ScheduleDAGSDNodes.cpp revision a8efe28a44996978faa42a387f1a6087a7b942c7
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Target/TargetSubtarget.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32STATISTIC(LoadsClustered, "Number of loads clustered together");
33
34ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
35  : ScheduleDAG(mf) {
36}
37
38/// Run - perform scheduling.
39///
40void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
41                             MachineBasicBlock::iterator insertPos) {
42  DAG = dag;
43  ScheduleDAG::Run(bb, insertPos);
44}
45
46SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
47  SUnit *SU = NewSUnit(Old->getNode());
48  SU->OrigNode = Old->OrigNode;
49  SU->Latency = Old->Latency;
50  SU->isTwoAddress = Old->isTwoAddress;
51  SU->isCommutable = Old->isCommutable;
52  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
53  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
54  Old->isCloned = true;
55  return SU;
56}
57
58/// CheckForPhysRegDependency - Check if the dependency between def and use of
59/// a specified operand is a physical register dependency. If so, returns the
60/// register and the cost of copying the register.
61static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
62                                      const TargetRegisterInfo *TRI,
63                                      const TargetInstrInfo *TII,
64                                      unsigned &PhysReg, int &Cost) {
65  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
66    return;
67
68  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
69  if (TargetRegisterInfo::isVirtualRegister(Reg))
70    return;
71
72  unsigned ResNo = User->getOperand(2).getResNo();
73  if (Def->isMachineOpcode()) {
74    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
75    if (ResNo >= II.getNumDefs() &&
76        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
77      PhysReg = Reg;
78      const TargetRegisterClass *RC =
79        TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
80      Cost = RC->getCopyCost();
81    }
82  }
83}
84
85static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag,
86                     SelectionDAG *DAG) {
87  SmallVector<EVT, 4> VTs;
88  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
89    VTs.push_back(N->getValueType(i));
90  if (AddFlag)
91    VTs.push_back(MVT::Flag);
92  SmallVector<SDValue, 4> Ops;
93  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
94    Ops.push_back(N->getOperand(i));
95  if (Flag.getNode())
96    Ops.push_back(Flag);
97  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
98  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
99}
100
101/// ClusterNeighboringLoads - Force nearby loads together by "flagging" them.
102/// This function finds loads of the same base and different offsets. If the
103/// offsets are not far apart (target specific), it add MVT::Flag inputs and
104/// outputs to ensure they are scheduled together and in order. This
105/// optimization may benefit some targets by improving cache locality.
106void ScheduleDAGSDNodes::ClusterNeighboringLoads() {
107  SmallPtrSet<SDNode*, 16> Visited;
108  SmallVector<int64_t, 4> Offsets;
109  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
110  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
111       E = DAG->allnodes_end(); NI != E; ++NI) {
112    SDNode *Node = &*NI;
113    if (!Node || !Node->isMachineOpcode())
114      continue;
115
116    unsigned Opc = Node->getMachineOpcode();
117    const TargetInstrDesc &TID = TII->get(Opc);
118    if (!TID.mayLoad())
119      continue;
120
121    SDNode *Chain = 0;
122    unsigned NumOps = Node->getNumOperands();
123    if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
124      Chain = Node->getOperand(NumOps-1).getNode();
125    if (!Chain)
126      continue;
127
128    // Look for other loads of the same chain. Find loads that are loading from
129    // the same base pointer and different offsets.
130    Visited.clear();
131    Offsets.clear();
132    O2SMap.clear();
133    bool Cluster = false;
134    SDNode *Base = Node;
135    int64_t BaseOffset;
136    for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
137         I != E; ++I) {
138      SDNode *User = *I;
139      if (User == Node || !Visited.insert(User))
140        continue;
141      int64_t Offset1, Offset2;
142      if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
143          Offset1 == Offset2)
144        // FIXME: Should be ok if they addresses are identical. But earlier
145        // optimizations really should have eliminated one of the loads.
146        continue;
147      if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
148        Offsets.push_back(Offset1);
149      O2SMap.insert(std::make_pair(Offset2, User));
150      Offsets.push_back(Offset2);
151      if (Offset2 < Offset1) {
152        Base = User;
153        BaseOffset = Offset2;
154      } else {
155        BaseOffset = Offset1;
156      }
157      Cluster = true;
158    }
159
160    if (!Cluster)
161      continue;
162
163    // Sort them in increasing order.
164    std::sort(Offsets.begin(), Offsets.end());
165
166    // Check if the loads are close enough.
167    SmallVector<SDNode*, 4> Loads;
168    unsigned NumLoads = 0;
169    int64_t BaseOff = Offsets[0];
170    SDNode *BaseLoad = O2SMap[BaseOff];
171    Loads.push_back(BaseLoad);
172    for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
173      int64_t Offset = Offsets[i];
174      SDNode *Load = O2SMap[Offset];
175      if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,
176                                        NumLoads))
177        break; // Stop right here. Ignore loads that are further away.
178      Loads.push_back(Load);
179      ++NumLoads;
180    }
181
182    if (NumLoads == 0)
183      continue;
184
185    // Cluster loads by adding MVT::Flag outputs and inputs. This also
186    // ensure they are scheduled in order of increasing addresses.
187    SDNode *Lead = Loads[0];
188    AddFlags(Lead, SDValue(0,0), true, DAG);
189    SDValue InFlag = SDValue(Lead, Lead->getNumValues()-1);
190    for (unsigned i = 1, e = Loads.size(); i != e; ++i) {
191      bool OutFlag = i < e-1;
192      SDNode *Load = Loads[i];
193      AddFlags(Load, InFlag, OutFlag, DAG);
194      if (OutFlag)
195        InFlag = SDValue(Load, Load->getNumValues()-1);
196      ++LoadsClustered;
197    }
198  }
199}
200
201void ScheduleDAGSDNodes::BuildSchedUnits() {
202  // During scheduling, the NodeId field of SDNode is used to map SDNodes
203  // to their associated SUnits by holding SUnits table indices. A value
204  // of -1 means the SDNode does not yet have an associated SUnit.
205  unsigned NumNodes = 0;
206  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
207       E = DAG->allnodes_end(); NI != E; ++NI) {
208    NI->setNodeId(-1);
209    ++NumNodes;
210  }
211
212  // Reserve entries in the vector for each of the SUnits we are creating.  This
213  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
214  // invalidated.
215  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
216  // This is a temporary workaround.
217  SUnits.reserve(NumNodes * 2);
218
219  // Check to see if the scheduler cares about latencies.
220  bool UnitLatencies = ForceUnitLatencies();
221
222  // Add all nodes in depth first order.
223  SmallVector<SDNode*, 64> Worklist;
224  SmallPtrSet<SDNode*, 64> Visited;
225  Worklist.push_back(DAG->getRoot().getNode());
226  Visited.insert(DAG->getRoot().getNode());
227
228  while (!Worklist.empty()) {
229    SDNode *NI = Worklist.pop_back_val();
230
231    // Add all operands to the worklist unless they've already been added.
232    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
233      if (Visited.insert(NI->getOperand(i).getNode()))
234        Worklist.push_back(NI->getOperand(i).getNode());
235
236    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
237      continue;
238
239    // If this node has already been processed, stop now.
240    if (NI->getNodeId() != -1) continue;
241
242    SUnit *NodeSUnit = NewSUnit(NI);
243
244    // See if anything is flagged to this node, if so, add them to flagged
245    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
246    // are required to be the last operand and result of a node.
247
248    // Scan up to find flagged preds.
249    SDNode *N = NI;
250    while (N->getNumOperands() &&
251           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
252      N = N->getOperand(N->getNumOperands()-1).getNode();
253      assert(N->getNodeId() == -1 && "Node already inserted!");
254      N->setNodeId(NodeSUnit->NodeNum);
255    }
256
257    // Scan down to find any flagged succs.
258    N = NI;
259    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
260      SDValue FlagVal(N, N->getNumValues()-1);
261
262      // There are either zero or one users of the Flag result.
263      bool HasFlagUse = false;
264      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
265           UI != E; ++UI)
266        if (FlagVal.isOperandOf(*UI)) {
267          HasFlagUse = true;
268          assert(N->getNodeId() == -1 && "Node already inserted!");
269          N->setNodeId(NodeSUnit->NodeNum);
270          N = *UI;
271          break;
272        }
273      if (!HasFlagUse) break;
274    }
275
276    // If there are flag operands involved, N is now the bottom-most node
277    // of the sequence of nodes that are flagged together.
278    // Update the SUnit.
279    NodeSUnit->setNode(N);
280    assert(N->getNodeId() == -1 && "Node already inserted!");
281    N->setNodeId(NodeSUnit->NodeNum);
282
283    // Assign the Latency field of NodeSUnit using target-provided information.
284    if (UnitLatencies)
285      NodeSUnit->Latency = 1;
286    else
287      ComputeLatency(NodeSUnit);
288  }
289}
290
291void ScheduleDAGSDNodes::AddSchedEdges() {
292  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
293
294  // Check to see if the scheduler cares about latencies.
295  bool UnitLatencies = ForceUnitLatencies();
296
297  // Pass 2: add the preds, succs, etc.
298  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
299    SUnit *SU = &SUnits[su];
300    SDNode *MainNode = SU->getNode();
301
302    if (MainNode->isMachineOpcode()) {
303      unsigned Opc = MainNode->getMachineOpcode();
304      const TargetInstrDesc &TID = TII->get(Opc);
305      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
306        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
307          SU->isTwoAddress = true;
308          break;
309        }
310      }
311      if (TID.isCommutable())
312        SU->isCommutable = true;
313    }
314
315    // Find all predecessors and successors of the group.
316    for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
317      if (N->isMachineOpcode() &&
318          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
319        SU->hasPhysRegClobbers = true;
320        unsigned NumUsed = InstrEmitter::CountResults(N);
321        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
322          --NumUsed;    // Skip over unused values at the end.
323        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
324          SU->hasPhysRegDefs = true;
325      }
326
327      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
328        SDNode *OpN = N->getOperand(i).getNode();
329        if (isPassiveNode(OpN)) continue;   // Not scheduled.
330        SUnit *OpSU = &SUnits[OpN->getNodeId()];
331        assert(OpSU && "Node has no SUnit!");
332        if (OpSU == SU) continue;           // In the same group.
333
334        EVT OpVT = N->getOperand(i).getValueType();
335        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
336        bool isChain = OpVT == MVT::Other;
337
338        unsigned PhysReg = 0;
339        int Cost = 1;
340        // Determine if this is a physical register dependency.
341        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
342        assert((PhysReg == 0 || !isChain) &&
343               "Chain dependence via physreg data?");
344        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
345        // emits a copy from the physical register to a virtual register unless
346        // it requires a cross class copy (cost < 0). That means we are only
347        // treating "expensive to copy" register dependency as physical register
348        // dependency. This may change in the future though.
349        if (Cost >= 0)
350          PhysReg = 0;
351
352        const SDep& dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
353                               OpSU->Latency, PhysReg);
354        if (!isChain && !UnitLatencies) {
355          ComputeOperandLatency(OpSU, SU, (SDep &)dep);
356          ST.adjustSchedDependency(OpSU, SU, (SDep &)dep);
357        }
358
359        SU->addPred(dep);
360      }
361    }
362  }
363}
364
365/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
366/// are input.  This SUnit graph is similar to the SelectionDAG, but
367/// excludes nodes that aren't interesting to scheduling, and represents
368/// flagged together nodes with a single SUnit.
369void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
370  // Cluster loads from "near" addresses into combined SUnits.
371  ClusterNeighboringLoads();
372  // Populate the SUnits array.
373  BuildSchedUnits();
374  // Compute all the scheduling dependencies between nodes.
375  AddSchedEdges();
376}
377
378void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
379  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
380
381  // Compute the latency for the node.  We use the sum of the latencies for
382  // all nodes flagged together into this SUnit.
383  SU->Latency = 0;
384  for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
385    if (N->isMachineOpcode()) {
386      SU->Latency += InstrItins.
387        getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
388    }
389}
390
391void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
392  if (!SU->getNode()) {
393    dbgs() << "PHYS REG COPY\n";
394    return;
395  }
396
397  SU->getNode()->dump(DAG);
398  dbgs() << "\n";
399  SmallVector<SDNode *, 4> FlaggedNodes;
400  for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
401    FlaggedNodes.push_back(N);
402  while (!FlaggedNodes.empty()) {
403    dbgs() << "    ";
404    FlaggedNodes.back()->dump(DAG);
405    dbgs() << "\n";
406    FlaggedNodes.pop_back();
407  }
408}
409
410/// EmitSchedule - Emit the machine code in scheduled order.
411MachineBasicBlock *ScheduleDAGSDNodes::
412EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
413  InstrEmitter Emitter(BB, InsertPos);
414  DenseMap<SDValue, unsigned> VRBaseMap;
415  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
416
417  // For now, any constant debug info nodes go at the beginning.
418  for (SDDbgInfo::ConstDbgIterator I = DAG->DbgConstBegin(),
419       E = DAG->DbgConstEnd(); I!=E; I++) {
420    Emitter.EmitDbgValue(*I, EM);
421    delete *I;
422  }
423
424  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
425    SUnit *SU = Sequence[i];
426    if (!SU) {
427      // Null SUnit* is a noop.
428      EmitNoop();
429      continue;
430    }
431
432    // For pre-regalloc scheduling, create instructions corresponding to the
433    // SDNode and any flagged SDNodes and append them to the block.
434    if (!SU->getNode()) {
435      // Emit a copy.
436      EmitPhysRegCopy(SU, CopyVRBaseMap);
437      continue;
438    }
439
440    SmallVector<SDNode *, 4> FlaggedNodes;
441    for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
442         N = N->getFlaggedNode())
443      FlaggedNodes.push_back(N);
444    while (!FlaggedNodes.empty()) {
445      Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
446                       VRBaseMap, EM);
447      if (FlaggedNodes.back()->getHasDebugValue())
448        if (SDDbgValue *sd = DAG->GetDbgInfo(FlaggedNodes.back())) {
449          Emitter.EmitDbgValue(FlaggedNodes.back(), VRBaseMap, sd);
450          delete sd;
451        }
452      FlaggedNodes.pop_back();
453    }
454    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
455                     VRBaseMap, EM);
456    if (SU->getNode()->getHasDebugValue())
457      if (SDDbgValue *sd = DAG->GetDbgInfo(SU->getNode())) {
458        Emitter.EmitDbgValue(SU->getNode(), VRBaseMap, sd);
459        delete sd;
460      }
461  }
462
463  BB = Emitter.getBlock();
464  InsertPos = Emitter.getInsertPos();
465  return BB;
466}
467