ScheduleDAGSDNodes.cpp revision c558bf397257f5ef902bdb45a28e622ee2b5b4f2
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33using namespace llvm;
34
35STATISTIC(LoadsClustered, "Number of loads clustered together");
36
37// This allows latency based scheduler to notice high latency instructions
38// without a target itinerary. The choise if number here has more to do with
39// balancing scheduler heursitics than with the actual machine latency.
40static cl::opt<int> HighLatencyCycles(
41  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
42  cl::desc("Roughly estimate the number of cycles that 'long latency'"
43           "instructions take for targets with no itinerary"));
44
45ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
46  : ScheduleDAG(mf),
47    InstrItins(mf.getTarget().getInstrItineraryData()) {}
48
49/// Run - perform scheduling.
50///
51void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
52                             MachineBasicBlock::iterator insertPos) {
53  DAG = dag;
54  ScheduleDAG::Run(bb, insertPos);
55}
56
57/// NewSUnit - Creates a new SUnit and return a ptr to it.
58///
59SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
60#ifndef NDEBUG
61  const SUnit *Addr = 0;
62  if (!SUnits.empty())
63    Addr = &SUnits[0];
64#endif
65  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
66  assert((Addr == 0 || Addr == &SUnits[0]) &&
67         "SUnits std::vector reallocated on the fly!");
68  SUnits.back().OrigNode = &SUnits.back();
69  SUnit *SU = &SUnits.back();
70  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
71  if (!N ||
72      (N->isMachineOpcode() &&
73       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
74    SU->SchedulingPref = Sched::None;
75  else
76    SU->SchedulingPref = TLI.getSchedulingPreference(N);
77  return SU;
78}
79
80SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
81  SUnit *SU = NewSUnit(Old->getNode());
82  SU->OrigNode = Old->OrigNode;
83  SU->Latency = Old->Latency;
84  SU->isVRegCycle = Old->isVRegCycle;
85  SU->isCall = Old->isCall;
86  SU->isTwoAddress = Old->isTwoAddress;
87  SU->isCommutable = Old->isCommutable;
88  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
89  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
90  SU->SchedulingPref = Old->SchedulingPref;
91  Old->isCloned = true;
92  return SU;
93}
94
95/// CheckForPhysRegDependency - Check if the dependency between def and use of
96/// a specified operand is a physical register dependency. If so, returns the
97/// register and the cost of copying the register.
98static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
99                                      const TargetRegisterInfo *TRI,
100                                      const TargetInstrInfo *TII,
101                                      unsigned &PhysReg, int &Cost) {
102  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
103    return;
104
105  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
106  if (TargetRegisterInfo::isVirtualRegister(Reg))
107    return;
108
109  unsigned ResNo = User->getOperand(2).getResNo();
110  if (Def->isMachineOpcode()) {
111    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
112    if (ResNo >= II.getNumDefs() &&
113        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
114      PhysReg = Reg;
115      const TargetRegisterClass *RC =
116        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
117      Cost = RC->getCopyCost();
118    }
119  }
120}
121
122static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
123  SmallVector<EVT, 4> VTs;
124  SDNode *GlueDestNode = Glue.getNode();
125
126  // Don't add glue from a node to itself.
127  if (GlueDestNode == N) return;
128
129  // Don't add glue to something which already has glue.
130  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
131
132  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
133    VTs.push_back(N->getValueType(I));
134
135  if (AddGlue)
136    VTs.push_back(MVT::Glue);
137
138  SmallVector<SDValue, 4> Ops;
139  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
140    Ops.push_back(N->getOperand(I));
141
142  if (GlueDestNode)
143    Ops.push_back(Glue);
144
145  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
146  MachineSDNode::mmo_iterator Begin = 0, End = 0;
147  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
148
149  // Store memory references.
150  if (MN) {
151    Begin = MN->memoperands_begin();
152    End = MN->memoperands_end();
153  }
154
155  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
156
157  // Reset the memory references
158  if (MN)
159    MN->setMemRefs(Begin, End);
160}
161
162/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
163/// This function finds loads of the same base and different offsets. If the
164/// offsets are not far apart (target specific), it add MVT::Glue inputs and
165/// outputs to ensure they are scheduled together and in order. This
166/// optimization may benefit some targets by improving cache locality.
167void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
168  SDNode *Chain = 0;
169  unsigned NumOps = Node->getNumOperands();
170  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
171    Chain = Node->getOperand(NumOps-1).getNode();
172  if (!Chain)
173    return;
174
175  // Look for other loads of the same chain. Find loads that are loading from
176  // the same base pointer and different offsets.
177  SmallPtrSet<SDNode*, 16> Visited;
178  SmallVector<int64_t, 4> Offsets;
179  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
180  bool Cluster = false;
181  SDNode *Base = Node;
182  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
183       I != E; ++I) {
184    SDNode *User = *I;
185    if (User == Node || !Visited.insert(User))
186      continue;
187    int64_t Offset1, Offset2;
188    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
189        Offset1 == Offset2)
190      // FIXME: Should be ok if they addresses are identical. But earlier
191      // optimizations really should have eliminated one of the loads.
192      continue;
193    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
194      Offsets.push_back(Offset1);
195    O2SMap.insert(std::make_pair(Offset2, User));
196    Offsets.push_back(Offset2);
197    if (Offset2 < Offset1)
198      Base = User;
199    Cluster = true;
200  }
201
202  if (!Cluster)
203    return;
204
205  // Sort them in increasing order.
206  std::sort(Offsets.begin(), Offsets.end());
207
208  // Check if the loads are close enough.
209  SmallVector<SDNode*, 4> Loads;
210  unsigned NumLoads = 0;
211  int64_t BaseOff = Offsets[0];
212  SDNode *BaseLoad = O2SMap[BaseOff];
213  Loads.push_back(BaseLoad);
214  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
215    int64_t Offset = Offsets[i];
216    SDNode *Load = O2SMap[Offset];
217    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
218      break; // Stop right here. Ignore loads that are further away.
219    Loads.push_back(Load);
220    ++NumLoads;
221  }
222
223  if (NumLoads == 0)
224    return;
225
226  // Cluster loads by adding MVT::Glue outputs and inputs. This also
227  // ensure they are scheduled in order of increasing addresses.
228  SDNode *Lead = Loads[0];
229  AddGlue(Lead, SDValue(0, 0), true, DAG);
230
231  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
232  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
233    bool OutGlue = I < E - 1;
234    SDNode *Load = Loads[I];
235
236    AddGlue(Load, InGlue, OutGlue, DAG);
237
238    if (OutGlue)
239      InGlue = SDValue(Load, Load->getNumValues() - 1);
240
241    ++LoadsClustered;
242  }
243}
244
245/// ClusterNodes - Cluster certain nodes which should be scheduled together.
246///
247void ScheduleDAGSDNodes::ClusterNodes() {
248  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
249       E = DAG->allnodes_end(); NI != E; ++NI) {
250    SDNode *Node = &*NI;
251    if (!Node || !Node->isMachineOpcode())
252      continue;
253
254    unsigned Opc = Node->getMachineOpcode();
255    const TargetInstrDesc &TID = TII->get(Opc);
256    if (TID.mayLoad())
257      // Cluster loads from "near" addresses into combined SUnits.
258      ClusterNeighboringLoads(Node);
259  }
260}
261
262void ScheduleDAGSDNodes::BuildSchedUnits() {
263  // During scheduling, the NodeId field of SDNode is used to map SDNodes
264  // to their associated SUnits by holding SUnits table indices. A value
265  // of -1 means the SDNode does not yet have an associated SUnit.
266  unsigned NumNodes = 0;
267  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
268       E = DAG->allnodes_end(); NI != E; ++NI) {
269    NI->setNodeId(-1);
270    ++NumNodes;
271  }
272
273  // Reserve entries in the vector for each of the SUnits we are creating.  This
274  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
275  // invalidated.
276  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
277  // This is a temporary workaround.
278  SUnits.reserve(NumNodes * 2);
279
280  // Add all nodes in depth first order.
281  SmallVector<SDNode*, 64> Worklist;
282  SmallPtrSet<SDNode*, 64> Visited;
283  Worklist.push_back(DAG->getRoot().getNode());
284  Visited.insert(DAG->getRoot().getNode());
285
286  while (!Worklist.empty()) {
287    SDNode *NI = Worklist.pop_back_val();
288
289    // Add all operands to the worklist unless they've already been added.
290    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
291      if (Visited.insert(NI->getOperand(i).getNode()))
292        Worklist.push_back(NI->getOperand(i).getNode());
293
294    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
295      continue;
296
297    // If this node has already been processed, stop now.
298    if (NI->getNodeId() != -1) continue;
299
300    SUnit *NodeSUnit = NewSUnit(NI);
301
302    // See if anything is glued to this node, if so, add them to glued
303    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
304    // is required to be the last operand and result of a node.
305
306    // Scan up to find glued preds.
307    SDNode *N = NI;
308    while (N->getNumOperands() &&
309           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
310      N = N->getOperand(N->getNumOperands()-1).getNode();
311      assert(N->getNodeId() == -1 && "Node already inserted!");
312      N->setNodeId(NodeSUnit->NodeNum);
313      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
314        NodeSUnit->isCall = true;
315    }
316
317    // Scan down to find any glued succs.
318    N = NI;
319    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
320      SDValue GlueVal(N, N->getNumValues()-1);
321
322      // There are either zero or one users of the Glue result.
323      bool HasGlueUse = false;
324      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
325           UI != E; ++UI)
326        if (GlueVal.isOperandOf(*UI)) {
327          HasGlueUse = true;
328          assert(N->getNodeId() == -1 && "Node already inserted!");
329          N->setNodeId(NodeSUnit->NodeNum);
330          N = *UI;
331          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
332            NodeSUnit->isCall = true;
333          break;
334        }
335      if (!HasGlueUse) break;
336    }
337
338    // If there are glue operands involved, N is now the bottom-most node
339    // of the sequence of nodes that are glued together.
340    // Update the SUnit.
341    NodeSUnit->setNode(N);
342    assert(N->getNodeId() == -1 && "Node already inserted!");
343    N->setNodeId(NodeSUnit->NodeNum);
344
345    // Set isVRegCycle if the node operands are live into and value is live out
346    // of a single block loop.
347    InitVRegCycleFlag(NodeSUnit);
348
349    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
350    InitNumRegDefsLeft(NodeSUnit);
351
352    // Assign the Latency field of NodeSUnit using target-provided information.
353    ComputeLatency(NodeSUnit);
354  }
355}
356
357void ScheduleDAGSDNodes::AddSchedEdges() {
358  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
359
360  // Check to see if the scheduler cares about latencies.
361  bool UnitLatencies = ForceUnitLatencies();
362
363  // Pass 2: add the preds, succs, etc.
364  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
365    SUnit *SU = &SUnits[su];
366    SDNode *MainNode = SU->getNode();
367
368    if (MainNode->isMachineOpcode()) {
369      unsigned Opc = MainNode->getMachineOpcode();
370      const TargetInstrDesc &TID = TII->get(Opc);
371      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
372        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
373          SU->isTwoAddress = true;
374          break;
375        }
376      }
377      if (TID.isCommutable())
378        SU->isCommutable = true;
379    }
380
381    // Find all predecessors and successors of the group.
382    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
383      if (N->isMachineOpcode() &&
384          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
385        SU->hasPhysRegClobbers = true;
386        unsigned NumUsed = InstrEmitter::CountResults(N);
387        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
388          --NumUsed;    // Skip over unused values at the end.
389        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
390          SU->hasPhysRegDefs = true;
391      }
392
393      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
394        SDNode *OpN = N->getOperand(i).getNode();
395        if (isPassiveNode(OpN)) continue;   // Not scheduled.
396        SUnit *OpSU = &SUnits[OpN->getNodeId()];
397        assert(OpSU && "Node has no SUnit!");
398        if (OpSU == SU) continue;           // In the same group.
399
400        EVT OpVT = N->getOperand(i).getValueType();
401        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
402        bool isChain = OpVT == MVT::Other;
403
404        unsigned PhysReg = 0;
405        int Cost = 1;
406        // Determine if this is a physical register dependency.
407        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
408        assert((PhysReg == 0 || !isChain) &&
409               "Chain dependence via physreg data?");
410        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
411        // emits a copy from the physical register to a virtual register unless
412        // it requires a cross class copy (cost < 0). That means we are only
413        // treating "expensive to copy" register dependency as physical register
414        // dependency. This may change in the future though.
415        if (Cost >= 0)
416          PhysReg = 0;
417
418        // If this is a ctrl dep, latency is 1.
419        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
420        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
421                               OpLatency, PhysReg);
422        if (!isChain && !UnitLatencies) {
423          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
424          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
425        }
426
427        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
428          // Multiple register uses are combined in the same SUnit. For example,
429          // we could have a set of glued nodes with all their defs consumed by
430          // another set of glued nodes. Register pressure tracking sees this as
431          // a single use, so to keep pressure balanced we reduce the defs.
432          //
433          // We can't tell (without more book-keeping) if this results from
434          // glued nodes or duplicate operands. As long as we don't reduce
435          // NumRegDefsLeft to zero, we handle the common cases well.
436          --OpSU->NumRegDefsLeft;
437        }
438      }
439    }
440  }
441}
442
443/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
444/// are input.  This SUnit graph is similar to the SelectionDAG, but
445/// excludes nodes that aren't interesting to scheduling, and represents
446/// glued together nodes with a single SUnit.
447void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
448  // Cluster certain nodes which should be scheduled together.
449  ClusterNodes();
450  // Populate the SUnits array.
451  BuildSchedUnits();
452  // Compute all the scheduling dependencies between nodes.
453  AddSchedEdges();
454}
455
456// Initialize NumNodeDefs for the current Node's opcode.
457void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
458  // Check for phys reg copy.
459  if (!Node)
460    return;
461
462  if (!Node->isMachineOpcode()) {
463    if (Node->getOpcode() == ISD::CopyFromReg)
464      NodeNumDefs = 1;
465    else
466      NodeNumDefs = 0;
467    return;
468  }
469  unsigned POpc = Node->getMachineOpcode();
470  if (POpc == TargetOpcode::IMPLICIT_DEF) {
471    // No register need be allocated for this.
472    NodeNumDefs = 0;
473    return;
474  }
475  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
476  // Some instructions define regs that are not represented in the selection DAG
477  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
478  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
479  DefIdx = 0;
480}
481
482// Construct a RegDefIter for this SUnit and find the first valid value.
483ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
484                                           const ScheduleDAGSDNodes *SD)
485  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
486  InitNodeNumDefs();
487  Advance();
488}
489
490// Advance to the next valid value defined by the SUnit.
491void ScheduleDAGSDNodes::RegDefIter::Advance() {
492  for (;Node;) { // Visit all glued nodes.
493    for (;DefIdx < NodeNumDefs; ++DefIdx) {
494      if (!Node->hasAnyUseOfValue(DefIdx))
495        continue;
496      if (Node->isMachineOpcode() &&
497          Node->getMachineOpcode() == TargetOpcode::EXTRACT_SUBREG) {
498        // Propagate the incoming (full-register) type. I doubt it's needed.
499        ValueType = Node->getOperand(0).getValueType();
500      }
501      else {
502        ValueType = Node->getValueType(DefIdx);
503      }
504      ++DefIdx;
505      return; // Found a normal regdef.
506    }
507    Node = Node->getGluedNode();
508    if (Node == NULL) {
509      return; // No values left to visit.
510    }
511    InitNodeNumDefs();
512  }
513}
514
515// Set isVRegCycle if this node's single use is CopyToReg and its only active
516// data operands are CopyFromReg.
517//
518// This is only relevant for single-block loops, in which case the VRegCycle
519// node is likely an induction variable in which the operand and target virtual
520// registers should be coalesced (e.g. pre/post increment values). Setting the
521// isVRegCycle flag helps the scheduler prioritize other uses of the same
522// CopyFromReg so that this node becomes the virtual register "kill". This
523// avoids interference between the values live in and out of the block and
524// eliminates a copy inside the loop.
525void ScheduleDAGSDNodes::InitVRegCycleFlag(SUnit *SU) {
526  if (!BB->isSuccessor(BB))
527    return;
528
529  SDNode *N = SU->getNode();
530  if (N->getGluedNode())
531    return;
532
533  if (!N->hasOneUse() || N->use_begin()->getOpcode() != ISD::CopyToReg)
534    return;
535
536  bool FoundLiveIn = false;
537  for (SDNode::op_iterator OI = N->op_begin(), E = N->op_end(); OI != E; ++OI) {
538    EVT OpVT = OI->getValueType();
539    assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
540
541    if (OpVT == MVT::Other)
542      continue; // ignore chain operands
543
544    if (isPassiveNode(OI->getNode()))
545      continue; // ignore constants and such
546
547    if (OI->getNode()->getOpcode() != ISD::CopyFromReg)
548      return;
549
550    FoundLiveIn = true;
551  }
552  if (FoundLiveIn)
553    SU->isVRegCycle = true;
554}
555
556void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
557  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
558  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
559    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
560    ++SU->NumRegDefsLeft;
561  }
562}
563
564void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
565  // Check to see if the scheduler cares about latencies.
566  if (ForceUnitLatencies()) {
567    SU->Latency = 1;
568    return;
569  }
570
571  if (!InstrItins || InstrItins->isEmpty()) {
572    SDNode *N = SU->getNode();
573    if (N && N->isMachineOpcode() &&
574        TII->isHighLatencyDef(N->getMachineOpcode()))
575      SU->Latency = HighLatencyCycles;
576    else
577      SU->Latency = 1;
578    return;
579  }
580
581  // Compute the latency for the node.  We use the sum of the latencies for
582  // all nodes glued together into this SUnit.
583  SU->Latency = 0;
584  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
585    if (N->isMachineOpcode())
586      SU->Latency += TII->getInstrLatency(InstrItins, N);
587}
588
589void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
590                                               unsigned OpIdx, SDep& dep) const{
591  // Check to see if the scheduler cares about latencies.
592  if (ForceUnitLatencies())
593    return;
594
595  if (dep.getKind() != SDep::Data)
596    return;
597
598  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
599  if (Use->isMachineOpcode())
600    // Adjust the use operand index by num of defs.
601    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
602  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
603  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
604      !BB->succ_empty()) {
605    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
606    if (TargetRegisterInfo::isVirtualRegister(Reg))
607      // This copy is a liveout value. It is likely coalesced, so reduce the
608      // latency so not to penalize the def.
609      // FIXME: need target specific adjustment here?
610      Latency = (Latency > 1) ? Latency - 1 : 1;
611  }
612  if (Latency >= 0)
613    dep.setLatency(Latency);
614}
615
616void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
617  if (!SU->getNode()) {
618    dbgs() << "PHYS REG COPY\n";
619    return;
620  }
621
622  SU->getNode()->dump(DAG);
623  dbgs() << "\n";
624  SmallVector<SDNode *, 4> GluedNodes;
625  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
626    GluedNodes.push_back(N);
627  while (!GluedNodes.empty()) {
628    dbgs() << "    ";
629    GluedNodes.back()->dump(DAG);
630    dbgs() << "\n";
631    GluedNodes.pop_back();
632  }
633}
634
635namespace {
636  struct OrderSorter {
637    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
638                    const std::pair<unsigned, MachineInstr*> &B) {
639      return A.first < B.first;
640    }
641  };
642}
643
644/// ProcessSDDbgValues - Process SDDbgValues assoicated with this node.
645static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
646                               InstrEmitter &Emitter,
647                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
648                            DenseMap<SDValue, unsigned> &VRBaseMap,
649                            unsigned Order) {
650  if (!N->getHasDebugValue())
651    return;
652
653  // Opportunistically insert immediate dbg_value uses, i.e. those with source
654  // order number right after the N.
655  MachineBasicBlock *BB = Emitter.getBlock();
656  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
657  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
658  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
659    if (DVs[i]->isInvalidated())
660      continue;
661    unsigned DVOrder = DVs[i]->getOrder();
662    if (!Order || DVOrder == ++Order) {
663      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
664      if (DbgMI) {
665        Orders.push_back(std::make_pair(DVOrder, DbgMI));
666        BB->insert(InsertPos, DbgMI);
667      }
668      DVs[i]->setIsInvalidated();
669    }
670  }
671}
672
673// ProcessSourceNode - Process nodes with source order numbers. These are added
674// to a vector which EmitSchedule uses to determine how to insert dbg_value
675// instructions in the right order.
676static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
677                           InstrEmitter &Emitter,
678                           DenseMap<SDValue, unsigned> &VRBaseMap,
679                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
680                           SmallSet<unsigned, 8> &Seen) {
681  unsigned Order = DAG->GetOrdering(N);
682  if (!Order || !Seen.insert(Order)) {
683    // Process any valid SDDbgValues even if node does not have any order
684    // assigned.
685    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
686    return;
687  }
688
689  MachineBasicBlock *BB = Emitter.getBlock();
690  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
691    // Did not insert any instruction.
692    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
693    return;
694  }
695
696  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
697  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
698}
699
700
701/// EmitSchedule - Emit the machine code in scheduled order.
702MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
703  InstrEmitter Emitter(BB, InsertPos);
704  DenseMap<SDValue, unsigned> VRBaseMap;
705  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
706  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
707  SmallSet<unsigned, 8> Seen;
708  bool HasDbg = DAG->hasDebugValues();
709
710  // If this is the first BB, emit byval parameter dbg_value's.
711  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
712    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
713    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
714    for (; PDI != PDE; ++PDI) {
715      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
716      if (DbgMI)
717        BB->insert(InsertPos, DbgMI);
718    }
719  }
720
721  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
722    SUnit *SU = Sequence[i];
723    if (!SU) {
724      // Null SUnit* is a noop.
725      EmitNoop();
726      continue;
727    }
728
729    // For pre-regalloc scheduling, create instructions corresponding to the
730    // SDNode and any glued SDNodes and append them to the block.
731    if (!SU->getNode()) {
732      // Emit a copy.
733      EmitPhysRegCopy(SU, CopyVRBaseMap);
734      continue;
735    }
736
737    SmallVector<SDNode *, 4> GluedNodes;
738    for (SDNode *N = SU->getNode()->getGluedNode(); N;
739         N = N->getGluedNode())
740      GluedNodes.push_back(N);
741    while (!GluedNodes.empty()) {
742      SDNode *N = GluedNodes.back();
743      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
744                       VRBaseMap);
745      // Remember the source order of the inserted instruction.
746      if (HasDbg)
747        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
748      GluedNodes.pop_back();
749    }
750    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
751                     VRBaseMap);
752    // Remember the source order of the inserted instruction.
753    if (HasDbg)
754      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
755                        Seen);
756  }
757
758  // Insert all the dbg_values which have not already been inserted in source
759  // order sequence.
760  if (HasDbg) {
761    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
762
763    // Sort the source order instructions and use the order to insert debug
764    // values.
765    std::sort(Orders.begin(), Orders.end(), OrderSorter());
766
767    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
768    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
769    // Now emit the rest according to source order.
770    unsigned LastOrder = 0;
771    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
772      unsigned Order = Orders[i].first;
773      MachineInstr *MI = Orders[i].second;
774      // Insert all SDDbgValue's whose order(s) are before "Order".
775      if (!MI)
776        continue;
777      for (; DI != DE &&
778             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
779        if ((*DI)->isInvalidated())
780          continue;
781        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
782        if (DbgMI) {
783          if (!LastOrder)
784            // Insert to start of the BB (after PHIs).
785            BB->insert(BBBegin, DbgMI);
786          else {
787            // Insert at the instruction, which may be in a different
788            // block, if the block was split by a custom inserter.
789            MachineBasicBlock::iterator Pos = MI;
790            MI->getParent()->insert(llvm::next(Pos), DbgMI);
791          }
792        }
793      }
794      LastOrder = Order;
795    }
796    // Add trailing DbgValue's before the terminator. FIXME: May want to add
797    // some of them before one or more conditional branches?
798    while (DI != DE) {
799      MachineBasicBlock *InsertBB = Emitter.getBlock();
800      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
801      if (!(*DI)->isInvalidated()) {
802        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
803        if (DbgMI)
804          InsertBB->insert(Pos, DbgMI);
805      }
806      ++DI;
807    }
808  }
809
810  BB = Emitter.getBlock();
811  InsertPos = Emitter.getInsertPos();
812  return BB;
813}
814