SelectionDAG.cpp revision 004d63527fe3602a2bf9b4524cdc6401c8e11964
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44static cl::opt<bool>
45NoBuiltin("no-builtin", cl::init(false),
46           cl::desc("Don't recognize built-in functions that do not begin "
47                    "with `__builtin_' as prefix"));
48
49/// makeVTList - Return an instance of the SDVTList struct initialized with the
50/// specified members.
51static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
52  SDVTList Res = {VTs, NumVTs};
53  return Res;
54}
55
56static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
57  switch (VT.getSimpleVT()) {
58  default: assert(0 && "Unknown FP format");
59  case MVT::f32:     return &APFloat::IEEEsingle;
60  case MVT::f64:     return &APFloat::IEEEdouble;
61  case MVT::f80:     return &APFloat::x87DoubleExtended;
62  case MVT::f128:    return &APFloat::IEEEquad;
63  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
64  }
65}
66
67SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
68
69//===----------------------------------------------------------------------===//
70//                              ConstantFPSDNode Class
71//===----------------------------------------------------------------------===//
72
73/// isExactlyValue - We don't rely on operator== working on double values, as
74/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75/// As such, this method can be used to do an exact bit-for-bit comparison of
76/// two floating point values.
77bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
78  return getValueAPF().bitwiseIsEqual(V);
79}
80
81bool ConstantFPSDNode::isValueValidForType(MVT VT,
82                                           const APFloat& Val) {
83  assert(VT.isFloatingPoint() && "Can only convert between FP types");
84
85  // PPC long double cannot be converted to any other type.
86  if (VT == MVT::ppcf128 ||
87      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
88    return false;
89
90  // convert modifies in place, so make a copy.
91  APFloat Val2 = APFloat(Val);
92  return Val2.convert(*MVTToAPFloatSemantics(VT),
93                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
94}
95
96//===----------------------------------------------------------------------===//
97//                              ISD Namespace
98//===----------------------------------------------------------------------===//
99
100/// isBuildVectorAllOnes - Return true if the specified node is a
101/// BUILD_VECTOR where all of the elements are ~0 or undef.
102bool ISD::isBuildVectorAllOnes(const SDNode *N) {
103  // Look through a bit convert.
104  if (N->getOpcode() == ISD::BIT_CONVERT)
105    N = N->getOperand(0).getNode();
106
107  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
108
109  unsigned i = 0, e = N->getNumOperands();
110
111  // Skip over all of the undef values.
112  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
113    ++i;
114
115  // Do not accept an all-undef vector.
116  if (i == e) return false;
117
118  // Do not accept build_vectors that aren't all constants or which have non-~0
119  // elements.
120  SDValue NotZero = N->getOperand(i);
121  if (isa<ConstantSDNode>(NotZero)) {
122    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
123      return false;
124  } else if (isa<ConstantFPSDNode>(NotZero)) {
125    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
126                convertToAPInt().isAllOnesValue())
127      return false;
128  } else
129    return false;
130
131  // Okay, we have at least one ~0 value, check to see if the rest match or are
132  // undefs.
133  for (++i; i != e; ++i)
134    if (N->getOperand(i) != NotZero &&
135        N->getOperand(i).getOpcode() != ISD::UNDEF)
136      return false;
137  return true;
138}
139
140
141/// isBuildVectorAllZeros - Return true if the specified node is a
142/// BUILD_VECTOR where all of the elements are 0 or undef.
143bool ISD::isBuildVectorAllZeros(const SDNode *N) {
144  // Look through a bit convert.
145  if (N->getOpcode() == ISD::BIT_CONVERT)
146    N = N->getOperand(0).getNode();
147
148  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
149
150  unsigned i = 0, e = N->getNumOperands();
151
152  // Skip over all of the undef values.
153  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
154    ++i;
155
156  // Do not accept an all-undef vector.
157  if (i == e) return false;
158
159  // Do not accept build_vectors that aren't all constants or which have non-~0
160  // elements.
161  SDValue Zero = N->getOperand(i);
162  if (isa<ConstantSDNode>(Zero)) {
163    if (!cast<ConstantSDNode>(Zero)->isNullValue())
164      return false;
165  } else if (isa<ConstantFPSDNode>(Zero)) {
166    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
167      return false;
168  } else
169    return false;
170
171  // Okay, we have at least one ~0 value, check to see if the rest match or are
172  // undefs.
173  for (++i; i != e; ++i)
174    if (N->getOperand(i) != Zero &&
175        N->getOperand(i).getOpcode() != ISD::UNDEF)
176      return false;
177  return true;
178}
179
180/// isScalarToVector - Return true if the specified node is a
181/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
182/// element is not an undef.
183bool ISD::isScalarToVector(const SDNode *N) {
184  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
185    return true;
186
187  if (N->getOpcode() != ISD::BUILD_VECTOR)
188    return false;
189  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
190    return false;
191  unsigned NumElems = N->getNumOperands();
192  for (unsigned i = 1; i < NumElems; ++i) {
193    SDValue V = N->getOperand(i);
194    if (V.getOpcode() != ISD::UNDEF)
195      return false;
196  }
197  return true;
198}
199
200
201/// isDebugLabel - Return true if the specified node represents a debug
202/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDValue Zero;
205  if (N->getOpcode() == ISD::DBG_LABEL)
206    return true;
207  if (N->isMachineOpcode() &&
208      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
209    return true;
210  return false;
211}
212
213/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
214/// when given the operation for (X op Y).
215ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
216  // To perform this operation, we just need to swap the L and G bits of the
217  // operation.
218  unsigned OldL = (Operation >> 2) & 1;
219  unsigned OldG = (Operation >> 1) & 1;
220  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
221                       (OldL << 1) |       // New G bit
222                       (OldG << 2));        // New L bit.
223}
224
225/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
226/// 'op' is a valid SetCC operation.
227ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
228  unsigned Operation = Op;
229  if (isInteger)
230    Operation ^= 7;   // Flip L, G, E bits, but not U.
231  else
232    Operation ^= 15;  // Flip all of the condition bits.
233  if (Operation > ISD::SETTRUE2)
234    Operation &= ~8;     // Don't let N and U bits get set.
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getVal());
346    ID.AddInteger(Ops->getSDValue().getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358
359/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
360/// data.
361static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
362  AddNodeIDOpcode(ID, N->getOpcode());
363  // Add the return value info.
364  AddNodeIDValueTypes(ID, N->getVTList());
365  // Add the operand info.
366  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
367
368  // Handle SDNode leafs with special info.
369  switch (N->getOpcode()) {
370  default: break;  // Normal nodes don't need extra info.
371  case ISD::ARG_FLAGS:
372    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
373    break;
374  case ISD::TargetConstant:
375  case ISD::Constant:
376    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
377    break;
378  case ISD::TargetConstantFP:
379  case ISD::ConstantFP: {
380    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
381    break;
382  }
383  case ISD::TargetGlobalAddress:
384  case ISD::GlobalAddress:
385  case ISD::TargetGlobalTLSAddress:
386  case ISD::GlobalTLSAddress: {
387    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
388    ID.AddPointer(GA->getGlobal());
389    ID.AddInteger(GA->getOffset());
390    break;
391  }
392  case ISD::BasicBlock:
393    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
394    break;
395  case ISD::Register:
396    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
397    break;
398  case ISD::DBG_STOPPOINT: {
399    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
400    ID.AddInteger(DSP->getLine());
401    ID.AddInteger(DSP->getColumn());
402    ID.AddPointer(DSP->getCompileUnit());
403    break;
404  }
405  case ISD::SRCVALUE:
406    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
407    break;
408  case ISD::MEMOPERAND: {
409    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
410    MO.Profile(ID);
411    break;
412  }
413  case ISD::FrameIndex:
414  case ISD::TargetFrameIndex:
415    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
416    break;
417  case ISD::JumpTable:
418  case ISD::TargetJumpTable:
419    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
420    break;
421  case ISD::ConstantPool:
422  case ISD::TargetConstantPool: {
423    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
424    ID.AddInteger(CP->getAlignment());
425    ID.AddInteger(CP->getOffset());
426    if (CP->isMachineConstantPoolEntry())
427      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
428    else
429      ID.AddPointer(CP->getConstVal());
430    break;
431  }
432  case ISD::CALL: {
433    const CallSDNode *Call = cast<CallSDNode>(N);
434    ID.AddInteger(Call->getCallingConv());
435    ID.AddInteger(Call->isVarArg());
436    break;
437  }
438  case ISD::LOAD: {
439    const LoadSDNode *LD = cast<LoadSDNode>(N);
440    ID.AddInteger(LD->getAddressingMode());
441    ID.AddInteger(LD->getExtensionType());
442    ID.AddInteger(LD->getMemoryVT().getRawBits());
443    ID.AddInteger(LD->getRawFlags());
444    break;
445  }
446  case ISD::STORE: {
447    const StoreSDNode *ST = cast<StoreSDNode>(N);
448    ID.AddInteger(ST->getAddressingMode());
449    ID.AddInteger(ST->isTruncatingStore());
450    ID.AddInteger(ST->getMemoryVT().getRawBits());
451    ID.AddInteger(ST->getRawFlags());
452    break;
453  }
454  case ISD::ATOMIC_CMP_SWAP_8:
455  case ISD::ATOMIC_SWAP_8:
456  case ISD::ATOMIC_LOAD_ADD_8:
457  case ISD::ATOMIC_LOAD_SUB_8:
458  case ISD::ATOMIC_LOAD_AND_8:
459  case ISD::ATOMIC_LOAD_OR_8:
460  case ISD::ATOMIC_LOAD_XOR_8:
461  case ISD::ATOMIC_LOAD_NAND_8:
462  case ISD::ATOMIC_LOAD_MIN_8:
463  case ISD::ATOMIC_LOAD_MAX_8:
464  case ISD::ATOMIC_LOAD_UMIN_8:
465  case ISD::ATOMIC_LOAD_UMAX_8:
466  case ISD::ATOMIC_CMP_SWAP_16:
467  case ISD::ATOMIC_SWAP_16:
468  case ISD::ATOMIC_LOAD_ADD_16:
469  case ISD::ATOMIC_LOAD_SUB_16:
470  case ISD::ATOMIC_LOAD_AND_16:
471  case ISD::ATOMIC_LOAD_OR_16:
472  case ISD::ATOMIC_LOAD_XOR_16:
473  case ISD::ATOMIC_LOAD_NAND_16:
474  case ISD::ATOMIC_LOAD_MIN_16:
475  case ISD::ATOMIC_LOAD_MAX_16:
476  case ISD::ATOMIC_LOAD_UMIN_16:
477  case ISD::ATOMIC_LOAD_UMAX_16:
478  case ISD::ATOMIC_CMP_SWAP_32:
479  case ISD::ATOMIC_SWAP_32:
480  case ISD::ATOMIC_LOAD_ADD_32:
481  case ISD::ATOMIC_LOAD_SUB_32:
482  case ISD::ATOMIC_LOAD_AND_32:
483  case ISD::ATOMIC_LOAD_OR_32:
484  case ISD::ATOMIC_LOAD_XOR_32:
485  case ISD::ATOMIC_LOAD_NAND_32:
486  case ISD::ATOMIC_LOAD_MIN_32:
487  case ISD::ATOMIC_LOAD_MAX_32:
488  case ISD::ATOMIC_LOAD_UMIN_32:
489  case ISD::ATOMIC_LOAD_UMAX_32:
490  case ISD::ATOMIC_CMP_SWAP_64:
491  case ISD::ATOMIC_SWAP_64:
492  case ISD::ATOMIC_LOAD_ADD_64:
493  case ISD::ATOMIC_LOAD_SUB_64:
494  case ISD::ATOMIC_LOAD_AND_64:
495  case ISD::ATOMIC_LOAD_OR_64:
496  case ISD::ATOMIC_LOAD_XOR_64:
497  case ISD::ATOMIC_LOAD_NAND_64:
498  case ISD::ATOMIC_LOAD_MIN_64:
499  case ISD::ATOMIC_LOAD_MAX_64:
500  case ISD::ATOMIC_LOAD_UMIN_64:
501  case ISD::ATOMIC_LOAD_UMAX_64: {
502    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
503    ID.AddInteger(AT->getRawFlags());
504    break;
505  }
506  } // end switch (N->getOpcode())
507}
508
509/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
510/// the CSE map that carries both alignment and volatility information.
511///
512static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
513  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
514}
515
516//===----------------------------------------------------------------------===//
517//                              SelectionDAG Class
518//===----------------------------------------------------------------------===//
519
520/// RemoveDeadNodes - This method deletes all unreachable nodes in the
521/// SelectionDAG.
522void SelectionDAG::RemoveDeadNodes() {
523  // Create a dummy node (which is not added to allnodes), that adds a reference
524  // to the root node, preventing it from being deleted.
525  HandleSDNode Dummy(getRoot());
526
527  SmallVector<SDNode*, 128> DeadNodes;
528
529  // Add all obviously-dead nodes to the DeadNodes worklist.
530  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
531    if (I->use_empty())
532      DeadNodes.push_back(I);
533
534  RemoveDeadNodes(DeadNodes);
535
536  // If the root changed (e.g. it was a dead load, update the root).
537  setRoot(Dummy.getValue());
538}
539
540/// RemoveDeadNodes - This method deletes the unreachable nodes in the
541/// given list, and any nodes that become unreachable as a result.
542void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
543                                   DAGUpdateListener *UpdateListener) {
544
545  // Process the worklist, deleting the nodes and adding their uses to the
546  // worklist.
547  while (!DeadNodes.empty()) {
548    SDNode *N = DeadNodes.back();
549    DeadNodes.pop_back();
550
551    if (UpdateListener)
552      UpdateListener->NodeDeleted(N, 0);
553
554    // Take the node out of the appropriate CSE map.
555    RemoveNodeFromCSEMaps(N);
556
557    // Next, brutally remove the operand list.  This is safe to do, as there are
558    // no cycles in the graph.
559    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
560      SDNode *Operand = I->getVal();
561      Operand->removeUser(std::distance(N->op_begin(), I), N);
562
563      // Now that we removed this operand, see if there are no uses of it left.
564      if (Operand->use_empty())
565        DeadNodes.push_back(Operand);
566    }
567    if (N->OperandsNeedDelete) {
568      delete[] N->OperandList;
569    }
570    N->OperandList = 0;
571    N->NumOperands = 0;
572
573    // Finally, remove N itself.
574    NodeAllocator.Deallocate(AllNodes.remove(N));
575  }
576}
577
578void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579  SmallVector<SDNode*, 16> DeadNodes(1, N);
580  RemoveDeadNodes(DeadNodes, UpdateListener);
581}
582
583void SelectionDAG::DeleteNode(SDNode *N) {
584  assert(N->use_empty() && "Cannot delete a node that is not dead!");
585
586  // First take this out of the appropriate CSE map.
587  RemoveNodeFromCSEMaps(N);
588
589  // Finally, remove uses due to operands of this node, remove from the
590  // AllNodes list, and delete the node.
591  DeleteNodeNotInCSEMaps(N);
592}
593
594void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
595
596  // Drop all of the operands and decrement used node's use counts.
597  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
598    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
599  if (N->OperandsNeedDelete)
600    delete[] N->OperandList;
601
602  assert(N != AllNodes.begin());
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() &&
651      N->getOpcode() != ISD::DBG_LABEL &&
652      N->getOpcode() != ISD::DBG_STOPPOINT &&
653      N->getOpcode() != ISD::EH_LABEL &&
654      N->getOpcode() != ISD::DECLARE) {
655    N->dump(this);
656    cerr << "\n";
657    assert(0 && "Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
664/// has been taken out and modified in some way.  If the specified node already
665/// exists in the CSE maps, do not modify the maps, but return the existing node
666/// instead.  If it doesn't exist, add it and return null.
667///
668SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
669  assert(N->getNumOperands() && "This is a leaf node!");
670
671  if (N->getValueType(0) == MVT::Flag)
672    return 0;   // Never CSE anything that produces a flag.
673
674  switch (N->getOpcode()) {
675  default: break;
676  case ISD::HANDLENODE:
677  case ISD::DBG_LABEL:
678  case ISD::DBG_STOPPOINT:
679  case ISD::EH_LABEL:
680  case ISD::DECLARE:
681    return 0;    // Never add these nodes.
682  }
683
684  // Check that remaining values produced are not flags.
685  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
686    if (N->getValueType(i) == MVT::Flag)
687      return 0;   // Never CSE anything that produces a flag.
688
689  SDNode *New = CSEMap.GetOrInsertNode(N);
690  if (New != N) return New;  // Node already existed.
691  return 0;
692}
693
694/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
695/// were replaced with those specified.  If this node is never memoized,
696/// return null, otherwise return a pointer to the slot it would take.  If a
697/// node already exists with these operands, the slot will be non-null.
698SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
699                                           void *&InsertPos) {
700  if (N->getValueType(0) == MVT::Flag)
701    return 0;   // Never CSE anything that produces a flag.
702
703  switch (N->getOpcode()) {
704  default: break;
705  case ISD::HANDLENODE:
706  case ISD::DBG_LABEL:
707  case ISD::DBG_STOPPOINT:
708  case ISD::EH_LABEL:
709    return 0;    // Never add these nodes.
710  }
711
712  // Check that remaining values produced are not flags.
713  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
714    if (N->getValueType(i) == MVT::Flag)
715      return 0;   // Never CSE anything that produces a flag.
716
717  SDValue Ops[] = { Op };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
720  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
721}
722
723/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724/// were replaced with those specified.  If this node is never memoized,
725/// return null, otherwise return a pointer to the slot it would take.  If a
726/// node already exists with these operands, the slot will be non-null.
727SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728                                           SDValue Op1, SDValue Op2,
729                                           void *&InsertPos) {
730  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
731
732  // Check that remaining values produced are not flags.
733  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
734    if (N->getValueType(i) == MVT::Flag)
735      return 0;   // Never CSE anything that produces a flag.
736
737  SDValue Ops[] = { Op1, Op2 };
738  FoldingSetNodeID ID;
739  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
740  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741}
742
743
744/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
745/// were replaced with those specified.  If this node is never memoized,
746/// return null, otherwise return a pointer to the slot it would take.  If a
747/// node already exists with these operands, the slot will be non-null.
748SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
749                                           const SDValue *Ops,unsigned NumOps,
750                                           void *&InsertPos) {
751  if (N->getValueType(0) == MVT::Flag)
752    return 0;   // Never CSE anything that produces a flag.
753
754  switch (N->getOpcode()) {
755  default: break;
756  case ISD::HANDLENODE:
757  case ISD::DBG_LABEL:
758  case ISD::DBG_STOPPOINT:
759  case ISD::EH_LABEL:
760  case ISD::DECLARE:
761    return 0;    // Never add these nodes.
762  }
763
764  // Check that remaining values produced are not flags.
765  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
766    if (N->getValueType(i) == MVT::Flag)
767      return 0;   // Never CSE anything that produces a flag.
768
769  FoldingSetNodeID ID;
770  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
771
772  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
773    ID.AddInteger(LD->getAddressingMode());
774    ID.AddInteger(LD->getExtensionType());
775    ID.AddInteger(LD->getMemoryVT().getRawBits());
776    ID.AddInteger(LD->getRawFlags());
777  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
778    ID.AddInteger(ST->getAddressingMode());
779    ID.AddInteger(ST->isTruncatingStore());
780    ID.AddInteger(ST->getMemoryVT().getRawBits());
781    ID.AddInteger(ST->getRawFlags());
782  }
783
784  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
785}
786
787/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
788void SelectionDAG::VerifyNode(SDNode *N) {
789  switch (N->getOpcode()) {
790  default:
791    break;
792  case ISD::BUILD_VECTOR: {
793    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
794    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
795    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
796           "Wrong number of BUILD_VECTOR operands!");
797    MVT EltVT = N->getValueType(0).getVectorElementType();
798    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
799      assert(I->getSDValue().getValueType() == EltVT &&
800             "Wrong BUILD_VECTOR operand type!");
801    break;
802  }
803  }
804}
805
806/// getMVTAlignment - Compute the default alignment value for the
807/// given type.
808///
809unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
810  const Type *Ty = VT == MVT::iPTR ?
811                   PointerType::get(Type::Int8Ty, 0) :
812                   VT.getTypeForMVT();
813
814  return TLI.getTargetData()->getABITypeAlignment(Ty);
815}
816
817SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
818  : TLI(tli), FLI(fli),
819    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
820    Root(getEntryNode()) {
821  AllNodes.push_back(&EntryNode);
822}
823
824void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
825  MF = &mf;
826  MMI = mmi;
827}
828
829SelectionDAG::~SelectionDAG() {
830  allnodes_clear();
831}
832
833void SelectionDAG::allnodes_clear() {
834  assert(&*AllNodes.begin() == &EntryNode);
835  AllNodes.remove(AllNodes.begin());
836  while (!AllNodes.empty()) {
837    SDNode *N = AllNodes.remove(AllNodes.begin());
838    N->SetNextInBucket(0);
839    if (N->OperandsNeedDelete)
840      delete [] N->OperandList;
841    NodeAllocator.Deallocate(N);
842  }
843}
844
845void SelectionDAG::clear() {
846  allnodes_clear();
847  OperandAllocator.Reset();
848  CSEMap.clear();
849
850  ExtendedValueTypeNodes.clear();
851  ExternalSymbols.clear();
852  TargetExternalSymbols.clear();
853  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
854            static_cast<CondCodeSDNode*>(0));
855  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
856            static_cast<SDNode*>(0));
857
858  EntryNode.Uses = 0;
859  AllNodes.push_back(&EntryNode);
860  Root = getEntryNode();
861}
862
863SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
864  if (Op.getValueType() == VT) return Op;
865  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
866                                   VT.getSizeInBits());
867  return getNode(ISD::AND, Op.getValueType(), Op,
868                 getConstant(Imm, Op.getValueType()));
869}
870
871SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
872  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
877  return getConstant(*ConstantInt::get(Val), VT, isT);
878}
879
880SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
881  assert(VT.isInteger() && "Cannot create FP integer constant!");
882
883  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
885         "APInt size does not match type size!");
886
887  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
890  ID.AddPointer(&Val);
891  void *IP = 0;
892  SDNode *N = NULL;
893  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
894    if (!VT.isVector())
895      return SDValue(N, 0);
896  if (!N) {
897    N = NodeAllocator.Allocate<ConstantSDNode>();
898    new (N) ConstantSDNode(isT, &Val, EltVT);
899    CSEMap.InsertNode(N, IP);
900    AllNodes.push_back(N);
901  }
902
903  SDValue Result(N, 0);
904  if (VT.isVector()) {
905    SmallVector<SDValue, 8> Ops;
906    Ops.assign(VT.getVectorNumElements(), Result);
907    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
908  }
909  return Result;
910}
911
912SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
913  return getConstant(Val, TLI.getPointerTy(), isTarget);
914}
915
916
917SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
918  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
919}
920
921SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
922  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
923
924  MVT EltVT =
925    VT.isVector() ? VT.getVectorElementType() : VT;
926
927  // Do the map lookup using the actual bit pattern for the floating point
928  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
929  // we don't have issues with SNANs.
930  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
931  FoldingSetNodeID ID;
932  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
933  ID.AddPointer(&V);
934  void *IP = 0;
935  SDNode *N = NULL;
936  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
937    if (!VT.isVector())
938      return SDValue(N, 0);
939  if (!N) {
940    N = NodeAllocator.Allocate<ConstantFPSDNode>();
941    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
942    CSEMap.InsertNode(N, IP);
943    AllNodes.push_back(N);
944  }
945
946  SDValue Result(N, 0);
947  if (VT.isVector()) {
948    SmallVector<SDValue, 8> Ops;
949    Ops.assign(VT.getVectorNumElements(), Result);
950    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
951  }
952  return Result;
953}
954
955SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
956  MVT EltVT =
957    VT.isVector() ? VT.getVectorElementType() : VT;
958  if (EltVT==MVT::f32)
959    return getConstantFP(APFloat((float)Val), VT, isTarget);
960  else
961    return getConstantFP(APFloat(Val), VT, isTarget);
962}
963
964SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
965                                       MVT VT, int Offset,
966                                       bool isTargetGA) {
967  unsigned Opc;
968
969  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
970  if (!GVar) {
971    // If GV is an alias then use the aliasee for determining thread-localness.
972    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
973      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
974  }
975
976  if (GVar && GVar->isThreadLocal())
977    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
978  else
979    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
980
981  FoldingSetNodeID ID;
982  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
983  ID.AddPointer(GV);
984  ID.AddInteger(Offset);
985  void *IP = 0;
986  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
987   return SDValue(E, 0);
988  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
989  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
990  CSEMap.InsertNode(N, IP);
991  AllNodes.push_back(N);
992  return SDValue(N, 0);
993}
994
995SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
996  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
997  FoldingSetNodeID ID;
998  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999  ID.AddInteger(FI);
1000  void *IP = 0;
1001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1002    return SDValue(E, 0);
1003  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1004  new (N) FrameIndexSDNode(FI, VT, isTarget);
1005  CSEMap.InsertNode(N, IP);
1006  AllNodes.push_back(N);
1007  return SDValue(N, 0);
1008}
1009
1010SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1011  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1012  FoldingSetNodeID ID;
1013  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1014  ID.AddInteger(JTI);
1015  void *IP = 0;
1016  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1017    return SDValue(E, 0);
1018  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1019  new (N) JumpTableSDNode(JTI, VT, isTarget);
1020  CSEMap.InsertNode(N, IP);
1021  AllNodes.push_back(N);
1022  return SDValue(N, 0);
1023}
1024
1025SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1026                                      unsigned Alignment, int Offset,
1027                                      bool isTarget) {
1028  if (Alignment == 0)
1029    Alignment =
1030      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1031  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1034  ID.AddInteger(Alignment);
1035  ID.AddInteger(Offset);
1036  ID.AddPointer(C);
1037  void *IP = 0;
1038  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1039    return SDValue(E, 0);
1040  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1041  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1042  CSEMap.InsertNode(N, IP);
1043  AllNodes.push_back(N);
1044  return SDValue(N, 0);
1045}
1046
1047
1048SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1049                                      unsigned Alignment, int Offset,
1050                                      bool isTarget) {
1051  if (Alignment == 0)
1052    Alignment =
1053      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1054  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1055  FoldingSetNodeID ID;
1056  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1057  ID.AddInteger(Alignment);
1058  ID.AddInteger(Offset);
1059  C->AddSelectionDAGCSEId(ID);
1060  void *IP = 0;
1061  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1062    return SDValue(E, 0);
1063  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1064  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1065  CSEMap.InsertNode(N, IP);
1066  AllNodes.push_back(N);
1067  return SDValue(N, 0);
1068}
1069
1070
1071SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1072  FoldingSetNodeID ID;
1073  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1074  ID.AddPointer(MBB);
1075  void *IP = 0;
1076  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077    return SDValue(E, 0);
1078  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1079  new (N) BasicBlockSDNode(MBB);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1086  FoldingSetNodeID ID;
1087  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1088  ID.AddInteger(Flags.getRawBits());
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1093  new (N) ARG_FLAGSSDNode(Flags);
1094  CSEMap.InsertNode(N, IP);
1095  AllNodes.push_back(N);
1096  return SDValue(N, 0);
1097}
1098
1099SDValue SelectionDAG::getValueType(MVT VT) {
1100  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1101    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1102
1103  SDNode *&N = VT.isExtended() ?
1104    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1105
1106  if (N) return SDValue(N, 0);
1107  N = NodeAllocator.Allocate<VTSDNode>();
1108  new (N) VTSDNode(VT);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1114  SDNode *&N = ExternalSymbols[Sym];
1115  if (N) return SDValue(N, 0);
1116  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1117  new (N) ExternalSymbolSDNode(false, Sym, VT);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1123  SDNode *&N = TargetExternalSymbols[Sym];
1124  if (N) return SDValue(N, 0);
1125  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1126  new (N) ExternalSymbolSDNode(true, Sym, VT);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1132  if ((unsigned)Cond >= CondCodeNodes.size())
1133    CondCodeNodes.resize(Cond+1);
1134
1135  if (CondCodeNodes[Cond] == 0) {
1136    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1137    new (N) CondCodeSDNode(Cond);
1138    CondCodeNodes[Cond] = N;
1139    AllNodes.push_back(N);
1140  }
1141  return SDValue(CondCodeNodes[Cond], 0);
1142}
1143
1144SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1145  FoldingSetNodeID ID;
1146  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1147  ID.AddInteger(RegNo);
1148  void *IP = 0;
1149  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1150    return SDValue(E, 0);
1151  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1152  new (N) RegisterSDNode(RegNo, VT);
1153  CSEMap.InsertNode(N, IP);
1154  AllNodes.push_back(N);
1155  return SDValue(N, 0);
1156}
1157
1158SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1159                                        unsigned Line, unsigned Col,
1160                                        const CompileUnitDesc *CU) {
1161  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1162  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1163  AllNodes.push_back(N);
1164  return SDValue(N, 0);
1165}
1166
1167SDValue SelectionDAG::getLabel(unsigned Opcode,
1168                               SDValue Root,
1169                               unsigned LabelID) {
1170  FoldingSetNodeID ID;
1171  SDValue Ops[] = { Root };
1172  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1173  ID.AddInteger(LabelID);
1174  void *IP = 0;
1175  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1176    return SDValue(E, 0);
1177  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1178  new (N) LabelSDNode(Opcode, Root, LabelID);
1179  CSEMap.InsertNode(N, IP);
1180  AllNodes.push_back(N);
1181  return SDValue(N, 0);
1182}
1183
1184SDValue SelectionDAG::getSrcValue(const Value *V) {
1185  assert((!V || isa<PointerType>(V->getType())) &&
1186         "SrcValue is not a pointer?");
1187
1188  FoldingSetNodeID ID;
1189  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1190  ID.AddPointer(V);
1191
1192  void *IP = 0;
1193  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1194    return SDValue(E, 0);
1195
1196  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1197  new (N) SrcValueSDNode(V);
1198  CSEMap.InsertNode(N, IP);
1199  AllNodes.push_back(N);
1200  return SDValue(N, 0);
1201}
1202
1203SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1204  const Value *v = MO.getValue();
1205  assert((!v || isa<PointerType>(v->getType())) &&
1206         "SrcValue is not a pointer?");
1207
1208  FoldingSetNodeID ID;
1209  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1210  MO.Profile(ID);
1211
1212  void *IP = 0;
1213  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1214    return SDValue(E, 0);
1215
1216  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1217  new (N) MemOperandSDNode(MO);
1218  CSEMap.InsertNode(N, IP);
1219  AllNodes.push_back(N);
1220  return SDValue(N, 0);
1221}
1222
1223/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1224/// specified value type.
1225SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1226  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1227  unsigned ByteSize = VT.getSizeInBits()/8;
1228  const Type *Ty = VT.getTypeForMVT();
1229  unsigned StackAlign =
1230  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1231
1232  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1233  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1234}
1235
1236SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1237                                SDValue N2, ISD::CondCode Cond) {
1238  // These setcc operations always fold.
1239  switch (Cond) {
1240  default: break;
1241  case ISD::SETFALSE:
1242  case ISD::SETFALSE2: return getConstant(0, VT);
1243  case ISD::SETTRUE:
1244  case ISD::SETTRUE2:  return getConstant(1, VT);
1245
1246  case ISD::SETOEQ:
1247  case ISD::SETOGT:
1248  case ISD::SETOGE:
1249  case ISD::SETOLT:
1250  case ISD::SETOLE:
1251  case ISD::SETONE:
1252  case ISD::SETO:
1253  case ISD::SETUO:
1254  case ISD::SETUEQ:
1255  case ISD::SETUNE:
1256    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1257    break;
1258  }
1259
1260  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1261    const APInt &C2 = N2C->getAPIntValue();
1262    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1263      const APInt &C1 = N1C->getAPIntValue();
1264
1265      switch (Cond) {
1266      default: assert(0 && "Unknown integer setcc!");
1267      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1268      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1269      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1270      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1271      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1272      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1273      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1274      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1275      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1276      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1277      }
1278    }
1279  }
1280  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1281    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1282      // No compile time operations on this type yet.
1283      if (N1C->getValueType(0) == MVT::ppcf128)
1284        return SDValue();
1285
1286      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1287      switch (Cond) {
1288      default: break;
1289      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1290                          return getNode(ISD::UNDEF, VT);
1291                        // fall through
1292      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1293      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1294                          return getNode(ISD::UNDEF, VT);
1295                        // fall through
1296      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1297                                           R==APFloat::cmpLessThan, VT);
1298      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1299                          return getNode(ISD::UNDEF, VT);
1300                        // fall through
1301      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1302      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1303                          return getNode(ISD::UNDEF, VT);
1304                        // fall through
1305      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1306      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1307                          return getNode(ISD::UNDEF, VT);
1308                        // fall through
1309      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1310                                           R==APFloat::cmpEqual, VT);
1311      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1312                          return getNode(ISD::UNDEF, VT);
1313                        // fall through
1314      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1315                                           R==APFloat::cmpEqual, VT);
1316      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1317      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1318      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1319                                           R==APFloat::cmpEqual, VT);
1320      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1321      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1322                                           R==APFloat::cmpLessThan, VT);
1323      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1324                                           R==APFloat::cmpUnordered, VT);
1325      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1326      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1327      }
1328    } else {
1329      // Ensure that the constant occurs on the RHS.
1330      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1331    }
1332  }
1333
1334  // Could not fold it.
1335  return SDValue();
1336}
1337
1338/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1339/// use this predicate to simplify operations downstream.
1340bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1341  unsigned BitWidth = Op.getValueSizeInBits();
1342  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1343}
1344
1345/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1346/// this predicate to simplify operations downstream.  Mask is known to be zero
1347/// for bits that V cannot have.
1348bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1349                                     unsigned Depth) const {
1350  APInt KnownZero, KnownOne;
1351  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1352  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1353  return (KnownZero & Mask) == Mask;
1354}
1355
1356/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1357/// known to be either zero or one and return them in the KnownZero/KnownOne
1358/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1359/// processing.
1360void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1361                                     APInt &KnownZero, APInt &KnownOne,
1362                                     unsigned Depth) const {
1363  unsigned BitWidth = Mask.getBitWidth();
1364  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1365         "Mask size mismatches value type size!");
1366
1367  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1368  if (Depth == 6 || Mask == 0)
1369    return;  // Limit search depth.
1370
1371  APInt KnownZero2, KnownOne2;
1372
1373  switch (Op.getOpcode()) {
1374  case ISD::Constant:
1375    // We know all of the bits for a constant!
1376    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1377    KnownZero = ~KnownOne & Mask;
1378    return;
1379  case ISD::AND:
1380    // If either the LHS or the RHS are Zero, the result is zero.
1381    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1382    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1383                      KnownZero2, KnownOne2, Depth+1);
1384    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1385    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1386
1387    // Output known-1 bits are only known if set in both the LHS & RHS.
1388    KnownOne &= KnownOne2;
1389    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1390    KnownZero |= KnownZero2;
1391    return;
1392  case ISD::OR:
1393    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1394    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1395                      KnownZero2, KnownOne2, Depth+1);
1396    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1397    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1398
1399    // Output known-0 bits are only known if clear in both the LHS & RHS.
1400    KnownZero &= KnownZero2;
1401    // Output known-1 are known to be set if set in either the LHS | RHS.
1402    KnownOne |= KnownOne2;
1403    return;
1404  case ISD::XOR: {
1405    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1406    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1407    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1408    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1409
1410    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1411    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1412    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1413    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1414    KnownZero = KnownZeroOut;
1415    return;
1416  }
1417  case ISD::MUL: {
1418    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1419    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1420    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1421    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1422    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1423
1424    // If low bits are zero in either operand, output low known-0 bits.
1425    // Also compute a conserative estimate for high known-0 bits.
1426    // More trickiness is possible, but this is sufficient for the
1427    // interesting case of alignment computation.
1428    KnownOne.clear();
1429    unsigned TrailZ = KnownZero.countTrailingOnes() +
1430                      KnownZero2.countTrailingOnes();
1431    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1432                               KnownZero2.countLeadingOnes(),
1433                               BitWidth) - BitWidth;
1434
1435    TrailZ = std::min(TrailZ, BitWidth);
1436    LeadZ = std::min(LeadZ, BitWidth);
1437    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1438                APInt::getHighBitsSet(BitWidth, LeadZ);
1439    KnownZero &= Mask;
1440    return;
1441  }
1442  case ISD::UDIV: {
1443    // For the purposes of computing leading zeros we can conservatively
1444    // treat a udiv as a logical right shift by the power of 2 known to
1445    // be less than the denominator.
1446    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1447    ComputeMaskedBits(Op.getOperand(0),
1448                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1449    unsigned LeadZ = KnownZero2.countLeadingOnes();
1450
1451    KnownOne2.clear();
1452    KnownZero2.clear();
1453    ComputeMaskedBits(Op.getOperand(1),
1454                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1455    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1456    if (RHSUnknownLeadingOnes != BitWidth)
1457      LeadZ = std::min(BitWidth,
1458                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1459
1460    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1461    return;
1462  }
1463  case ISD::SELECT:
1464    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1465    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1466    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1467    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1468
1469    // Only known if known in both the LHS and RHS.
1470    KnownOne &= KnownOne2;
1471    KnownZero &= KnownZero2;
1472    return;
1473  case ISD::SELECT_CC:
1474    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1475    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1476    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1477    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1478
1479    // Only known if known in both the LHS and RHS.
1480    KnownOne &= KnownOne2;
1481    KnownZero &= KnownZero2;
1482    return;
1483  case ISD::SETCC:
1484    // If we know the result of a setcc has the top bits zero, use this info.
1485    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1486        BitWidth > 1)
1487      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1488    return;
1489  case ISD::SHL:
1490    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1491    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1492      unsigned ShAmt = SA->getZExtValue();
1493
1494      // If the shift count is an invalid immediate, don't do anything.
1495      if (ShAmt >= BitWidth)
1496        return;
1497
1498      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1499                        KnownZero, KnownOne, Depth+1);
1500      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1501      KnownZero <<= ShAmt;
1502      KnownOne  <<= ShAmt;
1503      // low bits known zero.
1504      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1505    }
1506    return;
1507  case ISD::SRL:
1508    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1509    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1510      unsigned ShAmt = SA->getZExtValue();
1511
1512      // If the shift count is an invalid immediate, don't do anything.
1513      if (ShAmt >= BitWidth)
1514        return;
1515
1516      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1517                        KnownZero, KnownOne, Depth+1);
1518      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1519      KnownZero = KnownZero.lshr(ShAmt);
1520      KnownOne  = KnownOne.lshr(ShAmt);
1521
1522      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1523      KnownZero |= HighBits;  // High bits known zero.
1524    }
1525    return;
1526  case ISD::SRA:
1527    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1528      unsigned ShAmt = SA->getZExtValue();
1529
1530      // If the shift count is an invalid immediate, don't do anything.
1531      if (ShAmt >= BitWidth)
1532        return;
1533
1534      APInt InDemandedMask = (Mask << ShAmt);
1535      // If any of the demanded bits are produced by the sign extension, we also
1536      // demand the input sign bit.
1537      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1538      if (HighBits.getBoolValue())
1539        InDemandedMask |= APInt::getSignBit(BitWidth);
1540
1541      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1542                        Depth+1);
1543      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1544      KnownZero = KnownZero.lshr(ShAmt);
1545      KnownOne  = KnownOne.lshr(ShAmt);
1546
1547      // Handle the sign bits.
1548      APInt SignBit = APInt::getSignBit(BitWidth);
1549      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1550
1551      if (KnownZero.intersects(SignBit)) {
1552        KnownZero |= HighBits;  // New bits are known zero.
1553      } else if (KnownOne.intersects(SignBit)) {
1554        KnownOne  |= HighBits;  // New bits are known one.
1555      }
1556    }
1557    return;
1558  case ISD::SIGN_EXTEND_INREG: {
1559    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1560    unsigned EBits = EVT.getSizeInBits();
1561
1562    // Sign extension.  Compute the demanded bits in the result that are not
1563    // present in the input.
1564    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1565
1566    APInt InSignBit = APInt::getSignBit(EBits);
1567    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1568
1569    // If the sign extended bits are demanded, we know that the sign
1570    // bit is demanded.
1571    InSignBit.zext(BitWidth);
1572    if (NewBits.getBoolValue())
1573      InputDemandedBits |= InSignBit;
1574
1575    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1576                      KnownZero, KnownOne, Depth+1);
1577    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578
1579    // If the sign bit of the input is known set or clear, then we know the
1580    // top bits of the result.
1581    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1582      KnownZero |= NewBits;
1583      KnownOne  &= ~NewBits;
1584    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1585      KnownOne  |= NewBits;
1586      KnownZero &= ~NewBits;
1587    } else {                              // Input sign bit unknown
1588      KnownZero &= ~NewBits;
1589      KnownOne  &= ~NewBits;
1590    }
1591    return;
1592  }
1593  case ISD::CTTZ:
1594  case ISD::CTLZ:
1595  case ISD::CTPOP: {
1596    unsigned LowBits = Log2_32(BitWidth)+1;
1597    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1598    KnownOne.clear();
1599    return;
1600  }
1601  case ISD::LOAD: {
1602    if (ISD::isZEXTLoad(Op.getNode())) {
1603      LoadSDNode *LD = cast<LoadSDNode>(Op);
1604      MVT VT = LD->getMemoryVT();
1605      unsigned MemBits = VT.getSizeInBits();
1606      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1607    }
1608    return;
1609  }
1610  case ISD::ZERO_EXTEND: {
1611    MVT InVT = Op.getOperand(0).getValueType();
1612    unsigned InBits = InVT.getSizeInBits();
1613    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1614    APInt InMask    = Mask;
1615    InMask.trunc(InBits);
1616    KnownZero.trunc(InBits);
1617    KnownOne.trunc(InBits);
1618    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1619    KnownZero.zext(BitWidth);
1620    KnownOne.zext(BitWidth);
1621    KnownZero |= NewBits;
1622    return;
1623  }
1624  case ISD::SIGN_EXTEND: {
1625    MVT InVT = Op.getOperand(0).getValueType();
1626    unsigned InBits = InVT.getSizeInBits();
1627    APInt InSignBit = APInt::getSignBit(InBits);
1628    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1629    APInt InMask = Mask;
1630    InMask.trunc(InBits);
1631
1632    // If any of the sign extended bits are demanded, we know that the sign
1633    // bit is demanded. Temporarily set this bit in the mask for our callee.
1634    if (NewBits.getBoolValue())
1635      InMask |= InSignBit;
1636
1637    KnownZero.trunc(InBits);
1638    KnownOne.trunc(InBits);
1639    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1640
1641    // Note if the sign bit is known to be zero or one.
1642    bool SignBitKnownZero = KnownZero.isNegative();
1643    bool SignBitKnownOne  = KnownOne.isNegative();
1644    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1645           "Sign bit can't be known to be both zero and one!");
1646
1647    // If the sign bit wasn't actually demanded by our caller, we don't
1648    // want it set in the KnownZero and KnownOne result values. Reset the
1649    // mask and reapply it to the result values.
1650    InMask = Mask;
1651    InMask.trunc(InBits);
1652    KnownZero &= InMask;
1653    KnownOne  &= InMask;
1654
1655    KnownZero.zext(BitWidth);
1656    KnownOne.zext(BitWidth);
1657
1658    // If the sign bit is known zero or one, the top bits match.
1659    if (SignBitKnownZero)
1660      KnownZero |= NewBits;
1661    else if (SignBitKnownOne)
1662      KnownOne  |= NewBits;
1663    return;
1664  }
1665  case ISD::ANY_EXTEND: {
1666    MVT InVT = Op.getOperand(0).getValueType();
1667    unsigned InBits = InVT.getSizeInBits();
1668    APInt InMask = Mask;
1669    InMask.trunc(InBits);
1670    KnownZero.trunc(InBits);
1671    KnownOne.trunc(InBits);
1672    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1673    KnownZero.zext(BitWidth);
1674    KnownOne.zext(BitWidth);
1675    return;
1676  }
1677  case ISD::TRUNCATE: {
1678    MVT InVT = Op.getOperand(0).getValueType();
1679    unsigned InBits = InVT.getSizeInBits();
1680    APInt InMask = Mask;
1681    InMask.zext(InBits);
1682    KnownZero.zext(InBits);
1683    KnownOne.zext(InBits);
1684    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1685    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1686    KnownZero.trunc(BitWidth);
1687    KnownOne.trunc(BitWidth);
1688    break;
1689  }
1690  case ISD::AssertZext: {
1691    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1692    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1693    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1694                      KnownOne, Depth+1);
1695    KnownZero |= (~InMask) & Mask;
1696    return;
1697  }
1698  case ISD::FGETSIGN:
1699    // All bits are zero except the low bit.
1700    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1701    return;
1702
1703  case ISD::SUB: {
1704    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1705      // We know that the top bits of C-X are clear if X contains less bits
1706      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1707      // positive if we can prove that X is >= 0 and < 16.
1708      if (CLHS->getAPIntValue().isNonNegative()) {
1709        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1710        // NLZ can't be BitWidth with no sign bit
1711        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1712        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1713                          Depth+1);
1714
1715        // If all of the MaskV bits are known to be zero, then we know the
1716        // output top bits are zero, because we now know that the output is
1717        // from [0-C].
1718        if ((KnownZero2 & MaskV) == MaskV) {
1719          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1720          // Top bits known zero.
1721          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1722        }
1723      }
1724    }
1725  }
1726  // fall through
1727  case ISD::ADD: {
1728    // Output known-0 bits are known if clear or set in both the low clear bits
1729    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1730    // low 3 bits clear.
1731    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1732    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1733    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1734    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1735
1736    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1737    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1738    KnownZeroOut = std::min(KnownZeroOut,
1739                            KnownZero2.countTrailingOnes());
1740
1741    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1742    return;
1743  }
1744  case ISD::SREM:
1745    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      const APInt &RA = Rem->getAPIntValue();
1747      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1748        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1749        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1750        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1751
1752        // If the sign bit of the first operand is zero, the sign bit of
1753        // the result is zero. If the first operand has no one bits below
1754        // the second operand's single 1 bit, its sign will be zero.
1755        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1756          KnownZero2 |= ~LowBits;
1757
1758        KnownZero |= KnownZero2 & Mask;
1759
1760        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1761      }
1762    }
1763    return;
1764  case ISD::UREM: {
1765    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1766      const APInt &RA = Rem->getAPIntValue();
1767      if (RA.isPowerOf2()) {
1768        APInt LowBits = (RA - 1);
1769        APInt Mask2 = LowBits & Mask;
1770        KnownZero |= ~LowBits & Mask;
1771        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1772        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1773        break;
1774      }
1775    }
1776
1777    // Since the result is less than or equal to either operand, any leading
1778    // zero bits in either operand must also exist in the result.
1779    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1780    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1781                      Depth+1);
1782    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1783                      Depth+1);
1784
1785    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1786                                KnownZero2.countLeadingOnes());
1787    KnownOne.clear();
1788    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1789    return;
1790  }
1791  default:
1792    // Allow the target to implement this method for its nodes.
1793    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1794  case ISD::INTRINSIC_WO_CHAIN:
1795  case ISD::INTRINSIC_W_CHAIN:
1796  case ISD::INTRINSIC_VOID:
1797      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1798    }
1799    return;
1800  }
1801}
1802
1803/// ComputeNumSignBits - Return the number of times the sign bit of the
1804/// register is replicated into the other bits.  We know that at least 1 bit
1805/// is always equal to the sign bit (itself), but other cases can give us
1806/// information.  For example, immediately after an "SRA X, 2", we know that
1807/// the top 3 bits are all equal to each other, so we return 3.
1808unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1809  MVT VT = Op.getValueType();
1810  assert(VT.isInteger() && "Invalid VT!");
1811  unsigned VTBits = VT.getSizeInBits();
1812  unsigned Tmp, Tmp2;
1813  unsigned FirstAnswer = 1;
1814
1815  if (Depth == 6)
1816    return 1;  // Limit search depth.
1817
1818  switch (Op.getOpcode()) {
1819  default: break;
1820  case ISD::AssertSext:
1821    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1822    return VTBits-Tmp+1;
1823  case ISD::AssertZext:
1824    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1825    return VTBits-Tmp;
1826
1827  case ISD::Constant: {
1828    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1829    // If negative, return # leading ones.
1830    if (Val.isNegative())
1831      return Val.countLeadingOnes();
1832
1833    // Return # leading zeros.
1834    return Val.countLeadingZeros();
1835  }
1836
1837  case ISD::SIGN_EXTEND:
1838    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1839    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1840
1841  case ISD::SIGN_EXTEND_INREG:
1842    // Max of the input and what this extends.
1843    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1844    Tmp = VTBits-Tmp+1;
1845
1846    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1847    return std::max(Tmp, Tmp2);
1848
1849  case ISD::SRA:
1850    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1851    // SRA X, C   -> adds C sign bits.
1852    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1853      Tmp += C->getZExtValue();
1854      if (Tmp > VTBits) Tmp = VTBits;
1855    }
1856    return Tmp;
1857  case ISD::SHL:
1858    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1859      // shl destroys sign bits.
1860      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1861      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1862          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1863      return Tmp - C->getZExtValue();
1864    }
1865    break;
1866  case ISD::AND:
1867  case ISD::OR:
1868  case ISD::XOR:    // NOT is handled here.
1869    // Logical binary ops preserve the number of sign bits at the worst.
1870    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1871    if (Tmp != 1) {
1872      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1873      FirstAnswer = std::min(Tmp, Tmp2);
1874      // We computed what we know about the sign bits as our first
1875      // answer. Now proceed to the generic code that uses
1876      // ComputeMaskedBits, and pick whichever answer is better.
1877    }
1878    break;
1879
1880  case ISD::SELECT:
1881    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1882    if (Tmp == 1) return 1;  // Early out.
1883    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1884    return std::min(Tmp, Tmp2);
1885
1886  case ISD::SETCC:
1887    // If setcc returns 0/-1, all bits are sign bits.
1888    if (TLI.getSetCCResultContents() ==
1889        TargetLowering::ZeroOrNegativeOneSetCCResult)
1890      return VTBits;
1891    break;
1892  case ISD::ROTL:
1893  case ISD::ROTR:
1894    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1895      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1896
1897      // Handle rotate right by N like a rotate left by 32-N.
1898      if (Op.getOpcode() == ISD::ROTR)
1899        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1900
1901      // If we aren't rotating out all of the known-in sign bits, return the
1902      // number that are left.  This handles rotl(sext(x), 1) for example.
1903      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1904      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1905    }
1906    break;
1907  case ISD::ADD:
1908    // Add can have at most one carry bit.  Thus we know that the output
1909    // is, at worst, one more bit than the inputs.
1910    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1911    if (Tmp == 1) return 1;  // Early out.
1912
1913    // Special case decrementing a value (ADD X, -1):
1914    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1915      if (CRHS->isAllOnesValue()) {
1916        APInt KnownZero, KnownOne;
1917        APInt Mask = APInt::getAllOnesValue(VTBits);
1918        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1919
1920        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1921        // sign bits set.
1922        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1923          return VTBits;
1924
1925        // If we are subtracting one from a positive number, there is no carry
1926        // out of the result.
1927        if (KnownZero.isNegative())
1928          return Tmp;
1929      }
1930
1931    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1932    if (Tmp2 == 1) return 1;
1933      return std::min(Tmp, Tmp2)-1;
1934    break;
1935
1936  case ISD::SUB:
1937    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1938    if (Tmp2 == 1) return 1;
1939
1940    // Handle NEG.
1941    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1942      if (CLHS->isNullValue()) {
1943        APInt KnownZero, KnownOne;
1944        APInt Mask = APInt::getAllOnesValue(VTBits);
1945        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1946        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1947        // sign bits set.
1948        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1949          return VTBits;
1950
1951        // If the input is known to be positive (the sign bit is known clear),
1952        // the output of the NEG has the same number of sign bits as the input.
1953        if (KnownZero.isNegative())
1954          return Tmp2;
1955
1956        // Otherwise, we treat this like a SUB.
1957      }
1958
1959    // Sub can have at most one carry bit.  Thus we know that the output
1960    // is, at worst, one more bit than the inputs.
1961    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1962    if (Tmp == 1) return 1;  // Early out.
1963      return std::min(Tmp, Tmp2)-1;
1964    break;
1965  case ISD::TRUNCATE:
1966    // FIXME: it's tricky to do anything useful for this, but it is an important
1967    // case for targets like X86.
1968    break;
1969  }
1970
1971  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1972  if (Op.getOpcode() == ISD::LOAD) {
1973    LoadSDNode *LD = cast<LoadSDNode>(Op);
1974    unsigned ExtType = LD->getExtensionType();
1975    switch (ExtType) {
1976    default: break;
1977    case ISD::SEXTLOAD:    // '17' bits known
1978      Tmp = LD->getMemoryVT().getSizeInBits();
1979      return VTBits-Tmp+1;
1980    case ISD::ZEXTLOAD:    // '16' bits known
1981      Tmp = LD->getMemoryVT().getSizeInBits();
1982      return VTBits-Tmp;
1983    }
1984  }
1985
1986  // Allow the target to implement this method for its nodes.
1987  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1988      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1989      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1990      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1991    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1992    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1993  }
1994
1995  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1996  // use this information.
1997  APInt KnownZero, KnownOne;
1998  APInt Mask = APInt::getAllOnesValue(VTBits);
1999  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2000
2001  if (KnownZero.isNegative()) {        // sign bit is 0
2002    Mask = KnownZero;
2003  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2004    Mask = KnownOne;
2005  } else {
2006    // Nothing known.
2007    return FirstAnswer;
2008  }
2009
2010  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2011  // the number of identical bits in the top of the input value.
2012  Mask = ~Mask;
2013  Mask <<= Mask.getBitWidth()-VTBits;
2014  // Return # leading zeros.  We use 'min' here in case Val was zero before
2015  // shifting.  We don't want to return '64' as for an i32 "0".
2016  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2017}
2018
2019
2020bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2021  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2022  if (!GA) return false;
2023  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2024  if (!GV) return false;
2025  MachineModuleInfo *MMI = getMachineModuleInfo();
2026  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2027}
2028
2029
2030/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2031/// element of the result of the vector shuffle.
2032SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2033  MVT VT = N->getValueType(0);
2034  SDValue PermMask = N->getOperand(2);
2035  SDValue Idx = PermMask.getOperand(i);
2036  if (Idx.getOpcode() == ISD::UNDEF)
2037    return getNode(ISD::UNDEF, VT.getVectorElementType());
2038  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2039  unsigned NumElems = PermMask.getNumOperands();
2040  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2041  Index %= NumElems;
2042
2043  if (V.getOpcode() == ISD::BIT_CONVERT) {
2044    V = V.getOperand(0);
2045    if (V.getValueType().getVectorNumElements() != NumElems)
2046      return SDValue();
2047  }
2048  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2049    return (Index == 0) ? V.getOperand(0)
2050                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2051  if (V.getOpcode() == ISD::BUILD_VECTOR)
2052    return V.getOperand(Index);
2053  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2054    return getShuffleScalarElt(V.getNode(), Index);
2055  return SDValue();
2056}
2057
2058
2059/// getNode - Gets or creates the specified node.
2060///
2061SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2062  FoldingSetNodeID ID;
2063  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2064  void *IP = 0;
2065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2066    return SDValue(E, 0);
2067  SDNode *N = NodeAllocator.Allocate<SDNode>();
2068  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2069  CSEMap.InsertNode(N, IP);
2070
2071  AllNodes.push_back(N);
2072#ifndef NDEBUG
2073  VerifyNode(N);
2074#endif
2075  return SDValue(N, 0);
2076}
2077
2078SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2079  // Constant fold unary operations with an integer constant operand.
2080  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2081    const APInt &Val = C->getAPIntValue();
2082    unsigned BitWidth = VT.getSizeInBits();
2083    switch (Opcode) {
2084    default: break;
2085    case ISD::SIGN_EXTEND:
2086      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2087    case ISD::ANY_EXTEND:
2088    case ISD::ZERO_EXTEND:
2089    case ISD::TRUNCATE:
2090      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2091    case ISD::UINT_TO_FP:
2092    case ISD::SINT_TO_FP: {
2093      const uint64_t zero[] = {0, 0};
2094      // No compile time operations on this type.
2095      if (VT==MVT::ppcf128)
2096        break;
2097      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2098      (void)apf.convertFromAPInt(Val,
2099                                 Opcode==ISD::SINT_TO_FP,
2100                                 APFloat::rmNearestTiesToEven);
2101      return getConstantFP(apf, VT);
2102    }
2103    case ISD::BIT_CONVERT:
2104      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2105        return getConstantFP(Val.bitsToFloat(), VT);
2106      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2107        return getConstantFP(Val.bitsToDouble(), VT);
2108      break;
2109    case ISD::BSWAP:
2110      return getConstant(Val.byteSwap(), VT);
2111    case ISD::CTPOP:
2112      return getConstant(Val.countPopulation(), VT);
2113    case ISD::CTLZ:
2114      return getConstant(Val.countLeadingZeros(), VT);
2115    case ISD::CTTZ:
2116      return getConstant(Val.countTrailingZeros(), VT);
2117    }
2118  }
2119
2120  // Constant fold unary operations with a floating point constant operand.
2121  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2122    APFloat V = C->getValueAPF();    // make copy
2123    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2124      switch (Opcode) {
2125      case ISD::FNEG:
2126        V.changeSign();
2127        return getConstantFP(V, VT);
2128      case ISD::FABS:
2129        V.clearSign();
2130        return getConstantFP(V, VT);
2131      case ISD::FP_ROUND:
2132      case ISD::FP_EXTEND:
2133        // This can return overflow, underflow, or inexact; we don't care.
2134        // FIXME need to be more flexible about rounding mode.
2135        (void)V.convert(*MVTToAPFloatSemantics(VT),
2136                        APFloat::rmNearestTiesToEven);
2137        return getConstantFP(V, VT);
2138      case ISD::FP_TO_SINT:
2139      case ISD::FP_TO_UINT: {
2140        integerPart x;
2141        assert(integerPartWidth >= 64);
2142        // FIXME need to be more flexible about rounding mode.
2143        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2144                              Opcode==ISD::FP_TO_SINT,
2145                              APFloat::rmTowardZero);
2146        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2147          break;
2148        return getConstant(x, VT);
2149      }
2150      case ISD::BIT_CONVERT:
2151        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2152          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2153        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2154          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2155        break;
2156      }
2157    }
2158  }
2159
2160  unsigned OpOpcode = Operand.getNode()->getOpcode();
2161  switch (Opcode) {
2162  case ISD::TokenFactor:
2163  case ISD::CONCAT_VECTORS:
2164    return Operand;         // Factor or concat of one node?  No need.
2165  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2166  case ISD::FP_EXTEND:
2167    assert(VT.isFloatingPoint() &&
2168           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2169    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2170    if (Operand.getOpcode() == ISD::UNDEF)
2171      return getNode(ISD::UNDEF, VT);
2172    break;
2173  case ISD::SIGN_EXTEND:
2174    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2175           "Invalid SIGN_EXTEND!");
2176    if (Operand.getValueType() == VT) return Operand;   // noop extension
2177    assert(Operand.getValueType().bitsLT(VT)
2178           && "Invalid sext node, dst < src!");
2179    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2180      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2181    break;
2182  case ISD::ZERO_EXTEND:
2183    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2184           "Invalid ZERO_EXTEND!");
2185    if (Operand.getValueType() == VT) return Operand;   // noop extension
2186    assert(Operand.getValueType().bitsLT(VT)
2187           && "Invalid zext node, dst < src!");
2188    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2189      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2190    break;
2191  case ISD::ANY_EXTEND:
2192    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2193           "Invalid ANY_EXTEND!");
2194    if (Operand.getValueType() == VT) return Operand;   // noop extension
2195    assert(Operand.getValueType().bitsLT(VT)
2196           && "Invalid anyext node, dst < src!");
2197    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2198      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2199      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2200    break;
2201  case ISD::TRUNCATE:
2202    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2203           "Invalid TRUNCATE!");
2204    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2205    assert(Operand.getValueType().bitsGT(VT)
2206           && "Invalid truncate node, src < dst!");
2207    if (OpOpcode == ISD::TRUNCATE)
2208      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2209    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2210             OpOpcode == ISD::ANY_EXTEND) {
2211      // If the source is smaller than the dest, we still need an extend.
2212      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2213        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2214      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2215        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2216      else
2217        return Operand.getNode()->getOperand(0);
2218    }
2219    break;
2220  case ISD::BIT_CONVERT:
2221    // Basic sanity checking.
2222    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2223           && "Cannot BIT_CONVERT between types of different sizes!");
2224    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2225    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2226      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2227    if (OpOpcode == ISD::UNDEF)
2228      return getNode(ISD::UNDEF, VT);
2229    break;
2230  case ISD::SCALAR_TO_VECTOR:
2231    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2232           VT.getVectorElementType() == Operand.getValueType() &&
2233           "Illegal SCALAR_TO_VECTOR node!");
2234    if (OpOpcode == ISD::UNDEF)
2235      return getNode(ISD::UNDEF, VT);
2236    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2237    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2238        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2239        Operand.getConstantOperandVal(1) == 0 &&
2240        Operand.getOperand(0).getValueType() == VT)
2241      return Operand.getOperand(0);
2242    break;
2243  case ISD::FNEG:
2244    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2245      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2246                     Operand.getNode()->getOperand(0));
2247    if (OpOpcode == ISD::FNEG)  // --X -> X
2248      return Operand.getNode()->getOperand(0);
2249    break;
2250  case ISD::FABS:
2251    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2252      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2253    break;
2254  }
2255
2256  SDNode *N;
2257  SDVTList VTs = getVTList(VT);
2258  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2259    FoldingSetNodeID ID;
2260    SDValue Ops[1] = { Operand };
2261    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2262    void *IP = 0;
2263    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2264      return SDValue(E, 0);
2265    N = NodeAllocator.Allocate<UnarySDNode>();
2266    new (N) UnarySDNode(Opcode, VTs, Operand);
2267    CSEMap.InsertNode(N, IP);
2268  } else {
2269    N = NodeAllocator.Allocate<UnarySDNode>();
2270    new (N) UnarySDNode(Opcode, VTs, Operand);
2271  }
2272
2273  AllNodes.push_back(N);
2274#ifndef NDEBUG
2275  VerifyNode(N);
2276#endif
2277  return SDValue(N, 0);
2278}
2279
2280SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2281                                             MVT VT,
2282                                             ConstantSDNode *Cst1,
2283                                             ConstantSDNode *Cst2) {
2284  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2285
2286  switch (Opcode) {
2287  case ISD::ADD:  return getConstant(C1 + C2, VT);
2288  case ISD::SUB:  return getConstant(C1 - C2, VT);
2289  case ISD::MUL:  return getConstant(C1 * C2, VT);
2290  case ISD::UDIV:
2291    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2292    break;
2293  case ISD::UREM:
2294    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2295    break;
2296  case ISD::SDIV:
2297    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2298    break;
2299  case ISD::SREM:
2300    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2301    break;
2302  case ISD::AND:  return getConstant(C1 & C2, VT);
2303  case ISD::OR:   return getConstant(C1 | C2, VT);
2304  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2305  case ISD::SHL:  return getConstant(C1 << C2, VT);
2306  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2307  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2308  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2309  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2310  default: break;
2311  }
2312
2313  return SDValue();
2314}
2315
2316SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2317                              SDValue N1, SDValue N2) {
2318  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2319  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2320  switch (Opcode) {
2321  default: break;
2322  case ISD::TokenFactor:
2323    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2324           N2.getValueType() == MVT::Other && "Invalid token factor!");
2325    // Fold trivial token factors.
2326    if (N1.getOpcode() == ISD::EntryToken) return N2;
2327    if (N2.getOpcode() == ISD::EntryToken) return N1;
2328    break;
2329  case ISD::CONCAT_VECTORS:
2330    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2331    // one big BUILD_VECTOR.
2332    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2333        N2.getOpcode() == ISD::BUILD_VECTOR) {
2334      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2335      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2336      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2337    }
2338    break;
2339  case ISD::AND:
2340    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2341           N1.getValueType() == VT && "Binary operator types must match!");
2342    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2343    // worth handling here.
2344    if (N2C && N2C->isNullValue())
2345      return N2;
2346    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2347      return N1;
2348    break;
2349  case ISD::OR:
2350  case ISD::XOR:
2351  case ISD::ADD:
2352  case ISD::SUB:
2353    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2354           N1.getValueType() == VT && "Binary operator types must match!");
2355    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2356    // it's worth handling here.
2357    if (N2C && N2C->isNullValue())
2358      return N1;
2359    break;
2360  case ISD::UDIV:
2361  case ISD::UREM:
2362  case ISD::MULHU:
2363  case ISD::MULHS:
2364    assert(VT.isInteger() && "This operator does not apply to FP types!");
2365    // fall through
2366  case ISD::MUL:
2367  case ISD::SDIV:
2368  case ISD::SREM:
2369  case ISD::FADD:
2370  case ISD::FSUB:
2371  case ISD::FMUL:
2372  case ISD::FDIV:
2373  case ISD::FREM:
2374    assert(N1.getValueType() == N2.getValueType() &&
2375           N1.getValueType() == VT && "Binary operator types must match!");
2376    break;
2377  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2378    assert(N1.getValueType() == VT &&
2379           N1.getValueType().isFloatingPoint() &&
2380           N2.getValueType().isFloatingPoint() &&
2381           "Invalid FCOPYSIGN!");
2382    break;
2383  case ISD::SHL:
2384  case ISD::SRA:
2385  case ISD::SRL:
2386  case ISD::ROTL:
2387  case ISD::ROTR:
2388    assert(VT == N1.getValueType() &&
2389           "Shift operators return type must be the same as their first arg");
2390    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2391           "Shifts only work on integers");
2392
2393    // Always fold shifts of i1 values so the code generator doesn't need to
2394    // handle them.  Since we know the size of the shift has to be less than the
2395    // size of the value, the shift/rotate count is guaranteed to be zero.
2396    if (VT == MVT::i1)
2397      return N1;
2398    break;
2399  case ISD::FP_ROUND_INREG: {
2400    MVT EVT = cast<VTSDNode>(N2)->getVT();
2401    assert(VT == N1.getValueType() && "Not an inreg round!");
2402    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2403           "Cannot FP_ROUND_INREG integer types");
2404    assert(EVT.bitsLE(VT) && "Not rounding down!");
2405    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2406    break;
2407  }
2408  case ISD::FP_ROUND:
2409    assert(VT.isFloatingPoint() &&
2410           N1.getValueType().isFloatingPoint() &&
2411           VT.bitsLE(N1.getValueType()) &&
2412           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2413    if (N1.getValueType() == VT) return N1;  // noop conversion.
2414    break;
2415  case ISD::AssertSext:
2416  case ISD::AssertZext: {
2417    MVT EVT = cast<VTSDNode>(N2)->getVT();
2418    assert(VT == N1.getValueType() && "Not an inreg extend!");
2419    assert(VT.isInteger() && EVT.isInteger() &&
2420           "Cannot *_EXTEND_INREG FP types");
2421    assert(EVT.bitsLE(VT) && "Not extending!");
2422    if (VT == EVT) return N1; // noop assertion.
2423    break;
2424  }
2425  case ISD::SIGN_EXTEND_INREG: {
2426    MVT EVT = cast<VTSDNode>(N2)->getVT();
2427    assert(VT == N1.getValueType() && "Not an inreg extend!");
2428    assert(VT.isInteger() && EVT.isInteger() &&
2429           "Cannot *_EXTEND_INREG FP types");
2430    assert(EVT.bitsLE(VT) && "Not extending!");
2431    if (EVT == VT) return N1;  // Not actually extending
2432
2433    if (N1C) {
2434      APInt Val = N1C->getAPIntValue();
2435      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2436      Val <<= Val.getBitWidth()-FromBits;
2437      Val = Val.ashr(Val.getBitWidth()-FromBits);
2438      return getConstant(Val, VT);
2439    }
2440    break;
2441  }
2442  case ISD::EXTRACT_VECTOR_ELT:
2443    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2444    if (N1.getOpcode() == ISD::UNDEF)
2445      return getNode(ISD::UNDEF, VT);
2446
2447    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2448    // expanding copies of large vectors from registers.
2449    if (N2C &&
2450        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2451        N1.getNumOperands() > 0) {
2452      unsigned Factor =
2453        N1.getOperand(0).getValueType().getVectorNumElements();
2454      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2455                     N1.getOperand(N2C->getZExtValue() / Factor),
2456                     getConstant(N2C->getZExtValue() % Factor,
2457                                 N2.getValueType()));
2458    }
2459
2460    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2461    // expanding large vector constants.
2462    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2463      return N1.getOperand(N2C->getZExtValue());
2464
2465    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2466    // operations are lowered to scalars.
2467    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2468      if (N1.getOperand(2) == N2)
2469        return N1.getOperand(1);
2470      else
2471        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2472    }
2473    break;
2474  case ISD::EXTRACT_ELEMENT:
2475    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2476    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2477           (N1.getValueType().isInteger() == VT.isInteger()) &&
2478           "Wrong types for EXTRACT_ELEMENT!");
2479
2480    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2481    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2482    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2483    if (N1.getOpcode() == ISD::BUILD_PAIR)
2484      return N1.getOperand(N2C->getZExtValue());
2485
2486    // EXTRACT_ELEMENT of a constant int is also very common.
2487    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2488      unsigned ElementSize = VT.getSizeInBits();
2489      unsigned Shift = ElementSize * N2C->getZExtValue();
2490      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2491      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2492    }
2493    break;
2494  case ISD::EXTRACT_SUBVECTOR:
2495    if (N1.getValueType() == VT) // Trivial extraction.
2496      return N1;
2497    break;
2498  }
2499
2500  if (N1C) {
2501    if (N2C) {
2502      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2503      if (SV.getNode()) return SV;
2504    } else {      // Cannonicalize constant to RHS if commutative
2505      if (isCommutativeBinOp(Opcode)) {
2506        std::swap(N1C, N2C);
2507        std::swap(N1, N2);
2508      }
2509    }
2510  }
2511
2512  // Constant fold FP operations.
2513  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2514  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2515  if (N1CFP) {
2516    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2517      // Cannonicalize constant to RHS if commutative
2518      std::swap(N1CFP, N2CFP);
2519      std::swap(N1, N2);
2520    } else if (N2CFP && VT != MVT::ppcf128) {
2521      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2522      APFloat::opStatus s;
2523      switch (Opcode) {
2524      case ISD::FADD:
2525        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2526        if (s != APFloat::opInvalidOp)
2527          return getConstantFP(V1, VT);
2528        break;
2529      case ISD::FSUB:
2530        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2531        if (s!=APFloat::opInvalidOp)
2532          return getConstantFP(V1, VT);
2533        break;
2534      case ISD::FMUL:
2535        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2536        if (s!=APFloat::opInvalidOp)
2537          return getConstantFP(V1, VT);
2538        break;
2539      case ISD::FDIV:
2540        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2541        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2542          return getConstantFP(V1, VT);
2543        break;
2544      case ISD::FREM :
2545        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2546        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2547          return getConstantFP(V1, VT);
2548        break;
2549      case ISD::FCOPYSIGN:
2550        V1.copySign(V2);
2551        return getConstantFP(V1, VT);
2552      default: break;
2553      }
2554    }
2555  }
2556
2557  // Canonicalize an UNDEF to the RHS, even over a constant.
2558  if (N1.getOpcode() == ISD::UNDEF) {
2559    if (isCommutativeBinOp(Opcode)) {
2560      std::swap(N1, N2);
2561    } else {
2562      switch (Opcode) {
2563      case ISD::FP_ROUND_INREG:
2564      case ISD::SIGN_EXTEND_INREG:
2565      case ISD::SUB:
2566      case ISD::FSUB:
2567      case ISD::FDIV:
2568      case ISD::FREM:
2569      case ISD::SRA:
2570        return N1;     // fold op(undef, arg2) -> undef
2571      case ISD::UDIV:
2572      case ISD::SDIV:
2573      case ISD::UREM:
2574      case ISD::SREM:
2575      case ISD::SRL:
2576      case ISD::SHL:
2577        if (!VT.isVector())
2578          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2579        // For vectors, we can't easily build an all zero vector, just return
2580        // the LHS.
2581        return N2;
2582      }
2583    }
2584  }
2585
2586  // Fold a bunch of operators when the RHS is undef.
2587  if (N2.getOpcode() == ISD::UNDEF) {
2588    switch (Opcode) {
2589    case ISD::XOR:
2590      if (N1.getOpcode() == ISD::UNDEF)
2591        // Handle undef ^ undef -> 0 special case. This is a common
2592        // idiom (misuse).
2593        return getConstant(0, VT);
2594      // fallthrough
2595    case ISD::ADD:
2596    case ISD::ADDC:
2597    case ISD::ADDE:
2598    case ISD::SUB:
2599    case ISD::FADD:
2600    case ISD::FSUB:
2601    case ISD::FMUL:
2602    case ISD::FDIV:
2603    case ISD::FREM:
2604    case ISD::UDIV:
2605    case ISD::SDIV:
2606    case ISD::UREM:
2607    case ISD::SREM:
2608      return N2;       // fold op(arg1, undef) -> undef
2609    case ISD::MUL:
2610    case ISD::AND:
2611    case ISD::SRL:
2612    case ISD::SHL:
2613      if (!VT.isVector())
2614        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2615      // For vectors, we can't easily build an all zero vector, just return
2616      // the LHS.
2617      return N1;
2618    case ISD::OR:
2619      if (!VT.isVector())
2620        return getConstant(VT.getIntegerVTBitMask(), VT);
2621      // For vectors, we can't easily build an all one vector, just return
2622      // the LHS.
2623      return N1;
2624    case ISD::SRA:
2625      return N1;
2626    }
2627  }
2628
2629  // Memoize this node if possible.
2630  SDNode *N;
2631  SDVTList VTs = getVTList(VT);
2632  if (VT != MVT::Flag) {
2633    SDValue Ops[] = { N1, N2 };
2634    FoldingSetNodeID ID;
2635    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2636    void *IP = 0;
2637    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2638      return SDValue(E, 0);
2639    N = NodeAllocator.Allocate<BinarySDNode>();
2640    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2641    CSEMap.InsertNode(N, IP);
2642  } else {
2643    N = NodeAllocator.Allocate<BinarySDNode>();
2644    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2645  }
2646
2647  AllNodes.push_back(N);
2648#ifndef NDEBUG
2649  VerifyNode(N);
2650#endif
2651  return SDValue(N, 0);
2652}
2653
2654SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2655                              SDValue N1, SDValue N2, SDValue N3) {
2656  // Perform various simplifications.
2657  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2658  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2659  switch (Opcode) {
2660  case ISD::CONCAT_VECTORS:
2661    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2662    // one big BUILD_VECTOR.
2663    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2664        N2.getOpcode() == ISD::BUILD_VECTOR &&
2665        N3.getOpcode() == ISD::BUILD_VECTOR) {
2666      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2667      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2668      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2669      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2670    }
2671    break;
2672  case ISD::SETCC: {
2673    // Use FoldSetCC to simplify SETCC's.
2674    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2675    if (Simp.getNode()) return Simp;
2676    break;
2677  }
2678  case ISD::SELECT:
2679    if (N1C) {
2680     if (N1C->getZExtValue())
2681        return N2;             // select true, X, Y -> X
2682      else
2683        return N3;             // select false, X, Y -> Y
2684    }
2685
2686    if (N2 == N3) return N2;   // select C, X, X -> X
2687    break;
2688  case ISD::BRCOND:
2689    if (N2C) {
2690      if (N2C->getZExtValue()) // Unconditional branch
2691        return getNode(ISD::BR, MVT::Other, N1, N3);
2692      else
2693        return N1;         // Never-taken branch
2694    }
2695    break;
2696  case ISD::VECTOR_SHUFFLE:
2697    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2698           VT.isVector() && N3.getValueType().isVector() &&
2699           N3.getOpcode() == ISD::BUILD_VECTOR &&
2700           VT.getVectorNumElements() == N3.getNumOperands() &&
2701           "Illegal VECTOR_SHUFFLE node!");
2702    break;
2703  case ISD::BIT_CONVERT:
2704    // Fold bit_convert nodes from a type to themselves.
2705    if (N1.getValueType() == VT)
2706      return N1;
2707    break;
2708  }
2709
2710  // Memoize node if it doesn't produce a flag.
2711  SDNode *N;
2712  SDVTList VTs = getVTList(VT);
2713  if (VT != MVT::Flag) {
2714    SDValue Ops[] = { N1, N2, N3 };
2715    FoldingSetNodeID ID;
2716    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2717    void *IP = 0;
2718    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2719      return SDValue(E, 0);
2720    N = NodeAllocator.Allocate<TernarySDNode>();
2721    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2722    CSEMap.InsertNode(N, IP);
2723  } else {
2724    N = NodeAllocator.Allocate<TernarySDNode>();
2725    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2726  }
2727  AllNodes.push_back(N);
2728#ifndef NDEBUG
2729  VerifyNode(N);
2730#endif
2731  return SDValue(N, 0);
2732}
2733
2734SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2735                              SDValue N1, SDValue N2, SDValue N3,
2736                              SDValue N4) {
2737  SDValue Ops[] = { N1, N2, N3, N4 };
2738  return getNode(Opcode, VT, Ops, 4);
2739}
2740
2741SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2742                              SDValue N1, SDValue N2, SDValue N3,
2743                              SDValue N4, SDValue N5) {
2744  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2745  return getNode(Opcode, VT, Ops, 5);
2746}
2747
2748/// getMemsetValue - Vectorized representation of the memset value
2749/// operand.
2750static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2751  unsigned NumBits = VT.isVector() ?
2752    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2753  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2754    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2755    unsigned Shift = 8;
2756    for (unsigned i = NumBits; i > 8; i >>= 1) {
2757      Val = (Val << Shift) | Val;
2758      Shift <<= 1;
2759    }
2760    if (VT.isInteger())
2761      return DAG.getConstant(Val, VT);
2762    return DAG.getConstantFP(APFloat(Val), VT);
2763  }
2764
2765  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2766  unsigned Shift = 8;
2767  for (unsigned i = NumBits; i > 8; i >>= 1) {
2768    Value = DAG.getNode(ISD::OR, VT,
2769                        DAG.getNode(ISD::SHL, VT, Value,
2770                                    DAG.getConstant(Shift, MVT::i8)), Value);
2771    Shift <<= 1;
2772  }
2773
2774  return Value;
2775}
2776
2777/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2778/// used when a memcpy is turned into a memset when the source is a constant
2779/// string ptr.
2780static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2781                                    const TargetLowering &TLI,
2782                                    std::string &Str, unsigned Offset) {
2783  // Handle vector with all elements zero.
2784  if (Str.empty()) {
2785    if (VT.isInteger())
2786      return DAG.getConstant(0, VT);
2787    unsigned NumElts = VT.getVectorNumElements();
2788    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2789    return DAG.getNode(ISD::BIT_CONVERT, VT,
2790                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2791  }
2792
2793  assert(!VT.isVector() && "Can't handle vector type here!");
2794  unsigned NumBits = VT.getSizeInBits();
2795  unsigned MSB = NumBits / 8;
2796  uint64_t Val = 0;
2797  if (TLI.isLittleEndian())
2798    Offset = Offset + MSB - 1;
2799  for (unsigned i = 0; i != MSB; ++i) {
2800    Val = (Val << 8) | (unsigned char)Str[Offset];
2801    Offset += TLI.isLittleEndian() ? -1 : 1;
2802  }
2803  return DAG.getConstant(Val, VT);
2804}
2805
2806/// getMemBasePlusOffset - Returns base and offset node for the
2807///
2808static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2809                                      SelectionDAG &DAG) {
2810  MVT VT = Base.getValueType();
2811  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2812}
2813
2814/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2815///
2816static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2817  unsigned SrcDelta = 0;
2818  GlobalAddressSDNode *G = NULL;
2819  if (Src.getOpcode() == ISD::GlobalAddress)
2820    G = cast<GlobalAddressSDNode>(Src);
2821  else if (Src.getOpcode() == ISD::ADD &&
2822           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2823           Src.getOperand(1).getOpcode() == ISD::Constant) {
2824    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2825    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2826  }
2827  if (!G)
2828    return false;
2829
2830  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2831  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2832    return true;
2833
2834  return false;
2835}
2836
2837/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2838/// to replace the memset / memcpy is below the threshold. It also returns the
2839/// types of the sequence of memory ops to perform memset / memcpy.
2840static
2841bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2842                              SDValue Dst, SDValue Src,
2843                              unsigned Limit, uint64_t Size, unsigned &Align,
2844                              std::string &Str, bool &isSrcStr,
2845                              SelectionDAG &DAG,
2846                              const TargetLowering &TLI) {
2847  isSrcStr = isMemSrcFromString(Src, Str);
2848  bool isSrcConst = isa<ConstantSDNode>(Src);
2849  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2850  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2851  if (VT != MVT::iAny) {
2852    unsigned NewAlign = (unsigned)
2853      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2854    // If source is a string constant, this will require an unaligned load.
2855    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2856      if (Dst.getOpcode() != ISD::FrameIndex) {
2857        // Can't change destination alignment. It requires a unaligned store.
2858        if (AllowUnalign)
2859          VT = MVT::iAny;
2860      } else {
2861        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2862        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2863        if (MFI->isFixedObjectIndex(FI)) {
2864          // Can't change destination alignment. It requires a unaligned store.
2865          if (AllowUnalign)
2866            VT = MVT::iAny;
2867        } else {
2868          // Give the stack frame object a larger alignment if needed.
2869          if (MFI->getObjectAlignment(FI) < NewAlign)
2870            MFI->setObjectAlignment(FI, NewAlign);
2871          Align = NewAlign;
2872        }
2873      }
2874    }
2875  }
2876
2877  if (VT == MVT::iAny) {
2878    if (AllowUnalign) {
2879      VT = MVT::i64;
2880    } else {
2881      switch (Align & 7) {
2882      case 0:  VT = MVT::i64; break;
2883      case 4:  VT = MVT::i32; break;
2884      case 2:  VT = MVT::i16; break;
2885      default: VT = MVT::i8;  break;
2886      }
2887    }
2888
2889    MVT LVT = MVT::i64;
2890    while (!TLI.isTypeLegal(LVT))
2891      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2892    assert(LVT.isInteger());
2893
2894    if (VT.bitsGT(LVT))
2895      VT = LVT;
2896  }
2897
2898  unsigned NumMemOps = 0;
2899  while (Size != 0) {
2900    unsigned VTSize = VT.getSizeInBits() / 8;
2901    while (VTSize > Size) {
2902      // For now, only use non-vector load / store's for the left-over pieces.
2903      if (VT.isVector()) {
2904        VT = MVT::i64;
2905        while (!TLI.isTypeLegal(VT))
2906          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2907        VTSize = VT.getSizeInBits() / 8;
2908      } else {
2909        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2910        VTSize >>= 1;
2911      }
2912    }
2913
2914    if (++NumMemOps > Limit)
2915      return false;
2916    MemOps.push_back(VT);
2917    Size -= VTSize;
2918  }
2919
2920  return true;
2921}
2922
2923static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2924                                         SDValue Chain, SDValue Dst,
2925                                         SDValue Src, uint64_t Size,
2926                                         unsigned Align, bool AlwaysInline,
2927                                         const Value *DstSV, uint64_t DstSVOff,
2928                                         const Value *SrcSV, uint64_t SrcSVOff){
2929  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2930
2931  // Expand memcpy to a series of load and store ops if the size operand falls
2932  // below a certain threshold.
2933  std::vector<MVT> MemOps;
2934  uint64_t Limit = -1;
2935  if (!AlwaysInline)
2936    Limit = TLI.getMaxStoresPerMemcpy();
2937  unsigned DstAlign = Align;  // Destination alignment can change.
2938  std::string Str;
2939  bool CopyFromStr;
2940  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2941                                Str, CopyFromStr, DAG, TLI))
2942    return SDValue();
2943
2944
2945  bool isZeroStr = CopyFromStr && Str.empty();
2946  SmallVector<SDValue, 8> OutChains;
2947  unsigned NumMemOps = MemOps.size();
2948  uint64_t SrcOff = 0, DstOff = 0;
2949  for (unsigned i = 0; i < NumMemOps; i++) {
2950    MVT VT = MemOps[i];
2951    unsigned VTSize = VT.getSizeInBits() / 8;
2952    SDValue Value, Store;
2953
2954    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2955      // It's unlikely a store of a vector immediate can be done in a single
2956      // instruction. It would require a load from a constantpool first.
2957      // We also handle store a vector with all zero's.
2958      // FIXME: Handle other cases where store of vector immediate is done in
2959      // a single instruction.
2960      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2961      Store = DAG.getStore(Chain, Value,
2962                           getMemBasePlusOffset(Dst, DstOff, DAG),
2963                           DstSV, DstSVOff + DstOff, false, DstAlign);
2964    } else {
2965      Value = DAG.getLoad(VT, Chain,
2966                          getMemBasePlusOffset(Src, SrcOff, DAG),
2967                          SrcSV, SrcSVOff + SrcOff, false, Align);
2968      Store = DAG.getStore(Chain, Value,
2969                           getMemBasePlusOffset(Dst, DstOff, DAG),
2970                           DstSV, DstSVOff + DstOff, false, DstAlign);
2971    }
2972    OutChains.push_back(Store);
2973    SrcOff += VTSize;
2974    DstOff += VTSize;
2975  }
2976
2977  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2978                     &OutChains[0], OutChains.size());
2979}
2980
2981static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2982                                          SDValue Chain, SDValue Dst,
2983                                          SDValue Src, uint64_t Size,
2984                                          unsigned Align, bool AlwaysInline,
2985                                          const Value *DstSV, uint64_t DstSVOff,
2986                                          const Value *SrcSV, uint64_t SrcSVOff){
2987  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2988
2989  // Expand memmove to a series of load and store ops if the size operand falls
2990  // below a certain threshold.
2991  std::vector<MVT> MemOps;
2992  uint64_t Limit = -1;
2993  if (!AlwaysInline)
2994    Limit = TLI.getMaxStoresPerMemmove();
2995  unsigned DstAlign = Align;  // Destination alignment can change.
2996  std::string Str;
2997  bool CopyFromStr;
2998  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2999                                Str, CopyFromStr, DAG, TLI))
3000    return SDValue();
3001
3002  uint64_t SrcOff = 0, DstOff = 0;
3003
3004  SmallVector<SDValue, 8> LoadValues;
3005  SmallVector<SDValue, 8> LoadChains;
3006  SmallVector<SDValue, 8> OutChains;
3007  unsigned NumMemOps = MemOps.size();
3008  for (unsigned i = 0; i < NumMemOps; i++) {
3009    MVT VT = MemOps[i];
3010    unsigned VTSize = VT.getSizeInBits() / 8;
3011    SDValue Value, Store;
3012
3013    Value = DAG.getLoad(VT, Chain,
3014                        getMemBasePlusOffset(Src, SrcOff, DAG),
3015                        SrcSV, SrcSVOff + SrcOff, false, Align);
3016    LoadValues.push_back(Value);
3017    LoadChains.push_back(Value.getValue(1));
3018    SrcOff += VTSize;
3019  }
3020  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3021                      &LoadChains[0], LoadChains.size());
3022  OutChains.clear();
3023  for (unsigned i = 0; i < NumMemOps; i++) {
3024    MVT VT = MemOps[i];
3025    unsigned VTSize = VT.getSizeInBits() / 8;
3026    SDValue Value, Store;
3027
3028    Store = DAG.getStore(Chain, LoadValues[i],
3029                         getMemBasePlusOffset(Dst, DstOff, DAG),
3030                         DstSV, DstSVOff + DstOff, false, DstAlign);
3031    OutChains.push_back(Store);
3032    DstOff += VTSize;
3033  }
3034
3035  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3036                     &OutChains[0], OutChains.size());
3037}
3038
3039static SDValue getMemsetStores(SelectionDAG &DAG,
3040                                 SDValue Chain, SDValue Dst,
3041                                 SDValue Src, uint64_t Size,
3042                                 unsigned Align,
3043                                 const Value *DstSV, uint64_t DstSVOff) {
3044  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3045
3046  // Expand memset to a series of load/store ops if the size operand
3047  // falls below a certain threshold.
3048  std::vector<MVT> MemOps;
3049  std::string Str;
3050  bool CopyFromStr;
3051  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3052                                Size, Align, Str, CopyFromStr, DAG, TLI))
3053    return SDValue();
3054
3055  SmallVector<SDValue, 8> OutChains;
3056  uint64_t DstOff = 0;
3057
3058  unsigned NumMemOps = MemOps.size();
3059  for (unsigned i = 0; i < NumMemOps; i++) {
3060    MVT VT = MemOps[i];
3061    unsigned VTSize = VT.getSizeInBits() / 8;
3062    SDValue Value = getMemsetValue(Src, VT, DAG);
3063    SDValue Store = DAG.getStore(Chain, Value,
3064                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3065                                   DstSV, DstSVOff + DstOff);
3066    OutChains.push_back(Store);
3067    DstOff += VTSize;
3068  }
3069
3070  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3071                     &OutChains[0], OutChains.size());
3072}
3073
3074SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3075                                SDValue Src, SDValue Size,
3076                                unsigned Align, bool AlwaysInline,
3077                                const Value *DstSV, uint64_t DstSVOff,
3078                                const Value *SrcSV, uint64_t SrcSVOff) {
3079
3080  // Check to see if we should lower the memcpy to loads and stores first.
3081  // For cases within the target-specified limits, this is the best choice.
3082  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3083  if (ConstantSize) {
3084    // Memcpy with size zero? Just return the original chain.
3085    if (ConstantSize->isNullValue())
3086      return Chain;
3087
3088    SDValue Result =
3089      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3090                              ConstantSize->getZExtValue(),
3091                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3092    if (Result.getNode())
3093      return Result;
3094  }
3095
3096  // Then check to see if we should lower the memcpy with target-specific
3097  // code. If the target chooses to do this, this is the next best.
3098  SDValue Result =
3099    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3100                                AlwaysInline,
3101                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3102  if (Result.getNode())
3103    return Result;
3104
3105  // If we really need inline code and the target declined to provide it,
3106  // use a (potentially long) sequence of loads and stores.
3107  if (AlwaysInline) {
3108    assert(ConstantSize && "AlwaysInline requires a constant size!");
3109    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3110                                   ConstantSize->getZExtValue(), Align, true,
3111                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3112  }
3113
3114  // Emit a library call.
3115  TargetLowering::ArgListTy Args;
3116  TargetLowering::ArgListEntry Entry;
3117  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3118  Entry.Node = Dst; Args.push_back(Entry);
3119  Entry.Node = Src; Args.push_back(Entry);
3120  Entry.Node = Size; Args.push_back(Entry);
3121  std::pair<SDValue,SDValue> CallResult =
3122    TLI.LowerCallTo(Chain, Type::VoidTy,
3123                    false, false, false, false, CallingConv::C, false,
3124                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3125                    Args, *this);
3126  return CallResult.second;
3127}
3128
3129SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3130                                 SDValue Src, SDValue Size,
3131                                 unsigned Align,
3132                                 const Value *DstSV, uint64_t DstSVOff,
3133                                 const Value *SrcSV, uint64_t SrcSVOff) {
3134
3135  // Check to see if we should lower the memmove to loads and stores first.
3136  // For cases within the target-specified limits, this is the best choice.
3137  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3138  if (ConstantSize) {
3139    // Memmove with size zero? Just return the original chain.
3140    if (ConstantSize->isNullValue())
3141      return Chain;
3142
3143    SDValue Result =
3144      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3145                               ConstantSize->getZExtValue(),
3146                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3147    if (Result.getNode())
3148      return Result;
3149  }
3150
3151  // Then check to see if we should lower the memmove with target-specific
3152  // code. If the target chooses to do this, this is the next best.
3153  SDValue Result =
3154    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3155                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3156  if (Result.getNode())
3157    return Result;
3158
3159  // Emit a library call.
3160  TargetLowering::ArgListTy Args;
3161  TargetLowering::ArgListEntry Entry;
3162  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3163  Entry.Node = Dst; Args.push_back(Entry);
3164  Entry.Node = Src; Args.push_back(Entry);
3165  Entry.Node = Size; Args.push_back(Entry);
3166  std::pair<SDValue,SDValue> CallResult =
3167    TLI.LowerCallTo(Chain, Type::VoidTy,
3168                    false, false, false, false, CallingConv::C, false,
3169                    getExternalSymbol("memmove", TLI.getPointerTy()),
3170                    Args, *this);
3171  return CallResult.second;
3172}
3173
3174SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3175                                SDValue Src, SDValue Size,
3176                                unsigned Align,
3177                                const Value *DstSV, uint64_t DstSVOff) {
3178
3179  // Check to see if we should lower the memset to stores first.
3180  // For cases within the target-specified limits, this is the best choice.
3181  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3182  if (ConstantSize) {
3183    // Memset with size zero? Just return the original chain.
3184    if (ConstantSize->isNullValue())
3185      return Chain;
3186
3187    SDValue Result =
3188      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3189                      Align, DstSV, DstSVOff);
3190    if (Result.getNode())
3191      return Result;
3192  }
3193
3194  // Then check to see if we should lower the memset with target-specific
3195  // code. If the target chooses to do this, this is the next best.
3196  SDValue Result =
3197    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3198                                DstSV, DstSVOff, NoBuiltin);
3199  if (Result.getNode())
3200    return Result;
3201
3202  // Emit a library call.
3203  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3204  TargetLowering::ArgListTy Args;
3205  TargetLowering::ArgListEntry Entry;
3206  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3207  Args.push_back(Entry);
3208  // Extend or truncate the argument to be an i32 value for the call.
3209  if (Src.getValueType().bitsGT(MVT::i32))
3210    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3211  else
3212    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3213  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3214  Args.push_back(Entry);
3215  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3216  Args.push_back(Entry);
3217  std::pair<SDValue,SDValue> CallResult =
3218    TLI.LowerCallTo(Chain, Type::VoidTy,
3219                    false, false, false, false, CallingConv::C, false,
3220                    getExternalSymbol("memset", TLI.getPointerTy()),
3221                    Args, *this);
3222  return CallResult.second;
3223}
3224
3225SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3226                                SDValue Ptr, SDValue Cmp,
3227                                SDValue Swp, const Value* PtrVal,
3228                                unsigned Alignment) {
3229  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3230          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3231          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3232          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3233  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3234
3235  MVT VT = Cmp.getValueType();
3236
3237  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3238    Alignment = getMVTAlignment(VT);
3239
3240  SDVTList VTs = getVTList(VT, MVT::Other);
3241  FoldingSetNodeID ID;
3242  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3243  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3244  void* IP = 0;
3245  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3246    return SDValue(E, 0);
3247  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3248  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3249  CSEMap.InsertNode(N, IP);
3250  AllNodes.push_back(N);
3251  return SDValue(N, 0);
3252}
3253
3254SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3255                                SDValue Ptr, SDValue Val,
3256                                const Value* PtrVal,
3257                                unsigned Alignment) {
3258  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3259          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3260          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3261          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3262          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3263          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3264          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3265          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3266          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3267          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3268          Opcode == ISD::ATOMIC_SWAP_8 ||
3269          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3270          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3271          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3272          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3273          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3274          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3275          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3276          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3277          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3278          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3279          Opcode == ISD::ATOMIC_SWAP_16 ||
3280          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3281          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3282          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3283          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3284          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3285          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3286          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3287          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3288          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3289          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3290          Opcode == ISD::ATOMIC_SWAP_32 ||
3291          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3292          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3293          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3294          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3295          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3296          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3297          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3298          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3299          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3300          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3301          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3302
3303  MVT VT = Val.getValueType();
3304
3305  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3306    Alignment = getMVTAlignment(VT);
3307
3308  SDVTList VTs = getVTList(VT, MVT::Other);
3309  FoldingSetNodeID ID;
3310  SDValue Ops[] = {Chain, Ptr, Val};
3311  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3312  void* IP = 0;
3313  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3314    return SDValue(E, 0);
3315  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3316  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3317  CSEMap.InsertNode(N, IP);
3318  AllNodes.push_back(N);
3319  return SDValue(N, 0);
3320}
3321
3322/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3323/// Allowed to return something different (and simpler) if Simplify is true.
3324SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3325                                     bool Simplify) {
3326  if (Simplify && NumOps == 1)
3327    return Ops[0];
3328
3329  SmallVector<MVT, 4> VTs;
3330  VTs.reserve(NumOps);
3331  for (unsigned i = 0; i < NumOps; ++i)
3332    VTs.push_back(Ops[i].getValueType());
3333  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3334}
3335
3336SDValue
3337SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3338                      bool IsInreg, SDVTList VTs,
3339                      const SDValue *Operands, unsigned NumOperands) {
3340  // Do not include isTailCall in the folding set profile.
3341  FoldingSetNodeID ID;
3342  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3343  ID.AddInteger(CallingConv);
3344  ID.AddInteger(IsVarArgs);
3345  void *IP = 0;
3346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3347    // Instead of including isTailCall in the folding set, we just
3348    // set the flag of the existing node.
3349    if (!IsTailCall)
3350      cast<CallSDNode>(E)->setNotTailCall();
3351    return SDValue(E, 0);
3352  }
3353  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3354  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3355                     VTs, Operands, NumOperands);
3356  CSEMap.InsertNode(N, IP);
3357  AllNodes.push_back(N);
3358  return SDValue(N, 0);
3359}
3360
3361SDValue
3362SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3363                      MVT VT, SDValue Chain,
3364                      SDValue Ptr, SDValue Offset,
3365                      const Value *SV, int SVOffset, MVT EVT,
3366                      bool isVolatile, unsigned Alignment) {
3367  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3368    Alignment = getMVTAlignment(VT);
3369
3370  if (VT == EVT) {
3371    ExtType = ISD::NON_EXTLOAD;
3372  } else if (ExtType == ISD::NON_EXTLOAD) {
3373    assert(VT == EVT && "Non-extending load from different memory type!");
3374  } else {
3375    // Extending load.
3376    if (VT.isVector())
3377      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3378             "Invalid vector extload!");
3379    else
3380      assert(EVT.bitsLT(VT) &&
3381             "Should only be an extending load, not truncating!");
3382    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3383           "Cannot sign/zero extend a FP/Vector load!");
3384    assert(VT.isInteger() == EVT.isInteger() &&
3385           "Cannot convert from FP to Int or Int -> FP!");
3386  }
3387
3388  bool Indexed = AM != ISD::UNINDEXED;
3389  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3390         "Unindexed load with an offset!");
3391
3392  SDVTList VTs = Indexed ?
3393    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3394  SDValue Ops[] = { Chain, Ptr, Offset };
3395  FoldingSetNodeID ID;
3396  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3397  ID.AddInteger(AM);
3398  ID.AddInteger(ExtType);
3399  ID.AddInteger(EVT.getRawBits());
3400  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3401  void *IP = 0;
3402  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3403    return SDValue(E, 0);
3404  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3405  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3406                     Alignment, isVolatile);
3407  CSEMap.InsertNode(N, IP);
3408  AllNodes.push_back(N);
3409  return SDValue(N, 0);
3410}
3411
3412SDValue SelectionDAG::getLoad(MVT VT,
3413                              SDValue Chain, SDValue Ptr,
3414                              const Value *SV, int SVOffset,
3415                              bool isVolatile, unsigned Alignment) {
3416  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3417  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3418                 SV, SVOffset, VT, isVolatile, Alignment);
3419}
3420
3421SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3422                                 SDValue Chain, SDValue Ptr,
3423                                 const Value *SV,
3424                                 int SVOffset, MVT EVT,
3425                                 bool isVolatile, unsigned Alignment) {
3426  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3427  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3428                 SV, SVOffset, EVT, isVolatile, Alignment);
3429}
3430
3431SDValue
3432SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3433                             SDValue Offset, ISD::MemIndexedMode AM) {
3434  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3435  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3436         "Load is already a indexed load!");
3437  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3438                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3439                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3440                 LD->isVolatile(), LD->getAlignment());
3441}
3442
3443SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3444                               SDValue Ptr, const Value *SV, int SVOffset,
3445                               bool isVolatile, unsigned Alignment) {
3446  MVT VT = Val.getValueType();
3447
3448  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3449    Alignment = getMVTAlignment(VT);
3450
3451  SDVTList VTs = getVTList(MVT::Other);
3452  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3453  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3454  FoldingSetNodeID ID;
3455  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3456  ID.AddInteger(ISD::UNINDEXED);
3457  ID.AddInteger(false);
3458  ID.AddInteger(VT.getRawBits());
3459  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3460  void *IP = 0;
3461  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3462    return SDValue(E, 0);
3463  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3464  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3465                      VT, SV, SVOffset, Alignment, isVolatile);
3466  CSEMap.InsertNode(N, IP);
3467  AllNodes.push_back(N);
3468  return SDValue(N, 0);
3469}
3470
3471SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3472                                    SDValue Ptr, const Value *SV,
3473                                    int SVOffset, MVT SVT,
3474                                    bool isVolatile, unsigned Alignment) {
3475  MVT VT = Val.getValueType();
3476
3477  if (VT == SVT)
3478    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3479
3480  assert(VT.bitsGT(SVT) && "Not a truncation?");
3481  assert(VT.isInteger() == SVT.isInteger() &&
3482         "Can't do FP-INT conversion!");
3483
3484  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3485    Alignment = getMVTAlignment(VT);
3486
3487  SDVTList VTs = getVTList(MVT::Other);
3488  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3489  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3490  FoldingSetNodeID ID;
3491  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3492  ID.AddInteger(ISD::UNINDEXED);
3493  ID.AddInteger(1);
3494  ID.AddInteger(SVT.getRawBits());
3495  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3496  void *IP = 0;
3497  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3498    return SDValue(E, 0);
3499  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3500  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3501                      SVT, SV, SVOffset, Alignment, isVolatile);
3502  CSEMap.InsertNode(N, IP);
3503  AllNodes.push_back(N);
3504  return SDValue(N, 0);
3505}
3506
3507SDValue
3508SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3509                              SDValue Offset, ISD::MemIndexedMode AM) {
3510  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3511  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3512         "Store is already a indexed store!");
3513  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3514  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3515  FoldingSetNodeID ID;
3516  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3517  ID.AddInteger(AM);
3518  ID.AddInteger(ST->isTruncatingStore());
3519  ID.AddInteger(ST->getMemoryVT().getRawBits());
3520  ID.AddInteger(ST->getRawFlags());
3521  void *IP = 0;
3522  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3523    return SDValue(E, 0);
3524  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3525  new (N) StoreSDNode(Ops, VTs, AM,
3526                      ST->isTruncatingStore(), ST->getMemoryVT(),
3527                      ST->getSrcValue(), ST->getSrcValueOffset(),
3528                      ST->getAlignment(), ST->isVolatile());
3529  CSEMap.InsertNode(N, IP);
3530  AllNodes.push_back(N);
3531  return SDValue(N, 0);
3532}
3533
3534SDValue SelectionDAG::getVAArg(MVT VT,
3535                               SDValue Chain, SDValue Ptr,
3536                               SDValue SV) {
3537  SDValue Ops[] = { Chain, Ptr, SV };
3538  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3539}
3540
3541SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3542                              const SDUse *Ops, unsigned NumOps) {
3543  switch (NumOps) {
3544  case 0: return getNode(Opcode, VT);
3545  case 1: return getNode(Opcode, VT, Ops[0]);
3546  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3547  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3548  default: break;
3549  }
3550
3551  // Copy from an SDUse array into an SDValue array for use with
3552  // the regular getNode logic.
3553  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3554  return getNode(Opcode, VT, &NewOps[0], NumOps);
3555}
3556
3557SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3558                              const SDValue *Ops, unsigned NumOps) {
3559  switch (NumOps) {
3560  case 0: return getNode(Opcode, VT);
3561  case 1: return getNode(Opcode, VT, Ops[0]);
3562  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3563  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3564  default: break;
3565  }
3566
3567  switch (Opcode) {
3568  default: break;
3569  case ISD::SELECT_CC: {
3570    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3571    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3572           "LHS and RHS of condition must have same type!");
3573    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3574           "True and False arms of SelectCC must have same type!");
3575    assert(Ops[2].getValueType() == VT &&
3576           "select_cc node must be of same type as true and false value!");
3577    break;
3578  }
3579  case ISD::BR_CC: {
3580    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3581    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3582           "LHS/RHS of comparison should match types!");
3583    break;
3584  }
3585  }
3586
3587  // Memoize nodes.
3588  SDNode *N;
3589  SDVTList VTs = getVTList(VT);
3590  if (VT != MVT::Flag) {
3591    FoldingSetNodeID ID;
3592    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3593    void *IP = 0;
3594    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3595      return SDValue(E, 0);
3596    N = NodeAllocator.Allocate<SDNode>();
3597    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3598    CSEMap.InsertNode(N, IP);
3599  } else {
3600    N = NodeAllocator.Allocate<SDNode>();
3601    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3602  }
3603  AllNodes.push_back(N);
3604#ifndef NDEBUG
3605  VerifyNode(N);
3606#endif
3607  return SDValue(N, 0);
3608}
3609
3610SDValue SelectionDAG::getNode(unsigned Opcode,
3611                              const std::vector<MVT> &ResultTys,
3612                              const SDValue *Ops, unsigned NumOps) {
3613  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3614                 Ops, NumOps);
3615}
3616
3617SDValue SelectionDAG::getNode(unsigned Opcode,
3618                              const MVT *VTs, unsigned NumVTs,
3619                              const SDValue *Ops, unsigned NumOps) {
3620  if (NumVTs == 1)
3621    return getNode(Opcode, VTs[0], Ops, NumOps);
3622  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3623}
3624
3625SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3626                              const SDValue *Ops, unsigned NumOps) {
3627  if (VTList.NumVTs == 1)
3628    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3629
3630  switch (Opcode) {
3631  // FIXME: figure out how to safely handle things like
3632  // int foo(int x) { return 1 << (x & 255); }
3633  // int bar() { return foo(256); }
3634#if 0
3635  case ISD::SRA_PARTS:
3636  case ISD::SRL_PARTS:
3637  case ISD::SHL_PARTS:
3638    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3639        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3640      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3641    else if (N3.getOpcode() == ISD::AND)
3642      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3643        // If the and is only masking out bits that cannot effect the shift,
3644        // eliminate the and.
3645        unsigned NumBits = VT.getSizeInBits()*2;
3646        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3647          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3648      }
3649    break;
3650#endif
3651  }
3652
3653  // Memoize the node unless it returns a flag.
3654  SDNode *N;
3655  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3656    FoldingSetNodeID ID;
3657    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3658    void *IP = 0;
3659    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3660      return SDValue(E, 0);
3661    if (NumOps == 1) {
3662      N = NodeAllocator.Allocate<UnarySDNode>();
3663      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3664    } else if (NumOps == 2) {
3665      N = NodeAllocator.Allocate<BinarySDNode>();
3666      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3667    } else if (NumOps == 3) {
3668      N = NodeAllocator.Allocate<TernarySDNode>();
3669      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3670    } else {
3671      N = NodeAllocator.Allocate<SDNode>();
3672      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3673    }
3674    CSEMap.InsertNode(N, IP);
3675  } else {
3676    if (NumOps == 1) {
3677      N = NodeAllocator.Allocate<UnarySDNode>();
3678      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3679    } else if (NumOps == 2) {
3680      N = NodeAllocator.Allocate<BinarySDNode>();
3681      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3682    } else if (NumOps == 3) {
3683      N = NodeAllocator.Allocate<TernarySDNode>();
3684      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3685    } else {
3686      N = NodeAllocator.Allocate<SDNode>();
3687      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3688    }
3689  }
3690  AllNodes.push_back(N);
3691#ifndef NDEBUG
3692  VerifyNode(N);
3693#endif
3694  return SDValue(N, 0);
3695}
3696
3697SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3698  return getNode(Opcode, VTList, 0, 0);
3699}
3700
3701SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3702                                SDValue N1) {
3703  SDValue Ops[] = { N1 };
3704  return getNode(Opcode, VTList, Ops, 1);
3705}
3706
3707SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3708                              SDValue N1, SDValue N2) {
3709  SDValue Ops[] = { N1, N2 };
3710  return getNode(Opcode, VTList, Ops, 2);
3711}
3712
3713SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3714                              SDValue N1, SDValue N2, SDValue N3) {
3715  SDValue Ops[] = { N1, N2, N3 };
3716  return getNode(Opcode, VTList, Ops, 3);
3717}
3718
3719SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3720                              SDValue N1, SDValue N2, SDValue N3,
3721                              SDValue N4) {
3722  SDValue Ops[] = { N1, N2, N3, N4 };
3723  return getNode(Opcode, VTList, Ops, 4);
3724}
3725
3726SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3727                              SDValue N1, SDValue N2, SDValue N3,
3728                              SDValue N4, SDValue N5) {
3729  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3730  return getNode(Opcode, VTList, Ops, 5);
3731}
3732
3733SDVTList SelectionDAG::getVTList(MVT VT) {
3734  return makeVTList(SDNode::getValueTypeList(VT), 1);
3735}
3736
3737SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3738  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3739       E = VTList.rend(); I != E; ++I)
3740    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3741      return *I;
3742
3743  MVT *Array = Allocator.Allocate<MVT>(2);
3744  Array[0] = VT1;
3745  Array[1] = VT2;
3746  SDVTList Result = makeVTList(Array, 2);
3747  VTList.push_back(Result);
3748  return Result;
3749}
3750
3751SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3752  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3753       E = VTList.rend(); I != E; ++I)
3754    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3755                          I->VTs[2] == VT3)
3756      return *I;
3757
3758  MVT *Array = Allocator.Allocate<MVT>(3);
3759  Array[0] = VT1;
3760  Array[1] = VT2;
3761  Array[2] = VT3;
3762  SDVTList Result = makeVTList(Array, 3);
3763  VTList.push_back(Result);
3764  return Result;
3765}
3766
3767SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3768  switch (NumVTs) {
3769    case 0: assert(0 && "Cannot have nodes without results!");
3770    case 1: return getVTList(VTs[0]);
3771    case 2: return getVTList(VTs[0], VTs[1]);
3772    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3773    default: break;
3774  }
3775
3776  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3777       E = VTList.rend(); I != E; ++I) {
3778    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3779      continue;
3780
3781    bool NoMatch = false;
3782    for (unsigned i = 2; i != NumVTs; ++i)
3783      if (VTs[i] != I->VTs[i]) {
3784        NoMatch = true;
3785        break;
3786      }
3787    if (!NoMatch)
3788      return *I;
3789  }
3790
3791  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3792  std::copy(VTs, VTs+NumVTs, Array);
3793  SDVTList Result = makeVTList(Array, NumVTs);
3794  VTList.push_back(Result);
3795  return Result;
3796}
3797
3798
3799/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3800/// specified operands.  If the resultant node already exists in the DAG,
3801/// this does not modify the specified node, instead it returns the node that
3802/// already exists.  If the resultant node does not exist in the DAG, the
3803/// input node is returned.  As a degenerate case, if you specify the same
3804/// input operands as the node already has, the input node is returned.
3805SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3806  SDNode *N = InN.getNode();
3807  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3808
3809  // Check to see if there is no change.
3810  if (Op == N->getOperand(0)) return InN;
3811
3812  // See if the modified node already exists.
3813  void *InsertPos = 0;
3814  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3815    return SDValue(Existing, InN.getResNo());
3816
3817  // Nope it doesn't.  Remove the node from its current place in the maps.
3818  if (InsertPos)
3819    if (!RemoveNodeFromCSEMaps(N))
3820      InsertPos = 0;
3821
3822  // Now we update the operands.
3823  N->OperandList[0].getVal()->removeUser(0, N);
3824  N->OperandList[0] = Op;
3825  N->OperandList[0].setUser(N);
3826  Op.getNode()->addUser(0, N);
3827
3828  // If this gets put into a CSE map, add it.
3829  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3830  return InN;
3831}
3832
3833SDValue SelectionDAG::
3834UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3835  SDNode *N = InN.getNode();
3836  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3837
3838  // Check to see if there is no change.
3839  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3840    return InN;   // No operands changed, just return the input node.
3841
3842  // See if the modified node already exists.
3843  void *InsertPos = 0;
3844  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3845    return SDValue(Existing, InN.getResNo());
3846
3847  // Nope it doesn't.  Remove the node from its current place in the maps.
3848  if (InsertPos)
3849    if (!RemoveNodeFromCSEMaps(N))
3850      InsertPos = 0;
3851
3852  // Now we update the operands.
3853  if (N->OperandList[0] != Op1) {
3854    N->OperandList[0].getVal()->removeUser(0, N);
3855    N->OperandList[0] = Op1;
3856    N->OperandList[0].setUser(N);
3857    Op1.getNode()->addUser(0, N);
3858  }
3859  if (N->OperandList[1] != Op2) {
3860    N->OperandList[1].getVal()->removeUser(1, N);
3861    N->OperandList[1] = Op2;
3862    N->OperandList[1].setUser(N);
3863    Op2.getNode()->addUser(1, N);
3864  }
3865
3866  // If this gets put into a CSE map, add it.
3867  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3868  return InN;
3869}
3870
3871SDValue SelectionDAG::
3872UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3873  SDValue Ops[] = { Op1, Op2, Op3 };
3874  return UpdateNodeOperands(N, Ops, 3);
3875}
3876
3877SDValue SelectionDAG::
3878UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3879                   SDValue Op3, SDValue Op4) {
3880  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3881  return UpdateNodeOperands(N, Ops, 4);
3882}
3883
3884SDValue SelectionDAG::
3885UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3886                   SDValue Op3, SDValue Op4, SDValue Op5) {
3887  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3888  return UpdateNodeOperands(N, Ops, 5);
3889}
3890
3891SDValue SelectionDAG::
3892UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3893  SDNode *N = InN.getNode();
3894  assert(N->getNumOperands() == NumOps &&
3895         "Update with wrong number of operands");
3896
3897  // Check to see if there is no change.
3898  bool AnyChange = false;
3899  for (unsigned i = 0; i != NumOps; ++i) {
3900    if (Ops[i] != N->getOperand(i)) {
3901      AnyChange = true;
3902      break;
3903    }
3904  }
3905
3906  // No operands changed, just return the input node.
3907  if (!AnyChange) return InN;
3908
3909  // See if the modified node already exists.
3910  void *InsertPos = 0;
3911  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3912    return SDValue(Existing, InN.getResNo());
3913
3914  // Nope it doesn't.  Remove the node from its current place in the maps.
3915  if (InsertPos)
3916    if (!RemoveNodeFromCSEMaps(N))
3917      InsertPos = 0;
3918
3919  // Now we update the operands.
3920  for (unsigned i = 0; i != NumOps; ++i) {
3921    if (N->OperandList[i] != Ops[i]) {
3922      N->OperandList[i].getVal()->removeUser(i, N);
3923      N->OperandList[i] = Ops[i];
3924      N->OperandList[i].setUser(N);
3925      Ops[i].getNode()->addUser(i, N);
3926    }
3927  }
3928
3929  // If this gets put into a CSE map, add it.
3930  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3931  return InN;
3932}
3933
3934/// DropOperands - Release the operands and set this node to have
3935/// zero operands.
3936void SDNode::DropOperands() {
3937  // Unlike the code in MorphNodeTo that does this, we don't need to
3938  // watch for dead nodes here.
3939  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3940    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3941
3942  NumOperands = 0;
3943}
3944
3945/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3946/// machine opcode.
3947///
3948SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3949                                   MVT VT) {
3950  SDVTList VTs = getVTList(VT);
3951  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3952}
3953
3954SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3955                                   MVT VT, SDValue Op1) {
3956  SDVTList VTs = getVTList(VT);
3957  SDValue Ops[] = { Op1 };
3958  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3959}
3960
3961SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3962                                   MVT VT, SDValue Op1,
3963                                   SDValue Op2) {
3964  SDVTList VTs = getVTList(VT);
3965  SDValue Ops[] = { Op1, Op2 };
3966  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3967}
3968
3969SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3970                                   MVT VT, SDValue Op1,
3971                                   SDValue Op2, SDValue Op3) {
3972  SDVTList VTs = getVTList(VT);
3973  SDValue Ops[] = { Op1, Op2, Op3 };
3974  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3975}
3976
3977SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3978                                   MVT VT, const SDValue *Ops,
3979                                   unsigned NumOps) {
3980  SDVTList VTs = getVTList(VT);
3981  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3982}
3983
3984SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3985                                   MVT VT1, MVT VT2, const SDValue *Ops,
3986                                   unsigned NumOps) {
3987  SDVTList VTs = getVTList(VT1, VT2);
3988  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3989}
3990
3991SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3992                                   MVT VT1, MVT VT2) {
3993  SDVTList VTs = getVTList(VT1, VT2);
3994  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3995}
3996
3997SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3998                                   MVT VT1, MVT VT2, MVT VT3,
3999                                   const SDValue *Ops, unsigned NumOps) {
4000  SDVTList VTs = getVTList(VT1, VT2, VT3);
4001  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4002}
4003
4004SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4005                                   MVT VT1, MVT VT2,
4006                                   SDValue Op1) {
4007  SDVTList VTs = getVTList(VT1, VT2);
4008  SDValue Ops[] = { Op1 };
4009  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4010}
4011
4012SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4013                                   MVT VT1, MVT VT2,
4014                                   SDValue Op1, SDValue Op2) {
4015  SDVTList VTs = getVTList(VT1, VT2);
4016  SDValue Ops[] = { Op1, Op2 };
4017  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4018}
4019
4020SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4021                                   MVT VT1, MVT VT2,
4022                                   SDValue Op1, SDValue Op2,
4023                                   SDValue Op3) {
4024  SDVTList VTs = getVTList(VT1, VT2);
4025  SDValue Ops[] = { Op1, Op2, Op3 };
4026  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4027}
4028
4029SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4030                                   SDVTList VTs, const SDValue *Ops,
4031                                   unsigned NumOps) {
4032  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4033}
4034
4035SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4036                                  MVT VT) {
4037  SDVTList VTs = getVTList(VT);
4038  return MorphNodeTo(N, Opc, VTs, 0, 0);
4039}
4040
4041SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4042                                  MVT VT, SDValue Op1) {
4043  SDVTList VTs = getVTList(VT);
4044  SDValue Ops[] = { Op1 };
4045  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4046}
4047
4048SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4049                                  MVT VT, SDValue Op1,
4050                                  SDValue Op2) {
4051  SDVTList VTs = getVTList(VT);
4052  SDValue Ops[] = { Op1, Op2 };
4053  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4054}
4055
4056SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4057                                  MVT VT, SDValue Op1,
4058                                  SDValue Op2, SDValue Op3) {
4059  SDVTList VTs = getVTList(VT);
4060  SDValue Ops[] = { Op1, Op2, Op3 };
4061  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4062}
4063
4064SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4065                                  MVT VT, const SDValue *Ops,
4066                                  unsigned NumOps) {
4067  SDVTList VTs = getVTList(VT);
4068  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4069}
4070
4071SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4072                                  MVT VT1, MVT VT2, const SDValue *Ops,
4073                                  unsigned NumOps) {
4074  SDVTList VTs = getVTList(VT1, VT2);
4075  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4076}
4077
4078SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4079                                  MVT VT1, MVT VT2) {
4080  SDVTList VTs = getVTList(VT1, VT2);
4081  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4082}
4083
4084SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4085                                  MVT VT1, MVT VT2, MVT VT3,
4086                                  const SDValue *Ops, unsigned NumOps) {
4087  SDVTList VTs = getVTList(VT1, VT2, VT3);
4088  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4089}
4090
4091SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4092                                  MVT VT1, MVT VT2,
4093                                  SDValue Op1) {
4094  SDVTList VTs = getVTList(VT1, VT2);
4095  SDValue Ops[] = { Op1 };
4096  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4097}
4098
4099SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4100                                  MVT VT1, MVT VT2,
4101                                  SDValue Op1, SDValue Op2) {
4102  SDVTList VTs = getVTList(VT1, VT2);
4103  SDValue Ops[] = { Op1, Op2 };
4104  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4105}
4106
4107SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4108                                  MVT VT1, MVT VT2,
4109                                  SDValue Op1, SDValue Op2,
4110                                  SDValue Op3) {
4111  SDVTList VTs = getVTList(VT1, VT2);
4112  SDValue Ops[] = { Op1, Op2, Op3 };
4113  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4114}
4115
4116/// MorphNodeTo - These *mutate* the specified node to have the specified
4117/// return type, opcode, and operands.
4118///
4119/// Note that MorphNodeTo returns the resultant node.  If there is already a
4120/// node of the specified opcode and operands, it returns that node instead of
4121/// the current one.
4122///
4123/// Using MorphNodeTo is faster than creating a new node and swapping it in
4124/// with ReplaceAllUsesWith both because it often avoids allocating a new
4125/// node, and because it doesn't require CSE recalculation for any of
4126/// the node's users.
4127///
4128SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4129                                  SDVTList VTs, const SDValue *Ops,
4130                                  unsigned NumOps) {
4131  // If an identical node already exists, use it.
4132  void *IP = 0;
4133  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4134    FoldingSetNodeID ID;
4135    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4136    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4137      return ON;
4138  }
4139
4140  if (!RemoveNodeFromCSEMaps(N))
4141    IP = 0;
4142
4143  // Start the morphing.
4144  N->NodeType = Opc;
4145  N->ValueList = VTs.VTs;
4146  N->NumValues = VTs.NumVTs;
4147
4148  // Clear the operands list, updating used nodes to remove this from their
4149  // use list.  Keep track of any operands that become dead as a result.
4150  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4151  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4152       I != E; ++I) {
4153    SDNode *Used = I->getVal();
4154    Used->removeUser(std::distance(B, I), N);
4155    if (Used->use_empty())
4156      DeadNodeSet.insert(Used);
4157  }
4158
4159  // If NumOps is larger than the # of operands we currently have, reallocate
4160  // the operand list.
4161  if (NumOps > N->NumOperands) {
4162    if (N->OperandsNeedDelete)
4163      delete[] N->OperandList;
4164    if (N->isMachineOpcode()) {
4165      // We're creating a final node that will live unmorphed for the
4166      // remainder of the current SelectionDAG iteration, so we can allocate
4167      // the operands directly out of a pool with no recycling metadata.
4168      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4169      N->OperandsNeedDelete = false;
4170    } else {
4171      N->OperandList = new SDUse[NumOps];
4172      N->OperandsNeedDelete = true;
4173    }
4174  }
4175
4176  // Assign the new operands.
4177  N->NumOperands = NumOps;
4178  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4179    N->OperandList[i] = Ops[i];
4180    N->OperandList[i].setUser(N);
4181    SDNode *ToUse = N->OperandList[i].getVal();
4182    ToUse->addUser(i, N);
4183  }
4184
4185  // Delete any nodes that are still dead after adding the uses for the
4186  // new operands.
4187  SmallVector<SDNode *, 16> DeadNodes;
4188  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4189       E = DeadNodeSet.end(); I != E; ++I)
4190    if ((*I)->use_empty())
4191      DeadNodes.push_back(*I);
4192  RemoveDeadNodes(DeadNodes);
4193
4194  if (IP)
4195    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4196  return N;
4197}
4198
4199
4200/// getTargetNode - These are used for target selectors to create a new node
4201/// with specified return type(s), target opcode, and operands.
4202///
4203/// Note that getTargetNode returns the resultant node.  If there is already a
4204/// node of the specified opcode and operands, it returns that node instead of
4205/// the current one.
4206SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4207  return getNode(~Opcode, VT).getNode();
4208}
4209SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4210  return getNode(~Opcode, VT, Op1).getNode();
4211}
4212SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4213                                    SDValue Op1, SDValue Op2) {
4214  return getNode(~Opcode, VT, Op1, Op2).getNode();
4215}
4216SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4217                                    SDValue Op1, SDValue Op2,
4218                                    SDValue Op3) {
4219  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4220}
4221SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4222                                    const SDValue *Ops, unsigned NumOps) {
4223  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4224}
4225SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4226  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4227  SDValue Op;
4228  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4229}
4230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4231                                    MVT VT2, SDValue Op1) {
4232  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4233  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4234}
4235SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4236                                    MVT VT2, SDValue Op1,
4237                                    SDValue Op2) {
4238  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4239  SDValue Ops[] = { Op1, Op2 };
4240  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4241}
4242SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4243                                    MVT VT2, SDValue Op1,
4244                                    SDValue Op2, SDValue Op3) {
4245  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4246  SDValue Ops[] = { Op1, Op2, Op3 };
4247  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4248}
4249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4250                                    const SDValue *Ops, unsigned NumOps) {
4251  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4252  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4253}
4254SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4255                                    SDValue Op1, SDValue Op2) {
4256  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4257  SDValue Ops[] = { Op1, Op2 };
4258  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4259}
4260SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4261                                    SDValue Op1, SDValue Op2,
4262                                    SDValue Op3) {
4263  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4264  SDValue Ops[] = { Op1, Op2, Op3 };
4265  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4266}
4267SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4268                                    const SDValue *Ops, unsigned NumOps) {
4269  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4270  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4271}
4272SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4273                                    MVT VT2, MVT VT3, MVT VT4,
4274                                    const SDValue *Ops, unsigned NumOps) {
4275  std::vector<MVT> VTList;
4276  VTList.push_back(VT1);
4277  VTList.push_back(VT2);
4278  VTList.push_back(VT3);
4279  VTList.push_back(VT4);
4280  const MVT *VTs = getNodeValueTypes(VTList);
4281  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4282}
4283SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4284                                    const std::vector<MVT> &ResultTys,
4285                                    const SDValue *Ops, unsigned NumOps) {
4286  const MVT *VTs = getNodeValueTypes(ResultTys);
4287  return getNode(~Opcode, VTs, ResultTys.size(),
4288                 Ops, NumOps).getNode();
4289}
4290
4291/// getNodeIfExists - Get the specified node if it's already available, or
4292/// else return NULL.
4293SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4294                                      const SDValue *Ops, unsigned NumOps) {
4295  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4296    FoldingSetNodeID ID;
4297    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4298    void *IP = 0;
4299    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4300      return E;
4301  }
4302  return NULL;
4303}
4304
4305
4306/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4307/// This can cause recursive merging of nodes in the DAG.
4308///
4309/// This version assumes From has a single result value.
4310///
4311void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4312                                      DAGUpdateListener *UpdateListener) {
4313  SDNode *From = FromN.getNode();
4314  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4315         "Cannot replace with this method!");
4316  assert(From != To.getNode() && "Cannot replace uses of with self");
4317
4318  while (!From->use_empty()) {
4319    SDNode::use_iterator UI = From->use_begin();
4320    SDNode *U = *UI;
4321
4322    // This node is about to morph, remove its old self from the CSE maps.
4323    RemoveNodeFromCSEMaps(U);
4324    int operandNum = 0;
4325    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4326         I != E; ++I, ++operandNum)
4327      if (I->getVal() == From) {
4328        From->removeUser(operandNum, U);
4329        *I = To;
4330        I->setUser(U);
4331        To.getNode()->addUser(operandNum, U);
4332      }
4333
4334    // Now that we have modified U, add it back to the CSE maps.  If it already
4335    // exists there, recursively merge the results together.
4336    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4337      ReplaceAllUsesWith(U, Existing, UpdateListener);
4338      // U is now dead.  Inform the listener if it exists and delete it.
4339      if (UpdateListener)
4340        UpdateListener->NodeDeleted(U, Existing);
4341      DeleteNodeNotInCSEMaps(U);
4342    } else {
4343      // If the node doesn't already exist, we updated it.  Inform a listener if
4344      // it exists.
4345      if (UpdateListener)
4346        UpdateListener->NodeUpdated(U);
4347    }
4348  }
4349}
4350
4351/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4352/// This can cause recursive merging of nodes in the DAG.
4353///
4354/// This version assumes From/To have matching types and numbers of result
4355/// values.
4356///
4357void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4358                                      DAGUpdateListener *UpdateListener) {
4359  assert(From->getVTList().VTs == To->getVTList().VTs &&
4360         From->getNumValues() == To->getNumValues() &&
4361         "Cannot use this version of ReplaceAllUsesWith!");
4362
4363  // Handle the trivial case.
4364  if (From == To)
4365    return;
4366
4367  while (!From->use_empty()) {
4368    SDNode::use_iterator UI = From->use_begin();
4369    SDNode *U = *UI;
4370
4371    // This node is about to morph, remove its old self from the CSE maps.
4372    RemoveNodeFromCSEMaps(U);
4373    int operandNum = 0;
4374    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4375         I != E; ++I, ++operandNum)
4376      if (I->getVal() == From) {
4377        From->removeUser(operandNum, U);
4378        I->getSDValue().setNode(To);
4379        To->addUser(operandNum, U);
4380      }
4381
4382    // Now that we have modified U, add it back to the CSE maps.  If it already
4383    // exists there, recursively merge the results together.
4384    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4385      ReplaceAllUsesWith(U, Existing, UpdateListener);
4386      // U is now dead.  Inform the listener if it exists and delete it.
4387      if (UpdateListener)
4388        UpdateListener->NodeDeleted(U, Existing);
4389      DeleteNodeNotInCSEMaps(U);
4390    } else {
4391      // If the node doesn't already exist, we updated it.  Inform a listener if
4392      // it exists.
4393      if (UpdateListener)
4394        UpdateListener->NodeUpdated(U);
4395    }
4396  }
4397}
4398
4399/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4400/// This can cause recursive merging of nodes in the DAG.
4401///
4402/// This version can replace From with any result values.  To must match the
4403/// number and types of values returned by From.
4404void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4405                                      const SDValue *To,
4406                                      DAGUpdateListener *UpdateListener) {
4407  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4408    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4409
4410  while (!From->use_empty()) {
4411    SDNode::use_iterator UI = From->use_begin();
4412    SDNode *U = *UI;
4413
4414    // This node is about to morph, remove its old self from the CSE maps.
4415    RemoveNodeFromCSEMaps(U);
4416    int operandNum = 0;
4417    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4418         I != E; ++I, ++operandNum)
4419      if (I->getVal() == From) {
4420        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4421        From->removeUser(operandNum, U);
4422        *I = ToOp;
4423        I->setUser(U);
4424        ToOp.getNode()->addUser(operandNum, U);
4425      }
4426
4427    // Now that we have modified U, add it back to the CSE maps.  If it already
4428    // exists there, recursively merge the results together.
4429    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4430      ReplaceAllUsesWith(U, Existing, UpdateListener);
4431      // U is now dead.  Inform the listener if it exists and delete it.
4432      if (UpdateListener)
4433        UpdateListener->NodeDeleted(U, Existing);
4434      DeleteNodeNotInCSEMaps(U);
4435    } else {
4436      // If the node doesn't already exist, we updated it.  Inform a listener if
4437      // it exists.
4438      if (UpdateListener)
4439        UpdateListener->NodeUpdated(U);
4440    }
4441  }
4442}
4443
4444/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4445/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4446/// handled the same way as for ReplaceAllUsesWith.
4447void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4448                                             DAGUpdateListener *UpdateListener){
4449  // Handle the really simple, really trivial case efficiently.
4450  if (From == To) return;
4451
4452  // Handle the simple, trivial, case efficiently.
4453  if (From.getNode()->getNumValues() == 1) {
4454    ReplaceAllUsesWith(From, To, UpdateListener);
4455    return;
4456  }
4457
4458  // Get all of the users of From.getNode().  We want these in a nice,
4459  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4460  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4461
4462  while (!Users.empty()) {
4463    // We know that this user uses some value of From.  If it is the right
4464    // value, update it.
4465    SDNode *User = Users.back();
4466    Users.pop_back();
4467
4468    // Scan for an operand that matches From.
4469    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4470    for (; Op != E; ++Op)
4471      if (*Op == From) break;
4472
4473    // If there are no matches, the user must use some other result of From.
4474    if (Op == E) continue;
4475
4476    // Okay, we know this user needs to be updated.  Remove its old self
4477    // from the CSE maps.
4478    RemoveNodeFromCSEMaps(User);
4479
4480    // Update all operands that match "From" in case there are multiple uses.
4481    for (; Op != E; ++Op) {
4482      if (*Op == From) {
4483        From.getNode()->removeUser(Op-User->op_begin(), User);
4484        *Op = To;
4485        Op->setUser(User);
4486        To.getNode()->addUser(Op-User->op_begin(), User);
4487      }
4488    }
4489
4490    // Now that we have modified User, add it back to the CSE maps.  If it
4491    // already exists there, recursively merge the results together.
4492    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4493    if (!Existing) {
4494      if (UpdateListener) UpdateListener->NodeUpdated(User);
4495      continue;  // Continue on to next user.
4496    }
4497
4498    // If there was already an existing matching node, use ReplaceAllUsesWith
4499    // to replace the dead one with the existing one.  This can cause
4500    // recursive merging of other unrelated nodes down the line.
4501    ReplaceAllUsesWith(User, Existing, UpdateListener);
4502
4503    // User is now dead.  Notify a listener if present.
4504    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4505    DeleteNodeNotInCSEMaps(User);
4506  }
4507}
4508
4509/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4510/// uses of other values produced by From.getVal() alone.  The same value may
4511/// appear in both the From and To list.  The Deleted vector is
4512/// handled the same way as for ReplaceAllUsesWith.
4513void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4514                                              const SDValue *To,
4515                                              unsigned Num,
4516                                              DAGUpdateListener *UpdateListener){
4517  // Handle the simple, trivial case efficiently.
4518  if (Num == 1)
4519    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4520
4521  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4522  for (unsigned i = 0; i != Num; ++i)
4523    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4524         E = From[i].getNode()->use_end(); UI != E; ++UI)
4525      Users.push_back(std::make_pair(*UI, i));
4526
4527  while (!Users.empty()) {
4528    // We know that this user uses some value of From.  If it is the right
4529    // value, update it.
4530    SDNode *User = Users.back().first;
4531    unsigned i = Users.back().second;
4532    Users.pop_back();
4533
4534    // Scan for an operand that matches From.
4535    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4536    for (; Op != E; ++Op)
4537      if (*Op == From[i]) break;
4538
4539    // If there are no matches, the user must use some other result of From.
4540    if (Op == E) continue;
4541
4542    // Okay, we know this user needs to be updated.  Remove its old self
4543    // from the CSE maps.
4544    RemoveNodeFromCSEMaps(User);
4545
4546    // Update all operands that match "From" in case there are multiple uses.
4547    for (; Op != E; ++Op) {
4548      if (*Op == From[i]) {
4549        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4550        *Op = To[i];
4551        Op->setUser(User);
4552        To[i].getNode()->addUser(Op-User->op_begin(), User);
4553      }
4554    }
4555
4556    // Now that we have modified User, add it back to the CSE maps.  If it
4557    // already exists there, recursively merge the results together.
4558    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4559    if (!Existing) {
4560      if (UpdateListener) UpdateListener->NodeUpdated(User);
4561      continue;  // Continue on to next user.
4562    }
4563
4564    // If there was already an existing matching node, use ReplaceAllUsesWith
4565    // to replace the dead one with the existing one.  This can cause
4566    // recursive merging of other unrelated nodes down the line.
4567    ReplaceAllUsesWith(User, Existing, UpdateListener);
4568
4569    // User is now dead.  Notify a listener if present.
4570    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4571    DeleteNodeNotInCSEMaps(User);
4572  }
4573}
4574
4575/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4576/// based on their topological order. It returns the maximum id and a vector
4577/// of the SDNodes* in assigned order by reference.
4578unsigned SelectionDAG::AssignTopologicalOrder() {
4579
4580  unsigned DAGSize = 0;
4581
4582  // SortedPos tracks the progress of the algorithm. Nodes before it are
4583  // sorted, nodes after it are unsorted. When the algorithm completes
4584  // it is at the end of the list.
4585  allnodes_iterator SortedPos = allnodes_begin();
4586
4587  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4588  // array immediately. Annotate nodes that do have operands with their
4589  // operand count. Before we do this, the Node Id fields of the nodes
4590  // may contain arbitrary values. After, the Node Id fields for nodes
4591  // before SortedPos will contain the topological sort index, and the
4592  // Node Id fields for nodes At SortedPos and after will contain the
4593  // count of outstanding operands.
4594  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4595    SDNode *N = I++;
4596    unsigned Degree = N->getNumOperands();
4597    if (Degree == 0) {
4598      // A node with no uses, add it to the result array immediately.
4599      N->setNodeId(DAGSize++);
4600      allnodes_iterator Q = N;
4601      if (Q != SortedPos)
4602        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4603      ++SortedPos;
4604    } else {
4605      // Temporarily use the Node Id as scratch space for the degree count.
4606      N->setNodeId(Degree);
4607    }
4608  }
4609
4610  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4611  // such that by the time the end is reached all nodes will be sorted.
4612  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4613    SDNode *N = I;
4614    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4615         UI != UE; ++UI) {
4616      SDNode *P = *UI;
4617      unsigned Degree = P->getNodeId();
4618      --Degree;
4619      if (Degree == 0) {
4620        // All of P's operands are sorted, so P may sorted now.
4621        P->setNodeId(DAGSize++);
4622        if (P != SortedPos)
4623          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4624        ++SortedPos;
4625      } else {
4626        // Update P's outstanding operand count.
4627        P->setNodeId(Degree);
4628      }
4629    }
4630  }
4631
4632  assert(SortedPos == AllNodes.end() &&
4633         "Topological sort incomplete!");
4634  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4635         "First node in topological sort is not the entry token!");
4636  assert(AllNodes.front().getNodeId() == 0 &&
4637         "First node in topological sort has non-zero id!");
4638  assert(AllNodes.front().getNumOperands() == 0 &&
4639         "First node in topological sort has operands!");
4640  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4641         "Last node in topologic sort has unexpected id!");
4642  assert(AllNodes.back().use_empty() &&
4643         "Last node in topologic sort has users!");
4644  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4645  return DAGSize;
4646}
4647
4648
4649
4650//===----------------------------------------------------------------------===//
4651//                              SDNode Class
4652//===----------------------------------------------------------------------===//
4653
4654// Out-of-line virtual method to give class a home.
4655void SDNode::ANCHOR() {}
4656void UnarySDNode::ANCHOR() {}
4657void BinarySDNode::ANCHOR() {}
4658void TernarySDNode::ANCHOR() {}
4659void HandleSDNode::ANCHOR() {}
4660void ConstantSDNode::ANCHOR() {}
4661void ConstantFPSDNode::ANCHOR() {}
4662void GlobalAddressSDNode::ANCHOR() {}
4663void FrameIndexSDNode::ANCHOR() {}
4664void JumpTableSDNode::ANCHOR() {}
4665void ConstantPoolSDNode::ANCHOR() {}
4666void BasicBlockSDNode::ANCHOR() {}
4667void SrcValueSDNode::ANCHOR() {}
4668void MemOperandSDNode::ANCHOR() {}
4669void RegisterSDNode::ANCHOR() {}
4670void DbgStopPointSDNode::ANCHOR() {}
4671void LabelSDNode::ANCHOR() {}
4672void ExternalSymbolSDNode::ANCHOR() {}
4673void CondCodeSDNode::ANCHOR() {}
4674void ARG_FLAGSSDNode::ANCHOR() {}
4675void VTSDNode::ANCHOR() {}
4676void MemSDNode::ANCHOR() {}
4677void LoadSDNode::ANCHOR() {}
4678void StoreSDNode::ANCHOR() {}
4679void AtomicSDNode::ANCHOR() {}
4680void CallSDNode::ANCHOR() {}
4681
4682HandleSDNode::~HandleSDNode() {
4683  DropOperands();
4684}
4685
4686GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4687                                         MVT VT, int o)
4688  : SDNode(isa<GlobalVariable>(GA) &&
4689           cast<GlobalVariable>(GA)->isThreadLocal() ?
4690           // Thread Local
4691           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4692           // Non Thread Local
4693           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4694           getSDVTList(VT)), Offset(o) {
4695  TheGlobal = const_cast<GlobalValue*>(GA);
4696}
4697
4698MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4699                     const Value *srcValue, int SVO,
4700                     unsigned alignment, bool vol)
4701 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4702   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4703
4704  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4705  assert(getAlignment() == alignment && "Alignment representation error!");
4706  assert(isVolatile() == vol && "Volatile representation error!");
4707}
4708
4709/// getMemOperand - Return a MachineMemOperand object describing the memory
4710/// reference performed by this memory reference.
4711MachineMemOperand MemSDNode::getMemOperand() const {
4712  int Flags;
4713  if (isa<LoadSDNode>(this))
4714    Flags = MachineMemOperand::MOLoad;
4715  else if (isa<StoreSDNode>(this))
4716    Flags = MachineMemOperand::MOStore;
4717  else {
4718    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4719    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4720  }
4721
4722  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4723  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4724
4725  // Check if the memory reference references a frame index
4726  const FrameIndexSDNode *FI =
4727  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4728  if (!getSrcValue() && FI)
4729    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4730                             Flags, 0, Size, getAlignment());
4731  else
4732    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4733                             Size, getAlignment());
4734}
4735
4736/// Profile - Gather unique data for the node.
4737///
4738void SDNode::Profile(FoldingSetNodeID &ID) const {
4739  AddNodeIDNode(ID, this);
4740}
4741
4742/// getValueTypeList - Return a pointer to the specified value type.
4743///
4744const MVT *SDNode::getValueTypeList(MVT VT) {
4745  if (VT.isExtended()) {
4746    static std::set<MVT, MVT::compareRawBits> EVTs;
4747    return &(*EVTs.insert(VT).first);
4748  } else {
4749    static MVT VTs[MVT::LAST_VALUETYPE];
4750    VTs[VT.getSimpleVT()] = VT;
4751    return &VTs[VT.getSimpleVT()];
4752  }
4753}
4754
4755/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4756/// indicated value.  This method ignores uses of other values defined by this
4757/// operation.
4758bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4759  assert(Value < getNumValues() && "Bad value!");
4760
4761  // TODO: Only iterate over uses of a given value of the node
4762  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4763    if (UI.getUse().getSDValue().getResNo() == Value) {
4764      if (NUses == 0)
4765        return false;
4766      --NUses;
4767    }
4768  }
4769
4770  // Found exactly the right number of uses?
4771  return NUses == 0;
4772}
4773
4774
4775/// hasAnyUseOfValue - Return true if there are any use of the indicated
4776/// value. This method ignores uses of other values defined by this operation.
4777bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4778  assert(Value < getNumValues() && "Bad value!");
4779
4780  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4781    if (UI.getUse().getSDValue().getResNo() == Value)
4782      return true;
4783
4784  return false;
4785}
4786
4787
4788/// isOnlyUserOf - Return true if this node is the only use of N.
4789///
4790bool SDNode::isOnlyUserOf(SDNode *N) const {
4791  bool Seen = false;
4792  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4793    SDNode *User = *I;
4794    if (User == this)
4795      Seen = true;
4796    else
4797      return false;
4798  }
4799
4800  return Seen;
4801}
4802
4803/// isOperand - Return true if this node is an operand of N.
4804///
4805bool SDValue::isOperandOf(SDNode *N) const {
4806  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4807    if (*this == N->getOperand(i))
4808      return true;
4809  return false;
4810}
4811
4812bool SDNode::isOperandOf(SDNode *N) const {
4813  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4814    if (this == N->OperandList[i].getVal())
4815      return true;
4816  return false;
4817}
4818
4819/// reachesChainWithoutSideEffects - Return true if this operand (which must
4820/// be a chain) reaches the specified operand without crossing any
4821/// side-effecting instructions.  In practice, this looks through token
4822/// factors and non-volatile loads.  In order to remain efficient, this only
4823/// looks a couple of nodes in, it does not do an exhaustive search.
4824bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4825                                               unsigned Depth) const {
4826  if (*this == Dest) return true;
4827
4828  // Don't search too deeply, we just want to be able to see through
4829  // TokenFactor's etc.
4830  if (Depth == 0) return false;
4831
4832  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4833  // of the operands of the TF reach dest, then we can do the xform.
4834  if (getOpcode() == ISD::TokenFactor) {
4835    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4836      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4837        return true;
4838    return false;
4839  }
4840
4841  // Loads don't have side effects, look through them.
4842  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4843    if (!Ld->isVolatile())
4844      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4845  }
4846  return false;
4847}
4848
4849
4850static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4851                            SmallPtrSet<SDNode *, 32> &Visited) {
4852  if (found || !Visited.insert(N))
4853    return;
4854
4855  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4856    SDNode *Op = N->getOperand(i).getNode();
4857    if (Op == P) {
4858      found = true;
4859      return;
4860    }
4861    findPredecessor(Op, P, found, Visited);
4862  }
4863}
4864
4865/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4866/// is either an operand of N or it can be reached by recursively traversing
4867/// up the operands.
4868/// NOTE: this is an expensive method. Use it carefully.
4869bool SDNode::isPredecessorOf(SDNode *N) const {
4870  SmallPtrSet<SDNode *, 32> Visited;
4871  bool found = false;
4872  findPredecessor(N, this, found, Visited);
4873  return found;
4874}
4875
4876uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4877  assert(Num < NumOperands && "Invalid child # of SDNode!");
4878  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4879}
4880
4881std::string SDNode::getOperationName(const SelectionDAG *G) const {
4882  switch (getOpcode()) {
4883  default:
4884    if (getOpcode() < ISD::BUILTIN_OP_END)
4885      return "<<Unknown DAG Node>>";
4886    if (isMachineOpcode()) {
4887      if (G)
4888        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4889          if (getMachineOpcode() < TII->getNumOpcodes())
4890            return TII->get(getMachineOpcode()).getName();
4891      return "<<Unknown Machine Node>>";
4892    }
4893    if (G) {
4894      TargetLowering &TLI = G->getTargetLoweringInfo();
4895      const char *Name = TLI.getTargetNodeName(getOpcode());
4896      if (Name) return Name;
4897      return "<<Unknown Target Node>>";
4898    }
4899    return "<<Unknown Node>>";
4900
4901#ifndef NDEBUG
4902  case ISD::DELETED_NODE:
4903    return "<<Deleted Node!>>";
4904#endif
4905  case ISD::PREFETCH:      return "Prefetch";
4906  case ISD::MEMBARRIER:    return "MemBarrier";
4907  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4908  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4909  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4910  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4911  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4912  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4913  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4914  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4915  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4916  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4917  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4918  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4919  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4920  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4921  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4922  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4923  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4924  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4925  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4926  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4927  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4928  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4929  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4930  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4931  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4932  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4933  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4934  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4935  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4936  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4937  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4938  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4939  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4940  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4941  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4942  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4943  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4944  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4945  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4946  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4947  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4948  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4949  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4950  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4951  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4952  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4953  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4954  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
4955  case ISD::PCMARKER:      return "PCMarker";
4956  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4957  case ISD::SRCVALUE:      return "SrcValue";
4958  case ISD::MEMOPERAND:    return "MemOperand";
4959  case ISD::EntryToken:    return "EntryToken";
4960  case ISD::TokenFactor:   return "TokenFactor";
4961  case ISD::AssertSext:    return "AssertSext";
4962  case ISD::AssertZext:    return "AssertZext";
4963
4964  case ISD::BasicBlock:    return "BasicBlock";
4965  case ISD::ARG_FLAGS:     return "ArgFlags";
4966  case ISD::VALUETYPE:     return "ValueType";
4967  case ISD::Register:      return "Register";
4968
4969  case ISD::Constant:      return "Constant";
4970  case ISD::ConstantFP:    return "ConstantFP";
4971  case ISD::GlobalAddress: return "GlobalAddress";
4972  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4973  case ISD::FrameIndex:    return "FrameIndex";
4974  case ISD::JumpTable:     return "JumpTable";
4975  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4976  case ISD::RETURNADDR: return "RETURNADDR";
4977  case ISD::FRAMEADDR: return "FRAMEADDR";
4978  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4979  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4980  case ISD::EHSELECTION: return "EHSELECTION";
4981  case ISD::EH_RETURN: return "EH_RETURN";
4982  case ISD::ConstantPool:  return "ConstantPool";
4983  case ISD::ExternalSymbol: return "ExternalSymbol";
4984  case ISD::INTRINSIC_WO_CHAIN: {
4985    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
4986    return Intrinsic::getName((Intrinsic::ID)IID);
4987  }
4988  case ISD::INTRINSIC_VOID:
4989  case ISD::INTRINSIC_W_CHAIN: {
4990    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
4991    return Intrinsic::getName((Intrinsic::ID)IID);
4992  }
4993
4994  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4995  case ISD::TargetConstant: return "TargetConstant";
4996  case ISD::TargetConstantFP:return "TargetConstantFP";
4997  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4998  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4999  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5000  case ISD::TargetJumpTable:  return "TargetJumpTable";
5001  case ISD::TargetConstantPool:  return "TargetConstantPool";
5002  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5003
5004  case ISD::CopyToReg:     return "CopyToReg";
5005  case ISD::CopyFromReg:   return "CopyFromReg";
5006  case ISD::UNDEF:         return "undef";
5007  case ISD::MERGE_VALUES:  return "merge_values";
5008  case ISD::INLINEASM:     return "inlineasm";
5009  case ISD::DBG_LABEL:     return "dbg_label";
5010  case ISD::EH_LABEL:      return "eh_label";
5011  case ISD::DECLARE:       return "declare";
5012  case ISD::HANDLENODE:    return "handlenode";
5013  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5014  case ISD::CALL:          return "call";
5015
5016  // Unary operators
5017  case ISD::FABS:   return "fabs";
5018  case ISD::FNEG:   return "fneg";
5019  case ISD::FSQRT:  return "fsqrt";
5020  case ISD::FSIN:   return "fsin";
5021  case ISD::FCOS:   return "fcos";
5022  case ISD::FPOWI:  return "fpowi";
5023  case ISD::FPOW:   return "fpow";
5024  case ISD::FTRUNC: return "ftrunc";
5025  case ISD::FFLOOR: return "ffloor";
5026  case ISD::FCEIL:  return "fceil";
5027  case ISD::FRINT:  return "frint";
5028  case ISD::FNEARBYINT: return "fnearbyint";
5029
5030  // Binary operators
5031  case ISD::ADD:    return "add";
5032  case ISD::SUB:    return "sub";
5033  case ISD::MUL:    return "mul";
5034  case ISD::MULHU:  return "mulhu";
5035  case ISD::MULHS:  return "mulhs";
5036  case ISD::SDIV:   return "sdiv";
5037  case ISD::UDIV:   return "udiv";
5038  case ISD::SREM:   return "srem";
5039  case ISD::UREM:   return "urem";
5040  case ISD::SMUL_LOHI:  return "smul_lohi";
5041  case ISD::UMUL_LOHI:  return "umul_lohi";
5042  case ISD::SDIVREM:    return "sdivrem";
5043  case ISD::UDIVREM:    return "udivrem";
5044  case ISD::AND:    return "and";
5045  case ISD::OR:     return "or";
5046  case ISD::XOR:    return "xor";
5047  case ISD::SHL:    return "shl";
5048  case ISD::SRA:    return "sra";
5049  case ISD::SRL:    return "srl";
5050  case ISD::ROTL:   return "rotl";
5051  case ISD::ROTR:   return "rotr";
5052  case ISD::FADD:   return "fadd";
5053  case ISD::FSUB:   return "fsub";
5054  case ISD::FMUL:   return "fmul";
5055  case ISD::FDIV:   return "fdiv";
5056  case ISD::FREM:   return "frem";
5057  case ISD::FCOPYSIGN: return "fcopysign";
5058  case ISD::FGETSIGN:  return "fgetsign";
5059
5060  case ISD::SETCC:       return "setcc";
5061  case ISD::VSETCC:      return "vsetcc";
5062  case ISD::SELECT:      return "select";
5063  case ISD::SELECT_CC:   return "select_cc";
5064  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5065  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5066  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5067  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5068  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5069  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5070  case ISD::CARRY_FALSE:         return "carry_false";
5071  case ISD::ADDC:        return "addc";
5072  case ISD::ADDE:        return "adde";
5073  case ISD::SUBC:        return "subc";
5074  case ISD::SUBE:        return "sube";
5075  case ISD::SHL_PARTS:   return "shl_parts";
5076  case ISD::SRA_PARTS:   return "sra_parts";
5077  case ISD::SRL_PARTS:   return "srl_parts";
5078
5079  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5080  case ISD::INSERT_SUBREG:      return "insert_subreg";
5081
5082  // Conversion operators.
5083  case ISD::SIGN_EXTEND: return "sign_extend";
5084  case ISD::ZERO_EXTEND: return "zero_extend";
5085  case ISD::ANY_EXTEND:  return "any_extend";
5086  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5087  case ISD::TRUNCATE:    return "truncate";
5088  case ISD::FP_ROUND:    return "fp_round";
5089  case ISD::FLT_ROUNDS_: return "flt_rounds";
5090  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5091  case ISD::FP_EXTEND:   return "fp_extend";
5092
5093  case ISD::SINT_TO_FP:  return "sint_to_fp";
5094  case ISD::UINT_TO_FP:  return "uint_to_fp";
5095  case ISD::FP_TO_SINT:  return "fp_to_sint";
5096  case ISD::FP_TO_UINT:  return "fp_to_uint";
5097  case ISD::BIT_CONVERT: return "bit_convert";
5098
5099    // Control flow instructions
5100  case ISD::BR:      return "br";
5101  case ISD::BRIND:   return "brind";
5102  case ISD::BR_JT:   return "br_jt";
5103  case ISD::BRCOND:  return "brcond";
5104  case ISD::BR_CC:   return "br_cc";
5105  case ISD::RET:     return "ret";
5106  case ISD::CALLSEQ_START:  return "callseq_start";
5107  case ISD::CALLSEQ_END:    return "callseq_end";
5108
5109    // Other operators
5110  case ISD::LOAD:               return "load";
5111  case ISD::STORE:              return "store";
5112  case ISD::VAARG:              return "vaarg";
5113  case ISD::VACOPY:             return "vacopy";
5114  case ISD::VAEND:              return "vaend";
5115  case ISD::VASTART:            return "vastart";
5116  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5117  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5118  case ISD::BUILD_PAIR:         return "build_pair";
5119  case ISD::STACKSAVE:          return "stacksave";
5120  case ISD::STACKRESTORE:       return "stackrestore";
5121  case ISD::TRAP:               return "trap";
5122
5123  // Bit manipulation
5124  case ISD::BSWAP:   return "bswap";
5125  case ISD::CTPOP:   return "ctpop";
5126  case ISD::CTTZ:    return "cttz";
5127  case ISD::CTLZ:    return "ctlz";
5128
5129  // Debug info
5130  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5131  case ISD::DEBUG_LOC: return "debug_loc";
5132
5133  // Trampolines
5134  case ISD::TRAMPOLINE: return "trampoline";
5135
5136  case ISD::CONDCODE:
5137    switch (cast<CondCodeSDNode>(this)->get()) {
5138    default: assert(0 && "Unknown setcc condition!");
5139    case ISD::SETOEQ:  return "setoeq";
5140    case ISD::SETOGT:  return "setogt";
5141    case ISD::SETOGE:  return "setoge";
5142    case ISD::SETOLT:  return "setolt";
5143    case ISD::SETOLE:  return "setole";
5144    case ISD::SETONE:  return "setone";
5145
5146    case ISD::SETO:    return "seto";
5147    case ISD::SETUO:   return "setuo";
5148    case ISD::SETUEQ:  return "setue";
5149    case ISD::SETUGT:  return "setugt";
5150    case ISD::SETUGE:  return "setuge";
5151    case ISD::SETULT:  return "setult";
5152    case ISD::SETULE:  return "setule";
5153    case ISD::SETUNE:  return "setune";
5154
5155    case ISD::SETEQ:   return "seteq";
5156    case ISD::SETGT:   return "setgt";
5157    case ISD::SETGE:   return "setge";
5158    case ISD::SETLT:   return "setlt";
5159    case ISD::SETLE:   return "setle";
5160    case ISD::SETNE:   return "setne";
5161    }
5162  }
5163}
5164
5165const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5166  switch (AM) {
5167  default:
5168    return "";
5169  case ISD::PRE_INC:
5170    return "<pre-inc>";
5171  case ISD::PRE_DEC:
5172    return "<pre-dec>";
5173  case ISD::POST_INC:
5174    return "<post-inc>";
5175  case ISD::POST_DEC:
5176    return "<post-dec>";
5177  }
5178}
5179
5180std::string ISD::ArgFlagsTy::getArgFlagsString() {
5181  std::string S = "< ";
5182
5183  if (isZExt())
5184    S += "zext ";
5185  if (isSExt())
5186    S += "sext ";
5187  if (isInReg())
5188    S += "inreg ";
5189  if (isSRet())
5190    S += "sret ";
5191  if (isByVal())
5192    S += "byval ";
5193  if (isNest())
5194    S += "nest ";
5195  if (getByValAlign())
5196    S += "byval-align:" + utostr(getByValAlign()) + " ";
5197  if (getOrigAlign())
5198    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5199  if (getByValSize())
5200    S += "byval-size:" + utostr(getByValSize()) + " ";
5201  return S + ">";
5202}
5203
5204void SDNode::dump() const { dump(0); }
5205void SDNode::dump(const SelectionDAG *G) const {
5206  print(errs(), G);
5207  errs().flush();
5208}
5209
5210void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5211  OS << (void*)this << ": ";
5212
5213  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5214    if (i) OS << ",";
5215    if (getValueType(i) == MVT::Other)
5216      OS << "ch";
5217    else
5218      OS << getValueType(i).getMVTString();
5219  }
5220  OS << " = " << getOperationName(G);
5221
5222  OS << " ";
5223  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5224    if (i) OS << ", ";
5225    OS << (void*)getOperand(i).getNode();
5226    if (unsigned RN = getOperand(i).getResNo())
5227      OS << ":" << RN;
5228  }
5229
5230  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5231    SDNode *Mask = getOperand(2).getNode();
5232    OS << "<";
5233    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5234      if (i) OS << ",";
5235      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5236        OS << "u";
5237      else
5238        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5239    }
5240    OS << ">";
5241  }
5242
5243  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5244    OS << '<' << CSDN->getAPIntValue() << '>';
5245  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5246    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5247      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5248    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5249      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5250    else {
5251      OS << "<APFloat(";
5252      CSDN->getValueAPF().convertToAPInt().dump();
5253      OS << ")>";
5254    }
5255  } else if (const GlobalAddressSDNode *GADN =
5256             dyn_cast<GlobalAddressSDNode>(this)) {
5257    int offset = GADN->getOffset();
5258    OS << '<';
5259    WriteAsOperand(OS, GADN->getGlobal());
5260    OS << '>';
5261    if (offset > 0)
5262      OS << " + " << offset;
5263    else
5264      OS << " " << offset;
5265  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5266    OS << "<" << FIDN->getIndex() << ">";
5267  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5268    OS << "<" << JTDN->getIndex() << ">";
5269  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5270    int offset = CP->getOffset();
5271    if (CP->isMachineConstantPoolEntry())
5272      OS << "<" << *CP->getMachineCPVal() << ">";
5273    else
5274      OS << "<" << *CP->getConstVal() << ">";
5275    if (offset > 0)
5276      OS << " + " << offset;
5277    else
5278      OS << " " << offset;
5279  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5280    OS << "<";
5281    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5282    if (LBB)
5283      OS << LBB->getName() << " ";
5284    OS << (const void*)BBDN->getBasicBlock() << ">";
5285  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5286    if (G && R->getReg() &&
5287        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5288      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5289    } else {
5290      OS << " #" << R->getReg();
5291    }
5292  } else if (const ExternalSymbolSDNode *ES =
5293             dyn_cast<ExternalSymbolSDNode>(this)) {
5294    OS << "'" << ES->getSymbol() << "'";
5295  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5296    if (M->getValue())
5297      OS << "<" << M->getValue() << ">";
5298    else
5299      OS << "<null>";
5300  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5301    if (M->MO.getValue())
5302      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5303    else
5304      OS << "<null:" << M->MO.getOffset() << ">";
5305  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5306    OS << N->getArgFlags().getArgFlagsString();
5307  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5308    OS << ":" << N->getVT().getMVTString();
5309  }
5310  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5311    const Value *SrcValue = LD->getSrcValue();
5312    int SrcOffset = LD->getSrcValueOffset();
5313    OS << " <";
5314    if (SrcValue)
5315      OS << SrcValue;
5316    else
5317      OS << "null";
5318    OS << ":" << SrcOffset << ">";
5319
5320    bool doExt = true;
5321    switch (LD->getExtensionType()) {
5322    default: doExt = false; break;
5323    case ISD::EXTLOAD: OS << " <anyext "; break;
5324    case ISD::SEXTLOAD: OS << " <sext "; break;
5325    case ISD::ZEXTLOAD: OS << " <zext "; break;
5326    }
5327    if (doExt)
5328      OS << LD->getMemoryVT().getMVTString() << ">";
5329
5330    const char *AM = getIndexedModeName(LD->getAddressingMode());
5331    if (*AM)
5332      OS << " " << AM;
5333    if (LD->isVolatile())
5334      OS << " <volatile>";
5335    OS << " alignment=" << LD->getAlignment();
5336  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5337    const Value *SrcValue = ST->getSrcValue();
5338    int SrcOffset = ST->getSrcValueOffset();
5339    OS << " <";
5340    if (SrcValue)
5341      OS << SrcValue;
5342    else
5343      OS << "null";
5344    OS << ":" << SrcOffset << ">";
5345
5346    if (ST->isTruncatingStore())
5347      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5348
5349    const char *AM = getIndexedModeName(ST->getAddressingMode());
5350    if (*AM)
5351      OS << " " << AM;
5352    if (ST->isVolatile())
5353      OS << " <volatile>";
5354    OS << " alignment=" << ST->getAlignment();
5355  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5356    const Value *SrcValue = AT->getSrcValue();
5357    int SrcOffset = AT->getSrcValueOffset();
5358    OS << " <";
5359    if (SrcValue)
5360      OS << SrcValue;
5361    else
5362      OS << "null";
5363    OS << ":" << SrcOffset << ">";
5364    if (AT->isVolatile())
5365      OS << " <volatile>";
5366    OS << " alignment=" << AT->getAlignment();
5367  }
5368}
5369
5370static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5371  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5372    if (N->getOperand(i).getNode()->hasOneUse())
5373      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5374    else
5375      cerr << "\n" << std::string(indent+2, ' ')
5376           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5377
5378
5379  cerr << "\n" << std::string(indent, ' ');
5380  N->dump(G);
5381}
5382
5383void SelectionDAG::dump() const {
5384  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5385
5386  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5387       I != E; ++I) {
5388    const SDNode *N = I;
5389    if (!N->hasOneUse() && N != getRoot().getNode())
5390      DumpNodes(N, 2, this);
5391  }
5392
5393  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5394
5395  cerr << "\n\n";
5396}
5397
5398const Type *ConstantPoolSDNode::getType() const {
5399  if (isMachineConstantPoolEntry())
5400    return Val.MachineCPVal->getType();
5401  return Val.ConstVal->getType();
5402}
5403