ScheduleDAGSDNodes.cpp revision 41989a808cb7b72fbea814e8b9bca0df8606acd8
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37  : ScheduleDAG(mf) {
38}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43                             MachineBasicBlock::iterator insertPos) {
44  DAG = dag;
45  ScheduleDAG::Run(bb, insertPos);
46}
47
48/// NewSUnit - Creates a new SUnit and return a ptr to it.
49///
50SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51#ifndef NDEBUG
52  const SUnit *Addr = 0;
53  if (!SUnits.empty())
54    Addr = &SUnits[0];
55#endif
56  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57  assert((Addr == 0 || Addr == &SUnits[0]) &&
58         "SUnits std::vector reallocated on the fly!");
59  SUnits.back().OrigNode = &SUnits.back();
60  SUnit *SU = &SUnits.back();
61  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62  if (N->isMachineOpcode() &&
63      N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
64    SU->SchedulingPref = Sched::None;
65  else
66    SU->SchedulingPref = TLI.getSchedulingPreference(N);
67  return SU;
68}
69
70SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
71  SUnit *SU = NewSUnit(Old->getNode());
72  SU->OrigNode = Old->OrigNode;
73  SU->Latency = Old->Latency;
74  SU->isTwoAddress = Old->isTwoAddress;
75  SU->isCommutable = Old->isCommutable;
76  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
77  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
78  SU->SchedulingPref = Old->SchedulingPref;
79  Old->isCloned = true;
80  return SU;
81}
82
83/// CheckForPhysRegDependency - Check if the dependency between def and use of
84/// a specified operand is a physical register dependency. If so, returns the
85/// register and the cost of copying the register.
86static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
87                                      const TargetRegisterInfo *TRI,
88                                      const TargetInstrInfo *TII,
89                                      unsigned &PhysReg, int &Cost) {
90  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
91    return;
92
93  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
94  if (TargetRegisterInfo::isVirtualRegister(Reg))
95    return;
96
97  unsigned ResNo = User->getOperand(2).getResNo();
98  if (Def->isMachineOpcode()) {
99    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
100    if (ResNo >= II.getNumDefs() &&
101        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
102      PhysReg = Reg;
103      const TargetRegisterClass *RC =
104        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
105      Cost = RC->getCopyCost();
106    }
107  }
108}
109
110static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
111                     SelectionDAG *DAG) {
112  SmallVector<EVT, 4> VTs;
113  SDNode *FlagDestNode = Flag.getNode();
114
115  // Don't add a flag from a node to itself.
116  if (FlagDestNode == N) return;
117
118  // Don't add a flag to something which already has a flag.
119  if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return;
120
121  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
122    VTs.push_back(N->getValueType(I));
123
124  if (AddFlag)
125    VTs.push_back(MVT::Flag);
126
127  SmallVector<SDValue, 4> Ops;
128  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
129    Ops.push_back(N->getOperand(I));
130
131  if (FlagDestNode)
132    Ops.push_back(Flag);
133
134  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
135  MachineSDNode::mmo_iterator Begin = 0, End = 0;
136  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
137
138  // Store memory references.
139  if (MN) {
140    Begin = MN->memoperands_begin();
141    End = MN->memoperands_end();
142  }
143
144  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
145
146  // Reset the memory references
147  if (MN)
148    MN->setMemRefs(Begin, End);
149}
150
151/// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
152/// This function finds loads of the same base and different offsets. If the
153/// offsets are not far apart (target specific), it add MVT::Flag inputs and
154/// outputs to ensure they are scheduled together and in order. This
155/// optimization may benefit some targets by improving cache locality.
156void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
157  SDNode *Chain = 0;
158  unsigned NumOps = Node->getNumOperands();
159  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
160    Chain = Node->getOperand(NumOps-1).getNode();
161  if (!Chain)
162    return;
163
164  // Look for other loads of the same chain. Find loads that are loading from
165  // the same base pointer and different offsets.
166  SmallPtrSet<SDNode*, 16> Visited;
167  SmallVector<int64_t, 4> Offsets;
168  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
169  bool Cluster = false;
170  SDNode *Base = Node;
171  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
172       I != E; ++I) {
173    SDNode *User = *I;
174    if (User == Node || !Visited.insert(User))
175      continue;
176    int64_t Offset1, Offset2;
177    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
178        Offset1 == Offset2)
179      // FIXME: Should be ok if they addresses are identical. But earlier
180      // optimizations really should have eliminated one of the loads.
181      continue;
182    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
183      Offsets.push_back(Offset1);
184    O2SMap.insert(std::make_pair(Offset2, User));
185    Offsets.push_back(Offset2);
186    if (Offset2 < Offset1)
187      Base = User;
188    Cluster = true;
189  }
190
191  if (!Cluster)
192    return;
193
194  // Sort them in increasing order.
195  std::sort(Offsets.begin(), Offsets.end());
196
197  // Check if the loads are close enough.
198  SmallVector<SDNode*, 4> Loads;
199  unsigned NumLoads = 0;
200  int64_t BaseOff = Offsets[0];
201  SDNode *BaseLoad = O2SMap[BaseOff];
202  Loads.push_back(BaseLoad);
203  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
204    int64_t Offset = Offsets[i];
205    SDNode *Load = O2SMap[Offset];
206    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
207      break; // Stop right here. Ignore loads that are further away.
208    Loads.push_back(Load);
209    ++NumLoads;
210  }
211
212  if (NumLoads == 0)
213    return;
214
215  // Cluster loads by adding MVT::Flag outputs and inputs. This also
216  // ensure they are scheduled in order of increasing addresses.
217  SDNode *Lead = Loads[0];
218  AddFlags(Lead, SDValue(0, 0), true, DAG);
219
220  SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1);
221  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
222    bool OutFlag = I < E - 1;
223    SDNode *Load = Loads[I];
224
225    AddFlags(Load, InFlag, OutFlag, DAG);
226
227    if (OutFlag)
228      InFlag = SDValue(Load, Load->getNumValues() - 1);
229
230    ++LoadsClustered;
231  }
232}
233
234/// ClusterNodes - Cluster certain nodes which should be scheduled together.
235///
236void ScheduleDAGSDNodes::ClusterNodes() {
237  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
238       E = DAG->allnodes_end(); NI != E; ++NI) {
239    SDNode *Node = &*NI;
240    if (!Node || !Node->isMachineOpcode())
241      continue;
242
243    unsigned Opc = Node->getMachineOpcode();
244    const TargetInstrDesc &TID = TII->get(Opc);
245    if (TID.mayLoad())
246      // Cluster loads from "near" addresses into combined SUnits.
247      ClusterNeighboringLoads(Node);
248  }
249}
250
251void ScheduleDAGSDNodes::BuildSchedUnits() {
252  // During scheduling, the NodeId field of SDNode is used to map SDNodes
253  // to their associated SUnits by holding SUnits table indices. A value
254  // of -1 means the SDNode does not yet have an associated SUnit.
255  unsigned NumNodes = 0;
256  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
257       E = DAG->allnodes_end(); NI != E; ++NI) {
258    NI->setNodeId(-1);
259    ++NumNodes;
260  }
261
262  // Reserve entries in the vector for each of the SUnits we are creating.  This
263  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
264  // invalidated.
265  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
266  // This is a temporary workaround.
267  SUnits.reserve(NumNodes * 2);
268
269  // Add all nodes in depth first order.
270  SmallVector<SDNode*, 64> Worklist;
271  SmallPtrSet<SDNode*, 64> Visited;
272  Worklist.push_back(DAG->getRoot().getNode());
273  Visited.insert(DAG->getRoot().getNode());
274
275  while (!Worklist.empty()) {
276    SDNode *NI = Worklist.pop_back_val();
277
278    // Add all operands to the worklist unless they've already been added.
279    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
280      if (Visited.insert(NI->getOperand(i).getNode()))
281        Worklist.push_back(NI->getOperand(i).getNode());
282
283    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
284      continue;
285
286    // If this node has already been processed, stop now.
287    if (NI->getNodeId() != -1) continue;
288
289    SUnit *NodeSUnit = NewSUnit(NI);
290
291    // See if anything is flagged to this node, if so, add them to flagged
292    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
293    // are required to be the last operand and result of a node.
294
295    // Scan up to find flagged preds.
296    SDNode *N = NI;
297    while (N->getNumOperands() &&
298           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
299      N = N->getOperand(N->getNumOperands()-1).getNode();
300      assert(N->getNodeId() == -1 && "Node already inserted!");
301      N->setNodeId(NodeSUnit->NodeNum);
302    }
303
304    // Scan down to find any flagged succs.
305    N = NI;
306    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
307      SDValue FlagVal(N, N->getNumValues()-1);
308
309      // There are either zero or one users of the Flag result.
310      bool HasFlagUse = false;
311      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
312           UI != E; ++UI)
313        if (FlagVal.isOperandOf(*UI)) {
314          HasFlagUse = true;
315          assert(N->getNodeId() == -1 && "Node already inserted!");
316          N->setNodeId(NodeSUnit->NodeNum);
317          N = *UI;
318          break;
319        }
320      if (!HasFlagUse) break;
321    }
322
323    // If there are flag operands involved, N is now the bottom-most node
324    // of the sequence of nodes that are flagged together.
325    // Update the SUnit.
326    NodeSUnit->setNode(N);
327    assert(N->getNodeId() == -1 && "Node already inserted!");
328    N->setNodeId(NodeSUnit->NodeNum);
329
330    // Assign the Latency field of NodeSUnit using target-provided information.
331    ComputeLatency(NodeSUnit);
332  }
333}
334
335void ScheduleDAGSDNodes::AddSchedEdges() {
336  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
337
338  // Check to see if the scheduler cares about latencies.
339  bool UnitLatencies = ForceUnitLatencies();
340
341  // Pass 2: add the preds, succs, etc.
342  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
343    SUnit *SU = &SUnits[su];
344    SDNode *MainNode = SU->getNode();
345
346    if (MainNode->isMachineOpcode()) {
347      unsigned Opc = MainNode->getMachineOpcode();
348      const TargetInstrDesc &TID = TII->get(Opc);
349      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
350        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
351          SU->isTwoAddress = true;
352          break;
353        }
354      }
355      if (TID.isCommutable())
356        SU->isCommutable = true;
357    }
358
359    // Find all predecessors and successors of the group.
360    for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
361      if (N->isMachineOpcode() &&
362          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
363        SU->hasPhysRegClobbers = true;
364        unsigned NumUsed = InstrEmitter::CountResults(N);
365        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
366          --NumUsed;    // Skip over unused values at the end.
367        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
368          SU->hasPhysRegDefs = true;
369      }
370
371      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
372        SDNode *OpN = N->getOperand(i).getNode();
373        if (isPassiveNode(OpN)) continue;   // Not scheduled.
374        SUnit *OpSU = &SUnits[OpN->getNodeId()];
375        assert(OpSU && "Node has no SUnit!");
376        if (OpSU == SU) continue;           // In the same group.
377
378        EVT OpVT = N->getOperand(i).getValueType();
379        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
380        bool isChain = OpVT == MVT::Other;
381
382        unsigned PhysReg = 0;
383        int Cost = 1;
384        // Determine if this is a physical register dependency.
385        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
386        assert((PhysReg == 0 || !isChain) &&
387               "Chain dependence via physreg data?");
388        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
389        // emits a copy from the physical register to a virtual register unless
390        // it requires a cross class copy (cost < 0). That means we are only
391        // treating "expensive to copy" register dependency as physical register
392        // dependency. This may change in the future though.
393        if (Cost >= 0)
394          PhysReg = 0;
395
396        // If this is a ctrl dep, latency is 1.
397        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
398        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
399                               OpLatency, PhysReg);
400        if (!isChain && !UnitLatencies) {
401          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
402          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
403        }
404
405        SU->addPred(dep);
406      }
407    }
408  }
409}
410
411/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
412/// are input.  This SUnit graph is similar to the SelectionDAG, but
413/// excludes nodes that aren't interesting to scheduling, and represents
414/// flagged together nodes with a single SUnit.
415void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
416  // Cluster certain nodes which should be scheduled together.
417  ClusterNodes();
418  // Populate the SUnits array.
419  BuildSchedUnits();
420  // Compute all the scheduling dependencies between nodes.
421  AddSchedEdges();
422}
423
424void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
425  // Check to see if the scheduler cares about latencies.
426  if (ForceUnitLatencies()) {
427    SU->Latency = 1;
428    return;
429  }
430
431  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
432  if (InstrItins.isEmpty()) {
433    SU->Latency = 1;
434    return;
435  }
436
437  // Compute the latency for the node.  We use the sum of the latencies for
438  // all nodes flagged together into this SUnit.
439  SU->Latency = 0;
440  for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
441    if (N->isMachineOpcode()) {
442      SU->Latency += InstrItins.
443        getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
444    }
445}
446
447void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
448                                               unsigned OpIdx, SDep& dep) const{
449  // Check to see if the scheduler cares about latencies.
450  if (ForceUnitLatencies())
451    return;
452
453  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
454  if (InstrItins.isEmpty())
455    return;
456
457  if (dep.getKind() != SDep::Data)
458    return;
459
460  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
461  if (Def->isMachineOpcode()) {
462    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
463    if (DefIdx >= II.getNumDefs())
464      return;
465    int DefCycle = InstrItins.getOperandCycle(II.getSchedClass(), DefIdx);
466    if (DefCycle < 0)
467      return;
468    int UseCycle = 1;
469    if (Use->isMachineOpcode()) {
470      const unsigned UseClass = TII->get(Use->getMachineOpcode()).getSchedClass();
471      UseCycle = InstrItins.getOperandCycle(UseClass, OpIdx);
472    }
473    if (UseCycle >= 0) {
474      int Latency = DefCycle - UseCycle + 1;
475      if (Latency >= 0)
476        dep.setLatency(Latency);
477    }
478  }
479}
480
481void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
482  if (!SU->getNode()) {
483    dbgs() << "PHYS REG COPY\n";
484    return;
485  }
486
487  SU->getNode()->dump(DAG);
488  dbgs() << "\n";
489  SmallVector<SDNode *, 4> FlaggedNodes;
490  for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
491    FlaggedNodes.push_back(N);
492  while (!FlaggedNodes.empty()) {
493    dbgs() << "    ";
494    FlaggedNodes.back()->dump(DAG);
495    dbgs() << "\n";
496    FlaggedNodes.pop_back();
497  }
498}
499
500namespace {
501  struct OrderSorter {
502    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
503                    const std::pair<unsigned, MachineInstr*> &B) {
504      return A.first < B.first;
505    }
506  };
507}
508
509// ProcessSourceNode - Process nodes with source order numbers. These are added
510// to a vector which EmitSchedule uses to determine how to insert dbg_value
511// instructions in the right order.
512static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
513                           InstrEmitter &Emitter,
514                           DenseMap<SDValue, unsigned> &VRBaseMap,
515                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
516                           SmallSet<unsigned, 8> &Seen) {
517  unsigned Order = DAG->GetOrdering(N);
518  if (!Order || !Seen.insert(Order))
519    return;
520
521  MachineBasicBlock *BB = Emitter.getBlock();
522  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
523    // Did not insert any instruction.
524    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
525    return;
526  }
527
528  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
529  if (!N->getHasDebugValue())
530    return;
531  // Opportunistically insert immediate dbg_value uses, i.e. those with source
532  // order number right after the N.
533  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
534  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
535  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
536    if (DVs[i]->isInvalidated())
537      continue;
538    unsigned DVOrder = DVs[i]->getOrder();
539    if (DVOrder == ++Order) {
540      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
541      if (DbgMI) {
542        Orders.push_back(std::make_pair(DVOrder, DbgMI));
543        BB->insert(InsertPos, DbgMI);
544      }
545      DVs[i]->setIsInvalidated();
546    }
547  }
548}
549
550
551/// EmitSchedule - Emit the machine code in scheduled order.
552MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
553  InstrEmitter Emitter(BB, InsertPos);
554  DenseMap<SDValue, unsigned> VRBaseMap;
555  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
556  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
557  SmallSet<unsigned, 8> Seen;
558  bool HasDbg = DAG->hasDebugValues();
559
560  // If this is the first BB, emit byval parameter dbg_value's.
561  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
562    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
563    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
564    for (; PDI != PDE; ++PDI) {
565      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
566      if (DbgMI)
567        BB->insert(InsertPos, DbgMI);
568    }
569  }
570
571  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
572    SUnit *SU = Sequence[i];
573    if (!SU) {
574      // Null SUnit* is a noop.
575      EmitNoop();
576      continue;
577    }
578
579    // For pre-regalloc scheduling, create instructions corresponding to the
580    // SDNode and any flagged SDNodes and append them to the block.
581    if (!SU->getNode()) {
582      // Emit a copy.
583      EmitPhysRegCopy(SU, CopyVRBaseMap);
584      continue;
585    }
586
587    SmallVector<SDNode *, 4> FlaggedNodes;
588    for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
589         N = N->getFlaggedNode())
590      FlaggedNodes.push_back(N);
591    while (!FlaggedNodes.empty()) {
592      SDNode *N = FlaggedNodes.back();
593      Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
594                       VRBaseMap);
595      // Remember the source order of the inserted instruction.
596      if (HasDbg)
597        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
598      FlaggedNodes.pop_back();
599    }
600    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
601                     VRBaseMap);
602    // Remember the source order of the inserted instruction.
603    if (HasDbg)
604      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
605                        Seen);
606  }
607
608  // Insert all the dbg_values which have not already been inserted in source
609  // order sequence.
610  if (HasDbg) {
611    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
612
613    // Sort the source order instructions and use the order to insert debug
614    // values.
615    std::sort(Orders.begin(), Orders.end(), OrderSorter());
616
617    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
618    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
619    // Now emit the rest according to source order.
620    unsigned LastOrder = 0;
621    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
622      unsigned Order = Orders[i].first;
623      MachineInstr *MI = Orders[i].second;
624      // Insert all SDDbgValue's whose order(s) are before "Order".
625      if (!MI)
626        continue;
627#ifndef NDEBUG
628      unsigned LastDIOrder = 0;
629#endif
630      for (; DI != DE &&
631             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
632#ifndef NDEBUG
633        assert((*DI)->getOrder() >= LastDIOrder &&
634               "SDDbgValue nodes must be in source order!");
635        LastDIOrder = (*DI)->getOrder();
636#endif
637        if ((*DI)->isInvalidated())
638          continue;
639        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
640        if (DbgMI) {
641          if (!LastOrder)
642            // Insert to start of the BB (after PHIs).
643            BB->insert(BBBegin, DbgMI);
644          else {
645            // Insert at the instruction, which may be in a different
646            // block, if the block was split by a custom inserter.
647            MachineBasicBlock::iterator Pos = MI;
648            MI->getParent()->insert(llvm::next(Pos), DbgMI);
649          }
650        }
651      }
652      LastOrder = Order;
653    }
654    // Add trailing DbgValue's before the terminator. FIXME: May want to add
655    // some of them before one or more conditional branches?
656    while (DI != DE) {
657      MachineBasicBlock *InsertBB = Emitter.getBlock();
658      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
659      if (!(*DI)->isInvalidated()) {
660        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
661        if (DbgMI)
662          InsertBB->insert(Pos, DbgMI);
663      }
664      ++DI;
665    }
666  }
667
668  BB = Emitter.getBlock();
669  InsertPos = Emitter.getInsertPos();
670  return BB;
671}
672