ScheduleDAGSDNodes.cpp revision 053ba0aaa534280f122b7f2e56efbf6dc831b662
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37  : ScheduleDAG(mf) {
38}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43                             MachineBasicBlock::iterator insertPos) {
44  DAG = dag;
45  ScheduleDAG::Run(bb, insertPos);
46}
47
48/// NewSUnit - Creates a new SUnit and return a ptr to it.
49///
50SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51#ifndef NDEBUG
52  const SUnit *Addr = 0;
53  if (!SUnits.empty())
54    Addr = &SUnits[0];
55#endif
56  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57  assert((Addr == 0 || Addr == &SUnits[0]) &&
58         "SUnits std::vector reallocated on the fly!");
59  SUnits.back().OrigNode = &SUnits.back();
60  SUnit *SU = &SUnits.back();
61  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62  if (N->isMachineOpcode() &&
63      N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
64    SU->SchedulingPref = Sched::None;
65  else
66    SU->SchedulingPref = TLI.getSchedulingPreference(N);
67  return SU;
68}
69
70SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
71  SUnit *SU = NewSUnit(Old->getNode());
72  SU->OrigNode = Old->OrigNode;
73  SU->Latency = Old->Latency;
74  SU->isTwoAddress = Old->isTwoAddress;
75  SU->isCommutable = Old->isCommutable;
76  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
77  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
78  SU->SchedulingPref = Old->SchedulingPref;
79  Old->isCloned = true;
80  return SU;
81}
82
83/// CheckForPhysRegDependency - Check if the dependency between def and use of
84/// a specified operand is a physical register dependency. If so, returns the
85/// register and the cost of copying the register.
86static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
87                                      const TargetRegisterInfo *TRI,
88                                      const TargetInstrInfo *TII,
89                                      unsigned &PhysReg, int &Cost) {
90  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
91    return;
92
93  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
94  if (TargetRegisterInfo::isVirtualRegister(Reg))
95    return;
96
97  unsigned ResNo = User->getOperand(2).getResNo();
98  if (Def->isMachineOpcode()) {
99    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
100    if (ResNo >= II.getNumDefs() &&
101        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
102      PhysReg = Reg;
103      const TargetRegisterClass *RC =
104        TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
105      Cost = RC->getCopyCost();
106    }
107  }
108}
109
110static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
111                     SelectionDAG *DAG) {
112  SmallVector<EVT, 4> VTs;
113
114  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
115    VTs.push_back(N->getValueType(i));
116
117  if (AddFlag)
118    VTs.push_back(MVT::Flag);
119
120  SmallVector<SDValue, 4> Ops;
121  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
122    Ops.push_back(N->getOperand(i));
123
124  if (Flag.getNode())
125    Ops.push_back(Flag);
126
127  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
128  MachineSDNode::mmo_iterator Begin = 0, End = 0;
129  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
130
131  // Store memory references.
132  if (MN) {
133    Begin = MN->memoperands_begin();
134    End = MN->memoperands_end();
135  }
136
137  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
138
139  // Reset the memory references
140  if (MN)
141    MN->setMemRefs(Begin, End);
142}
143
144/// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
145/// This function finds loads of the same base and different offsets. If the
146/// offsets are not far apart (target specific), it add MVT::Flag inputs and
147/// outputs to ensure they are scheduled together and in order. This
148/// optimization may benefit some targets by improving cache locality.
149void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
150  SDNode *Chain = 0;
151  unsigned NumOps = Node->getNumOperands();
152  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
153    Chain = Node->getOperand(NumOps-1).getNode();
154  if (!Chain)
155    return;
156
157  // Look for other loads of the same chain. Find loads that are loading from
158  // the same base pointer and different offsets.
159  SmallPtrSet<SDNode*, 16> Visited;
160  SmallVector<int64_t, 4> Offsets;
161  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
162  bool Cluster = false;
163  SDNode *Base = Node;
164  int64_t BaseOffset;
165  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
166       I != E; ++I) {
167    SDNode *User = *I;
168    if (User == Node || !Visited.insert(User))
169      continue;
170    int64_t Offset1, Offset2;
171    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
172        Offset1 == Offset2)
173      // FIXME: Should be ok if they addresses are identical. But earlier
174      // optimizations really should have eliminated one of the loads.
175      continue;
176    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
177      Offsets.push_back(Offset1);
178    O2SMap.insert(std::make_pair(Offset2, User));
179    Offsets.push_back(Offset2);
180    if (Offset2 < Offset1) {
181      Base = User;
182      BaseOffset = Offset2;
183    } else {
184      BaseOffset = Offset1;
185    }
186    Cluster = true;
187  }
188
189  if (!Cluster)
190    return;
191
192  // Sort them in increasing order.
193  std::sort(Offsets.begin(), Offsets.end());
194
195  // Check if the loads are close enough.
196  SmallVector<SDNode*, 4> Loads;
197  unsigned NumLoads = 0;
198  int64_t BaseOff = Offsets[0];
199  SDNode *BaseLoad = O2SMap[BaseOff];
200  Loads.push_back(BaseLoad);
201  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
202    int64_t Offset = Offsets[i];
203    SDNode *Load = O2SMap[Offset];
204    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
205      break; // Stop right here. Ignore loads that are further away.
206    Loads.push_back(Load);
207    ++NumLoads;
208  }
209
210  if (NumLoads == 0)
211    return;
212
213  // Cluster loads by adding MVT::Flag outputs and inputs. This also
214  // ensure they are scheduled in order of increasing addresses.
215  SDNode *Lead = Loads[0];
216  AddFlags(Lead, SDValue(0,0), true, DAG);
217
218  SDValue InFlag = SDValue(Lead, Lead->getNumValues()-1);
219  for (unsigned i = 1, e = Loads.size(); i != e; ++i) {
220    bool OutFlag = i < e-1;
221    SDNode *Load = Loads[i];
222    AddFlags(Load, InFlag, OutFlag, DAG);
223
224    if (OutFlag)
225      InFlag = SDValue(Load, Load->getNumValues()-1);
226
227    ++LoadsClustered;
228  }
229}
230
231/// ClusterNodes - Cluster certain nodes which should be scheduled together.
232///
233void ScheduleDAGSDNodes::ClusterNodes() {
234  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
235       E = DAG->allnodes_end(); NI != E; ++NI) {
236    SDNode *Node = &*NI;
237    if (!Node || !Node->isMachineOpcode())
238      continue;
239
240    unsigned Opc = Node->getMachineOpcode();
241    const TargetInstrDesc &TID = TII->get(Opc);
242    if (TID.mayLoad())
243      // Cluster loads from "near" addresses into combined SUnits.
244      ClusterNeighboringLoads(Node);
245  }
246}
247
248void ScheduleDAGSDNodes::BuildSchedUnits() {
249  // During scheduling, the NodeId field of SDNode is used to map SDNodes
250  // to their associated SUnits by holding SUnits table indices. A value
251  // of -1 means the SDNode does not yet have an associated SUnit.
252  unsigned NumNodes = 0;
253  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
254       E = DAG->allnodes_end(); NI != E; ++NI) {
255    NI->setNodeId(-1);
256    ++NumNodes;
257  }
258
259  // Reserve entries in the vector for each of the SUnits we are creating.  This
260  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
261  // invalidated.
262  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
263  // This is a temporary workaround.
264  SUnits.reserve(NumNodes * 2);
265
266  // Add all nodes in depth first order.
267  SmallVector<SDNode*, 64> Worklist;
268  SmallPtrSet<SDNode*, 64> Visited;
269  Worklist.push_back(DAG->getRoot().getNode());
270  Visited.insert(DAG->getRoot().getNode());
271
272  while (!Worklist.empty()) {
273    SDNode *NI = Worklist.pop_back_val();
274
275    // Add all operands to the worklist unless they've already been added.
276    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
277      if (Visited.insert(NI->getOperand(i).getNode()))
278        Worklist.push_back(NI->getOperand(i).getNode());
279
280    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
281      continue;
282
283    // If this node has already been processed, stop now.
284    if (NI->getNodeId() != -1) continue;
285
286    SUnit *NodeSUnit = NewSUnit(NI);
287
288    // See if anything is flagged to this node, if so, add them to flagged
289    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
290    // are required to be the last operand and result of a node.
291
292    // Scan up to find flagged preds.
293    SDNode *N = NI;
294    while (N->getNumOperands() &&
295           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
296      N = N->getOperand(N->getNumOperands()-1).getNode();
297      assert(N->getNodeId() == -1 && "Node already inserted!");
298      N->setNodeId(NodeSUnit->NodeNum);
299    }
300
301    // Scan down to find any flagged succs.
302    N = NI;
303    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
304      SDValue FlagVal(N, N->getNumValues()-1);
305
306      // There are either zero or one users of the Flag result.
307      bool HasFlagUse = false;
308      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
309           UI != E; ++UI)
310        if (FlagVal.isOperandOf(*UI)) {
311          HasFlagUse = true;
312          assert(N->getNodeId() == -1 && "Node already inserted!");
313          N->setNodeId(NodeSUnit->NodeNum);
314          N = *UI;
315          break;
316        }
317      if (!HasFlagUse) break;
318    }
319
320    // If there are flag operands involved, N is now the bottom-most node
321    // of the sequence of nodes that are flagged together.
322    // Update the SUnit.
323    NodeSUnit->setNode(N);
324    assert(N->getNodeId() == -1 && "Node already inserted!");
325    N->setNodeId(NodeSUnit->NodeNum);
326
327    // Assign the Latency field of NodeSUnit using target-provided information.
328    ComputeLatency(NodeSUnit);
329  }
330}
331
332void ScheduleDAGSDNodes::AddSchedEdges() {
333  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
334
335  // Check to see if the scheduler cares about latencies.
336  bool UnitLatencies = ForceUnitLatencies();
337
338  // Pass 2: add the preds, succs, etc.
339  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
340    SUnit *SU = &SUnits[su];
341    SDNode *MainNode = SU->getNode();
342
343    if (MainNode->isMachineOpcode()) {
344      unsigned Opc = MainNode->getMachineOpcode();
345      const TargetInstrDesc &TID = TII->get(Opc);
346      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
347        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
348          SU->isTwoAddress = true;
349          break;
350        }
351      }
352      if (TID.isCommutable())
353        SU->isCommutable = true;
354    }
355
356    // Find all predecessors and successors of the group.
357    for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
358      if (N->isMachineOpcode() &&
359          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
360        SU->hasPhysRegClobbers = true;
361        unsigned NumUsed = InstrEmitter::CountResults(N);
362        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
363          --NumUsed;    // Skip over unused values at the end.
364        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
365          SU->hasPhysRegDefs = true;
366      }
367
368      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
369        SDNode *OpN = N->getOperand(i).getNode();
370        if (isPassiveNode(OpN)) continue;   // Not scheduled.
371        SUnit *OpSU = &SUnits[OpN->getNodeId()];
372        assert(OpSU && "Node has no SUnit!");
373        if (OpSU == SU) continue;           // In the same group.
374
375        EVT OpVT = N->getOperand(i).getValueType();
376        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
377        bool isChain = OpVT == MVT::Other;
378
379        unsigned PhysReg = 0;
380        int Cost = 1;
381        // Determine if this is a physical register dependency.
382        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
383        assert((PhysReg == 0 || !isChain) &&
384               "Chain dependence via physreg data?");
385        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
386        // emits a copy from the physical register to a virtual register unless
387        // it requires a cross class copy (cost < 0). That means we are only
388        // treating "expensive to copy" register dependency as physical register
389        // dependency. This may change in the future though.
390        if (Cost >= 0)
391          PhysReg = 0;
392
393        // If this is a ctrl dep, latency is 1.
394        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
395        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
396                               OpLatency, PhysReg);
397        if (!isChain && !UnitLatencies) {
398          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
399          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
400        }
401
402        SU->addPred(dep);
403      }
404    }
405  }
406}
407
408/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
409/// are input.  This SUnit graph is similar to the SelectionDAG, but
410/// excludes nodes that aren't interesting to scheduling, and represents
411/// flagged together nodes with a single SUnit.
412void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
413  // Cluster certain nodes which should be scheduled together.
414  ClusterNodes();
415  // Populate the SUnits array.
416  BuildSchedUnits();
417  // Compute all the scheduling dependencies between nodes.
418  AddSchedEdges();
419}
420
421void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
422  // Check to see if the scheduler cares about latencies.
423  if (ForceUnitLatencies()) {
424    SU->Latency = 1;
425    return;
426  }
427
428  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
429  if (InstrItins.isEmpty()) {
430    SU->Latency = 1;
431    return;
432  }
433
434  // Compute the latency for the node.  We use the sum of the latencies for
435  // all nodes flagged together into this SUnit.
436  SU->Latency = 0;
437  for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
438    if (N->isMachineOpcode()) {
439      SU->Latency += InstrItins.
440        getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
441    }
442}
443
444void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
445                                               unsigned OpIdx, SDep& dep) const{
446  // Check to see if the scheduler cares about latencies.
447  if (ForceUnitLatencies())
448    return;
449
450  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
451  if (InstrItins.isEmpty())
452    return;
453
454  if (dep.getKind() != SDep::Data)
455    return;
456
457  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
458  if (Def->isMachineOpcode()) {
459    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
460    if (DefIdx >= II.getNumDefs())
461      return;
462    int DefCycle = InstrItins.getOperandCycle(II.getSchedClass(), DefIdx);
463    if (DefCycle < 0)
464      return;
465    int UseCycle = 1;
466    if (Use->isMachineOpcode()) {
467      const unsigned UseClass = TII->get(Use->getMachineOpcode()).getSchedClass();
468      UseCycle = InstrItins.getOperandCycle(UseClass, OpIdx);
469    }
470    if (UseCycle >= 0) {
471      int Latency = DefCycle - UseCycle + 1;
472      if (Latency >= 0)
473        dep.setLatency(Latency);
474    }
475  }
476}
477
478void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
479  if (!SU->getNode()) {
480    dbgs() << "PHYS REG COPY\n";
481    return;
482  }
483
484  SU->getNode()->dump(DAG);
485  dbgs() << "\n";
486  SmallVector<SDNode *, 4> FlaggedNodes;
487  for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
488    FlaggedNodes.push_back(N);
489  while (!FlaggedNodes.empty()) {
490    dbgs() << "    ";
491    FlaggedNodes.back()->dump(DAG);
492    dbgs() << "\n";
493    FlaggedNodes.pop_back();
494  }
495}
496
497namespace {
498  struct OrderSorter {
499    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
500                    const std::pair<unsigned, MachineInstr*> &B) {
501      return A.first < B.first;
502    }
503  };
504}
505
506// ProcessSourceNode - Process nodes with source order numbers. These are added
507// to a vector which EmitSchedule use to determine how to insert dbg_value
508// instructions in the right order.
509static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
510                           InstrEmitter &Emitter,
511                           DenseMap<SDValue, unsigned> &VRBaseMap,
512                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
513                           SmallSet<unsigned, 8> &Seen) {
514  unsigned Order = DAG->GetOrdering(N);
515  if (!Order || !Seen.insert(Order))
516    return;
517
518  MachineBasicBlock *BB = Emitter.getBlock();
519  if (BB->empty() || BB->back().isPHI()) {
520    // Did not insert any instruction.
521    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
522    return;
523  }
524
525  Orders.push_back(std::make_pair(Order, &BB->back()));
526  if (!N->getHasDebugValue())
527    return;
528  // Opportunistically insert immediate dbg_value uses, i.e. those with source
529  // order number right after the N.
530  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
531  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
532  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
533    if (DVs[i]->isInvalidated())
534      continue;
535    unsigned DVOrder = DVs[i]->getOrder();
536    if (DVOrder == ++Order) {
537      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
538      if (DbgMI) {
539        Orders.push_back(std::make_pair(DVOrder, DbgMI));
540        BB->insert(InsertPos, DbgMI);
541      }
542      DVs[i]->setIsInvalidated();
543    }
544  }
545}
546
547
548/// EmitSchedule - Emit the machine code in scheduled order.
549MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
550  InstrEmitter Emitter(BB, InsertPos);
551  DenseMap<SDValue, unsigned> VRBaseMap;
552  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
553  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
554  SmallSet<unsigned, 8> Seen;
555  bool HasDbg = DAG->hasDebugValues();
556
557  // If this is the first BB, emit byval parameter dbg_value's.
558  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
559    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
560    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
561    for (; PDI != PDE; ++PDI) {
562      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
563      if (DbgMI)
564        BB->push_back(DbgMI);
565    }
566  }
567
568  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
569    SUnit *SU = Sequence[i];
570    if (!SU) {
571      // Null SUnit* is a noop.
572      EmitNoop();
573      continue;
574    }
575
576    // For pre-regalloc scheduling, create instructions corresponding to the
577    // SDNode and any flagged SDNodes and append them to the block.
578    if (!SU->getNode()) {
579      // Emit a copy.
580      EmitPhysRegCopy(SU, CopyVRBaseMap);
581      continue;
582    }
583
584    SmallVector<SDNode *, 4> FlaggedNodes;
585    for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
586         N = N->getFlaggedNode())
587      FlaggedNodes.push_back(N);
588    while (!FlaggedNodes.empty()) {
589      SDNode *N = FlaggedNodes.back();
590      Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
591                       VRBaseMap);
592      // Remember the source order of the inserted instruction.
593      if (HasDbg)
594        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
595      FlaggedNodes.pop_back();
596    }
597    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
598                     VRBaseMap);
599    // Remember the source order of the inserted instruction.
600    if (HasDbg)
601      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
602                        Seen);
603  }
604
605  // Insert all the dbg_values which have not already been inserted in source
606  // order sequence.
607  if (HasDbg) {
608    MachineBasicBlock::iterator BBBegin = BB->empty() ? BB->end() : BB->begin();
609    while (BBBegin != BB->end() && BBBegin->isPHI())
610      ++BBBegin;
611
612    // Sort the source order instructions and use the order to insert debug
613    // values.
614    std::sort(Orders.begin(), Orders.end(), OrderSorter());
615
616    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
617    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
618    // Now emit the rest according to source order.
619    unsigned LastOrder = 0;
620    MachineInstr *LastMI = 0;
621    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
622      unsigned Order = Orders[i].first;
623      MachineInstr *MI = Orders[i].second;
624      // Insert all SDDbgValue's whose order(s) are before "Order".
625      if (!MI)
626        continue;
627      MachineBasicBlock *MIBB = MI->getParent();
628#ifndef NDEBUG
629      unsigned LastDIOrder = 0;
630#endif
631      for (; DI != DE &&
632             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
633#ifndef NDEBUG
634        assert((*DI)->getOrder() >= LastDIOrder &&
635               "SDDbgValue nodes must be in source order!");
636        LastDIOrder = (*DI)->getOrder();
637#endif
638        if ((*DI)->isInvalidated())
639          continue;
640        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
641        if (DbgMI) {
642          if (!LastOrder)
643            // Insert to start of the BB (after PHIs).
644            BB->insert(BBBegin, DbgMI);
645          else {
646            MachineBasicBlock::iterator Pos = MI;
647            MIBB->insert(llvm::next(Pos), DbgMI);
648          }
649        }
650      }
651      LastOrder = Order;
652      LastMI = MI;
653    }
654    // Add trailing DbgValue's before the terminator. FIXME: May want to add
655    // some of them before one or more conditional branches?
656    while (DI != DE) {
657      MachineBasicBlock *InsertBB = Emitter.getBlock();
658      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
659      if (!(*DI)->isInvalidated()) {
660        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
661        if (DbgMI)
662          InsertBB->insert(Pos, DbgMI);
663      }
664      ++DI;
665    }
666  }
667
668  BB = Emitter.getBlock();
669  InsertPos = Emitter.getInsertPos();
670  return BB;
671}
672