ScheduleDAGFast.cpp revision 63a4c24616fafa2b86d6391308ffd93e012115e4
1//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a fast scheduler.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "pre-RA-sched"
15#include "ScheduleDAGSDNodes.h"
16#include "InstrEmitter.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/CodeGen/SchedulerRegistry.h"
19#include "llvm/CodeGen/SelectionDAGISel.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/DataLayout.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29using namespace llvm;
30
31STATISTIC(NumUnfolds,    "Number of nodes unfolded");
32STATISTIC(NumDups,       "Number of duplicated nodes");
33STATISTIC(NumPRCopies,   "Number of physical copies");
34
35static RegisterScheduler
36  fastDAGScheduler("fast", "Fast suboptimal list scheduling",
37                   createFastDAGScheduler);
38static RegisterScheduler
39  linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
40                        createDAGLinearizer);
41
42
43namespace {
44  /// FastPriorityQueue - A degenerate priority queue that considers
45  /// all nodes to have the same priority.
46  ///
47  struct FastPriorityQueue {
48    SmallVector<SUnit *, 16> Queue;
49
50    bool empty() const { return Queue.empty(); }
51
52    void push(SUnit *U) {
53      Queue.push_back(U);
54    }
55
56    SUnit *pop() {
57      if (empty()) return NULL;
58      SUnit *V = Queue.back();
59      Queue.pop_back();
60      return V;
61    }
62  };
63
64//===----------------------------------------------------------------------===//
65/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
66///
67class ScheduleDAGFast : public ScheduleDAGSDNodes {
68private:
69  /// AvailableQueue - The priority queue to use for the available SUnits.
70  FastPriorityQueue AvailableQueue;
71
72  /// LiveRegDefs - A set of physical registers and their definition
73  /// that are "live". These nodes must be scheduled before any other nodes that
74  /// modifies the registers can be scheduled.
75  unsigned NumLiveRegs;
76  std::vector<SUnit*> LiveRegDefs;
77  std::vector<unsigned> LiveRegCycles;
78
79public:
80  ScheduleDAGFast(MachineFunction &mf)
81    : ScheduleDAGSDNodes(mf) {}
82
83  void Schedule();
84
85  /// AddPred - adds a predecessor edge to SUnit SU.
86  /// This returns true if this is a new predecessor.
87  void AddPred(SUnit *SU, const SDep &D) {
88    SU->addPred(D);
89  }
90
91  /// RemovePred - removes a predecessor edge from SUnit SU.
92  /// This returns true if an edge was removed.
93  void RemovePred(SUnit *SU, const SDep &D) {
94    SU->removePred(D);
95  }
96
97private:
98  void ReleasePred(SUnit *SU, SDep *PredEdge);
99  void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
100  void ScheduleNodeBottomUp(SUnit*, unsigned);
101  SUnit *CopyAndMoveSuccessors(SUnit*);
102  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
103                                const TargetRegisterClass*,
104                                const TargetRegisterClass*,
105                                SmallVector<SUnit*, 2>&);
106  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
107  void ListScheduleBottomUp();
108
109  /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
110  bool forceUnitLatencies() const { return true; }
111};
112}  // end anonymous namespace
113
114
115/// Schedule - Schedule the DAG using list scheduling.
116void ScheduleDAGFast::Schedule() {
117  DEBUG(dbgs() << "********** List Scheduling **********\n");
118
119  NumLiveRegs = 0;
120  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
121  LiveRegCycles.resize(TRI->getNumRegs(), 0);
122
123  // Build the scheduling graph.
124  BuildSchedGraph(NULL);
125
126  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
127          SUnits[su].dumpAll(this));
128
129  // Execute the actual scheduling loop.
130  ListScheduleBottomUp();
131}
132
133//===----------------------------------------------------------------------===//
134//  Bottom-Up Scheduling
135//===----------------------------------------------------------------------===//
136
137/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
138/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
139void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
140  SUnit *PredSU = PredEdge->getSUnit();
141
142#ifndef NDEBUG
143  if (PredSU->NumSuccsLeft == 0) {
144    dbgs() << "*** Scheduling failed! ***\n";
145    PredSU->dump(this);
146    dbgs() << " has been released too many times!\n";
147    llvm_unreachable(0);
148  }
149#endif
150  --PredSU->NumSuccsLeft;
151
152  // If all the node's successors are scheduled, this node is ready
153  // to be scheduled. Ignore the special EntrySU node.
154  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
155    PredSU->isAvailable = true;
156    AvailableQueue.push(PredSU);
157  }
158}
159
160void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
161  // Bottom up: release predecessors
162  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
163       I != E; ++I) {
164    ReleasePred(SU, &*I);
165    if (I->isAssignedRegDep()) {
166      // This is a physical register dependency and it's impossible or
167      // expensive to copy the register. Make sure nothing that can
168      // clobber the register is scheduled between the predecessor and
169      // this node.
170      if (!LiveRegDefs[I->getReg()]) {
171        ++NumLiveRegs;
172        LiveRegDefs[I->getReg()] = I->getSUnit();
173        LiveRegCycles[I->getReg()] = CurCycle;
174      }
175    }
176  }
177}
178
179/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
180/// count of its predecessors. If a predecessor pending count is zero, add it to
181/// the Available queue.
182void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
183  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
184  DEBUG(SU->dump(this));
185
186  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
187  SU->setHeightToAtLeast(CurCycle);
188  Sequence.push_back(SU);
189
190  ReleasePredecessors(SU, CurCycle);
191
192  // Release all the implicit physical register defs that are live.
193  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
194       I != E; ++I) {
195    if (I->isAssignedRegDep()) {
196      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
197        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
198        assert(LiveRegDefs[I->getReg()] == SU &&
199               "Physical register dependency violated?");
200        --NumLiveRegs;
201        LiveRegDefs[I->getReg()] = NULL;
202        LiveRegCycles[I->getReg()] = 0;
203      }
204    }
205  }
206
207  SU->isScheduled = true;
208}
209
210/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
211/// successors to the newly created node.
212SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
213  if (SU->getNode()->getGluedNode())
214    return NULL;
215
216  SDNode *N = SU->getNode();
217  if (!N)
218    return NULL;
219
220  SUnit *NewSU;
221  bool TryUnfold = false;
222  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
223    EVT VT = N->getValueType(i);
224    if (VT == MVT::Glue)
225      return NULL;
226    else if (VT == MVT::Other)
227      TryUnfold = true;
228  }
229  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
230    const SDValue &Op = N->getOperand(i);
231    EVT VT = Op.getNode()->getValueType(Op.getResNo());
232    if (VT == MVT::Glue)
233      return NULL;
234  }
235
236  if (TryUnfold) {
237    SmallVector<SDNode*, 2> NewNodes;
238    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
239      return NULL;
240
241    DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
242    assert(NewNodes.size() == 2 && "Expected a load folding node!");
243
244    N = NewNodes[1];
245    SDNode *LoadNode = NewNodes[0];
246    unsigned NumVals = N->getNumValues();
247    unsigned OldNumVals = SU->getNode()->getNumValues();
248    for (unsigned i = 0; i != NumVals; ++i)
249      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
250    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
251                                   SDValue(LoadNode, 1));
252
253    SUnit *NewSU = newSUnit(N);
254    assert(N->getNodeId() == -1 && "Node already inserted!");
255    N->setNodeId(NewSU->NodeNum);
256
257    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
258    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
259      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
260        NewSU->isTwoAddress = true;
261        break;
262      }
263    }
264    if (MCID.isCommutable())
265      NewSU->isCommutable = true;
266
267    // LoadNode may already exist. This can happen when there is another
268    // load from the same location and producing the same type of value
269    // but it has different alignment or volatileness.
270    bool isNewLoad = true;
271    SUnit *LoadSU;
272    if (LoadNode->getNodeId() != -1) {
273      LoadSU = &SUnits[LoadNode->getNodeId()];
274      isNewLoad = false;
275    } else {
276      LoadSU = newSUnit(LoadNode);
277      LoadNode->setNodeId(LoadSU->NodeNum);
278    }
279
280    SDep ChainPred;
281    SmallVector<SDep, 4> ChainSuccs;
282    SmallVector<SDep, 4> LoadPreds;
283    SmallVector<SDep, 4> NodePreds;
284    SmallVector<SDep, 4> NodeSuccs;
285    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
286         I != E; ++I) {
287      if (I->isCtrl())
288        ChainPred = *I;
289      else if (I->getSUnit()->getNode() &&
290               I->getSUnit()->getNode()->isOperandOf(LoadNode))
291        LoadPreds.push_back(*I);
292      else
293        NodePreds.push_back(*I);
294    }
295    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
296         I != E; ++I) {
297      if (I->isCtrl())
298        ChainSuccs.push_back(*I);
299      else
300        NodeSuccs.push_back(*I);
301    }
302
303    if (ChainPred.getSUnit()) {
304      RemovePred(SU, ChainPred);
305      if (isNewLoad)
306        AddPred(LoadSU, ChainPred);
307    }
308    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
309      const SDep &Pred = LoadPreds[i];
310      RemovePred(SU, Pred);
311      if (isNewLoad) {
312        AddPred(LoadSU, Pred);
313      }
314    }
315    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
316      const SDep &Pred = NodePreds[i];
317      RemovePred(SU, Pred);
318      AddPred(NewSU, Pred);
319    }
320    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
321      SDep D = NodeSuccs[i];
322      SUnit *SuccDep = D.getSUnit();
323      D.setSUnit(SU);
324      RemovePred(SuccDep, D);
325      D.setSUnit(NewSU);
326      AddPred(SuccDep, D);
327    }
328    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
329      SDep D = ChainSuccs[i];
330      SUnit *SuccDep = D.getSUnit();
331      D.setSUnit(SU);
332      RemovePred(SuccDep, D);
333      if (isNewLoad) {
334        D.setSUnit(LoadSU);
335        AddPred(SuccDep, D);
336      }
337    }
338    if (isNewLoad) {
339      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
340    }
341
342    ++NumUnfolds;
343
344    if (NewSU->NumSuccsLeft == 0) {
345      NewSU->isAvailable = true;
346      return NewSU;
347    }
348    SU = NewSU;
349  }
350
351  DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
352  NewSU = Clone(SU);
353
354  // New SUnit has the exact same predecessors.
355  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
356       I != E; ++I)
357    if (!I->isArtificial())
358      AddPred(NewSU, *I);
359
360  // Only copy scheduled successors. Cut them from old node's successor
361  // list and move them over.
362  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
363  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
364       I != E; ++I) {
365    if (I->isArtificial())
366      continue;
367    SUnit *SuccSU = I->getSUnit();
368    if (SuccSU->isScheduled) {
369      SDep D = *I;
370      D.setSUnit(NewSU);
371      AddPred(SuccSU, D);
372      D.setSUnit(SU);
373      DelDeps.push_back(std::make_pair(SuccSU, D));
374    }
375  }
376  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
377    RemovePred(DelDeps[i].first, DelDeps[i].second);
378
379  ++NumDups;
380  return NewSU;
381}
382
383/// InsertCopiesAndMoveSuccs - Insert register copies and move all
384/// scheduled successors of the given SUnit to the last copy.
385void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
386                                              const TargetRegisterClass *DestRC,
387                                              const TargetRegisterClass *SrcRC,
388                                               SmallVector<SUnit*, 2> &Copies) {
389  SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(NULL));
390  CopyFromSU->CopySrcRC = SrcRC;
391  CopyFromSU->CopyDstRC = DestRC;
392
393  SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(NULL));
394  CopyToSU->CopySrcRC = DestRC;
395  CopyToSU->CopyDstRC = SrcRC;
396
397  // Only copy scheduled successors. Cut them from old node's successor
398  // list and move them over.
399  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
400  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
401       I != E; ++I) {
402    if (I->isArtificial())
403      continue;
404    SUnit *SuccSU = I->getSUnit();
405    if (SuccSU->isScheduled) {
406      SDep D = *I;
407      D.setSUnit(CopyToSU);
408      AddPred(SuccSU, D);
409      DelDeps.push_back(std::make_pair(SuccSU, *I));
410    }
411  }
412  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
413    RemovePred(DelDeps[i].first, DelDeps[i].second);
414  }
415
416  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
417  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
418
419  Copies.push_back(CopyFromSU);
420  Copies.push_back(CopyToSU);
421
422  ++NumPRCopies;
423}
424
425/// getPhysicalRegisterVT - Returns the ValueType of the physical register
426/// definition of the specified node.
427/// FIXME: Move to SelectionDAG?
428static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
429                                 const TargetInstrInfo *TII) {
430  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
431  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
432  unsigned NumRes = MCID.getNumDefs();
433  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
434    if (Reg == *ImpDef)
435      break;
436    ++NumRes;
437  }
438  return N->getValueType(NumRes);
439}
440
441/// CheckForLiveRegDef - Return true and update live register vector if the
442/// specified register def of the specified SUnit clobbers any "live" registers.
443static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
444                               std::vector<SUnit*> &LiveRegDefs,
445                               SmallSet<unsigned, 4> &RegAdded,
446                               SmallVector<unsigned, 4> &LRegs,
447                               const TargetRegisterInfo *TRI) {
448  bool Added = false;
449  for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
450    if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
451      if (RegAdded.insert(*AI)) {
452        LRegs.push_back(*AI);
453        Added = true;
454      }
455    }
456  }
457  return Added;
458}
459
460/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
461/// scheduling of the given node to satisfy live physical register dependencies.
462/// If the specific node is the last one that's available to schedule, do
463/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
464bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
465                                               SmallVector<unsigned, 4> &LRegs){
466  if (NumLiveRegs == 0)
467    return false;
468
469  SmallSet<unsigned, 4> RegAdded;
470  // If this node would clobber any "live" register, then it's not ready.
471  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
472       I != E; ++I) {
473    if (I->isAssignedRegDep()) {
474      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
475                         RegAdded, LRegs, TRI);
476    }
477  }
478
479  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
480    if (Node->getOpcode() == ISD::INLINEASM) {
481      // Inline asm can clobber physical defs.
482      unsigned NumOps = Node->getNumOperands();
483      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
484        --NumOps;  // Ignore the glue operand.
485
486      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
487        unsigned Flags =
488          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
489        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
490
491        ++i; // Skip the ID value.
492        if (InlineAsm::isRegDefKind(Flags) ||
493            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
494            InlineAsm::isClobberKind(Flags)) {
495          // Check for def of register or earlyclobber register.
496          for (; NumVals; --NumVals, ++i) {
497            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
498            if (TargetRegisterInfo::isPhysicalRegister(Reg))
499              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
500          }
501        } else
502          i += NumVals;
503      }
504      continue;
505    }
506    if (!Node->isMachineOpcode())
507      continue;
508    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
509    if (!MCID.ImplicitDefs)
510      continue;
511    for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
512      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
513    }
514  }
515  return !LRegs.empty();
516}
517
518
519/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
520/// schedulers.
521void ScheduleDAGFast::ListScheduleBottomUp() {
522  unsigned CurCycle = 0;
523
524  // Release any predecessors of the special Exit node.
525  ReleasePredecessors(&ExitSU, CurCycle);
526
527  // Add root to Available queue.
528  if (!SUnits.empty()) {
529    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
530    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
531    RootSU->isAvailable = true;
532    AvailableQueue.push(RootSU);
533  }
534
535  // While Available queue is not empty, grab the node with the highest
536  // priority. If it is not ready put it back.  Schedule the node.
537  SmallVector<SUnit*, 4> NotReady;
538  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
539  Sequence.reserve(SUnits.size());
540  while (!AvailableQueue.empty()) {
541    bool Delayed = false;
542    LRegsMap.clear();
543    SUnit *CurSU = AvailableQueue.pop();
544    while (CurSU) {
545      SmallVector<unsigned, 4> LRegs;
546      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
547        break;
548      Delayed = true;
549      LRegsMap.insert(std::make_pair(CurSU, LRegs));
550
551      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
552      NotReady.push_back(CurSU);
553      CurSU = AvailableQueue.pop();
554    }
555
556    // All candidates are delayed due to live physical reg dependencies.
557    // Try code duplication or inserting cross class copies
558    // to resolve it.
559    if (Delayed && !CurSU) {
560      if (!CurSU) {
561        // Try duplicating the nodes that produces these
562        // "expensive to copy" values to break the dependency. In case even
563        // that doesn't work, insert cross class copies.
564        SUnit *TrySU = NotReady[0];
565        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
566        assert(LRegs.size() == 1 && "Can't handle this yet!");
567        unsigned Reg = LRegs[0];
568        SUnit *LRDef = LiveRegDefs[Reg];
569        EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
570        const TargetRegisterClass *RC =
571          TRI->getMinimalPhysRegClass(Reg, VT);
572        const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
573
574        // If cross copy register class is the same as RC, then it must be
575        // possible copy the value directly. Do not try duplicate the def.
576        // If cross copy register class is not the same as RC, then it's
577        // possible to copy the value but it require cross register class copies
578        // and it is expensive.
579        // If cross copy register class is null, then it's not possible to copy
580        // the value at all.
581        SUnit *NewDef = 0;
582        if (DestRC != RC) {
583          NewDef = CopyAndMoveSuccessors(LRDef);
584          if (!DestRC && !NewDef)
585            report_fatal_error("Can't handle live physical "
586                               "register dependency!");
587        }
588        if (!NewDef) {
589          // Issue copies, these can be expensive cross register class copies.
590          SmallVector<SUnit*, 2> Copies;
591          InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
592          DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
593                       << " to SU #" << Copies.front()->NodeNum << "\n");
594          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
595                              /*Reg=*/0, /*isNormalMemory=*/false,
596                              /*isMustAlias=*/false, /*isArtificial=*/true));
597          NewDef = Copies.back();
598        }
599
600        DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
601                     << " to SU #" << TrySU->NodeNum << "\n");
602        LiveRegDefs[Reg] = NewDef;
603        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
604                             /*Reg=*/0, /*isNormalMemory=*/false,
605                             /*isMustAlias=*/false, /*isArtificial=*/true));
606        TrySU->isAvailable = false;
607        CurSU = NewDef;
608      }
609
610      if (!CurSU) {
611        llvm_unreachable("Unable to resolve live physical register dependencies!");
612      }
613    }
614
615    // Add the nodes that aren't ready back onto the available list.
616    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
617      NotReady[i]->isPending = false;
618      // May no longer be available due to backtracking.
619      if (NotReady[i]->isAvailable)
620        AvailableQueue.push(NotReady[i]);
621    }
622    NotReady.clear();
623
624    if (CurSU)
625      ScheduleNodeBottomUp(CurSU, CurCycle);
626    ++CurCycle;
627  }
628
629  // Reverse the order since it is bottom up.
630  std::reverse(Sequence.begin(), Sequence.end());
631
632#ifndef NDEBUG
633  VerifyScheduledSequence(/*isBottomUp=*/true);
634#endif
635}
636
637
638namespace {
639//===----------------------------------------------------------------------===//
640// ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
641// DAG in topological order.
642// IMPORTANT: this may not work for targets with phyreg dependency.
643//
644class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
645public:
646  ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
647
648  void Schedule();
649
650  MachineBasicBlock *EmitSchedule(MachineBasicBlock::iterator &InsertPos);
651
652private:
653  std::vector<SDNode*> Sequence;
654  DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
655
656  void ScheduleNode(SDNode *N);
657};
658} // end anonymous namespace
659
660void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
661  if (N->getNodeId() != 0)
662    llvm_unreachable(0);
663
664  if (!N->isMachineOpcode() &&
665      (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
666    // These nodes do not need to be translated into MIs.
667    return;
668
669  DEBUG(dbgs() << "\n*** Scheduling: ");
670  DEBUG(N->dump(DAG));
671  Sequence.push_back(N);
672
673  unsigned NumOps = N->getNumOperands();
674  if (unsigned NumLeft = NumOps) {
675    SDNode *GluedOpN = 0;
676    do {
677      const SDValue &Op = N->getOperand(NumLeft-1);
678      SDNode *OpN = Op.getNode();
679
680      if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
681        // Schedule glue operand right above N.
682        GluedOpN = OpN;
683        assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
684        OpN->setNodeId(0);
685        ScheduleNode(OpN);
686        continue;
687      }
688
689      if (OpN == GluedOpN)
690        // Glue operand is already scheduled.
691        continue;
692
693      DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
694      if (DI != GluedMap.end() && DI->second != N)
695        // Users of glues are counted against the glued users.
696        OpN = DI->second;
697
698      unsigned Degree = OpN->getNodeId();
699      assert(Degree > 0 && "Predecessor over-released!");
700      OpN->setNodeId(--Degree);
701      if (Degree == 0)
702        ScheduleNode(OpN);
703    } while (--NumLeft);
704  }
705}
706
707/// findGluedUser - Find the representative use of a glue value by walking
708/// the use chain.
709static SDNode *findGluedUser(SDNode *N) {
710  while (SDNode *Glued = N->getGluedUser())
711    N = Glued;
712  return N;
713}
714
715void ScheduleDAGLinearize::Schedule() {
716  DEBUG(dbgs() << "********** DAG Linearization **********\n");
717
718  SmallVector<SDNode*, 8> Glues;
719  unsigned DAGSize = 0;
720  for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(),
721         E = DAG->allnodes_end(); I != E; ++I) {
722    SDNode *N = I;
723
724    // Use node id to record degree.
725    unsigned Degree = N->use_size();
726    N->setNodeId(Degree);
727    unsigned NumVals = N->getNumValues();
728    if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
729        N->hasAnyUseOfValue(NumVals-1)) {
730      SDNode *User = findGluedUser(N);
731      if (User) {
732        Glues.push_back(N);
733        GluedMap.insert(std::make_pair(N, User));
734      }
735    }
736
737    if (N->isMachineOpcode() ||
738        (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
739      ++DAGSize;
740  }
741
742  for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
743    SDNode *Glue = Glues[i];
744    SDNode *GUser = GluedMap[Glue];
745    unsigned Degree = Glue->getNodeId();
746    unsigned UDegree = GUser->getNodeId();
747
748    // Glue user must be scheduled together with the glue operand. So other
749    // users of the glue operand must be treated as its users.
750    SDNode *ImmGUser = Glue->getGluedUser();
751    for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
752         ui != ue; ++ui)
753      if (*ui == ImmGUser)
754        --Degree;
755    GUser->setNodeId(UDegree + Degree);
756    Glue->setNodeId(1);
757  }
758
759  Sequence.reserve(DAGSize);
760  ScheduleNode(DAG->getRoot().getNode());
761}
762
763MachineBasicBlock*
764ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
765  InstrEmitter Emitter(BB, InsertPos);
766  DenseMap<SDValue, unsigned> VRBaseMap;
767
768  DEBUG({
769      dbgs() << "\n*** Final schedule ***\n";
770    });
771
772  // FIXME: Handle dbg_values.
773  unsigned NumNodes = Sequence.size();
774  for (unsigned i = 0; i != NumNodes; ++i) {
775    SDNode *N = Sequence[NumNodes-i-1];
776    DEBUG(N->dump(DAG));
777    Emitter.EmitNode(N, false, false, VRBaseMap);
778  }
779
780  DEBUG(dbgs() << '\n');
781
782  InsertPos = Emitter.getInsertPos();
783  return Emitter.getBlock();
784}
785
786//===----------------------------------------------------------------------===//
787//                         Public Constructor Functions
788//===----------------------------------------------------------------------===//
789
790llvm::ScheduleDAGSDNodes *
791llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
792  return new ScheduleDAGFast(*IS->MF);
793}
794
795llvm::ScheduleDAGSDNodes *
796llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
797  return new ScheduleDAGLinearize(*IS->MF);
798}
799