SelectionDAG.cpp revision 01d029b82cb08367d81aa10cdc94d05360466649
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
52  return Value.bitwiseIsEqual(V);
53}
54
55bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56                                           const APFloat& Val) {
57  // convert modifies in place, so make a copy.
58  APFloat Val2 = APFloat(Val);
59  switch (VT) {
60  default:
61    return false;         // These can't be represented as floating point!
62
63  // FIXME rounding mode needs to be more flexible
64  case MVT::f32:
65    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67              APFloat::opOK;
68  case MVT::f64:
69    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70           &Val2.getSemantics() == &APFloat::IEEEdouble ||
71           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72             APFloat::opOK;
73  // TODO: Figure out how to test if we can use a shorter type instead!
74  case MVT::f80:
75  case MVT::f128:
76  case MVT::ppcf128:
77    return true;
78  }
79}
80
81//===----------------------------------------------------------------------===//
82//                              ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88  // Look through a bit convert.
89  if (N->getOpcode() == ISD::BIT_CONVERT)
90    N = N->getOperand(0).Val;
91
92  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94  unsigned i = 0, e = N->getNumOperands();
95
96  // Skip over all of the undef values.
97  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98    ++i;
99
100  // Do not accept an all-undef vector.
101  if (i == e) return false;
102
103  // Do not accept build_vectors that aren't all constants or which have non-~0
104  // elements.
105  SDOperand NotZero = N->getOperand(i);
106  if (isa<ConstantSDNode>(NotZero)) {
107    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108      return false;
109  } else if (isa<ConstantFPSDNode>(NotZero)) {
110    MVT::ValueType VT = NotZero.getValueType();
111    if (VT== MVT::f64) {
112      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
113                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
114        return false;
115    } else {
116      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
117                      getValueAPF().convertToAPInt().getZExtValue() !=
118          (uint32_t)-1)
119        return false;
120    }
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
174/// when given the operation for (X op Y).
175ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
176  // To perform this operation, we just need to swap the L and G bits of the
177  // operation.
178  unsigned OldL = (Operation >> 2) & 1;
179  unsigned OldG = (Operation >> 1) & 1;
180  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
181                       (OldL << 1) |       // New G bit
182                       (OldG << 2));        // New L bit.
183}
184
185/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
186/// 'op' is a valid SetCC operation.
187ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
188  unsigned Operation = Op;
189  if (isInteger)
190    Operation ^= 7;   // Flip L, G, E bits, but not U.
191  else
192    Operation ^= 15;  // Flip all of the condition bits.
193  if (Operation > ISD::SETTRUE2)
194    Operation &= ~8;     // Don't let N and U bits get set.
195  return ISD::CondCode(Operation);
196}
197
198
199/// isSignedOp - For an integer comparison, return 1 if the comparison is a
200/// signed operation and 2 if the result is an unsigned comparison.  Return zero
201/// if the operation does not depend on the sign of the input (setne and seteq).
202static int isSignedOp(ISD::CondCode Opcode) {
203  switch (Opcode) {
204  default: assert(0 && "Illegal integer setcc operation!");
205  case ISD::SETEQ:
206  case ISD::SETNE: return 0;
207  case ISD::SETLT:
208  case ISD::SETLE:
209  case ISD::SETGT:
210  case ISD::SETGE: return 1;
211  case ISD::SETULT:
212  case ISD::SETULE:
213  case ISD::SETUGT:
214  case ISD::SETUGE: return 2;
215  }
216}
217
218/// getSetCCOrOperation - Return the result of a logical OR between different
219/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
220/// returns SETCC_INVALID if it is not possible to represent the resultant
221/// comparison.
222ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
223                                       bool isInteger) {
224  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
225    // Cannot fold a signed integer setcc with an unsigned integer setcc.
226    return ISD::SETCC_INVALID;
227
228  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
229
230  // If the N and U bits get set then the resultant comparison DOES suddenly
231  // care about orderedness, and is true when ordered.
232  if (Op > ISD::SETTRUE2)
233    Op &= ~16;     // Clear the U bit if the N bit is set.
234
235  // Canonicalize illegal integer setcc's.
236  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
237    Op = ISD::SETNE;
238
239  return ISD::CondCode(Op);
240}
241
242/// getSetCCAndOperation - Return the result of a logical AND between different
243/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
244/// function returns zero if it is not possible to represent the resultant
245/// comparison.
246ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
247                                        bool isInteger) {
248  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
249    // Cannot fold a signed setcc with an unsigned setcc.
250    return ISD::SETCC_INVALID;
251
252  // Combine all of the condition bits.
253  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
254
255  // Canonicalize illegal integer setcc's.
256  if (isInteger) {
257    switch (Result) {
258    default: break;
259    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
260    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
261    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
262    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
263    }
264  }
265
266  return Result;
267}
268
269const TargetMachine &SelectionDAG::getTarget() const {
270  return TLI.getTargetMachine();
271}
272
273//===----------------------------------------------------------------------===//
274//                           SDNode Profile Support
275//===----------------------------------------------------------------------===//
276
277/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
278///
279static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
280  ID.AddInteger(OpC);
281}
282
283/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
284/// solely with their pointer.
285void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
286  ID.AddPointer(VTList.VTs);
287}
288
289/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
290///
291static void AddNodeIDOperands(FoldingSetNodeID &ID,
292                              const SDOperand *Ops, unsigned NumOps) {
293  for (; NumOps; --NumOps, ++Ops) {
294    ID.AddPointer(Ops->Val);
295    ID.AddInteger(Ops->ResNo);
296  }
297}
298
299static void AddNodeIDNode(FoldingSetNodeID &ID,
300                          unsigned short OpC, SDVTList VTList,
301                          const SDOperand *OpList, unsigned N) {
302  AddNodeIDOpcode(ID, OpC);
303  AddNodeIDValueTypes(ID, VTList);
304  AddNodeIDOperands(ID, OpList, N);
305}
306
307/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
308/// data.
309static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
310  AddNodeIDOpcode(ID, N->getOpcode());
311  // Add the return value info.
312  AddNodeIDValueTypes(ID, N->getVTList());
313  // Add the operand info.
314  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
315
316  // Handle SDNode leafs with special info.
317  switch (N->getOpcode()) {
318  default: break;  // Normal nodes don't need extra info.
319  case ISD::TargetConstant:
320  case ISD::Constant:
321    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
322    break;
323  case ISD::TargetConstantFP:
324  case ISD::ConstantFP: {
325    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
326    break;
327  }
328  case ISD::TargetGlobalAddress:
329  case ISD::GlobalAddress:
330  case ISD::TargetGlobalTLSAddress:
331  case ISD::GlobalTLSAddress: {
332    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
333    ID.AddPointer(GA->getGlobal());
334    ID.AddInteger(GA->getOffset());
335    break;
336  }
337  case ISD::BasicBlock:
338    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
339    break;
340  case ISD::Register:
341    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
342    break;
343  case ISD::SRCVALUE: {
344    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
345    ID.AddPointer(SV->getValue());
346    ID.AddInteger(SV->getOffset());
347    break;
348  }
349  case ISD::FrameIndex:
350  case ISD::TargetFrameIndex:
351    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
352    break;
353  case ISD::JumpTable:
354  case ISD::TargetJumpTable:
355    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
356    break;
357  case ISD::ConstantPool:
358  case ISD::TargetConstantPool: {
359    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
360    ID.AddInteger(CP->getAlignment());
361    ID.AddInteger(CP->getOffset());
362    if (CP->isMachineConstantPoolEntry())
363      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
364    else
365      ID.AddPointer(CP->getConstVal());
366    break;
367  }
368  case ISD::LOAD: {
369    LoadSDNode *LD = cast<LoadSDNode>(N);
370    ID.AddInteger(LD->getAddressingMode());
371    ID.AddInteger(LD->getExtensionType());
372    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
373    ID.AddPointer(LD->getSrcValue());
374    ID.AddInteger(LD->getSrcValueOffset());
375    ID.AddInteger(LD->getAlignment());
376    ID.AddInteger(LD->isVolatile());
377    break;
378  }
379  case ISD::STORE: {
380    StoreSDNode *ST = cast<StoreSDNode>(N);
381    ID.AddInteger(ST->getAddressingMode());
382    ID.AddInteger(ST->isTruncatingStore());
383    ID.AddInteger((unsigned int)(ST->getStoredVT()));
384    ID.AddPointer(ST->getSrcValue());
385    ID.AddInteger(ST->getSrcValueOffset());
386    ID.AddInteger(ST->getAlignment());
387    ID.AddInteger(ST->isVolatile());
388    break;
389  }
390  }
391}
392
393//===----------------------------------------------------------------------===//
394//                              SelectionDAG Class
395//===----------------------------------------------------------------------===//
396
397/// RemoveDeadNodes - This method deletes all unreachable nodes in the
398/// SelectionDAG.
399void SelectionDAG::RemoveDeadNodes() {
400  // Create a dummy node (which is not added to allnodes), that adds a reference
401  // to the root node, preventing it from being deleted.
402  HandleSDNode Dummy(getRoot());
403
404  SmallVector<SDNode*, 128> DeadNodes;
405
406  // Add all obviously-dead nodes to the DeadNodes worklist.
407  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
408    if (I->use_empty())
409      DeadNodes.push_back(I);
410
411  // Process the worklist, deleting the nodes and adding their uses to the
412  // worklist.
413  while (!DeadNodes.empty()) {
414    SDNode *N = DeadNodes.back();
415    DeadNodes.pop_back();
416
417    // Take the node out of the appropriate CSE map.
418    RemoveNodeFromCSEMaps(N);
419
420    // Next, brutally remove the operand list.  This is safe to do, as there are
421    // no cycles in the graph.
422    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
423      SDNode *Operand = I->Val;
424      Operand->removeUser(N);
425
426      // Now that we removed this operand, see if there are no uses of it left.
427      if (Operand->use_empty())
428        DeadNodes.push_back(Operand);
429    }
430    if (N->OperandsNeedDelete)
431      delete[] N->OperandList;
432    N->OperandList = 0;
433    N->NumOperands = 0;
434
435    // Finally, remove N itself.
436    AllNodes.erase(N);
437  }
438
439  // If the root changed (e.g. it was a dead load, update the root).
440  setRoot(Dummy.getValue());
441}
442
443void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
444  SmallVector<SDNode*, 16> DeadNodes;
445  DeadNodes.push_back(N);
446
447  // Process the worklist, deleting the nodes and adding their uses to the
448  // worklist.
449  while (!DeadNodes.empty()) {
450    SDNode *N = DeadNodes.back();
451    DeadNodes.pop_back();
452
453    // Take the node out of the appropriate CSE map.
454    RemoveNodeFromCSEMaps(N);
455
456    // Next, brutally remove the operand list.  This is safe to do, as there are
457    // no cycles in the graph.
458    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
459      SDNode *Operand = I->Val;
460      Operand->removeUser(N);
461
462      // Now that we removed this operand, see if there are no uses of it left.
463      if (Operand->use_empty())
464        DeadNodes.push_back(Operand);
465    }
466    if (N->OperandsNeedDelete)
467      delete[] N->OperandList;
468    N->OperandList = 0;
469    N->NumOperands = 0;
470
471    // Finally, remove N itself.
472    Deleted.push_back(N);
473    AllNodes.erase(N);
474  }
475}
476
477void SelectionDAG::DeleteNode(SDNode *N) {
478  assert(N->use_empty() && "Cannot delete a node that is not dead!");
479
480  // First take this out of the appropriate CSE map.
481  RemoveNodeFromCSEMaps(N);
482
483  // Finally, remove uses due to operands of this node, remove from the
484  // AllNodes list, and delete the node.
485  DeleteNodeNotInCSEMaps(N);
486}
487
488void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
489
490  // Remove it from the AllNodes list.
491  AllNodes.remove(N);
492
493  // Drop all of the operands and decrement used nodes use counts.
494  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
495    I->Val->removeUser(N);
496  if (N->OperandsNeedDelete)
497    delete[] N->OperandList;
498  N->OperandList = 0;
499  N->NumOperands = 0;
500
501  delete N;
502}
503
504/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
505/// correspond to it.  This is useful when we're about to delete or repurpose
506/// the node.  We don't want future request for structurally identical nodes
507/// to return N anymore.
508void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
509  bool Erased = false;
510  switch (N->getOpcode()) {
511  case ISD::HANDLENODE: return;  // noop.
512  case ISD::STRING:
513    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
514    break;
515  case ISD::CONDCODE:
516    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
517           "Cond code doesn't exist!");
518    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
519    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
520    break;
521  case ISD::ExternalSymbol:
522    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
523    break;
524  case ISD::TargetExternalSymbol:
525    Erased =
526      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
527    break;
528  case ISD::VALUETYPE:
529    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
530    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
531    break;
532  default:
533    // Remove it from the CSE Map.
534    Erased = CSEMap.RemoveNode(N);
535    break;
536  }
537#ifndef NDEBUG
538  // Verify that the node was actually in one of the CSE maps, unless it has a
539  // flag result (which cannot be CSE'd) or is one of the special cases that are
540  // not subject to CSE.
541  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
542      !N->isTargetOpcode()) {
543    N->dump(this);
544    cerr << "\n";
545    assert(0 && "Node is not in map!");
546  }
547#endif
548}
549
550/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
551/// has been taken out and modified in some way.  If the specified node already
552/// exists in the CSE maps, do not modify the maps, but return the existing node
553/// instead.  If it doesn't exist, add it and return null.
554///
555SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
556  assert(N->getNumOperands() && "This is a leaf node!");
557  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
558    return 0;    // Never add these nodes.
559
560  // Check that remaining values produced are not flags.
561  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
562    if (N->getValueType(i) == MVT::Flag)
563      return 0;   // Never CSE anything that produces a flag.
564
565  SDNode *New = CSEMap.GetOrInsertNode(N);
566  if (New != N) return New;  // Node already existed.
567  return 0;
568}
569
570/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
571/// were replaced with those specified.  If this node is never memoized,
572/// return null, otherwise return a pointer to the slot it would take.  If a
573/// node already exists with these operands, the slot will be non-null.
574SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
575                                           void *&InsertPos) {
576  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
577    return 0;    // Never add these nodes.
578
579  // Check that remaining values produced are not flags.
580  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
581    if (N->getValueType(i) == MVT::Flag)
582      return 0;   // Never CSE anything that produces a flag.
583
584  SDOperand Ops[] = { Op };
585  FoldingSetNodeID ID;
586  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
587  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
588}
589
590/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
591/// were replaced with those specified.  If this node is never memoized,
592/// return null, otherwise return a pointer to the slot it would take.  If a
593/// node already exists with these operands, the slot will be non-null.
594SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
595                                           SDOperand Op1, SDOperand Op2,
596                                           void *&InsertPos) {
597  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
598    return 0;    // Never add these nodes.
599
600  // Check that remaining values produced are not flags.
601  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
602    if (N->getValueType(i) == MVT::Flag)
603      return 0;   // Never CSE anything that produces a flag.
604
605  SDOperand Ops[] = { Op1, Op2 };
606  FoldingSetNodeID ID;
607  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
608  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
609}
610
611
612/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
613/// were replaced with those specified.  If this node is never memoized,
614/// return null, otherwise return a pointer to the slot it would take.  If a
615/// node already exists with these operands, the slot will be non-null.
616SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
617                                           const SDOperand *Ops,unsigned NumOps,
618                                           void *&InsertPos) {
619  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
620    return 0;    // Never add these nodes.
621
622  // Check that remaining values produced are not flags.
623  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
624    if (N->getValueType(i) == MVT::Flag)
625      return 0;   // Never CSE anything that produces a flag.
626
627  FoldingSetNodeID ID;
628  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
629
630  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
631    ID.AddInteger(LD->getAddressingMode());
632    ID.AddInteger(LD->getExtensionType());
633    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
634    ID.AddPointer(LD->getSrcValue());
635    ID.AddInteger(LD->getSrcValueOffset());
636    ID.AddInteger(LD->getAlignment());
637    ID.AddInteger(LD->isVolatile());
638  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
639    ID.AddInteger(ST->getAddressingMode());
640    ID.AddInteger(ST->isTruncatingStore());
641    ID.AddInteger((unsigned int)(ST->getStoredVT()));
642    ID.AddPointer(ST->getSrcValue());
643    ID.AddInteger(ST->getSrcValueOffset());
644    ID.AddInteger(ST->getAlignment());
645    ID.AddInteger(ST->isVolatile());
646  }
647
648  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653  while (!AllNodes.empty()) {
654    SDNode *N = AllNodes.begin();
655    N->SetNextInBucket(0);
656    if (N->OperandsNeedDelete)
657      delete [] N->OperandList;
658    N->OperandList = 0;
659    N->NumOperands = 0;
660    AllNodes.pop_front();
661  }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665  if (Op.getValueType() == VT) return Op;
666  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667  return getNode(ISD::AND, Op.getValueType(), Op,
668                 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672  StringSDNode *&N = StringNodes[Val];
673  if (!N) {
674    N = new StringSDNode(Val);
675    AllNodes.push_back(N);
676  }
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
683
684  // Mask out any bits that are not valid for this constant.
685  Val &= MVT::getIntVTBitMask(VT);
686
687  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
688  FoldingSetNodeID ID;
689  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
690  ID.AddInteger(Val);
691  void *IP = 0;
692  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
693    return SDOperand(E, 0);
694  SDNode *N = new ConstantSDNode(isT, Val, VT);
695  CSEMap.InsertNode(N, IP);
696  AllNodes.push_back(N);
697  return SDOperand(N, 0);
698}
699
700SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
701                                      bool isTarget) {
702  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
703
704  MVT::ValueType EltVT =
705    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
706
707  // Do the map lookup using the actual bit pattern for the floating point
708  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
709  // we don't have issues with SNANs.
710  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
713  ID.AddAPFloat(V);
714  void *IP = 0;
715  SDNode *N = NULL;
716  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
717    if (!MVT::isVector(VT))
718      return SDOperand(N, 0);
719  if (!N) {
720    N = new ConstantFPSDNode(isTarget, V, EltVT);
721    CSEMap.InsertNode(N, IP);
722    AllNodes.push_back(N);
723  }
724
725  SDOperand Result(N, 0);
726  if (MVT::isVector(VT)) {
727    SmallVector<SDOperand, 8> Ops;
728    Ops.assign(MVT::getVectorNumElements(VT), Result);
729    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
730  }
731  return Result;
732}
733
734SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
735                                      bool isTarget) {
736  MVT::ValueType EltVT =
737    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
738  if (EltVT==MVT::f32)
739    return getConstantFP(APFloat((float)Val), VT, isTarget);
740  else
741    return getConstantFP(APFloat(Val), VT, isTarget);
742}
743
744SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
745                                         MVT::ValueType VT, int Offset,
746                                         bool isTargetGA) {
747  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
748  unsigned Opc;
749  if (GVar && GVar->isThreadLocal())
750    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
751  else
752    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
753  FoldingSetNodeID ID;
754  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
755  ID.AddPointer(GV);
756  ID.AddInteger(Offset);
757  void *IP = 0;
758  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
759   return SDOperand(E, 0);
760  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
761  CSEMap.InsertNode(N, IP);
762  AllNodes.push_back(N);
763  return SDOperand(N, 0);
764}
765
766SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
767                                      bool isTarget) {
768  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
769  FoldingSetNodeID ID;
770  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
771  ID.AddInteger(FI);
772  void *IP = 0;
773  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
774    return SDOperand(E, 0);
775  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
776  CSEMap.InsertNode(N, IP);
777  AllNodes.push_back(N);
778  return SDOperand(N, 0);
779}
780
781SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
782  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
783  FoldingSetNodeID ID;
784  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
785  ID.AddInteger(JTI);
786  void *IP = 0;
787  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
788    return SDOperand(E, 0);
789  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
790  CSEMap.InsertNode(N, IP);
791  AllNodes.push_back(N);
792  return SDOperand(N, 0);
793}
794
795SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
796                                        unsigned Alignment, int Offset,
797                                        bool isTarget) {
798  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
799  FoldingSetNodeID ID;
800  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
801  ID.AddInteger(Alignment);
802  ID.AddInteger(Offset);
803  ID.AddPointer(C);
804  void *IP = 0;
805  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
806    return SDOperand(E, 0);
807  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
808  CSEMap.InsertNode(N, IP);
809  AllNodes.push_back(N);
810  return SDOperand(N, 0);
811}
812
813
814SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
815                                        MVT::ValueType VT,
816                                        unsigned Alignment, int Offset,
817                                        bool isTarget) {
818  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
819  FoldingSetNodeID ID;
820  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
821  ID.AddInteger(Alignment);
822  ID.AddInteger(Offset);
823  C->AddSelectionDAGCSEId(ID);
824  void *IP = 0;
825  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
826    return SDOperand(E, 0);
827  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
828  CSEMap.InsertNode(N, IP);
829  AllNodes.push_back(N);
830  return SDOperand(N, 0);
831}
832
833
834SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
835  FoldingSetNodeID ID;
836  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
837  ID.AddPointer(MBB);
838  void *IP = 0;
839  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
840    return SDOperand(E, 0);
841  SDNode *N = new BasicBlockSDNode(MBB);
842  CSEMap.InsertNode(N, IP);
843  AllNodes.push_back(N);
844  return SDOperand(N, 0);
845}
846
847SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
848  if ((unsigned)VT >= ValueTypeNodes.size())
849    ValueTypeNodes.resize(VT+1);
850  if (ValueTypeNodes[VT] == 0) {
851    ValueTypeNodes[VT] = new VTSDNode(VT);
852    AllNodes.push_back(ValueTypeNodes[VT]);
853  }
854
855  return SDOperand(ValueTypeNodes[VT], 0);
856}
857
858SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
859  SDNode *&N = ExternalSymbols[Sym];
860  if (N) return SDOperand(N, 0);
861  N = new ExternalSymbolSDNode(false, Sym, VT);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
867                                                MVT::ValueType VT) {
868  SDNode *&N = TargetExternalSymbols[Sym];
869  if (N) return SDOperand(N, 0);
870  N = new ExternalSymbolSDNode(true, Sym, VT);
871  AllNodes.push_back(N);
872  return SDOperand(N, 0);
873}
874
875SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
876  if ((unsigned)Cond >= CondCodeNodes.size())
877    CondCodeNodes.resize(Cond+1);
878
879  if (CondCodeNodes[Cond] == 0) {
880    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
881    AllNodes.push_back(CondCodeNodes[Cond]);
882  }
883  return SDOperand(CondCodeNodes[Cond], 0);
884}
885
886SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
887  FoldingSetNodeID ID;
888  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
889  ID.AddInteger(RegNo);
890  void *IP = 0;
891  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
892    return SDOperand(E, 0);
893  SDNode *N = new RegisterSDNode(RegNo, VT);
894  CSEMap.InsertNode(N, IP);
895  AllNodes.push_back(N);
896  return SDOperand(N, 0);
897}
898
899SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
900  assert((!V || isa<PointerType>(V->getType())) &&
901         "SrcValue is not a pointer?");
902
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
905  ID.AddPointer(V);
906  ID.AddInteger(Offset);
907  void *IP = 0;
908  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
909    return SDOperand(E, 0);
910  SDNode *N = new SrcValueSDNode(V, Offset);
911  CSEMap.InsertNode(N, IP);
912  AllNodes.push_back(N);
913  return SDOperand(N, 0);
914}
915
916SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
917                                  SDOperand N2, ISD::CondCode Cond) {
918  // These setcc operations always fold.
919  switch (Cond) {
920  default: break;
921  case ISD::SETFALSE:
922  case ISD::SETFALSE2: return getConstant(0, VT);
923  case ISD::SETTRUE:
924  case ISD::SETTRUE2:  return getConstant(1, VT);
925
926  case ISD::SETOEQ:
927  case ISD::SETOGT:
928  case ISD::SETOGE:
929  case ISD::SETOLT:
930  case ISD::SETOLE:
931  case ISD::SETONE:
932  case ISD::SETO:
933  case ISD::SETUO:
934  case ISD::SETUEQ:
935  case ISD::SETUNE:
936    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
937    break;
938  }
939
940  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
941    uint64_t C2 = N2C->getValue();
942    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
943      uint64_t C1 = N1C->getValue();
944
945      // Sign extend the operands if required
946      if (ISD::isSignedIntSetCC(Cond)) {
947        C1 = N1C->getSignExtended();
948        C2 = N2C->getSignExtended();
949      }
950
951      switch (Cond) {
952      default: assert(0 && "Unknown integer setcc!");
953      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
954      case ISD::SETNE:  return getConstant(C1 != C2, VT);
955      case ISD::SETULT: return getConstant(C1 <  C2, VT);
956      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
957      case ISD::SETULE: return getConstant(C1 <= C2, VT);
958      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
959      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
960      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
961      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
962      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
963      }
964    }
965  }
966  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
967    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
968      // No compile time operations on this type yet.
969      if (N1C->getValueType(0) == MVT::ppcf128)
970        return SDOperand();
971
972      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
973      switch (Cond) {
974      default: break;
975      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
976                          return getNode(ISD::UNDEF, VT);
977                        // fall through
978      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
979      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
980                          return getNode(ISD::UNDEF, VT);
981                        // fall through
982      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
983                                           R==APFloat::cmpLessThan, VT);
984      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
985                          return getNode(ISD::UNDEF, VT);
986                        // fall through
987      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
988      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
989                          return getNode(ISD::UNDEF, VT);
990                        // fall through
991      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
992      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
993                          return getNode(ISD::UNDEF, VT);
994                        // fall through
995      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
996                                           R==APFloat::cmpEqual, VT);
997      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
998                          return getNode(ISD::UNDEF, VT);
999                        // fall through
1000      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1001                                           R==APFloat::cmpEqual, VT);
1002      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1003      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1004      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1005                                           R==APFloat::cmpEqual, VT);
1006      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1007      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1008                                           R==APFloat::cmpLessThan, VT);
1009      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1010                                           R==APFloat::cmpUnordered, VT);
1011      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1012      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1013      }
1014    } else {
1015      // Ensure that the constant occurs on the RHS.
1016      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1017    }
1018
1019  // Could not fold it.
1020  return SDOperand();
1021}
1022
1023/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1024/// this predicate to simplify operations downstream.  Mask is known to be zero
1025/// for bits that V cannot have.
1026bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1027                                     unsigned Depth) const {
1028  // The masks are not wide enough to represent this type!  Should use APInt.
1029  if (Op.getValueType() == MVT::i128)
1030    return false;
1031
1032  uint64_t KnownZero, KnownOne;
1033  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1034  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1035  return (KnownZero & Mask) == Mask;
1036}
1037
1038/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1039/// known to be either zero or one and return them in the KnownZero/KnownOne
1040/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1041/// processing.
1042void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1043                                     uint64_t &KnownZero, uint64_t &KnownOne,
1044                                     unsigned Depth) const {
1045  KnownZero = KnownOne = 0;   // Don't know anything.
1046  if (Depth == 6 || Mask == 0)
1047    return;  // Limit search depth.
1048
1049  // The masks are not wide enough to represent this type!  Should use APInt.
1050  if (Op.getValueType() == MVT::i128)
1051    return;
1052
1053  uint64_t KnownZero2, KnownOne2;
1054
1055  switch (Op.getOpcode()) {
1056  case ISD::Constant:
1057    // We know all of the bits for a constant!
1058    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1059    KnownZero = ~KnownOne & Mask;
1060    return;
1061  case ISD::AND:
1062    // If either the LHS or the RHS are Zero, the result is zero.
1063    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1064    Mask &= ~KnownZero;
1065    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1066    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1067    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1068
1069    // Output known-1 bits are only known if set in both the LHS & RHS.
1070    KnownOne &= KnownOne2;
1071    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1072    KnownZero |= KnownZero2;
1073    return;
1074  case ISD::OR:
1075    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1076    Mask &= ~KnownOne;
1077    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1078    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1079    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1080
1081    // Output known-0 bits are only known if clear in both the LHS & RHS.
1082    KnownZero &= KnownZero2;
1083    // Output known-1 are known to be set if set in either the LHS | RHS.
1084    KnownOne |= KnownOne2;
1085    return;
1086  case ISD::XOR: {
1087    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1088    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1089    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1090    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1091
1092    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1093    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1094    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1095    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1096    KnownZero = KnownZeroOut;
1097    return;
1098  }
1099  case ISD::SELECT:
1100    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1101    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1102    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1103    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1104
1105    // Only known if known in both the LHS and RHS.
1106    KnownOne &= KnownOne2;
1107    KnownZero &= KnownZero2;
1108    return;
1109  case ISD::SELECT_CC:
1110    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1111    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1112    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1113    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1114
1115    // Only known if known in both the LHS and RHS.
1116    KnownOne &= KnownOne2;
1117    KnownZero &= KnownZero2;
1118    return;
1119  case ISD::SETCC:
1120    // If we know the result of a setcc has the top bits zero, use this info.
1121    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1122      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1123    return;
1124  case ISD::SHL:
1125    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1126    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1127      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1128                        KnownZero, KnownOne, Depth+1);
1129      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1130      KnownZero <<= SA->getValue();
1131      KnownOne  <<= SA->getValue();
1132      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1133    }
1134    return;
1135  case ISD::SRL:
1136    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1137    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1138      MVT::ValueType VT = Op.getValueType();
1139      unsigned ShAmt = SA->getValue();
1140
1141      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1142      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1143                        KnownZero, KnownOne, Depth+1);
1144      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1145      KnownZero &= TypeMask;
1146      KnownOne  &= TypeMask;
1147      KnownZero >>= ShAmt;
1148      KnownOne  >>= ShAmt;
1149
1150      uint64_t HighBits = (1ULL << ShAmt)-1;
1151      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1152      KnownZero |= HighBits;  // High bits known zero.
1153    }
1154    return;
1155  case ISD::SRA:
1156    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1157      MVT::ValueType VT = Op.getValueType();
1158      unsigned ShAmt = SA->getValue();
1159
1160      // Compute the new bits that are at the top now.
1161      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1162
1163      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1164      // If any of the demanded bits are produced by the sign extension, we also
1165      // demand the input sign bit.
1166      uint64_t HighBits = (1ULL << ShAmt)-1;
1167      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1168      if (HighBits & Mask)
1169        InDemandedMask |= MVT::getIntVTSignBit(VT);
1170
1171      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1172                        Depth+1);
1173      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1174      KnownZero &= TypeMask;
1175      KnownOne  &= TypeMask;
1176      KnownZero >>= ShAmt;
1177      KnownOne  >>= ShAmt;
1178
1179      // Handle the sign bits.
1180      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1181      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1182
1183      if (KnownZero & SignBit) {
1184        KnownZero |= HighBits;  // New bits are known zero.
1185      } else if (KnownOne & SignBit) {
1186        KnownOne  |= HighBits;  // New bits are known one.
1187      }
1188    }
1189    return;
1190  case ISD::SIGN_EXTEND_INREG: {
1191    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1192
1193    // Sign extension.  Compute the demanded bits in the result that are not
1194    // present in the input.
1195    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1196
1197    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1198    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1199
1200    // If the sign extended bits are demanded, we know that the sign
1201    // bit is demanded.
1202    if (NewBits)
1203      InputDemandedBits |= InSignBit;
1204
1205    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1206                      KnownZero, KnownOne, Depth+1);
1207    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1208
1209    // If the sign bit of the input is known set or clear, then we know the
1210    // top bits of the result.
1211    if (KnownZero & InSignBit) {          // Input sign bit known clear
1212      KnownZero |= NewBits;
1213      KnownOne  &= ~NewBits;
1214    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1215      KnownOne  |= NewBits;
1216      KnownZero &= ~NewBits;
1217    } else {                              // Input sign bit unknown
1218      KnownZero &= ~NewBits;
1219      KnownOne  &= ~NewBits;
1220    }
1221    return;
1222  }
1223  case ISD::CTTZ:
1224  case ISD::CTLZ:
1225  case ISD::CTPOP: {
1226    MVT::ValueType VT = Op.getValueType();
1227    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1228    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1229    KnownOne  = 0;
1230    return;
1231  }
1232  case ISD::LOAD: {
1233    if (ISD::isZEXTLoad(Op.Val)) {
1234      LoadSDNode *LD = cast<LoadSDNode>(Op);
1235      MVT::ValueType VT = LD->getLoadedVT();
1236      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1237    }
1238    return;
1239  }
1240  case ISD::ZERO_EXTEND: {
1241    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1242    uint64_t NewBits = (~InMask) & Mask;
1243    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1244                      KnownOne, Depth+1);
1245    KnownZero |= NewBits & Mask;
1246    KnownOne  &= ~NewBits;
1247    return;
1248  }
1249  case ISD::SIGN_EXTEND: {
1250    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1251    unsigned InBits    = MVT::getSizeInBits(InVT);
1252    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1253    uint64_t InSignBit = 1ULL << (InBits-1);
1254    uint64_t NewBits   = (~InMask) & Mask;
1255    uint64_t InDemandedBits = Mask & InMask;
1256
1257    // If any of the sign extended bits are demanded, we know that the sign
1258    // bit is demanded.
1259    if (NewBits & Mask)
1260      InDemandedBits |= InSignBit;
1261
1262    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1263                      KnownOne, Depth+1);
1264    // If the sign bit is known zero or one, the  top bits match.
1265    if (KnownZero & InSignBit) {
1266      KnownZero |= NewBits;
1267      KnownOne  &= ~NewBits;
1268    } else if (KnownOne & InSignBit) {
1269      KnownOne  |= NewBits;
1270      KnownZero &= ~NewBits;
1271    } else {   // Otherwise, top bits aren't known.
1272      KnownOne  &= ~NewBits;
1273      KnownZero &= ~NewBits;
1274    }
1275    return;
1276  }
1277  case ISD::ANY_EXTEND: {
1278    MVT::ValueType VT = Op.getOperand(0).getValueType();
1279    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1280                      KnownZero, KnownOne, Depth+1);
1281    return;
1282  }
1283  case ISD::TRUNCATE: {
1284    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1285    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1286    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1287    KnownZero &= OutMask;
1288    KnownOne &= OutMask;
1289    break;
1290  }
1291  case ISD::AssertZext: {
1292    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1293    uint64_t InMask = MVT::getIntVTBitMask(VT);
1294    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1295                      KnownOne, Depth+1);
1296    KnownZero |= (~InMask) & Mask;
1297    return;
1298  }
1299  case ISD::ADD: {
1300    // If either the LHS or the RHS are Zero, the result is zero.
1301    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1302    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1303    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1304    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1305
1306    // Output known-0 bits are known if clear or set in both the low clear bits
1307    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1308    // low 3 bits clear.
1309    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1310                                     CountTrailingZeros_64(~KnownZero2));
1311
1312    KnownZero = (1ULL << KnownZeroOut) - 1;
1313    KnownOne = 0;
1314    return;
1315  }
1316  case ISD::SUB: {
1317    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1318    if (!CLHS) return;
1319
1320    // We know that the top bits of C-X are clear if X contains less bits
1321    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1322    // positive if we can prove that X is >= 0 and < 16.
1323    MVT::ValueType VT = CLHS->getValueType(0);
1324    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1325      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1326      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1327      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1328      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1329
1330      // If all of the MaskV bits are known to be zero, then we know the output
1331      // top bits are zero, because we now know that the output is from [0-C].
1332      if ((KnownZero & MaskV) == MaskV) {
1333        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1334        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1335        KnownOne = 0;   // No one bits known.
1336      } else {
1337        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1338      }
1339    }
1340    return;
1341  }
1342  default:
1343    // Allow the target to implement this method for its nodes.
1344    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1345  case ISD::INTRINSIC_WO_CHAIN:
1346  case ISD::INTRINSIC_W_CHAIN:
1347  case ISD::INTRINSIC_VOID:
1348      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1349    }
1350    return;
1351  }
1352}
1353
1354/// ComputeNumSignBits - Return the number of times the sign bit of the
1355/// register is replicated into the other bits.  We know that at least 1 bit
1356/// is always equal to the sign bit (itself), but other cases can give us
1357/// information.  For example, immediately after an "SRA X, 2", we know that
1358/// the top 3 bits are all equal to each other, so we return 3.
1359unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1360  MVT::ValueType VT = Op.getValueType();
1361  assert(MVT::isInteger(VT) && "Invalid VT!");
1362  unsigned VTBits = MVT::getSizeInBits(VT);
1363  unsigned Tmp, Tmp2;
1364
1365  if (Depth == 6)
1366    return 1;  // Limit search depth.
1367
1368  switch (Op.getOpcode()) {
1369  default: break;
1370  case ISD::AssertSext:
1371    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1372    return VTBits-Tmp+1;
1373  case ISD::AssertZext:
1374    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1375    return VTBits-Tmp;
1376
1377  case ISD::Constant: {
1378    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1379    // If negative, invert the bits, then look at it.
1380    if (Val & MVT::getIntVTSignBit(VT))
1381      Val = ~Val;
1382
1383    // Shift the bits so they are the leading bits in the int64_t.
1384    Val <<= 64-VTBits;
1385
1386    // Return # leading zeros.  We use 'min' here in case Val was zero before
1387    // shifting.  We don't want to return '64' as for an i32 "0".
1388    return std::min(VTBits, CountLeadingZeros_64(Val));
1389  }
1390
1391  case ISD::SIGN_EXTEND:
1392    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1393    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1394
1395  case ISD::SIGN_EXTEND_INREG:
1396    // Max of the input and what this extends.
1397    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1398    Tmp = VTBits-Tmp+1;
1399
1400    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1401    return std::max(Tmp, Tmp2);
1402
1403  case ISD::SRA:
1404    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1405    // SRA X, C   -> adds C sign bits.
1406    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1407      Tmp += C->getValue();
1408      if (Tmp > VTBits) Tmp = VTBits;
1409    }
1410    return Tmp;
1411  case ISD::SHL:
1412    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1413      // shl destroys sign bits.
1414      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1415      if (C->getValue() >= VTBits ||      // Bad shift.
1416          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1417      return Tmp - C->getValue();
1418    }
1419    break;
1420  case ISD::AND:
1421  case ISD::OR:
1422  case ISD::XOR:    // NOT is handled here.
1423    // Logical binary ops preserve the number of sign bits.
1424    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1425    if (Tmp == 1) return 1;  // Early out.
1426    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1427    return std::min(Tmp, Tmp2);
1428
1429  case ISD::SELECT:
1430    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1431    if (Tmp == 1) return 1;  // Early out.
1432    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1433    return std::min(Tmp, Tmp2);
1434
1435  case ISD::SETCC:
1436    // If setcc returns 0/-1, all bits are sign bits.
1437    if (TLI.getSetCCResultContents() ==
1438        TargetLowering::ZeroOrNegativeOneSetCCResult)
1439      return VTBits;
1440    break;
1441  case ISD::ROTL:
1442  case ISD::ROTR:
1443    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1444      unsigned RotAmt = C->getValue() & (VTBits-1);
1445
1446      // Handle rotate right by N like a rotate left by 32-N.
1447      if (Op.getOpcode() == ISD::ROTR)
1448        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1449
1450      // If we aren't rotating out all of the known-in sign bits, return the
1451      // number that are left.  This handles rotl(sext(x), 1) for example.
1452      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1453      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1454    }
1455    break;
1456  case ISD::ADD:
1457    // Add can have at most one carry bit.  Thus we know that the output
1458    // is, at worst, one more bit than the inputs.
1459    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1460    if (Tmp == 1) return 1;  // Early out.
1461
1462    // Special case decrementing a value (ADD X, -1):
1463    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1464      if (CRHS->isAllOnesValue()) {
1465        uint64_t KnownZero, KnownOne;
1466        uint64_t Mask = MVT::getIntVTBitMask(VT);
1467        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1468
1469        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1470        // sign bits set.
1471        if ((KnownZero|1) == Mask)
1472          return VTBits;
1473
1474        // If we are subtracting one from a positive number, there is no carry
1475        // out of the result.
1476        if (KnownZero & MVT::getIntVTSignBit(VT))
1477          return Tmp;
1478      }
1479
1480    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1481    if (Tmp2 == 1) return 1;
1482      return std::min(Tmp, Tmp2)-1;
1483    break;
1484
1485  case ISD::SUB:
1486    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1487    if (Tmp2 == 1) return 1;
1488
1489    // Handle NEG.
1490    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1491      if (CLHS->getValue() == 0) {
1492        uint64_t KnownZero, KnownOne;
1493        uint64_t Mask = MVT::getIntVTBitMask(VT);
1494        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1495        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1496        // sign bits set.
1497        if ((KnownZero|1) == Mask)
1498          return VTBits;
1499
1500        // If the input is known to be positive (the sign bit is known clear),
1501        // the output of the NEG has the same number of sign bits as the input.
1502        if (KnownZero & MVT::getIntVTSignBit(VT))
1503          return Tmp2;
1504
1505        // Otherwise, we treat this like a SUB.
1506      }
1507
1508    // Sub can have at most one carry bit.  Thus we know that the output
1509    // is, at worst, one more bit than the inputs.
1510    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1511    if (Tmp == 1) return 1;  // Early out.
1512      return std::min(Tmp, Tmp2)-1;
1513    break;
1514  case ISD::TRUNCATE:
1515    // FIXME: it's tricky to do anything useful for this, but it is an important
1516    // case for targets like X86.
1517    break;
1518  }
1519
1520  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1521  if (Op.getOpcode() == ISD::LOAD) {
1522    LoadSDNode *LD = cast<LoadSDNode>(Op);
1523    unsigned ExtType = LD->getExtensionType();
1524    switch (ExtType) {
1525    default: break;
1526    case ISD::SEXTLOAD:    // '17' bits known
1527      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1528      return VTBits-Tmp+1;
1529    case ISD::ZEXTLOAD:    // '16' bits known
1530      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1531      return VTBits-Tmp;
1532    }
1533  }
1534
1535  // Allow the target to implement this method for its nodes.
1536  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1537      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1538      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1539      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1540    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1541    if (NumBits > 1) return NumBits;
1542  }
1543
1544  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1545  // use this information.
1546  uint64_t KnownZero, KnownOne;
1547  uint64_t Mask = MVT::getIntVTBitMask(VT);
1548  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1549
1550  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1551  if (KnownZero & SignBit) {        // SignBit is 0
1552    Mask = KnownZero;
1553  } else if (KnownOne & SignBit) {  // SignBit is 1;
1554    Mask = KnownOne;
1555  } else {
1556    // Nothing known.
1557    return 1;
1558  }
1559
1560  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1561  // the number of identical bits in the top of the input value.
1562  Mask ^= ~0ULL;
1563  Mask <<= 64-VTBits;
1564  // Return # leading zeros.  We use 'min' here in case Val was zero before
1565  // shifting.  We don't want to return '64' as for an i32 "0".
1566  return std::min(VTBits, CountLeadingZeros_64(Mask));
1567}
1568
1569
1570/// getNode - Gets or creates the specified node.
1571///
1572SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1573  FoldingSetNodeID ID;
1574  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1575  void *IP = 0;
1576  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1577    return SDOperand(E, 0);
1578  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1579  CSEMap.InsertNode(N, IP);
1580
1581  AllNodes.push_back(N);
1582  return SDOperand(N, 0);
1583}
1584
1585SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1586                                SDOperand Operand) {
1587  unsigned Tmp1;
1588  // Constant fold unary operations with an integer constant operand.
1589  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1590    uint64_t Val = C->getValue();
1591    switch (Opcode) {
1592    default: break;
1593    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1594    case ISD::ANY_EXTEND:
1595    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1596    case ISD::TRUNCATE:    return getConstant(Val, VT);
1597    case ISD::UINT_TO_FP:
1598    case ISD::SINT_TO_FP: {
1599      const uint64_t zero[] = {0, 0};
1600      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1601      (void)apf.convertFromZeroExtendedInteger(&Val,
1602                               MVT::getSizeInBits(Operand.getValueType()),
1603                               Opcode==ISD::SINT_TO_FP,
1604                               APFloat::rmNearestTiesToEven);
1605      return getConstantFP(apf, VT);
1606    }
1607    case ISD::BIT_CONVERT:
1608      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1609        return getConstantFP(BitsToFloat(Val), VT);
1610      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1611        return getConstantFP(BitsToDouble(Val), VT);
1612      break;
1613    case ISD::BSWAP:
1614      switch(VT) {
1615      default: assert(0 && "Invalid bswap!"); break;
1616      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1617      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1618      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1619      }
1620      break;
1621    case ISD::CTPOP:
1622      switch(VT) {
1623      default: assert(0 && "Invalid ctpop!"); break;
1624      case MVT::i1: return getConstant(Val != 0, VT);
1625      case MVT::i8:
1626        Tmp1 = (unsigned)Val & 0xFF;
1627        return getConstant(CountPopulation_32(Tmp1), VT);
1628      case MVT::i16:
1629        Tmp1 = (unsigned)Val & 0xFFFF;
1630        return getConstant(CountPopulation_32(Tmp1), VT);
1631      case MVT::i32:
1632        return getConstant(CountPopulation_32((unsigned)Val), VT);
1633      case MVT::i64:
1634        return getConstant(CountPopulation_64(Val), VT);
1635      }
1636    case ISD::CTLZ:
1637      switch(VT) {
1638      default: assert(0 && "Invalid ctlz!"); break;
1639      case MVT::i1: return getConstant(Val == 0, VT);
1640      case MVT::i8:
1641        Tmp1 = (unsigned)Val & 0xFF;
1642        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1643      case MVT::i16:
1644        Tmp1 = (unsigned)Val & 0xFFFF;
1645        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1646      case MVT::i32:
1647        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1648      case MVT::i64:
1649        return getConstant(CountLeadingZeros_64(Val), VT);
1650      }
1651    case ISD::CTTZ:
1652      switch(VT) {
1653      default: assert(0 && "Invalid cttz!"); break;
1654      case MVT::i1: return getConstant(Val == 0, VT);
1655      case MVT::i8:
1656        Tmp1 = (unsigned)Val | 0x100;
1657        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1658      case MVT::i16:
1659        Tmp1 = (unsigned)Val | 0x10000;
1660        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1661      case MVT::i32:
1662        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1663      case MVT::i64:
1664        return getConstant(CountTrailingZeros_64(Val), VT);
1665      }
1666    }
1667  }
1668
1669  // Constant fold unary operations with a floating point constant operand.
1670  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1671    APFloat V = C->getValueAPF();    // make copy
1672    switch (Opcode) {
1673    case ISD::FNEG:
1674      V.changeSign();
1675      return getConstantFP(V, VT);
1676    case ISD::FABS:
1677      V.clearSign();
1678      return getConstantFP(V, VT);
1679    case ISD::FP_ROUND:
1680    case ISD::FP_EXTEND:
1681      // This can return overflow, underflow, or inexact; we don't care.
1682      // FIXME need to be more flexible about rounding mode.
1683      (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1684                       VT==MVT::f64 ? APFloat::IEEEdouble :
1685                       VT==MVT::f80 ? APFloat::x87DoubleExtended :
1686                       VT==MVT::f128 ? APFloat::IEEEquad :
1687                       APFloat::Bogus,
1688                       APFloat::rmNearestTiesToEven);
1689      return getConstantFP(V, VT);
1690    case ISD::FP_TO_SINT:
1691    case ISD::FP_TO_UINT: {
1692      integerPart x;
1693      assert(integerPartWidth >= 64);
1694      // FIXME need to be more flexible about rounding mode.
1695      APFloat::opStatus s = V.convertToInteger(&x, 64U,
1696                            Opcode==ISD::FP_TO_SINT,
1697                            APFloat::rmTowardZero);
1698      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1699        break;
1700      return getConstant(x, VT);
1701    }
1702    case ISD::BIT_CONVERT:
1703      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1704        return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1705      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1706        return getConstant(V.convertToAPInt().getZExtValue(), VT);
1707      break;
1708    }
1709  }
1710
1711  unsigned OpOpcode = Operand.Val->getOpcode();
1712  switch (Opcode) {
1713  case ISD::TokenFactor:
1714    return Operand;         // Factor of one node?  No factor.
1715  case ISD::FP_ROUND:
1716  case ISD::FP_EXTEND:
1717    assert(MVT::isFloatingPoint(VT) &&
1718           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1719    break;
1720  case ISD::SIGN_EXTEND:
1721    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1722           "Invalid SIGN_EXTEND!");
1723    if (Operand.getValueType() == VT) return Operand;   // noop extension
1724    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1725    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1726      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1727    break;
1728  case ISD::ZERO_EXTEND:
1729    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1730           "Invalid ZERO_EXTEND!");
1731    if (Operand.getValueType() == VT) return Operand;   // noop extension
1732    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1733    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1734      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1735    break;
1736  case ISD::ANY_EXTEND:
1737    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1738           "Invalid ANY_EXTEND!");
1739    if (Operand.getValueType() == VT) return Operand;   // noop extension
1740    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1741    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1742      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1743      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1744    break;
1745  case ISD::TRUNCATE:
1746    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1747           "Invalid TRUNCATE!");
1748    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1749    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1750    if (OpOpcode == ISD::TRUNCATE)
1751      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1752    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1753             OpOpcode == ISD::ANY_EXTEND) {
1754      // If the source is smaller than the dest, we still need an extend.
1755      if (Operand.Val->getOperand(0).getValueType() < VT)
1756        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1757      else if (Operand.Val->getOperand(0).getValueType() > VT)
1758        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1759      else
1760        return Operand.Val->getOperand(0);
1761    }
1762    break;
1763  case ISD::BIT_CONVERT:
1764    // Basic sanity checking.
1765    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1766           && "Cannot BIT_CONVERT between types of different sizes!");
1767    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1768    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1769      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1770    if (OpOpcode == ISD::UNDEF)
1771      return getNode(ISD::UNDEF, VT);
1772    break;
1773  case ISD::SCALAR_TO_VECTOR:
1774    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1775           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1776           "Illegal SCALAR_TO_VECTOR node!");
1777    break;
1778  case ISD::FNEG:
1779    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1780      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1781                     Operand.Val->getOperand(0));
1782    if (OpOpcode == ISD::FNEG)  // --X -> X
1783      return Operand.Val->getOperand(0);
1784    break;
1785  case ISD::FABS:
1786    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1787      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1788    break;
1789  }
1790
1791  SDNode *N;
1792  SDVTList VTs = getVTList(VT);
1793  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1794    FoldingSetNodeID ID;
1795    SDOperand Ops[1] = { Operand };
1796    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1797    void *IP = 0;
1798    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1799      return SDOperand(E, 0);
1800    N = new UnarySDNode(Opcode, VTs, Operand);
1801    CSEMap.InsertNode(N, IP);
1802  } else {
1803    N = new UnarySDNode(Opcode, VTs, Operand);
1804  }
1805  AllNodes.push_back(N);
1806  return SDOperand(N, 0);
1807}
1808
1809
1810
1811SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1812                                SDOperand N1, SDOperand N2) {
1813#ifndef NDEBUG
1814  switch (Opcode) {
1815  case ISD::TokenFactor:
1816    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1817           N2.getValueType() == MVT::Other && "Invalid token factor!");
1818    break;
1819  case ISD::AND:
1820  case ISD::OR:
1821  case ISD::XOR:
1822  case ISD::UDIV:
1823  case ISD::UREM:
1824  case ISD::MULHU:
1825  case ISD::MULHS:
1826    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1827    // fall through
1828  case ISD::ADD:
1829  case ISD::SUB:
1830  case ISD::MUL:
1831  case ISD::SDIV:
1832  case ISD::SREM:
1833    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1834    // fall through.
1835  case ISD::FADD:
1836  case ISD::FSUB:
1837  case ISD::FMUL:
1838  case ISD::FDIV:
1839  case ISD::FREM:
1840    assert(N1.getValueType() == N2.getValueType() &&
1841           N1.getValueType() == VT && "Binary operator types must match!");
1842    break;
1843  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1844    assert(N1.getValueType() == VT &&
1845           MVT::isFloatingPoint(N1.getValueType()) &&
1846           MVT::isFloatingPoint(N2.getValueType()) &&
1847           "Invalid FCOPYSIGN!");
1848    break;
1849  case ISD::SHL:
1850  case ISD::SRA:
1851  case ISD::SRL:
1852  case ISD::ROTL:
1853  case ISD::ROTR:
1854    assert(VT == N1.getValueType() &&
1855           "Shift operators return type must be the same as their first arg");
1856    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1857           VT != MVT::i1 && "Shifts only work on integers");
1858    break;
1859  case ISD::FP_ROUND_INREG: {
1860    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1861    assert(VT == N1.getValueType() && "Not an inreg round!");
1862    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1863           "Cannot FP_ROUND_INREG integer types");
1864    assert(EVT <= VT && "Not rounding down!");
1865    break;
1866  }
1867  case ISD::AssertSext:
1868  case ISD::AssertZext:
1869  case ISD::SIGN_EXTEND_INREG: {
1870    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1871    assert(VT == N1.getValueType() && "Not an inreg extend!");
1872    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1873           "Cannot *_EXTEND_INREG FP types");
1874    assert(EVT <= VT && "Not extending!");
1875  }
1876
1877  default: break;
1878  }
1879#endif
1880
1881  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1882  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1883  if (N1C) {
1884    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1885      int64_t Val = N1C->getValue();
1886      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1887      Val <<= 64-FromBits;
1888      Val >>= 64-FromBits;
1889      return getConstant(Val, VT);
1890    }
1891
1892    if (N2C) {
1893      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1894      switch (Opcode) {
1895      case ISD::ADD: return getConstant(C1 + C2, VT);
1896      case ISD::SUB: return getConstant(C1 - C2, VT);
1897      case ISD::MUL: return getConstant(C1 * C2, VT);
1898      case ISD::UDIV:
1899        if (C2) return getConstant(C1 / C2, VT);
1900        break;
1901      case ISD::UREM :
1902        if (C2) return getConstant(C1 % C2, VT);
1903        break;
1904      case ISD::SDIV :
1905        if (C2) return getConstant(N1C->getSignExtended() /
1906                                   N2C->getSignExtended(), VT);
1907        break;
1908      case ISD::SREM :
1909        if (C2) return getConstant(N1C->getSignExtended() %
1910                                   N2C->getSignExtended(), VT);
1911        break;
1912      case ISD::AND  : return getConstant(C1 & C2, VT);
1913      case ISD::OR   : return getConstant(C1 | C2, VT);
1914      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1915      case ISD::SHL  : return getConstant(C1 << C2, VT);
1916      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1917      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1918      case ISD::ROTL :
1919        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1920                           VT);
1921      case ISD::ROTR :
1922        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1923                           VT);
1924      default: break;
1925      }
1926    } else {      // Cannonicalize constant to RHS if commutative
1927      if (isCommutativeBinOp(Opcode)) {
1928        std::swap(N1C, N2C);
1929        std::swap(N1, N2);
1930      }
1931    }
1932  }
1933
1934  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1935  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1936  if (N1CFP) {
1937    if (N2CFP) {
1938      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1939      APFloat::opStatus s;
1940      switch (Opcode) {
1941      case ISD::FADD:
1942        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1943        if (s!=APFloat::opInvalidOp)
1944          return getConstantFP(V1, VT);
1945        break;
1946      case ISD::FSUB:
1947        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1948        if (s!=APFloat::opInvalidOp)
1949          return getConstantFP(V1, VT);
1950        break;
1951      case ISD::FMUL:
1952        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1953        if (s!=APFloat::opInvalidOp)
1954          return getConstantFP(V1, VT);
1955        break;
1956      case ISD::FDIV:
1957        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1958        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1959          return getConstantFP(V1, VT);
1960        break;
1961      case ISD::FREM :
1962        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1963        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1964          return getConstantFP(V1, VT);
1965        break;
1966      case ISD::FCOPYSIGN:
1967        V1.copySign(V2);
1968        return getConstantFP(V1, VT);
1969      default: break;
1970      }
1971    } else {      // Cannonicalize constant to RHS if commutative
1972      if (isCommutativeBinOp(Opcode)) {
1973        std::swap(N1CFP, N2CFP);
1974        std::swap(N1, N2);
1975      }
1976    }
1977  }
1978
1979  // Canonicalize an UNDEF to the RHS, even over a constant.
1980  if (N1.getOpcode() == ISD::UNDEF) {
1981    if (isCommutativeBinOp(Opcode)) {
1982      std::swap(N1, N2);
1983    } else {
1984      switch (Opcode) {
1985      case ISD::FP_ROUND_INREG:
1986      case ISD::SIGN_EXTEND_INREG:
1987      case ISD::SUB:
1988      case ISD::FSUB:
1989      case ISD::FDIV:
1990      case ISD::FREM:
1991      case ISD::SRA:
1992        return N1;     // fold op(undef, arg2) -> undef
1993      case ISD::UDIV:
1994      case ISD::SDIV:
1995      case ISD::UREM:
1996      case ISD::SREM:
1997      case ISD::SRL:
1998      case ISD::SHL:
1999        if (!MVT::isVector(VT))
2000          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2001        // For vectors, we can't easily build an all zero vector, just return
2002        // the LHS.
2003        return N2;
2004      }
2005    }
2006  }
2007
2008  // Fold a bunch of operators when the RHS is undef.
2009  if (N2.getOpcode() == ISD::UNDEF) {
2010    switch (Opcode) {
2011    case ISD::ADD:
2012    case ISD::ADDC:
2013    case ISD::ADDE:
2014    case ISD::SUB:
2015    case ISD::FADD:
2016    case ISD::FSUB:
2017    case ISD::FMUL:
2018    case ISD::FDIV:
2019    case ISD::FREM:
2020    case ISD::UDIV:
2021    case ISD::SDIV:
2022    case ISD::UREM:
2023    case ISD::SREM:
2024    case ISD::XOR:
2025      return N2;       // fold op(arg1, undef) -> undef
2026    case ISD::MUL:
2027    case ISD::AND:
2028    case ISD::SRL:
2029    case ISD::SHL:
2030      if (!MVT::isVector(VT))
2031        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2032      // For vectors, we can't easily build an all zero vector, just return
2033      // the LHS.
2034      return N1;
2035    case ISD::OR:
2036      if (!MVT::isVector(VT))
2037        return getConstant(MVT::getIntVTBitMask(VT), VT);
2038      // For vectors, we can't easily build an all one vector, just return
2039      // the LHS.
2040      return N1;
2041    case ISD::SRA:
2042      return N1;
2043    }
2044  }
2045
2046  // Fold operations.
2047  switch (Opcode) {
2048  case ISD::TokenFactor:
2049    // Fold trivial token factors.
2050    if (N1.getOpcode() == ISD::EntryToken) return N2;
2051    if (N2.getOpcode() == ISD::EntryToken) return N1;
2052    break;
2053
2054  case ISD::AND:
2055    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2056    // worth handling here.
2057    if (N2C && N2C->getValue() == 0)
2058      return N2;
2059    break;
2060  case ISD::OR:
2061  case ISD::XOR:
2062    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2063    // worth handling here.
2064    if (N2C && N2C->getValue() == 0)
2065      return N1;
2066    break;
2067  case ISD::FP_ROUND_INREG:
2068    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2069    break;
2070  case ISD::SIGN_EXTEND_INREG: {
2071    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2072    if (EVT == VT) return N1;  // Not actually extending
2073    break;
2074  }
2075  case ISD::EXTRACT_VECTOR_ELT:
2076    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2077
2078    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2079    // expanding copies of large vectors from registers.
2080    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2081        N1.getNumOperands() > 0) {
2082      unsigned Factor =
2083        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2084      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2085                     N1.getOperand(N2C->getValue() / Factor),
2086                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2087    }
2088
2089    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2090    // expanding large vector constants.
2091    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2092      return N1.getOperand(N2C->getValue());
2093
2094    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2095    // operations are lowered to scalars.
2096    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2097      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2098        if (IEC == N2C)
2099          return N1.getOperand(1);
2100        else
2101          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2102      }
2103    break;
2104  case ISD::EXTRACT_ELEMENT:
2105    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2106
2107    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2108    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2109    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2110    if (N1.getOpcode() == ISD::BUILD_PAIR)
2111      return N1.getOperand(N2C->getValue());
2112
2113    // EXTRACT_ELEMENT of a constant int is also very common.
2114    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2115      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2116      return getConstant(C->getValue() >> Shift, VT);
2117    }
2118    break;
2119
2120  // FIXME: figure out how to safely handle things like
2121  // int foo(int x) { return 1 << (x & 255); }
2122  // int bar() { return foo(256); }
2123#if 0
2124  case ISD::SHL:
2125  case ISD::SRL:
2126  case ISD::SRA:
2127    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2128        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2129      return getNode(Opcode, VT, N1, N2.getOperand(0));
2130    else if (N2.getOpcode() == ISD::AND)
2131      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2132        // If the and is only masking out bits that cannot effect the shift,
2133        // eliminate the and.
2134        unsigned NumBits = MVT::getSizeInBits(VT);
2135        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2136          return getNode(Opcode, VT, N1, N2.getOperand(0));
2137      }
2138    break;
2139#endif
2140  }
2141
2142  // Memoize this node if possible.
2143  SDNode *N;
2144  SDVTList VTs = getVTList(VT);
2145  if (VT != MVT::Flag) {
2146    SDOperand Ops[] = { N1, N2 };
2147    FoldingSetNodeID ID;
2148    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2149    void *IP = 0;
2150    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2151      return SDOperand(E, 0);
2152    N = new BinarySDNode(Opcode, VTs, N1, N2);
2153    CSEMap.InsertNode(N, IP);
2154  } else {
2155    N = new BinarySDNode(Opcode, VTs, N1, N2);
2156  }
2157
2158  AllNodes.push_back(N);
2159  return SDOperand(N, 0);
2160}
2161
2162SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2163                                SDOperand N1, SDOperand N2, SDOperand N3) {
2164  // Perform various simplifications.
2165  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2166  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2167  switch (Opcode) {
2168  case ISD::SETCC: {
2169    // Use FoldSetCC to simplify SETCC's.
2170    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2171    if (Simp.Val) return Simp;
2172    break;
2173  }
2174  case ISD::SELECT:
2175    if (N1C)
2176      if (N1C->getValue())
2177        return N2;             // select true, X, Y -> X
2178      else
2179        return N3;             // select false, X, Y -> Y
2180
2181    if (N2 == N3) return N2;   // select C, X, X -> X
2182    break;
2183  case ISD::BRCOND:
2184    if (N2C)
2185      if (N2C->getValue()) // Unconditional branch
2186        return getNode(ISD::BR, MVT::Other, N1, N3);
2187      else
2188        return N1;         // Never-taken branch
2189    break;
2190  case ISD::VECTOR_SHUFFLE:
2191    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2192           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2193           N3.getOpcode() == ISD::BUILD_VECTOR &&
2194           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2195           "Illegal VECTOR_SHUFFLE node!");
2196    break;
2197  case ISD::BIT_CONVERT:
2198    // Fold bit_convert nodes from a type to themselves.
2199    if (N1.getValueType() == VT)
2200      return N1;
2201    break;
2202  }
2203
2204  // Memoize node if it doesn't produce a flag.
2205  SDNode *N;
2206  SDVTList VTs = getVTList(VT);
2207  if (VT != MVT::Flag) {
2208    SDOperand Ops[] = { N1, N2, N3 };
2209    FoldingSetNodeID ID;
2210    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2211    void *IP = 0;
2212    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2213      return SDOperand(E, 0);
2214    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2215    CSEMap.InsertNode(N, IP);
2216  } else {
2217    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2218  }
2219  AllNodes.push_back(N);
2220  return SDOperand(N, 0);
2221}
2222
2223SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2224                                SDOperand N1, SDOperand N2, SDOperand N3,
2225                                SDOperand N4) {
2226  SDOperand Ops[] = { N1, N2, N3, N4 };
2227  return getNode(Opcode, VT, Ops, 4);
2228}
2229
2230SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2231                                SDOperand N1, SDOperand N2, SDOperand N3,
2232                                SDOperand N4, SDOperand N5) {
2233  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2234  return getNode(Opcode, VT, Ops, 5);
2235}
2236
2237SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2238                                SDOperand Chain, SDOperand Ptr,
2239                                const Value *SV, int SVOffset,
2240                                bool isVolatile, unsigned Alignment) {
2241  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2242    const Type *Ty = 0;
2243    if (VT != MVT::iPTR) {
2244      Ty = MVT::getTypeForValueType(VT);
2245    } else if (SV) {
2246      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2247      assert(PT && "Value for load must be a pointer");
2248      Ty = PT->getElementType();
2249    }
2250    assert(Ty && "Could not get type information for load");
2251    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2252  }
2253  SDVTList VTs = getVTList(VT, MVT::Other);
2254  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2255  SDOperand Ops[] = { Chain, Ptr, Undef };
2256  FoldingSetNodeID ID;
2257  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2258  ID.AddInteger(ISD::UNINDEXED);
2259  ID.AddInteger(ISD::NON_EXTLOAD);
2260  ID.AddInteger((unsigned int)VT);
2261  ID.AddPointer(SV);
2262  ID.AddInteger(SVOffset);
2263  ID.AddInteger(Alignment);
2264  ID.AddInteger(isVolatile);
2265  void *IP = 0;
2266  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2267    return SDOperand(E, 0);
2268  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2269                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2270                             isVolatile);
2271  CSEMap.InsertNode(N, IP);
2272  AllNodes.push_back(N);
2273  return SDOperand(N, 0);
2274}
2275
2276SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2277                                   SDOperand Chain, SDOperand Ptr,
2278                                   const Value *SV,
2279                                   int SVOffset, MVT::ValueType EVT,
2280                                   bool isVolatile, unsigned Alignment) {
2281  // If they are asking for an extending load from/to the same thing, return a
2282  // normal load.
2283  if (VT == EVT)
2284    ExtType = ISD::NON_EXTLOAD;
2285
2286  if (MVT::isVector(VT))
2287    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2288  else
2289    assert(EVT < VT && "Should only be an extending load, not truncating!");
2290  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2291         "Cannot sign/zero extend a FP/Vector load!");
2292  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2293         "Cannot convert from FP to Int or Int -> FP!");
2294
2295  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2296    const Type *Ty = 0;
2297    if (VT != MVT::iPTR) {
2298      Ty = MVT::getTypeForValueType(VT);
2299    } else if (SV) {
2300      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2301      assert(PT && "Value for load must be a pointer");
2302      Ty = PT->getElementType();
2303    }
2304    assert(Ty && "Could not get type information for load");
2305    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2306  }
2307  SDVTList VTs = getVTList(VT, MVT::Other);
2308  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2309  SDOperand Ops[] = { Chain, Ptr, Undef };
2310  FoldingSetNodeID ID;
2311  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2312  ID.AddInteger(ISD::UNINDEXED);
2313  ID.AddInteger(ExtType);
2314  ID.AddInteger((unsigned int)EVT);
2315  ID.AddPointer(SV);
2316  ID.AddInteger(SVOffset);
2317  ID.AddInteger(Alignment);
2318  ID.AddInteger(isVolatile);
2319  void *IP = 0;
2320  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2321    return SDOperand(E, 0);
2322  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2323                             SV, SVOffset, Alignment, isVolatile);
2324  CSEMap.InsertNode(N, IP);
2325  AllNodes.push_back(N);
2326  return SDOperand(N, 0);
2327}
2328
2329SDOperand
2330SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2331                             SDOperand Offset, ISD::MemIndexedMode AM) {
2332  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2333  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2334         "Load is already a indexed load!");
2335  MVT::ValueType VT = OrigLoad.getValueType();
2336  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2337  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2338  FoldingSetNodeID ID;
2339  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2340  ID.AddInteger(AM);
2341  ID.AddInteger(LD->getExtensionType());
2342  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2343  ID.AddPointer(LD->getSrcValue());
2344  ID.AddInteger(LD->getSrcValueOffset());
2345  ID.AddInteger(LD->getAlignment());
2346  ID.AddInteger(LD->isVolatile());
2347  void *IP = 0;
2348  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2349    return SDOperand(E, 0);
2350  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2351                             LD->getExtensionType(), LD->getLoadedVT(),
2352                             LD->getSrcValue(), LD->getSrcValueOffset(),
2353                             LD->getAlignment(), LD->isVolatile());
2354  CSEMap.InsertNode(N, IP);
2355  AllNodes.push_back(N);
2356  return SDOperand(N, 0);
2357}
2358
2359SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2360                                 SDOperand Ptr, const Value *SV, int SVOffset,
2361                                 bool isVolatile, unsigned Alignment) {
2362  MVT::ValueType VT = Val.getValueType();
2363
2364  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2365    const Type *Ty = 0;
2366    if (VT != MVT::iPTR) {
2367      Ty = MVT::getTypeForValueType(VT);
2368    } else if (SV) {
2369      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2370      assert(PT && "Value for store must be a pointer");
2371      Ty = PT->getElementType();
2372    }
2373    assert(Ty && "Could not get type information for store");
2374    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2375  }
2376  SDVTList VTs = getVTList(MVT::Other);
2377  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2378  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2379  FoldingSetNodeID ID;
2380  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2381  ID.AddInteger(ISD::UNINDEXED);
2382  ID.AddInteger(false);
2383  ID.AddInteger((unsigned int)VT);
2384  ID.AddPointer(SV);
2385  ID.AddInteger(SVOffset);
2386  ID.AddInteger(Alignment);
2387  ID.AddInteger(isVolatile);
2388  void *IP = 0;
2389  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2390    return SDOperand(E, 0);
2391  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2392                              VT, SV, SVOffset, Alignment, isVolatile);
2393  CSEMap.InsertNode(N, IP);
2394  AllNodes.push_back(N);
2395  return SDOperand(N, 0);
2396}
2397
2398SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2399                                      SDOperand Ptr, const Value *SV,
2400                                      int SVOffset, MVT::ValueType SVT,
2401                                      bool isVolatile, unsigned Alignment) {
2402  MVT::ValueType VT = Val.getValueType();
2403  bool isTrunc = VT != SVT;
2404
2405  assert(VT > SVT && "Not a truncation?");
2406  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2407         "Can't do FP-INT conversion!");
2408
2409  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2410    const Type *Ty = 0;
2411    if (VT != MVT::iPTR) {
2412      Ty = MVT::getTypeForValueType(VT);
2413    } else if (SV) {
2414      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2415      assert(PT && "Value for store must be a pointer");
2416      Ty = PT->getElementType();
2417    }
2418    assert(Ty && "Could not get type information for store");
2419    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2420  }
2421  SDVTList VTs = getVTList(MVT::Other);
2422  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2423  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2424  FoldingSetNodeID ID;
2425  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2426  ID.AddInteger(ISD::UNINDEXED);
2427  ID.AddInteger(isTrunc);
2428  ID.AddInteger((unsigned int)SVT);
2429  ID.AddPointer(SV);
2430  ID.AddInteger(SVOffset);
2431  ID.AddInteger(Alignment);
2432  ID.AddInteger(isVolatile);
2433  void *IP = 0;
2434  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2435    return SDOperand(E, 0);
2436  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2437                              SVT, SV, SVOffset, Alignment, isVolatile);
2438  CSEMap.InsertNode(N, IP);
2439  AllNodes.push_back(N);
2440  return SDOperand(N, 0);
2441}
2442
2443SDOperand
2444SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2445                              SDOperand Offset, ISD::MemIndexedMode AM) {
2446  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2447  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2448         "Store is already a indexed store!");
2449  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2450  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2451  FoldingSetNodeID ID;
2452  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2453  ID.AddInteger(AM);
2454  ID.AddInteger(ST->isTruncatingStore());
2455  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2456  ID.AddPointer(ST->getSrcValue());
2457  ID.AddInteger(ST->getSrcValueOffset());
2458  ID.AddInteger(ST->getAlignment());
2459  ID.AddInteger(ST->isVolatile());
2460  void *IP = 0;
2461  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2462    return SDOperand(E, 0);
2463  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2464                              ST->isTruncatingStore(), ST->getStoredVT(),
2465                              ST->getSrcValue(), ST->getSrcValueOffset(),
2466                              ST->getAlignment(), ST->isVolatile());
2467  CSEMap.InsertNode(N, IP);
2468  AllNodes.push_back(N);
2469  return SDOperand(N, 0);
2470}
2471
2472SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2473                                 SDOperand Chain, SDOperand Ptr,
2474                                 SDOperand SV) {
2475  SDOperand Ops[] = { Chain, Ptr, SV };
2476  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2477}
2478
2479SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2480                                const SDOperand *Ops, unsigned NumOps) {
2481  switch (NumOps) {
2482  case 0: return getNode(Opcode, VT);
2483  case 1: return getNode(Opcode, VT, Ops[0]);
2484  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2485  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2486  default: break;
2487  }
2488
2489  switch (Opcode) {
2490  default: break;
2491  case ISD::SELECT_CC: {
2492    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2493    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2494           "LHS and RHS of condition must have same type!");
2495    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2496           "True and False arms of SelectCC must have same type!");
2497    assert(Ops[2].getValueType() == VT &&
2498           "select_cc node must be of same type as true and false value!");
2499    break;
2500  }
2501  case ISD::BR_CC: {
2502    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2503    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2504           "LHS/RHS of comparison should match types!");
2505    break;
2506  }
2507  }
2508
2509  // Memoize nodes.
2510  SDNode *N;
2511  SDVTList VTs = getVTList(VT);
2512  if (VT != MVT::Flag) {
2513    FoldingSetNodeID ID;
2514    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2515    void *IP = 0;
2516    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2517      return SDOperand(E, 0);
2518    N = new SDNode(Opcode, VTs, Ops, NumOps);
2519    CSEMap.InsertNode(N, IP);
2520  } else {
2521    N = new SDNode(Opcode, VTs, Ops, NumOps);
2522  }
2523  AllNodes.push_back(N);
2524  return SDOperand(N, 0);
2525}
2526
2527SDOperand SelectionDAG::getNode(unsigned Opcode,
2528                                std::vector<MVT::ValueType> &ResultTys,
2529                                const SDOperand *Ops, unsigned NumOps) {
2530  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2531                 Ops, NumOps);
2532}
2533
2534SDOperand SelectionDAG::getNode(unsigned Opcode,
2535                                const MVT::ValueType *VTs, unsigned NumVTs,
2536                                const SDOperand *Ops, unsigned NumOps) {
2537  if (NumVTs == 1)
2538    return getNode(Opcode, VTs[0], Ops, NumOps);
2539  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2540}
2541
2542SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2543                                const SDOperand *Ops, unsigned NumOps) {
2544  if (VTList.NumVTs == 1)
2545    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2546
2547  switch (Opcode) {
2548  // FIXME: figure out how to safely handle things like
2549  // int foo(int x) { return 1 << (x & 255); }
2550  // int bar() { return foo(256); }
2551#if 0
2552  case ISD::SRA_PARTS:
2553  case ISD::SRL_PARTS:
2554  case ISD::SHL_PARTS:
2555    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2556        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2557      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2558    else if (N3.getOpcode() == ISD::AND)
2559      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2560        // If the and is only masking out bits that cannot effect the shift,
2561        // eliminate the and.
2562        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2563        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2564          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2565      }
2566    break;
2567#endif
2568  }
2569
2570  // Memoize the node unless it returns a flag.
2571  SDNode *N;
2572  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2573    FoldingSetNodeID ID;
2574    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2575    void *IP = 0;
2576    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2577      return SDOperand(E, 0);
2578    if (NumOps == 1)
2579      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2580    else if (NumOps == 2)
2581      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2582    else if (NumOps == 3)
2583      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2584    else
2585      N = new SDNode(Opcode, VTList, Ops, NumOps);
2586    CSEMap.InsertNode(N, IP);
2587  } else {
2588    if (NumOps == 1)
2589      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2590    else if (NumOps == 2)
2591      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2592    else if (NumOps == 3)
2593      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2594    else
2595      N = new SDNode(Opcode, VTList, Ops, NumOps);
2596  }
2597  AllNodes.push_back(N);
2598  return SDOperand(N, 0);
2599}
2600
2601SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2602  return getNode(Opcode, VTList, 0, 0);
2603}
2604
2605SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2606                                SDOperand N1) {
2607  SDOperand Ops[] = { N1 };
2608  return getNode(Opcode, VTList, Ops, 1);
2609}
2610
2611SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2612                                SDOperand N1, SDOperand N2) {
2613  SDOperand Ops[] = { N1, N2 };
2614  return getNode(Opcode, VTList, Ops, 2);
2615}
2616
2617SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2618                                SDOperand N1, SDOperand N2, SDOperand N3) {
2619  SDOperand Ops[] = { N1, N2, N3 };
2620  return getNode(Opcode, VTList, Ops, 3);
2621}
2622
2623SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2624                                SDOperand N1, SDOperand N2, SDOperand N3,
2625                                SDOperand N4) {
2626  SDOperand Ops[] = { N1, N2, N3, N4 };
2627  return getNode(Opcode, VTList, Ops, 4);
2628}
2629
2630SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2631                                SDOperand N1, SDOperand N2, SDOperand N3,
2632                                SDOperand N4, SDOperand N5) {
2633  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2634  return getNode(Opcode, VTList, Ops, 5);
2635}
2636
2637SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2638  if (!MVT::isExtendedVT(VT))
2639    return makeVTList(SDNode::getValueTypeList(VT), 1);
2640
2641  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2642       E = VTList.end(); I != E; ++I) {
2643    if (I->size() == 1 && (*I)[0] == VT)
2644      return makeVTList(&(*I)[0], 1);
2645  }
2646  std::vector<MVT::ValueType> V;
2647  V.push_back(VT);
2648  VTList.push_front(V);
2649  return makeVTList(&(*VTList.begin())[0], 1);
2650}
2651
2652SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2653  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2654       E = VTList.end(); I != E; ++I) {
2655    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2656      return makeVTList(&(*I)[0], 2);
2657  }
2658  std::vector<MVT::ValueType> V;
2659  V.push_back(VT1);
2660  V.push_back(VT2);
2661  VTList.push_front(V);
2662  return makeVTList(&(*VTList.begin())[0], 2);
2663}
2664SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2665                                 MVT::ValueType VT3) {
2666  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2667       E = VTList.end(); I != E; ++I) {
2668    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2669        (*I)[2] == VT3)
2670      return makeVTList(&(*I)[0], 3);
2671  }
2672  std::vector<MVT::ValueType> V;
2673  V.push_back(VT1);
2674  V.push_back(VT2);
2675  V.push_back(VT3);
2676  VTList.push_front(V);
2677  return makeVTList(&(*VTList.begin())[0], 3);
2678}
2679
2680SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2681  switch (NumVTs) {
2682    case 0: assert(0 && "Cannot have nodes without results!");
2683    case 1: return getVTList(VTs[0]);
2684    case 2: return getVTList(VTs[0], VTs[1]);
2685    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2686    default: break;
2687  }
2688
2689  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2690       E = VTList.end(); I != E; ++I) {
2691    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2692
2693    bool NoMatch = false;
2694    for (unsigned i = 2; i != NumVTs; ++i)
2695      if (VTs[i] != (*I)[i]) {
2696        NoMatch = true;
2697        break;
2698      }
2699    if (!NoMatch)
2700      return makeVTList(&*I->begin(), NumVTs);
2701  }
2702
2703  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2704  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2705}
2706
2707
2708/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2709/// specified operands.  If the resultant node already exists in the DAG,
2710/// this does not modify the specified node, instead it returns the node that
2711/// already exists.  If the resultant node does not exist in the DAG, the
2712/// input node is returned.  As a degenerate case, if you specify the same
2713/// input operands as the node already has, the input node is returned.
2714SDOperand SelectionDAG::
2715UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2716  SDNode *N = InN.Val;
2717  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2718
2719  // Check to see if there is no change.
2720  if (Op == N->getOperand(0)) return InN;
2721
2722  // See if the modified node already exists.
2723  void *InsertPos = 0;
2724  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2725    return SDOperand(Existing, InN.ResNo);
2726
2727  // Nope it doesn't.  Remove the node from it's current place in the maps.
2728  if (InsertPos)
2729    RemoveNodeFromCSEMaps(N);
2730
2731  // Now we update the operands.
2732  N->OperandList[0].Val->removeUser(N);
2733  Op.Val->addUser(N);
2734  N->OperandList[0] = Op;
2735
2736  // If this gets put into a CSE map, add it.
2737  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2738  return InN;
2739}
2740
2741SDOperand SelectionDAG::
2742UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2743  SDNode *N = InN.Val;
2744  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2745
2746  // Check to see if there is no change.
2747  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2748    return InN;   // No operands changed, just return the input node.
2749
2750  // See if the modified node already exists.
2751  void *InsertPos = 0;
2752  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2753    return SDOperand(Existing, InN.ResNo);
2754
2755  // Nope it doesn't.  Remove the node from it's current place in the maps.
2756  if (InsertPos)
2757    RemoveNodeFromCSEMaps(N);
2758
2759  // Now we update the operands.
2760  if (N->OperandList[0] != Op1) {
2761    N->OperandList[0].Val->removeUser(N);
2762    Op1.Val->addUser(N);
2763    N->OperandList[0] = Op1;
2764  }
2765  if (N->OperandList[1] != Op2) {
2766    N->OperandList[1].Val->removeUser(N);
2767    Op2.Val->addUser(N);
2768    N->OperandList[1] = Op2;
2769  }
2770
2771  // If this gets put into a CSE map, add it.
2772  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2773  return InN;
2774}
2775
2776SDOperand SelectionDAG::
2777UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2778  SDOperand Ops[] = { Op1, Op2, Op3 };
2779  return UpdateNodeOperands(N, Ops, 3);
2780}
2781
2782SDOperand SelectionDAG::
2783UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2784                   SDOperand Op3, SDOperand Op4) {
2785  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2786  return UpdateNodeOperands(N, Ops, 4);
2787}
2788
2789SDOperand SelectionDAG::
2790UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2791                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2792  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2793  return UpdateNodeOperands(N, Ops, 5);
2794}
2795
2796
2797SDOperand SelectionDAG::
2798UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2799  SDNode *N = InN.Val;
2800  assert(N->getNumOperands() == NumOps &&
2801         "Update with wrong number of operands");
2802
2803  // Check to see if there is no change.
2804  bool AnyChange = false;
2805  for (unsigned i = 0; i != NumOps; ++i) {
2806    if (Ops[i] != N->getOperand(i)) {
2807      AnyChange = true;
2808      break;
2809    }
2810  }
2811
2812  // No operands changed, just return the input node.
2813  if (!AnyChange) return InN;
2814
2815  // See if the modified node already exists.
2816  void *InsertPos = 0;
2817  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2818    return SDOperand(Existing, InN.ResNo);
2819
2820  // Nope it doesn't.  Remove the node from it's current place in the maps.
2821  if (InsertPos)
2822    RemoveNodeFromCSEMaps(N);
2823
2824  // Now we update the operands.
2825  for (unsigned i = 0; i != NumOps; ++i) {
2826    if (N->OperandList[i] != Ops[i]) {
2827      N->OperandList[i].Val->removeUser(N);
2828      Ops[i].Val->addUser(N);
2829      N->OperandList[i] = Ops[i];
2830    }
2831  }
2832
2833  // If this gets put into a CSE map, add it.
2834  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2835  return InN;
2836}
2837
2838
2839/// MorphNodeTo - This frees the operands of the current node, resets the
2840/// opcode, types, and operands to the specified value.  This should only be
2841/// used by the SelectionDAG class.
2842void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2843                         const SDOperand *Ops, unsigned NumOps) {
2844  NodeType = Opc;
2845  ValueList = L.VTs;
2846  NumValues = L.NumVTs;
2847
2848  // Clear the operands list, updating used nodes to remove this from their
2849  // use list.
2850  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2851    I->Val->removeUser(this);
2852
2853  // If NumOps is larger than the # of operands we currently have, reallocate
2854  // the operand list.
2855  if (NumOps > NumOperands) {
2856    if (OperandsNeedDelete)
2857      delete [] OperandList;
2858    OperandList = new SDOperand[NumOps];
2859    OperandsNeedDelete = true;
2860  }
2861
2862  // Assign the new operands.
2863  NumOperands = NumOps;
2864
2865  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2866    OperandList[i] = Ops[i];
2867    SDNode *N = OperandList[i].Val;
2868    N->Uses.push_back(this);
2869  }
2870}
2871
2872/// SelectNodeTo - These are used for target selectors to *mutate* the
2873/// specified node to have the specified return type, Target opcode, and
2874/// operands.  Note that target opcodes are stored as
2875/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2876///
2877/// Note that SelectNodeTo returns the resultant node.  If there is already a
2878/// node of the specified opcode and operands, it returns that node instead of
2879/// the current one.
2880SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2881                                   MVT::ValueType VT) {
2882  SDVTList VTs = getVTList(VT);
2883  FoldingSetNodeID ID;
2884  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2885  void *IP = 0;
2886  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2887    return ON;
2888
2889  RemoveNodeFromCSEMaps(N);
2890
2891  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2892
2893  CSEMap.InsertNode(N, IP);
2894  return N;
2895}
2896
2897SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2898                                   MVT::ValueType VT, SDOperand Op1) {
2899  // If an identical node already exists, use it.
2900  SDVTList VTs = getVTList(VT);
2901  SDOperand Ops[] = { Op1 };
2902
2903  FoldingSetNodeID ID;
2904  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2905  void *IP = 0;
2906  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2907    return ON;
2908
2909  RemoveNodeFromCSEMaps(N);
2910  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2911  CSEMap.InsertNode(N, IP);
2912  return N;
2913}
2914
2915SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2916                                   MVT::ValueType VT, SDOperand Op1,
2917                                   SDOperand Op2) {
2918  // If an identical node already exists, use it.
2919  SDVTList VTs = getVTList(VT);
2920  SDOperand Ops[] = { Op1, Op2 };
2921
2922  FoldingSetNodeID ID;
2923  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2924  void *IP = 0;
2925  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2926    return ON;
2927
2928  RemoveNodeFromCSEMaps(N);
2929
2930  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2931
2932  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2933  return N;
2934}
2935
2936SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2937                                   MVT::ValueType VT, SDOperand Op1,
2938                                   SDOperand Op2, SDOperand Op3) {
2939  // If an identical node already exists, use it.
2940  SDVTList VTs = getVTList(VT);
2941  SDOperand Ops[] = { Op1, Op2, Op3 };
2942  FoldingSetNodeID ID;
2943  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2944  void *IP = 0;
2945  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2946    return ON;
2947
2948  RemoveNodeFromCSEMaps(N);
2949
2950  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2951
2952  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2953  return N;
2954}
2955
2956SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2957                                   MVT::ValueType VT, const SDOperand *Ops,
2958                                   unsigned NumOps) {
2959  // If an identical node already exists, use it.
2960  SDVTList VTs = getVTList(VT);
2961  FoldingSetNodeID ID;
2962  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2963  void *IP = 0;
2964  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2965    return ON;
2966
2967  RemoveNodeFromCSEMaps(N);
2968  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2969
2970  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2971  return N;
2972}
2973
2974SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2975                                   MVT::ValueType VT1, MVT::ValueType VT2,
2976                                   SDOperand Op1, SDOperand Op2) {
2977  SDVTList VTs = getVTList(VT1, VT2);
2978  FoldingSetNodeID ID;
2979  SDOperand Ops[] = { Op1, Op2 };
2980  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2981  void *IP = 0;
2982  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2983    return ON;
2984
2985  RemoveNodeFromCSEMaps(N);
2986  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2987  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2988  return N;
2989}
2990
2991SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2992                                   MVT::ValueType VT1, MVT::ValueType VT2,
2993                                   SDOperand Op1, SDOperand Op2,
2994                                   SDOperand Op3) {
2995  // If an identical node already exists, use it.
2996  SDVTList VTs = getVTList(VT1, VT2);
2997  SDOperand Ops[] = { Op1, Op2, Op3 };
2998  FoldingSetNodeID ID;
2999  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3000  void *IP = 0;
3001  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3002    return ON;
3003
3004  RemoveNodeFromCSEMaps(N);
3005
3006  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3007  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3008  return N;
3009}
3010
3011
3012/// getTargetNode - These are used for target selectors to create a new node
3013/// with specified return type(s), target opcode, and operands.
3014///
3015/// Note that getTargetNode returns the resultant node.  If there is already a
3016/// node of the specified opcode and operands, it returns that node instead of
3017/// the current one.
3018SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3019  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3020}
3021SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3022                                    SDOperand Op1) {
3023  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3024}
3025SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3026                                    SDOperand Op1, SDOperand Op2) {
3027  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3028}
3029SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3030                                    SDOperand Op1, SDOperand Op2,
3031                                    SDOperand Op3) {
3032  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3033}
3034SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3035                                    const SDOperand *Ops, unsigned NumOps) {
3036  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3037}
3038SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3039                                    MVT::ValueType VT2) {
3040  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3041  SDOperand Op;
3042  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3043}
3044SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3045                                    MVT::ValueType VT2, SDOperand Op1) {
3046  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3047  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3048}
3049SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3050                                    MVT::ValueType VT2, SDOperand Op1,
3051                                    SDOperand Op2) {
3052  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3053  SDOperand Ops[] = { Op1, Op2 };
3054  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3055}
3056SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3057                                    MVT::ValueType VT2, SDOperand Op1,
3058                                    SDOperand Op2, SDOperand Op3) {
3059  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3060  SDOperand Ops[] = { Op1, Op2, Op3 };
3061  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3062}
3063SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3064                                    MVT::ValueType VT2,
3065                                    const SDOperand *Ops, unsigned NumOps) {
3066  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3067  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3068}
3069SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3070                                    MVT::ValueType VT2, MVT::ValueType VT3,
3071                                    SDOperand Op1, SDOperand Op2) {
3072  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3073  SDOperand Ops[] = { Op1, Op2 };
3074  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3075}
3076SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3077                                    MVT::ValueType VT2, MVT::ValueType VT3,
3078                                    SDOperand Op1, SDOperand Op2,
3079                                    SDOperand Op3) {
3080  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3081  SDOperand Ops[] = { Op1, Op2, Op3 };
3082  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3083}
3084SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3085                                    MVT::ValueType VT2, MVT::ValueType VT3,
3086                                    const SDOperand *Ops, unsigned NumOps) {
3087  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3088  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3089}
3090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3091                                    MVT::ValueType VT2, MVT::ValueType VT3,
3092                                    MVT::ValueType VT4,
3093                                    const SDOperand *Ops, unsigned NumOps) {
3094  std::vector<MVT::ValueType> VTList;
3095  VTList.push_back(VT1);
3096  VTList.push_back(VT2);
3097  VTList.push_back(VT3);
3098  VTList.push_back(VT4);
3099  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3100  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3101}
3102SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3103                                    std::vector<MVT::ValueType> &ResultTys,
3104                                    const SDOperand *Ops, unsigned NumOps) {
3105  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3106  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3107                 Ops, NumOps).Val;
3108}
3109
3110/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3111/// This can cause recursive merging of nodes in the DAG.
3112///
3113/// This version assumes From/To have a single result value.
3114///
3115void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3116                                      std::vector<SDNode*> *Deleted) {
3117  SDNode *From = FromN.Val, *To = ToN.Val;
3118  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3119         "Cannot replace with this method!");
3120  assert(From != To && "Cannot replace uses of with self");
3121
3122  while (!From->use_empty()) {
3123    // Process users until they are all gone.
3124    SDNode *U = *From->use_begin();
3125
3126    // This node is about to morph, remove its old self from the CSE maps.
3127    RemoveNodeFromCSEMaps(U);
3128
3129    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3130         I != E; ++I)
3131      if (I->Val == From) {
3132        From->removeUser(U);
3133        I->Val = To;
3134        To->addUser(U);
3135      }
3136
3137    // Now that we have modified U, add it back to the CSE maps.  If it already
3138    // exists there, recursively merge the results together.
3139    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3140      ReplaceAllUsesWith(U, Existing, Deleted);
3141      // U is now dead.
3142      if (Deleted) Deleted->push_back(U);
3143      DeleteNodeNotInCSEMaps(U);
3144    }
3145  }
3146}
3147
3148/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3149/// This can cause recursive merging of nodes in the DAG.
3150///
3151/// This version assumes From/To have matching types and numbers of result
3152/// values.
3153///
3154void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3155                                      std::vector<SDNode*> *Deleted) {
3156  assert(From != To && "Cannot replace uses of with self");
3157  assert(From->getNumValues() == To->getNumValues() &&
3158         "Cannot use this version of ReplaceAllUsesWith!");
3159  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3160    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3161    return;
3162  }
3163
3164  while (!From->use_empty()) {
3165    // Process users until they are all gone.
3166    SDNode *U = *From->use_begin();
3167
3168    // This node is about to morph, remove its old self from the CSE maps.
3169    RemoveNodeFromCSEMaps(U);
3170
3171    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3172         I != E; ++I)
3173      if (I->Val == From) {
3174        From->removeUser(U);
3175        I->Val = To;
3176        To->addUser(U);
3177      }
3178
3179    // Now that we have modified U, add it back to the CSE maps.  If it already
3180    // exists there, recursively merge the results together.
3181    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3182      ReplaceAllUsesWith(U, Existing, Deleted);
3183      // U is now dead.
3184      if (Deleted) Deleted->push_back(U);
3185      DeleteNodeNotInCSEMaps(U);
3186    }
3187  }
3188}
3189
3190/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3191/// This can cause recursive merging of nodes in the DAG.
3192///
3193/// This version can replace From with any result values.  To must match the
3194/// number and types of values returned by From.
3195void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3196                                      const SDOperand *To,
3197                                      std::vector<SDNode*> *Deleted) {
3198  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3199    // Degenerate case handled above.
3200    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3201    return;
3202  }
3203
3204  while (!From->use_empty()) {
3205    // Process users until they are all gone.
3206    SDNode *U = *From->use_begin();
3207
3208    // This node is about to morph, remove its old self from the CSE maps.
3209    RemoveNodeFromCSEMaps(U);
3210
3211    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3212         I != E; ++I)
3213      if (I->Val == From) {
3214        const SDOperand &ToOp = To[I->ResNo];
3215        From->removeUser(U);
3216        *I = ToOp;
3217        ToOp.Val->addUser(U);
3218      }
3219
3220    // Now that we have modified U, add it back to the CSE maps.  If it already
3221    // exists there, recursively merge the results together.
3222    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3223      ReplaceAllUsesWith(U, Existing, Deleted);
3224      // U is now dead.
3225      if (Deleted) Deleted->push_back(U);
3226      DeleteNodeNotInCSEMaps(U);
3227    }
3228  }
3229}
3230
3231/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3232/// uses of other values produced by From.Val alone.  The Deleted vector is
3233/// handled the same was as for ReplaceAllUsesWith.
3234void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3235                                             std::vector<SDNode*> *Deleted) {
3236  assert(From != To && "Cannot replace a value with itself");
3237  // Handle the simple, trivial, case efficiently.
3238  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3239    ReplaceAllUsesWith(From, To, Deleted);
3240    return;
3241  }
3242
3243  // Get all of the users of From.Val.  We want these in a nice,
3244  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3245  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3246
3247  std::vector<SDNode*> LocalDeletionVector;
3248
3249  // Pick a deletion vector to use.  If the user specified one, use theirs,
3250  // otherwise use a local one.
3251  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3252  while (!Users.empty()) {
3253    // We know that this user uses some value of From.  If it is the right
3254    // value, update it.
3255    SDNode *User = Users.back();
3256    Users.pop_back();
3257
3258    // Scan for an operand that matches From.
3259    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3260    for (; Op != E; ++Op)
3261      if (*Op == From) break;
3262
3263    // If there are no matches, the user must use some other result of From.
3264    if (Op == E) continue;
3265
3266    // Okay, we know this user needs to be updated.  Remove its old self
3267    // from the CSE maps.
3268    RemoveNodeFromCSEMaps(User);
3269
3270    // Update all operands that match "From".
3271    for (; Op != E; ++Op) {
3272      if (*Op == From) {
3273        From.Val->removeUser(User);
3274        *Op = To;
3275        To.Val->addUser(User);
3276      }
3277    }
3278
3279    // Now that we have modified User, add it back to the CSE maps.  If it
3280    // already exists there, recursively merge the results together.
3281    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3282    if (!Existing) continue;  // Continue on to next user.
3283
3284    // If there was already an existing matching node, use ReplaceAllUsesWith
3285    // to replace the dead one with the existing one.  However, this can cause
3286    // recursive merging of other unrelated nodes down the line.  The merging
3287    // can cause deletion of nodes that used the old value.  In this case,
3288    // we have to be certain to remove them from the Users set.
3289    unsigned NumDeleted = DeleteVector->size();
3290    ReplaceAllUsesWith(User, Existing, DeleteVector);
3291
3292    // User is now dead.
3293    DeleteVector->push_back(User);
3294    DeleteNodeNotInCSEMaps(User);
3295
3296    // We have to be careful here, because ReplaceAllUsesWith could have
3297    // deleted a user of From, which means there may be dangling pointers
3298    // in the "Users" setvector.  Scan over the deleted node pointers and
3299    // remove them from the setvector.
3300    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3301      Users.remove((*DeleteVector)[i]);
3302
3303    // If the user doesn't need the set of deleted elements, don't retain them
3304    // to the next loop iteration.
3305    if (Deleted == 0)
3306      LocalDeletionVector.clear();
3307  }
3308}
3309
3310
3311/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3312/// their allnodes order. It returns the maximum id.
3313unsigned SelectionDAG::AssignNodeIds() {
3314  unsigned Id = 0;
3315  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3316    SDNode *N = I;
3317    N->setNodeId(Id++);
3318  }
3319  return Id;
3320}
3321
3322/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3323/// based on their topological order. It returns the maximum id and a vector
3324/// of the SDNodes* in assigned order by reference.
3325unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3326  unsigned DAGSize = AllNodes.size();
3327  std::vector<unsigned> InDegree(DAGSize);
3328  std::vector<SDNode*> Sources;
3329
3330  // Use a two pass approach to avoid using a std::map which is slow.
3331  unsigned Id = 0;
3332  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3333    SDNode *N = I;
3334    N->setNodeId(Id++);
3335    unsigned Degree = N->use_size();
3336    InDegree[N->getNodeId()] = Degree;
3337    if (Degree == 0)
3338      Sources.push_back(N);
3339  }
3340
3341  TopOrder.clear();
3342  while (!Sources.empty()) {
3343    SDNode *N = Sources.back();
3344    Sources.pop_back();
3345    TopOrder.push_back(N);
3346    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3347      SDNode *P = I->Val;
3348      unsigned Degree = --InDegree[P->getNodeId()];
3349      if (Degree == 0)
3350        Sources.push_back(P);
3351    }
3352  }
3353
3354  // Second pass, assign the actual topological order as node ids.
3355  Id = 0;
3356  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3357       TI != TE; ++TI)
3358    (*TI)->setNodeId(Id++);
3359
3360  return Id;
3361}
3362
3363
3364
3365//===----------------------------------------------------------------------===//
3366//                              SDNode Class
3367//===----------------------------------------------------------------------===//
3368
3369// Out-of-line virtual method to give class a home.
3370void SDNode::ANCHOR() {}
3371void UnarySDNode::ANCHOR() {}
3372void BinarySDNode::ANCHOR() {}
3373void TernarySDNode::ANCHOR() {}
3374void HandleSDNode::ANCHOR() {}
3375void StringSDNode::ANCHOR() {}
3376void ConstantSDNode::ANCHOR() {}
3377void ConstantFPSDNode::ANCHOR() {}
3378void GlobalAddressSDNode::ANCHOR() {}
3379void FrameIndexSDNode::ANCHOR() {}
3380void JumpTableSDNode::ANCHOR() {}
3381void ConstantPoolSDNode::ANCHOR() {}
3382void BasicBlockSDNode::ANCHOR() {}
3383void SrcValueSDNode::ANCHOR() {}
3384void RegisterSDNode::ANCHOR() {}
3385void ExternalSymbolSDNode::ANCHOR() {}
3386void CondCodeSDNode::ANCHOR() {}
3387void VTSDNode::ANCHOR() {}
3388void LoadSDNode::ANCHOR() {}
3389void StoreSDNode::ANCHOR() {}
3390
3391HandleSDNode::~HandleSDNode() {
3392  SDVTList VTs = { 0, 0 };
3393  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3394}
3395
3396GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3397                                         MVT::ValueType VT, int o)
3398  : SDNode(isa<GlobalVariable>(GA) &&
3399           cast<GlobalVariable>(GA)->isThreadLocal() ?
3400           // Thread Local
3401           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3402           // Non Thread Local
3403           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3404           getSDVTList(VT)), Offset(o) {
3405  TheGlobal = const_cast<GlobalValue*>(GA);
3406}
3407
3408/// Profile - Gather unique data for the node.
3409///
3410void SDNode::Profile(FoldingSetNodeID &ID) {
3411  AddNodeIDNode(ID, this);
3412}
3413
3414/// getValueTypeList - Return a pointer to the specified value type.
3415///
3416MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3417  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3418  VTs[VT] = VT;
3419  return &VTs[VT];
3420}
3421
3422/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3423/// indicated value.  This method ignores uses of other values defined by this
3424/// operation.
3425bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3426  assert(Value < getNumValues() && "Bad value!");
3427
3428  // If there is only one value, this is easy.
3429  if (getNumValues() == 1)
3430    return use_size() == NUses;
3431  if (use_size() < NUses) return false;
3432
3433  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3434
3435  SmallPtrSet<SDNode*, 32> UsersHandled;
3436
3437  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3438    SDNode *User = *UI;
3439    if (User->getNumOperands() == 1 ||
3440        UsersHandled.insert(User))     // First time we've seen this?
3441      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3442        if (User->getOperand(i) == TheValue) {
3443          if (NUses == 0)
3444            return false;   // too many uses
3445          --NUses;
3446        }
3447  }
3448
3449  // Found exactly the right number of uses?
3450  return NUses == 0;
3451}
3452
3453
3454/// hasAnyUseOfValue - Return true if there are any use of the indicated
3455/// value. This method ignores uses of other values defined by this operation.
3456bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3457  assert(Value < getNumValues() && "Bad value!");
3458
3459  if (use_size() == 0) return false;
3460
3461  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3462
3463  SmallPtrSet<SDNode*, 32> UsersHandled;
3464
3465  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3466    SDNode *User = *UI;
3467    if (User->getNumOperands() == 1 ||
3468        UsersHandled.insert(User))     // First time we've seen this?
3469      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3470        if (User->getOperand(i) == TheValue) {
3471          return true;
3472        }
3473  }
3474
3475  return false;
3476}
3477
3478
3479/// isOnlyUse - Return true if this node is the only use of N.
3480///
3481bool SDNode::isOnlyUse(SDNode *N) const {
3482  bool Seen = false;
3483  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3484    SDNode *User = *I;
3485    if (User == this)
3486      Seen = true;
3487    else
3488      return false;
3489  }
3490
3491  return Seen;
3492}
3493
3494/// isOperand - Return true if this node is an operand of N.
3495///
3496bool SDOperand::isOperand(SDNode *N) const {
3497  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3498    if (*this == N->getOperand(i))
3499      return true;
3500  return false;
3501}
3502
3503bool SDNode::isOperand(SDNode *N) const {
3504  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3505    if (this == N->OperandList[i].Val)
3506      return true;
3507  return false;
3508}
3509
3510static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3511                            SmallPtrSet<SDNode *, 32> &Visited) {
3512  if (found || !Visited.insert(N))
3513    return;
3514
3515  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3516    SDNode *Op = N->getOperand(i).Val;
3517    if (Op == P) {
3518      found = true;
3519      return;
3520    }
3521    findPredecessor(Op, P, found, Visited);
3522  }
3523}
3524
3525/// isPredecessor - Return true if this node is a predecessor of N. This node
3526/// is either an operand of N or it can be reached by recursively traversing
3527/// up the operands.
3528/// NOTE: this is an expensive method. Use it carefully.
3529bool SDNode::isPredecessor(SDNode *N) const {
3530  SmallPtrSet<SDNode *, 32> Visited;
3531  bool found = false;
3532  findPredecessor(N, this, found, Visited);
3533  return found;
3534}
3535
3536uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3537  assert(Num < NumOperands && "Invalid child # of SDNode!");
3538  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3539}
3540
3541std::string SDNode::getOperationName(const SelectionDAG *G) const {
3542  switch (getOpcode()) {
3543  default:
3544    if (getOpcode() < ISD::BUILTIN_OP_END)
3545      return "<<Unknown DAG Node>>";
3546    else {
3547      if (G) {
3548        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3549          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3550            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3551
3552        TargetLowering &TLI = G->getTargetLoweringInfo();
3553        const char *Name =
3554          TLI.getTargetNodeName(getOpcode());
3555        if (Name) return Name;
3556      }
3557
3558      return "<<Unknown Target Node>>";
3559    }
3560
3561  case ISD::PCMARKER:      return "PCMarker";
3562  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3563  case ISD::SRCVALUE:      return "SrcValue";
3564  case ISD::EntryToken:    return "EntryToken";
3565  case ISD::TokenFactor:   return "TokenFactor";
3566  case ISD::AssertSext:    return "AssertSext";
3567  case ISD::AssertZext:    return "AssertZext";
3568
3569  case ISD::STRING:        return "String";
3570  case ISD::BasicBlock:    return "BasicBlock";
3571  case ISD::VALUETYPE:     return "ValueType";
3572  case ISD::Register:      return "Register";
3573
3574  case ISD::Constant:      return "Constant";
3575  case ISD::ConstantFP:    return "ConstantFP";
3576  case ISD::GlobalAddress: return "GlobalAddress";
3577  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3578  case ISD::FrameIndex:    return "FrameIndex";
3579  case ISD::JumpTable:     return "JumpTable";
3580  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3581  case ISD::RETURNADDR: return "RETURNADDR";
3582  case ISD::FRAMEADDR: return "FRAMEADDR";
3583  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3584  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3585  case ISD::EHSELECTION: return "EHSELECTION";
3586  case ISD::EH_RETURN: return "EH_RETURN";
3587  case ISD::ConstantPool:  return "ConstantPool";
3588  case ISD::ExternalSymbol: return "ExternalSymbol";
3589  case ISD::INTRINSIC_WO_CHAIN: {
3590    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3591    return Intrinsic::getName((Intrinsic::ID)IID);
3592  }
3593  case ISD::INTRINSIC_VOID:
3594  case ISD::INTRINSIC_W_CHAIN: {
3595    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3596    return Intrinsic::getName((Intrinsic::ID)IID);
3597  }
3598
3599  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3600  case ISD::TargetConstant: return "TargetConstant";
3601  case ISD::TargetConstantFP:return "TargetConstantFP";
3602  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3603  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3604  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3605  case ISD::TargetJumpTable:  return "TargetJumpTable";
3606  case ISD::TargetConstantPool:  return "TargetConstantPool";
3607  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3608
3609  case ISD::CopyToReg:     return "CopyToReg";
3610  case ISD::CopyFromReg:   return "CopyFromReg";
3611  case ISD::UNDEF:         return "undef";
3612  case ISD::MERGE_VALUES:  return "merge_values";
3613  case ISD::INLINEASM:     return "inlineasm";
3614  case ISD::LABEL:         return "label";
3615  case ISD::HANDLENODE:    return "handlenode";
3616  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3617  case ISD::CALL:          return "call";
3618
3619  // Unary operators
3620  case ISD::FABS:   return "fabs";
3621  case ISD::FNEG:   return "fneg";
3622  case ISD::FSQRT:  return "fsqrt";
3623  case ISD::FSIN:   return "fsin";
3624  case ISD::FCOS:   return "fcos";
3625  case ISD::FPOWI:  return "fpowi";
3626  case ISD::FPOW:   return "fpow";
3627
3628  // Binary operators
3629  case ISD::ADD:    return "add";
3630  case ISD::SUB:    return "sub";
3631  case ISD::MUL:    return "mul";
3632  case ISD::MULHU:  return "mulhu";
3633  case ISD::MULHS:  return "mulhs";
3634  case ISD::SDIV:   return "sdiv";
3635  case ISD::UDIV:   return "udiv";
3636  case ISD::SREM:   return "srem";
3637  case ISD::UREM:   return "urem";
3638  case ISD::SMUL_LOHI:  return "smul_lohi";
3639  case ISD::UMUL_LOHI:  return "umul_lohi";
3640  case ISD::SDIVREM:    return "sdivrem";
3641  case ISD::UDIVREM:    return "divrem";
3642  case ISD::AND:    return "and";
3643  case ISD::OR:     return "or";
3644  case ISD::XOR:    return "xor";
3645  case ISD::SHL:    return "shl";
3646  case ISD::SRA:    return "sra";
3647  case ISD::SRL:    return "srl";
3648  case ISD::ROTL:   return "rotl";
3649  case ISD::ROTR:   return "rotr";
3650  case ISD::FADD:   return "fadd";
3651  case ISD::FSUB:   return "fsub";
3652  case ISD::FMUL:   return "fmul";
3653  case ISD::FDIV:   return "fdiv";
3654  case ISD::FREM:   return "frem";
3655  case ISD::FCOPYSIGN: return "fcopysign";
3656
3657  case ISD::SETCC:       return "setcc";
3658  case ISD::SELECT:      return "select";
3659  case ISD::SELECT_CC:   return "select_cc";
3660  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3661  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3662  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3663  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3664  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3665  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3666  case ISD::CARRY_FALSE:         return "carry_false";
3667  case ISD::ADDC:        return "addc";
3668  case ISD::ADDE:        return "adde";
3669  case ISD::SUBC:        return "subc";
3670  case ISD::SUBE:        return "sube";
3671  case ISD::SHL_PARTS:   return "shl_parts";
3672  case ISD::SRA_PARTS:   return "sra_parts";
3673  case ISD::SRL_PARTS:   return "srl_parts";
3674
3675  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3676  case ISD::INSERT_SUBREG:      return "insert_subreg";
3677
3678  // Conversion operators.
3679  case ISD::SIGN_EXTEND: return "sign_extend";
3680  case ISD::ZERO_EXTEND: return "zero_extend";
3681  case ISD::ANY_EXTEND:  return "any_extend";
3682  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3683  case ISD::TRUNCATE:    return "truncate";
3684  case ISD::FP_ROUND:    return "fp_round";
3685  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3686  case ISD::FP_EXTEND:   return "fp_extend";
3687
3688  case ISD::SINT_TO_FP:  return "sint_to_fp";
3689  case ISD::UINT_TO_FP:  return "uint_to_fp";
3690  case ISD::FP_TO_SINT:  return "fp_to_sint";
3691  case ISD::FP_TO_UINT:  return "fp_to_uint";
3692  case ISD::BIT_CONVERT: return "bit_convert";
3693
3694    // Control flow instructions
3695  case ISD::BR:      return "br";
3696  case ISD::BRIND:   return "brind";
3697  case ISD::BR_JT:   return "br_jt";
3698  case ISD::BRCOND:  return "brcond";
3699  case ISD::BR_CC:   return "br_cc";
3700  case ISD::RET:     return "ret";
3701  case ISD::CALLSEQ_START:  return "callseq_start";
3702  case ISD::CALLSEQ_END:    return "callseq_end";
3703
3704    // Other operators
3705  case ISD::LOAD:               return "load";
3706  case ISD::STORE:              return "store";
3707  case ISD::VAARG:              return "vaarg";
3708  case ISD::VACOPY:             return "vacopy";
3709  case ISD::VAEND:              return "vaend";
3710  case ISD::VASTART:            return "vastart";
3711  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3712  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3713  case ISD::BUILD_PAIR:         return "build_pair";
3714  case ISD::STACKSAVE:          return "stacksave";
3715  case ISD::STACKRESTORE:       return "stackrestore";
3716
3717  // Block memory operations.
3718  case ISD::MEMSET:  return "memset";
3719  case ISD::MEMCPY:  return "memcpy";
3720  case ISD::MEMMOVE: return "memmove";
3721
3722  // Bit manipulation
3723  case ISD::BSWAP:   return "bswap";
3724  case ISD::CTPOP:   return "ctpop";
3725  case ISD::CTTZ:    return "cttz";
3726  case ISD::CTLZ:    return "ctlz";
3727
3728  // Debug info
3729  case ISD::LOCATION: return "location";
3730  case ISD::DEBUG_LOC: return "debug_loc";
3731
3732  // Trampolines
3733  case ISD::TRAMPOLINE: return "trampoline";
3734
3735  case ISD::CONDCODE:
3736    switch (cast<CondCodeSDNode>(this)->get()) {
3737    default: assert(0 && "Unknown setcc condition!");
3738    case ISD::SETOEQ:  return "setoeq";
3739    case ISD::SETOGT:  return "setogt";
3740    case ISD::SETOGE:  return "setoge";
3741    case ISD::SETOLT:  return "setolt";
3742    case ISD::SETOLE:  return "setole";
3743    case ISD::SETONE:  return "setone";
3744
3745    case ISD::SETO:    return "seto";
3746    case ISD::SETUO:   return "setuo";
3747    case ISD::SETUEQ:  return "setue";
3748    case ISD::SETUGT:  return "setugt";
3749    case ISD::SETUGE:  return "setuge";
3750    case ISD::SETULT:  return "setult";
3751    case ISD::SETULE:  return "setule";
3752    case ISD::SETUNE:  return "setune";
3753
3754    case ISD::SETEQ:   return "seteq";
3755    case ISD::SETGT:   return "setgt";
3756    case ISD::SETGE:   return "setge";
3757    case ISD::SETLT:   return "setlt";
3758    case ISD::SETLE:   return "setle";
3759    case ISD::SETNE:   return "setne";
3760    }
3761  }
3762}
3763
3764const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3765  switch (AM) {
3766  default:
3767    return "";
3768  case ISD::PRE_INC:
3769    return "<pre-inc>";
3770  case ISD::PRE_DEC:
3771    return "<pre-dec>";
3772  case ISD::POST_INC:
3773    return "<post-inc>";
3774  case ISD::POST_DEC:
3775    return "<post-dec>";
3776  }
3777}
3778
3779void SDNode::dump() const { dump(0); }
3780void SDNode::dump(const SelectionDAG *G) const {
3781  cerr << (void*)this << ": ";
3782
3783  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3784    if (i) cerr << ",";
3785    if (getValueType(i) == MVT::Other)
3786      cerr << "ch";
3787    else
3788      cerr << MVT::getValueTypeString(getValueType(i));
3789  }
3790  cerr << " = " << getOperationName(G);
3791
3792  cerr << " ";
3793  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3794    if (i) cerr << ", ";
3795    cerr << (void*)getOperand(i).Val;
3796    if (unsigned RN = getOperand(i).ResNo)
3797      cerr << ":" << RN;
3798  }
3799
3800  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3801    cerr << "<" << CSDN->getValue() << ">";
3802  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3803    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3804      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3805    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3806      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3807    else {
3808      cerr << "<APFloat(";
3809      CSDN->getValueAPF().convertToAPInt().dump();
3810      cerr << ")>";
3811    }
3812  } else if (const GlobalAddressSDNode *GADN =
3813             dyn_cast<GlobalAddressSDNode>(this)) {
3814    int offset = GADN->getOffset();
3815    cerr << "<";
3816    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3817    if (offset > 0)
3818      cerr << " + " << offset;
3819    else
3820      cerr << " " << offset;
3821  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3822    cerr << "<" << FIDN->getIndex() << ">";
3823  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3824    cerr << "<" << JTDN->getIndex() << ">";
3825  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3826    int offset = CP->getOffset();
3827    if (CP->isMachineConstantPoolEntry())
3828      cerr << "<" << *CP->getMachineCPVal() << ">";
3829    else
3830      cerr << "<" << *CP->getConstVal() << ">";
3831    if (offset > 0)
3832      cerr << " + " << offset;
3833    else
3834      cerr << " " << offset;
3835  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3836    cerr << "<";
3837    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3838    if (LBB)
3839      cerr << LBB->getName() << " ";
3840    cerr << (const void*)BBDN->getBasicBlock() << ">";
3841  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3842    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3843      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3844    } else {
3845      cerr << " #" << R->getReg();
3846    }
3847  } else if (const ExternalSymbolSDNode *ES =
3848             dyn_cast<ExternalSymbolSDNode>(this)) {
3849    cerr << "'" << ES->getSymbol() << "'";
3850  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3851    if (M->getValue())
3852      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3853    else
3854      cerr << "<null:" << M->getOffset() << ">";
3855  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3856    cerr << ":" << MVT::getValueTypeString(N->getVT());
3857  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3858    bool doExt = true;
3859    switch (LD->getExtensionType()) {
3860    default: doExt = false; break;
3861    case ISD::EXTLOAD:
3862      cerr << " <anyext ";
3863      break;
3864    case ISD::SEXTLOAD:
3865      cerr << " <sext ";
3866      break;
3867    case ISD::ZEXTLOAD:
3868      cerr << " <zext ";
3869      break;
3870    }
3871    if (doExt)
3872      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3873
3874    const char *AM = getIndexedModeName(LD->getAddressingMode());
3875    if (*AM)
3876      cerr << " " << AM;
3877  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3878    if (ST->isTruncatingStore())
3879      cerr << " <trunc "
3880           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3881
3882    const char *AM = getIndexedModeName(ST->getAddressingMode());
3883    if (*AM)
3884      cerr << " " << AM;
3885  }
3886}
3887
3888static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3889  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3890    if (N->getOperand(i).Val->hasOneUse())
3891      DumpNodes(N->getOperand(i).Val, indent+2, G);
3892    else
3893      cerr << "\n" << std::string(indent+2, ' ')
3894           << (void*)N->getOperand(i).Val << ": <multiple use>";
3895
3896
3897  cerr << "\n" << std::string(indent, ' ');
3898  N->dump(G);
3899}
3900
3901void SelectionDAG::dump() const {
3902  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3903  std::vector<const SDNode*> Nodes;
3904  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3905       I != E; ++I)
3906    Nodes.push_back(I);
3907
3908  std::sort(Nodes.begin(), Nodes.end());
3909
3910  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3911    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3912      DumpNodes(Nodes[i], 2, this);
3913  }
3914
3915  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3916
3917  cerr << "\n\n";
3918}
3919
3920const Type *ConstantPoolSDNode::getType() const {
3921  if (isMachineConstantPoolEntry())
3922    return Val.MachineCPVal->getType();
3923  return Val.ConstVal->getType();
3924}
3925