ScheduleDAGSDNodes.cpp revision 1bd8afcfb510c8b0826bc152ae72b67b4dbbcf1b
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37  : ScheduleDAG(mf) {
38}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43                             MachineBasicBlock::iterator insertPos) {
44  DAG = dag;
45  ScheduleDAG::Run(bb, insertPos);
46}
47
48/// NewSUnit - Creates a new SUnit and return a ptr to it.
49///
50SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51#ifndef NDEBUG
52  const SUnit *Addr = 0;
53  if (!SUnits.empty())
54    Addr = &SUnits[0];
55#endif
56  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57  assert((Addr == 0 || Addr == &SUnits[0]) &&
58         "SUnits std::vector reallocated on the fly!");
59  SUnits.back().OrigNode = &SUnits.back();
60  SUnit *SU = &SUnits.back();
61  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62  if (N->isMachineOpcode() &&
63      N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
64    SU->SchedulingPref = Sched::None;
65  else
66    SU->SchedulingPref = TLI.getSchedulingPreference(N);
67  return SU;
68}
69
70SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
71  SUnit *SU = NewSUnit(Old->getNode());
72  SU->OrigNode = Old->OrigNode;
73  SU->Latency = Old->Latency;
74  SU->isTwoAddress = Old->isTwoAddress;
75  SU->isCommutable = Old->isCommutable;
76  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
77  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
78  SU->SchedulingPref = Old->SchedulingPref;
79  Old->isCloned = true;
80  return SU;
81}
82
83/// CheckForPhysRegDependency - Check if the dependency between def and use of
84/// a specified operand is a physical register dependency. If so, returns the
85/// register and the cost of copying the register.
86static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
87                                      const TargetRegisterInfo *TRI,
88                                      const TargetInstrInfo *TII,
89                                      unsigned &PhysReg, int &Cost) {
90  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
91    return;
92
93  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
94  if (TargetRegisterInfo::isVirtualRegister(Reg))
95    return;
96
97  unsigned ResNo = User->getOperand(2).getResNo();
98  if (Def->isMachineOpcode()) {
99    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
100    if (ResNo >= II.getNumDefs() &&
101        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
102      PhysReg = Reg;
103      const TargetRegisterClass *RC =
104        TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
105      Cost = RC->getCopyCost();
106    }
107  }
108}
109
110static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
111                     SelectionDAG *DAG) {
112  SmallVector<EVT, 4> VTs;
113  SDNode *FlagDestNode = Flag.getNode();
114
115  // Don't add a flag from a node to itself.
116  if (FlagDestNode == N) return;
117
118  // Don't add a flag to something which already has a flag.
119  if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return;
120
121  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
122    VTs.push_back(N->getValueType(I));
123
124  if (AddFlag)
125    VTs.push_back(MVT::Flag);
126
127  SmallVector<SDValue, 4> Ops;
128  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
129    Ops.push_back(N->getOperand(I));
130
131  if (FlagDestNode)
132    Ops.push_back(Flag);
133
134  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
135  MachineSDNode::mmo_iterator Begin = 0, End = 0;
136  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
137
138  // Store memory references.
139  if (MN) {
140    Begin = MN->memoperands_begin();
141    End = MN->memoperands_end();
142  }
143
144  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
145
146  // Reset the memory references
147  if (MN)
148    MN->setMemRefs(Begin, End);
149}
150
151/// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
152/// This function finds loads of the same base and different offsets. If the
153/// offsets are not far apart (target specific), it add MVT::Flag inputs and
154/// outputs to ensure they are scheduled together and in order. This
155/// optimization may benefit some targets by improving cache locality.
156void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
157  SDNode *Chain = 0;
158  unsigned NumOps = Node->getNumOperands();
159  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
160    Chain = Node->getOperand(NumOps-1).getNode();
161  if (!Chain)
162    return;
163
164  // Look for other loads of the same chain. Find loads that are loading from
165  // the same base pointer and different offsets.
166  SmallPtrSet<SDNode*, 16> Visited;
167  SmallVector<int64_t, 4> Offsets;
168  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
169  bool Cluster = false;
170  SDNode *Base = Node;
171  int64_t BaseOffset;
172  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
173       I != E; ++I) {
174    SDNode *User = *I;
175    if (User == Node || !Visited.insert(User))
176      continue;
177    int64_t Offset1, Offset2;
178    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
179        Offset1 == Offset2)
180      // FIXME: Should be ok if they addresses are identical. But earlier
181      // optimizations really should have eliminated one of the loads.
182      continue;
183    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
184      Offsets.push_back(Offset1);
185    O2SMap.insert(std::make_pair(Offset2, User));
186    Offsets.push_back(Offset2);
187    if (Offset2 < Offset1) {
188      Base = User;
189      BaseOffset = Offset2;
190    } else {
191      BaseOffset = Offset1;
192    }
193    Cluster = true;
194  }
195
196  if (!Cluster)
197    return;
198
199  // Sort them in increasing order.
200  std::sort(Offsets.begin(), Offsets.end());
201
202  // Check if the loads are close enough.
203  SmallVector<SDNode*, 4> Loads;
204  unsigned NumLoads = 0;
205  int64_t BaseOff = Offsets[0];
206  SDNode *BaseLoad = O2SMap[BaseOff];
207  Loads.push_back(BaseLoad);
208  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
209    int64_t Offset = Offsets[i];
210    SDNode *Load = O2SMap[Offset];
211    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
212      break; // Stop right here. Ignore loads that are further away.
213    Loads.push_back(Load);
214    ++NumLoads;
215  }
216
217  if (NumLoads == 0)
218    return;
219
220  // Cluster loads by adding MVT::Flag outputs and inputs. This also
221  // ensure they are scheduled in order of increasing addresses.
222  SDNode *Lead = Loads[0];
223  AddFlags(Lead, SDValue(0, 0), true, DAG);
224
225  SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1);
226  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
227    bool OutFlag = I < E - 1;
228    SDNode *Load = Loads[I];
229
230    AddFlags(Load, InFlag, OutFlag, DAG);
231
232    if (OutFlag)
233      InFlag = SDValue(Load, Load->getNumValues() - 1);
234
235    ++LoadsClustered;
236  }
237}
238
239/// ClusterNodes - Cluster certain nodes which should be scheduled together.
240///
241void ScheduleDAGSDNodes::ClusterNodes() {
242  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
243       E = DAG->allnodes_end(); NI != E; ++NI) {
244    SDNode *Node = &*NI;
245    if (!Node || !Node->isMachineOpcode())
246      continue;
247
248    unsigned Opc = Node->getMachineOpcode();
249    const TargetInstrDesc &TID = TII->get(Opc);
250    if (TID.mayLoad())
251      // Cluster loads from "near" addresses into combined SUnits.
252      ClusterNeighboringLoads(Node);
253  }
254}
255
256void ScheduleDAGSDNodes::BuildSchedUnits() {
257  // During scheduling, the NodeId field of SDNode is used to map SDNodes
258  // to their associated SUnits by holding SUnits table indices. A value
259  // of -1 means the SDNode does not yet have an associated SUnit.
260  unsigned NumNodes = 0;
261  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
262       E = DAG->allnodes_end(); NI != E; ++NI) {
263    NI->setNodeId(-1);
264    ++NumNodes;
265  }
266
267  // Reserve entries in the vector for each of the SUnits we are creating.  This
268  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
269  // invalidated.
270  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
271  // This is a temporary workaround.
272  SUnits.reserve(NumNodes * 2);
273
274  // Add all nodes in depth first order.
275  SmallVector<SDNode*, 64> Worklist;
276  SmallPtrSet<SDNode*, 64> Visited;
277  Worklist.push_back(DAG->getRoot().getNode());
278  Visited.insert(DAG->getRoot().getNode());
279
280  while (!Worklist.empty()) {
281    SDNode *NI = Worklist.pop_back_val();
282
283    // Add all operands to the worklist unless they've already been added.
284    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
285      if (Visited.insert(NI->getOperand(i).getNode()))
286        Worklist.push_back(NI->getOperand(i).getNode());
287
288    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
289      continue;
290
291    // If this node has already been processed, stop now.
292    if (NI->getNodeId() != -1) continue;
293
294    SUnit *NodeSUnit = NewSUnit(NI);
295
296    // See if anything is flagged to this node, if so, add them to flagged
297    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
298    // are required to be the last operand and result of a node.
299
300    // Scan up to find flagged preds.
301    SDNode *N = NI;
302    while (N->getNumOperands() &&
303           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
304      N = N->getOperand(N->getNumOperands()-1).getNode();
305      assert(N->getNodeId() == -1 && "Node already inserted!");
306      N->setNodeId(NodeSUnit->NodeNum);
307    }
308
309    // Scan down to find any flagged succs.
310    N = NI;
311    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
312      SDValue FlagVal(N, N->getNumValues()-1);
313
314      // There are either zero or one users of the Flag result.
315      bool HasFlagUse = false;
316      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
317           UI != E; ++UI)
318        if (FlagVal.isOperandOf(*UI)) {
319          HasFlagUse = true;
320          assert(N->getNodeId() == -1 && "Node already inserted!");
321          N->setNodeId(NodeSUnit->NodeNum);
322          N = *UI;
323          break;
324        }
325      if (!HasFlagUse) break;
326    }
327
328    // If there are flag operands involved, N is now the bottom-most node
329    // of the sequence of nodes that are flagged together.
330    // Update the SUnit.
331    NodeSUnit->setNode(N);
332    assert(N->getNodeId() == -1 && "Node already inserted!");
333    N->setNodeId(NodeSUnit->NodeNum);
334
335    // Assign the Latency field of NodeSUnit using target-provided information.
336    ComputeLatency(NodeSUnit);
337  }
338}
339
340void ScheduleDAGSDNodes::AddSchedEdges() {
341  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
342
343  // Check to see if the scheduler cares about latencies.
344  bool UnitLatencies = ForceUnitLatencies();
345
346  // Pass 2: add the preds, succs, etc.
347  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
348    SUnit *SU = &SUnits[su];
349    SDNode *MainNode = SU->getNode();
350
351    if (MainNode->isMachineOpcode()) {
352      unsigned Opc = MainNode->getMachineOpcode();
353      const TargetInstrDesc &TID = TII->get(Opc);
354      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
355        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
356          SU->isTwoAddress = true;
357          break;
358        }
359      }
360      if (TID.isCommutable())
361        SU->isCommutable = true;
362    }
363
364    // Find all predecessors and successors of the group.
365    for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
366      if (N->isMachineOpcode() &&
367          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
368        SU->hasPhysRegClobbers = true;
369        unsigned NumUsed = InstrEmitter::CountResults(N);
370        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
371          --NumUsed;    // Skip over unused values at the end.
372        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
373          SU->hasPhysRegDefs = true;
374      }
375
376      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
377        SDNode *OpN = N->getOperand(i).getNode();
378        if (isPassiveNode(OpN)) continue;   // Not scheduled.
379        SUnit *OpSU = &SUnits[OpN->getNodeId()];
380        assert(OpSU && "Node has no SUnit!");
381        if (OpSU == SU) continue;           // In the same group.
382
383        EVT OpVT = N->getOperand(i).getValueType();
384        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
385        bool isChain = OpVT == MVT::Other;
386
387        unsigned PhysReg = 0;
388        int Cost = 1;
389        // Determine if this is a physical register dependency.
390        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
391        assert((PhysReg == 0 || !isChain) &&
392               "Chain dependence via physreg data?");
393        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
394        // emits a copy from the physical register to a virtual register unless
395        // it requires a cross class copy (cost < 0). That means we are only
396        // treating "expensive to copy" register dependency as physical register
397        // dependency. This may change in the future though.
398        if (Cost >= 0)
399          PhysReg = 0;
400
401        // If this is a ctrl dep, latency is 1.
402        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
403        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
404                               OpLatency, PhysReg);
405        if (!isChain && !UnitLatencies) {
406          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
407          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
408        }
409
410        SU->addPred(dep);
411      }
412    }
413  }
414}
415
416/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
417/// are input.  This SUnit graph is similar to the SelectionDAG, but
418/// excludes nodes that aren't interesting to scheduling, and represents
419/// flagged together nodes with a single SUnit.
420void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
421  // Cluster certain nodes which should be scheduled together.
422  ClusterNodes();
423  // Populate the SUnits array.
424  BuildSchedUnits();
425  // Compute all the scheduling dependencies between nodes.
426  AddSchedEdges();
427}
428
429void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
430  // Check to see if the scheduler cares about latencies.
431  if (ForceUnitLatencies()) {
432    SU->Latency = 1;
433    return;
434  }
435
436  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
437  if (InstrItins.isEmpty()) {
438    SU->Latency = 1;
439    return;
440  }
441
442  // Compute the latency for the node.  We use the sum of the latencies for
443  // all nodes flagged together into this SUnit.
444  SU->Latency = 0;
445  for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
446    if (N->isMachineOpcode()) {
447      SU->Latency += InstrItins.
448        getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
449    }
450}
451
452void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
453                                               unsigned OpIdx, SDep& dep) const{
454  // Check to see if the scheduler cares about latencies.
455  if (ForceUnitLatencies())
456    return;
457
458  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
459  if (InstrItins.isEmpty())
460    return;
461
462  if (dep.getKind() != SDep::Data)
463    return;
464
465  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
466  if (Def->isMachineOpcode()) {
467    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
468    if (DefIdx >= II.getNumDefs())
469      return;
470    int DefCycle = InstrItins.getOperandCycle(II.getSchedClass(), DefIdx);
471    if (DefCycle < 0)
472      return;
473    int UseCycle = 1;
474    if (Use->isMachineOpcode()) {
475      const unsigned UseClass = TII->get(Use->getMachineOpcode()).getSchedClass();
476      UseCycle = InstrItins.getOperandCycle(UseClass, OpIdx);
477    }
478    if (UseCycle >= 0) {
479      int Latency = DefCycle - UseCycle + 1;
480      if (Latency >= 0)
481        dep.setLatency(Latency);
482    }
483  }
484}
485
486void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
487  if (!SU->getNode()) {
488    dbgs() << "PHYS REG COPY\n";
489    return;
490  }
491
492  SU->getNode()->dump(DAG);
493  dbgs() << "\n";
494  SmallVector<SDNode *, 4> FlaggedNodes;
495  for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
496    FlaggedNodes.push_back(N);
497  while (!FlaggedNodes.empty()) {
498    dbgs() << "    ";
499    FlaggedNodes.back()->dump(DAG);
500    dbgs() << "\n";
501    FlaggedNodes.pop_back();
502  }
503}
504
505namespace {
506  struct OrderSorter {
507    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
508                    const std::pair<unsigned, MachineInstr*> &B) {
509      return A.first < B.first;
510    }
511  };
512}
513
514// ProcessSourceNode - Process nodes with source order numbers. These are added
515// to a vector which EmitSchedule use to determine how to insert dbg_value
516// instructions in the right order.
517static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
518                           InstrEmitter &Emitter,
519                           DenseMap<SDValue, unsigned> &VRBaseMap,
520                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
521                           SmallSet<unsigned, 8> &Seen) {
522  unsigned Order = DAG->GetOrdering(N);
523  if (!Order || !Seen.insert(Order))
524    return;
525
526  MachineBasicBlock *BB = Emitter.getBlock();
527  if (BB->empty() || BB->back().isPHI()) {
528    // Did not insert any instruction.
529    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
530    return;
531  }
532
533  Orders.push_back(std::make_pair(Order, &BB->back()));
534  if (!N->getHasDebugValue())
535    return;
536  // Opportunistically insert immediate dbg_value uses, i.e. those with source
537  // order number right after the N.
538  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
539  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
540  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
541    if (DVs[i]->isInvalidated())
542      continue;
543    unsigned DVOrder = DVs[i]->getOrder();
544    if (DVOrder == ++Order) {
545      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
546      if (DbgMI) {
547        Orders.push_back(std::make_pair(DVOrder, DbgMI));
548        BB->insert(InsertPos, DbgMI);
549      }
550      DVs[i]->setIsInvalidated();
551    }
552  }
553}
554
555
556/// EmitSchedule - Emit the machine code in scheduled order.
557MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
558  InstrEmitter Emitter(BB, InsertPos);
559  DenseMap<SDValue, unsigned> VRBaseMap;
560  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
561  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
562  SmallSet<unsigned, 8> Seen;
563  bool HasDbg = DAG->hasDebugValues();
564
565  // If this is the first BB, emit byval parameter dbg_value's.
566  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
567    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
568    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
569    for (; PDI != PDE; ++PDI) {
570      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
571      if (DbgMI)
572        BB->push_back(DbgMI);
573    }
574  }
575
576  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
577    SUnit *SU = Sequence[i];
578    if (!SU) {
579      // Null SUnit* is a noop.
580      EmitNoop();
581      continue;
582    }
583
584    // For pre-regalloc scheduling, create instructions corresponding to the
585    // SDNode and any flagged SDNodes and append them to the block.
586    if (!SU->getNode()) {
587      // Emit a copy.
588      EmitPhysRegCopy(SU, CopyVRBaseMap);
589      continue;
590    }
591
592    SmallVector<SDNode *, 4> FlaggedNodes;
593    for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
594         N = N->getFlaggedNode())
595      FlaggedNodes.push_back(N);
596    while (!FlaggedNodes.empty()) {
597      SDNode *N = FlaggedNodes.back();
598      Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
599                       VRBaseMap);
600      // Remember the source order of the inserted instruction.
601      if (HasDbg)
602        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
603      FlaggedNodes.pop_back();
604    }
605    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
606                     VRBaseMap);
607    // Remember the source order of the inserted instruction.
608    if (HasDbg)
609      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
610                        Seen);
611  }
612
613  // Insert all the dbg_values which have not already been inserted in source
614  // order sequence.
615  if (HasDbg) {
616    MachineBasicBlock::iterator BBBegin = BB->empty() ? BB->end() : BB->begin();
617    while (BBBegin != BB->end() && BBBegin->isPHI())
618      ++BBBegin;
619
620    // Sort the source order instructions and use the order to insert debug
621    // values.
622    std::sort(Orders.begin(), Orders.end(), OrderSorter());
623
624    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
625    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
626    // Now emit the rest according to source order.
627    unsigned LastOrder = 0;
628    MachineInstr *LastMI = 0;
629    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
630      unsigned Order = Orders[i].first;
631      MachineInstr *MI = Orders[i].second;
632      // Insert all SDDbgValue's whose order(s) are before "Order".
633      if (!MI)
634        continue;
635      MachineBasicBlock *MIBB = MI->getParent();
636#ifndef NDEBUG
637      unsigned LastDIOrder = 0;
638#endif
639      for (; DI != DE &&
640             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
641#ifndef NDEBUG
642        assert((*DI)->getOrder() >= LastDIOrder &&
643               "SDDbgValue nodes must be in source order!");
644        LastDIOrder = (*DI)->getOrder();
645#endif
646        if ((*DI)->isInvalidated())
647          continue;
648        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
649        if (DbgMI) {
650          if (!LastOrder)
651            // Insert to start of the BB (after PHIs).
652            BB->insert(BBBegin, DbgMI);
653          else {
654            MachineBasicBlock::iterator Pos = MI;
655            MIBB->insert(llvm::next(Pos), DbgMI);
656          }
657        }
658      }
659      LastOrder = Order;
660      LastMI = MI;
661    }
662    // Add trailing DbgValue's before the terminator. FIXME: May want to add
663    // some of them before one or more conditional branches?
664    while (DI != DE) {
665      MachineBasicBlock *InsertBB = Emitter.getBlock();
666      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
667      if (!(*DI)->isInvalidated()) {
668        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
669        if (DbgMI)
670          InsertBB->insert(Pos, DbgMI);
671      }
672      ++DI;
673    }
674  }
675
676  BB = Emitter.getBlock();
677  InsertPos = Emitter.getInsertPos();
678  return BB;
679}
680