SelectionDAG.cpp revision 041cde26eaf4ef6171ff1a44aeedd08d7a1cba6c
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
49  switch (VT.getSimpleVT()) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT VT,
74                                           const APFloat& Val) {
75  assert(VT.isFloatingPoint() && "Can only convert between FP types");
76
77  // PPC long double cannot be converted to any other type.
78  if (VT == MVT::ppcf128 ||
79      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80    return false;
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  return Val2.convert(*MVTToAPFloatSemantics(VT),
85                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86}
87
88//===----------------------------------------------------------------------===//
89//                              ISD Namespace
90//===----------------------------------------------------------------------===//
91
92/// isBuildVectorAllOnes - Return true if the specified node is a
93/// BUILD_VECTOR where all of the elements are ~0 or undef.
94bool ISD::isBuildVectorAllOnes(const SDNode *N) {
95  // Look through a bit convert.
96  if (N->getOpcode() == ISD::BIT_CONVERT)
97    N = N->getOperand(0).Val;
98
99  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100
101  unsigned i = 0, e = N->getNumOperands();
102
103  // Skip over all of the undef values.
104  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105    ++i;
106
107  // Do not accept an all-undef vector.
108  if (i == e) return false;
109
110  // Do not accept build_vectors that aren't all constants or which have non-~0
111  // elements.
112  SDOperand NotZero = N->getOperand(i);
113  if (isa<ConstantSDNode>(NotZero)) {
114    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115      return false;
116  } else if (isa<ConstantFPSDNode>(NotZero)) {
117    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118                convertToAPInt().isAllOnesValue())
119      return false;
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return TLI.getTargetMachine();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              SDOperandPtr Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->Val);
332    ID.AddInteger(Ops->ResNo);
333  }
334}
335
336static void AddNodeIDNode(FoldingSetNodeID &ID,
337                          unsigned short OpC, SDVTList VTList,
338                          SDOperandPtr OpList, unsigned N) {
339  AddNodeIDOpcode(ID, OpC);
340  AddNodeIDValueTypes(ID, VTList);
341  AddNodeIDOperands(ID, OpList, N);
342}
343
344
345/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
346/// data.
347static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
348  AddNodeIDOpcode(ID, N->getOpcode());
349  // Add the return value info.
350  AddNodeIDValueTypes(ID, N->getVTList());
351  // Add the operand info.
352  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
353
354  // Handle SDNode leafs with special info.
355  switch (N->getOpcode()) {
356  default: break;  // Normal nodes don't need extra info.
357  case ISD::ARG_FLAGS:
358    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
359    break;
360  case ISD::TargetConstant:
361  case ISD::Constant:
362    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
363    break;
364  case ISD::TargetConstantFP:
365  case ISD::ConstantFP: {
366    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
367    break;
368  }
369  case ISD::TargetGlobalAddress:
370  case ISD::GlobalAddress:
371  case ISD::TargetGlobalTLSAddress:
372  case ISD::GlobalTLSAddress: {
373    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
374    ID.AddPointer(GA->getGlobal());
375    ID.AddInteger(GA->getOffset());
376    break;
377  }
378  case ISD::BasicBlock:
379    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380    break;
381  case ISD::Register:
382    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383    break;
384  case ISD::SRCVALUE:
385    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
386    break;
387  case ISD::MEMOPERAND: {
388    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
389    ID.AddPointer(MO.getValue());
390    ID.AddInteger(MO.getFlags());
391    ID.AddInteger(MO.getOffset());
392    ID.AddInteger(MO.getSize());
393    ID.AddInteger(MO.getAlignment());
394    break;
395  }
396  case ISD::FrameIndex:
397  case ISD::TargetFrameIndex:
398    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
399    break;
400  case ISD::JumpTable:
401  case ISD::TargetJumpTable:
402    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
403    break;
404  case ISD::ConstantPool:
405  case ISD::TargetConstantPool: {
406    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
407    ID.AddInteger(CP->getAlignment());
408    ID.AddInteger(CP->getOffset());
409    if (CP->isMachineConstantPoolEntry())
410      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
411    else
412      ID.AddPointer(CP->getConstVal());
413    break;
414  }
415  case ISD::LOAD: {
416    LoadSDNode *LD = cast<LoadSDNode>(N);
417    ID.AddInteger(LD->getAddressingMode());
418    ID.AddInteger(LD->getExtensionType());
419    ID.AddInteger(LD->getMemoryVT().getRawBits());
420    ID.AddInteger(LD->getAlignment());
421    ID.AddInteger(LD->isVolatile());
422    break;
423  }
424  case ISD::STORE: {
425    StoreSDNode *ST = cast<StoreSDNode>(N);
426    ID.AddInteger(ST->getAddressingMode());
427    ID.AddInteger(ST->isTruncatingStore());
428    ID.AddInteger(ST->getMemoryVT().getRawBits());
429    ID.AddInteger(ST->getAlignment());
430    ID.AddInteger(ST->isVolatile());
431    break;
432  }
433  case ISD::ATOMIC_CMP_SWAP:
434  case ISD::ATOMIC_LOAD_ADD:
435  case ISD::ATOMIC_SWAP:
436  case ISD::ATOMIC_LOAD_SUB:
437  case ISD::ATOMIC_LOAD_AND:
438  case ISD::ATOMIC_LOAD_OR:
439  case ISD::ATOMIC_LOAD_XOR:
440  case ISD::ATOMIC_LOAD_NAND:
441  case ISD::ATOMIC_LOAD_MIN:
442  case ISD::ATOMIC_LOAD_MAX:
443  case ISD::ATOMIC_LOAD_UMIN:
444  case ISD::ATOMIC_LOAD_UMAX: {
445    AtomicSDNode *AT = cast<AtomicSDNode>(N);
446    ID.AddInteger(AT->getAlignment());
447    ID.AddInteger(AT->isVolatile());
448    break;
449  }
450  } // end switch (N->getOpcode())
451}
452
453//===----------------------------------------------------------------------===//
454//                              SelectionDAG Class
455//===----------------------------------------------------------------------===//
456
457/// RemoveDeadNodes - This method deletes all unreachable nodes in the
458/// SelectionDAG.
459void SelectionDAG::RemoveDeadNodes() {
460  // Create a dummy node (which is not added to allnodes), that adds a reference
461  // to the root node, preventing it from being deleted.
462  HandleSDNode Dummy(getRoot());
463
464  SmallVector<SDNode*, 128> DeadNodes;
465
466  // Add all obviously-dead nodes to the DeadNodes worklist.
467  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
468    if (I->use_empty())
469      DeadNodes.push_back(I);
470
471  // Process the worklist, deleting the nodes and adding their uses to the
472  // worklist.
473  while (!DeadNodes.empty()) {
474    SDNode *N = DeadNodes.back();
475    DeadNodes.pop_back();
476
477    // Take the node out of the appropriate CSE map.
478    RemoveNodeFromCSEMaps(N);
479
480    // Next, brutally remove the operand list.  This is safe to do, as there are
481    // no cycles in the graph.
482    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
483      SDNode *Operand = I->getVal();
484      Operand->removeUser(std::distance(N->op_begin(), I), N);
485
486      // Now that we removed this operand, see if there are no uses of it left.
487      if (Operand->use_empty())
488        DeadNodes.push_back(Operand);
489    }
490    if (N->OperandsNeedDelete) {
491      delete[] N->OperandList;
492    }
493    N->OperandList = 0;
494    N->NumOperands = 0;
495
496    // Finally, remove N itself.
497    AllNodes.erase(N);
498  }
499
500  // If the root changed (e.g. it was a dead load, update the root).
501  setRoot(Dummy.getValue());
502}
503
504void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
505  SmallVector<SDNode*, 16> DeadNodes;
506  DeadNodes.push_back(N);
507
508  // Process the worklist, deleting the nodes and adding their uses to the
509  // worklist.
510  while (!DeadNodes.empty()) {
511    SDNode *N = DeadNodes.back();
512    DeadNodes.pop_back();
513
514    if (UpdateListener)
515      UpdateListener->NodeDeleted(N, 0);
516
517    // Take the node out of the appropriate CSE map.
518    RemoveNodeFromCSEMaps(N);
519
520    // Next, brutally remove the operand list.  This is safe to do, as there are
521    // no cycles in the graph.
522    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
523      SDNode *Operand = I->getVal();
524      Operand->removeUser(std::distance(N->op_begin(), I), N);
525
526      // Now that we removed this operand, see if there are no uses of it left.
527      if (Operand->use_empty())
528        DeadNodes.push_back(Operand);
529    }
530    if (N->OperandsNeedDelete) {
531      delete[] N->OperandList;
532    }
533    N->OperandList = 0;
534    N->NumOperands = 0;
535
536    // Finally, remove N itself.
537    AllNodes.erase(N);
538  }
539}
540
541void SelectionDAG::DeleteNode(SDNode *N) {
542  assert(N->use_empty() && "Cannot delete a node that is not dead!");
543
544  // First take this out of the appropriate CSE map.
545  RemoveNodeFromCSEMaps(N);
546
547  // Finally, remove uses due to operands of this node, remove from the
548  // AllNodes list, and delete the node.
549  DeleteNodeNotInCSEMaps(N);
550}
551
552void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
553
554  // Remove it from the AllNodes list.
555  AllNodes.remove(N);
556
557  // Drop all of the operands and decrement used nodes use counts.
558  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
559    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
560  if (N->OperandsNeedDelete) {
561    delete[] N->OperandList;
562  }
563  N->OperandList = 0;
564  N->NumOperands = 0;
565
566  delete N;
567}
568
569/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
570/// correspond to it.  This is useful when we're about to delete or repurpose
571/// the node.  We don't want future request for structurally identical nodes
572/// to return N anymore.
573void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
574  bool Erased = false;
575  switch (N->getOpcode()) {
576  case ISD::HANDLENODE: return;  // noop.
577  case ISD::STRING:
578    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
579    break;
580  case ISD::CONDCODE:
581    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
582           "Cond code doesn't exist!");
583    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
584    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
585    break;
586  case ISD::ExternalSymbol:
587    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
588    break;
589  case ISD::TargetExternalSymbol:
590    Erased =
591      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
592    break;
593  case ISD::VALUETYPE: {
594    MVT VT = cast<VTSDNode>(N)->getVT();
595    if (VT.isExtended()) {
596      Erased = ExtendedValueTypeNodes.erase(VT);
597    } else {
598      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
599      ValueTypeNodes[VT.getSimpleVT()] = 0;
600    }
601    break;
602  }
603  default:
604    // Remove it from the CSE Map.
605    Erased = CSEMap.RemoveNode(N);
606    break;
607  }
608#ifndef NDEBUG
609  // Verify that the node was actually in one of the CSE maps, unless it has a
610  // flag result (which cannot be CSE'd) or is one of the special cases that are
611  // not subject to CSE.
612  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
613      !N->isTargetOpcode()) {
614    N->dump(this);
615    cerr << "\n";
616    assert(0 && "Node is not in map!");
617  }
618#endif
619}
620
621/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
622/// has been taken out and modified in some way.  If the specified node already
623/// exists in the CSE maps, do not modify the maps, but return the existing node
624/// instead.  If it doesn't exist, add it and return null.
625///
626SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
627  assert(N->getNumOperands() && "This is a leaf node!");
628  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
629    return 0;    // Never add these nodes.
630
631  // Check that remaining values produced are not flags.
632  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
633    if (N->getValueType(i) == MVT::Flag)
634      return 0;   // Never CSE anything that produces a flag.
635
636  SDNode *New = CSEMap.GetOrInsertNode(N);
637  if (New != N) return New;  // Node already existed.
638  return 0;
639}
640
641/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
642/// were replaced with those specified.  If this node is never memoized,
643/// return null, otherwise return a pointer to the slot it would take.  If a
644/// node already exists with these operands, the slot will be non-null.
645SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
646                                           void *&InsertPos) {
647  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
648    return 0;    // Never add these nodes.
649
650  // Check that remaining values produced are not flags.
651  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
652    if (N->getValueType(i) == MVT::Flag)
653      return 0;   // Never CSE anything that produces a flag.
654
655  SDOperand Ops[] = { Op };
656  FoldingSetNodeID ID;
657  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
658  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
659}
660
661/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
662/// were replaced with those specified.  If this node is never memoized,
663/// return null, otherwise return a pointer to the slot it would take.  If a
664/// node already exists with these operands, the slot will be non-null.
665SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
666                                           SDOperand Op1, SDOperand Op2,
667                                           void *&InsertPos) {
668  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
669    return 0;    // Never add these nodes.
670
671  // Check that remaining values produced are not flags.
672  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
673    if (N->getValueType(i) == MVT::Flag)
674      return 0;   // Never CSE anything that produces a flag.
675
676  SDOperand Ops[] = { Op1, Op2 };
677  FoldingSetNodeID ID;
678  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
679  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
680}
681
682
683/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
684/// were replaced with those specified.  If this node is never memoized,
685/// return null, otherwise return a pointer to the slot it would take.  If a
686/// node already exists with these operands, the slot will be non-null.
687SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
688                                           SDOperandPtr Ops,unsigned NumOps,
689                                           void *&InsertPos) {
690  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
691    return 0;    // Never add these nodes.
692
693  // Check that remaining values produced are not flags.
694  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
695    if (N->getValueType(i) == MVT::Flag)
696      return 0;   // Never CSE anything that produces a flag.
697
698  FoldingSetNodeID ID;
699  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
700
701  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
702    ID.AddInteger(LD->getAddressingMode());
703    ID.AddInteger(LD->getExtensionType());
704    ID.AddInteger(LD->getMemoryVT().getRawBits());
705    ID.AddInteger(LD->getAlignment());
706    ID.AddInteger(LD->isVolatile());
707  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
708    ID.AddInteger(ST->getAddressingMode());
709    ID.AddInteger(ST->isTruncatingStore());
710    ID.AddInteger(ST->getMemoryVT().getRawBits());
711    ID.AddInteger(ST->getAlignment());
712    ID.AddInteger(ST->isVolatile());
713  }
714
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718
719SelectionDAG::~SelectionDAG() {
720  while (!AllNodes.empty()) {
721    SDNode *N = AllNodes.begin();
722    N->SetNextInBucket(0);
723    if (N->OperandsNeedDelete) {
724      delete [] N->OperandList;
725    }
726    N->OperandList = 0;
727    N->NumOperands = 0;
728    AllNodes.pop_front();
729  }
730}
731
732SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT VT) {
733  if (Op.getValueType() == VT) return Op;
734  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
735                                   VT.getSizeInBits());
736  return getNode(ISD::AND, Op.getValueType(), Op,
737                 getConstant(Imm, Op.getValueType()));
738}
739
740SDOperand SelectionDAG::getString(const std::string &Val) {
741  StringSDNode *&N = StringNodes[Val];
742  if (!N) {
743    N = new StringSDNode(Val);
744    AllNodes.push_back(N);
745  }
746  return SDOperand(N, 0);
747}
748
749SDOperand SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
750  MVT EltVT =
751    VT.isVector() ? VT.getVectorElementType() : VT;
752
753  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
754}
755
756SDOperand SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
757  assert(VT.isInteger() && "Cannot create FP integer constant!");
758
759  MVT EltVT =
760    VT.isVector() ? VT.getVectorElementType() : VT;
761
762  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
763         "APInt size does not match type size!");
764
765  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
766  FoldingSetNodeID ID;
767  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
768  ID.Add(Val);
769  void *IP = 0;
770  SDNode *N = NULL;
771  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
772    if (!VT.isVector())
773      return SDOperand(N, 0);
774  if (!N) {
775    N = new ConstantSDNode(isT, Val, EltVT);
776    CSEMap.InsertNode(N, IP);
777    AllNodes.push_back(N);
778  }
779
780  SDOperand Result(N, 0);
781  if (VT.isVector()) {
782    SmallVector<SDOperand, 8> Ops;
783    Ops.assign(VT.getVectorNumElements(), Result);
784    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
785  }
786  return Result;
787}
788
789SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
790  return getConstant(Val, TLI.getPointerTy(), isTarget);
791}
792
793
794SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
795  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
796
797  MVT EltVT =
798    VT.isVector() ? VT.getVectorElementType() : VT;
799
800  // Do the map lookup using the actual bit pattern for the floating point
801  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
802  // we don't have issues with SNANs.
803  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
804  FoldingSetNodeID ID;
805  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
806  ID.Add(V);
807  void *IP = 0;
808  SDNode *N = NULL;
809  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
810    if (!VT.isVector())
811      return SDOperand(N, 0);
812  if (!N) {
813    N = new ConstantFPSDNode(isTarget, V, EltVT);
814    CSEMap.InsertNode(N, IP);
815    AllNodes.push_back(N);
816  }
817
818  SDOperand Result(N, 0);
819  if (VT.isVector()) {
820    SmallVector<SDOperand, 8> Ops;
821    Ops.assign(VT.getVectorNumElements(), Result);
822    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
823  }
824  return Result;
825}
826
827SDOperand SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
828  MVT EltVT =
829    VT.isVector() ? VT.getVectorElementType() : VT;
830  if (EltVT==MVT::f32)
831    return getConstantFP(APFloat((float)Val), VT, isTarget);
832  else
833    return getConstantFP(APFloat(Val), VT, isTarget);
834}
835
836SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
837                                         MVT VT, int Offset,
838                                         bool isTargetGA) {
839  unsigned Opc;
840
841  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
842  if (!GVar) {
843    // If GV is an alias then use the aliasee for determining thread-localness.
844    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
845      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
846  }
847
848  if (GVar && GVar->isThreadLocal())
849    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
850  else
851    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
852
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
855  ID.AddPointer(GV);
856  ID.AddInteger(Offset);
857  void *IP = 0;
858  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
859   return SDOperand(E, 0);
860  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
861  CSEMap.InsertNode(N, IP);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866SDOperand SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
867  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
868  FoldingSetNodeID ID;
869  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
870  ID.AddInteger(FI);
871  void *IP = 0;
872  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
873    return SDOperand(E, 0);
874  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
875  CSEMap.InsertNode(N, IP);
876  AllNodes.push_back(N);
877  return SDOperand(N, 0);
878}
879
880SDOperand SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
881  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
882  FoldingSetNodeID ID;
883  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
884  ID.AddInteger(JTI);
885  void *IP = 0;
886  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
887    return SDOperand(E, 0);
888  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
889  CSEMap.InsertNode(N, IP);
890  AllNodes.push_back(N);
891  return SDOperand(N, 0);
892}
893
894SDOperand SelectionDAG::getConstantPool(Constant *C, MVT VT,
895                                        unsigned Alignment, int Offset,
896                                        bool isTarget) {
897  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
898  FoldingSetNodeID ID;
899  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
900  ID.AddInteger(Alignment);
901  ID.AddInteger(Offset);
902  ID.AddPointer(C);
903  void *IP = 0;
904  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
905    return SDOperand(E, 0);
906  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
907  CSEMap.InsertNode(N, IP);
908  AllNodes.push_back(N);
909  return SDOperand(N, 0);
910}
911
912
913SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
914                                        unsigned Alignment, int Offset,
915                                        bool isTarget) {
916  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
917  FoldingSetNodeID ID;
918  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
919  ID.AddInteger(Alignment);
920  ID.AddInteger(Offset);
921  C->AddSelectionDAGCSEId(ID);
922  void *IP = 0;
923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924    return SDOperand(E, 0);
925  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931
932SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
933  FoldingSetNodeID ID;
934  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
935  ID.AddPointer(MBB);
936  void *IP = 0;
937  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
938    return SDOperand(E, 0);
939  SDNode *N = new BasicBlockSDNode(MBB);
940  CSEMap.InsertNode(N, IP);
941  AllNodes.push_back(N);
942  return SDOperand(N, 0);
943}
944
945SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
946  FoldingSetNodeID ID;
947  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
948  ID.AddInteger(Flags.getRawBits());
949  void *IP = 0;
950  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
951    return SDOperand(E, 0);
952  SDNode *N = new ARG_FLAGSSDNode(Flags);
953  CSEMap.InsertNode(N, IP);
954  AllNodes.push_back(N);
955  return SDOperand(N, 0);
956}
957
958SDOperand SelectionDAG::getValueType(MVT VT) {
959  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
960    ValueTypeNodes.resize(VT.getSimpleVT()+1);
961
962  SDNode *&N = VT.isExtended() ?
963    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
964
965  if (N) return SDOperand(N, 0);
966  N = new VTSDNode(VT);
967  AllNodes.push_back(N);
968  return SDOperand(N, 0);
969}
970
971SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
972  SDNode *&N = ExternalSymbols[Sym];
973  if (N) return SDOperand(N, 0);
974  N = new ExternalSymbolSDNode(false, Sym, VT);
975  AllNodes.push_back(N);
976  return SDOperand(N, 0);
977}
978
979SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
980  SDNode *&N = TargetExternalSymbols[Sym];
981  if (N) return SDOperand(N, 0);
982  N = new ExternalSymbolSDNode(true, Sym, VT);
983  AllNodes.push_back(N);
984  return SDOperand(N, 0);
985}
986
987SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
988  if ((unsigned)Cond >= CondCodeNodes.size())
989    CondCodeNodes.resize(Cond+1);
990
991  if (CondCodeNodes[Cond] == 0) {
992    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
993    AllNodes.push_back(CondCodeNodes[Cond]);
994  }
995  return SDOperand(CondCodeNodes[Cond], 0);
996}
997
998SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
999  FoldingSetNodeID ID;
1000  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
1001  ID.AddInteger(RegNo);
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDOperand(E, 0);
1005  SDNode *N = new RegisterSDNode(RegNo, VT);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDOperand(N, 0);
1009}
1010
1011SDOperand SelectionDAG::getSrcValue(const Value *V) {
1012  assert((!V || isa<PointerType>(V->getType())) &&
1013         "SrcValue is not a pointer?");
1014
1015  FoldingSetNodeID ID;
1016  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1017  ID.AddPointer(V);
1018
1019  void *IP = 0;
1020  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1021    return SDOperand(E, 0);
1022
1023  SDNode *N = new SrcValueSDNode(V);
1024  CSEMap.InsertNode(N, IP);
1025  AllNodes.push_back(N);
1026  return SDOperand(N, 0);
1027}
1028
1029SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1030  const Value *v = MO.getValue();
1031  assert((!v || isa<PointerType>(v->getType())) &&
1032         "SrcValue is not a pointer?");
1033
1034  FoldingSetNodeID ID;
1035  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1036  ID.AddPointer(v);
1037  ID.AddInteger(MO.getFlags());
1038  ID.AddInteger(MO.getOffset());
1039  ID.AddInteger(MO.getSize());
1040  ID.AddInteger(MO.getAlignment());
1041
1042  void *IP = 0;
1043  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1044    return SDOperand(E, 0);
1045
1046  SDNode *N = new MemOperandSDNode(MO);
1047  CSEMap.InsertNode(N, IP);
1048  AllNodes.push_back(N);
1049  return SDOperand(N, 0);
1050}
1051
1052/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1053/// specified value type.
1054SDOperand SelectionDAG::CreateStackTemporary(MVT VT) {
1055  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1056  unsigned ByteSize = VT.getSizeInBits()/8;
1057  const Type *Ty = VT.getTypeForMVT();
1058  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1059  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1060  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1061}
1062
1063
1064SDOperand SelectionDAG::FoldSetCC(MVT VT, SDOperand N1,
1065                                  SDOperand N2, ISD::CondCode Cond) {
1066  // These setcc operations always fold.
1067  switch (Cond) {
1068  default: break;
1069  case ISD::SETFALSE:
1070  case ISD::SETFALSE2: return getConstant(0, VT);
1071  case ISD::SETTRUE:
1072  case ISD::SETTRUE2:  return getConstant(1, VT);
1073
1074  case ISD::SETOEQ:
1075  case ISD::SETOGT:
1076  case ISD::SETOGE:
1077  case ISD::SETOLT:
1078  case ISD::SETOLE:
1079  case ISD::SETONE:
1080  case ISD::SETO:
1081  case ISD::SETUO:
1082  case ISD::SETUEQ:
1083  case ISD::SETUNE:
1084    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1085    break;
1086  }
1087
1088  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1089    const APInt &C2 = N2C->getAPIntValue();
1090    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1091      const APInt &C1 = N1C->getAPIntValue();
1092
1093      switch (Cond) {
1094      default: assert(0 && "Unknown integer setcc!");
1095      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1096      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1097      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1098      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1099      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1100      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1101      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1102      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1103      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1104      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1105      }
1106    }
1107  }
1108  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1109    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1110      // No compile time operations on this type yet.
1111      if (N1C->getValueType(0) == MVT::ppcf128)
1112        return SDOperand();
1113
1114      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1115      switch (Cond) {
1116      default: break;
1117      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1118                          return getNode(ISD::UNDEF, VT);
1119                        // fall through
1120      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1121      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1122                          return getNode(ISD::UNDEF, VT);
1123                        // fall through
1124      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1125                                           R==APFloat::cmpLessThan, VT);
1126      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1127                          return getNode(ISD::UNDEF, VT);
1128                        // fall through
1129      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1130      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1131                          return getNode(ISD::UNDEF, VT);
1132                        // fall through
1133      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1134      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1135                          return getNode(ISD::UNDEF, VT);
1136                        // fall through
1137      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1138                                           R==APFloat::cmpEqual, VT);
1139      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1140                          return getNode(ISD::UNDEF, VT);
1141                        // fall through
1142      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1143                                           R==APFloat::cmpEqual, VT);
1144      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1145      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1146      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1147                                           R==APFloat::cmpEqual, VT);
1148      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1149      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1150                                           R==APFloat::cmpLessThan, VT);
1151      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1152                                           R==APFloat::cmpUnordered, VT);
1153      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1154      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1155      }
1156    } else {
1157      // Ensure that the constant occurs on the RHS.
1158      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1159    }
1160  }
1161
1162  // Could not fold it.
1163  return SDOperand();
1164}
1165
1166/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1167/// use this predicate to simplify operations downstream.
1168bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1169  unsigned BitWidth = Op.getValueSizeInBits();
1170  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1171}
1172
1173/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1174/// this predicate to simplify operations downstream.  Mask is known to be zero
1175/// for bits that V cannot have.
1176bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1177                                     unsigned Depth) const {
1178  APInt KnownZero, KnownOne;
1179  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1180  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1181  return (KnownZero & Mask) == Mask;
1182}
1183
1184/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1185/// known to be either zero or one and return them in the KnownZero/KnownOne
1186/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1187/// processing.
1188void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1189                                     APInt &KnownZero, APInt &KnownOne,
1190                                     unsigned Depth) const {
1191  unsigned BitWidth = Mask.getBitWidth();
1192  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1193         "Mask size mismatches value type size!");
1194
1195  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1196  if (Depth == 6 || Mask == 0)
1197    return;  // Limit search depth.
1198
1199  APInt KnownZero2, KnownOne2;
1200
1201  switch (Op.getOpcode()) {
1202  case ISD::Constant:
1203    // We know all of the bits for a constant!
1204    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1205    KnownZero = ~KnownOne & Mask;
1206    return;
1207  case ISD::AND:
1208    // If either the LHS or the RHS are Zero, the result is zero.
1209    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1210    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1211                      KnownZero2, KnownOne2, Depth+1);
1212    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1213    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1214
1215    // Output known-1 bits are only known if set in both the LHS & RHS.
1216    KnownOne &= KnownOne2;
1217    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1218    KnownZero |= KnownZero2;
1219    return;
1220  case ISD::OR:
1221    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1222    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1223                      KnownZero2, KnownOne2, Depth+1);
1224    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1225    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1226
1227    // Output known-0 bits are only known if clear in both the LHS & RHS.
1228    KnownZero &= KnownZero2;
1229    // Output known-1 are known to be set if set in either the LHS | RHS.
1230    KnownOne |= KnownOne2;
1231    return;
1232  case ISD::XOR: {
1233    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1234    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1235    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1236    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1237
1238    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1239    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1240    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1241    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1242    KnownZero = KnownZeroOut;
1243    return;
1244  }
1245  case ISD::MUL: {
1246    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1247    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1248    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1249    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1250    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1251
1252    // If low bits are zero in either operand, output low known-0 bits.
1253    // Also compute a conserative estimate for high known-0 bits.
1254    // More trickiness is possible, but this is sufficient for the
1255    // interesting case of alignment computation.
1256    KnownOne.clear();
1257    unsigned TrailZ = KnownZero.countTrailingOnes() +
1258                      KnownZero2.countTrailingOnes();
1259    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1260                               KnownZero2.countLeadingOnes(),
1261                               BitWidth) - BitWidth;
1262
1263    TrailZ = std::min(TrailZ, BitWidth);
1264    LeadZ = std::min(LeadZ, BitWidth);
1265    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1266                APInt::getHighBitsSet(BitWidth, LeadZ);
1267    KnownZero &= Mask;
1268    return;
1269  }
1270  case ISD::UDIV: {
1271    // For the purposes of computing leading zeros we can conservatively
1272    // treat a udiv as a logical right shift by the power of 2 known to
1273    // be less than the denominator.
1274    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1275    ComputeMaskedBits(Op.getOperand(0),
1276                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1277    unsigned LeadZ = KnownZero2.countLeadingOnes();
1278
1279    KnownOne2.clear();
1280    KnownZero2.clear();
1281    ComputeMaskedBits(Op.getOperand(1),
1282                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1283    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1284    if (RHSUnknownLeadingOnes != BitWidth)
1285      LeadZ = std::min(BitWidth,
1286                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1287
1288    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1289    return;
1290  }
1291  case ISD::SELECT:
1292    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1293    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1294    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1295    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1296
1297    // Only known if known in both the LHS and RHS.
1298    KnownOne &= KnownOne2;
1299    KnownZero &= KnownZero2;
1300    return;
1301  case ISD::SELECT_CC:
1302    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1303    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1304    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1305    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1306
1307    // Only known if known in both the LHS and RHS.
1308    KnownOne &= KnownOne2;
1309    KnownZero &= KnownZero2;
1310    return;
1311  case ISD::SETCC:
1312    // If we know the result of a setcc has the top bits zero, use this info.
1313    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1314        BitWidth > 1)
1315      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1316    return;
1317  case ISD::SHL:
1318    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1319    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1320      unsigned ShAmt = SA->getValue();
1321
1322      // If the shift count is an invalid immediate, don't do anything.
1323      if (ShAmt >= BitWidth)
1324        return;
1325
1326      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1327                        KnownZero, KnownOne, Depth+1);
1328      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1329      KnownZero <<= ShAmt;
1330      KnownOne  <<= ShAmt;
1331      // low bits known zero.
1332      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1333    }
1334    return;
1335  case ISD::SRL:
1336    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1337    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1338      unsigned ShAmt = SA->getValue();
1339
1340      // If the shift count is an invalid immediate, don't do anything.
1341      if (ShAmt >= BitWidth)
1342        return;
1343
1344      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1345                        KnownZero, KnownOne, Depth+1);
1346      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1347      KnownZero = KnownZero.lshr(ShAmt);
1348      KnownOne  = KnownOne.lshr(ShAmt);
1349
1350      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1351      KnownZero |= HighBits;  // High bits known zero.
1352    }
1353    return;
1354  case ISD::SRA:
1355    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1356      unsigned ShAmt = SA->getValue();
1357
1358      // If the shift count is an invalid immediate, don't do anything.
1359      if (ShAmt >= BitWidth)
1360        return;
1361
1362      APInt InDemandedMask = (Mask << ShAmt);
1363      // If any of the demanded bits are produced by the sign extension, we also
1364      // demand the input sign bit.
1365      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1366      if (HighBits.getBoolValue())
1367        InDemandedMask |= APInt::getSignBit(BitWidth);
1368
1369      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1370                        Depth+1);
1371      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1372      KnownZero = KnownZero.lshr(ShAmt);
1373      KnownOne  = KnownOne.lshr(ShAmt);
1374
1375      // Handle the sign bits.
1376      APInt SignBit = APInt::getSignBit(BitWidth);
1377      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1378
1379      if (KnownZero.intersects(SignBit)) {
1380        KnownZero |= HighBits;  // New bits are known zero.
1381      } else if (KnownOne.intersects(SignBit)) {
1382        KnownOne  |= HighBits;  // New bits are known one.
1383      }
1384    }
1385    return;
1386  case ISD::SIGN_EXTEND_INREG: {
1387    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1388    unsigned EBits = EVT.getSizeInBits();
1389
1390    // Sign extension.  Compute the demanded bits in the result that are not
1391    // present in the input.
1392    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1393
1394    APInt InSignBit = APInt::getSignBit(EBits);
1395    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1396
1397    // If the sign extended bits are demanded, we know that the sign
1398    // bit is demanded.
1399    InSignBit.zext(BitWidth);
1400    if (NewBits.getBoolValue())
1401      InputDemandedBits |= InSignBit;
1402
1403    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1404                      KnownZero, KnownOne, Depth+1);
1405    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1406
1407    // If the sign bit of the input is known set or clear, then we know the
1408    // top bits of the result.
1409    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1410      KnownZero |= NewBits;
1411      KnownOne  &= ~NewBits;
1412    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1413      KnownOne  |= NewBits;
1414      KnownZero &= ~NewBits;
1415    } else {                              // Input sign bit unknown
1416      KnownZero &= ~NewBits;
1417      KnownOne  &= ~NewBits;
1418    }
1419    return;
1420  }
1421  case ISD::CTTZ:
1422  case ISD::CTLZ:
1423  case ISD::CTPOP: {
1424    unsigned LowBits = Log2_32(BitWidth)+1;
1425    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1426    KnownOne.clear();
1427    return;
1428  }
1429  case ISD::LOAD: {
1430    if (ISD::isZEXTLoad(Op.Val)) {
1431      LoadSDNode *LD = cast<LoadSDNode>(Op);
1432      MVT VT = LD->getMemoryVT();
1433      unsigned MemBits = VT.getSizeInBits();
1434      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1435    }
1436    return;
1437  }
1438  case ISD::ZERO_EXTEND: {
1439    MVT InVT = Op.getOperand(0).getValueType();
1440    unsigned InBits = InVT.getSizeInBits();
1441    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1442    APInt InMask    = Mask;
1443    InMask.trunc(InBits);
1444    KnownZero.trunc(InBits);
1445    KnownOne.trunc(InBits);
1446    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1447    KnownZero.zext(BitWidth);
1448    KnownOne.zext(BitWidth);
1449    KnownZero |= NewBits;
1450    return;
1451  }
1452  case ISD::SIGN_EXTEND: {
1453    MVT InVT = Op.getOperand(0).getValueType();
1454    unsigned InBits = InVT.getSizeInBits();
1455    APInt InSignBit = APInt::getSignBit(InBits);
1456    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1457    APInt InMask = Mask;
1458    InMask.trunc(InBits);
1459
1460    // If any of the sign extended bits are demanded, we know that the sign
1461    // bit is demanded. Temporarily set this bit in the mask for our callee.
1462    if (NewBits.getBoolValue())
1463      InMask |= InSignBit;
1464
1465    KnownZero.trunc(InBits);
1466    KnownOne.trunc(InBits);
1467    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1468
1469    // Note if the sign bit is known to be zero or one.
1470    bool SignBitKnownZero = KnownZero.isNegative();
1471    bool SignBitKnownOne  = KnownOne.isNegative();
1472    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1473           "Sign bit can't be known to be both zero and one!");
1474
1475    // If the sign bit wasn't actually demanded by our caller, we don't
1476    // want it set in the KnownZero and KnownOne result values. Reset the
1477    // mask and reapply it to the result values.
1478    InMask = Mask;
1479    InMask.trunc(InBits);
1480    KnownZero &= InMask;
1481    KnownOne  &= InMask;
1482
1483    KnownZero.zext(BitWidth);
1484    KnownOne.zext(BitWidth);
1485
1486    // If the sign bit is known zero or one, the top bits match.
1487    if (SignBitKnownZero)
1488      KnownZero |= NewBits;
1489    else if (SignBitKnownOne)
1490      KnownOne  |= NewBits;
1491    return;
1492  }
1493  case ISD::ANY_EXTEND: {
1494    MVT InVT = Op.getOperand(0).getValueType();
1495    unsigned InBits = InVT.getSizeInBits();
1496    APInt InMask = Mask;
1497    InMask.trunc(InBits);
1498    KnownZero.trunc(InBits);
1499    KnownOne.trunc(InBits);
1500    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1501    KnownZero.zext(BitWidth);
1502    KnownOne.zext(BitWidth);
1503    return;
1504  }
1505  case ISD::TRUNCATE: {
1506    MVT InVT = Op.getOperand(0).getValueType();
1507    unsigned InBits = InVT.getSizeInBits();
1508    APInt InMask = Mask;
1509    InMask.zext(InBits);
1510    KnownZero.zext(InBits);
1511    KnownOne.zext(InBits);
1512    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1513    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514    KnownZero.trunc(BitWidth);
1515    KnownOne.trunc(BitWidth);
1516    break;
1517  }
1518  case ISD::AssertZext: {
1519    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1520    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1521    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1522                      KnownOne, Depth+1);
1523    KnownZero |= (~InMask) & Mask;
1524    return;
1525  }
1526  case ISD::FGETSIGN:
1527    // All bits are zero except the low bit.
1528    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1529    return;
1530
1531  case ISD::SUB: {
1532    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1533      // We know that the top bits of C-X are clear if X contains less bits
1534      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1535      // positive if we can prove that X is >= 0 and < 16.
1536      if (CLHS->getAPIntValue().isNonNegative()) {
1537        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1538        // NLZ can't be BitWidth with no sign bit
1539        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1540        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1541                          Depth+1);
1542
1543        // If all of the MaskV bits are known to be zero, then we know the
1544        // output top bits are zero, because we now know that the output is
1545        // from [0-C].
1546        if ((KnownZero2 & MaskV) == MaskV) {
1547          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1548          // Top bits known zero.
1549          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1550        }
1551      }
1552    }
1553  }
1554  // fall through
1555  case ISD::ADD: {
1556    // Output known-0 bits are known if clear or set in both the low clear bits
1557    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1558    // low 3 bits clear.
1559    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1560    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1561    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1562    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1563
1564    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1565    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1566    KnownZeroOut = std::min(KnownZeroOut,
1567                            KnownZero2.countTrailingOnes());
1568
1569    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1570    return;
1571  }
1572  case ISD::SREM:
1573    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1574      APInt RA = Rem->getAPIntValue();
1575      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1576        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1577        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1578        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1579
1580        // The sign of a remainder is equal to the sign of the first
1581        // operand (zero being positive).
1582        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1583          KnownZero2 |= ~LowBits;
1584        else if (KnownOne2[BitWidth-1])
1585          KnownOne2 |= ~LowBits;
1586
1587        KnownZero |= KnownZero2 & Mask;
1588        KnownOne |= KnownOne2 & Mask;
1589
1590        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1591      }
1592    }
1593    return;
1594  case ISD::UREM: {
1595    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1596      APInt RA = Rem->getAPIntValue();
1597      if (RA.isPowerOf2()) {
1598        APInt LowBits = (RA - 1);
1599        APInt Mask2 = LowBits & Mask;
1600        KnownZero |= ~LowBits & Mask;
1601        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1602        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1603        break;
1604      }
1605    }
1606
1607    // Since the result is less than or equal to either operand, any leading
1608    // zero bits in either operand must also exist in the result.
1609    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1610    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1611                      Depth+1);
1612    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1613                      Depth+1);
1614
1615    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1616                                KnownZero2.countLeadingOnes());
1617    KnownOne.clear();
1618    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1619    return;
1620  }
1621  default:
1622    // Allow the target to implement this method for its nodes.
1623    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1624  case ISD::INTRINSIC_WO_CHAIN:
1625  case ISD::INTRINSIC_W_CHAIN:
1626  case ISD::INTRINSIC_VOID:
1627      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1628    }
1629    return;
1630  }
1631}
1632
1633/// ComputeNumSignBits - Return the number of times the sign bit of the
1634/// register is replicated into the other bits.  We know that at least 1 bit
1635/// is always equal to the sign bit (itself), but other cases can give us
1636/// information.  For example, immediately after an "SRA X, 2", we know that
1637/// the top 3 bits are all equal to each other, so we return 3.
1638unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1639  MVT VT = Op.getValueType();
1640  assert(VT.isInteger() && "Invalid VT!");
1641  unsigned VTBits = VT.getSizeInBits();
1642  unsigned Tmp, Tmp2;
1643  unsigned FirstAnswer = 1;
1644
1645  if (Depth == 6)
1646    return 1;  // Limit search depth.
1647
1648  switch (Op.getOpcode()) {
1649  default: break;
1650  case ISD::AssertSext:
1651    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1652    return VTBits-Tmp+1;
1653  case ISD::AssertZext:
1654    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1655    return VTBits-Tmp;
1656
1657  case ISD::Constant: {
1658    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1659    // If negative, return # leading ones.
1660    if (Val.isNegative())
1661      return Val.countLeadingOnes();
1662
1663    // Return # leading zeros.
1664    return Val.countLeadingZeros();
1665  }
1666
1667  case ISD::SIGN_EXTEND:
1668    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1669    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1670
1671  case ISD::SIGN_EXTEND_INREG:
1672    // Max of the input and what this extends.
1673    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1674    Tmp = VTBits-Tmp+1;
1675
1676    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1677    return std::max(Tmp, Tmp2);
1678
1679  case ISD::SRA:
1680    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1681    // SRA X, C   -> adds C sign bits.
1682    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1683      Tmp += C->getValue();
1684      if (Tmp > VTBits) Tmp = VTBits;
1685    }
1686    return Tmp;
1687  case ISD::SHL:
1688    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1689      // shl destroys sign bits.
1690      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1691      if (C->getValue() >= VTBits ||      // Bad shift.
1692          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1693      return Tmp - C->getValue();
1694    }
1695    break;
1696  case ISD::AND:
1697  case ISD::OR:
1698  case ISD::XOR:    // NOT is handled here.
1699    // Logical binary ops preserve the number of sign bits at the worst.
1700    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1701    if (Tmp != 1) {
1702      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1703      FirstAnswer = std::min(Tmp, Tmp2);
1704      // We computed what we know about the sign bits as our first
1705      // answer. Now proceed to the generic code that uses
1706      // ComputeMaskedBits, and pick whichever answer is better.
1707    }
1708    break;
1709
1710  case ISD::SELECT:
1711    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1712    if (Tmp == 1) return 1;  // Early out.
1713    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1714    return std::min(Tmp, Tmp2);
1715
1716  case ISD::SETCC:
1717    // If setcc returns 0/-1, all bits are sign bits.
1718    if (TLI.getSetCCResultContents() ==
1719        TargetLowering::ZeroOrNegativeOneSetCCResult)
1720      return VTBits;
1721    break;
1722  case ISD::ROTL:
1723  case ISD::ROTR:
1724    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1725      unsigned RotAmt = C->getValue() & (VTBits-1);
1726
1727      // Handle rotate right by N like a rotate left by 32-N.
1728      if (Op.getOpcode() == ISD::ROTR)
1729        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1730
1731      // If we aren't rotating out all of the known-in sign bits, return the
1732      // number that are left.  This handles rotl(sext(x), 1) for example.
1733      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1734      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1735    }
1736    break;
1737  case ISD::ADD:
1738    // Add can have at most one carry bit.  Thus we know that the output
1739    // is, at worst, one more bit than the inputs.
1740    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1741    if (Tmp == 1) return 1;  // Early out.
1742
1743    // Special case decrementing a value (ADD X, -1):
1744    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1745      if (CRHS->isAllOnesValue()) {
1746        APInt KnownZero, KnownOne;
1747        APInt Mask = APInt::getAllOnesValue(VTBits);
1748        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1749
1750        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1751        // sign bits set.
1752        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1753          return VTBits;
1754
1755        // If we are subtracting one from a positive number, there is no carry
1756        // out of the result.
1757        if (KnownZero.isNegative())
1758          return Tmp;
1759      }
1760
1761    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1762    if (Tmp2 == 1) return 1;
1763      return std::min(Tmp, Tmp2)-1;
1764    break;
1765
1766  case ISD::SUB:
1767    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1768    if (Tmp2 == 1) return 1;
1769
1770    // Handle NEG.
1771    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1772      if (CLHS->isNullValue()) {
1773        APInt KnownZero, KnownOne;
1774        APInt Mask = APInt::getAllOnesValue(VTBits);
1775        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1776        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1777        // sign bits set.
1778        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1779          return VTBits;
1780
1781        // If the input is known to be positive (the sign bit is known clear),
1782        // the output of the NEG has the same number of sign bits as the input.
1783        if (KnownZero.isNegative())
1784          return Tmp2;
1785
1786        // Otherwise, we treat this like a SUB.
1787      }
1788
1789    // Sub can have at most one carry bit.  Thus we know that the output
1790    // is, at worst, one more bit than the inputs.
1791    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1792    if (Tmp == 1) return 1;  // Early out.
1793      return std::min(Tmp, Tmp2)-1;
1794    break;
1795  case ISD::TRUNCATE:
1796    // FIXME: it's tricky to do anything useful for this, but it is an important
1797    // case for targets like X86.
1798    break;
1799  }
1800
1801  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1802  if (Op.getOpcode() == ISD::LOAD) {
1803    LoadSDNode *LD = cast<LoadSDNode>(Op);
1804    unsigned ExtType = LD->getExtensionType();
1805    switch (ExtType) {
1806    default: break;
1807    case ISD::SEXTLOAD:    // '17' bits known
1808      Tmp = LD->getMemoryVT().getSizeInBits();
1809      return VTBits-Tmp+1;
1810    case ISD::ZEXTLOAD:    // '16' bits known
1811      Tmp = LD->getMemoryVT().getSizeInBits();
1812      return VTBits-Tmp;
1813    }
1814  }
1815
1816  // Allow the target to implement this method for its nodes.
1817  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1818      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1819      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1820      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1821    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1822    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1823  }
1824
1825  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1826  // use this information.
1827  APInt KnownZero, KnownOne;
1828  APInt Mask = APInt::getAllOnesValue(VTBits);
1829  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1830
1831  if (KnownZero.isNegative()) {        // sign bit is 0
1832    Mask = KnownZero;
1833  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1834    Mask = KnownOne;
1835  } else {
1836    // Nothing known.
1837    return FirstAnswer;
1838  }
1839
1840  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1841  // the number of identical bits in the top of the input value.
1842  Mask = ~Mask;
1843  Mask <<= Mask.getBitWidth()-VTBits;
1844  // Return # leading zeros.  We use 'min' here in case Val was zero before
1845  // shifting.  We don't want to return '64' as for an i32 "0".
1846  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1847}
1848
1849
1850bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1851  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1852  if (!GA) return false;
1853  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1854  if (!GV) return false;
1855  MachineModuleInfo *MMI = getMachineModuleInfo();
1856  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1857}
1858
1859
1860/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1861/// element of the result of the vector shuffle.
1862SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned Idx) {
1863  MVT VT = N->getValueType(0);
1864  SDOperand PermMask = N->getOperand(2);
1865  unsigned NumElems = PermMask.getNumOperands();
1866  SDOperand V = (Idx < NumElems) ? N->getOperand(0) : N->getOperand(1);
1867  Idx %= NumElems;
1868
1869  if (V.getOpcode() == ISD::BIT_CONVERT) {
1870    V = V.getOperand(0);
1871    if (V.getValueType().getVectorNumElements() != NumElems)
1872      return SDOperand();
1873  }
1874  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1875    return (Idx == 0) ? V.getOperand(0)
1876                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1877  if (V.getOpcode() == ISD::BUILD_VECTOR)
1878    return V.getOperand(Idx);
1879  if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
1880    SDOperand Elt = PermMask.getOperand(Idx);
1881    if (Elt.getOpcode() == ISD::UNDEF)
1882      return getNode(ISD::UNDEF, VT.getVectorElementType());
1883    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Elt)->getValue());
1884  }
1885  return SDOperand();
1886}
1887
1888
1889/// getNode - Gets or creates the specified node.
1890///
1891SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1892  FoldingSetNodeID ID;
1893  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1894  void *IP = 0;
1895  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1896    return SDOperand(E, 0);
1897  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1898  CSEMap.InsertNode(N, IP);
1899
1900  AllNodes.push_back(N);
1901  return SDOperand(N, 0);
1902}
1903
1904SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT, SDOperand Operand) {
1905  // Constant fold unary operations with an integer constant operand.
1906  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1907    const APInt &Val = C->getAPIntValue();
1908    unsigned BitWidth = VT.getSizeInBits();
1909    switch (Opcode) {
1910    default: break;
1911    case ISD::SIGN_EXTEND:
1912      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1913    case ISD::ANY_EXTEND:
1914    case ISD::ZERO_EXTEND:
1915    case ISD::TRUNCATE:
1916      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1917    case ISD::UINT_TO_FP:
1918    case ISD::SINT_TO_FP: {
1919      const uint64_t zero[] = {0, 0};
1920      // No compile time operations on this type.
1921      if (VT==MVT::ppcf128)
1922        break;
1923      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1924      (void)apf.convertFromAPInt(Val,
1925                                 Opcode==ISD::SINT_TO_FP,
1926                                 APFloat::rmNearestTiesToEven);
1927      return getConstantFP(apf, VT);
1928    }
1929    case ISD::BIT_CONVERT:
1930      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1931        return getConstantFP(Val.bitsToFloat(), VT);
1932      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1933        return getConstantFP(Val.bitsToDouble(), VT);
1934      break;
1935    case ISD::BSWAP:
1936      return getConstant(Val.byteSwap(), VT);
1937    case ISD::CTPOP:
1938      return getConstant(Val.countPopulation(), VT);
1939    case ISD::CTLZ:
1940      return getConstant(Val.countLeadingZeros(), VT);
1941    case ISD::CTTZ:
1942      return getConstant(Val.countTrailingZeros(), VT);
1943    }
1944  }
1945
1946  // Constant fold unary operations with a floating point constant operand.
1947  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1948    APFloat V = C->getValueAPF();    // make copy
1949    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1950      switch (Opcode) {
1951      case ISD::FNEG:
1952        V.changeSign();
1953        return getConstantFP(V, VT);
1954      case ISD::FABS:
1955        V.clearSign();
1956        return getConstantFP(V, VT);
1957      case ISD::FP_ROUND:
1958      case ISD::FP_EXTEND:
1959        // This can return overflow, underflow, or inexact; we don't care.
1960        // FIXME need to be more flexible about rounding mode.
1961        (void)V.convert(*MVTToAPFloatSemantics(VT),
1962                        APFloat::rmNearestTiesToEven);
1963        return getConstantFP(V, VT);
1964      case ISD::FP_TO_SINT:
1965      case ISD::FP_TO_UINT: {
1966        integerPart x;
1967        assert(integerPartWidth >= 64);
1968        // FIXME need to be more flexible about rounding mode.
1969        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1970                              Opcode==ISD::FP_TO_SINT,
1971                              APFloat::rmTowardZero);
1972        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1973          break;
1974        return getConstant(x, VT);
1975      }
1976      case ISD::BIT_CONVERT:
1977        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1978          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1979        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1980          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1981        break;
1982      }
1983    }
1984  }
1985
1986  unsigned OpOpcode = Operand.Val->getOpcode();
1987  switch (Opcode) {
1988  case ISD::TokenFactor:
1989  case ISD::MERGE_VALUES:
1990    return Operand;         // Factor or merge of one node?  No need.
1991  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1992  case ISD::FP_EXTEND:
1993    assert(VT.isFloatingPoint() &&
1994           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
1995    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1996    if (Operand.getOpcode() == ISD::UNDEF)
1997      return getNode(ISD::UNDEF, VT);
1998    break;
1999  case ISD::SIGN_EXTEND:
2000    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2001           "Invalid SIGN_EXTEND!");
2002    if (Operand.getValueType() == VT) return Operand;   // noop extension
2003    assert(Operand.getValueType().bitsLT(VT)
2004           && "Invalid sext node, dst < src!");
2005    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2006      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2007    break;
2008  case ISD::ZERO_EXTEND:
2009    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2010           "Invalid ZERO_EXTEND!");
2011    if (Operand.getValueType() == VT) return Operand;   // noop extension
2012    assert(Operand.getValueType().bitsLT(VT)
2013           && "Invalid zext node, dst < src!");
2014    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2015      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2016    break;
2017  case ISD::ANY_EXTEND:
2018    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2019           "Invalid ANY_EXTEND!");
2020    if (Operand.getValueType() == VT) return Operand;   // noop extension
2021    assert(Operand.getValueType().bitsLT(VT)
2022           && "Invalid anyext node, dst < src!");
2023    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2024      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2025      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2026    break;
2027  case ISD::TRUNCATE:
2028    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2029           "Invalid TRUNCATE!");
2030    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2031    assert(Operand.getValueType().bitsGT(VT)
2032           && "Invalid truncate node, src < dst!");
2033    if (OpOpcode == ISD::TRUNCATE)
2034      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2035    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2036             OpOpcode == ISD::ANY_EXTEND) {
2037      // If the source is smaller than the dest, we still need an extend.
2038      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2039        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2040      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2041        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2042      else
2043        return Operand.Val->getOperand(0);
2044    }
2045    break;
2046  case ISD::BIT_CONVERT:
2047    // Basic sanity checking.
2048    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2049           && "Cannot BIT_CONVERT between types of different sizes!");
2050    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2051    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2052      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2053    if (OpOpcode == ISD::UNDEF)
2054      return getNode(ISD::UNDEF, VT);
2055    break;
2056  case ISD::SCALAR_TO_VECTOR:
2057    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2058           VT.getVectorElementType() == Operand.getValueType() &&
2059           "Illegal SCALAR_TO_VECTOR node!");
2060    if (OpOpcode == ISD::UNDEF)
2061      return getNode(ISD::UNDEF, VT);
2062    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2063    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2064        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2065        Operand.getConstantOperandVal(1) == 0 &&
2066        Operand.getOperand(0).getValueType() == VT)
2067      return Operand.getOperand(0);
2068    break;
2069  case ISD::FNEG:
2070    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2071      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2072                     Operand.Val->getOperand(0));
2073    if (OpOpcode == ISD::FNEG)  // --X -> X
2074      return Operand.Val->getOperand(0);
2075    break;
2076  case ISD::FABS:
2077    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2078      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2079    break;
2080  }
2081
2082  SDNode *N;
2083  SDVTList VTs = getVTList(VT);
2084  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2085    FoldingSetNodeID ID;
2086    SDOperand Ops[1] = { Operand };
2087    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2088    void *IP = 0;
2089    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2090      return SDOperand(E, 0);
2091    N = new UnarySDNode(Opcode, VTs, Operand);
2092    CSEMap.InsertNode(N, IP);
2093  } else {
2094    N = new UnarySDNode(Opcode, VTs, Operand);
2095  }
2096  AllNodes.push_back(N);
2097  return SDOperand(N, 0);
2098}
2099
2100
2101
2102SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2103                                SDOperand N1, SDOperand N2) {
2104  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2105  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2106  switch (Opcode) {
2107  default: break;
2108  case ISD::TokenFactor:
2109    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2110           N2.getValueType() == MVT::Other && "Invalid token factor!");
2111    // Fold trivial token factors.
2112    if (N1.getOpcode() == ISD::EntryToken) return N2;
2113    if (N2.getOpcode() == ISD::EntryToken) return N1;
2114    break;
2115  case ISD::AND:
2116    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2117           N1.getValueType() == VT && "Binary operator types must match!");
2118    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2119    // worth handling here.
2120    if (N2C && N2C->isNullValue())
2121      return N2;
2122    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2123      return N1;
2124    break;
2125  case ISD::OR:
2126  case ISD::XOR:
2127  case ISD::ADD:
2128  case ISD::SUB:
2129    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2130           N1.getValueType() == VT && "Binary operator types must match!");
2131    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2132    // it's worth handling here.
2133    if (N2C && N2C->isNullValue())
2134      return N1;
2135    break;
2136  case ISD::UDIV:
2137  case ISD::UREM:
2138  case ISD::MULHU:
2139  case ISD::MULHS:
2140    assert(VT.isInteger() && "This operator does not apply to FP types!");
2141    // fall through
2142  case ISD::MUL:
2143  case ISD::SDIV:
2144  case ISD::SREM:
2145  case ISD::FADD:
2146  case ISD::FSUB:
2147  case ISD::FMUL:
2148  case ISD::FDIV:
2149  case ISD::FREM:
2150    assert(N1.getValueType() == N2.getValueType() &&
2151           N1.getValueType() == VT && "Binary operator types must match!");
2152    break;
2153  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2154    assert(N1.getValueType() == VT &&
2155           N1.getValueType().isFloatingPoint() &&
2156           N2.getValueType().isFloatingPoint() &&
2157           "Invalid FCOPYSIGN!");
2158    break;
2159  case ISD::SHL:
2160  case ISD::SRA:
2161  case ISD::SRL:
2162  case ISD::ROTL:
2163  case ISD::ROTR:
2164    assert(VT == N1.getValueType() &&
2165           "Shift operators return type must be the same as their first arg");
2166    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2167           VT != MVT::i1 && "Shifts only work on integers");
2168    break;
2169  case ISD::FP_ROUND_INREG: {
2170    MVT EVT = cast<VTSDNode>(N2)->getVT();
2171    assert(VT == N1.getValueType() && "Not an inreg round!");
2172    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2173           "Cannot FP_ROUND_INREG integer types");
2174    assert(EVT.bitsLE(VT) && "Not rounding down!");
2175    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2176    break;
2177  }
2178  case ISD::FP_ROUND:
2179    assert(VT.isFloatingPoint() &&
2180           N1.getValueType().isFloatingPoint() &&
2181           VT.bitsLE(N1.getValueType()) &&
2182           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2183    if (N1.getValueType() == VT) return N1;  // noop conversion.
2184    break;
2185  case ISD::AssertSext:
2186  case ISD::AssertZext: {
2187    MVT EVT = cast<VTSDNode>(N2)->getVT();
2188    assert(VT == N1.getValueType() && "Not an inreg extend!");
2189    assert(VT.isInteger() && EVT.isInteger() &&
2190           "Cannot *_EXTEND_INREG FP types");
2191    assert(EVT.bitsLE(VT) && "Not extending!");
2192    if (VT == EVT) return N1; // noop assertion.
2193    break;
2194  }
2195  case ISD::SIGN_EXTEND_INREG: {
2196    MVT EVT = cast<VTSDNode>(N2)->getVT();
2197    assert(VT == N1.getValueType() && "Not an inreg extend!");
2198    assert(VT.isInteger() && EVT.isInteger() &&
2199           "Cannot *_EXTEND_INREG FP types");
2200    assert(EVT.bitsLE(VT) && "Not extending!");
2201    if (EVT == VT) return N1;  // Not actually extending
2202
2203    if (N1C) {
2204      APInt Val = N1C->getAPIntValue();
2205      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2206      Val <<= Val.getBitWidth()-FromBits;
2207      Val = Val.ashr(Val.getBitWidth()-FromBits);
2208      return getConstant(Val, VT);
2209    }
2210    break;
2211  }
2212  case ISD::EXTRACT_VECTOR_ELT:
2213    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2214
2215    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2216    if (N1.getOpcode() == ISD::UNDEF)
2217      return getNode(ISD::UNDEF, VT);
2218
2219    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2220    // expanding copies of large vectors from registers.
2221    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2222        N1.getNumOperands() > 0) {
2223      unsigned Factor =
2224        N1.getOperand(0).getValueType().getVectorNumElements();
2225      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2226                     N1.getOperand(N2C->getValue() / Factor),
2227                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2228    }
2229
2230    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2231    // expanding large vector constants.
2232    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2233      return N1.getOperand(N2C->getValue());
2234
2235    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2236    // operations are lowered to scalars.
2237    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2238      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2239        if (IEC == N2C)
2240          return N1.getOperand(1);
2241        else
2242          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2243      }
2244    break;
2245  case ISD::EXTRACT_ELEMENT:
2246    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2247    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2248           (N1.getValueType().isInteger() == VT.isInteger()) &&
2249           "Wrong types for EXTRACT_ELEMENT!");
2250
2251    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2252    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2253    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2254    if (N1.getOpcode() == ISD::BUILD_PAIR)
2255      return N1.getOperand(N2C->getValue());
2256
2257    // EXTRACT_ELEMENT of a constant int is also very common.
2258    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2259      unsigned ElementSize = VT.getSizeInBits();
2260      unsigned Shift = ElementSize * N2C->getValue();
2261      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2262      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2263    }
2264    break;
2265  case ISD::EXTRACT_SUBVECTOR:
2266    if (N1.getValueType() == VT) // Trivial extraction.
2267      return N1;
2268    break;
2269  }
2270
2271  if (N1C) {
2272    if (N2C) {
2273      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2274      switch (Opcode) {
2275      case ISD::ADD: return getConstant(C1 + C2, VT);
2276      case ISD::SUB: return getConstant(C1 - C2, VT);
2277      case ISD::MUL: return getConstant(C1 * C2, VT);
2278      case ISD::UDIV:
2279        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2280        break;
2281      case ISD::UREM :
2282        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2283        break;
2284      case ISD::SDIV :
2285        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2286        break;
2287      case ISD::SREM :
2288        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2289        break;
2290      case ISD::AND  : return getConstant(C1 & C2, VT);
2291      case ISD::OR   : return getConstant(C1 | C2, VT);
2292      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2293      case ISD::SHL  : return getConstant(C1 << C2, VT);
2294      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2295      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2296      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2297      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2298      default: break;
2299      }
2300    } else {      // Cannonicalize constant to RHS if commutative
2301      if (isCommutativeBinOp(Opcode)) {
2302        std::swap(N1C, N2C);
2303        std::swap(N1, N2);
2304      }
2305    }
2306  }
2307
2308  // Constant fold FP operations.
2309  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2310  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2311  if (N1CFP) {
2312    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2313      // Cannonicalize constant to RHS if commutative
2314      std::swap(N1CFP, N2CFP);
2315      std::swap(N1, N2);
2316    } else if (N2CFP && VT != MVT::ppcf128) {
2317      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2318      APFloat::opStatus s;
2319      switch (Opcode) {
2320      case ISD::FADD:
2321        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2322        if (s != APFloat::opInvalidOp)
2323          return getConstantFP(V1, VT);
2324        break;
2325      case ISD::FSUB:
2326        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2327        if (s!=APFloat::opInvalidOp)
2328          return getConstantFP(V1, VT);
2329        break;
2330      case ISD::FMUL:
2331        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2332        if (s!=APFloat::opInvalidOp)
2333          return getConstantFP(V1, VT);
2334        break;
2335      case ISD::FDIV:
2336        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2337        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2338          return getConstantFP(V1, VT);
2339        break;
2340      case ISD::FREM :
2341        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2342        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2343          return getConstantFP(V1, VT);
2344        break;
2345      case ISD::FCOPYSIGN:
2346        V1.copySign(V2);
2347        return getConstantFP(V1, VT);
2348      default: break;
2349      }
2350    }
2351  }
2352
2353  // Canonicalize an UNDEF to the RHS, even over a constant.
2354  if (N1.getOpcode() == ISD::UNDEF) {
2355    if (isCommutativeBinOp(Opcode)) {
2356      std::swap(N1, N2);
2357    } else {
2358      switch (Opcode) {
2359      case ISD::FP_ROUND_INREG:
2360      case ISD::SIGN_EXTEND_INREG:
2361      case ISD::SUB:
2362      case ISD::FSUB:
2363      case ISD::FDIV:
2364      case ISD::FREM:
2365      case ISD::SRA:
2366        return N1;     // fold op(undef, arg2) -> undef
2367      case ISD::UDIV:
2368      case ISD::SDIV:
2369      case ISD::UREM:
2370      case ISD::SREM:
2371      case ISD::SRL:
2372      case ISD::SHL:
2373        if (!VT.isVector())
2374          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2375        // For vectors, we can't easily build an all zero vector, just return
2376        // the LHS.
2377        return N2;
2378      }
2379    }
2380  }
2381
2382  // Fold a bunch of operators when the RHS is undef.
2383  if (N2.getOpcode() == ISD::UNDEF) {
2384    switch (Opcode) {
2385    case ISD::XOR:
2386      if (N1.getOpcode() == ISD::UNDEF)
2387        // Handle undef ^ undef -> 0 special case. This is a common
2388        // idiom (misuse).
2389        return getConstant(0, VT);
2390      // fallthrough
2391    case ISD::ADD:
2392    case ISD::ADDC:
2393    case ISD::ADDE:
2394    case ISD::SUB:
2395    case ISD::FADD:
2396    case ISD::FSUB:
2397    case ISD::FMUL:
2398    case ISD::FDIV:
2399    case ISD::FREM:
2400    case ISD::UDIV:
2401    case ISD::SDIV:
2402    case ISD::UREM:
2403    case ISD::SREM:
2404      return N2;       // fold op(arg1, undef) -> undef
2405    case ISD::MUL:
2406    case ISD::AND:
2407    case ISD::SRL:
2408    case ISD::SHL:
2409      if (!VT.isVector())
2410        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2411      // For vectors, we can't easily build an all zero vector, just return
2412      // the LHS.
2413      return N1;
2414    case ISD::OR:
2415      if (!VT.isVector())
2416        return getConstant(VT.getIntegerVTBitMask(), VT);
2417      // For vectors, we can't easily build an all one vector, just return
2418      // the LHS.
2419      return N1;
2420    case ISD::SRA:
2421      return N1;
2422    }
2423  }
2424
2425  // Memoize this node if possible.
2426  SDNode *N;
2427  SDVTList VTs = getVTList(VT);
2428  if (VT != MVT::Flag) {
2429    SDOperand Ops[] = { N1, N2 };
2430    FoldingSetNodeID ID;
2431    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2432    void *IP = 0;
2433    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2434      return SDOperand(E, 0);
2435    N = new BinarySDNode(Opcode, VTs, N1, N2);
2436    CSEMap.InsertNode(N, IP);
2437  } else {
2438    N = new BinarySDNode(Opcode, VTs, N1, N2);
2439  }
2440
2441  AllNodes.push_back(N);
2442  return SDOperand(N, 0);
2443}
2444
2445SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2446                                SDOperand N1, SDOperand N2, SDOperand N3) {
2447  // Perform various simplifications.
2448  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2449  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2450  switch (Opcode) {
2451  case ISD::SETCC: {
2452    // Use FoldSetCC to simplify SETCC's.
2453    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2454    if (Simp.Val) return Simp;
2455    break;
2456  }
2457  case ISD::SELECT:
2458    if (N1C) {
2459     if (N1C->getValue())
2460        return N2;             // select true, X, Y -> X
2461      else
2462        return N3;             // select false, X, Y -> Y
2463    }
2464
2465    if (N2 == N3) return N2;   // select C, X, X -> X
2466    break;
2467  case ISD::BRCOND:
2468    if (N2C) {
2469      if (N2C->getValue()) // Unconditional branch
2470        return getNode(ISD::BR, MVT::Other, N1, N3);
2471      else
2472        return N1;         // Never-taken branch
2473    }
2474    break;
2475  case ISD::VECTOR_SHUFFLE:
2476    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2477           VT.isVector() && N3.getValueType().isVector() &&
2478           N3.getOpcode() == ISD::BUILD_VECTOR &&
2479           VT.getVectorNumElements() == N3.getNumOperands() &&
2480           "Illegal VECTOR_SHUFFLE node!");
2481    break;
2482  case ISD::BIT_CONVERT:
2483    // Fold bit_convert nodes from a type to themselves.
2484    if (N1.getValueType() == VT)
2485      return N1;
2486    break;
2487  }
2488
2489  // Memoize node if it doesn't produce a flag.
2490  SDNode *N;
2491  SDVTList VTs = getVTList(VT);
2492  if (VT != MVT::Flag) {
2493    SDOperand Ops[] = { N1, N2, N3 };
2494    FoldingSetNodeID ID;
2495    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2496    void *IP = 0;
2497    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2498      return SDOperand(E, 0);
2499    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2500    CSEMap.InsertNode(N, IP);
2501  } else {
2502    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2503  }
2504  AllNodes.push_back(N);
2505  return SDOperand(N, 0);
2506}
2507
2508SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2509                                SDOperand N1, SDOperand N2, SDOperand N3,
2510                                SDOperand N4) {
2511  SDOperand Ops[] = { N1, N2, N3, N4 };
2512  return getNode(Opcode, VT, Ops, 4);
2513}
2514
2515SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2516                                SDOperand N1, SDOperand N2, SDOperand N3,
2517                                SDOperand N4, SDOperand N5) {
2518  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2519  return getNode(Opcode, VT, Ops, 5);
2520}
2521
2522/// getMemsetValue - Vectorized representation of the memset value
2523/// operand.
2524static SDOperand getMemsetValue(SDOperand Value, MVT VT, SelectionDAG &DAG) {
2525  unsigned NumBits = VT.isVector() ?
2526    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2527  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2528    APInt Val = APInt(NumBits, C->getValue() & 255);
2529    unsigned Shift = 8;
2530    for (unsigned i = NumBits; i > 8; i >>= 1) {
2531      Val = (Val << Shift) | Val;
2532      Shift <<= 1;
2533    }
2534    if (VT.isInteger())
2535      return DAG.getConstant(Val, VT);
2536    return DAG.getConstantFP(APFloat(Val), VT);
2537  }
2538
2539  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2540  unsigned Shift = 8;
2541  for (unsigned i = NumBits; i > 8; i >>= 1) {
2542    Value = DAG.getNode(ISD::OR, VT,
2543                        DAG.getNode(ISD::SHL, VT, Value,
2544                                    DAG.getConstant(Shift, MVT::i8)), Value);
2545    Shift <<= 1;
2546  }
2547
2548  return Value;
2549}
2550
2551/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2552/// used when a memcpy is turned into a memset when the source is a constant
2553/// string ptr.
2554static SDOperand getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2555                                    const TargetLowering &TLI,
2556                                    std::string &Str, unsigned Offset) {
2557  assert(!VT.isVector() && "Can't handle vector type here!");
2558  unsigned NumBits = VT.getSizeInBits();
2559  unsigned MSB = NumBits / 8;
2560  uint64_t Val = 0;
2561  if (TLI.isLittleEndian())
2562    Offset = Offset + MSB - 1;
2563  for (unsigned i = 0; i != MSB; ++i) {
2564    Val = (Val << 8) | (unsigned char)Str[Offset];
2565    Offset += TLI.isLittleEndian() ? -1 : 1;
2566  }
2567  return DAG.getConstant(Val, VT);
2568}
2569
2570/// getMemBasePlusOffset - Returns base and offset node for the
2571///
2572static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2573                                      SelectionDAG &DAG) {
2574  MVT VT = Base.getValueType();
2575  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2576}
2577
2578/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2579///
2580static bool isMemSrcFromString(SDOperand Src, std::string &Str,
2581                               uint64_t &SrcOff) {
2582  unsigned SrcDelta = 0;
2583  GlobalAddressSDNode *G = NULL;
2584  if (Src.getOpcode() == ISD::GlobalAddress)
2585    G = cast<GlobalAddressSDNode>(Src);
2586  else if (Src.getOpcode() == ISD::ADD &&
2587           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2588           Src.getOperand(1).getOpcode() == ISD::Constant) {
2589    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2590    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2591  }
2592  if (!G)
2593    return false;
2594
2595  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2596  if (GV && GV->isConstant()) {
2597    Str = GV->getStringValue(false);
2598    if (!Str.empty()) {
2599      SrcOff += SrcDelta;
2600      return true;
2601    }
2602  }
2603
2604  return false;
2605}
2606
2607/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2608/// to replace the memset / memcpy is below the threshold. It also returns the
2609/// types of the sequence of memory ops to perform memset / memcpy.
2610static
2611bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2612                              SDOperand Dst, SDOperand Src,
2613                              unsigned Limit, uint64_t Size, unsigned &Align,
2614                              SelectionDAG &DAG,
2615                              const TargetLowering &TLI) {
2616  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2617
2618  std::string Str;
2619  uint64_t SrcOff = 0;
2620  bool isSrcStr = isMemSrcFromString(Src, Str, SrcOff);
2621  bool isSrcConst = isa<ConstantSDNode>(Src);
2622  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2623  if (VT != MVT::iAny) {
2624    unsigned NewAlign = (unsigned)
2625      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2626    // If source is a string constant, this will require an unaligned load.
2627    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2628      if (Dst.getOpcode() != ISD::FrameIndex) {
2629        // Can't change destination alignment. It requires a unaligned store.
2630        if (AllowUnalign)
2631          VT = MVT::iAny;
2632      } else {
2633        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2634        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2635        if (MFI->isFixedObjectIndex(FI)) {
2636          // Can't change destination alignment. It requires a unaligned store.
2637          if (AllowUnalign)
2638            VT = MVT::iAny;
2639        } else {
2640          // Give the stack frame object a larger alignment if needed.
2641          if (MFI->getObjectAlignment(FI) < NewAlign)
2642            MFI->setObjectAlignment(FI, NewAlign);
2643          Align = NewAlign;
2644        }
2645      }
2646    }
2647  }
2648
2649  if (VT == MVT::iAny) {
2650    if (AllowUnalign) {
2651      VT = MVT::i64;
2652    } else {
2653      switch (Align & 7) {
2654      case 0:  VT = MVT::i64; break;
2655      case 4:  VT = MVT::i32; break;
2656      case 2:  VT = MVT::i16; break;
2657      default: VT = MVT::i8;  break;
2658      }
2659    }
2660
2661    MVT LVT = MVT::i64;
2662    while (!TLI.isTypeLegal(LVT))
2663      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2664    assert(LVT.isInteger());
2665
2666    if (VT.bitsGT(LVT))
2667      VT = LVT;
2668  }
2669
2670  unsigned NumMemOps = 0;
2671  while (Size != 0) {
2672    unsigned VTSize = VT.getSizeInBits() / 8;
2673    while (VTSize > Size) {
2674      // For now, only use non-vector load / store's for the left-over pieces.
2675      if (VT.isVector()) {
2676        VT = MVT::i64;
2677        while (!TLI.isTypeLegal(VT))
2678          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2679        VTSize = VT.getSizeInBits() / 8;
2680      } else {
2681        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2682        VTSize >>= 1;
2683      }
2684    }
2685
2686    if (++NumMemOps > Limit)
2687      return false;
2688    MemOps.push_back(VT);
2689    Size -= VTSize;
2690  }
2691
2692  return true;
2693}
2694
2695static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2696                                         SDOperand Chain, SDOperand Dst,
2697                                         SDOperand Src, uint64_t Size,
2698                                         unsigned Align, bool AlwaysInline,
2699                                         const Value *DstSV, uint64_t DstSVOff,
2700                                         const Value *SrcSV, uint64_t SrcSVOff){
2701  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2702
2703  // Expand memcpy to a series of load and store ops if the size operand falls
2704  // below a certain threshold.
2705  std::vector<MVT> MemOps;
2706  uint64_t Limit = -1;
2707  if (!AlwaysInline)
2708    Limit = TLI.getMaxStoresPerMemcpy();
2709  unsigned DstAlign = Align;  // Destination alignment can change.
2710  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2711                                DAG, TLI))
2712    return SDOperand();
2713
2714  std::string Str;
2715  uint64_t SrcOff = 0, DstOff = 0;
2716  bool CopyFromStr = isMemSrcFromString(Src, Str, SrcOff);
2717
2718  SmallVector<SDOperand, 8> OutChains;
2719  unsigned NumMemOps = MemOps.size();
2720  for (unsigned i = 0; i < NumMemOps; i++) {
2721    MVT VT = MemOps[i];
2722    unsigned VTSize = VT.getSizeInBits() / 8;
2723    SDOperand Value, Store;
2724
2725    if (CopyFromStr && !VT.isVector()) {
2726      // It's unlikely a store of a vector immediate can be done in a single
2727      // instruction. It would require a load from a constantpool first.
2728      // FIXME: Handle cases where store of vector immediate is done in a
2729      // single instruction.
2730      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2731      Store = DAG.getStore(Chain, Value,
2732                           getMemBasePlusOffset(Dst, DstOff, DAG),
2733                           DstSV, DstSVOff + DstOff);
2734    } else {
2735      Value = DAG.getLoad(VT, Chain,
2736                          getMemBasePlusOffset(Src, SrcOff, DAG),
2737                          SrcSV, SrcSVOff + SrcOff, false, Align);
2738      Store = DAG.getStore(Chain, Value,
2739                           getMemBasePlusOffset(Dst, DstOff, DAG),
2740                           DstSV, DstSVOff + DstOff, false, DstAlign);
2741    }
2742    OutChains.push_back(Store);
2743    SrcOff += VTSize;
2744    DstOff += VTSize;
2745  }
2746
2747  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2748                     &OutChains[0], OutChains.size());
2749}
2750
2751static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2752                                          SDOperand Chain, SDOperand Dst,
2753                                          SDOperand Src, uint64_t Size,
2754                                          unsigned Align, bool AlwaysInline,
2755                                          const Value *DstSV, uint64_t DstSVOff,
2756                                          const Value *SrcSV, uint64_t SrcSVOff){
2757  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2758
2759  // Expand memmove to a series of load and store ops if the size operand falls
2760  // below a certain threshold.
2761  std::vector<MVT> MemOps;
2762  uint64_t Limit = -1;
2763  if (!AlwaysInline)
2764    Limit = TLI.getMaxStoresPerMemmove();
2765  unsigned DstAlign = Align;  // Destination alignment can change.
2766  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2767                                DAG, TLI))
2768    return SDOperand();
2769
2770  uint64_t SrcOff = 0, DstOff = 0;
2771
2772  SmallVector<SDOperand, 8> LoadValues;
2773  SmallVector<SDOperand, 8> LoadChains;
2774  SmallVector<SDOperand, 8> OutChains;
2775  unsigned NumMemOps = MemOps.size();
2776  for (unsigned i = 0; i < NumMemOps; i++) {
2777    MVT VT = MemOps[i];
2778    unsigned VTSize = VT.getSizeInBits() / 8;
2779    SDOperand Value, Store;
2780
2781    Value = DAG.getLoad(VT, Chain,
2782                        getMemBasePlusOffset(Src, SrcOff, DAG),
2783                        SrcSV, SrcSVOff + SrcOff, false, Align);
2784    LoadValues.push_back(Value);
2785    LoadChains.push_back(Value.getValue(1));
2786    SrcOff += VTSize;
2787  }
2788  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2789                      &LoadChains[0], LoadChains.size());
2790  OutChains.clear();
2791  for (unsigned i = 0; i < NumMemOps; i++) {
2792    MVT VT = MemOps[i];
2793    unsigned VTSize = VT.getSizeInBits() / 8;
2794    SDOperand Value, Store;
2795
2796    Store = DAG.getStore(Chain, LoadValues[i],
2797                         getMemBasePlusOffset(Dst, DstOff, DAG),
2798                         DstSV, DstSVOff + DstOff, false, DstAlign);
2799    OutChains.push_back(Store);
2800    DstOff += VTSize;
2801  }
2802
2803  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2804                     &OutChains[0], OutChains.size());
2805}
2806
2807static SDOperand getMemsetStores(SelectionDAG &DAG,
2808                                 SDOperand Chain, SDOperand Dst,
2809                                 SDOperand Src, uint64_t Size,
2810                                 unsigned Align,
2811                                 const Value *DstSV, uint64_t DstSVOff) {
2812  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2813
2814  // Expand memset to a series of load/store ops if the size operand
2815  // falls below a certain threshold.
2816  std::vector<MVT> MemOps;
2817  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2818                                Size, Align, DAG, TLI))
2819    return SDOperand();
2820
2821  SmallVector<SDOperand, 8> OutChains;
2822  uint64_t DstOff = 0;
2823
2824  unsigned NumMemOps = MemOps.size();
2825  for (unsigned i = 0; i < NumMemOps; i++) {
2826    MVT VT = MemOps[i];
2827    unsigned VTSize = VT.getSizeInBits() / 8;
2828    SDOperand Value = getMemsetValue(Src, VT, DAG);
2829    SDOperand Store = DAG.getStore(Chain, Value,
2830                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2831                                   DstSV, DstSVOff + DstOff);
2832    OutChains.push_back(Store);
2833    DstOff += VTSize;
2834  }
2835
2836  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2837                     &OutChains[0], OutChains.size());
2838}
2839
2840SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2841                                  SDOperand Src, SDOperand Size,
2842                                  unsigned Align, bool AlwaysInline,
2843                                  const Value *DstSV, uint64_t DstSVOff,
2844                                  const Value *SrcSV, uint64_t SrcSVOff) {
2845
2846  // Check to see if we should lower the memcpy to loads and stores first.
2847  // For cases within the target-specified limits, this is the best choice.
2848  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2849  if (ConstantSize) {
2850    // Memcpy with size zero? Just return the original chain.
2851    if (ConstantSize->isNullValue())
2852      return Chain;
2853
2854    SDOperand Result =
2855      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2856                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2857    if (Result.Val)
2858      return Result;
2859  }
2860
2861  // Then check to see if we should lower the memcpy with target-specific
2862  // code. If the target chooses to do this, this is the next best.
2863  SDOperand Result =
2864    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2865                                AlwaysInline,
2866                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2867  if (Result.Val)
2868    return Result;
2869
2870  // If we really need inline code and the target declined to provide it,
2871  // use a (potentially long) sequence of loads and stores.
2872  if (AlwaysInline) {
2873    assert(ConstantSize && "AlwaysInline requires a constant size!");
2874    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2875                                   ConstantSize->getValue(), Align, true,
2876                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2877  }
2878
2879  // Emit a library call.
2880  TargetLowering::ArgListTy Args;
2881  TargetLowering::ArgListEntry Entry;
2882  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2883  Entry.Node = Dst; Args.push_back(Entry);
2884  Entry.Node = Src; Args.push_back(Entry);
2885  Entry.Node = Size; Args.push_back(Entry);
2886  std::pair<SDOperand,SDOperand> CallResult =
2887    TLI.LowerCallTo(Chain, Type::VoidTy,
2888                    false, false, false, CallingConv::C, false,
2889                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2890                    Args, *this);
2891  return CallResult.second;
2892}
2893
2894SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2895                                   SDOperand Src, SDOperand Size,
2896                                   unsigned Align,
2897                                   const Value *DstSV, uint64_t DstSVOff,
2898                                   const Value *SrcSV, uint64_t SrcSVOff) {
2899
2900  // Check to see if we should lower the memmove to loads and stores first.
2901  // For cases within the target-specified limits, this is the best choice.
2902  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2903  if (ConstantSize) {
2904    // Memmove with size zero? Just return the original chain.
2905    if (ConstantSize->isNullValue())
2906      return Chain;
2907
2908    SDOperand Result =
2909      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2910                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2911    if (Result.Val)
2912      return Result;
2913  }
2914
2915  // Then check to see if we should lower the memmove with target-specific
2916  // code. If the target chooses to do this, this is the next best.
2917  SDOperand Result =
2918    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2919                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2920  if (Result.Val)
2921    return Result;
2922
2923  // Emit a library call.
2924  TargetLowering::ArgListTy Args;
2925  TargetLowering::ArgListEntry Entry;
2926  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2927  Entry.Node = Dst; Args.push_back(Entry);
2928  Entry.Node = Src; Args.push_back(Entry);
2929  Entry.Node = Size; Args.push_back(Entry);
2930  std::pair<SDOperand,SDOperand> CallResult =
2931    TLI.LowerCallTo(Chain, Type::VoidTy,
2932                    false, false, false, CallingConv::C, false,
2933                    getExternalSymbol("memmove", TLI.getPointerTy()),
2934                    Args, *this);
2935  return CallResult.second;
2936}
2937
2938SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2939                                  SDOperand Src, SDOperand Size,
2940                                  unsigned Align,
2941                                  const Value *DstSV, uint64_t DstSVOff) {
2942
2943  // Check to see if we should lower the memset to stores first.
2944  // For cases within the target-specified limits, this is the best choice.
2945  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2946  if (ConstantSize) {
2947    // Memset with size zero? Just return the original chain.
2948    if (ConstantSize->isNullValue())
2949      return Chain;
2950
2951    SDOperand Result =
2952      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2953                      DstSV, DstSVOff);
2954    if (Result.Val)
2955      return Result;
2956  }
2957
2958  // Then check to see if we should lower the memset with target-specific
2959  // code. If the target chooses to do this, this is the next best.
2960  SDOperand Result =
2961    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2962                                DstSV, DstSVOff);
2963  if (Result.Val)
2964    return Result;
2965
2966  // Emit a library call.
2967  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2968  TargetLowering::ArgListTy Args;
2969  TargetLowering::ArgListEntry Entry;
2970  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2971  Args.push_back(Entry);
2972  // Extend or truncate the argument to be an i32 value for the call.
2973  if (Src.getValueType().bitsGT(MVT::i32))
2974    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2975  else
2976    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2977  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2978  Args.push_back(Entry);
2979  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2980  Args.push_back(Entry);
2981  std::pair<SDOperand,SDOperand> CallResult =
2982    TLI.LowerCallTo(Chain, Type::VoidTy,
2983                    false, false, false, CallingConv::C, false,
2984                    getExternalSymbol("memset", TLI.getPointerTy()),
2985                    Args, *this);
2986  return CallResult.second;
2987}
2988
2989SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2990                                  SDOperand Ptr, SDOperand Cmp,
2991                                  SDOperand Swp, const Value* PtrVal,
2992                                  unsigned Alignment) {
2993  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
2994  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2995  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2996  FoldingSetNodeID ID;
2997  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2998  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2999  void* IP = 0;
3000  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3001    return SDOperand(E, 0);
3002  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp,
3003                               PtrVal, Alignment);
3004  CSEMap.InsertNode(N, IP);
3005  AllNodes.push_back(N);
3006  return SDOperand(N, 0);
3007}
3008
3009SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3010                                  SDOperand Ptr, SDOperand Val,
3011                                  const Value* PtrVal,
3012                                  unsigned Alignment) {
3013  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3014          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3015          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3016          || Opcode == ISD::ATOMIC_LOAD_NAND
3017          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3018          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3019         && "Invalid Atomic Op");
3020  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3021  FoldingSetNodeID ID;
3022  SDOperand Ops[] = {Chain, Ptr, Val};
3023  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3024  void* IP = 0;
3025  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3026    return SDOperand(E, 0);
3027  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val,
3028                               PtrVal, Alignment);
3029  CSEMap.InsertNode(N, IP);
3030  AllNodes.push_back(N);
3031  return SDOperand(N, 0);
3032}
3033
3034SDOperand
3035SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3036                      MVT VT, SDOperand Chain,
3037                      SDOperand Ptr, SDOperand Offset,
3038                      const Value *SV, int SVOffset, MVT EVT,
3039                      bool isVolatile, unsigned Alignment) {
3040  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3041    const Type *Ty = 0;
3042    if (VT != MVT::iPTR) {
3043      Ty = VT.getTypeForMVT();
3044    } else if (SV) {
3045      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3046      assert(PT && "Value for load must be a pointer");
3047      Ty = PT->getElementType();
3048    }
3049    assert(Ty && "Could not get type information for load");
3050    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3051  }
3052
3053  if (VT == EVT) {
3054    ExtType = ISD::NON_EXTLOAD;
3055  } else if (ExtType == ISD::NON_EXTLOAD) {
3056    assert(VT == EVT && "Non-extending load from different memory type!");
3057  } else {
3058    // Extending load.
3059    if (VT.isVector())
3060      assert(EVT == VT.getVectorElementType() && "Invalid vector extload!");
3061    else
3062      assert(EVT.bitsLT(VT) &&
3063             "Should only be an extending load, not truncating!");
3064    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3065           "Cannot sign/zero extend a FP/Vector load!");
3066    assert(VT.isInteger() == EVT.isInteger() &&
3067           "Cannot convert from FP to Int or Int -> FP!");
3068  }
3069
3070  bool Indexed = AM != ISD::UNINDEXED;
3071  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3072         "Unindexed load with an offset!");
3073
3074  SDVTList VTs = Indexed ?
3075    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3076  SDOperand Ops[] = { Chain, Ptr, Offset };
3077  FoldingSetNodeID ID;
3078  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3079  ID.AddInteger(AM);
3080  ID.AddInteger(ExtType);
3081  ID.AddInteger(EVT.getRawBits());
3082  ID.AddInteger(Alignment);
3083  ID.AddInteger(isVolatile);
3084  void *IP = 0;
3085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3086    return SDOperand(E, 0);
3087  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3088                             Alignment, isVolatile);
3089  CSEMap.InsertNode(N, IP);
3090  AllNodes.push_back(N);
3091  return SDOperand(N, 0);
3092}
3093
3094SDOperand SelectionDAG::getLoad(MVT VT,
3095                                SDOperand Chain, SDOperand Ptr,
3096                                const Value *SV, int SVOffset,
3097                                bool isVolatile, unsigned Alignment) {
3098  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3099  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3100                 SV, SVOffset, VT, isVolatile, Alignment);
3101}
3102
3103SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3104                                   SDOperand Chain, SDOperand Ptr,
3105                                   const Value *SV,
3106                                   int SVOffset, MVT EVT,
3107                                   bool isVolatile, unsigned Alignment) {
3108  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3109  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3110                 SV, SVOffset, EVT, isVolatile, Alignment);
3111}
3112
3113SDOperand
3114SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3115                             SDOperand Offset, ISD::MemIndexedMode AM) {
3116  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3117  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3118         "Load is already a indexed load!");
3119  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3120                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3121                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3122                 LD->isVolatile(), LD->getAlignment());
3123}
3124
3125SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3126                                 SDOperand Ptr, const Value *SV, int SVOffset,
3127                                 bool isVolatile, unsigned Alignment) {
3128  MVT VT = Val.getValueType();
3129
3130  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3131    const Type *Ty = 0;
3132    if (VT != MVT::iPTR) {
3133      Ty = VT.getTypeForMVT();
3134    } else if (SV) {
3135      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3136      assert(PT && "Value for store must be a pointer");
3137      Ty = PT->getElementType();
3138    }
3139    assert(Ty && "Could not get type information for store");
3140    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3141  }
3142  SDVTList VTs = getVTList(MVT::Other);
3143  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3144  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3145  FoldingSetNodeID ID;
3146  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3147  ID.AddInteger(ISD::UNINDEXED);
3148  ID.AddInteger(false);
3149  ID.AddInteger(VT.getRawBits());
3150  ID.AddInteger(Alignment);
3151  ID.AddInteger(isVolatile);
3152  void *IP = 0;
3153  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3154    return SDOperand(E, 0);
3155  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3156                              VT, SV, SVOffset, Alignment, isVolatile);
3157  CSEMap.InsertNode(N, IP);
3158  AllNodes.push_back(N);
3159  return SDOperand(N, 0);
3160}
3161
3162SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3163                                      SDOperand Ptr, const Value *SV,
3164                                      int SVOffset, MVT SVT,
3165                                      bool isVolatile, unsigned Alignment) {
3166  MVT VT = Val.getValueType();
3167
3168  if (VT == SVT)
3169    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3170
3171  assert(VT.bitsGT(SVT) && "Not a truncation?");
3172  assert(VT.isInteger() == SVT.isInteger() &&
3173         "Can't do FP-INT conversion!");
3174
3175  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3176    const Type *Ty = 0;
3177    if (VT != MVT::iPTR) {
3178      Ty = VT.getTypeForMVT();
3179    } else if (SV) {
3180      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3181      assert(PT && "Value for store must be a pointer");
3182      Ty = PT->getElementType();
3183    }
3184    assert(Ty && "Could not get type information for store");
3185    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3186  }
3187  SDVTList VTs = getVTList(MVT::Other);
3188  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3189  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3190  FoldingSetNodeID ID;
3191  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3192  ID.AddInteger(ISD::UNINDEXED);
3193  ID.AddInteger(1);
3194  ID.AddInteger(SVT.getRawBits());
3195  ID.AddInteger(Alignment);
3196  ID.AddInteger(isVolatile);
3197  void *IP = 0;
3198  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3199    return SDOperand(E, 0);
3200  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3201                              SVT, SV, SVOffset, Alignment, isVolatile);
3202  CSEMap.InsertNode(N, IP);
3203  AllNodes.push_back(N);
3204  return SDOperand(N, 0);
3205}
3206
3207SDOperand
3208SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3209                              SDOperand Offset, ISD::MemIndexedMode AM) {
3210  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3211  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3212         "Store is already a indexed store!");
3213  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3214  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3215  FoldingSetNodeID ID;
3216  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3217  ID.AddInteger(AM);
3218  ID.AddInteger(ST->isTruncatingStore());
3219  ID.AddInteger(ST->getMemoryVT().getRawBits());
3220  ID.AddInteger(ST->getAlignment());
3221  ID.AddInteger(ST->isVolatile());
3222  void *IP = 0;
3223  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3224    return SDOperand(E, 0);
3225  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3226                              ST->isTruncatingStore(), ST->getMemoryVT(),
3227                              ST->getSrcValue(), ST->getSrcValueOffset(),
3228                              ST->getAlignment(), ST->isVolatile());
3229  CSEMap.InsertNode(N, IP);
3230  AllNodes.push_back(N);
3231  return SDOperand(N, 0);
3232}
3233
3234SDOperand SelectionDAG::getVAArg(MVT VT,
3235                                 SDOperand Chain, SDOperand Ptr,
3236                                 SDOperand SV) {
3237  SDOperand Ops[] = { Chain, Ptr, SV };
3238  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3239}
3240
3241SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3242                                SDOperandPtr Ops, unsigned NumOps) {
3243  switch (NumOps) {
3244  case 0: return getNode(Opcode, VT);
3245  case 1: return getNode(Opcode, VT, Ops[0]);
3246  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3247  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3248  default: break;
3249  }
3250
3251  switch (Opcode) {
3252  default: break;
3253  case ISD::SELECT_CC: {
3254    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3255    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3256           "LHS and RHS of condition must have same type!");
3257    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3258           "True and False arms of SelectCC must have same type!");
3259    assert(Ops[2].getValueType() == VT &&
3260           "select_cc node must be of same type as true and false value!");
3261    break;
3262  }
3263  case ISD::BR_CC: {
3264    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3265    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3266           "LHS/RHS of comparison should match types!");
3267    break;
3268  }
3269  }
3270
3271  // Memoize nodes.
3272  SDNode *N;
3273  SDVTList VTs = getVTList(VT);
3274  if (VT != MVT::Flag) {
3275    FoldingSetNodeID ID;
3276    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3277    void *IP = 0;
3278    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3279      return SDOperand(E, 0);
3280    N = new SDNode(Opcode, VTs, Ops, NumOps);
3281    CSEMap.InsertNode(N, IP);
3282  } else {
3283    N = new SDNode(Opcode, VTs, Ops, NumOps);
3284  }
3285  AllNodes.push_back(N);
3286  return SDOperand(N, 0);
3287}
3288
3289SDOperand SelectionDAG::getNode(unsigned Opcode,
3290                                std::vector<MVT> &ResultTys,
3291                                SDOperandPtr Ops, unsigned NumOps) {
3292  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3293                 Ops, NumOps);
3294}
3295
3296SDOperand SelectionDAG::getNode(unsigned Opcode,
3297                                const MVT *VTs, unsigned NumVTs,
3298                                SDOperandPtr Ops, unsigned NumOps) {
3299  if (NumVTs == 1)
3300    return getNode(Opcode, VTs[0], Ops, NumOps);
3301  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3302}
3303
3304SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3305                                SDOperandPtr Ops, unsigned NumOps) {
3306  if (VTList.NumVTs == 1)
3307    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3308
3309  switch (Opcode) {
3310  // FIXME: figure out how to safely handle things like
3311  // int foo(int x) { return 1 << (x & 255); }
3312  // int bar() { return foo(256); }
3313#if 0
3314  case ISD::SRA_PARTS:
3315  case ISD::SRL_PARTS:
3316  case ISD::SHL_PARTS:
3317    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3318        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3319      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3320    else if (N3.getOpcode() == ISD::AND)
3321      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3322        // If the and is only masking out bits that cannot effect the shift,
3323        // eliminate the and.
3324        unsigned NumBits = VT.getSizeInBits()*2;
3325        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3326          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3327      }
3328    break;
3329#endif
3330  }
3331
3332  // Memoize the node unless it returns a flag.
3333  SDNode *N;
3334  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3335    FoldingSetNodeID ID;
3336    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3337    void *IP = 0;
3338    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3339      return SDOperand(E, 0);
3340    if (NumOps == 1)
3341      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3342    else if (NumOps == 2)
3343      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3344    else if (NumOps == 3)
3345      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3346    else
3347      N = new SDNode(Opcode, VTList, Ops, NumOps);
3348    CSEMap.InsertNode(N, IP);
3349  } else {
3350    if (NumOps == 1)
3351      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3352    else if (NumOps == 2)
3353      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3354    else if (NumOps == 3)
3355      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3356    else
3357      N = new SDNode(Opcode, VTList, Ops, NumOps);
3358  }
3359  AllNodes.push_back(N);
3360  return SDOperand(N, 0);
3361}
3362
3363SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3364  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3365}
3366
3367SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3368                                SDOperand N1) {
3369  SDOperand Ops[] = { N1 };
3370  return getNode(Opcode, VTList, Ops, 1);
3371}
3372
3373SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3374                                SDOperand N1, SDOperand N2) {
3375  SDOperand Ops[] = { N1, N2 };
3376  return getNode(Opcode, VTList, Ops, 2);
3377}
3378
3379SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3380                                SDOperand N1, SDOperand N2, SDOperand N3) {
3381  SDOperand Ops[] = { N1, N2, N3 };
3382  return getNode(Opcode, VTList, Ops, 3);
3383}
3384
3385SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3386                                SDOperand N1, SDOperand N2, SDOperand N3,
3387                                SDOperand N4) {
3388  SDOperand Ops[] = { N1, N2, N3, N4 };
3389  return getNode(Opcode, VTList, Ops, 4);
3390}
3391
3392SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3393                                SDOperand N1, SDOperand N2, SDOperand N3,
3394                                SDOperand N4, SDOperand N5) {
3395  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3396  return getNode(Opcode, VTList, Ops, 5);
3397}
3398
3399SDVTList SelectionDAG::getVTList(MVT VT) {
3400  return makeVTList(SDNode::getValueTypeList(VT), 1);
3401}
3402
3403SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3404  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3405       E = VTList.end(); I != E; ++I) {
3406    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3407      return makeVTList(&(*I)[0], 2);
3408  }
3409  std::vector<MVT> V;
3410  V.push_back(VT1);
3411  V.push_back(VT2);
3412  VTList.push_front(V);
3413  return makeVTList(&(*VTList.begin())[0], 2);
3414}
3415SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2,
3416                                 MVT VT3) {
3417  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3418       E = VTList.end(); I != E; ++I) {
3419    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3420        (*I)[2] == VT3)
3421      return makeVTList(&(*I)[0], 3);
3422  }
3423  std::vector<MVT> V;
3424  V.push_back(VT1);
3425  V.push_back(VT2);
3426  V.push_back(VT3);
3427  VTList.push_front(V);
3428  return makeVTList(&(*VTList.begin())[0], 3);
3429}
3430
3431SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3432  switch (NumVTs) {
3433    case 0: assert(0 && "Cannot have nodes without results!");
3434    case 1: return getVTList(VTs[0]);
3435    case 2: return getVTList(VTs[0], VTs[1]);
3436    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3437    default: break;
3438  }
3439
3440  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3441       E = VTList.end(); I != E; ++I) {
3442    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3443
3444    bool NoMatch = false;
3445    for (unsigned i = 2; i != NumVTs; ++i)
3446      if (VTs[i] != (*I)[i]) {
3447        NoMatch = true;
3448        break;
3449      }
3450    if (!NoMatch)
3451      return makeVTList(&*I->begin(), NumVTs);
3452  }
3453
3454  VTList.push_front(std::vector<MVT>(VTs, VTs+NumVTs));
3455  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3456}
3457
3458
3459/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3460/// specified operands.  If the resultant node already exists in the DAG,
3461/// this does not modify the specified node, instead it returns the node that
3462/// already exists.  If the resultant node does not exist in the DAG, the
3463/// input node is returned.  As a degenerate case, if you specify the same
3464/// input operands as the node already has, the input node is returned.
3465SDOperand SelectionDAG::
3466UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3467  SDNode *N = InN.Val;
3468  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3469
3470  // Check to see if there is no change.
3471  if (Op == N->getOperand(0)) return InN;
3472
3473  // See if the modified node already exists.
3474  void *InsertPos = 0;
3475  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3476    return SDOperand(Existing, InN.ResNo);
3477
3478  // Nope it doesn't.  Remove the node from it's current place in the maps.
3479  if (InsertPos)
3480    RemoveNodeFromCSEMaps(N);
3481
3482  // Now we update the operands.
3483  N->OperandList[0].getVal()->removeUser(0, N);
3484  N->OperandList[0] = Op;
3485  N->OperandList[0].setUser(N);
3486  Op.Val->addUser(0, N);
3487
3488  // If this gets put into a CSE map, add it.
3489  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3490  return InN;
3491}
3492
3493SDOperand SelectionDAG::
3494UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3495  SDNode *N = InN.Val;
3496  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3497
3498  // Check to see if there is no change.
3499  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3500    return InN;   // No operands changed, just return the input node.
3501
3502  // See if the modified node already exists.
3503  void *InsertPos = 0;
3504  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3505    return SDOperand(Existing, InN.ResNo);
3506
3507  // Nope it doesn't.  Remove the node from it's current place in the maps.
3508  if (InsertPos)
3509    RemoveNodeFromCSEMaps(N);
3510
3511  // Now we update the operands.
3512  if (N->OperandList[0] != Op1) {
3513    N->OperandList[0].getVal()->removeUser(0, N);
3514    N->OperandList[0] = Op1;
3515    N->OperandList[0].setUser(N);
3516    Op1.Val->addUser(0, N);
3517  }
3518  if (N->OperandList[1] != Op2) {
3519    N->OperandList[1].getVal()->removeUser(1, N);
3520    N->OperandList[1] = Op2;
3521    N->OperandList[1].setUser(N);
3522    Op2.Val->addUser(1, N);
3523  }
3524
3525  // If this gets put into a CSE map, add it.
3526  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3527  return InN;
3528}
3529
3530SDOperand SelectionDAG::
3531UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3532  SDOperand Ops[] = { Op1, Op2, Op3 };
3533  return UpdateNodeOperands(N, Ops, 3);
3534}
3535
3536SDOperand SelectionDAG::
3537UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3538                   SDOperand Op3, SDOperand Op4) {
3539  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3540  return UpdateNodeOperands(N, Ops, 4);
3541}
3542
3543SDOperand SelectionDAG::
3544UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3545                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3546  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3547  return UpdateNodeOperands(N, Ops, 5);
3548}
3549
3550SDOperand SelectionDAG::
3551UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3552  SDNode *N = InN.Val;
3553  assert(N->getNumOperands() == NumOps &&
3554         "Update with wrong number of operands");
3555
3556  // Check to see if there is no change.
3557  bool AnyChange = false;
3558  for (unsigned i = 0; i != NumOps; ++i) {
3559    if (Ops[i] != N->getOperand(i)) {
3560      AnyChange = true;
3561      break;
3562    }
3563  }
3564
3565  // No operands changed, just return the input node.
3566  if (!AnyChange) return InN;
3567
3568  // See if the modified node already exists.
3569  void *InsertPos = 0;
3570  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3571    return SDOperand(Existing, InN.ResNo);
3572
3573  // Nope it doesn't.  Remove the node from its current place in the maps.
3574  if (InsertPos)
3575    RemoveNodeFromCSEMaps(N);
3576
3577  // Now we update the operands.
3578  for (unsigned i = 0; i != NumOps; ++i) {
3579    if (N->OperandList[i] != Ops[i]) {
3580      N->OperandList[i].getVal()->removeUser(i, N);
3581      N->OperandList[i] = Ops[i];
3582      N->OperandList[i].setUser(N);
3583      Ops[i].Val->addUser(i, N);
3584    }
3585  }
3586
3587  // If this gets put into a CSE map, add it.
3588  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3589  return InN;
3590}
3591
3592/// MorphNodeTo - This frees the operands of the current node, resets the
3593/// opcode, types, and operands to the specified value.  This should only be
3594/// used by the SelectionDAG class.
3595void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3596                         SDOperandPtr Ops, unsigned NumOps) {
3597  NodeType = Opc;
3598  ValueList = L.VTs;
3599  NumValues = L.NumVTs;
3600
3601  // Clear the operands list, updating used nodes to remove this from their
3602  // use list.
3603  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3604    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3605
3606  // If NumOps is larger than the # of operands we currently have, reallocate
3607  // the operand list.
3608  if (NumOps > NumOperands) {
3609    if (OperandsNeedDelete) {
3610      delete [] OperandList;
3611    }
3612    OperandList = new SDUse[NumOps];
3613    OperandsNeedDelete = true;
3614  }
3615
3616  // Assign the new operands.
3617  NumOperands = NumOps;
3618
3619  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3620    OperandList[i] = Ops[i];
3621    OperandList[i].setUser(this);
3622    SDNode *N = OperandList[i].getVal();
3623    N->addUser(i, this);
3624    ++N->UsesSize;
3625  }
3626}
3627
3628/// SelectNodeTo - These are used for target selectors to *mutate* the
3629/// specified node to have the specified return type, Target opcode, and
3630/// operands.  Note that target opcodes are stored as
3631/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3632///
3633/// Note that SelectNodeTo returns the resultant node.  If there is already a
3634/// node of the specified opcode and operands, it returns that node instead of
3635/// the current one.
3636SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3637                                   MVT VT) {
3638  SDVTList VTs = getVTList(VT);
3639  FoldingSetNodeID ID;
3640  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3641  void *IP = 0;
3642  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3643    return ON;
3644
3645  RemoveNodeFromCSEMaps(N);
3646
3647  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3648
3649  CSEMap.InsertNode(N, IP);
3650  return N;
3651}
3652
3653SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3654                                   MVT VT, SDOperand Op1) {
3655  // If an identical node already exists, use it.
3656  SDVTList VTs = getVTList(VT);
3657  SDOperand Ops[] = { Op1 };
3658
3659  FoldingSetNodeID ID;
3660  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3661  void *IP = 0;
3662  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3663    return ON;
3664
3665  RemoveNodeFromCSEMaps(N);
3666  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3667  CSEMap.InsertNode(N, IP);
3668  return N;
3669}
3670
3671SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3672                                   MVT VT, SDOperand Op1,
3673                                   SDOperand Op2) {
3674  // If an identical node already exists, use it.
3675  SDVTList VTs = getVTList(VT);
3676  SDOperand Ops[] = { Op1, Op2 };
3677
3678  FoldingSetNodeID ID;
3679  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3680  void *IP = 0;
3681  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3682    return ON;
3683
3684  RemoveNodeFromCSEMaps(N);
3685
3686  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3687
3688  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3689  return N;
3690}
3691
3692SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3693                                   MVT VT, SDOperand Op1,
3694                                   SDOperand Op2, SDOperand Op3) {
3695  // If an identical node already exists, use it.
3696  SDVTList VTs = getVTList(VT);
3697  SDOperand Ops[] = { Op1, Op2, Op3 };
3698  FoldingSetNodeID ID;
3699  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3700  void *IP = 0;
3701  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3702    return ON;
3703
3704  RemoveNodeFromCSEMaps(N);
3705
3706  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3707
3708  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3709  return N;
3710}
3711
3712SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3713                                   MVT VT, SDOperandPtr Ops,
3714                                   unsigned NumOps) {
3715  // If an identical node already exists, use it.
3716  SDVTList VTs = getVTList(VT);
3717  FoldingSetNodeID ID;
3718  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3719  void *IP = 0;
3720  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3721    return ON;
3722
3723  RemoveNodeFromCSEMaps(N);
3724  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3725
3726  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3727  return N;
3728}
3729
3730SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3731                                   MVT VT1, MVT VT2,
3732                                   SDOperand Op1, SDOperand Op2) {
3733  SDVTList VTs = getVTList(VT1, VT2);
3734  FoldingSetNodeID ID;
3735  SDOperand Ops[] = { Op1, Op2 };
3736  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3737  void *IP = 0;
3738  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3739    return ON;
3740
3741  RemoveNodeFromCSEMaps(N);
3742  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3743  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3744  return N;
3745}
3746
3747SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3748                                   MVT VT1, MVT VT2,
3749                                   SDOperand Op1, SDOperand Op2,
3750                                   SDOperand Op3) {
3751  // If an identical node already exists, use it.
3752  SDVTList VTs = getVTList(VT1, VT2);
3753  SDOperand Ops[] = { Op1, Op2, Op3 };
3754  FoldingSetNodeID ID;
3755  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3756  void *IP = 0;
3757  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3758    return ON;
3759
3760  RemoveNodeFromCSEMaps(N);
3761
3762  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3763  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3764  return N;
3765}
3766
3767
3768/// getTargetNode - These are used for target selectors to create a new node
3769/// with specified return type(s), target opcode, and operands.
3770///
3771/// Note that getTargetNode returns the resultant node.  If there is already a
3772/// node of the specified opcode and operands, it returns that node instead of
3773/// the current one.
3774SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
3775  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3776}
3777SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1) {
3778  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3779}
3780SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3781                                    SDOperand Op1, SDOperand Op2) {
3782  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3783}
3784SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3785                                    SDOperand Op1, SDOperand Op2,
3786                                    SDOperand Op3) {
3787  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3788}
3789SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3790                                    SDOperandPtr Ops, unsigned NumOps) {
3791  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3792}
3793SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
3794  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3795  SDOperand Op;
3796  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3797}
3798SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3799                                    MVT VT2, SDOperand Op1) {
3800  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3801  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3802}
3803SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3804                                    MVT VT2, SDOperand Op1,
3805                                    SDOperand Op2) {
3806  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3807  SDOperand Ops[] = { Op1, Op2 };
3808  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3809}
3810SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3811                                    MVT VT2, SDOperand Op1,
3812                                    SDOperand Op2, SDOperand Op3) {
3813  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3814  SDOperand Ops[] = { Op1, Op2, Op3 };
3815  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3816}
3817SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
3818                                    SDOperandPtr Ops, unsigned NumOps) {
3819  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3820  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3821}
3822SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3823                                    SDOperand Op1, SDOperand Op2) {
3824  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3825  SDOperand Ops[] = { Op1, Op2 };
3826  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3827}
3828SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3829                                    SDOperand Op1, SDOperand Op2,
3830                                    SDOperand Op3) {
3831  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3832  SDOperand Ops[] = { Op1, Op2, Op3 };
3833  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3834}
3835SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3836                                    SDOperandPtr Ops, unsigned NumOps) {
3837  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3838  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3839}
3840SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3841                                    MVT VT2, MVT VT3, MVT VT4,
3842                                    SDOperandPtr Ops, unsigned NumOps) {
3843  std::vector<MVT> VTList;
3844  VTList.push_back(VT1);
3845  VTList.push_back(VT2);
3846  VTList.push_back(VT3);
3847  VTList.push_back(VT4);
3848  const MVT *VTs = getNodeValueTypes(VTList);
3849  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3850}
3851SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3852                                    std::vector<MVT> &ResultTys,
3853                                    SDOperandPtr Ops, unsigned NumOps) {
3854  const MVT *VTs = getNodeValueTypes(ResultTys);
3855  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3856                 Ops, NumOps).Val;
3857}
3858
3859/// getNodeIfExists - Get the specified node if it's already available, or
3860/// else return NULL.
3861SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3862                                      SDOperandPtr Ops, unsigned NumOps) {
3863  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3864    FoldingSetNodeID ID;
3865    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3866    void *IP = 0;
3867    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3868      return E;
3869  }
3870  return NULL;
3871}
3872
3873
3874/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3875/// This can cause recursive merging of nodes in the DAG.
3876///
3877/// This version assumes From has a single result value.
3878///
3879void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3880                                      DAGUpdateListener *UpdateListener) {
3881  SDNode *From = FromN.Val;
3882  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3883         "Cannot replace with this method!");
3884  assert(From != To.Val && "Cannot replace uses of with self");
3885
3886  while (!From->use_empty()) {
3887    SDNode::use_iterator UI = From->use_begin();
3888    SDNode *U = UI->getUser();
3889
3890    // This node is about to morph, remove its old self from the CSE maps.
3891    RemoveNodeFromCSEMaps(U);
3892    int operandNum = 0;
3893    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3894         I != E; ++I, ++operandNum)
3895      if (I->getVal() == From) {
3896        From->removeUser(operandNum, U);
3897        *I = To;
3898        I->setUser(U);
3899        To.Val->addUser(operandNum, U);
3900      }
3901
3902    // Now that we have modified U, add it back to the CSE maps.  If it already
3903    // exists there, recursively merge the results together.
3904    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3905      ReplaceAllUsesWith(U, Existing, UpdateListener);
3906      // U is now dead.  Inform the listener if it exists and delete it.
3907      if (UpdateListener)
3908        UpdateListener->NodeDeleted(U, Existing);
3909      DeleteNodeNotInCSEMaps(U);
3910    } else {
3911      // If the node doesn't already exist, we updated it.  Inform a listener if
3912      // it exists.
3913      if (UpdateListener)
3914        UpdateListener->NodeUpdated(U);
3915    }
3916  }
3917}
3918
3919/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3920/// This can cause recursive merging of nodes in the DAG.
3921///
3922/// This version assumes From/To have matching types and numbers of result
3923/// values.
3924///
3925void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3926                                      DAGUpdateListener *UpdateListener) {
3927  assert(From != To && "Cannot replace uses of with self");
3928  assert(From->getNumValues() == To->getNumValues() &&
3929         "Cannot use this version of ReplaceAllUsesWith!");
3930  if (From->getNumValues() == 1)   // If possible, use the faster version.
3931    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3932                              UpdateListener);
3933
3934  while (!From->use_empty()) {
3935    SDNode::use_iterator UI = From->use_begin();
3936    SDNode *U = UI->getUser();
3937
3938    // This node is about to morph, remove its old self from the CSE maps.
3939    RemoveNodeFromCSEMaps(U);
3940    int operandNum = 0;
3941    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3942         I != E; ++I, ++operandNum)
3943      if (I->getVal() == From) {
3944        From->removeUser(operandNum, U);
3945        I->getVal() = To;
3946        To->addUser(operandNum, U);
3947      }
3948
3949    // Now that we have modified U, add it back to the CSE maps.  If it already
3950    // exists there, recursively merge the results together.
3951    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3952      ReplaceAllUsesWith(U, Existing, UpdateListener);
3953      // U is now dead.  Inform the listener if it exists and delete it.
3954      if (UpdateListener)
3955        UpdateListener->NodeDeleted(U, Existing);
3956      DeleteNodeNotInCSEMaps(U);
3957    } else {
3958      // If the node doesn't already exist, we updated it.  Inform a listener if
3959      // it exists.
3960      if (UpdateListener)
3961        UpdateListener->NodeUpdated(U);
3962    }
3963  }
3964}
3965
3966/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3967/// This can cause recursive merging of nodes in the DAG.
3968///
3969/// This version can replace From with any result values.  To must match the
3970/// number and types of values returned by From.
3971void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3972                                      SDOperandPtr To,
3973                                      DAGUpdateListener *UpdateListener) {
3974  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3975    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3976
3977  while (!From->use_empty()) {
3978    SDNode::use_iterator UI = From->use_begin();
3979    SDNode *U = UI->getUser();
3980
3981    // This node is about to morph, remove its old self from the CSE maps.
3982    RemoveNodeFromCSEMaps(U);
3983    int operandNum = 0;
3984    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3985         I != E; ++I, ++operandNum)
3986      if (I->getVal() == From) {
3987        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3988        From->removeUser(operandNum, U);
3989        *I = ToOp;
3990        I->setUser(U);
3991        ToOp.Val->addUser(operandNum, U);
3992      }
3993
3994    // Now that we have modified U, add it back to the CSE maps.  If it already
3995    // exists there, recursively merge the results together.
3996    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3997      ReplaceAllUsesWith(U, Existing, UpdateListener);
3998      // U is now dead.  Inform the listener if it exists and delete it.
3999      if (UpdateListener)
4000        UpdateListener->NodeDeleted(U, Existing);
4001      DeleteNodeNotInCSEMaps(U);
4002    } else {
4003      // If the node doesn't already exist, we updated it.  Inform a listener if
4004      // it exists.
4005      if (UpdateListener)
4006        UpdateListener->NodeUpdated(U);
4007    }
4008  }
4009}
4010
4011namespace {
4012  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4013  /// any deleted nodes from the set passed into its constructor and recursively
4014  /// notifies another update listener if specified.
4015  class ChainedSetUpdaterListener :
4016  public SelectionDAG::DAGUpdateListener {
4017    SmallSetVector<SDNode*, 16> &Set;
4018    SelectionDAG::DAGUpdateListener *Chain;
4019  public:
4020    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4021                              SelectionDAG::DAGUpdateListener *chain)
4022      : Set(set), Chain(chain) {}
4023
4024    virtual void NodeDeleted(SDNode *N, SDNode *E) {
4025      Set.remove(N);
4026      if (Chain) Chain->NodeDeleted(N, E);
4027    }
4028    virtual void NodeUpdated(SDNode *N) {
4029      if (Chain) Chain->NodeUpdated(N);
4030    }
4031  };
4032}
4033
4034/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4035/// uses of other values produced by From.Val alone.  The Deleted vector is
4036/// handled the same way as for ReplaceAllUsesWith.
4037void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4038                                             DAGUpdateListener *UpdateListener){
4039  assert(From != To && "Cannot replace a value with itself");
4040
4041  // Handle the simple, trivial, case efficiently.
4042  if (From.Val->getNumValues() == 1) {
4043    ReplaceAllUsesWith(From, To, UpdateListener);
4044    return;
4045  }
4046
4047  if (From.use_empty()) return;
4048
4049  // Get all of the users of From.Val.  We want these in a nice,
4050  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4051  SmallSetVector<SDNode*, 16> Users;
4052  for (SDNode::use_iterator UI = From.Val->use_begin(),
4053      E = From.Val->use_end(); UI != E; ++UI) {
4054    SDNode *User = UI->getUser();
4055    if (!Users.count(User))
4056      Users.insert(User);
4057  }
4058
4059  // When one of the recursive merges deletes nodes from the graph, we need to
4060  // make sure that UpdateListener is notified *and* that the node is removed
4061  // from Users if present.  CSUL does this.
4062  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4063
4064  while (!Users.empty()) {
4065    // We know that this user uses some value of From.  If it is the right
4066    // value, update it.
4067    SDNode *User = Users.back();
4068    Users.pop_back();
4069
4070    // Scan for an operand that matches From.
4071    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4072    for (; Op != E; ++Op)
4073      if (*Op == From) break;
4074
4075    // If there are no matches, the user must use some other result of From.
4076    if (Op == E) continue;
4077
4078    // Okay, we know this user needs to be updated.  Remove its old self
4079    // from the CSE maps.
4080    RemoveNodeFromCSEMaps(User);
4081
4082    // Update all operands that match "From" in case there are multiple uses.
4083    for (; Op != E; ++Op) {
4084      if (*Op == From) {
4085        From.Val->removeUser(Op-User->op_begin(), User);
4086        *Op = To;
4087        Op->setUser(User);
4088        To.Val->addUser(Op-User->op_begin(), User);
4089      }
4090    }
4091
4092    // Now that we have modified User, add it back to the CSE maps.  If it
4093    // already exists there, recursively merge the results together.
4094    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4095    if (!Existing) {
4096      if (UpdateListener) UpdateListener->NodeUpdated(User);
4097      continue;  // Continue on to next user.
4098    }
4099
4100    // If there was already an existing matching node, use ReplaceAllUsesWith
4101    // to replace the dead one with the existing one.  This can cause
4102    // recursive merging of other unrelated nodes down the line.  The merging
4103    // can cause deletion of nodes that used the old value.  To handle this, we
4104    // use CSUL to remove them from the Users set.
4105    ReplaceAllUsesWith(User, Existing, &CSUL);
4106
4107    // User is now dead.  Notify a listener if present.
4108    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4109    DeleteNodeNotInCSEMaps(User);
4110  }
4111}
4112
4113/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4114/// their allnodes order. It returns the maximum id.
4115unsigned SelectionDAG::AssignNodeIds() {
4116  unsigned Id = 0;
4117  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4118    SDNode *N = I;
4119    N->setNodeId(Id++);
4120  }
4121  return Id;
4122}
4123
4124/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4125/// based on their topological order. It returns the maximum id and a vector
4126/// of the SDNodes* in assigned order by reference.
4127unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4128  unsigned DAGSize = AllNodes.size();
4129  std::vector<unsigned> InDegree(DAGSize);
4130  std::vector<SDNode*> Sources;
4131
4132  // Use a two pass approach to avoid using a std::map which is slow.
4133  unsigned Id = 0;
4134  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4135    SDNode *N = I;
4136    N->setNodeId(Id++);
4137    unsigned Degree = N->use_size();
4138    InDegree[N->getNodeId()] = Degree;
4139    if (Degree == 0)
4140      Sources.push_back(N);
4141  }
4142
4143  TopOrder.clear();
4144  while (!Sources.empty()) {
4145    SDNode *N = Sources.back();
4146    Sources.pop_back();
4147    TopOrder.push_back(N);
4148    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4149      SDNode *P = I->getVal();
4150      unsigned Degree = --InDegree[P->getNodeId()];
4151      if (Degree == 0)
4152        Sources.push_back(P);
4153    }
4154  }
4155
4156  // Second pass, assign the actual topological order as node ids.
4157  Id = 0;
4158  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4159       TI != TE; ++TI)
4160    (*TI)->setNodeId(Id++);
4161
4162  return Id;
4163}
4164
4165
4166
4167//===----------------------------------------------------------------------===//
4168//                              SDNode Class
4169//===----------------------------------------------------------------------===//
4170
4171// Out-of-line virtual method to give class a home.
4172void SDNode::ANCHOR() {}
4173void UnarySDNode::ANCHOR() {}
4174void BinarySDNode::ANCHOR() {}
4175void TernarySDNode::ANCHOR() {}
4176void HandleSDNode::ANCHOR() {}
4177void StringSDNode::ANCHOR() {}
4178void ConstantSDNode::ANCHOR() {}
4179void ConstantFPSDNode::ANCHOR() {}
4180void GlobalAddressSDNode::ANCHOR() {}
4181void FrameIndexSDNode::ANCHOR() {}
4182void JumpTableSDNode::ANCHOR() {}
4183void ConstantPoolSDNode::ANCHOR() {}
4184void BasicBlockSDNode::ANCHOR() {}
4185void SrcValueSDNode::ANCHOR() {}
4186void MemOperandSDNode::ANCHOR() {}
4187void RegisterSDNode::ANCHOR() {}
4188void ExternalSymbolSDNode::ANCHOR() {}
4189void CondCodeSDNode::ANCHOR() {}
4190void ARG_FLAGSSDNode::ANCHOR() {}
4191void VTSDNode::ANCHOR() {}
4192void MemSDNode::ANCHOR() {}
4193void LoadSDNode::ANCHOR() {}
4194void StoreSDNode::ANCHOR() {}
4195void AtomicSDNode::ANCHOR() {}
4196
4197HandleSDNode::~HandleSDNode() {
4198  SDVTList VTs = { 0, 0 };
4199  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4200}
4201
4202GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4203                                         MVT VT, int o)
4204  : SDNode(isa<GlobalVariable>(GA) &&
4205           cast<GlobalVariable>(GA)->isThreadLocal() ?
4206           // Thread Local
4207           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4208           // Non Thread Local
4209           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4210           getSDVTList(VT)), Offset(o) {
4211  TheGlobal = const_cast<GlobalValue*>(GA);
4212}
4213
4214/// getMemOperand - Return a MachineMemOperand object describing the memory
4215/// reference performed by this atomic.
4216MachineMemOperand AtomicSDNode::getMemOperand() const {
4217  int Size = (getValueType(0).getSizeInBits() + 7) >> 3;
4218  int Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4219  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4220
4221  // Check if the atomic references a frame index
4222  const FrameIndexSDNode *FI =
4223  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4224  if (!getSrcValue() && FI)
4225    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4226                             FI->getIndex(), Size, getAlignment());
4227  else
4228    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4229                             Size, getAlignment());
4230}
4231
4232/// getMemOperand - Return a MachineMemOperand object describing the memory
4233/// reference performed by this load or store.
4234MachineMemOperand LSBaseSDNode::getMemOperand() const {
4235  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4236  int Flags =
4237    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4238                               MachineMemOperand::MOStore;
4239  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4240
4241  // Check if the load references a frame index, and does not have
4242  // an SV attached.
4243  const FrameIndexSDNode *FI =
4244    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4245  if (!getSrcValue() && FI)
4246    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4247                             FI->getIndex(), Size, getAlignment());
4248  else
4249    return MachineMemOperand(getSrcValue(), Flags,
4250                             getSrcValueOffset(), Size, getAlignment());
4251}
4252
4253/// Profile - Gather unique data for the node.
4254///
4255void SDNode::Profile(FoldingSetNodeID &ID) {
4256  AddNodeIDNode(ID, this);
4257}
4258
4259/// getValueTypeList - Return a pointer to the specified value type.
4260///
4261const MVT *SDNode::getValueTypeList(MVT VT) {
4262  if (VT.isExtended()) {
4263    static std::set<MVT, MVT::compareRawBits> EVTs;
4264    return &(*EVTs.insert(VT).first);
4265  } else {
4266    static MVT VTs[MVT::LAST_VALUETYPE];
4267    VTs[VT.getSimpleVT()] = VT;
4268    return &VTs[VT.getSimpleVT()];
4269  }
4270}
4271
4272/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4273/// indicated value.  This method ignores uses of other values defined by this
4274/// operation.
4275bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4276  assert(Value < getNumValues() && "Bad value!");
4277
4278  // If there is only one value, this is easy.
4279  if (getNumValues() == 1)
4280    return use_size() == NUses;
4281  if (use_size() < NUses) return false;
4282
4283  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4284
4285  SmallPtrSet<SDNode*, 32> UsersHandled;
4286
4287  // TODO: Only iterate over uses of a given value of the node
4288  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4289    if (*UI == TheValue) {
4290      if (NUses == 0)
4291        return false;
4292      --NUses;
4293    }
4294  }
4295
4296  // Found exactly the right number of uses?
4297  return NUses == 0;
4298}
4299
4300
4301/// hasAnyUseOfValue - Return true if there are any use of the indicated
4302/// value. This method ignores uses of other values defined by this operation.
4303bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4304  assert(Value < getNumValues() && "Bad value!");
4305
4306  if (use_empty()) return false;
4307
4308  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4309
4310  SmallPtrSet<SDNode*, 32> UsersHandled;
4311
4312  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4313    SDNode *User = UI->getUser();
4314    if (User->getNumOperands() == 1 ||
4315        UsersHandled.insert(User))     // First time we've seen this?
4316      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4317        if (User->getOperand(i) == TheValue) {
4318          return true;
4319        }
4320  }
4321
4322  return false;
4323}
4324
4325
4326/// isOnlyUseOf - Return true if this node is the only use of N.
4327///
4328bool SDNode::isOnlyUseOf(SDNode *N) const {
4329  bool Seen = false;
4330  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4331    SDNode *User = I->getUser();
4332    if (User == this)
4333      Seen = true;
4334    else
4335      return false;
4336  }
4337
4338  return Seen;
4339}
4340
4341/// isOperand - Return true if this node is an operand of N.
4342///
4343bool SDOperand::isOperandOf(SDNode *N) const {
4344  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4345    if (*this == N->getOperand(i))
4346      return true;
4347  return false;
4348}
4349
4350bool SDNode::isOperandOf(SDNode *N) const {
4351  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4352    if (this == N->OperandList[i].getVal())
4353      return true;
4354  return false;
4355}
4356
4357/// reachesChainWithoutSideEffects - Return true if this operand (which must
4358/// be a chain) reaches the specified operand without crossing any
4359/// side-effecting instructions.  In practice, this looks through token
4360/// factors and non-volatile loads.  In order to remain efficient, this only
4361/// looks a couple of nodes in, it does not do an exhaustive search.
4362bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4363                                               unsigned Depth) const {
4364  if (*this == Dest) return true;
4365
4366  // Don't search too deeply, we just want to be able to see through
4367  // TokenFactor's etc.
4368  if (Depth == 0) return false;
4369
4370  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4371  // of the operands of the TF reach dest, then we can do the xform.
4372  if (getOpcode() == ISD::TokenFactor) {
4373    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4374      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4375        return true;
4376    return false;
4377  }
4378
4379  // Loads don't have side effects, look through them.
4380  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4381    if (!Ld->isVolatile())
4382      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4383  }
4384  return false;
4385}
4386
4387
4388static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4389                            SmallPtrSet<SDNode *, 32> &Visited) {
4390  if (found || !Visited.insert(N))
4391    return;
4392
4393  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4394    SDNode *Op = N->getOperand(i).Val;
4395    if (Op == P) {
4396      found = true;
4397      return;
4398    }
4399    findPredecessor(Op, P, found, Visited);
4400  }
4401}
4402
4403/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4404/// is either an operand of N or it can be reached by recursively traversing
4405/// up the operands.
4406/// NOTE: this is an expensive method. Use it carefully.
4407bool SDNode::isPredecessorOf(SDNode *N) const {
4408  SmallPtrSet<SDNode *, 32> Visited;
4409  bool found = false;
4410  findPredecessor(N, this, found, Visited);
4411  return found;
4412}
4413
4414uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4415  assert(Num < NumOperands && "Invalid child # of SDNode!");
4416  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4417}
4418
4419std::string SDNode::getOperationName(const SelectionDAG *G) const {
4420  switch (getOpcode()) {
4421  default:
4422    if (getOpcode() < ISD::BUILTIN_OP_END)
4423      return "<<Unknown DAG Node>>";
4424    else {
4425      if (G) {
4426        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4427          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4428            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4429
4430        TargetLowering &TLI = G->getTargetLoweringInfo();
4431        const char *Name =
4432          TLI.getTargetNodeName(getOpcode());
4433        if (Name) return Name;
4434      }
4435
4436      return "<<Unknown Target Node>>";
4437    }
4438
4439  case ISD::PREFETCH:      return "Prefetch";
4440  case ISD::MEMBARRIER:    return "MemBarrier";
4441  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4442  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4443  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4444  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4445  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4446  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4447  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4448  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4449  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4450  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4451  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4452  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4453  case ISD::PCMARKER:      return "PCMarker";
4454  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4455  case ISD::SRCVALUE:      return "SrcValue";
4456  case ISD::MEMOPERAND:    return "MemOperand";
4457  case ISD::EntryToken:    return "EntryToken";
4458  case ISD::TokenFactor:   return "TokenFactor";
4459  case ISD::AssertSext:    return "AssertSext";
4460  case ISD::AssertZext:    return "AssertZext";
4461
4462  case ISD::STRING:        return "String";
4463  case ISD::BasicBlock:    return "BasicBlock";
4464  case ISD::ARG_FLAGS:     return "ArgFlags";
4465  case ISD::VALUETYPE:     return "ValueType";
4466  case ISD::Register:      return "Register";
4467
4468  case ISD::Constant:      return "Constant";
4469  case ISD::ConstantFP:    return "ConstantFP";
4470  case ISD::GlobalAddress: return "GlobalAddress";
4471  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4472  case ISD::FrameIndex:    return "FrameIndex";
4473  case ISD::JumpTable:     return "JumpTable";
4474  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4475  case ISD::RETURNADDR: return "RETURNADDR";
4476  case ISD::FRAMEADDR: return "FRAMEADDR";
4477  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4478  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4479  case ISD::EHSELECTION: return "EHSELECTION";
4480  case ISD::EH_RETURN: return "EH_RETURN";
4481  case ISD::ConstantPool:  return "ConstantPool";
4482  case ISD::ExternalSymbol: return "ExternalSymbol";
4483  case ISD::INTRINSIC_WO_CHAIN: {
4484    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4485    return Intrinsic::getName((Intrinsic::ID)IID);
4486  }
4487  case ISD::INTRINSIC_VOID:
4488  case ISD::INTRINSIC_W_CHAIN: {
4489    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4490    return Intrinsic::getName((Intrinsic::ID)IID);
4491  }
4492
4493  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4494  case ISD::TargetConstant: return "TargetConstant";
4495  case ISD::TargetConstantFP:return "TargetConstantFP";
4496  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4497  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4498  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4499  case ISD::TargetJumpTable:  return "TargetJumpTable";
4500  case ISD::TargetConstantPool:  return "TargetConstantPool";
4501  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4502
4503  case ISD::CopyToReg:     return "CopyToReg";
4504  case ISD::CopyFromReg:   return "CopyFromReg";
4505  case ISD::UNDEF:         return "undef";
4506  case ISD::MERGE_VALUES:  return "merge_values";
4507  case ISD::INLINEASM:     return "inlineasm";
4508  case ISD::LABEL:         return "label";
4509  case ISD::DECLARE:       return "declare";
4510  case ISD::HANDLENODE:    return "handlenode";
4511  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4512  case ISD::CALL:          return "call";
4513
4514  // Unary operators
4515  case ISD::FABS:   return "fabs";
4516  case ISD::FNEG:   return "fneg";
4517  case ISD::FSQRT:  return "fsqrt";
4518  case ISD::FSIN:   return "fsin";
4519  case ISD::FCOS:   return "fcos";
4520  case ISD::FPOWI:  return "fpowi";
4521  case ISD::FPOW:   return "fpow";
4522
4523  // Binary operators
4524  case ISD::ADD:    return "add";
4525  case ISD::SUB:    return "sub";
4526  case ISD::MUL:    return "mul";
4527  case ISD::MULHU:  return "mulhu";
4528  case ISD::MULHS:  return "mulhs";
4529  case ISD::SDIV:   return "sdiv";
4530  case ISD::UDIV:   return "udiv";
4531  case ISD::SREM:   return "srem";
4532  case ISD::UREM:   return "urem";
4533  case ISD::SMUL_LOHI:  return "smul_lohi";
4534  case ISD::UMUL_LOHI:  return "umul_lohi";
4535  case ISD::SDIVREM:    return "sdivrem";
4536  case ISD::UDIVREM:    return "divrem";
4537  case ISD::AND:    return "and";
4538  case ISD::OR:     return "or";
4539  case ISD::XOR:    return "xor";
4540  case ISD::SHL:    return "shl";
4541  case ISD::SRA:    return "sra";
4542  case ISD::SRL:    return "srl";
4543  case ISD::ROTL:   return "rotl";
4544  case ISD::ROTR:   return "rotr";
4545  case ISD::FADD:   return "fadd";
4546  case ISD::FSUB:   return "fsub";
4547  case ISD::FMUL:   return "fmul";
4548  case ISD::FDIV:   return "fdiv";
4549  case ISD::FREM:   return "frem";
4550  case ISD::FCOPYSIGN: return "fcopysign";
4551  case ISD::FGETSIGN:  return "fgetsign";
4552
4553  case ISD::SETCC:       return "setcc";
4554  case ISD::VSETCC:      return "vsetcc";
4555  case ISD::SELECT:      return "select";
4556  case ISD::SELECT_CC:   return "select_cc";
4557  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4558  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4559  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4560  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4561  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4562  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4563  case ISD::CARRY_FALSE:         return "carry_false";
4564  case ISD::ADDC:        return "addc";
4565  case ISD::ADDE:        return "adde";
4566  case ISD::SUBC:        return "subc";
4567  case ISD::SUBE:        return "sube";
4568  case ISD::SHL_PARTS:   return "shl_parts";
4569  case ISD::SRA_PARTS:   return "sra_parts";
4570  case ISD::SRL_PARTS:   return "srl_parts";
4571
4572  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4573  case ISD::INSERT_SUBREG:      return "insert_subreg";
4574
4575  // Conversion operators.
4576  case ISD::SIGN_EXTEND: return "sign_extend";
4577  case ISD::ZERO_EXTEND: return "zero_extend";
4578  case ISD::ANY_EXTEND:  return "any_extend";
4579  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4580  case ISD::TRUNCATE:    return "truncate";
4581  case ISD::FP_ROUND:    return "fp_round";
4582  case ISD::FLT_ROUNDS_: return "flt_rounds";
4583  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4584  case ISD::FP_EXTEND:   return "fp_extend";
4585
4586  case ISD::SINT_TO_FP:  return "sint_to_fp";
4587  case ISD::UINT_TO_FP:  return "uint_to_fp";
4588  case ISD::FP_TO_SINT:  return "fp_to_sint";
4589  case ISD::FP_TO_UINT:  return "fp_to_uint";
4590  case ISD::BIT_CONVERT: return "bit_convert";
4591
4592    // Control flow instructions
4593  case ISD::BR:      return "br";
4594  case ISD::BRIND:   return "brind";
4595  case ISD::BR_JT:   return "br_jt";
4596  case ISD::BRCOND:  return "brcond";
4597  case ISD::BR_CC:   return "br_cc";
4598  case ISD::RET:     return "ret";
4599  case ISD::CALLSEQ_START:  return "callseq_start";
4600  case ISD::CALLSEQ_END:    return "callseq_end";
4601
4602    // Other operators
4603  case ISD::LOAD:               return "load";
4604  case ISD::STORE:              return "store";
4605  case ISD::VAARG:              return "vaarg";
4606  case ISD::VACOPY:             return "vacopy";
4607  case ISD::VAEND:              return "vaend";
4608  case ISD::VASTART:            return "vastart";
4609  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4610  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4611  case ISD::BUILD_PAIR:         return "build_pair";
4612  case ISD::STACKSAVE:          return "stacksave";
4613  case ISD::STACKRESTORE:       return "stackrestore";
4614  case ISD::TRAP:               return "trap";
4615
4616  // Bit manipulation
4617  case ISD::BSWAP:   return "bswap";
4618  case ISD::CTPOP:   return "ctpop";
4619  case ISD::CTTZ:    return "cttz";
4620  case ISD::CTLZ:    return "ctlz";
4621
4622  // Debug info
4623  case ISD::LOCATION: return "location";
4624  case ISD::DEBUG_LOC: return "debug_loc";
4625
4626  // Trampolines
4627  case ISD::TRAMPOLINE: return "trampoline";
4628
4629  case ISD::CONDCODE:
4630    switch (cast<CondCodeSDNode>(this)->get()) {
4631    default: assert(0 && "Unknown setcc condition!");
4632    case ISD::SETOEQ:  return "setoeq";
4633    case ISD::SETOGT:  return "setogt";
4634    case ISD::SETOGE:  return "setoge";
4635    case ISD::SETOLT:  return "setolt";
4636    case ISD::SETOLE:  return "setole";
4637    case ISD::SETONE:  return "setone";
4638
4639    case ISD::SETO:    return "seto";
4640    case ISD::SETUO:   return "setuo";
4641    case ISD::SETUEQ:  return "setue";
4642    case ISD::SETUGT:  return "setugt";
4643    case ISD::SETUGE:  return "setuge";
4644    case ISD::SETULT:  return "setult";
4645    case ISD::SETULE:  return "setule";
4646    case ISD::SETUNE:  return "setune";
4647
4648    case ISD::SETEQ:   return "seteq";
4649    case ISD::SETGT:   return "setgt";
4650    case ISD::SETGE:   return "setge";
4651    case ISD::SETLT:   return "setlt";
4652    case ISD::SETLE:   return "setle";
4653    case ISD::SETNE:   return "setne";
4654    }
4655  }
4656}
4657
4658const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4659  switch (AM) {
4660  default:
4661    return "";
4662  case ISD::PRE_INC:
4663    return "<pre-inc>";
4664  case ISD::PRE_DEC:
4665    return "<pre-dec>";
4666  case ISD::POST_INC:
4667    return "<post-inc>";
4668  case ISD::POST_DEC:
4669    return "<post-dec>";
4670  }
4671}
4672
4673std::string ISD::ArgFlagsTy::getArgFlagsString() {
4674  std::string S = "< ";
4675
4676  if (isZExt())
4677    S += "zext ";
4678  if (isSExt())
4679    S += "sext ";
4680  if (isInReg())
4681    S += "inreg ";
4682  if (isSRet())
4683    S += "sret ";
4684  if (isByVal())
4685    S += "byval ";
4686  if (isNest())
4687    S += "nest ";
4688  if (getByValAlign())
4689    S += "byval-align:" + utostr(getByValAlign()) + " ";
4690  if (getOrigAlign())
4691    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4692  if (getByValSize())
4693    S += "byval-size:" + utostr(getByValSize()) + " ";
4694  return S + ">";
4695}
4696
4697void SDNode::dump() const { dump(0); }
4698void SDNode::dump(const SelectionDAG *G) const {
4699  cerr << (void*)this << ": ";
4700
4701  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4702    if (i) cerr << ",";
4703    if (getValueType(i) == MVT::Other)
4704      cerr << "ch";
4705    else
4706      cerr << getValueType(i).getMVTString();
4707  }
4708  cerr << " = " << getOperationName(G);
4709
4710  cerr << " ";
4711  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4712    if (i) cerr << ", ";
4713    cerr << (void*)getOperand(i).Val;
4714    if (unsigned RN = getOperand(i).ResNo)
4715      cerr << ":" << RN;
4716  }
4717
4718  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4719    SDNode *Mask = getOperand(2).Val;
4720    cerr << "<";
4721    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4722      if (i) cerr << ",";
4723      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4724        cerr << "u";
4725      else
4726        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4727    }
4728    cerr << ">";
4729  }
4730
4731  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4732    cerr << "<" << CSDN->getValue() << ">";
4733  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4734    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4735      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4736    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4737      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4738    else {
4739      cerr << "<APFloat(";
4740      CSDN->getValueAPF().convertToAPInt().dump();
4741      cerr << ")>";
4742    }
4743  } else if (const GlobalAddressSDNode *GADN =
4744             dyn_cast<GlobalAddressSDNode>(this)) {
4745    int offset = GADN->getOffset();
4746    cerr << "<";
4747    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4748    if (offset > 0)
4749      cerr << " + " << offset;
4750    else
4751      cerr << " " << offset;
4752  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4753    cerr << "<" << FIDN->getIndex() << ">";
4754  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4755    cerr << "<" << JTDN->getIndex() << ">";
4756  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4757    int offset = CP->getOffset();
4758    if (CP->isMachineConstantPoolEntry())
4759      cerr << "<" << *CP->getMachineCPVal() << ">";
4760    else
4761      cerr << "<" << *CP->getConstVal() << ">";
4762    if (offset > 0)
4763      cerr << " + " << offset;
4764    else
4765      cerr << " " << offset;
4766  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4767    cerr << "<";
4768    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4769    if (LBB)
4770      cerr << LBB->getName() << " ";
4771    cerr << (const void*)BBDN->getBasicBlock() << ">";
4772  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4773    if (G && R->getReg() &&
4774        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4775      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4776    } else {
4777      cerr << " #" << R->getReg();
4778    }
4779  } else if (const ExternalSymbolSDNode *ES =
4780             dyn_cast<ExternalSymbolSDNode>(this)) {
4781    cerr << "'" << ES->getSymbol() << "'";
4782  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4783    if (M->getValue())
4784      cerr << "<" << M->getValue() << ">";
4785    else
4786      cerr << "<null>";
4787  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4788    if (M->MO.getValue())
4789      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4790    else
4791      cerr << "<null:" << M->MO.getOffset() << ">";
4792  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4793    cerr << N->getArgFlags().getArgFlagsString();
4794  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4795    cerr << ":" << N->getVT().getMVTString();
4796  }
4797  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4798    const Value *SrcValue = LD->getSrcValue();
4799    int SrcOffset = LD->getSrcValueOffset();
4800    cerr << " <";
4801    if (SrcValue)
4802      cerr << SrcValue;
4803    else
4804      cerr << "null";
4805    cerr << ":" << SrcOffset << ">";
4806
4807    bool doExt = true;
4808    switch (LD->getExtensionType()) {
4809    default: doExt = false; break;
4810    case ISD::EXTLOAD:
4811      cerr << " <anyext ";
4812      break;
4813    case ISD::SEXTLOAD:
4814      cerr << " <sext ";
4815      break;
4816    case ISD::ZEXTLOAD:
4817      cerr << " <zext ";
4818      break;
4819    }
4820    if (doExt)
4821      cerr << LD->getMemoryVT().getMVTString() << ">";
4822
4823    const char *AM = getIndexedModeName(LD->getAddressingMode());
4824    if (*AM)
4825      cerr << " " << AM;
4826    if (LD->isVolatile())
4827      cerr << " <volatile>";
4828    cerr << " alignment=" << LD->getAlignment();
4829  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4830    const Value *SrcValue = ST->getSrcValue();
4831    int SrcOffset = ST->getSrcValueOffset();
4832    cerr << " <";
4833    if (SrcValue)
4834      cerr << SrcValue;
4835    else
4836      cerr << "null";
4837    cerr << ":" << SrcOffset << ">";
4838
4839    if (ST->isTruncatingStore())
4840      cerr << " <trunc "
4841           << ST->getMemoryVT().getMVTString() << ">";
4842
4843    const char *AM = getIndexedModeName(ST->getAddressingMode());
4844    if (*AM)
4845      cerr << " " << AM;
4846    if (ST->isVolatile())
4847      cerr << " <volatile>";
4848    cerr << " alignment=" << ST->getAlignment();
4849  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
4850    const Value *SrcValue = AT->getSrcValue();
4851    int SrcOffset = AT->getSrcValueOffset();
4852    cerr << " <";
4853    if (SrcValue)
4854      cerr << SrcValue;
4855    else
4856      cerr << "null";
4857    cerr << ":" << SrcOffset << ">";
4858    if (AT->isVolatile())
4859      cerr << " <volatile>";
4860    cerr << " alignment=" << AT->getAlignment();
4861  }
4862}
4863
4864static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4865  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4866    if (N->getOperand(i).Val->hasOneUse())
4867      DumpNodes(N->getOperand(i).Val, indent+2, G);
4868    else
4869      cerr << "\n" << std::string(indent+2, ' ')
4870           << (void*)N->getOperand(i).Val << ": <multiple use>";
4871
4872
4873  cerr << "\n" << std::string(indent, ' ');
4874  N->dump(G);
4875}
4876
4877void SelectionDAG::dump() const {
4878  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4879  std::vector<const SDNode*> Nodes;
4880  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4881       I != E; ++I)
4882    Nodes.push_back(I);
4883
4884  std::sort(Nodes.begin(), Nodes.end());
4885
4886  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4887    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4888      DumpNodes(Nodes[i], 2, this);
4889  }
4890
4891  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4892
4893  cerr << "\n\n";
4894}
4895
4896const Type *ConstantPoolSDNode::getType() const {
4897  if (isMachineConstantPoolEntry())
4898    return Val.MachineCPVal->getType();
4899  return Val.ConstVal->getType();
4900}
4901