded,
441                               SmallVector<unsigned, 4> &LRegs,
442                               const TargetRegisterInfo *TRI) {
443  bool Added = false;
444  if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
445    if (RegAdded.insert(Reg)) {
446      LRegs.push_back(Reg);
447      Added = true;
448    }
449  }
450  for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
451    if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
452      if (RegAdded.insert(*Alias)) {
453        LRegs.push_back(*Alias);
454        Added = true;
455      }
456    }
457  return Added;
458}
459
460/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
461/// scheduling of the given node to satisfy live physical register dependencies.
462/// If the specific node is the last one that's available to schedule, do
463/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
464bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
465                                               SmallVector<unsigned, 4> &LRegs){
466  if (NumLiveRegs == 0)
467    return false;
468
469  SmallSet<unsigned, 4> RegAdded;
470  // If this node would clobber any "live" register, then it's not ready.
471  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
472       I != E; ++I) {
473    if (I->isAssignedRegDep()) {
474      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
475                         RegAdded, LRegs, TRI);
476    }
477  }
478
479  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
480    if (Node->getOpcode() == ISD::INLINEASM) {
481      // Inline asm can clobber physical defs.
482      unsigned NumOps = Node->getNumOperands();
483      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
484        --NumOps;  // Ignore the glue operand.
485
486      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
487        unsigned Flags =
488          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
489        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
490
491        ++i; // Skip the ID value.
492        if (InlineAsm::isRegDefKind(Flags) ||
493            InlineAsm::isRegDefEarlyClobberKind(Flags)) {
494          // Check for def of register or earlyclobber register.
495          for (; NumVals; --NumVals, ++i) {
496            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
497            if (TargetRegisterInfo::isPhysicalRegister(Reg))
498              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
499          }
500        } else
501          i += NumVals;
502      }
503      continue;
504    }
505    if (!Node->isMachineOpcode())
506      continue;
507    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
508    if (!TID.ImplicitDefs)
509      continue;
510    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
511      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
512    }
513  }
514  return !LRegs.empty();
515}
516
517
518/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
519/// schedulers.
520void ScheduleDAGFast::ListScheduleBottomUp() {
521  unsigned CurCycle = 0;
522
523  // Release any predecessors of the special Exit node.
524  ReleasePredecessors(&ExitSU, CurCycle);
525
526  // Add root to Available queue.
527  if (!SUnits.empty()) {
528    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
529    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
530    RootSU->isAvailable = true;
531    AvailableQueue.push(RootSU);
532  }
533
534  // While Available queue is not empty, grab the node with the highest
535  // priority. If it is not ready put it back.  Schedule the node.
536  SmallVector<SUnit*, 4> NotReady;
537  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
538  Sequence.reserve(SUnits.size());
539  while (!AvailableQueue.empty()) {
540    bool Delayed = false;
541    LRegsMap.clear();
542    SUnit *CurSU = AvailableQueue.pop();
543    while (CurSU) {
544      SmallVector<unsigned, 4> LRegs;
545      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
546        break;
547      Delayed = true;
548      LRegsMap.insert(std::make_pair(CurSU, LRegs));
549
550      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
551      NotReady.push_back(CurSU);
552      CurSU = AvailableQueue.pop();
553    }
554
555    // All candidates are delayed due to live physical reg dependencies.
556    // Try code duplication or inserting cross class copies
557    // to resolve it.
558    if (Delayed && !CurSU) {
559      if (!CurSU) {
560        // Try duplicating the nodes that produces these
561        // "expensive to copy" values to break the dependency. In case even
562        // that doesn't work, insert cross class copies.
563        SUnit *TrySU = NotReady[0];
564        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
565        assert(LRegs.size() == 1 && "Can't handle this yet!");
566        unsigned Reg = LRegs[0];
567        SUnit *LRDef = LiveRegDefs[Reg];
568        EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
569        const TargetRegisterClass *RC =
570          TRI->getMinimalPhysRegClass(Reg, VT);
571        const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
572
573        // If cross copy register class is the same as RC, then it must be
574        // possible copy the value directly. Do not try duplicate the def.
575        // If cross copy register class is not the same as RC, then it's
576        // possible to copy the value but it require cross register class copies
577        // and it is expensive.
578        // If cross copy register class is null, then it's not possible to copy
579        // the value at all.
580        SUnit *NewDef = 0;
581        if (DestRC != RC) {
582          NewDef = CopyAndMoveSuccessors(LRDef);
583          if (!DestRC && !NewDef)
584            report_fatal_error("Can't handle live physical "
585                               "register dependency!");
586        }
587        if (!NewDef) {
588          // Issue copies, these can be expensive cross register class copies.
589          SmallVector<SUnit*, 2> Copies;
590          InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
591          DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
592                       << " to SU #" << Copies.front()->NodeNum << "\n");
593          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
594                              /*Reg=*/0, /*isNormalMemory=*/false,
595                              /*isMustAlias=*/false, /*isArtificial=*/true));
596          NewDef = Copies.back();
597        }
598
599        DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
600                     << " to SU #" << TrySU->NodeNum << "\n");
601        LiveRegDefs[Reg] = NewDef;
602        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
603                             /*Reg=*/0, /*isNormalMemory=*/false,
604                             /*isMustAlias=*/false, /*isArtificial=*/true));
605        TrySU->isAvailable = false;
606        CurSU = NewDef;
607      }
608
609      if (!CurSU) {
610        llvm_unreachable("Unable to resolve live physical register dependencies!");
611      }
612    }
613
614    // Add the nodes that aren't ready back onto the available list.
615    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
616      NotReady[i]->isPending = false;
617      // May no longer be available due to backtracking.
618      if (NotReady[i]->isAvailable)
619        AvailableQueue.push(NotReady[i]);
620    }
621    NotReady.clear();
622
623    if (CurSU)
624      ScheduleNodeBottomUp(CurSU, CurCycle);
625    ++CurCycle;
626  }
627
628  // Reverse the order since it is bottom up.
629  std::reverse(Sequence.begin(), Sequence.end());
630
631#ifndef NDEBUG
632  VerifySchedule(/*isBottomUp=*/true);
633#endif
634}
635
636//===----------------------------------------------------------------------===//
637//                         Public Constructor Functions
638//===----------------------------------------------------------------------===//
639
640llvm::ScheduleDAGSDNodes *
641llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
642  return new ScheduleDAGFast(*IS->MF);
643}
644