ScheduleDAGSDNodes.cpp revision 55d20e8ff1e458f177302386d14f1a4dbdd86028
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37  : ScheduleDAG(mf),
38    InstrItins(mf.getTarget().getInstrItineraryData()) {}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43                             MachineBasicBlock::iterator insertPos) {
44  DAG = dag;
45  ScheduleDAG::Run(bb, insertPos);
46}
47
48/// NewSUnit - Creates a new SUnit and return a ptr to it.
49///
50SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51#ifndef NDEBUG
52  const SUnit *Addr = 0;
53  if (!SUnits.empty())
54    Addr = &SUnits[0];
55#endif
56  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57  assert((Addr == 0 || Addr == &SUnits[0]) &&
58         "SUnits std::vector reallocated on the fly!");
59  SUnits.back().OrigNode = &SUnits.back();
60  SUnit *SU = &SUnits.back();
61  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62  if (!N ||
63      (N->isMachineOpcode() &&
64       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
65    SU->SchedulingPref = Sched::None;
66  else
67    SU->SchedulingPref = TLI.getSchedulingPreference(N);
68  return SU;
69}
70
71SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
72  SUnit *SU = NewSUnit(Old->getNode());
73  SU->OrigNode = Old->OrigNode;
74  SU->Latency = Old->Latency;
75  SU->isCall = Old->isCall;
76  SU->isTwoAddress = Old->isTwoAddress;
77  SU->isCommutable = Old->isCommutable;
78  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
79  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
80  SU->SchedulingPref = Old->SchedulingPref;
81  Old->isCloned = true;
82  return SU;
83}
84
85/// CheckForPhysRegDependency - Check if the dependency between def and use of
86/// a specified operand is a physical register dependency. If so, returns the
87/// register and the cost of copying the register.
88static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
89                                      const TargetRegisterInfo *TRI,
90                                      const TargetInstrInfo *TII,
91                                      unsigned &PhysReg, int &Cost) {
92  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
93    return;
94
95  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
96  if (TargetRegisterInfo::isVirtualRegister(Reg))
97    return;
98
99  unsigned ResNo = User->getOperand(2).getResNo();
100  if (Def->isMachineOpcode()) {
101    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
102    if (ResNo >= II.getNumDefs() &&
103        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
104      PhysReg = Reg;
105      const TargetRegisterClass *RC =
106        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
107      Cost = RC->getCopyCost();
108    }
109  }
110}
111
112static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
113  SmallVector<EVT, 4> VTs;
114  SDNode *GlueDestNode = Glue.getNode();
115
116  // Don't add glue from a node to itself.
117  if (GlueDestNode == N) return;
118
119  // Don't add glue to something which already has glue.
120  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
121
122  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
123    VTs.push_back(N->getValueType(I));
124
125  if (AddGlue)
126    VTs.push_back(MVT::Glue);
127
128  SmallVector<SDValue, 4> Ops;
129  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
130    Ops.push_back(N->getOperand(I));
131
132  if (GlueDestNode)
133    Ops.push_back(Glue);
134
135  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
136  MachineSDNode::mmo_iterator Begin = 0, End = 0;
137  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
138
139  // Store memory references.
140  if (MN) {
141    Begin = MN->memoperands_begin();
142    End = MN->memoperands_end();
143  }
144
145  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
146
147  // Reset the memory references
148  if (MN)
149    MN->setMemRefs(Begin, End);
150}
151
152/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
153/// This function finds loads of the same base and different offsets. If the
154/// offsets are not far apart (target specific), it add MVT::Glue inputs and
155/// outputs to ensure they are scheduled together and in order. This
156/// optimization may benefit some targets by improving cache locality.
157void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
158  SDNode *Chain = 0;
159  unsigned NumOps = Node->getNumOperands();
160  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
161    Chain = Node->getOperand(NumOps-1).getNode();
162  if (!Chain)
163    return;
164
165  // Look for other loads of the same chain. Find loads that are loading from
166  // the same base pointer and different offsets.
167  SmallPtrSet<SDNode*, 16> Visited;
168  SmallVector<int64_t, 4> Offsets;
169  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
170  bool Cluster = false;
171  SDNode *Base = Node;
172  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
173       I != E; ++I) {
174    SDNode *User = *I;
175    if (User == Node || !Visited.insert(User))
176      continue;
177    int64_t Offset1, Offset2;
178    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
179        Offset1 == Offset2)
180      // FIXME: Should be ok if they addresses are identical. But earlier
181      // optimizations really should have eliminated one of the loads.
182      continue;
183    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
184      Offsets.push_back(Offset1);
185    O2SMap.insert(std::make_pair(Offset2, User));
186    Offsets.push_back(Offset2);
187    if (Offset2 < Offset1)
188      Base = User;
189    Cluster = true;
190  }
191
192  if (!Cluster)
193    return;
194
195  // Sort them in increasing order.
196  std::sort(Offsets.begin(), Offsets.end());
197
198  // Check if the loads are close enough.
199  SmallVector<SDNode*, 4> Loads;
200  unsigned NumLoads = 0;
201  int64_t BaseOff = Offsets[0];
202  SDNode *BaseLoad = O2SMap[BaseOff];
203  Loads.push_back(BaseLoad);
204  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
205    int64_t Offset = Offsets[i];
206    SDNode *Load = O2SMap[Offset];
207    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
208      break; // Stop right here. Ignore loads that are further away.
209    Loads.push_back(Load);
210    ++NumLoads;
211  }
212
213  if (NumLoads == 0)
214    return;
215
216  // Cluster loads by adding MVT::Glue outputs and inputs. This also
217  // ensure they are scheduled in order of increasing addresses.
218  SDNode *Lead = Loads[0];
219  AddGlue(Lead, SDValue(0, 0), true, DAG);
220
221  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
222  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
223    bool OutGlue = I < E - 1;
224    SDNode *Load = Loads[I];
225
226    AddGlue(Load, InGlue, OutGlue, DAG);
227
228    if (OutGlue)
229      InGlue = SDValue(Load, Load->getNumValues() - 1);
230
231    ++LoadsClustered;
232  }
233}
234
235/// ClusterNodes - Cluster certain nodes which should be scheduled together.
236///
237void ScheduleDAGSDNodes::ClusterNodes() {
238  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
239       E = DAG->allnodes_end(); NI != E; ++NI) {
240    SDNode *Node = &*NI;
241    if (!Node || !Node->isMachineOpcode())
242      continue;
243
244    unsigned Opc = Node->getMachineOpcode();
245    const TargetInstrDesc &TID = TII->get(Opc);
246    if (TID.mayLoad())
247      // Cluster loads from "near" addresses into combined SUnits.
248      ClusterNeighboringLoads(Node);
249  }
250}
251
252void ScheduleDAGSDNodes::BuildSchedUnits() {
253  // During scheduling, the NodeId field of SDNode is used to map SDNodes
254  // to their associated SUnits by holding SUnits table indices. A value
255  // of -1 means the SDNode does not yet have an associated SUnit.
256  unsigned NumNodes = 0;
257  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
258       E = DAG->allnodes_end(); NI != E; ++NI) {
259    NI->setNodeId(-1);
260    ++NumNodes;
261  }
262
263  // Reserve entries in the vector for each of the SUnits we are creating.  This
264  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
265  // invalidated.
266  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
267  // This is a temporary workaround.
268  SUnits.reserve(NumNodes * 2);
269
270  // Add all nodes in depth first order.
271  SmallVector<SDNode*, 64> Worklist;
272  SmallPtrSet<SDNode*, 64> Visited;
273  Worklist.push_back(DAG->getRoot().getNode());
274  Visited.insert(DAG->getRoot().getNode());
275
276  while (!Worklist.empty()) {
277    SDNode *NI = Worklist.pop_back_val();
278
279    // Add all operands to the worklist unless they've already been added.
280    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
281      if (Visited.insert(NI->getOperand(i).getNode()))
282        Worklist.push_back(NI->getOperand(i).getNode());
283
284    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
285      continue;
286
287    // If this node has already been processed, stop now.
288    if (NI->getNodeId() != -1) continue;
289
290    SUnit *NodeSUnit = NewSUnit(NI);
291
292    // See if anything is glued to this node, if so, add them to glued
293    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
294    // is required to be the last operand and result of a node.
295
296    // Scan up to find glued preds.
297    SDNode *N = NI;
298    while (N->getNumOperands() &&
299           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
300      N = N->getOperand(N->getNumOperands()-1).getNode();
301      assert(N->getNodeId() == -1 && "Node already inserted!");
302      N->setNodeId(NodeSUnit->NodeNum);
303      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
304        NodeSUnit->isCall = true;
305    }
306
307    // Scan down to find any glued succs.
308    N = NI;
309    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
310      SDValue GlueVal(N, N->getNumValues()-1);
311
312      // There are either zero or one users of the Glue result.
313      bool HasGlueUse = false;
314      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
315           UI != E; ++UI)
316        if (GlueVal.isOperandOf(*UI)) {
317          HasGlueUse = true;
318          assert(N->getNodeId() == -1 && "Node already inserted!");
319          N->setNodeId(NodeSUnit->NodeNum);
320          N = *UI;
321          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
322            NodeSUnit->isCall = true;
323          break;
324        }
325      if (!HasGlueUse) break;
326    }
327
328    // If there are glue operands involved, N is now the bottom-most node
329    // of the sequence of nodes that are glued together.
330    // Update the SUnit.
331    NodeSUnit->setNode(N);
332    assert(N->getNodeId() == -1 && "Node already inserted!");
333    N->setNodeId(NodeSUnit->NodeNum);
334
335    // Assign the Latency field of NodeSUnit using target-provided information.
336    ComputeLatency(NodeSUnit);
337  }
338}
339
340void ScheduleDAGSDNodes::AddSchedEdges() {
341  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
342
343  // Check to see if the scheduler cares about latencies.
344  bool UnitLatencies = ForceUnitLatencies();
345
346  // Pass 2: add the preds, succs, etc.
347  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
348    SUnit *SU = &SUnits[su];
349    SDNode *MainNode = SU->getNode();
350
351    if (MainNode->isMachineOpcode()) {
352      unsigned Opc = MainNode->getMachineOpcode();
353      const TargetInstrDesc &TID = TII->get(Opc);
354      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
355        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
356          SU->isTwoAddress = true;
357          break;
358        }
359      }
360      if (TID.isCommutable())
361        SU->isCommutable = true;
362    }
363
364    // Find all predecessors and successors of the group.
365    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
366      if (N->isMachineOpcode() &&
367          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
368        SU->hasPhysRegClobbers = true;
369        unsigned NumUsed = InstrEmitter::CountResults(N);
370        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
371          --NumUsed;    // Skip over unused values at the end.
372        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
373          SU->hasPhysRegDefs = true;
374      }
375
376      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
377        SDNode *OpN = N->getOperand(i).getNode();
378        if (isPassiveNode(OpN)) continue;   // Not scheduled.
379        SUnit *OpSU = &SUnits[OpN->getNodeId()];
380        assert(OpSU && "Node has no SUnit!");
381        if (OpSU == SU) continue;           // In the same group.
382
383        EVT OpVT = N->getOperand(i).getValueType();
384        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
385        bool isChain = OpVT == MVT::Other;
386
387        unsigned PhysReg = 0;
388        int Cost = 1;
389        // Determine if this is a physical register dependency.
390        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
391        assert((PhysReg == 0 || !isChain) &&
392               "Chain dependence via physreg data?");
393        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
394        // emits a copy from the physical register to a virtual register unless
395        // it requires a cross class copy (cost < 0). That means we are only
396        // treating "expensive to copy" register dependency as physical register
397        // dependency. This may change in the future though.
398        if (Cost >= 0)
399          PhysReg = 0;
400
401        // If this is a ctrl dep, latency is 1.
402        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
403        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
404                               OpLatency, PhysReg);
405        if (!isChain && !UnitLatencies) {
406          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
407          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
408        }
409
410        SU->addPred(dep);
411      }
412    }
413  }
414}
415
416/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
417/// are input.  This SUnit graph is similar to the SelectionDAG, but
418/// excludes nodes that aren't interesting to scheduling, and represents
419/// glued together nodes with a single SUnit.
420void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
421  // Cluster certain nodes which should be scheduled together.
422  ClusterNodes();
423  // Populate the SUnits array.
424  BuildSchedUnits();
425  // Compute all the scheduling dependencies between nodes.
426  AddSchedEdges();
427}
428
429void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
430  // Check to see if the scheduler cares about latencies.
431  if (ForceUnitLatencies()) {
432    SU->Latency = 1;
433    return;
434  }
435
436  if (!InstrItins || InstrItins->isEmpty()) {
437    SU->Latency = 1;
438    return;
439  }
440
441  // Compute the latency for the node.  We use the sum of the latencies for
442  // all nodes glued together into this SUnit.
443  SU->Latency = 0;
444  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
445    if (N->isMachineOpcode())
446      SU->Latency += TII->getInstrLatency(InstrItins, N);
447}
448
449void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
450                                               unsigned OpIdx, SDep& dep) const{
451  // Check to see if the scheduler cares about latencies.
452  if (ForceUnitLatencies())
453    return;
454
455  if (dep.getKind() != SDep::Data)
456    return;
457
458  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
459  if (Use->isMachineOpcode())
460    // Adjust the use operand index by num of defs.
461    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
462  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
463  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
464      !BB->succ_empty()) {
465    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
466    if (TargetRegisterInfo::isVirtualRegister(Reg))
467      // This copy is a liveout value. It is likely coalesced, so reduce the
468      // latency so not to penalize the def.
469      // FIXME: need target specific adjustment here?
470      Latency = (Latency > 1) ? Latency - 1 : 1;
471  }
472  if (Latency >= 0)
473    dep.setLatency(Latency);
474}
475
476void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
477  if (!SU->getNode()) {
478    dbgs() << "PHYS REG COPY\n";
479    return;
480  }
481
482  SU->getNode()->dump(DAG);
483  dbgs() << "\n";
484  SmallVector<SDNode *, 4> GluedNodes;
485  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
486    GluedNodes.push_back(N);
487  while (!GluedNodes.empty()) {
488    dbgs() << "    ";
489    GluedNodes.back()->dump(DAG);
490    dbgs() << "\n";
491    GluedNodes.pop_back();
492  }
493}
494
495namespace {
496  struct OrderSorter {
497    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
498                    const std::pair<unsigned, MachineInstr*> &B) {
499      return A.first < B.first;
500    }
501  };
502}
503
504/// ProcessSDDbgValues - Process SDDbgValues assoicated with this node.
505static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
506                               InstrEmitter &Emitter,
507                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
508                            DenseMap<SDValue, unsigned> &VRBaseMap,
509                            unsigned Order) {
510  if (!N->getHasDebugValue())
511    return;
512
513  // Opportunistically insert immediate dbg_value uses, i.e. those with source
514  // order number right after the N.
515  MachineBasicBlock *BB = Emitter.getBlock();
516  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
517  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
518  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
519    if (DVs[i]->isInvalidated())
520      continue;
521    unsigned DVOrder = DVs[i]->getOrder();
522    if (!Order || DVOrder == ++Order) {
523      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
524      if (DbgMI) {
525        Orders.push_back(std::make_pair(DVOrder, DbgMI));
526        BB->insert(InsertPos, DbgMI);
527      }
528      DVs[i]->setIsInvalidated();
529    }
530  }
531}
532
533// ProcessSourceNode - Process nodes with source order numbers. These are added
534// to a vector which EmitSchedule uses to determine how to insert dbg_value
535// instructions in the right order.
536static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
537                           InstrEmitter &Emitter,
538                           DenseMap<SDValue, unsigned> &VRBaseMap,
539                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
540                           SmallSet<unsigned, 8> &Seen) {
541  unsigned Order = DAG->GetOrdering(N);
542  if (!Order || !Seen.insert(Order))
543    return;
544
545  MachineBasicBlock *BB = Emitter.getBlock();
546  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
547    // Did not insert any instruction.
548    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
549    return;
550  }
551
552  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
553  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
554}
555
556
557/// EmitSchedule - Emit the machine code in scheduled order.
558MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
559  InstrEmitter Emitter(BB, InsertPos);
560  DenseMap<SDValue, unsigned> VRBaseMap;
561  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
562  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
563  SmallSet<unsigned, 8> Seen;
564  bool HasDbg = DAG->hasDebugValues();
565
566  // If this is the first BB, emit byval parameter dbg_value's.
567  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
568    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
569    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
570    for (; PDI != PDE; ++PDI) {
571      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
572      if (DbgMI)
573        BB->insert(InsertPos, DbgMI);
574    }
575  }
576
577  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
578    SUnit *SU = Sequence[i];
579    if (!SU) {
580      // Null SUnit* is a noop.
581      EmitNoop();
582      continue;
583    }
584
585    // For pre-regalloc scheduling, create instructions corresponding to the
586    // SDNode and any glued SDNodes and append them to the block.
587    if (!SU->getNode()) {
588      // Emit a copy.
589      EmitPhysRegCopy(SU, CopyVRBaseMap);
590      continue;
591    }
592
593    SmallVector<SDNode *, 4> GluedNodes;
594    for (SDNode *N = SU->getNode()->getGluedNode(); N;
595         N = N->getGluedNode())
596      GluedNodes.push_back(N);
597    while (!GluedNodes.empty()) {
598      SDNode *N = GluedNodes.back();
599      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
600                       VRBaseMap);
601      // Remember the source order of the inserted instruction.
602      if (HasDbg)
603        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
604      GluedNodes.pop_back();
605    }
606    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
607                     VRBaseMap);
608    // Remember the source order of the inserted instruction.
609    if (HasDbg)
610      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
611                        Seen);
612  }
613
614  // Insert all the dbg_values which have not already been inserted in source
615  // order sequence.
616  if (HasDbg) {
617    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
618
619    // Sort the source order instructions and use the order to insert debug
620    // values.
621    std::sort(Orders.begin(), Orders.end(), OrderSorter());
622
623    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
624    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
625    // Now emit the rest according to source order.
626    unsigned LastOrder = 0;
627    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
628      unsigned Order = Orders[i].first;
629      MachineInstr *MI = Orders[i].second;
630      // Insert all SDDbgValue's whose order(s) are before "Order".
631      if (!MI)
632        continue;
633      for (; DI != DE &&
634             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
635        if ((*DI)->isInvalidated())
636          continue;
637        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
638        if (DbgMI) {
639          if (!LastOrder)
640            // Insert to start of the BB (after PHIs).
641            BB->insert(BBBegin, DbgMI);
642          else {
643            // Insert at the instruction, which may be in a different
644            // block, if the block was split by a custom inserter.
645            MachineBasicBlock::iterator Pos = MI;
646            MI->getParent()->insert(llvm::next(Pos), DbgMI);
647          }
648        }
649      }
650      LastOrder = Order;
651    }
652    // Add trailing DbgValue's before the terminator. FIXME: May want to add
653    // some of them before one or more conditional branches?
654    while (DI != DE) {
655      MachineBasicBlock *InsertBB = Emitter.getBlock();
656      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
657      if (!(*DI)->isInvalidated()) {
658        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
659        if (DbgMI)
660          InsertBB->insert(Pos, DbgMI);
661      }
662      ++DI;
663    }
664  }
665
666  BB = Emitter.getBlock();
667  InsertPos = Emitter.getInsertPos();
668  return BB;
669}
670