ScheduleDAGSDNodes.cpp revision 7c88cdcc3ba49101fa119ec3b403e9980934384e
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(LoadsClustered, "Number of loads clustered together");
35
36ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
37  : ScheduleDAG(mf),
38    InstrItins(mf.getTarget().getInstrItineraryData()) {}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
43                             MachineBasicBlock::iterator insertPos) {
44  DAG = dag;
45  ScheduleDAG::Run(bb, insertPos);
46}
47
48/// NewSUnit - Creates a new SUnit and return a ptr to it.
49///
50SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
51#ifndef NDEBUG
52  const SUnit *Addr = 0;
53  if (!SUnits.empty())
54    Addr = &SUnits[0];
55#endif
56  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
57  assert((Addr == 0 || Addr == &SUnits[0]) &&
58         "SUnits std::vector reallocated on the fly!");
59  SUnits.back().OrigNode = &SUnits.back();
60  SUnit *SU = &SUnits.back();
61  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
62  if (!N ||
63      (N->isMachineOpcode() &&
64       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
65    SU->SchedulingPref = Sched::None;
66  else
67    SU->SchedulingPref = TLI.getSchedulingPreference(N);
68  return SU;
69}
70
71SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
72  SUnit *SU = NewSUnit(Old->getNode());
73  SU->OrigNode = Old->OrigNode;
74  SU->Latency = Old->Latency;
75  SU->isTwoAddress = Old->isTwoAddress;
76  SU->isCommutable = Old->isCommutable;
77  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
78  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
79  SU->SchedulingPref = Old->SchedulingPref;
80  Old->isCloned = true;
81  return SU;
82}
83
84/// CheckForPhysRegDependency - Check if the dependency between def and use of
85/// a specified operand is a physical register dependency. If so, returns the
86/// register and the cost of copying the register.
87static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
88                                      const TargetRegisterInfo *TRI,
89                                      const TargetInstrInfo *TII,
90                                      unsigned &PhysReg, int &Cost) {
91  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
92    return;
93
94  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
95  if (TargetRegisterInfo::isVirtualRegister(Reg))
96    return;
97
98  unsigned ResNo = User->getOperand(2).getResNo();
99  if (Def->isMachineOpcode()) {
100    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
101    if (ResNo >= II.getNumDefs() &&
102        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
103      PhysReg = Reg;
104      const TargetRegisterClass *RC =
105        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
106      Cost = RC->getCopyCost();
107    }
108  }
109}
110
111static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
112                     SelectionDAG *DAG) {
113  SmallVector<EVT, 4> VTs;
114  SDNode *FlagDestNode = Flag.getNode();
115
116  // Don't add a flag from a node to itself.
117  if (FlagDestNode == N) return;
118
119  // Don't add a flag to something which already has a flag.
120  if (N->getValueType(N->getNumValues() - 1) == MVT::Flag) return;
121
122  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
123    VTs.push_back(N->getValueType(I));
124
125  if (AddFlag)
126    VTs.push_back(MVT::Flag);
127
128  SmallVector<SDValue, 4> Ops;
129  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
130    Ops.push_back(N->getOperand(I));
131
132  if (FlagDestNode)
133    Ops.push_back(Flag);
134
135  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
136  MachineSDNode::mmo_iterator Begin = 0, End = 0;
137  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
138
139  // Store memory references.
140  if (MN) {
141    Begin = MN->memoperands_begin();
142    End = MN->memoperands_end();
143  }
144
145  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
146
147  // Reset the memory references
148  if (MN)
149    MN->setMemRefs(Begin, End);
150}
151
152/// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
153/// This function finds loads of the same base and different offsets. If the
154/// offsets are not far apart (target specific), it add MVT::Flag inputs and
155/// outputs to ensure they are scheduled together and in order. This
156/// optimization may benefit some targets by improving cache locality.
157void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
158  SDNode *Chain = 0;
159  unsigned NumOps = Node->getNumOperands();
160  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
161    Chain = Node->getOperand(NumOps-1).getNode();
162  if (!Chain)
163    return;
164
165  // Look for other loads of the same chain. Find loads that are loading from
166  // the same base pointer and different offsets.
167  SmallPtrSet<SDNode*, 16> Visited;
168  SmallVector<int64_t, 4> Offsets;
169  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
170  bool Cluster = false;
171  SDNode *Base = Node;
172  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
173       I != E; ++I) {
174    SDNode *User = *I;
175    if (User == Node || !Visited.insert(User))
176      continue;
177    int64_t Offset1, Offset2;
178    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
179        Offset1 == Offset2)
180      // FIXME: Should be ok if they addresses are identical. But earlier
181      // optimizations really should have eliminated one of the loads.
182      continue;
183    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
184      Offsets.push_back(Offset1);
185    O2SMap.insert(std::make_pair(Offset2, User));
186    Offsets.push_back(Offset2);
187    if (Offset2 < Offset1)
188      Base = User;
189    Cluster = true;
190  }
191
192  if (!Cluster)
193    return;
194
195  // Sort them in increasing order.
196  std::sort(Offsets.begin(), Offsets.end());
197
198  // Check if the loads are close enough.
199  SmallVector<SDNode*, 4> Loads;
200  unsigned NumLoads = 0;
201  int64_t BaseOff = Offsets[0];
202  SDNode *BaseLoad = O2SMap[BaseOff];
203  Loads.push_back(BaseLoad);
204  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
205    int64_t Offset = Offsets[i];
206    SDNode *Load = O2SMap[Offset];
207    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
208      break; // Stop right here. Ignore loads that are further away.
209    Loads.push_back(Load);
210    ++NumLoads;
211  }
212
213  if (NumLoads == 0)
214    return;
215
216  // Cluster loads by adding MVT::Flag outputs and inputs. This also
217  // ensure they are scheduled in order of increasing addresses.
218  SDNode *Lead = Loads[0];
219  AddFlags(Lead, SDValue(0, 0), true, DAG);
220
221  SDValue InFlag = SDValue(Lead, Lead->getNumValues() - 1);
222  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
223    bool OutFlag = I < E - 1;
224    SDNode *Load = Loads[I];
225
226    AddFlags(Load, InFlag, OutFlag, DAG);
227
228    if (OutFlag)
229      InFlag = SDValue(Load, Load->getNumValues() - 1);
230
231    ++LoadsClustered;
232  }
233}
234
235/// ClusterNodes - Cluster certain nodes which should be scheduled together.
236///
237void ScheduleDAGSDNodes::ClusterNodes() {
238  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
239       E = DAG->allnodes_end(); NI != E; ++NI) {
240    SDNode *Node = &*NI;
241    if (!Node || !Node->isMachineOpcode())
242      continue;
243
244    unsigned Opc = Node->getMachineOpcode();
245    const TargetInstrDesc &TID = TII->get(Opc);
246    if (TID.mayLoad())
247      // Cluster loads from "near" addresses into combined SUnits.
248      ClusterNeighboringLoads(Node);
249  }
250}
251
252void ScheduleDAGSDNodes::BuildSchedUnits() {
253  // During scheduling, the NodeId field of SDNode is used to map SDNodes
254  // to their associated SUnits by holding SUnits table indices. A value
255  // of -1 means the SDNode does not yet have an associated SUnit.
256  unsigned NumNodes = 0;
257  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
258       E = DAG->allnodes_end(); NI != E; ++NI) {
259    NI->setNodeId(-1);
260    ++NumNodes;
261  }
262
263  // Reserve entries in the vector for each of the SUnits we are creating.  This
264  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
265  // invalidated.
266  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
267  // This is a temporary workaround.
268  SUnits.reserve(NumNodes * 2);
269
270  // Add all nodes in depth first order.
271  SmallVector<SDNode*, 64> Worklist;
272  SmallPtrSet<SDNode*, 64> Visited;
273  Worklist.push_back(DAG->getRoot().getNode());
274  Visited.insert(DAG->getRoot().getNode());
275
276  while (!Worklist.empty()) {
277    SDNode *NI = Worklist.pop_back_val();
278
279    // Add all operands to the worklist unless they've already been added.
280    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
281      if (Visited.insert(NI->getOperand(i).getNode()))
282        Worklist.push_back(NI->getOperand(i).getNode());
283
284    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
285      continue;
286
287    // If this node has already been processed, stop now.
288    if (NI->getNodeId() != -1) continue;
289
290    SUnit *NodeSUnit = NewSUnit(NI);
291
292    // See if anything is flagged to this node, if so, add them to flagged
293    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
294    // are required to be the last operand and result of a node.
295
296    // Scan up to find flagged preds.
297    SDNode *N = NI;
298    while (N->getNumOperands() &&
299           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
300      N = N->getOperand(N->getNumOperands()-1).getNode();
301      assert(N->getNodeId() == -1 && "Node already inserted!");
302      N->setNodeId(NodeSUnit->NodeNum);
303    }
304
305    // Scan down to find any flagged succs.
306    N = NI;
307    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
308      SDValue FlagVal(N, N->getNumValues()-1);
309
310      // There are either zero or one users of the Flag result.
311      bool HasFlagUse = false;
312      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
313           UI != E; ++UI)
314        if (FlagVal.isOperandOf(*UI)) {
315          HasFlagUse = true;
316          assert(N->getNodeId() == -1 && "Node already inserted!");
317          N->setNodeId(NodeSUnit->NodeNum);
318          N = *UI;
319          break;
320        }
321      if (!HasFlagUse) break;
322    }
323
324    // If there are flag operands involved, N is now the bottom-most node
325    // of the sequence of nodes that are flagged together.
326    // Update the SUnit.
327    NodeSUnit->setNode(N);
328    assert(N->getNodeId() == -1 && "Node already inserted!");
329    N->setNodeId(NodeSUnit->NodeNum);
330
331    // Assign the Latency field of NodeSUnit using target-provided information.
332    ComputeLatency(NodeSUnit);
333  }
334}
335
336void ScheduleDAGSDNodes::AddSchedEdges() {
337  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
338
339  // Check to see if the scheduler cares about latencies.
340  bool UnitLatencies = ForceUnitLatencies();
341
342  // Pass 2: add the preds, succs, etc.
343  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
344    SUnit *SU = &SUnits[su];
345    SDNode *MainNode = SU->getNode();
346
347    if (MainNode->isMachineOpcode()) {
348      unsigned Opc = MainNode->getMachineOpcode();
349      const TargetInstrDesc &TID = TII->get(Opc);
350      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
351        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
352          SU->isTwoAddress = true;
353          break;
354        }
355      }
356      if (TID.isCommutable())
357        SU->isCommutable = true;
358    }
359
360    // Find all predecessors and successors of the group.
361    for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
362      if (N->isMachineOpcode() &&
363          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
364        SU->hasPhysRegClobbers = true;
365        unsigned NumUsed = InstrEmitter::CountResults(N);
366        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
367          --NumUsed;    // Skip over unused values at the end.
368        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
369          SU->hasPhysRegDefs = true;
370      }
371
372      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
373        SDNode *OpN = N->getOperand(i).getNode();
374        if (isPassiveNode(OpN)) continue;   // Not scheduled.
375        SUnit *OpSU = &SUnits[OpN->getNodeId()];
376        assert(OpSU && "Node has no SUnit!");
377        if (OpSU == SU) continue;           // In the same group.
378
379        EVT OpVT = N->getOperand(i).getValueType();
380        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
381        bool isChain = OpVT == MVT::Other;
382
383        unsigned PhysReg = 0;
384        int Cost = 1;
385        // Determine if this is a physical register dependency.
386        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
387        assert((PhysReg == 0 || !isChain) &&
388               "Chain dependence via physreg data?");
389        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
390        // emits a copy from the physical register to a virtual register unless
391        // it requires a cross class copy (cost < 0). That means we are only
392        // treating "expensive to copy" register dependency as physical register
393        // dependency. This may change in the future though.
394        if (Cost >= 0)
395          PhysReg = 0;
396
397        // If this is a ctrl dep, latency is 1.
398        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
399        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
400                               OpLatency, PhysReg);
401        if (!isChain && !UnitLatencies) {
402          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
403          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
404        }
405
406        SU->addPred(dep);
407      }
408    }
409  }
410}
411
412/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
413/// are input.  This SUnit graph is similar to the SelectionDAG, but
414/// excludes nodes that aren't interesting to scheduling, and represents
415/// flagged together nodes with a single SUnit.
416void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
417  // Cluster certain nodes which should be scheduled together.
418  ClusterNodes();
419  // Populate the SUnits array.
420  BuildSchedUnits();
421  // Compute all the scheduling dependencies between nodes.
422  AddSchedEdges();
423}
424
425void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
426  // Check to see if the scheduler cares about latencies.
427  if (ForceUnitLatencies()) {
428    SU->Latency = 1;
429    return;
430  }
431
432  if (!InstrItins || InstrItins->isEmpty()) {
433    SU->Latency = 1;
434    return;
435  }
436
437  // Compute the latency for the node.  We use the sum of the latencies for
438  // all nodes flagged together into this SUnit.
439  SU->Latency = 0;
440  for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
441    if (N->isMachineOpcode()) {
442      SU->Latency += InstrItins->
443        getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
444    }
445}
446
447void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
448                                               unsigned OpIdx, SDep& dep) const{
449  // Check to see if the scheduler cares about latencies.
450  if (ForceUnitLatencies())
451    return;
452
453  if (dep.getKind() != SDep::Data)
454    return;
455
456  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
457  if (Use->isMachineOpcode())
458    // Adjust the use operand index by num of defs.
459    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
460  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
461  if (Latency >= 0)
462    dep.setLatency(Latency);
463}
464
465void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
466  if (!SU->getNode()) {
467    dbgs() << "PHYS REG COPY\n";
468    return;
469  }
470
471  SU->getNode()->dump(DAG);
472  dbgs() << "\n";
473  SmallVector<SDNode *, 4> FlaggedNodes;
474  for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
475    FlaggedNodes.push_back(N);
476  while (!FlaggedNodes.empty()) {
477    dbgs() << "    ";
478    FlaggedNodes.back()->dump(DAG);
479    dbgs() << "\n";
480    FlaggedNodes.pop_back();
481  }
482}
483
484namespace {
485  struct OrderSorter {
486    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
487                    const std::pair<unsigned, MachineInstr*> &B) {
488      return A.first < B.first;
489    }
490  };
491}
492
493// ProcessSourceNode - Process nodes with source order numbers. These are added
494// to a vector which EmitSchedule uses to determine how to insert dbg_value
495// instructions in the right order.
496static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
497                           InstrEmitter &Emitter,
498                           DenseMap<SDValue, unsigned> &VRBaseMap,
499                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
500                           SmallSet<unsigned, 8> &Seen) {
501  unsigned Order = DAG->GetOrdering(N);
502  if (!Order || !Seen.insert(Order))
503    return;
504
505  MachineBasicBlock *BB = Emitter.getBlock();
506  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
507    // Did not insert any instruction.
508    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
509    return;
510  }
511
512  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
513  if (!N->getHasDebugValue())
514    return;
515  // Opportunistically insert immediate dbg_value uses, i.e. those with source
516  // order number right after the N.
517  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
518  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
519  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
520    if (DVs[i]->isInvalidated())
521      continue;
522    unsigned DVOrder = DVs[i]->getOrder();
523    if (DVOrder == ++Order) {
524      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
525      if (DbgMI) {
526        Orders.push_back(std::make_pair(DVOrder, DbgMI));
527        BB->insert(InsertPos, DbgMI);
528      }
529      DVs[i]->setIsInvalidated();
530    }
531  }
532}
533
534
535/// EmitSchedule - Emit the machine code in scheduled order.
536MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
537  InstrEmitter Emitter(BB, InsertPos);
538  DenseMap<SDValue, unsigned> VRBaseMap;
539  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
540  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
541  SmallSet<unsigned, 8> Seen;
542  bool HasDbg = DAG->hasDebugValues();
543
544  // If this is the first BB, emit byval parameter dbg_value's.
545  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
546    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
547    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
548    for (; PDI != PDE; ++PDI) {
549      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
550      if (DbgMI)
551        BB->insert(InsertPos, DbgMI);
552    }
553  }
554
555  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
556    SUnit *SU = Sequence[i];
557    if (!SU) {
558      // Null SUnit* is a noop.
559      EmitNoop();
560      continue;
561    }
562
563    // For pre-regalloc scheduling, create instructions corresponding to the
564    // SDNode and any flagged SDNodes and append them to the block.
565    if (!SU->getNode()) {
566      // Emit a copy.
567      EmitPhysRegCopy(SU, CopyVRBaseMap);
568      continue;
569    }
570
571    SmallVector<SDNode *, 4> FlaggedNodes;
572    for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
573         N = N->getFlaggedNode())
574      FlaggedNodes.push_back(N);
575    while (!FlaggedNodes.empty()) {
576      SDNode *N = FlaggedNodes.back();
577      Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
578                       VRBaseMap);
579      // Remember the source order of the inserted instruction.
580      if (HasDbg)
581        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
582      FlaggedNodes.pop_back();
583    }
584    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
585                     VRBaseMap);
586    // Remember the source order of the inserted instruction.
587    if (HasDbg)
588      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
589                        Seen);
590  }
591
592  // Insert all the dbg_values which have not already been inserted in source
593  // order sequence.
594  if (HasDbg) {
595    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
596
597    // Sort the source order instructions and use the order to insert debug
598    // values.
599    std::sort(Orders.begin(), Orders.end(), OrderSorter());
600
601    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
602    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
603    // Now emit the rest according to source order.
604    unsigned LastOrder = 0;
605    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
606      unsigned Order = Orders[i].first;
607      MachineInstr *MI = Orders[i].second;
608      // Insert all SDDbgValue's whose order(s) are before "Order".
609      if (!MI)
610        continue;
611#ifndef NDEBUG
612      unsigned LastDIOrder = 0;
613#endif
614      for (; DI != DE &&
615             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
616#ifndef NDEBUG
617        assert((*DI)->getOrder() >= LastDIOrder &&
618               "SDDbgValue nodes must be in source order!");
619        LastDIOrder = (*DI)->getOrder();
620#endif
621        if ((*DI)->isInvalidated())
622          continue;
623        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
624        if (DbgMI) {
625          if (!LastOrder)
626            // Insert to start of the BB (after PHIs).
627            BB->insert(BBBegin, DbgMI);
628          else {
629            // Insert at the instruction, which may be in a different
630            // block, if the block was split by a custom inserter.
631            MachineBasicBlock::iterator Pos = MI;
632            MI->getParent()->insert(llvm::next(Pos), DbgMI);
633          }
634        }
635      }
636      LastOrder = Order;
637    }
638    // Add trailing DbgValue's before the terminator. FIXME: May want to add
639    // some of them before one or more conditional branches?
640    while (DI != DE) {
641      MachineBasicBlock *InsertBB = Emitter.getBlock();
642      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
643      if (!(*DI)->isInvalidated()) {
644        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
645        if (DbgMI)
646          InsertBB->insert(Pos, DbgMI);
647      }
648      ++DI;
649    }
650  }
651
652  BB = Emitter.getBlock();
653  InsertPos = Emitter.getInsertPos();
654  return BB;
655}
656