ScheduleDAGFast.cpp revision 98a366d547772010e94609e4584489b3e5ce0043
1//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a fast scheduler.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "pre-RA-sched"
15#include "ScheduleDAGSDNodes.h"
16#include "llvm/CodeGen/SchedulerRegistry.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/Target/TargetRegisterInfo.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/Target/TargetInstrInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/CommandLine.h"
27using namespace llvm;
28
29STATISTIC(NumUnfolds,    "Number of nodes unfolded");
30STATISTIC(NumDups,       "Number of duplicated nodes");
31STATISTIC(NumPRCopies,   "Number of physical copies");
32
33static RegisterScheduler
34  fastDAGScheduler("fast", "Fast suboptimal list scheduling",
35                   createFastDAGScheduler);
36
37namespace {
38  /// FastPriorityQueue - A degenerate priority queue that considers
39  /// all nodes to have the same priority.
40  ///
41  struct VISIBILITY_HIDDEN FastPriorityQueue {
42    SmallVector<SUnit *, 16> Queue;
43
44    bool empty() const { return Queue.empty(); }
45
46    void push(SUnit *U) {
47      Queue.push_back(U);
48    }
49
50    SUnit *pop() {
51      if (empty()) return NULL;
52      SUnit *V = Queue.back();
53      Queue.pop_back();
54      return V;
55    }
56  };
57
58//===----------------------------------------------------------------------===//
59/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
60///
61class VISIBILITY_HIDDEN ScheduleDAGFast : public ScheduleDAGSDNodes {
62private:
63  /// AvailableQueue - The priority queue to use for the available SUnits.
64  FastPriorityQueue AvailableQueue;
65
66  /// LiveRegDefs - A set of physical registers and their definition
67  /// that are "live". These nodes must be scheduled before any other nodes that
68  /// modifies the registers can be scheduled.
69  unsigned NumLiveRegs;
70  std::vector<SUnit*> LiveRegDefs;
71  std::vector<unsigned> LiveRegCycles;
72
73public:
74  ScheduleDAGFast(MachineFunction &mf)
75    : ScheduleDAGSDNodes(mf) {}
76
77  void Schedule();
78
79  /// AddPred - adds a predecessor edge to SUnit SU.
80  /// This returns true if this is a new predecessor.
81  void AddPred(SUnit *SU, const SDep &D) {
82    SU->addPred(D);
83  }
84
85  /// RemovePred - removes a predecessor edge from SUnit SU.
86  /// This returns true if an edge was removed.
87  void RemovePred(SUnit *SU, const SDep &D) {
88    SU->removePred(D);
89  }
90
91private:
92  void ReleasePred(SUnit *SU, SDep *PredEdge);
93  void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
94  void ScheduleNodeBottomUp(SUnit*, unsigned);
95  SUnit *CopyAndMoveSuccessors(SUnit*);
96  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
97                                const TargetRegisterClass*,
98                                const TargetRegisterClass*,
99                                SmallVector<SUnit*, 2>&);
100  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
101  void ListScheduleBottomUp();
102
103  /// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
104  bool ForceUnitLatencies() const { return true; }
105};
106}  // end anonymous namespace
107
108
109/// Schedule - Schedule the DAG using list scheduling.
110void ScheduleDAGFast::Schedule() {
111  DOUT << "********** List Scheduling **********\n";
112
113  NumLiveRegs = 0;
114  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
115  LiveRegCycles.resize(TRI->getNumRegs(), 0);
116
117  // Build the scheduling graph.
118  BuildSchedGraph();
119
120  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
121          SUnits[su].dumpAll(this));
122
123  // Execute the actual scheduling loop.
124  ListScheduleBottomUp();
125}
126
127//===----------------------------------------------------------------------===//
128//  Bottom-Up Scheduling
129//===----------------------------------------------------------------------===//
130
131/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
132/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
133void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
134  SUnit *PredSU = PredEdge->getSUnit();
135  --PredSU->NumSuccsLeft;
136
137#ifndef NDEBUG
138  if (PredSU->NumSuccsLeft < 0) {
139    cerr << "*** Scheduling failed! ***\n";
140    PredSU->dump(this);
141    cerr << " has been released too many times!\n";
142    assert(0);
143  }
144#endif
145
146  // If all the node's successors are scheduled, this node is ready
147  // to be scheduled. Ignore the special EntrySU node.
148  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
149    PredSU->isAvailable = true;
150    AvailableQueue.push(PredSU);
151  }
152}
153
154void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
155  // Bottom up: release predecessors
156  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
157       I != E; ++I) {
158    ReleasePred(SU, &*I);
159    if (I->isAssignedRegDep()) {
160      // This is a physical register dependency and it's impossible or
161      // expensive to copy the register. Make sure nothing that can
162      // clobber the register is scheduled between the predecessor and
163      // this node.
164      if (!LiveRegDefs[I->getReg()]) {
165        ++NumLiveRegs;
166        LiveRegDefs[I->getReg()] = I->getSUnit();
167        LiveRegCycles[I->getReg()] = CurCycle;
168      }
169    }
170  }
171}
172
173/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
174/// count of its predecessors. If a predecessor pending count is zero, add it to
175/// the Available queue.
176void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
177  DOUT << "*** Scheduling [" << CurCycle << "]: ";
178  DEBUG(SU->dump(this));
179
180  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
181  SU->setHeightToAtLeast(CurCycle);
182  Sequence.push_back(SU);
183
184  ReleasePredecessors(SU, CurCycle);
185
186  // Release all the implicit physical register defs that are live.
187  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
188       I != E; ++I) {
189    if (I->isAssignedRegDep()) {
190      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
191        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
192        assert(LiveRegDefs[I->getReg()] == SU &&
193               "Physical register dependency violated?");
194        --NumLiveRegs;
195        LiveRegDefs[I->getReg()] = NULL;
196        LiveRegCycles[I->getReg()] = 0;
197      }
198    }
199  }
200
201  SU->isScheduled = true;
202}
203
204/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
205/// successors to the newly created node.
206SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
207  if (SU->getNode()->getFlaggedNode())
208    return NULL;
209
210  SDNode *N = SU->getNode();
211  if (!N)
212    return NULL;
213
214  SUnit *NewSU;
215  bool TryUnfold = false;
216  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
217    MVT VT = N->getValueType(i);
218    if (VT == MVT::Flag)
219      return NULL;
220    else if (VT == MVT::Other)
221      TryUnfold = true;
222  }
223  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
224    const SDValue &Op = N->getOperand(i);
225    MVT VT = Op.getNode()->getValueType(Op.getResNo());
226    if (VT == MVT::Flag)
227      return NULL;
228  }
229
230  if (TryUnfold) {
231    SmallVector<SDNode*, 2> NewNodes;
232    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
233      return NULL;
234
235    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
236    assert(NewNodes.size() == 2 && "Expected a load folding node!");
237
238    N = NewNodes[1];
239    SDNode *LoadNode = NewNodes[0];
240    unsigned NumVals = N->getNumValues();
241    unsigned OldNumVals = SU->getNode()->getNumValues();
242    for (unsigned i = 0; i != NumVals; ++i)
243      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
244    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
245                                   SDValue(LoadNode, 1));
246
247    SUnit *NewSU = NewSUnit(N);
248    assert(N->getNodeId() == -1 && "Node already inserted!");
249    N->setNodeId(NewSU->NodeNum);
250
251    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
252    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
253      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
254        NewSU->isTwoAddress = true;
255        break;
256      }
257    }
258    if (TID.isCommutable())
259      NewSU->isCommutable = true;
260
261    // LoadNode may already exist. This can happen when there is another
262    // load from the same location and producing the same type of value
263    // but it has different alignment or volatileness.
264    bool isNewLoad = true;
265    SUnit *LoadSU;
266    if (LoadNode->getNodeId() != -1) {
267      LoadSU = &SUnits[LoadNode->getNodeId()];
268      isNewLoad = false;
269    } else {
270      LoadSU = NewSUnit(LoadNode);
271      LoadNode->setNodeId(LoadSU->NodeNum);
272    }
273
274    SDep ChainPred;
275    SmallVector<SDep, 4> ChainSuccs;
276    SmallVector<SDep, 4> LoadPreds;
277    SmallVector<SDep, 4> NodePreds;
278    SmallVector<SDep, 4> NodeSuccs;
279    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
280         I != E; ++I) {
281      if (I->isCtrl())
282        ChainPred = *I;
283      else if (I->getSUnit()->getNode() &&
284               I->getSUnit()->getNode()->isOperandOf(LoadNode))
285        LoadPreds.push_back(*I);
286      else
287        NodePreds.push_back(*I);
288    }
289    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
290         I != E; ++I) {
291      if (I->isCtrl())
292        ChainSuccs.push_back(*I);
293      else
294        NodeSuccs.push_back(*I);
295    }
296
297    if (ChainPred.getSUnit()) {
298      RemovePred(SU, ChainPred);
299      if (isNewLoad)
300        AddPred(LoadSU, ChainPred);
301    }
302    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
303      const SDep &Pred = LoadPreds[i];
304      RemovePred(SU, Pred);
305      if (isNewLoad) {
306        AddPred(LoadSU, Pred);
307      }
308    }
309    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
310      const SDep &Pred = NodePreds[i];
311      RemovePred(SU, Pred);
312      AddPred(NewSU, Pred);
313    }
314    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
315      SDep D = NodeSuccs[i];
316      SUnit *SuccDep = D.getSUnit();
317      D.setSUnit(SU);
318      RemovePred(SuccDep, D);
319      D.setSUnit(NewSU);
320      AddPred(SuccDep, D);
321    }
322    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
323      SDep D = ChainSuccs[i];
324      SUnit *SuccDep = D.getSUnit();
325      D.setSUnit(SU);
326      RemovePred(SuccDep, D);
327      if (isNewLoad) {
328        D.setSUnit(LoadSU);
329        AddPred(SuccDep, D);
330      }
331    }
332    if (isNewLoad) {
333      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
334    }
335
336    ++NumUnfolds;
337
338    if (NewSU->NumSuccsLeft == 0) {
339      NewSU->isAvailable = true;
340      return NewSU;
341    }
342    SU = NewSU;
343  }
344
345  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
346  NewSU = Clone(SU);
347
348  // New SUnit has the exact same predecessors.
349  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
350       I != E; ++I)
351    if (!I->isArtificial())
352      AddPred(NewSU, *I);
353
354  // Only copy scheduled successors. Cut them from old node's successor
355  // list and move them over.
356  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
357  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
358       I != E; ++I) {
359    if (I->isArtificial())
360      continue;
361    SUnit *SuccSU = I->getSUnit();
362    if (SuccSU->isScheduled) {
363      SDep D = *I;
364      D.setSUnit(NewSU);
365      AddPred(SuccSU, D);
366      D.setSUnit(SU);
367      DelDeps.push_back(std::make_pair(SuccSU, D));
368    }
369  }
370  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
371    RemovePred(DelDeps[i].first, DelDeps[i].second);
372
373  ++NumDups;
374  return NewSU;
375}
376
377/// InsertCopiesAndMoveSuccs - Insert register copies and move all
378/// scheduled successors of the given SUnit to the last copy.
379void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
380                                              const TargetRegisterClass *DestRC,
381                                              const TargetRegisterClass *SrcRC,
382                                               SmallVector<SUnit*, 2> &Copies) {
383  SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
384  CopyFromSU->CopySrcRC = SrcRC;
385  CopyFromSU->CopyDstRC = DestRC;
386
387  SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
388  CopyToSU->CopySrcRC = DestRC;
389  CopyToSU->CopyDstRC = SrcRC;
390
391  // Only copy scheduled successors. Cut them from old node's successor
392  // list and move them over.
393  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
394  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
395       I != E; ++I) {
396    if (I->isArtificial())
397      continue;
398    SUnit *SuccSU = I->getSUnit();
399    if (SuccSU->isScheduled) {
400      SDep D = *I;
401      D.setSUnit(CopyToSU);
402      AddPred(SuccSU, D);
403      DelDeps.push_back(std::make_pair(SuccSU, *I));
404    }
405  }
406  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
407    RemovePred(DelDeps[i].first, DelDeps[i].second);
408  }
409
410  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
411  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
412
413  Copies.push_back(CopyFromSU);
414  Copies.push_back(CopyToSU);
415
416  ++NumPRCopies;
417}
418
419/// getPhysicalRegisterVT - Returns the ValueType of the physical register
420/// definition of the specified node.
421/// FIXME: Move to SelectionDAG?
422static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
423                                 const TargetInstrInfo *TII) {
424  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
425  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
426  unsigned NumRes = TID.getNumDefs();
427  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
428    if (Reg == *ImpDef)
429      break;
430    ++NumRes;
431  }
432  return N->getValueType(NumRes);
433}
434
435/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
436/// scheduling of the given node to satisfy live physical register dependencies.
437/// If the specific node is the last one that's available to schedule, do
438/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
439bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
440                                               SmallVector<unsigned, 4> &LRegs){
441  if (NumLiveRegs == 0)
442    return false;
443
444  SmallSet<unsigned, 4> RegAdded;
445  // If this node would clobber any "live" register, then it's not ready.
446  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
447       I != E; ++I) {
448    if (I->isAssignedRegDep()) {
449      unsigned Reg = I->getReg();
450      if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
451        if (RegAdded.insert(Reg))
452          LRegs.push_back(Reg);
453      }
454      for (const unsigned *Alias = TRI->getAliasSet(Reg);
455           *Alias; ++Alias)
456        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
457          if (RegAdded.insert(*Alias))
458            LRegs.push_back(*Alias);
459        }
460    }
461  }
462
463  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
464    if (!Node->isMachineOpcode())
465      continue;
466    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
467    if (!TID.ImplicitDefs)
468      continue;
469    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
470      if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
471        if (RegAdded.insert(*Reg))
472          LRegs.push_back(*Reg);
473      }
474      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
475           *Alias; ++Alias)
476        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
477          if (RegAdded.insert(*Alias))
478            LRegs.push_back(*Alias);
479        }
480    }
481  }
482  return !LRegs.empty();
483}
484
485
486/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
487/// schedulers.
488void ScheduleDAGFast::ListScheduleBottomUp() {
489  unsigned CurCycle = 0;
490
491  // Release any predecessors of the special Exit node.
492  ReleasePredecessors(&ExitSU, CurCycle);
493
494  // Add root to Available queue.
495  if (!SUnits.empty()) {
496    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
497    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
498    RootSU->isAvailable = true;
499    AvailableQueue.push(RootSU);
500  }
501
502  // While Available queue is not empty, grab the node with the highest
503  // priority. If it is not ready put it back.  Schedule the node.
504  SmallVector<SUnit*, 4> NotReady;
505  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
506  Sequence.reserve(SUnits.size());
507  while (!AvailableQueue.empty()) {
508    bool Delayed = false;
509    LRegsMap.clear();
510    SUnit *CurSU = AvailableQueue.pop();
511    while (CurSU) {
512      SmallVector<unsigned, 4> LRegs;
513      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
514        break;
515      Delayed = true;
516      LRegsMap.insert(std::make_pair(CurSU, LRegs));
517
518      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
519      NotReady.push_back(CurSU);
520      CurSU = AvailableQueue.pop();
521    }
522
523    // All candidates are delayed due to live physical reg dependencies.
524    // Try code duplication or inserting cross class copies
525    // to resolve it.
526    if (Delayed && !CurSU) {
527      if (!CurSU) {
528        // Try duplicating the nodes that produces these
529        // "expensive to copy" values to break the dependency. In case even
530        // that doesn't work, insert cross class copies.
531        SUnit *TrySU = NotReady[0];
532        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
533        assert(LRegs.size() == 1 && "Can't handle this yet!");
534        unsigned Reg = LRegs[0];
535        SUnit *LRDef = LiveRegDefs[Reg];
536        MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
537        const TargetRegisterClass *RC =
538          TRI->getPhysicalRegisterRegClass(Reg, VT);
539        const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
540
541        // If cross copy register class is null, then it must be possible copy
542        // the value directly. Do not try duplicate the def.
543        SUnit *NewDef = 0;
544        if (DestRC)
545          NewDef = CopyAndMoveSuccessors(LRDef);
546        else
547          DestRC = RC;
548        if (!NewDef) {
549          // Issue copies, these can be expensive cross register class copies.
550          SmallVector<SUnit*, 2> Copies;
551          InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
552          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
553               << " to SU #" << Copies.front()->NodeNum << "\n";
554          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
555                              /*Reg=*/0, /*isNormalMemory=*/false,
556                              /*isMustAlias=*/false, /*isArtificial=*/true));
557          NewDef = Copies.back();
558        }
559
560        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
561             << " to SU #" << TrySU->NodeNum << "\n";
562        LiveRegDefs[Reg] = NewDef;
563        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
564                             /*Reg=*/0, /*isNormalMemory=*/false,
565                             /*isMustAlias=*/false, /*isArtificial=*/true));
566        TrySU->isAvailable = false;
567        CurSU = NewDef;
568      }
569
570      if (!CurSU) {
571        assert(false && "Unable to resolve live physical register dependencies!");
572        abort();
573      }
574    }
575
576    // Add the nodes that aren't ready back onto the available list.
577    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
578      NotReady[i]->isPending = false;
579      // May no longer be available due to backtracking.
580      if (NotReady[i]->isAvailable)
581        AvailableQueue.push(NotReady[i]);
582    }
583    NotReady.clear();
584
585    if (CurSU)
586      ScheduleNodeBottomUp(CurSU, CurCycle);
587    ++CurCycle;
588  }
589
590  // Reverse the order if it is bottom up.
591  std::reverse(Sequence.begin(), Sequence.end());
592
593
594#ifndef NDEBUG
595  // Verify that all SUnits were scheduled.
596  bool AnyNotSched = false;
597  unsigned DeadNodes = 0;
598  unsigned Noops = 0;
599  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
600    if (!SUnits[i].isScheduled) {
601      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
602        ++DeadNodes;
603        continue;
604      }
605      if (!AnyNotSched)
606        cerr << "*** List scheduling failed! ***\n";
607      SUnits[i].dump(this);
608      cerr << "has not been scheduled!\n";
609      AnyNotSched = true;
610    }
611    if (SUnits[i].NumSuccsLeft != 0) {
612      if (!AnyNotSched)
613        cerr << "*** List scheduling failed! ***\n";
614      SUnits[i].dump(this);
615      cerr << "has successors left!\n";
616      AnyNotSched = true;
617    }
618  }
619  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
620    if (!Sequence[i])
621      ++Noops;
622  assert(!AnyNotSched);
623  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
624         "The number of nodes scheduled doesn't match the expected number!");
625#endif
626}
627
628//===----------------------------------------------------------------------===//
629//                         Public Constructor Functions
630//===----------------------------------------------------------------------===//
631
632llvm::ScheduleDAGSDNodes *
633llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
634  return new ScheduleDAGFast(*IS->MF);
635}
636