ScheduleDAGSDNodes.cpp revision 5b1b4489cf3a0f56f8be0673fc5cc380a32d277b
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/MC/MCInstrItineraries.h"
21#include "llvm/Target/TargetMachine.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetSubtargetInfo.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34using namespace llvm;
35
36STATISTIC(LoadsClustered, "Number of loads clustered together");
37
38// This allows latency based scheduler to notice high latency instructions
39// without a target itinerary. The choise if number here has more to do with
40// balancing scheduler heursitics than with the actual machine latency.
41static cl::opt<int> HighLatencyCycles(
42  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
43  cl::desc("Roughly estimate the number of cycles that 'long latency'"
44           "instructions take for targets with no itinerary"));
45
46ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
47  : ScheduleDAG(mf),
48    InstrItins(mf.getTarget().getInstrItineraryData()) {}
49
50/// Run - perform scheduling.
51///
52void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
53                             MachineBasicBlock::iterator insertPos) {
54  DAG = dag;
55  ScheduleDAG::Run(bb, insertPos);
56}
57
58/// NewSUnit - Creates a new SUnit and return a ptr to it.
59///
60SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
61#ifndef NDEBUG
62  const SUnit *Addr = 0;
63  if (!SUnits.empty())
64    Addr = &SUnits[0];
65#endif
66  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
67  assert((Addr == 0 || Addr == &SUnits[0]) &&
68         "SUnits std::vector reallocated on the fly!");
69  SUnits.back().OrigNode = &SUnits.back();
70  SUnit *SU = &SUnits.back();
71  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
72  if (!N ||
73      (N->isMachineOpcode() &&
74       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
75    SU->SchedulingPref = Sched::None;
76  else
77    SU->SchedulingPref = TLI.getSchedulingPreference(N);
78  return SU;
79}
80
81SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
82  SUnit *SU = NewSUnit(Old->getNode());
83  SU->OrigNode = Old->OrigNode;
84  SU->Latency = Old->Latency;
85  SU->isVRegCycle = Old->isVRegCycle;
86  SU->isCall = Old->isCall;
87  SU->isCallOp = Old->isCallOp;
88  SU->isTwoAddress = Old->isTwoAddress;
89  SU->isCommutable = Old->isCommutable;
90  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
91  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
92  SU->isScheduleHigh = Old->isScheduleHigh;
93  SU->isScheduleLow = Old->isScheduleLow;
94  SU->SchedulingPref = Old->SchedulingPref;
95  Old->isCloned = true;
96  return SU;
97}
98
99/// CheckForPhysRegDependency - Check if the dependency between def and use of
100/// a specified operand is a physical register dependency. If so, returns the
101/// register and the cost of copying the register.
102static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
103                                      const TargetRegisterInfo *TRI,
104                                      const TargetInstrInfo *TII,
105                                      unsigned &PhysReg, int &Cost) {
106  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
107    return;
108
109  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
110  if (TargetRegisterInfo::isVirtualRegister(Reg))
111    return;
112
113  unsigned ResNo = User->getOperand(2).getResNo();
114  if (Def->isMachineOpcode()) {
115    const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
116    if (ResNo >= II.getNumDefs() &&
117        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
118      PhysReg = Reg;
119      const TargetRegisterClass *RC =
120        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
121      Cost = RC->getCopyCost();
122    }
123  }
124}
125
126static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
127  SmallVector<EVT, 4> VTs;
128  SDNode *GlueDestNode = Glue.getNode();
129
130  // Don't add glue from a node to itself.
131  if (GlueDestNode == N) return;
132
133  // Don't add glue to something which already has glue.
134  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
135
136  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
137    VTs.push_back(N->getValueType(I));
138
139  if (AddGlue)
140    VTs.push_back(MVT::Glue);
141
142  SmallVector<SDValue, 4> Ops;
143  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
144    Ops.push_back(N->getOperand(I));
145
146  if (GlueDestNode)
147    Ops.push_back(Glue);
148
149  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
150  MachineSDNode::mmo_iterator Begin = 0, End = 0;
151  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
152
153  // Store memory references.
154  if (MN) {
155    Begin = MN->memoperands_begin();
156    End = MN->memoperands_end();
157  }
158
159  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
160
161  // Reset the memory references
162  if (MN)
163    MN->setMemRefs(Begin, End);
164}
165
166/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
167/// This function finds loads of the same base and different offsets. If the
168/// offsets are not far apart (target specific), it add MVT::Glue inputs and
169/// outputs to ensure they are scheduled together and in order. This
170/// optimization may benefit some targets by improving cache locality.
171void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
172  SDNode *Chain = 0;
173  unsigned NumOps = Node->getNumOperands();
174  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
175    Chain = Node->getOperand(NumOps-1).getNode();
176  if (!Chain)
177    return;
178
179  // Look for other loads of the same chain. Find loads that are loading from
180  // the same base pointer and different offsets.
181  SmallPtrSet<SDNode*, 16> Visited;
182  SmallVector<int64_t, 4> Offsets;
183  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
184  bool Cluster = false;
185  SDNode *Base = Node;
186  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
187       I != E; ++I) {
188    SDNode *User = *I;
189    if (User == Node || !Visited.insert(User))
190      continue;
191    int64_t Offset1, Offset2;
192    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
193        Offset1 == Offset2)
194      // FIXME: Should be ok if they addresses are identical. But earlier
195      // optimizations really should have eliminated one of the loads.
196      continue;
197    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
198      Offsets.push_back(Offset1);
199    O2SMap.insert(std::make_pair(Offset2, User));
200    Offsets.push_back(Offset2);
201    if (Offset2 < Offset1)
202      Base = User;
203    Cluster = true;
204  }
205
206  if (!Cluster)
207    return;
208
209  // Sort them in increasing order.
210  std::sort(Offsets.begin(), Offsets.end());
211
212  // Check if the loads are close enough.
213  SmallVector<SDNode*, 4> Loads;
214  unsigned NumLoads = 0;
215  int64_t BaseOff = Offsets[0];
216  SDNode *BaseLoad = O2SMap[BaseOff];
217  Loads.push_back(BaseLoad);
218  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
219    int64_t Offset = Offsets[i];
220    SDNode *Load = O2SMap[Offset];
221    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
222      break; // Stop right here. Ignore loads that are further away.
223    Loads.push_back(Load);
224    ++NumLoads;
225  }
226
227  if (NumLoads == 0)
228    return;
229
230  // Cluster loads by adding MVT::Glue outputs and inputs. This also
231  // ensure they are scheduled in order of increasing addresses.
232  SDNode *Lead = Loads[0];
233  AddGlue(Lead, SDValue(0, 0), true, DAG);
234
235  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
236  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
237    bool OutGlue = I < E - 1;
238    SDNode *Load = Loads[I];
239
240    AddGlue(Load, InGlue, OutGlue, DAG);
241
242    if (OutGlue)
243      InGlue = SDValue(Load, Load->getNumValues() - 1);
244
245    ++LoadsClustered;
246  }
247}
248
249/// ClusterNodes - Cluster certain nodes which should be scheduled together.
250///
251void ScheduleDAGSDNodes::ClusterNodes() {
252  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
253       E = DAG->allnodes_end(); NI != E; ++NI) {
254    SDNode *Node = &*NI;
255    if (!Node || !Node->isMachineOpcode())
256      continue;
257
258    unsigned Opc = Node->getMachineOpcode();
259    const MCInstrDesc &MCID = TII->get(Opc);
260    if (MCID.mayLoad())
261      // Cluster loads from "near" addresses into combined SUnits.
262      ClusterNeighboringLoads(Node);
263  }
264}
265
266void ScheduleDAGSDNodes::BuildSchedUnits() {
267  // During scheduling, the NodeId field of SDNode is used to map SDNodes
268  // to their associated SUnits by holding SUnits table indices. A value
269  // of -1 means the SDNode does not yet have an associated SUnit.
270  unsigned NumNodes = 0;
271  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
272       E = DAG->allnodes_end(); NI != E; ++NI) {
273    NI->setNodeId(-1);
274    ++NumNodes;
275  }
276
277  // Reserve entries in the vector for each of the SUnits we are creating.  This
278  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
279  // invalidated.
280  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
281  // This is a temporary workaround.
282  SUnits.reserve(NumNodes * 2);
283
284  // Add all nodes in depth first order.
285  SmallVector<SDNode*, 64> Worklist;
286  SmallPtrSet<SDNode*, 64> Visited;
287  Worklist.push_back(DAG->getRoot().getNode());
288  Visited.insert(DAG->getRoot().getNode());
289
290  SmallVector<SUnit*, 8> CallSUnits;
291  while (!Worklist.empty()) {
292    SDNode *NI = Worklist.pop_back_val();
293
294    // Add all operands to the worklist unless they've already been added.
295    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
296      if (Visited.insert(NI->getOperand(i).getNode()))
297        Worklist.push_back(NI->getOperand(i).getNode());
298
299    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
300      continue;
301
302    // If this node has already been processed, stop now.
303    if (NI->getNodeId() != -1) continue;
304
305    SUnit *NodeSUnit = NewSUnit(NI);
306
307    // See if anything is glued to this node, if so, add them to glued
308    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
309    // is required to be the last operand and result of a node.
310
311    // Scan up to find glued preds.
312    SDNode *N = NI;
313    while (N->getNumOperands() &&
314           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
315      N = N->getOperand(N->getNumOperands()-1).getNode();
316      assert(N->getNodeId() == -1 && "Node already inserted!");
317      N->setNodeId(NodeSUnit->NodeNum);
318      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
319        NodeSUnit->isCall = true;
320    }
321
322    // Scan down to find any glued succs.
323    N = NI;
324    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
325      SDValue GlueVal(N, N->getNumValues()-1);
326
327      // There are either zero or one users of the Glue result.
328      bool HasGlueUse = false;
329      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
330           UI != E; ++UI)
331        if (GlueVal.isOperandOf(*UI)) {
332          HasGlueUse = true;
333          assert(N->getNodeId() == -1 && "Node already inserted!");
334          N->setNodeId(NodeSUnit->NodeNum);
335          N = *UI;
336          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
337            NodeSUnit->isCall = true;
338          break;
339        }
340      if (!HasGlueUse) break;
341    }
342
343    if (NodeSUnit->isCall)
344      CallSUnits.push_back(NodeSUnit);
345
346    // Schedule zero-latency TokenFactor below any nodes that may increase the
347    // schedule height. Otherwise, ancestors of the TokenFactor may appear to
348    // have false stalls.
349    if (NI->getOpcode() == ISD::TokenFactor)
350      NodeSUnit->isScheduleLow = true;
351
352    // If there are glue operands involved, N is now the bottom-most node
353    // of the sequence of nodes that are glued together.
354    // Update the SUnit.
355    NodeSUnit->setNode(N);
356    assert(N->getNodeId() == -1 && "Node already inserted!");
357    N->setNodeId(NodeSUnit->NodeNum);
358
359    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
360    InitNumRegDefsLeft(NodeSUnit);
361
362    // Assign the Latency field of NodeSUnit using target-provided information.
363    ComputeLatency(NodeSUnit);
364  }
365
366  // Find all call operands.
367  while (!CallSUnits.empty()) {
368    SUnit *SU = CallSUnits.pop_back_val();
369    for (const SDNode *SUNode = SU->getNode(); SUNode;
370         SUNode = SUNode->getGluedNode()) {
371      if (SUNode->getOpcode() != ISD::CopyToReg)
372        continue;
373      SDNode *SrcN = SUNode->getOperand(2).getNode();
374      if (isPassiveNode(SrcN)) continue;   // Not scheduled.
375      SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
376      SrcSU->isCallOp = true;
377    }
378  }
379}
380
381void ScheduleDAGSDNodes::AddSchedEdges() {
382  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
383
384  // Check to see if the scheduler cares about latencies.
385  bool UnitLatencies = ForceUnitLatencies();
386
387  // Pass 2: add the preds, succs, etc.
388  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
389    SUnit *SU = &SUnits[su];
390    SDNode *MainNode = SU->getNode();
391
392    if (MainNode->isMachineOpcode()) {
393      unsigned Opc = MainNode->getMachineOpcode();
394      const MCInstrDesc &MCID = TII->get(Opc);
395      for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
396        if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
397          SU->isTwoAddress = true;
398          break;
399        }
400      }
401      if (MCID.isCommutable())
402        SU->isCommutable = true;
403    }
404
405    // Find all predecessors and successors of the group.
406    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
407      if (N->isMachineOpcode() &&
408          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
409        SU->hasPhysRegClobbers = true;
410        unsigned NumUsed = InstrEmitter::CountResults(N);
411        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
412          --NumUsed;    // Skip over unused values at the end.
413        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
414          SU->hasPhysRegDefs = true;
415      }
416
417      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
418        SDNode *OpN = N->getOperand(i).getNode();
419        if (isPassiveNode(OpN)) continue;   // Not scheduled.
420        SUnit *OpSU = &SUnits[OpN->getNodeId()];
421        assert(OpSU && "Node has no SUnit!");
422        if (OpSU == SU) continue;           // In the same group.
423
424        EVT OpVT = N->getOperand(i).getValueType();
425        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
426        bool isChain = OpVT == MVT::Other;
427
428        unsigned PhysReg = 0;
429        int Cost = 1;
430        // Determine if this is a physical register dependency.
431        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
432        assert((PhysReg == 0 || !isChain) &&
433               "Chain dependence via physreg data?");
434        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
435        // emits a copy from the physical register to a virtual register unless
436        // it requires a cross class copy (cost < 0). That means we are only
437        // treating "expensive to copy" register dependency as physical register
438        // dependency. This may change in the future though.
439        if (Cost >= 0 && !StressSched)
440          PhysReg = 0;
441
442        // If this is a ctrl dep, latency is 1.
443        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
444        // Special-case TokenFactor chains as zero-latency.
445        if(isChain && OpN->getOpcode() == ISD::TokenFactor)
446          OpLatency = 0;
447
448        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
449                               OpLatency, PhysReg);
450        if (!isChain && !UnitLatencies) {
451          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
452          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
453        }
454
455        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
456          // Multiple register uses are combined in the same SUnit. For example,
457          // we could have a set of glued nodes with all their defs consumed by
458          // another set of glued nodes. Register pressure tracking sees this as
459          // a single use, so to keep pressure balanced we reduce the defs.
460          //
461          // We can't tell (without more book-keeping) if this results from
462          // glued nodes or duplicate operands. As long as we don't reduce
463          // NumRegDefsLeft to zero, we handle the common cases well.
464          --OpSU->NumRegDefsLeft;
465        }
466      }
467    }
468  }
469}
470
471/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
472/// are input.  This SUnit graph is similar to the SelectionDAG, but
473/// excludes nodes that aren't interesting to scheduling, and represents
474/// glued together nodes with a single SUnit.
475void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
476  // Cluster certain nodes which should be scheduled together.
477  ClusterNodes();
478  // Populate the SUnits array.
479  BuildSchedUnits();
480  // Compute all the scheduling dependencies between nodes.
481  AddSchedEdges();
482}
483
484// Initialize NumNodeDefs for the current Node's opcode.
485void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
486  // Check for phys reg copy.
487  if (!Node)
488    return;
489
490  if (!Node->isMachineOpcode()) {
491    if (Node->getOpcode() == ISD::CopyFromReg)
492      NodeNumDefs = 1;
493    else
494      NodeNumDefs = 0;
495    return;
496  }
497  unsigned POpc = Node->getMachineOpcode();
498  if (POpc == TargetOpcode::IMPLICIT_DEF) {
499    // No register need be allocated for this.
500    NodeNumDefs = 0;
501    return;
502  }
503  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
504  // Some instructions define regs that are not represented in the selection DAG
505  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
506  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
507  DefIdx = 0;
508}
509
510// Construct a RegDefIter for this SUnit and find the first valid value.
511ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
512                                           const ScheduleDAGSDNodes *SD)
513  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
514  InitNodeNumDefs();
515  Advance();
516}
517
518// Advance to the next valid value defined by the SUnit.
519void ScheduleDAGSDNodes::RegDefIter::Advance() {
520  for (;Node;) { // Visit all glued nodes.
521    for (;DefIdx < NodeNumDefs; ++DefIdx) {
522      if (!Node->hasAnyUseOfValue(DefIdx))
523        continue;
524      ValueType = Node->getValueType(DefIdx);
525      ++DefIdx;
526      return; // Found a normal regdef.
527    }
528    Node = Node->getGluedNode();
529    if (Node == NULL) {
530      return; // No values left to visit.
531    }
532    InitNodeNumDefs();
533  }
534}
535
536void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
537  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
538  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
539    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
540    ++SU->NumRegDefsLeft;
541  }
542}
543
544void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
545  SDNode *N = SU->getNode();
546
547  // TokenFactor operands are considered zero latency, and some schedulers
548  // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
549  // whenever node latency is nonzero.
550  if (N && N->getOpcode() == ISD::TokenFactor) {
551    SU->Latency = 0;
552    return;
553  }
554
555  // Check to see if the scheduler cares about latencies.
556  if (ForceUnitLatencies()) {
557    SU->Latency = 1;
558    return;
559  }
560
561  if (!InstrItins || InstrItins->isEmpty()) {
562    if (N && N->isMachineOpcode() &&
563        TII->isHighLatencyDef(N->getMachineOpcode()))
564      SU->Latency = HighLatencyCycles;
565    else
566      SU->Latency = 1;
567    return;
568  }
569
570  // Compute the latency for the node.  We use the sum of the latencies for
571  // all nodes glued together into this SUnit.
572  SU->Latency = 0;
573  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
574    if (N->isMachineOpcode())
575      SU->Latency += TII->getInstrLatency(InstrItins, N);
576}
577
578void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
579                                               unsigned OpIdx, SDep& dep) const{
580  // Check to see if the scheduler cares about latencies.
581  if (ForceUnitLatencies())
582    return;
583
584  if (dep.getKind() != SDep::Data)
585    return;
586
587  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
588  if (Use->isMachineOpcode())
589    // Adjust the use operand index by num of defs.
590    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
591  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
592  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
593      !BB->succ_empty()) {
594    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
595    if (TargetRegisterInfo::isVirtualRegister(Reg))
596      // This copy is a liveout value. It is likely coalesced, so reduce the
597      // latency so not to penalize the def.
598      // FIXME: need target specific adjustment here?
599      Latency = (Latency > 1) ? Latency - 1 : 1;
600  }
601  if (Latency >= 0)
602    dep.setLatency(Latency);
603}
604
605void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
606  if (!SU->getNode()) {
607    dbgs() << "PHYS REG COPY\n";
608    return;
609  }
610
611  SU->getNode()->dump(DAG);
612  dbgs() << "\n";
613  SmallVector<SDNode *, 4> GluedNodes;
614  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
615    GluedNodes.push_back(N);
616  while (!GluedNodes.empty()) {
617    dbgs() << "    ";
618    GluedNodes.back()->dump(DAG);
619    dbgs() << "\n";
620    GluedNodes.pop_back();
621  }
622}
623
624namespace {
625  struct OrderSorter {
626    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
627                    const std::pair<unsigned, MachineInstr*> &B) {
628      return A.first < B.first;
629    }
630  };
631}
632
633/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
634static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
635                               InstrEmitter &Emitter,
636                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
637                            DenseMap<SDValue, unsigned> &VRBaseMap,
638                            unsigned Order) {
639  if (!N->getHasDebugValue())
640    return;
641
642  // Opportunistically insert immediate dbg_value uses, i.e. those with source
643  // order number right after the N.
644  MachineBasicBlock *BB = Emitter.getBlock();
645  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
646  ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
647  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
648    if (DVs[i]->isInvalidated())
649      continue;
650    unsigned DVOrder = DVs[i]->getOrder();
651    if (!Order || DVOrder == ++Order) {
652      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
653      if (DbgMI) {
654        Orders.push_back(std::make_pair(DVOrder, DbgMI));
655        BB->insert(InsertPos, DbgMI);
656      }
657      DVs[i]->setIsInvalidated();
658    }
659  }
660}
661
662// ProcessSourceNode - Process nodes with source order numbers. These are added
663// to a vector which EmitSchedule uses to determine how to insert dbg_value
664// instructions in the right order.
665static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
666                           InstrEmitter &Emitter,
667                           DenseMap<SDValue, unsigned> &VRBaseMap,
668                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
669                           SmallSet<unsigned, 8> &Seen) {
670  unsigned Order = DAG->GetOrdering(N);
671  if (!Order || !Seen.insert(Order)) {
672    // Process any valid SDDbgValues even if node does not have any order
673    // assigned.
674    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
675    return;
676  }
677
678  MachineBasicBlock *BB = Emitter.getBlock();
679  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
680    // Did not insert any instruction.
681    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
682    return;
683  }
684
685  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
686  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
687}
688
689
690/// EmitSchedule - Emit the machine code in scheduled order.
691MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
692  InstrEmitter Emitter(BB, InsertPos);
693  DenseMap<SDValue, unsigned> VRBaseMap;
694  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
695  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
696  SmallSet<unsigned, 8> Seen;
697  bool HasDbg = DAG->hasDebugValues();
698
699  // If this is the first BB, emit byval parameter dbg_value's.
700  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
701    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
702    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
703    for (; PDI != PDE; ++PDI) {
704      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
705      if (DbgMI)
706        BB->insert(InsertPos, DbgMI);
707    }
708  }
709
710  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
711    SUnit *SU = Sequence[i];
712    if (!SU) {
713      // Null SUnit* is a noop.
714      EmitNoop();
715      continue;
716    }
717
718    // For pre-regalloc scheduling, create instructions corresponding to the
719    // SDNode and any glued SDNodes and append them to the block.
720    if (!SU->getNode()) {
721      // Emit a copy.
722      EmitPhysRegCopy(SU, CopyVRBaseMap);
723      continue;
724    }
725
726    SmallVector<SDNode *, 4> GluedNodes;
727    for (SDNode *N = SU->getNode()->getGluedNode(); N;
728         N = N->getGluedNode())
729      GluedNodes.push_back(N);
730    while (!GluedNodes.empty()) {
731      SDNode *N = GluedNodes.back();
732      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
733                       VRBaseMap);
734      // Remember the source order of the inserted instruction.
735      if (HasDbg)
736        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
737      GluedNodes.pop_back();
738    }
739    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
740                     VRBaseMap);
741    // Remember the source order of the inserted instruction.
742    if (HasDbg)
743      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
744                        Seen);
745  }
746
747  // Insert all the dbg_values which have not already been inserted in source
748  // order sequence.
749  if (HasDbg) {
750    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
751
752    // Sort the source order instructions and use the order to insert debug
753    // values.
754    std::sort(Orders.begin(), Orders.end(), OrderSorter());
755
756    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
757    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
758    // Now emit the rest according to source order.
759    unsigned LastOrder = 0;
760    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
761      unsigned Order = Orders[i].first;
762      MachineInstr *MI = Orders[i].second;
763      // Insert all SDDbgValue's whose order(s) are before "Order".
764      if (!MI)
765        continue;
766      for (; DI != DE &&
767             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
768        if ((*DI)->isInvalidated())
769          continue;
770        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
771        if (DbgMI) {
772          if (!LastOrder)
773            // Insert to start of the BB (after PHIs).
774            BB->insert(BBBegin, DbgMI);
775          else {
776            // Insert at the instruction, which may be in a different
777            // block, if the block was split by a custom inserter.
778            MachineBasicBlock::iterator Pos = MI;
779            MI->getParent()->insert(llvm::next(Pos), DbgMI);
780          }
781        }
782      }
783      LastOrder = Order;
784    }
785    // Add trailing DbgValue's before the terminator. FIXME: May want to add
786    // some of them before one or more conditional branches?
787    while (DI != DE) {
788      MachineBasicBlock *InsertBB = Emitter.getBlock();
789      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
790      if (!(*DI)->isInvalidated()) {
791        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
792        if (DbgMI)
793          InsertBB->insert(Pos, DbgMI);
794      }
795      ++DI;
796    }
797  }
798
799  BB = Emitter.getBlock();
800  InsertPos = Emitter.getInsertPos();
801  return BB;
802}
803