SelectionDAG.cpp revision 05a001f8364754dc202260edd890d4846857525f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57  SDVTList Res = {VTs, NumVTs};
58  return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  default: llvm_unreachable("Unknown FP format");
64  case MVT::f32:     return &APFloat::IEEEsingle;
65  case MVT::f64:     return &APFloat::IEEEdouble;
66  case MVT::f80:     return &APFloat::x87DoubleExtended;
67  case MVT::f128:    return &APFloat::IEEEquad;
68  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69  }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75//                              ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83  return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87                                           const APFloat& Val) {
88  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90  // PPC long double cannot be converted to any other type.
91  if (VT == MVT::ppcf128 ||
92      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93    return false;
94
95  // convert modifies in place, so make a copy.
96  APFloat Val2 = APFloat(Val);
97  bool losesInfo;
98  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99                      &losesInfo);
100  return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104//                              ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).getNode();
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDValue NotZero = N->getOperand(i);
128  if (isa<ConstantSDNode>(NotZero)) {
129    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(NotZero)) {
132    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133                bitcastToAPInt().isAllOnesValue())
134      return false;
135  } else
136    return false;
137
138  // Okay, we have at least one ~0 value, check to see if the rest match or are
139  // undefs.
140  for (++i; i != e; ++i)
141    if (N->getOperand(i) != NotZero &&
142        N->getOperand(i).getOpcode() != ISD::UNDEF)
143      return false;
144  return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151  // Look through a bit convert.
152  if (N->getOpcode() == ISD::BIT_CONVERT)
153    N = N->getOperand(0).getNode();
154
155  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157  unsigned i = 0, e = N->getNumOperands();
158
159  // Skip over all of the undef values.
160  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161    ++i;
162
163  // Do not accept an all-undef vector.
164  if (i == e) return false;
165
166  // Do not accept build_vectors that aren't all constants or which have non-0
167  // elements.
168  SDValue Zero = N->getOperand(i);
169  if (isa<ConstantSDNode>(Zero)) {
170    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171      return false;
172  } else if (isa<ConstantFPSDNode>(Zero)) {
173    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174      return false;
175  } else
176    return false;
177
178  // Okay, we have at least one 0 value, check to see if the rest match or are
179  // undefs.
180  for (++i; i != e; ++i)
181    if (N->getOperand(i) != Zero &&
182        N->getOperand(i).getOpcode() != ISD::UNDEF)
183      return false;
184  return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192    return true;
193
194  if (N->getOpcode() != ISD::BUILD_VECTOR)
195    return false;
196  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197    return false;
198  unsigned NumElems = N->getNumOperands();
199  for (unsigned i = 1; i < NumElems; ++i) {
200    SDValue V = N->getOperand(i);
201    if (V.getOpcode() != ISD::UNDEF)
202      return false;
203  }
204  return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));       // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;  // Don't let N and U bits get set.
230
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: llvm_unreachable("Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Flag)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Flag)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    llvm_unreachable("EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol: {
622    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
623    Erased = TargetExternalSymbols.erase(
624               std::pair<std::string,unsigned char>(ESN->getSymbol(),
625                                                    ESN->getTargetFlags()));
626    break;
627  }
628  case ISD::VALUETYPE: {
629    EVT VT = cast<VTSDNode>(N)->getVT();
630    if (VT.isExtended()) {
631      Erased = ExtendedValueTypeNodes.erase(VT);
632    } else {
633      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
634      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
635    }
636    break;
637  }
638  default:
639    // Remove it from the CSE Map.
640    Erased = CSEMap.RemoveNode(N);
641    break;
642  }
643#ifndef NDEBUG
644  // Verify that the node was actually in one of the CSE maps, unless it has a
645  // flag result (which cannot be CSE'd) or is one of the special cases that are
646  // not subject to CSE.
647  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
648      !N->isMachineOpcode() && !doNotCSE(N)) {
649    N->dump(this);
650    dbgs() << "\n";
651    llvm_unreachable("Node is not in map!");
652  }
653#endif
654  return Erased;
655}
656
657/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
658/// maps and modified in place. Add it back to the CSE maps, unless an identical
659/// node already exists, in which case transfer all its users to the existing
660/// node. This transfer can potentially trigger recursive merging.
661///
662void
663SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
664                                       DAGUpdateListener *UpdateListener) {
665  // For node types that aren't CSE'd, just act as if no identical node
666  // already exists.
667  if (!doNotCSE(N)) {
668    SDNode *Existing = CSEMap.GetOrInsertNode(N);
669    if (Existing != N) {
670      // If there was already an existing matching node, use ReplaceAllUsesWith
671      // to replace the dead one with the existing one.  This can cause
672      // recursive merging of other unrelated nodes down the line.
673      ReplaceAllUsesWith(N, Existing, UpdateListener);
674
675      // N is now dead.  Inform the listener if it exists and delete it.
676      if (UpdateListener)
677        UpdateListener->NodeDeleted(N, Existing);
678      DeleteNodeNotInCSEMaps(N);
679      return;
680    }
681  }
682
683  // If the node doesn't already exist, we updated it.  Inform a listener if
684  // it exists.
685  if (UpdateListener)
686    UpdateListener->NodeUpdated(N);
687}
688
689/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
690/// were replaced with those specified.  If this node is never memoized,
691/// return null, otherwise return a pointer to the slot it would take.  If a
692/// node already exists with these operands, the slot will be non-null.
693SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
694                                           void *&InsertPos) {
695  if (doNotCSE(N))
696    return 0;
697
698  SDValue Ops[] = { Op };
699  FoldingSetNodeID ID;
700  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
701  AddNodeIDCustom(ID, N);
702  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
703  return Node;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
711                                           SDValue Op1, SDValue Op2,
712                                           void *&InsertPos) {
713  if (doNotCSE(N))
714    return 0;
715
716  SDValue Ops[] = { Op1, Op2 };
717  FoldingSetNodeID ID;
718  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
719  AddNodeIDCustom(ID, N);
720  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
721  return Node;
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739  return Node;
740}
741
742/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
743void SelectionDAG::VerifyNode(SDNode *N) {
744  switch (N->getOpcode()) {
745  default:
746    break;
747  case ISD::BUILD_PAIR: {
748    EVT VT = N->getValueType(0);
749    assert(N->getNumValues() == 1 && "Too many results!");
750    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
751           "Wrong return type!");
752    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
753    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
754           "Mismatched operand types!");
755    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
756           "Wrong operand type!");
757    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
758           "Wrong return type size");
759    break;
760  }
761  case ISD::BUILD_VECTOR: {
762    assert(N->getNumValues() == 1 && "Too many results!");
763    assert(N->getValueType(0).isVector() && "Wrong return type!");
764    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
765           "Wrong number of operands!");
766    EVT EltVT = N->getValueType(0).getVectorElementType();
767    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
768      assert((I->getValueType() == EltVT ||
769             (EltVT.isInteger() && I->getValueType().isInteger() &&
770              EltVT.bitsLE(I->getValueType()))) &&
771            "Wrong operand type!");
772    break;
773  }
774  }
775}
776
777/// getEVTAlignment - Compute the default alignment value for the
778/// given type.
779///
780unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
781  const Type *Ty = VT == MVT::iPTR ?
782                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
783                   VT.getTypeForEVT(*getContext());
784
785  return TLI.getTargetData()->getABITypeAlignment(Ty);
786}
787
788// EntryNode could meaningfully have debug info if we can find it...
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790  : TLI(tli), FLI(fli), DW(0),
791    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
792              getVTList(MVT::Other)),
793    Root(getEntryNode()), Ordering(0) {
794  AllNodes.push_back(&EntryNode);
795  Ordering = new SDNodeOrdering();
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799                        DwarfWriter *dw) {
800  MF = &mf;
801  MMI = mmi;
802  DW = dw;
803  Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807  allnodes_clear();
808  delete Ordering;
809}
810
811void SelectionDAG::allnodes_clear() {
812  assert(&*AllNodes.begin() == &EntryNode);
813  AllNodes.remove(AllNodes.begin());
814  while (!AllNodes.empty())
815    DeallocateNode(AllNodes.begin());
816}
817
818void SelectionDAG::clear() {
819  allnodes_clear();
820  OperandAllocator.Reset();
821  CSEMap.clear();
822
823  ExtendedValueTypeNodes.clear();
824  ExternalSymbols.clear();
825  TargetExternalSymbols.clear();
826  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
827            static_cast<CondCodeSDNode*>(0));
828  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
829            static_cast<SDNode*>(0));
830
831  EntryNode.UseList = 0;
832  AllNodes.push_back(&EntryNode);
833  Root = getEntryNode();
834  delete Ordering;
835  Ordering = new SDNodeOrdering();
836}
837
838SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
839  return VT.bitsGT(Op.getValueType()) ?
840    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
841    getNode(ISD::TRUNCATE, DL, VT, Op);
842}
843
844SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
845  return VT.bitsGT(Op.getValueType()) ?
846    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
847    getNode(ISD::TRUNCATE, DL, VT, Op);
848}
849
850SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
851  assert(!VT.isVector() &&
852         "getZeroExtendInReg should use the vector element type instead of "
853         "the vector type!");
854  if (Op.getValueType() == VT) return Op;
855  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
856  APInt Imm = APInt::getLowBitsSet(BitWidth,
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, DL, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
863///
864SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
865  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
866  SDValue NegOne =
867    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
868  return getNode(ISD::XOR, DL, VT, Val, NegOne);
869}
870
871SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
872  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  assert((EltVT.getSizeInBits() >= 64 ||
874         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
875         "getConstant with a uint64_t value that doesn't fit in the type!");
876  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
877}
878
879SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
880  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
884  assert(VT.isInteger() && "Cannot create FP integer constant!");
885
886  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
887  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
888         "APInt size does not match type size!");
889
890  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
891  FoldingSetNodeID ID;
892  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
893  ID.AddPointer(&Val);
894  void *IP = 0;
895  SDNode *N = NULL;
896  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
897    if (!VT.isVector())
898      return SDValue(N, 0);
899
900  if (!N) {
901    N = NodeAllocator.Allocate<ConstantSDNode>();
902    new (N) ConstantSDNode(isT, &Val, EltVT);
903    CSEMap.InsertNode(N, IP);
904    AllNodes.push_back(N);
905  }
906
907  SDValue Result(N, 0);
908  if (VT.isVector()) {
909    SmallVector<SDValue, 8> Ops;
910    Ops.assign(VT.getVectorNumElements(), Result);
911    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
912                     VT, &Ops[0], Ops.size());
913  }
914  return Result;
915}
916
917SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918  return getConstant(Val, TLI.getPointerTy(), isTarget);
919}
920
921
922SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
924}
925
926SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928
929  EVT EltVT =
930    VT.isVector() ? VT.getVectorElementType() : VT;
931
932  // Do the map lookup using the actual bit pattern for the floating point
933  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
934  // we don't have issues with SNANs.
935  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
936  FoldingSetNodeID ID;
937  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
938  ID.AddPointer(&V);
939  void *IP = 0;
940  SDNode *N = NULL;
941  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
942    if (!VT.isVector())
943      return SDValue(N, 0);
944
945  if (!N) {
946    N = NodeAllocator.Allocate<ConstantFPSDNode>();
947    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
948    CSEMap.InsertNode(N, IP);
949    AllNodes.push_back(N);
950  }
951
952  SDValue Result(N, 0);
953  if (VT.isVector()) {
954    SmallVector<SDValue, 8> Ops;
955    Ops.assign(VT.getVectorNumElements(), Result);
956    // FIXME DebugLoc info might be appropriate here
957    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
958                     VT, &Ops[0], Ops.size());
959  }
960  return Result;
961}
962
963SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
964  EVT EltVT =
965    VT.isVector() ? VT.getVectorElementType() : VT;
966  if (EltVT==MVT::f32)
967    return getConstantFP(APFloat((float)Val), VT, isTarget);
968  else
969    return getConstantFP(APFloat(Val), VT, isTarget);
970}
971
972SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
973                                       EVT VT, int64_t Offset,
974                                       bool isTargetGA,
975                                       unsigned char TargetFlags) {
976  assert((TargetFlags == 0 || isTargetGA) &&
977         "Cannot set target flags on target-independent globals");
978
979  // Truncate (with sign-extension) the offset value to the pointer size.
980  EVT PTy = TLI.getPointerTy();
981  unsigned BitWidth = PTy.getSizeInBits();
982  if (BitWidth < 64)
983    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
984
985  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
986  if (!GVar) {
987    // If GV is an alias then use the aliasee for determining thread-localness.
988    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
989      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
990  }
991
992  unsigned Opc;
993  if (GVar && GVar->isThreadLocal())
994    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
995  else
996    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
997
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1000  ID.AddPointer(GV);
1001  ID.AddInteger(Offset);
1002  ID.AddInteger(TargetFlags);
1003  void *IP = 0;
1004  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1005    return SDValue(E, 0);
1006
1007  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1008  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1009  CSEMap.InsertNode(N, IP);
1010  AllNodes.push_back(N);
1011  return SDValue(N, 0);
1012}
1013
1014SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1015  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1016  FoldingSetNodeID ID;
1017  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1018  ID.AddInteger(FI);
1019  void *IP = 0;
1020  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1021    return SDValue(E, 0);
1022
1023  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1024  new (N) FrameIndexSDNode(FI, VT, isTarget);
1025  CSEMap.InsertNode(N, IP);
1026  AllNodes.push_back(N);
1027  return SDValue(N, 0);
1028}
1029
1030SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1031                                   unsigned char TargetFlags) {
1032  assert((TargetFlags == 0 || isTarget) &&
1033         "Cannot set target flags on target-independent jump tables");
1034  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1035  FoldingSetNodeID ID;
1036  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1037  ID.AddInteger(JTI);
1038  ID.AddInteger(TargetFlags);
1039  void *IP = 0;
1040  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1041    return SDValue(E, 0);
1042
1043  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1044  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1045  CSEMap.InsertNode(N, IP);
1046  AllNodes.push_back(N);
1047  return SDValue(N, 0);
1048}
1049
1050SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1051                                      unsigned Alignment, int Offset,
1052                                      bool isTarget,
1053                                      unsigned char TargetFlags) {
1054  assert((TargetFlags == 0 || isTarget) &&
1055         "Cannot set target flags on target-independent globals");
1056  if (Alignment == 0)
1057    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1058  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1059  FoldingSetNodeID ID;
1060  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1061  ID.AddInteger(Alignment);
1062  ID.AddInteger(Offset);
1063  ID.AddPointer(C);
1064  ID.AddInteger(TargetFlags);
1065  void *IP = 0;
1066  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1067    return SDValue(E, 0);
1068
1069  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1070  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1071  CSEMap.InsertNode(N, IP);
1072  AllNodes.push_back(N);
1073  return SDValue(N, 0);
1074}
1075
1076
1077SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1078                                      unsigned Alignment, int Offset,
1079                                      bool isTarget,
1080                                      unsigned char TargetFlags) {
1081  assert((TargetFlags == 0 || isTarget) &&
1082         "Cannot set target flags on target-independent globals");
1083  if (Alignment == 0)
1084    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1085  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1086  FoldingSetNodeID ID;
1087  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1088  ID.AddInteger(Alignment);
1089  ID.AddInteger(Offset);
1090  C->AddSelectionDAGCSEId(ID);
1091  ID.AddInteger(TargetFlags);
1092  void *IP = 0;
1093  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1094    return SDValue(E, 0);
1095
1096  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1097  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1098  CSEMap.InsertNode(N, IP);
1099  AllNodes.push_back(N);
1100  return SDValue(N, 0);
1101}
1102
1103SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1104  FoldingSetNodeID ID;
1105  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1106  ID.AddPointer(MBB);
1107  void *IP = 0;
1108  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1109    return SDValue(E, 0);
1110
1111  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1112  new (N) BasicBlockSDNode(MBB);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(EVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1120      ValueTypeNodes.size())
1121    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122
1123  SDNode *&N = VT.isExtended() ?
1124    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125
1126  if (N) return SDValue(N, 0);
1127  N = NodeAllocator.Allocate<VTSDNode>();
1128  new (N) VTSDNode(VT);
1129  AllNodes.push_back(N);
1130  return SDValue(N, 0);
1131}
1132
1133SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1134  SDNode *&N = ExternalSymbols[Sym];
1135  if (N) return SDValue(N, 0);
1136  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1137  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1138  AllNodes.push_back(N);
1139  return SDValue(N, 0);
1140}
1141
1142SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1143                                              unsigned char TargetFlags) {
1144  SDNode *&N =
1145    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1146                                                               TargetFlags)];
1147  if (N) return SDValue(N, 0);
1148  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1149  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1150  AllNodes.push_back(N);
1151  return SDValue(N, 0);
1152}
1153
1154SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1155  if ((unsigned)Cond >= CondCodeNodes.size())
1156    CondCodeNodes.resize(Cond+1);
1157
1158  if (CondCodeNodes[Cond] == 0) {
1159    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1160    new (N) CondCodeSDNode(Cond);
1161    CondCodeNodes[Cond] = N;
1162    AllNodes.push_back(N);
1163  }
1164
1165  return SDValue(CondCodeNodes[Cond], 0);
1166}
1167
1168// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169// the shuffle mask M that point at N1 to point at N2, and indices that point
1170// N2 to point at N1.
1171static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172  std::swap(N1, N2);
1173  int NElts = M.size();
1174  for (int i = 0; i != NElts; ++i) {
1175    if (M[i] >= NElts)
1176      M[i] -= NElts;
1177    else if (M[i] >= 0)
1178      M[i] += NElts;
1179  }
1180}
1181
1182SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1183                                       SDValue N2, const int *Mask) {
1184  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185  assert(VT.isVector() && N1.getValueType().isVector() &&
1186         "Vector Shuffle VTs must be a vectors");
1187  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188         && "Vector Shuffle VTs must have same element type");
1189
1190  // Canonicalize shuffle undef, undef -> undef
1191  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192    return getUNDEF(VT);
1193
1194  // Validate that all indices in Mask are within the range of the elements
1195  // input to the shuffle.
1196  unsigned NElts = VT.getVectorNumElements();
1197  SmallVector<int, 8> MaskVec;
1198  for (unsigned i = 0; i != NElts; ++i) {
1199    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200    MaskVec.push_back(Mask[i]);
1201  }
1202
1203  // Canonicalize shuffle v, v -> v, undef
1204  if (N1 == N2) {
1205    N2 = getUNDEF(VT);
1206    for (unsigned i = 0; i != NElts; ++i)
1207      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1208  }
1209
1210  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1211  if (N1.getOpcode() == ISD::UNDEF)
1212    commuteShuffle(N1, N2, MaskVec);
1213
1214  // Canonicalize all index into lhs, -> shuffle lhs, undef
1215  // Canonicalize all index into rhs, -> shuffle rhs, undef
1216  bool AllLHS = true, AllRHS = true;
1217  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218  for (unsigned i = 0; i != NElts; ++i) {
1219    if (MaskVec[i] >= (int)NElts) {
1220      if (N2Undef)
1221        MaskVec[i] = -1;
1222      else
1223        AllLHS = false;
1224    } else if (MaskVec[i] >= 0) {
1225      AllRHS = false;
1226    }
1227  }
1228  if (AllLHS && AllRHS)
1229    return getUNDEF(VT);
1230  if (AllLHS && !N2Undef)
1231    N2 = getUNDEF(VT);
1232  if (AllRHS) {
1233    N1 = getUNDEF(VT);
1234    commuteShuffle(N1, N2, MaskVec);
1235  }
1236
1237  // If Identity shuffle, or all shuffle in to undef, return that node.
1238  bool AllUndef = true;
1239  bool Identity = true;
1240  for (unsigned i = 0; i != NElts; ++i) {
1241    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242    if (MaskVec[i] >= 0) AllUndef = false;
1243  }
1244  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245    return N1;
1246  if (AllUndef)
1247    return getUNDEF(VT);
1248
1249  FoldingSetNodeID ID;
1250  SDValue Ops[2] = { N1, N2 };
1251  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252  for (unsigned i = 0; i != NElts; ++i)
1253    ID.AddInteger(MaskVec[i]);
1254
1255  void* IP = 0;
1256  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257    return SDValue(E, 0);
1258
1259  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260  // SDNode doesn't have access to it.  This memory will be "leaked" when
1261  // the node is deallocated, but recovered when the NodeAllocator is released.
1262  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264
1265  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1266  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267  CSEMap.InsertNode(N, IP);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1273                                       SDValue Val, SDValue DTy,
1274                                       SDValue STy, SDValue Rnd, SDValue Sat,
1275                                       ISD::CvtCode Code) {
1276  // If the src and dest types are the same and the conversion is between
1277  // integer types of the same sign or two floats, no conversion is necessary.
1278  if (DTy == STy &&
1279      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280    return Val;
1281
1282  FoldingSetNodeID ID;
1283  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1284  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1285  void* IP = 0;
1286  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1287    return SDValue(E, 0);
1288
1289  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1290  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1291  CSEMap.InsertNode(N, IP);
1292  AllNodes.push_back(N);
1293  return SDValue(N, 0);
1294}
1295
1296SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1297  FoldingSetNodeID ID;
1298  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1299  ID.AddInteger(RegNo);
1300  void *IP = 0;
1301  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1302    return SDValue(E, 0);
1303
1304  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1305  new (N) RegisterSDNode(RegNo, VT);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1312                               SDValue Root,
1313                               unsigned LabelID) {
1314  FoldingSetNodeID ID;
1315  SDValue Ops[] = { Root };
1316  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1317  ID.AddInteger(LabelID);
1318  void *IP = 0;
1319  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1320    return SDValue(E, 0);
1321
1322  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1323  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1324  CSEMap.InsertNode(N, IP);
1325  AllNodes.push_back(N);
1326  return SDValue(N, 0);
1327}
1328
1329SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1330                                      bool isTarget,
1331                                      unsigned char TargetFlags) {
1332  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1333
1334  FoldingSetNodeID ID;
1335  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1336  ID.AddPointer(BA);
1337  ID.AddInteger(TargetFlags);
1338  void *IP = 0;
1339  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1340    return SDValue(E, 0);
1341
1342  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1343  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getSrcValue(const Value *V) {
1350  assert((!V || V->getType()->isPointerTy()) &&
1351         "SrcValue is not a pointer?");
1352
1353  FoldingSetNodeID ID;
1354  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1355  ID.AddPointer(V);
1356
1357  void *IP = 0;
1358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1359    return SDValue(E, 0);
1360
1361  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1362  new (N) SrcValueSDNode(V);
1363  CSEMap.InsertNode(N, IP);
1364  AllNodes.push_back(N);
1365  return SDValue(N, 0);
1366}
1367
1368/// getShiftAmountOperand - Return the specified value casted to
1369/// the target's desired shift amount type.
1370SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1371  EVT OpTy = Op.getValueType();
1372  MVT ShTy = TLI.getShiftAmountTy();
1373  if (OpTy == ShTy || OpTy.isVector()) return Op;
1374
1375  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1376  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1377}
1378
1379/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1380/// specified value type.
1381SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1382  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1383  unsigned ByteSize = VT.getStoreSize();
1384  const Type *Ty = VT.getTypeForEVT(*getContext());
1385  unsigned StackAlign =
1386  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1387
1388  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1389  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1390}
1391
1392/// CreateStackTemporary - Create a stack temporary suitable for holding
1393/// either of the specified value types.
1394SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1395  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1396                            VT2.getStoreSizeInBits())/8;
1397  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1398  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1399  const TargetData *TD = TLI.getTargetData();
1400  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1401                            TD->getPrefTypeAlignment(Ty2));
1402
1403  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1404  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1405  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1406}
1407
1408SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1409                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1410  // These setcc operations always fold.
1411  switch (Cond) {
1412  default: break;
1413  case ISD::SETFALSE:
1414  case ISD::SETFALSE2: return getConstant(0, VT);
1415  case ISD::SETTRUE:
1416  case ISD::SETTRUE2:  return getConstant(1, VT);
1417
1418  case ISD::SETOEQ:
1419  case ISD::SETOGT:
1420  case ISD::SETOGE:
1421  case ISD::SETOLT:
1422  case ISD::SETOLE:
1423  case ISD::SETONE:
1424  case ISD::SETO:
1425  case ISD::SETUO:
1426  case ISD::SETUEQ:
1427  case ISD::SETUNE:
1428    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1429    break;
1430  }
1431
1432  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1433    const APInt &C2 = N2C->getAPIntValue();
1434    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1435      const APInt &C1 = N1C->getAPIntValue();
1436
1437      switch (Cond) {
1438      default: llvm_unreachable("Unknown integer setcc!");
1439      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1440      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1441      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1442      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1443      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1444      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1445      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1446      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1447      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1448      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1449      }
1450    }
1451  }
1452  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1453    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1454      // No compile time operations on this type yet.
1455      if (N1C->getValueType(0) == MVT::ppcf128)
1456        return SDValue();
1457
1458      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1459      switch (Cond) {
1460      default: break;
1461      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1465      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1469                                           R==APFloat::cmpLessThan, VT);
1470      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1474      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1478      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1482                                           R==APFloat::cmpEqual, VT);
1483      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1484                          return getUNDEF(VT);
1485                        // fall through
1486      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1487                                           R==APFloat::cmpEqual, VT);
1488      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1489      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1490      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpEqual, VT);
1492      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1493      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1494                                           R==APFloat::cmpLessThan, VT);
1495      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1496                                           R==APFloat::cmpUnordered, VT);
1497      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1498      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1499      }
1500    } else {
1501      // Ensure that the constant occurs on the RHS.
1502      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1503    }
1504  }
1505
1506  // Could not fold it.
1507  return SDValue();
1508}
1509
1510/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1511/// use this predicate to simplify operations downstream.
1512bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1513  // This predicate is not safe for vector operations.
1514  if (Op.getValueType().isVector())
1515    return false;
1516
1517  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1518  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1519}
1520
1521/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1522/// this predicate to simplify operations downstream.  Mask is known to be zero
1523/// for bits that V cannot have.
1524bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1525                                     unsigned Depth) const {
1526  APInt KnownZero, KnownOne;
1527  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1528  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1529  return (KnownZero & Mask) == Mask;
1530}
1531
1532/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1533/// known to be either zero or one and return them in the KnownZero/KnownOne
1534/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1535/// processing.
1536void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1537                                     APInt &KnownZero, APInt &KnownOne,
1538                                     unsigned Depth) const {
1539  unsigned BitWidth = Mask.getBitWidth();
1540  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1541         "Mask size mismatches value type size!");
1542
1543  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1544  if (Depth == 6 || Mask == 0)
1545    return;  // Limit search depth.
1546
1547  APInt KnownZero2, KnownOne2;
1548
1549  switch (Op.getOpcode()) {
1550  case ISD::Constant:
1551    // We know all of the bits for a constant!
1552    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1553    KnownZero = ~KnownOne & Mask;
1554    return;
1555  case ISD::AND:
1556    // If either the LHS or the RHS are Zero, the result is zero.
1557    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1558    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1559                      KnownZero2, KnownOne2, Depth+1);
1560    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1561    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1562
1563    // Output known-1 bits are only known if set in both the LHS & RHS.
1564    KnownOne &= KnownOne2;
1565    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1566    KnownZero |= KnownZero2;
1567    return;
1568  case ISD::OR:
1569    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1571                      KnownZero2, KnownOne2, Depth+1);
1572    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1574
1575    // Output known-0 bits are only known if clear in both the LHS & RHS.
1576    KnownZero &= KnownZero2;
1577    // Output known-1 are known to be set if set in either the LHS | RHS.
1578    KnownOne |= KnownOne2;
1579    return;
1580  case ISD::XOR: {
1581    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1582    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1583    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1584    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1585
1586    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1587    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1588    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1589    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1590    KnownZero = KnownZeroOut;
1591    return;
1592  }
1593  case ISD::MUL: {
1594    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1595    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1596    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1597    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1598    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1599
1600    // If low bits are zero in either operand, output low known-0 bits.
1601    // Also compute a conserative estimate for high known-0 bits.
1602    // More trickiness is possible, but this is sufficient for the
1603    // interesting case of alignment computation.
1604    KnownOne.clear();
1605    unsigned TrailZ = KnownZero.countTrailingOnes() +
1606                      KnownZero2.countTrailingOnes();
1607    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1608                               KnownZero2.countLeadingOnes(),
1609                               BitWidth) - BitWidth;
1610
1611    TrailZ = std::min(TrailZ, BitWidth);
1612    LeadZ = std::min(LeadZ, BitWidth);
1613    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1614                APInt::getHighBitsSet(BitWidth, LeadZ);
1615    KnownZero &= Mask;
1616    return;
1617  }
1618  case ISD::UDIV: {
1619    // For the purposes of computing leading zeros we can conservatively
1620    // treat a udiv as a logical right shift by the power of 2 known to
1621    // be less than the denominator.
1622    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1623    ComputeMaskedBits(Op.getOperand(0),
1624                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1625    unsigned LeadZ = KnownZero2.countLeadingOnes();
1626
1627    KnownOne2.clear();
1628    KnownZero2.clear();
1629    ComputeMaskedBits(Op.getOperand(1),
1630                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1631    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1632    if (RHSUnknownLeadingOnes != BitWidth)
1633      LeadZ = std::min(BitWidth,
1634                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1635
1636    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1637    return;
1638  }
1639  case ISD::SELECT:
1640    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1641    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1642    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1643    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1644
1645    // Only known if known in both the LHS and RHS.
1646    KnownOne &= KnownOne2;
1647    KnownZero &= KnownZero2;
1648    return;
1649  case ISD::SELECT_CC:
1650    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1651    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1652    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1653    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1654
1655    // Only known if known in both the LHS and RHS.
1656    KnownOne &= KnownOne2;
1657    KnownZero &= KnownZero2;
1658    return;
1659  case ISD::SADDO:
1660  case ISD::UADDO:
1661  case ISD::SSUBO:
1662  case ISD::USUBO:
1663  case ISD::SMULO:
1664  case ISD::UMULO:
1665    if (Op.getResNo() != 1)
1666      return;
1667    // The boolean result conforms to getBooleanContents.  Fall through.
1668  case ISD::SETCC:
1669    // If we know the result of a setcc has the top bits zero, use this info.
1670    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1671        BitWidth > 1)
1672      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1673    return;
1674  case ISD::SHL:
1675    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1676    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1677      unsigned ShAmt = SA->getZExtValue();
1678
1679      // If the shift count is an invalid immediate, don't do anything.
1680      if (ShAmt >= BitWidth)
1681        return;
1682
1683      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1684                        KnownZero, KnownOne, Depth+1);
1685      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1686      KnownZero <<= ShAmt;
1687      KnownOne  <<= ShAmt;
1688      // low bits known zero.
1689      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1690    }
1691    return;
1692  case ISD::SRL:
1693    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1694    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1695      unsigned ShAmt = SA->getZExtValue();
1696
1697      // If the shift count is an invalid immediate, don't do anything.
1698      if (ShAmt >= BitWidth)
1699        return;
1700
1701      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1702                        KnownZero, KnownOne, Depth+1);
1703      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704      KnownZero = KnownZero.lshr(ShAmt);
1705      KnownOne  = KnownOne.lshr(ShAmt);
1706
1707      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1708      KnownZero |= HighBits;  // High bits known zero.
1709    }
1710    return;
1711  case ISD::SRA:
1712    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1713      unsigned ShAmt = SA->getZExtValue();
1714
1715      // If the shift count is an invalid immediate, don't do anything.
1716      if (ShAmt >= BitWidth)
1717        return;
1718
1719      APInt InDemandedMask = (Mask << ShAmt);
1720      // If any of the demanded bits are produced by the sign extension, we also
1721      // demand the input sign bit.
1722      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1723      if (HighBits.getBoolValue())
1724        InDemandedMask |= APInt::getSignBit(BitWidth);
1725
1726      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1727                        Depth+1);
1728      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1729      KnownZero = KnownZero.lshr(ShAmt);
1730      KnownOne  = KnownOne.lshr(ShAmt);
1731
1732      // Handle the sign bits.
1733      APInt SignBit = APInt::getSignBit(BitWidth);
1734      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1735
1736      if (KnownZero.intersects(SignBit)) {
1737        KnownZero |= HighBits;  // New bits are known zero.
1738      } else if (KnownOne.intersects(SignBit)) {
1739        KnownOne  |= HighBits;  // New bits are known one.
1740      }
1741    }
1742    return;
1743  case ISD::SIGN_EXTEND_INREG: {
1744    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1745    unsigned EBits = EVT.getScalarType().getSizeInBits();
1746
1747    // Sign extension.  Compute the demanded bits in the result that are not
1748    // present in the input.
1749    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1750
1751    APInt InSignBit = APInt::getSignBit(EBits);
1752    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1753
1754    // If the sign extended bits are demanded, we know that the sign
1755    // bit is demanded.
1756    InSignBit.zext(BitWidth);
1757    if (NewBits.getBoolValue())
1758      InputDemandedBits |= InSignBit;
1759
1760    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1761                      KnownZero, KnownOne, Depth+1);
1762    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1763
1764    // If the sign bit of the input is known set or clear, then we know the
1765    // top bits of the result.
1766    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1767      KnownZero |= NewBits;
1768      KnownOne  &= ~NewBits;
1769    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1770      KnownOne  |= NewBits;
1771      KnownZero &= ~NewBits;
1772    } else {                              // Input sign bit unknown
1773      KnownZero &= ~NewBits;
1774      KnownOne  &= ~NewBits;
1775    }
1776    return;
1777  }
1778  case ISD::CTTZ:
1779  case ISD::CTLZ:
1780  case ISD::CTPOP: {
1781    unsigned LowBits = Log2_32(BitWidth)+1;
1782    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1783    KnownOne.clear();
1784    return;
1785  }
1786  case ISD::LOAD: {
1787    if (ISD::isZEXTLoad(Op.getNode())) {
1788      LoadSDNode *LD = cast<LoadSDNode>(Op);
1789      EVT VT = LD->getMemoryVT();
1790      unsigned MemBits = VT.getScalarType().getSizeInBits();
1791      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1792    }
1793    return;
1794  }
1795  case ISD::ZERO_EXTEND: {
1796    EVT InVT = Op.getOperand(0).getValueType();
1797    unsigned InBits = InVT.getScalarType().getSizeInBits();
1798    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1799    APInt InMask    = Mask;
1800    InMask.trunc(InBits);
1801    KnownZero.trunc(InBits);
1802    KnownOne.trunc(InBits);
1803    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1804    KnownZero.zext(BitWidth);
1805    KnownOne.zext(BitWidth);
1806    KnownZero |= NewBits;
1807    return;
1808  }
1809  case ISD::SIGN_EXTEND: {
1810    EVT InVT = Op.getOperand(0).getValueType();
1811    unsigned InBits = InVT.getScalarType().getSizeInBits();
1812    APInt InSignBit = APInt::getSignBit(InBits);
1813    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1814    APInt InMask = Mask;
1815    InMask.trunc(InBits);
1816
1817    // If any of the sign extended bits are demanded, we know that the sign
1818    // bit is demanded. Temporarily set this bit in the mask for our callee.
1819    if (NewBits.getBoolValue())
1820      InMask |= InSignBit;
1821
1822    KnownZero.trunc(InBits);
1823    KnownOne.trunc(InBits);
1824    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1825
1826    // Note if the sign bit is known to be zero or one.
1827    bool SignBitKnownZero = KnownZero.isNegative();
1828    bool SignBitKnownOne  = KnownOne.isNegative();
1829    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1830           "Sign bit can't be known to be both zero and one!");
1831
1832    // If the sign bit wasn't actually demanded by our caller, we don't
1833    // want it set in the KnownZero and KnownOne result values. Reset the
1834    // mask and reapply it to the result values.
1835    InMask = Mask;
1836    InMask.trunc(InBits);
1837    KnownZero &= InMask;
1838    KnownOne  &= InMask;
1839
1840    KnownZero.zext(BitWidth);
1841    KnownOne.zext(BitWidth);
1842
1843    // If the sign bit is known zero or one, the top bits match.
1844    if (SignBitKnownZero)
1845      KnownZero |= NewBits;
1846    else if (SignBitKnownOne)
1847      KnownOne  |= NewBits;
1848    return;
1849  }
1850  case ISD::ANY_EXTEND: {
1851    EVT InVT = Op.getOperand(0).getValueType();
1852    unsigned InBits = InVT.getScalarType().getSizeInBits();
1853    APInt InMask = Mask;
1854    InMask.trunc(InBits);
1855    KnownZero.trunc(InBits);
1856    KnownOne.trunc(InBits);
1857    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1858    KnownZero.zext(BitWidth);
1859    KnownOne.zext(BitWidth);
1860    return;
1861  }
1862  case ISD::TRUNCATE: {
1863    EVT InVT = Op.getOperand(0).getValueType();
1864    unsigned InBits = InVT.getScalarType().getSizeInBits();
1865    APInt InMask = Mask;
1866    InMask.zext(InBits);
1867    KnownZero.zext(InBits);
1868    KnownOne.zext(InBits);
1869    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1870    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1871    KnownZero.trunc(BitWidth);
1872    KnownOne.trunc(BitWidth);
1873    break;
1874  }
1875  case ISD::AssertZext: {
1876    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1877    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1878    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1879                      KnownOne, Depth+1);
1880    KnownZero |= (~InMask) & Mask;
1881    return;
1882  }
1883  case ISD::FGETSIGN:
1884    // All bits are zero except the low bit.
1885    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1886    return;
1887
1888  case ISD::SUB: {
1889    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1890      // We know that the top bits of C-X are clear if X contains less bits
1891      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1892      // positive if we can prove that X is >= 0 and < 16.
1893      if (CLHS->getAPIntValue().isNonNegative()) {
1894        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1895        // NLZ can't be BitWidth with no sign bit
1896        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1897        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1898                          Depth+1);
1899
1900        // If all of the MaskV bits are known to be zero, then we know the
1901        // output top bits are zero, because we now know that the output is
1902        // from [0-C].
1903        if ((KnownZero2 & MaskV) == MaskV) {
1904          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1905          // Top bits known zero.
1906          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1907        }
1908      }
1909    }
1910  }
1911  // fall through
1912  case ISD::ADD: {
1913    // Output known-0 bits are known if clear or set in both the low clear bits
1914    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1915    // low 3 bits clear.
1916    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1917    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1918    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1919    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1920
1921    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1922    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1923    KnownZeroOut = std::min(KnownZeroOut,
1924                            KnownZero2.countTrailingOnes());
1925
1926    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1927    return;
1928  }
1929  case ISD::SREM:
1930    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1931      const APInt &RA = Rem->getAPIntValue().abs();
1932      if (RA.isPowerOf2()) {
1933        APInt LowBits = RA - 1;
1934        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1935        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1936
1937        // The low bits of the first operand are unchanged by the srem.
1938        KnownZero = KnownZero2 & LowBits;
1939        KnownOne = KnownOne2 & LowBits;
1940
1941        // If the first operand is non-negative or has all low bits zero, then
1942        // the upper bits are all zero.
1943        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1944          KnownZero |= ~LowBits;
1945
1946        // If the first operand is negative and not all low bits are zero, then
1947        // the upper bits are all one.
1948        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1949          KnownOne |= ~LowBits;
1950
1951        KnownZero &= Mask;
1952        KnownOne &= Mask;
1953
1954        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1955      }
1956    }
1957    return;
1958  case ISD::UREM: {
1959    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1960      const APInt &RA = Rem->getAPIntValue();
1961      if (RA.isPowerOf2()) {
1962        APInt LowBits = (RA - 1);
1963        APInt Mask2 = LowBits & Mask;
1964        KnownZero |= ~LowBits & Mask;
1965        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1966        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1967        break;
1968      }
1969    }
1970
1971    // Since the result is less than or equal to either operand, any leading
1972    // zero bits in either operand must also exist in the result.
1973    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1974    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1975                      Depth+1);
1976    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1977                      Depth+1);
1978
1979    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1980                                KnownZero2.countLeadingOnes());
1981    KnownOne.clear();
1982    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1983    return;
1984  }
1985  default:
1986    // Allow the target to implement this method for its nodes.
1987    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1988  case ISD::INTRINSIC_WO_CHAIN:
1989  case ISD::INTRINSIC_W_CHAIN:
1990  case ISD::INTRINSIC_VOID:
1991      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1992                                         Depth);
1993    }
1994    return;
1995  }
1996}
1997
1998/// ComputeNumSignBits - Return the number of times the sign bit of the
1999/// register is replicated into the other bits.  We know that at least 1 bit
2000/// is always equal to the sign bit (itself), but other cases can give us
2001/// information.  For example, immediately after an "SRA X, 2", we know that
2002/// the top 3 bits are all equal to each other, so we return 3.
2003unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2004  EVT VT = Op.getValueType();
2005  assert(VT.isInteger() && "Invalid VT!");
2006  unsigned VTBits = VT.getScalarType().getSizeInBits();
2007  unsigned Tmp, Tmp2;
2008  unsigned FirstAnswer = 1;
2009
2010  if (Depth == 6)
2011    return 1;  // Limit search depth.
2012
2013  switch (Op.getOpcode()) {
2014  default: break;
2015  case ISD::AssertSext:
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    return VTBits-Tmp+1;
2018  case ISD::AssertZext:
2019    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2020    return VTBits-Tmp;
2021
2022  case ISD::Constant: {
2023    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2024    // If negative, return # leading ones.
2025    if (Val.isNegative())
2026      return Val.countLeadingOnes();
2027
2028    // Return # leading zeros.
2029    return Val.countLeadingZeros();
2030  }
2031
2032  case ISD::SIGN_EXTEND:
2033    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2034    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2035
2036  case ISD::SIGN_EXTEND_INREG:
2037    // Max of the input and what this extends.
2038    Tmp =
2039      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2040    Tmp = VTBits-Tmp+1;
2041
2042    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2043    return std::max(Tmp, Tmp2);
2044
2045  case ISD::SRA:
2046    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2047    // SRA X, C   -> adds C sign bits.
2048    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2049      Tmp += C->getZExtValue();
2050      if (Tmp > VTBits) Tmp = VTBits;
2051    }
2052    return Tmp;
2053  case ISD::SHL:
2054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2055      // shl destroys sign bits.
2056      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2057      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2058          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2059      return Tmp - C->getZExtValue();
2060    }
2061    break;
2062  case ISD::AND:
2063  case ISD::OR:
2064  case ISD::XOR:    // NOT is handled here.
2065    // Logical binary ops preserve the number of sign bits at the worst.
2066    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2067    if (Tmp != 1) {
2068      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2069      FirstAnswer = std::min(Tmp, Tmp2);
2070      // We computed what we know about the sign bits as our first
2071      // answer. Now proceed to the generic code that uses
2072      // ComputeMaskedBits, and pick whichever answer is better.
2073    }
2074    break;
2075
2076  case ISD::SELECT:
2077    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2078    if (Tmp == 1) return 1;  // Early out.
2079    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2080    return std::min(Tmp, Tmp2);
2081
2082  case ISD::SADDO:
2083  case ISD::UADDO:
2084  case ISD::SSUBO:
2085  case ISD::USUBO:
2086  case ISD::SMULO:
2087  case ISD::UMULO:
2088    if (Op.getResNo() != 1)
2089      break;
2090    // The boolean result conforms to getBooleanContents.  Fall through.
2091  case ISD::SETCC:
2092    // If setcc returns 0/-1, all bits are sign bits.
2093    if (TLI.getBooleanContents() ==
2094        TargetLowering::ZeroOrNegativeOneBooleanContent)
2095      return VTBits;
2096    break;
2097  case ISD::ROTL:
2098  case ISD::ROTR:
2099    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2100      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2101
2102      // Handle rotate right by N like a rotate left by 32-N.
2103      if (Op.getOpcode() == ISD::ROTR)
2104        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2105
2106      // If we aren't rotating out all of the known-in sign bits, return the
2107      // number that are left.  This handles rotl(sext(x), 1) for example.
2108      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2109      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2110    }
2111    break;
2112  case ISD::ADD:
2113    // Add can have at most one carry bit.  Thus we know that the output
2114    // is, at worst, one more bit than the inputs.
2115    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2116    if (Tmp == 1) return 1;  // Early out.
2117
2118    // Special case decrementing a value (ADD X, -1):
2119    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2120      if (CRHS->isAllOnesValue()) {
2121        APInt KnownZero, KnownOne;
2122        APInt Mask = APInt::getAllOnesValue(VTBits);
2123        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2124
2125        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2126        // sign bits set.
2127        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2128          return VTBits;
2129
2130        // If we are subtracting one from a positive number, there is no carry
2131        // out of the result.
2132        if (KnownZero.isNegative())
2133          return Tmp;
2134      }
2135
2136    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2137    if (Tmp2 == 1) return 1;
2138      return std::min(Tmp, Tmp2)-1;
2139    break;
2140
2141  case ISD::SUB:
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2143    if (Tmp2 == 1) return 1;
2144
2145    // Handle NEG.
2146    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2147      if (CLHS->isNullValue()) {
2148        APInt KnownZero, KnownOne;
2149        APInt Mask = APInt::getAllOnesValue(VTBits);
2150        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2151        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2152        // sign bits set.
2153        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2154          return VTBits;
2155
2156        // If the input is known to be positive (the sign bit is known clear),
2157        // the output of the NEG has the same number of sign bits as the input.
2158        if (KnownZero.isNegative())
2159          return Tmp2;
2160
2161        // Otherwise, we treat this like a SUB.
2162      }
2163
2164    // Sub can have at most one carry bit.  Thus we know that the output
2165    // is, at worst, one more bit than the inputs.
2166    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2167    if (Tmp == 1) return 1;  // Early out.
2168      return std::min(Tmp, Tmp2)-1;
2169    break;
2170  case ISD::TRUNCATE:
2171    // FIXME: it's tricky to do anything useful for this, but it is an important
2172    // case for targets like X86.
2173    break;
2174  }
2175
2176  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2177  if (Op.getOpcode() == ISD::LOAD) {
2178    LoadSDNode *LD = cast<LoadSDNode>(Op);
2179    unsigned ExtType = LD->getExtensionType();
2180    switch (ExtType) {
2181    default: break;
2182    case ISD::SEXTLOAD:    // '17' bits known
2183      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2184      return VTBits-Tmp+1;
2185    case ISD::ZEXTLOAD:    // '16' bits known
2186      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2187      return VTBits-Tmp;
2188    }
2189  }
2190
2191  // Allow the target to implement this method for its nodes.
2192  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2193      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2194      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2195      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2196    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2197    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2198  }
2199
2200  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2201  // use this information.
2202  APInt KnownZero, KnownOne;
2203  APInt Mask = APInt::getAllOnesValue(VTBits);
2204  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2205
2206  if (KnownZero.isNegative()) {        // sign bit is 0
2207    Mask = KnownZero;
2208  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2209    Mask = KnownOne;
2210  } else {
2211    // Nothing known.
2212    return FirstAnswer;
2213  }
2214
2215  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2216  // the number of identical bits in the top of the input value.
2217  Mask = ~Mask;
2218  Mask <<= Mask.getBitWidth()-VTBits;
2219  // Return # leading zeros.  We use 'min' here in case Val was zero before
2220  // shifting.  We don't want to return '64' as for an i32 "0".
2221  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2222}
2223
2224bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2225  // If we're told that NaNs won't happen, assume they won't.
2226  if (FiniteOnlyFPMath())
2227    return true;
2228
2229  // If the value is a constant, we can obviously see if it is a NaN or not.
2230  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2231    return !C->getValueAPF().isNaN();
2232
2233  // TODO: Recognize more cases here.
2234
2235  return false;
2236}
2237
2238bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2239  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2240  if (!GA) return false;
2241  if (GA->getOffset() != 0) return false;
2242  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2243  if (!GV) return false;
2244  MachineModuleInfo *MMI = getMachineModuleInfo();
2245  return MMI && MMI->hasDebugInfo();
2246}
2247
2248
2249/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2250/// element of the result of the vector shuffle.
2251SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2252                                          unsigned i) {
2253  EVT VT = N->getValueType(0);
2254  DebugLoc dl = N->getDebugLoc();
2255  if (N->getMaskElt(i) < 0)
2256    return getUNDEF(VT.getVectorElementType());
2257  unsigned Index = N->getMaskElt(i);
2258  unsigned NumElems = VT.getVectorNumElements();
2259  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2260  Index %= NumElems;
2261
2262  if (V.getOpcode() == ISD::BIT_CONVERT) {
2263    V = V.getOperand(0);
2264    EVT VVT = V.getValueType();
2265    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2266      return SDValue();
2267  }
2268  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2269    return (Index == 0) ? V.getOperand(0)
2270                      : getUNDEF(VT.getVectorElementType());
2271  if (V.getOpcode() == ISD::BUILD_VECTOR)
2272    return V.getOperand(Index);
2273  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2274    return getShuffleScalarElt(SVN, Index);
2275  return SDValue();
2276}
2277
2278
2279/// getNode - Gets or creates the specified node.
2280///
2281SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2282  FoldingSetNodeID ID;
2283  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2284  void *IP = 0;
2285  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2286    return SDValue(E, 0);
2287
2288  SDNode *N = NodeAllocator.Allocate<SDNode>();
2289  new (N) SDNode(Opcode, DL, getVTList(VT));
2290  CSEMap.InsertNode(N, IP);
2291
2292  AllNodes.push_back(N);
2293#ifndef NDEBUG
2294  VerifyNode(N);
2295#endif
2296  return SDValue(N, 0);
2297}
2298
2299SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2300                              EVT VT, SDValue Operand) {
2301  // Constant fold unary operations with an integer constant operand.
2302  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2303    const APInt &Val = C->getAPIntValue();
2304    unsigned BitWidth = VT.getSizeInBits();
2305    switch (Opcode) {
2306    default: break;
2307    case ISD::SIGN_EXTEND:
2308      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2309    case ISD::ANY_EXTEND:
2310    case ISD::ZERO_EXTEND:
2311    case ISD::TRUNCATE:
2312      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2313    case ISD::UINT_TO_FP:
2314    case ISD::SINT_TO_FP: {
2315      const uint64_t zero[] = {0, 0};
2316      // No compile time operations on this type.
2317      if (VT==MVT::ppcf128)
2318        break;
2319      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2320      (void)apf.convertFromAPInt(Val,
2321                                 Opcode==ISD::SINT_TO_FP,
2322                                 APFloat::rmNearestTiesToEven);
2323      return getConstantFP(apf, VT);
2324    }
2325    case ISD::BIT_CONVERT:
2326      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2327        return getConstantFP(Val.bitsToFloat(), VT);
2328      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2329        return getConstantFP(Val.bitsToDouble(), VT);
2330      break;
2331    case ISD::BSWAP:
2332      return getConstant(Val.byteSwap(), VT);
2333    case ISD::CTPOP:
2334      return getConstant(Val.countPopulation(), VT);
2335    case ISD::CTLZ:
2336      return getConstant(Val.countLeadingZeros(), VT);
2337    case ISD::CTTZ:
2338      return getConstant(Val.countTrailingZeros(), VT);
2339    }
2340  }
2341
2342  // Constant fold unary operations with a floating point constant operand.
2343  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2344    APFloat V = C->getValueAPF();    // make copy
2345    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2346      switch (Opcode) {
2347      case ISD::FNEG:
2348        V.changeSign();
2349        return getConstantFP(V, VT);
2350      case ISD::FABS:
2351        V.clearSign();
2352        return getConstantFP(V, VT);
2353      case ISD::FP_ROUND:
2354      case ISD::FP_EXTEND: {
2355        bool ignored;
2356        // This can return overflow, underflow, or inexact; we don't care.
2357        // FIXME need to be more flexible about rounding mode.
2358        (void)V.convert(*EVTToAPFloatSemantics(VT),
2359                        APFloat::rmNearestTiesToEven, &ignored);
2360        return getConstantFP(V, VT);
2361      }
2362      case ISD::FP_TO_SINT:
2363      case ISD::FP_TO_UINT: {
2364        integerPart x[2];
2365        bool ignored;
2366        assert(integerPartWidth >= 64);
2367        // FIXME need to be more flexible about rounding mode.
2368        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2369                              Opcode==ISD::FP_TO_SINT,
2370                              APFloat::rmTowardZero, &ignored);
2371        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2372          break;
2373        APInt api(VT.getSizeInBits(), 2, x);
2374        return getConstant(api, VT);
2375      }
2376      case ISD::BIT_CONVERT:
2377        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2378          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2379        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2380          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2381        break;
2382      }
2383    }
2384  }
2385
2386  unsigned OpOpcode = Operand.getNode()->getOpcode();
2387  switch (Opcode) {
2388  case ISD::TokenFactor:
2389  case ISD::MERGE_VALUES:
2390  case ISD::CONCAT_VECTORS:
2391    return Operand;         // Factor, merge or concat of one node?  No need.
2392  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2393  case ISD::FP_EXTEND:
2394    assert(VT.isFloatingPoint() &&
2395           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2396    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2397    assert((!VT.isVector() ||
2398            VT.getVectorNumElements() ==
2399            Operand.getValueType().getVectorNumElements()) &&
2400           "Vector element count mismatch!");
2401    if (Operand.getOpcode() == ISD::UNDEF)
2402      return getUNDEF(VT);
2403    break;
2404  case ISD::SIGN_EXTEND:
2405    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2406           "Invalid SIGN_EXTEND!");
2407    if (Operand.getValueType() == VT) return Operand;   // noop extension
2408    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2409           "Invalid sext node, dst < src!");
2410    assert((!VT.isVector() ||
2411            VT.getVectorNumElements() ==
2412            Operand.getValueType().getVectorNumElements()) &&
2413           "Vector element count mismatch!");
2414    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2415      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2416    break;
2417  case ISD::ZERO_EXTEND:
2418    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2419           "Invalid ZERO_EXTEND!");
2420    if (Operand.getValueType() == VT) return Operand;   // noop extension
2421    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2422           "Invalid zext node, dst < src!");
2423    assert((!VT.isVector() ||
2424            VT.getVectorNumElements() ==
2425            Operand.getValueType().getVectorNumElements()) &&
2426           "Vector element count mismatch!");
2427    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2428      return getNode(ISD::ZERO_EXTEND, DL, VT,
2429                     Operand.getNode()->getOperand(0));
2430    break;
2431  case ISD::ANY_EXTEND:
2432    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2433           "Invalid ANY_EXTEND!");
2434    if (Operand.getValueType() == VT) return Operand;   // noop extension
2435    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2436           "Invalid anyext node, dst < src!");
2437    assert((!VT.isVector() ||
2438            VT.getVectorNumElements() ==
2439            Operand.getValueType().getVectorNumElements()) &&
2440           "Vector element count mismatch!");
2441    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2442      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2443      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2444    break;
2445  case ISD::TRUNCATE:
2446    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2447           "Invalid TRUNCATE!");
2448    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2449    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2450           "Invalid truncate node, src < dst!");
2451    assert((!VT.isVector() ||
2452            VT.getVectorNumElements() ==
2453            Operand.getValueType().getVectorNumElements()) &&
2454           "Vector element count mismatch!");
2455    if (OpOpcode == ISD::TRUNCATE)
2456      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2457    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2458             OpOpcode == ISD::ANY_EXTEND) {
2459      // If the source is smaller than the dest, we still need an extend.
2460      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2461            .bitsLT(VT.getScalarType()))
2462        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2463      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2464        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2465      else
2466        return Operand.getNode()->getOperand(0);
2467    }
2468    break;
2469  case ISD::BIT_CONVERT:
2470    // Basic sanity checking.
2471    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2472           && "Cannot BIT_CONVERT between types of different sizes!");
2473    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2474    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2475      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2476    if (OpOpcode == ISD::UNDEF)
2477      return getUNDEF(VT);
2478    break;
2479  case ISD::SCALAR_TO_VECTOR:
2480    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2481           (VT.getVectorElementType() == Operand.getValueType() ||
2482            (VT.getVectorElementType().isInteger() &&
2483             Operand.getValueType().isInteger() &&
2484             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2485           "Illegal SCALAR_TO_VECTOR node!");
2486    if (OpOpcode == ISD::UNDEF)
2487      return getUNDEF(VT);
2488    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2489    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2490        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2491        Operand.getConstantOperandVal(1) == 0 &&
2492        Operand.getOperand(0).getValueType() == VT)
2493      return Operand.getOperand(0);
2494    break;
2495  case ISD::FNEG:
2496    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2497    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2498      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2499                     Operand.getNode()->getOperand(0));
2500    if (OpOpcode == ISD::FNEG)  // --X -> X
2501      return Operand.getNode()->getOperand(0);
2502    break;
2503  case ISD::FABS:
2504    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2505      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2506    break;
2507  }
2508
2509  SDNode *N;
2510  SDVTList VTs = getVTList(VT);
2511  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2512    FoldingSetNodeID ID;
2513    SDValue Ops[1] = { Operand };
2514    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2515    void *IP = 0;
2516    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2517      return SDValue(E, 0);
2518
2519    N = NodeAllocator.Allocate<UnarySDNode>();
2520    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2521    CSEMap.InsertNode(N, IP);
2522  } else {
2523    N = NodeAllocator.Allocate<UnarySDNode>();
2524    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2525  }
2526
2527  AllNodes.push_back(N);
2528#ifndef NDEBUG
2529  VerifyNode(N);
2530#endif
2531  return SDValue(N, 0);
2532}
2533
2534SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2535                                             EVT VT,
2536                                             ConstantSDNode *Cst1,
2537                                             ConstantSDNode *Cst2) {
2538  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2539
2540  switch (Opcode) {
2541  case ISD::ADD:  return getConstant(C1 + C2, VT);
2542  case ISD::SUB:  return getConstant(C1 - C2, VT);
2543  case ISD::MUL:  return getConstant(C1 * C2, VT);
2544  case ISD::UDIV:
2545    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2546    break;
2547  case ISD::UREM:
2548    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2549    break;
2550  case ISD::SDIV:
2551    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2552    break;
2553  case ISD::SREM:
2554    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2555    break;
2556  case ISD::AND:  return getConstant(C1 & C2, VT);
2557  case ISD::OR:   return getConstant(C1 | C2, VT);
2558  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2559  case ISD::SHL:  return getConstant(C1 << C2, VT);
2560  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2561  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2562  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2563  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2564  default: break;
2565  }
2566
2567  return SDValue();
2568}
2569
2570SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2571                              SDValue N1, SDValue N2) {
2572  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2573  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2574  switch (Opcode) {
2575  default: break;
2576  case ISD::TokenFactor:
2577    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2578           N2.getValueType() == MVT::Other && "Invalid token factor!");
2579    // Fold trivial token factors.
2580    if (N1.getOpcode() == ISD::EntryToken) return N2;
2581    if (N2.getOpcode() == ISD::EntryToken) return N1;
2582    if (N1 == N2) return N1;
2583    break;
2584  case ISD::CONCAT_VECTORS:
2585    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2586    // one big BUILD_VECTOR.
2587    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2588        N2.getOpcode() == ISD::BUILD_VECTOR) {
2589      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2590      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2591      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2592    }
2593    break;
2594  case ISD::AND:
2595    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2596           N1.getValueType() == VT && "Binary operator types must match!");
2597    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2598    // worth handling here.
2599    if (N2C && N2C->isNullValue())
2600      return N2;
2601    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2602      return N1;
2603    break;
2604  case ISD::OR:
2605  case ISD::XOR:
2606  case ISD::ADD:
2607  case ISD::SUB:
2608    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2609           N1.getValueType() == VT && "Binary operator types must match!");
2610    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2611    // it's worth handling here.
2612    if (N2C && N2C->isNullValue())
2613      return N1;
2614    break;
2615  case ISD::UDIV:
2616  case ISD::UREM:
2617  case ISD::MULHU:
2618  case ISD::MULHS:
2619  case ISD::MUL:
2620  case ISD::SDIV:
2621  case ISD::SREM:
2622    assert(VT.isInteger() && "This operator does not apply to FP types!");
2623    // fall through
2624  case ISD::FADD:
2625  case ISD::FSUB:
2626  case ISD::FMUL:
2627  case ISD::FDIV:
2628  case ISD::FREM:
2629    if (UnsafeFPMath) {
2630      if (Opcode == ISD::FADD) {
2631        // 0+x --> x
2632        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2633          if (CFP->getValueAPF().isZero())
2634            return N2;
2635        // x+0 --> x
2636        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2637          if (CFP->getValueAPF().isZero())
2638            return N1;
2639      } else if (Opcode == ISD::FSUB) {
2640        // x-0 --> x
2641        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2642          if (CFP->getValueAPF().isZero())
2643            return N1;
2644      }
2645    }
2646    assert(N1.getValueType() == N2.getValueType() &&
2647           N1.getValueType() == VT && "Binary operator types must match!");
2648    break;
2649  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2650    assert(N1.getValueType() == VT &&
2651           N1.getValueType().isFloatingPoint() &&
2652           N2.getValueType().isFloatingPoint() &&
2653           "Invalid FCOPYSIGN!");
2654    break;
2655  case ISD::SHL:
2656  case ISD::SRA:
2657  case ISD::SRL:
2658  case ISD::ROTL:
2659  case ISD::ROTR:
2660    assert(VT == N1.getValueType() &&
2661           "Shift operators return type must be the same as their first arg");
2662    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2663           "Shifts only work on integers");
2664
2665    // Always fold shifts of i1 values so the code generator doesn't need to
2666    // handle them.  Since we know the size of the shift has to be less than the
2667    // size of the value, the shift/rotate count is guaranteed to be zero.
2668    if (VT == MVT::i1)
2669      return N1;
2670    if (N2C && N2C->isNullValue())
2671      return N1;
2672    break;
2673  case ISD::FP_ROUND_INREG: {
2674    EVT EVT = cast<VTSDNode>(N2)->getVT();
2675    assert(VT == N1.getValueType() && "Not an inreg round!");
2676    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2677           "Cannot FP_ROUND_INREG integer types");
2678    assert(EVT.isVector() == VT.isVector() &&
2679           "FP_ROUND_INREG type should be vector iff the operand "
2680           "type is vector!");
2681    assert((!EVT.isVector() ||
2682            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2683           "Vector element counts must match in FP_ROUND_INREG");
2684    assert(EVT.bitsLE(VT) && "Not rounding down!");
2685    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2686    break;
2687  }
2688  case ISD::FP_ROUND:
2689    assert(VT.isFloatingPoint() &&
2690           N1.getValueType().isFloatingPoint() &&
2691           VT.bitsLE(N1.getValueType()) &&
2692           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2693    if (N1.getValueType() == VT) return N1;  // noop conversion.
2694    break;
2695  case ISD::AssertSext:
2696  case ISD::AssertZext: {
2697    EVT EVT = cast<VTSDNode>(N2)->getVT();
2698    assert(VT == N1.getValueType() && "Not an inreg extend!");
2699    assert(VT.isInteger() && EVT.isInteger() &&
2700           "Cannot *_EXTEND_INREG FP types");
2701    assert(!EVT.isVector() &&
2702           "AssertSExt/AssertZExt type should be the vector element type "
2703           "rather than the vector type!");
2704    assert(EVT.bitsLE(VT) && "Not extending!");
2705    if (VT == EVT) return N1; // noop assertion.
2706    break;
2707  }
2708  case ISD::SIGN_EXTEND_INREG: {
2709    EVT EVT = cast<VTSDNode>(N2)->getVT();
2710    assert(VT == N1.getValueType() && "Not an inreg extend!");
2711    assert(VT.isInteger() && EVT.isInteger() &&
2712           "Cannot *_EXTEND_INREG FP types");
2713    assert(EVT.isVector() == VT.isVector() &&
2714           "SIGN_EXTEND_INREG type should be vector iff the operand "
2715           "type is vector!");
2716    assert((!EVT.isVector() ||
2717            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2718           "Vector element counts must match in SIGN_EXTEND_INREG");
2719    assert(EVT.bitsLE(VT) && "Not extending!");
2720    if (EVT == VT) return N1;  // Not actually extending
2721
2722    if (N1C) {
2723      APInt Val = N1C->getAPIntValue();
2724      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2725      Val <<= Val.getBitWidth()-FromBits;
2726      Val = Val.ashr(Val.getBitWidth()-FromBits);
2727      return getConstant(Val, VT);
2728    }
2729    break;
2730  }
2731  case ISD::EXTRACT_VECTOR_ELT:
2732    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2733    if (N1.getOpcode() == ISD::UNDEF)
2734      return getUNDEF(VT);
2735
2736    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2737    // expanding copies of large vectors from registers.
2738    if (N2C &&
2739        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2740        N1.getNumOperands() > 0) {
2741      unsigned Factor =
2742        N1.getOperand(0).getValueType().getVectorNumElements();
2743      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2744                     N1.getOperand(N2C->getZExtValue() / Factor),
2745                     getConstant(N2C->getZExtValue() % Factor,
2746                                 N2.getValueType()));
2747    }
2748
2749    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2750    // expanding large vector constants.
2751    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2752      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2753      EVT VEltTy = N1.getValueType().getVectorElementType();
2754      if (Elt.getValueType() != VEltTy) {
2755        // If the vector element type is not legal, the BUILD_VECTOR operands
2756        // are promoted and implicitly truncated.  Make that explicit here.
2757        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2758      }
2759      if (VT != VEltTy) {
2760        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2761        // result is implicitly extended.
2762        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2763      }
2764      return Elt;
2765    }
2766
2767    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2768    // operations are lowered to scalars.
2769    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2770      // If the indices are the same, return the inserted element else
2771      // if the indices are known different, extract the element from
2772      // the original vector.
2773      if (N1.getOperand(2) == N2) {
2774        if (VT == N1.getOperand(1).getValueType())
2775          return N1.getOperand(1);
2776        else
2777          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2778      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2779                 isa<ConstantSDNode>(N2))
2780        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2781    }
2782    break;
2783  case ISD::EXTRACT_ELEMENT:
2784    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2785    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2786           (N1.getValueType().isInteger() == VT.isInteger()) &&
2787           "Wrong types for EXTRACT_ELEMENT!");
2788
2789    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2790    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2791    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2792    if (N1.getOpcode() == ISD::BUILD_PAIR)
2793      return N1.getOperand(N2C->getZExtValue());
2794
2795    // EXTRACT_ELEMENT of a constant int is also very common.
2796    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2797      unsigned ElementSize = VT.getSizeInBits();
2798      unsigned Shift = ElementSize * N2C->getZExtValue();
2799      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2800      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2801    }
2802    break;
2803  case ISD::EXTRACT_SUBVECTOR:
2804    if (N1.getValueType() == VT) // Trivial extraction.
2805      return N1;
2806    break;
2807  }
2808
2809  if (N1C) {
2810    if (N2C) {
2811      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2812      if (SV.getNode()) return SV;
2813    } else {      // Cannonicalize constant to RHS if commutative
2814      if (isCommutativeBinOp(Opcode)) {
2815        std::swap(N1C, N2C);
2816        std::swap(N1, N2);
2817      }
2818    }
2819  }
2820
2821  // Constant fold FP operations.
2822  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2823  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2824  if (N1CFP) {
2825    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2826      // Cannonicalize constant to RHS if commutative
2827      std::swap(N1CFP, N2CFP);
2828      std::swap(N1, N2);
2829    } else if (N2CFP && VT != MVT::ppcf128) {
2830      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2831      APFloat::opStatus s;
2832      switch (Opcode) {
2833      case ISD::FADD:
2834        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2835        if (s != APFloat::opInvalidOp)
2836          return getConstantFP(V1, VT);
2837        break;
2838      case ISD::FSUB:
2839        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2840        if (s!=APFloat::opInvalidOp)
2841          return getConstantFP(V1, VT);
2842        break;
2843      case ISD::FMUL:
2844        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2845        if (s!=APFloat::opInvalidOp)
2846          return getConstantFP(V1, VT);
2847        break;
2848      case ISD::FDIV:
2849        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2850        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2851          return getConstantFP(V1, VT);
2852        break;
2853      case ISD::FREM :
2854        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2855        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2856          return getConstantFP(V1, VT);
2857        break;
2858      case ISD::FCOPYSIGN:
2859        V1.copySign(V2);
2860        return getConstantFP(V1, VT);
2861      default: break;
2862      }
2863    }
2864  }
2865
2866  // Canonicalize an UNDEF to the RHS, even over a constant.
2867  if (N1.getOpcode() == ISD::UNDEF) {
2868    if (isCommutativeBinOp(Opcode)) {
2869      std::swap(N1, N2);
2870    } else {
2871      switch (Opcode) {
2872      case ISD::FP_ROUND_INREG:
2873      case ISD::SIGN_EXTEND_INREG:
2874      case ISD::SUB:
2875      case ISD::FSUB:
2876      case ISD::FDIV:
2877      case ISD::FREM:
2878      case ISD::SRA:
2879        return N1;     // fold op(undef, arg2) -> undef
2880      case ISD::UDIV:
2881      case ISD::SDIV:
2882      case ISD::UREM:
2883      case ISD::SREM:
2884      case ISD::SRL:
2885      case ISD::SHL:
2886        if (!VT.isVector())
2887          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2888        // For vectors, we can't easily build an all zero vector, just return
2889        // the LHS.
2890        return N2;
2891      }
2892    }
2893  }
2894
2895  // Fold a bunch of operators when the RHS is undef.
2896  if (N2.getOpcode() == ISD::UNDEF) {
2897    switch (Opcode) {
2898    case ISD::XOR:
2899      if (N1.getOpcode() == ISD::UNDEF)
2900        // Handle undef ^ undef -> 0 special case. This is a common
2901        // idiom (misuse).
2902        return getConstant(0, VT);
2903      // fallthrough
2904    case ISD::ADD:
2905    case ISD::ADDC:
2906    case ISD::ADDE:
2907    case ISD::SUB:
2908    case ISD::UDIV:
2909    case ISD::SDIV:
2910    case ISD::UREM:
2911    case ISD::SREM:
2912      return N2;       // fold op(arg1, undef) -> undef
2913    case ISD::FADD:
2914    case ISD::FSUB:
2915    case ISD::FMUL:
2916    case ISD::FDIV:
2917    case ISD::FREM:
2918      if (UnsafeFPMath)
2919        return N2;
2920      break;
2921    case ISD::MUL:
2922    case ISD::AND:
2923    case ISD::SRL:
2924    case ISD::SHL:
2925      if (!VT.isVector())
2926        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2927      // For vectors, we can't easily build an all zero vector, just return
2928      // the LHS.
2929      return N1;
2930    case ISD::OR:
2931      if (!VT.isVector())
2932        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2933      // For vectors, we can't easily build an all one vector, just return
2934      // the LHS.
2935      return N1;
2936    case ISD::SRA:
2937      return N1;
2938    }
2939  }
2940
2941  // Memoize this node if possible.
2942  SDNode *N;
2943  SDVTList VTs = getVTList(VT);
2944  if (VT != MVT::Flag) {
2945    SDValue Ops[] = { N1, N2 };
2946    FoldingSetNodeID ID;
2947    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2948    void *IP = 0;
2949    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2950      return SDValue(E, 0);
2951
2952    N = NodeAllocator.Allocate<BinarySDNode>();
2953    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2954    CSEMap.InsertNode(N, IP);
2955  } else {
2956    N = NodeAllocator.Allocate<BinarySDNode>();
2957    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2958  }
2959
2960  AllNodes.push_back(N);
2961#ifndef NDEBUG
2962  VerifyNode(N);
2963#endif
2964  return SDValue(N, 0);
2965}
2966
2967SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2968                              SDValue N1, SDValue N2, SDValue N3) {
2969  // Perform various simplifications.
2970  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2971  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2972  switch (Opcode) {
2973  case ISD::CONCAT_VECTORS:
2974    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2975    // one big BUILD_VECTOR.
2976    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2977        N2.getOpcode() == ISD::BUILD_VECTOR &&
2978        N3.getOpcode() == ISD::BUILD_VECTOR) {
2979      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2980      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2981      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2982      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2983    }
2984    break;
2985  case ISD::SETCC: {
2986    // Use FoldSetCC to simplify SETCC's.
2987    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2988    if (Simp.getNode()) return Simp;
2989    break;
2990  }
2991  case ISD::SELECT:
2992    if (N1C) {
2993     if (N1C->getZExtValue())
2994        return N2;             // select true, X, Y -> X
2995      else
2996        return N3;             // select false, X, Y -> Y
2997    }
2998
2999    if (N2 == N3) return N2;   // select C, X, X -> X
3000    break;
3001  case ISD::BRCOND:
3002    if (N2C) {
3003      if (N2C->getZExtValue()) // Unconditional branch
3004        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3005      else
3006        return N1;         // Never-taken branch
3007    }
3008    break;
3009  case ISD::VECTOR_SHUFFLE:
3010    llvm_unreachable("should use getVectorShuffle constructor!");
3011    break;
3012  case ISD::BIT_CONVERT:
3013    // Fold bit_convert nodes from a type to themselves.
3014    if (N1.getValueType() == VT)
3015      return N1;
3016    break;
3017  }
3018
3019  // Memoize node if it doesn't produce a flag.
3020  SDNode *N;
3021  SDVTList VTs = getVTList(VT);
3022  if (VT != MVT::Flag) {
3023    SDValue Ops[] = { N1, N2, N3 };
3024    FoldingSetNodeID ID;
3025    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3026    void *IP = 0;
3027    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3028      return SDValue(E, 0);
3029
3030    N = NodeAllocator.Allocate<TernarySDNode>();
3031    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3032    CSEMap.InsertNode(N, IP);
3033  } else {
3034    N = NodeAllocator.Allocate<TernarySDNode>();
3035    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3036  }
3037
3038  AllNodes.push_back(N);
3039#ifndef NDEBUG
3040  VerifyNode(N);
3041#endif
3042  return SDValue(N, 0);
3043}
3044
3045SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3046                              SDValue N1, SDValue N2, SDValue N3,
3047                              SDValue N4) {
3048  SDValue Ops[] = { N1, N2, N3, N4 };
3049  return getNode(Opcode, DL, VT, Ops, 4);
3050}
3051
3052SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3053                              SDValue N1, SDValue N2, SDValue N3,
3054                              SDValue N4, SDValue N5) {
3055  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3056  return getNode(Opcode, DL, VT, Ops, 5);
3057}
3058
3059/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3060/// the incoming stack arguments to be loaded from the stack.
3061SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3062  SmallVector<SDValue, 8> ArgChains;
3063
3064  // Include the original chain at the beginning of the list. When this is
3065  // used by target LowerCall hooks, this helps legalize find the
3066  // CALLSEQ_BEGIN node.
3067  ArgChains.push_back(Chain);
3068
3069  // Add a chain value for each stack argument.
3070  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3071       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3072    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3073      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3074        if (FI->getIndex() < 0)
3075          ArgChains.push_back(SDValue(L, 1));
3076
3077  // Build a tokenfactor for all the chains.
3078  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3079                 &ArgChains[0], ArgChains.size());
3080}
3081
3082/// getMemsetValue - Vectorized representation of the memset value
3083/// operand.
3084static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3085                              DebugLoc dl) {
3086  unsigned NumBits = VT.isVector() ?
3087    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3088  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3089    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3090    unsigned Shift = 8;
3091    for (unsigned i = NumBits; i > 8; i >>= 1) {
3092      Val = (Val << Shift) | Val;
3093      Shift <<= 1;
3094    }
3095    if (VT.isInteger())
3096      return DAG.getConstant(Val, VT);
3097    return DAG.getConstantFP(APFloat(Val), VT);
3098  }
3099
3100  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3101  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3102  unsigned Shift = 8;
3103  for (unsigned i = NumBits; i > 8; i >>= 1) {
3104    Value = DAG.getNode(ISD::OR, dl, VT,
3105                        DAG.getNode(ISD::SHL, dl, VT, Value,
3106                                    DAG.getConstant(Shift,
3107                                                    TLI.getShiftAmountTy())),
3108                        Value);
3109    Shift <<= 1;
3110  }
3111
3112  return Value;
3113}
3114
3115/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3116/// used when a memcpy is turned into a memset when the source is a constant
3117/// string ptr.
3118static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3119                                  const TargetLowering &TLI,
3120                                  std::string &Str, unsigned Offset) {
3121  // Handle vector with all elements zero.
3122  if (Str.empty()) {
3123    if (VT.isInteger())
3124      return DAG.getConstant(0, VT);
3125    unsigned NumElts = VT.getVectorNumElements();
3126    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3127    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3128                       DAG.getConstant(0,
3129                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3130  }
3131
3132  assert(!VT.isVector() && "Can't handle vector type here!");
3133  unsigned NumBits = VT.getSizeInBits();
3134  unsigned MSB = NumBits / 8;
3135  uint64_t Val = 0;
3136  if (TLI.isLittleEndian())
3137    Offset = Offset + MSB - 1;
3138  for (unsigned i = 0; i != MSB; ++i) {
3139    Val = (Val << 8) | (unsigned char)Str[Offset];
3140    Offset += TLI.isLittleEndian() ? -1 : 1;
3141  }
3142  return DAG.getConstant(Val, VT);
3143}
3144
3145/// getMemBasePlusOffset - Returns base and offset node for the
3146///
3147static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3148                                      SelectionDAG &DAG) {
3149  EVT VT = Base.getValueType();
3150  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3151                     VT, Base, DAG.getConstant(Offset, VT));
3152}
3153
3154/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3155///
3156static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3157  unsigned SrcDelta = 0;
3158  GlobalAddressSDNode *G = NULL;
3159  if (Src.getOpcode() == ISD::GlobalAddress)
3160    G = cast<GlobalAddressSDNode>(Src);
3161  else if (Src.getOpcode() == ISD::ADD &&
3162           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3163           Src.getOperand(1).getOpcode() == ISD::Constant) {
3164    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3165    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3166  }
3167  if (!G)
3168    return false;
3169
3170  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3171  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3172    return true;
3173
3174  return false;
3175}
3176
3177/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3178/// to replace the memset / memcpy is below the threshold. It also returns the
3179/// types of the sequence of memory ops to perform memset / memcpy.
3180static
3181bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3182                              SDValue Dst, SDValue Src,
3183                              unsigned Limit, uint64_t Size, unsigned &Align,
3184                              std::string &Str, bool &isSrcStr,
3185                              SelectionDAG &DAG,
3186                              const TargetLowering &TLI) {
3187  isSrcStr = isMemSrcFromString(Src, Str);
3188  bool isSrcConst = isa<ConstantSDNode>(Src);
3189  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3190  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3191  if (VT != MVT::iAny) {
3192    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3193    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3194    // If source is a string constant, this will require an unaligned load.
3195    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3196      if (Dst.getOpcode() != ISD::FrameIndex) {
3197        // Can't change destination alignment. It requires a unaligned store.
3198        if (AllowUnalign)
3199          VT = MVT::iAny;
3200      } else {
3201        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3202        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3203        if (MFI->isFixedObjectIndex(FI)) {
3204          // Can't change destination alignment. It requires a unaligned store.
3205          if (AllowUnalign)
3206            VT = MVT::iAny;
3207        } else {
3208          // Give the stack frame object a larger alignment if needed.
3209          if (MFI->getObjectAlignment(FI) < NewAlign)
3210            MFI->setObjectAlignment(FI, NewAlign);
3211          Align = NewAlign;
3212        }
3213      }
3214    }
3215  }
3216
3217  if (VT == MVT::iAny) {
3218    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3219      VT = MVT::i64;
3220    } else {
3221      switch (Align & 7) {
3222      case 0:  VT = MVT::i64; break;
3223      case 4:  VT = MVT::i32; break;
3224      case 2:  VT = MVT::i16; break;
3225      default: VT = MVT::i8;  break;
3226      }
3227    }
3228
3229    MVT LVT = MVT::i64;
3230    while (!TLI.isTypeLegal(LVT))
3231      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3232    assert(LVT.isInteger());
3233
3234    if (VT.bitsGT(LVT))
3235      VT = LVT;
3236  }
3237
3238  unsigned NumMemOps = 0;
3239  while (Size != 0) {
3240    unsigned VTSize = VT.getSizeInBits() / 8;
3241    while (VTSize > Size) {
3242      // For now, only use non-vector load / store's for the left-over pieces.
3243      if (VT.isVector()) {
3244        VT = MVT::i64;
3245        while (!TLI.isTypeLegal(VT))
3246          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3247        VTSize = VT.getSizeInBits() / 8;
3248      } else {
3249        // This can result in a type that is not legal on the target, e.g.
3250        // 1 or 2 bytes on PPC.
3251        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3252        VTSize >>= 1;
3253      }
3254    }
3255
3256    if (++NumMemOps > Limit)
3257      return false;
3258    MemOps.push_back(VT);
3259    Size -= VTSize;
3260  }
3261
3262  return true;
3263}
3264
3265static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3266                                         SDValue Chain, SDValue Dst,
3267                                         SDValue Src, uint64_t Size,
3268                                         unsigned Align, bool AlwaysInline,
3269                                         const Value *DstSV, uint64_t DstSVOff,
3270                                         const Value *SrcSV, uint64_t SrcSVOff){
3271  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3272
3273  // Expand memcpy to a series of load and store ops if the size operand falls
3274  // below a certain threshold.
3275  std::vector<EVT> MemOps;
3276  uint64_t Limit = -1ULL;
3277  if (!AlwaysInline)
3278    Limit = TLI.getMaxStoresPerMemcpy();
3279  unsigned DstAlign = Align;  // Destination alignment can change.
3280  std::string Str;
3281  bool CopyFromStr;
3282  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3283                                Str, CopyFromStr, DAG, TLI))
3284    return SDValue();
3285
3286
3287  bool isZeroStr = CopyFromStr && Str.empty();
3288  SmallVector<SDValue, 8> OutChains;
3289  unsigned NumMemOps = MemOps.size();
3290  uint64_t SrcOff = 0, DstOff = 0;
3291  for (unsigned i = 0; i != NumMemOps; ++i) {
3292    EVT VT = MemOps[i];
3293    unsigned VTSize = VT.getSizeInBits() / 8;
3294    SDValue Value, Store;
3295
3296    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3297      // It's unlikely a store of a vector immediate can be done in a single
3298      // instruction. It would require a load from a constantpool first.
3299      // We also handle store a vector with all zero's.
3300      // FIXME: Handle other cases where store of vector immediate is done in
3301      // a single instruction.
3302      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3303      Store = DAG.getStore(Chain, dl, Value,
3304                           getMemBasePlusOffset(Dst, DstOff, DAG),
3305                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3306    } else {
3307      // The type might not be legal for the target.  This should only happen
3308      // if the type is smaller than a legal type, as on PPC, so the right
3309      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3310      // to Load/Store if NVT==VT.
3311      // FIXME does the case above also need this?
3312      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3313      assert(NVT.bitsGE(VT));
3314      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3315                             getMemBasePlusOffset(Src, SrcOff, DAG),
3316                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3317      Store = DAG.getTruncStore(Chain, dl, Value,
3318                                getMemBasePlusOffset(Dst, DstOff, DAG),
3319                                DstSV, DstSVOff + DstOff, VT, false, false,
3320                                DstAlign);
3321    }
3322    OutChains.push_back(Store);
3323    SrcOff += VTSize;
3324    DstOff += VTSize;
3325  }
3326
3327  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3328                     &OutChains[0], OutChains.size());
3329}
3330
3331static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3332                                          SDValue Chain, SDValue Dst,
3333                                          SDValue Src, uint64_t Size,
3334                                          unsigned Align, bool AlwaysInline,
3335                                          const Value *DstSV, uint64_t DstSVOff,
3336                                          const Value *SrcSV, uint64_t SrcSVOff){
3337  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3338
3339  // Expand memmove to a series of load and store ops if the size operand falls
3340  // below a certain threshold.
3341  std::vector<EVT> MemOps;
3342  uint64_t Limit = -1ULL;
3343  if (!AlwaysInline)
3344    Limit = TLI.getMaxStoresPerMemmove();
3345  unsigned DstAlign = Align;  // Destination alignment can change.
3346  std::string Str;
3347  bool CopyFromStr;
3348  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3349                                Str, CopyFromStr, DAG, TLI))
3350    return SDValue();
3351
3352  uint64_t SrcOff = 0, DstOff = 0;
3353
3354  SmallVector<SDValue, 8> LoadValues;
3355  SmallVector<SDValue, 8> LoadChains;
3356  SmallVector<SDValue, 8> OutChains;
3357  unsigned NumMemOps = MemOps.size();
3358  for (unsigned i = 0; i < NumMemOps; i++) {
3359    EVT VT = MemOps[i];
3360    unsigned VTSize = VT.getSizeInBits() / 8;
3361    SDValue Value, Store;
3362
3363    Value = DAG.getLoad(VT, dl, Chain,
3364                        getMemBasePlusOffset(Src, SrcOff, DAG),
3365                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3366    LoadValues.push_back(Value);
3367    LoadChains.push_back(Value.getValue(1));
3368    SrcOff += VTSize;
3369  }
3370  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3371                      &LoadChains[0], LoadChains.size());
3372  OutChains.clear();
3373  for (unsigned i = 0; i < NumMemOps; i++) {
3374    EVT VT = MemOps[i];
3375    unsigned VTSize = VT.getSizeInBits() / 8;
3376    SDValue Value, Store;
3377
3378    Store = DAG.getStore(Chain, dl, LoadValues[i],
3379                         getMemBasePlusOffset(Dst, DstOff, DAG),
3380                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3381    OutChains.push_back(Store);
3382    DstOff += VTSize;
3383  }
3384
3385  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3386                     &OutChains[0], OutChains.size());
3387}
3388
3389static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3390                                 SDValue Chain, SDValue Dst,
3391                                 SDValue Src, uint64_t Size,
3392                                 unsigned Align,
3393                                 const Value *DstSV, uint64_t DstSVOff) {
3394  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3395
3396  // Expand memset to a series of load/store ops if the size operand
3397  // falls below a certain threshold.
3398  std::vector<EVT> MemOps;
3399  std::string Str;
3400  bool CopyFromStr;
3401  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3402                                Size, Align, Str, CopyFromStr, DAG, TLI))
3403    return SDValue();
3404
3405  SmallVector<SDValue, 8> OutChains;
3406  uint64_t DstOff = 0;
3407
3408  unsigned NumMemOps = MemOps.size();
3409  for (unsigned i = 0; i < NumMemOps; i++) {
3410    EVT VT = MemOps[i];
3411    unsigned VTSize = VT.getSizeInBits() / 8;
3412    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3413    SDValue Store = DAG.getStore(Chain, dl, Value,
3414                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3415                                 DstSV, DstSVOff + DstOff, false, false, 0);
3416    OutChains.push_back(Store);
3417    DstOff += VTSize;
3418  }
3419
3420  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3421                     &OutChains[0], OutChains.size());
3422}
3423
3424SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3425                                SDValue Src, SDValue Size,
3426                                unsigned Align, bool AlwaysInline,
3427                                const Value *DstSV, uint64_t DstSVOff,
3428                                const Value *SrcSV, uint64_t SrcSVOff) {
3429
3430  // Check to see if we should lower the memcpy to loads and stores first.
3431  // For cases within the target-specified limits, this is the best choice.
3432  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3433  if (ConstantSize) {
3434    // Memcpy with size zero? Just return the original chain.
3435    if (ConstantSize->isNullValue())
3436      return Chain;
3437
3438    SDValue Result =
3439      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3440                              ConstantSize->getZExtValue(),
3441                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3442    if (Result.getNode())
3443      return Result;
3444  }
3445
3446  // Then check to see if we should lower the memcpy with target-specific
3447  // code. If the target chooses to do this, this is the next best.
3448  SDValue Result =
3449    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3450                                AlwaysInline,
3451                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3452  if (Result.getNode())
3453    return Result;
3454
3455  // If we really need inline code and the target declined to provide it,
3456  // use a (potentially long) sequence of loads and stores.
3457  if (AlwaysInline) {
3458    assert(ConstantSize && "AlwaysInline requires a constant size!");
3459    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3460                                   ConstantSize->getZExtValue(), Align, true,
3461                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3462  }
3463
3464  // Emit a library call.
3465  TargetLowering::ArgListTy Args;
3466  TargetLowering::ArgListEntry Entry;
3467  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3468  Entry.Node = Dst; Args.push_back(Entry);
3469  Entry.Node = Src; Args.push_back(Entry);
3470  Entry.Node = Size; Args.push_back(Entry);
3471  // FIXME: pass in DebugLoc
3472  std::pair<SDValue,SDValue> CallResult =
3473    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3474                    false, false, false, false, 0,
3475                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3476                    /*isReturnValueUsed=*/false,
3477                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3478                                      TLI.getPointerTy()),
3479                    Args, *this, dl, GetOrdering(Chain.getNode()));
3480  return CallResult.second;
3481}
3482
3483SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3484                                 SDValue Src, SDValue Size,
3485                                 unsigned Align,
3486                                 const Value *DstSV, uint64_t DstSVOff,
3487                                 const Value *SrcSV, uint64_t SrcSVOff) {
3488
3489  // Check to see if we should lower the memmove to loads and stores first.
3490  // For cases within the target-specified limits, this is the best choice.
3491  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3492  if (ConstantSize) {
3493    // Memmove with size zero? Just return the original chain.
3494    if (ConstantSize->isNullValue())
3495      return Chain;
3496
3497    SDValue Result =
3498      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3499                               ConstantSize->getZExtValue(),
3500                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3501    if (Result.getNode())
3502      return Result;
3503  }
3504
3505  // Then check to see if we should lower the memmove with target-specific
3506  // code. If the target chooses to do this, this is the next best.
3507  SDValue Result =
3508    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3509                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3510  if (Result.getNode())
3511    return Result;
3512
3513  // Emit a library call.
3514  TargetLowering::ArgListTy Args;
3515  TargetLowering::ArgListEntry Entry;
3516  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3517  Entry.Node = Dst; Args.push_back(Entry);
3518  Entry.Node = Src; Args.push_back(Entry);
3519  Entry.Node = Size; Args.push_back(Entry);
3520  // FIXME:  pass in DebugLoc
3521  std::pair<SDValue,SDValue> CallResult =
3522    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3523                    false, false, false, false, 0,
3524                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3525                    /*isReturnValueUsed=*/false,
3526                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3527                                      TLI.getPointerTy()),
3528                    Args, *this, dl, GetOrdering(Chain.getNode()));
3529  return CallResult.second;
3530}
3531
3532SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3533                                SDValue Src, SDValue Size,
3534                                unsigned Align,
3535                                const Value *DstSV, uint64_t DstSVOff) {
3536
3537  // Check to see if we should lower the memset to stores first.
3538  // For cases within the target-specified limits, this is the best choice.
3539  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3540  if (ConstantSize) {
3541    // Memset with size zero? Just return the original chain.
3542    if (ConstantSize->isNullValue())
3543      return Chain;
3544
3545    SDValue Result =
3546      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3547                      Align, DstSV, DstSVOff);
3548    if (Result.getNode())
3549      return Result;
3550  }
3551
3552  // Then check to see if we should lower the memset with target-specific
3553  // code. If the target chooses to do this, this is the next best.
3554  SDValue Result =
3555    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3556                                DstSV, DstSVOff);
3557  if (Result.getNode())
3558    return Result;
3559
3560  // Emit a library call.
3561  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3562  TargetLowering::ArgListTy Args;
3563  TargetLowering::ArgListEntry Entry;
3564  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3565  Args.push_back(Entry);
3566  // Extend or truncate the argument to be an i32 value for the call.
3567  if (Src.getValueType().bitsGT(MVT::i32))
3568    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3569  else
3570    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3571  Entry.Node = Src;
3572  Entry.Ty = Type::getInt32Ty(*getContext());
3573  Entry.isSExt = true;
3574  Args.push_back(Entry);
3575  Entry.Node = Size;
3576  Entry.Ty = IntPtrTy;
3577  Entry.isSExt = false;
3578  Args.push_back(Entry);
3579  // FIXME: pass in DebugLoc
3580  std::pair<SDValue,SDValue> CallResult =
3581    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3582                    false, false, false, false, 0,
3583                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3584                    /*isReturnValueUsed=*/false,
3585                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3586                                      TLI.getPointerTy()),
3587                    Args, *this, dl, GetOrdering(Chain.getNode()));
3588  return CallResult.second;
3589}
3590
3591SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3592                                SDValue Chain,
3593                                SDValue Ptr, SDValue Cmp,
3594                                SDValue Swp, const Value* PtrVal,
3595                                unsigned Alignment) {
3596  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3597    Alignment = getEVTAlignment(MemVT);
3598
3599  // Check if the memory reference references a frame index
3600  if (!PtrVal)
3601    if (const FrameIndexSDNode *FI =
3602          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3603      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3604
3605  MachineFunction &MF = getMachineFunction();
3606  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3607
3608  // For now, atomics are considered to be volatile always.
3609  Flags |= MachineMemOperand::MOVolatile;
3610
3611  MachineMemOperand *MMO =
3612    MF.getMachineMemOperand(PtrVal, Flags, 0,
3613                            MemVT.getStoreSize(), Alignment);
3614
3615  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3616}
3617
3618SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3619                                SDValue Chain,
3620                                SDValue Ptr, SDValue Cmp,
3621                                SDValue Swp, MachineMemOperand *MMO) {
3622  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3623  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3624
3625  EVT VT = Cmp.getValueType();
3626
3627  SDVTList VTs = getVTList(VT, MVT::Other);
3628  FoldingSetNodeID ID;
3629  ID.AddInteger(MemVT.getRawBits());
3630  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3631  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3632  void* IP = 0;
3633  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3634    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3635    return SDValue(E, 0);
3636  }
3637  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3638  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3639  CSEMap.InsertNode(N, IP);
3640  AllNodes.push_back(N);
3641  return SDValue(N, 0);
3642}
3643
3644SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3645                                SDValue Chain,
3646                                SDValue Ptr, SDValue Val,
3647                                const Value* PtrVal,
3648                                unsigned Alignment) {
3649  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3650    Alignment = getEVTAlignment(MemVT);
3651
3652  // Check if the memory reference references a frame index
3653  if (!PtrVal)
3654    if (const FrameIndexSDNode *FI =
3655          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3656      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3657
3658  MachineFunction &MF = getMachineFunction();
3659  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3660
3661  // For now, atomics are considered to be volatile always.
3662  Flags |= MachineMemOperand::MOVolatile;
3663
3664  MachineMemOperand *MMO =
3665    MF.getMachineMemOperand(PtrVal, Flags, 0,
3666                            MemVT.getStoreSize(), Alignment);
3667
3668  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3669}
3670
3671SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3672                                SDValue Chain,
3673                                SDValue Ptr, SDValue Val,
3674                                MachineMemOperand *MMO) {
3675  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3676          Opcode == ISD::ATOMIC_LOAD_SUB ||
3677          Opcode == ISD::ATOMIC_LOAD_AND ||
3678          Opcode == ISD::ATOMIC_LOAD_OR ||
3679          Opcode == ISD::ATOMIC_LOAD_XOR ||
3680          Opcode == ISD::ATOMIC_LOAD_NAND ||
3681          Opcode == ISD::ATOMIC_LOAD_MIN ||
3682          Opcode == ISD::ATOMIC_LOAD_MAX ||
3683          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3684          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3685          Opcode == ISD::ATOMIC_SWAP) &&
3686         "Invalid Atomic Op");
3687
3688  EVT VT = Val.getValueType();
3689
3690  SDVTList VTs = getVTList(VT, MVT::Other);
3691  FoldingSetNodeID ID;
3692  ID.AddInteger(MemVT.getRawBits());
3693  SDValue Ops[] = {Chain, Ptr, Val};
3694  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3695  void* IP = 0;
3696  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3697    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3698    return SDValue(E, 0);
3699  }
3700  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3701  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3702  CSEMap.InsertNode(N, IP);
3703  AllNodes.push_back(N);
3704  return SDValue(N, 0);
3705}
3706
3707/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3708/// Allowed to return something different (and simpler) if Simplify is true.
3709SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3710                                     DebugLoc dl) {
3711  if (NumOps == 1)
3712    return Ops[0];
3713
3714  SmallVector<EVT, 4> VTs;
3715  VTs.reserve(NumOps);
3716  for (unsigned i = 0; i < NumOps; ++i)
3717    VTs.push_back(Ops[i].getValueType());
3718  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3719                 Ops, NumOps);
3720}
3721
3722SDValue
3723SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3724                                  const EVT *VTs, unsigned NumVTs,
3725                                  const SDValue *Ops, unsigned NumOps,
3726                                  EVT MemVT, const Value *srcValue, int SVOff,
3727                                  unsigned Align, bool Vol,
3728                                  bool ReadMem, bool WriteMem) {
3729  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3730                             MemVT, srcValue, SVOff, Align, Vol,
3731                             ReadMem, WriteMem);
3732}
3733
3734SDValue
3735SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3736                                  const SDValue *Ops, unsigned NumOps,
3737                                  EVT MemVT, const Value *srcValue, int SVOff,
3738                                  unsigned Align, bool Vol,
3739                                  bool ReadMem, bool WriteMem) {
3740  if (Align == 0)  // Ensure that codegen never sees alignment 0
3741    Align = getEVTAlignment(MemVT);
3742
3743  MachineFunction &MF = getMachineFunction();
3744  unsigned Flags = 0;
3745  if (WriteMem)
3746    Flags |= MachineMemOperand::MOStore;
3747  if (ReadMem)
3748    Flags |= MachineMemOperand::MOLoad;
3749  if (Vol)
3750    Flags |= MachineMemOperand::MOVolatile;
3751  MachineMemOperand *MMO =
3752    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3753                            MemVT.getStoreSize(), Align);
3754
3755  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3756}
3757
3758SDValue
3759SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3760                                  const SDValue *Ops, unsigned NumOps,
3761                                  EVT MemVT, MachineMemOperand *MMO) {
3762  assert((Opcode == ISD::INTRINSIC_VOID ||
3763          Opcode == ISD::INTRINSIC_W_CHAIN ||
3764          (Opcode <= INT_MAX &&
3765           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3766         "Opcode is not a memory-accessing opcode!");
3767
3768  // Memoize the node unless it returns a flag.
3769  MemIntrinsicSDNode *N;
3770  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3771    FoldingSetNodeID ID;
3772    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3773    void *IP = 0;
3774    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3775      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3776      return SDValue(E, 0);
3777    }
3778
3779    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3780    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3781    CSEMap.InsertNode(N, IP);
3782  } else {
3783    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3784    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3785  }
3786  AllNodes.push_back(N);
3787  return SDValue(N, 0);
3788}
3789
3790SDValue
3791SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3792                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3793                      SDValue Ptr, SDValue Offset,
3794                      const Value *SV, int SVOffset, EVT MemVT,
3795                      bool isVolatile, bool isNonTemporal,
3796                      unsigned Alignment) {
3797  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3798    Alignment = getEVTAlignment(VT);
3799
3800  // Check if the memory reference references a frame index
3801  if (!SV)
3802    if (const FrameIndexSDNode *FI =
3803          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3804      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3805
3806  MachineFunction &MF = getMachineFunction();
3807  unsigned Flags = MachineMemOperand::MOLoad;
3808  if (isVolatile)
3809    Flags |= MachineMemOperand::MOVolatile;
3810  if (isNonTemporal)
3811    Flags |= MachineMemOperand::MONonTemporal;
3812  MachineMemOperand *MMO =
3813    MF.getMachineMemOperand(SV, Flags, SVOffset,
3814                            MemVT.getStoreSize(), Alignment);
3815  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3816}
3817
3818SDValue
3819SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3820                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3821                      SDValue Ptr, SDValue Offset, EVT MemVT,
3822                      MachineMemOperand *MMO) {
3823  if (VT == MemVT) {
3824    ExtType = ISD::NON_EXTLOAD;
3825  } else if (ExtType == ISD::NON_EXTLOAD) {
3826    assert(VT == MemVT && "Non-extending load from different memory type!");
3827  } else {
3828    // Extending load.
3829    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3830           "Should only be an extending load, not truncating!");
3831    assert(VT.isInteger() == MemVT.isInteger() &&
3832           "Cannot convert from FP to Int or Int -> FP!");
3833    assert(VT.isVector() == MemVT.isVector() &&
3834           "Cannot use trunc store to convert to or from a vector!");
3835    assert((!VT.isVector() ||
3836            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3837           "Cannot use trunc store to change the number of vector elements!");
3838  }
3839
3840  bool Indexed = AM != ISD::UNINDEXED;
3841  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3842         "Unindexed load with an offset!");
3843
3844  SDVTList VTs = Indexed ?
3845    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3846  SDValue Ops[] = { Chain, Ptr, Offset };
3847  FoldingSetNodeID ID;
3848  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3849  ID.AddInteger(MemVT.getRawBits());
3850  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3851                                     MMO->isNonTemporal()));
3852  void *IP = 0;
3853  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3854    cast<LoadSDNode>(E)->refineAlignment(MMO);
3855    return SDValue(E, 0);
3856  }
3857  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3858  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3859  CSEMap.InsertNode(N, IP);
3860  AllNodes.push_back(N);
3861  return SDValue(N, 0);
3862}
3863
3864SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3865                              SDValue Chain, SDValue Ptr,
3866                              const Value *SV, int SVOffset,
3867                              bool isVolatile, bool isNonTemporal,
3868                              unsigned Alignment) {
3869  SDValue Undef = getUNDEF(Ptr.getValueType());
3870  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3871                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3872}
3873
3874SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3875                                 SDValue Chain, SDValue Ptr,
3876                                 const Value *SV,
3877                                 int SVOffset, EVT MemVT,
3878                                 bool isVolatile, bool isNonTemporal,
3879                                 unsigned Alignment) {
3880  SDValue Undef = getUNDEF(Ptr.getValueType());
3881  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3882                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3883}
3884
3885SDValue
3886SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3887                             SDValue Offset, ISD::MemIndexedMode AM) {
3888  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3889  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3890         "Load is already a indexed load!");
3891  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3892                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3893                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3894                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3895}
3896
3897SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3898                               SDValue Ptr, const Value *SV, int SVOffset,
3899                               bool isVolatile, bool isNonTemporal,
3900                               unsigned Alignment) {
3901  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3902    Alignment = getEVTAlignment(Val.getValueType());
3903
3904  // Check if the memory reference references a frame index
3905  if (!SV)
3906    if (const FrameIndexSDNode *FI =
3907          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3908      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3909
3910  MachineFunction &MF = getMachineFunction();
3911  unsigned Flags = MachineMemOperand::MOStore;
3912  if (isVolatile)
3913    Flags |= MachineMemOperand::MOVolatile;
3914  if (isNonTemporal)
3915    Flags |= MachineMemOperand::MONonTemporal;
3916  MachineMemOperand *MMO =
3917    MF.getMachineMemOperand(SV, Flags, SVOffset,
3918                            Val.getValueType().getStoreSize(), Alignment);
3919
3920  return getStore(Chain, dl, Val, Ptr, MMO);
3921}
3922
3923SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3924                               SDValue Ptr, MachineMemOperand *MMO) {
3925  EVT VT = Val.getValueType();
3926  SDVTList VTs = getVTList(MVT::Other);
3927  SDValue Undef = getUNDEF(Ptr.getValueType());
3928  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3929  FoldingSetNodeID ID;
3930  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3931  ID.AddInteger(VT.getRawBits());
3932  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3933                                     MMO->isNonTemporal()));
3934  void *IP = 0;
3935  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3936    cast<StoreSDNode>(E)->refineAlignment(MMO);
3937    return SDValue(E, 0);
3938  }
3939  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3940  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3941  CSEMap.InsertNode(N, IP);
3942  AllNodes.push_back(N);
3943  return SDValue(N, 0);
3944}
3945
3946SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3947                                    SDValue Ptr, const Value *SV,
3948                                    int SVOffset, EVT SVT,
3949                                    bool isVolatile, bool isNonTemporal,
3950                                    unsigned Alignment) {
3951  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3952    Alignment = getEVTAlignment(SVT);
3953
3954  // Check if the memory reference references a frame index
3955  if (!SV)
3956    if (const FrameIndexSDNode *FI =
3957          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3958      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3959
3960  MachineFunction &MF = getMachineFunction();
3961  unsigned Flags = MachineMemOperand::MOStore;
3962  if (isVolatile)
3963    Flags |= MachineMemOperand::MOVolatile;
3964  if (isNonTemporal)
3965    Flags |= MachineMemOperand::MONonTemporal;
3966  MachineMemOperand *MMO =
3967    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3968
3969  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3970}
3971
3972SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3973                                    SDValue Ptr, EVT SVT,
3974                                    MachineMemOperand *MMO) {
3975  EVT VT = Val.getValueType();
3976
3977  if (VT == SVT)
3978    return getStore(Chain, dl, Val, Ptr, MMO);
3979
3980  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3981         "Should only be a truncating store, not extending!");
3982  assert(VT.isInteger() == SVT.isInteger() &&
3983         "Can't do FP-INT conversion!");
3984  assert(VT.isVector() == SVT.isVector() &&
3985         "Cannot use trunc store to convert to or from a vector!");
3986  assert((!VT.isVector() ||
3987          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3988         "Cannot use trunc store to change the number of vector elements!");
3989
3990  SDVTList VTs = getVTList(MVT::Other);
3991  SDValue Undef = getUNDEF(Ptr.getValueType());
3992  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3993  FoldingSetNodeID ID;
3994  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3995  ID.AddInteger(SVT.getRawBits());
3996  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
3997                                     MMO->isNonTemporal()));
3998  void *IP = 0;
3999  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4000    cast<StoreSDNode>(E)->refineAlignment(MMO);
4001    return SDValue(E, 0);
4002  }
4003  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4004  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4005  CSEMap.InsertNode(N, IP);
4006  AllNodes.push_back(N);
4007  return SDValue(N, 0);
4008}
4009
4010SDValue
4011SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4012                              SDValue Offset, ISD::MemIndexedMode AM) {
4013  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4014  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4015         "Store is already a indexed store!");
4016  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4017  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4018  FoldingSetNodeID ID;
4019  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4020  ID.AddInteger(ST->getMemoryVT().getRawBits());
4021  ID.AddInteger(ST->getRawSubclassData());
4022  void *IP = 0;
4023  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4024    return SDValue(E, 0);
4025
4026  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4027  new (N) StoreSDNode(Ops, dl, VTs, AM,
4028                      ST->isTruncatingStore(), ST->getMemoryVT(),
4029                      ST->getMemOperand());
4030  CSEMap.InsertNode(N, IP);
4031  AllNodes.push_back(N);
4032  return SDValue(N, 0);
4033}
4034
4035SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4036                               SDValue Chain, SDValue Ptr,
4037                               SDValue SV) {
4038  SDValue Ops[] = { Chain, Ptr, SV };
4039  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4040}
4041
4042SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4043                              const SDUse *Ops, unsigned NumOps) {
4044  switch (NumOps) {
4045  case 0: return getNode(Opcode, DL, VT);
4046  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4047  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4048  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4049  default: break;
4050  }
4051
4052  // Copy from an SDUse array into an SDValue array for use with
4053  // the regular getNode logic.
4054  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4055  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4056}
4057
4058SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4059                              const SDValue *Ops, unsigned NumOps) {
4060  switch (NumOps) {
4061  case 0: return getNode(Opcode, DL, VT);
4062  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4063  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4064  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4065  default: break;
4066  }
4067
4068  switch (Opcode) {
4069  default: break;
4070  case ISD::SELECT_CC: {
4071    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4072    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4073           "LHS and RHS of condition must have same type!");
4074    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4075           "True and False arms of SelectCC must have same type!");
4076    assert(Ops[2].getValueType() == VT &&
4077           "select_cc node must be of same type as true and false value!");
4078    break;
4079  }
4080  case ISD::BR_CC: {
4081    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4082    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4083           "LHS/RHS of comparison should match types!");
4084    break;
4085  }
4086  }
4087
4088  // Memoize nodes.
4089  SDNode *N;
4090  SDVTList VTs = getVTList(VT);
4091
4092  if (VT != MVT::Flag) {
4093    FoldingSetNodeID ID;
4094    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4095    void *IP = 0;
4096
4097    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4098      return SDValue(E, 0);
4099
4100    N = NodeAllocator.Allocate<SDNode>();
4101    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4102    CSEMap.InsertNode(N, IP);
4103  } else {
4104    N = NodeAllocator.Allocate<SDNode>();
4105    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4106  }
4107
4108  AllNodes.push_back(N);
4109#ifndef NDEBUG
4110  VerifyNode(N);
4111#endif
4112  return SDValue(N, 0);
4113}
4114
4115SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4116                              const std::vector<EVT> &ResultTys,
4117                              const SDValue *Ops, unsigned NumOps) {
4118  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4119                 Ops, NumOps);
4120}
4121
4122SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4123                              const EVT *VTs, unsigned NumVTs,
4124                              const SDValue *Ops, unsigned NumOps) {
4125  if (NumVTs == 1)
4126    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4127  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4128}
4129
4130SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4131                              const SDValue *Ops, unsigned NumOps) {
4132  if (VTList.NumVTs == 1)
4133    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4134
4135#if 0
4136  switch (Opcode) {
4137  // FIXME: figure out how to safely handle things like
4138  // int foo(int x) { return 1 << (x & 255); }
4139  // int bar() { return foo(256); }
4140  case ISD::SRA_PARTS:
4141  case ISD::SRL_PARTS:
4142  case ISD::SHL_PARTS:
4143    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4144        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4145      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4146    else if (N3.getOpcode() == ISD::AND)
4147      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4148        // If the and is only masking out bits that cannot effect the shift,
4149        // eliminate the and.
4150        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4151        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4152          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4153      }
4154    break;
4155  }
4156#endif
4157
4158  // Memoize the node unless it returns a flag.
4159  SDNode *N;
4160  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4161    FoldingSetNodeID ID;
4162    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4163    void *IP = 0;
4164    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4165      return SDValue(E, 0);
4166
4167    if (NumOps == 1) {
4168      N = NodeAllocator.Allocate<UnarySDNode>();
4169      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4170    } else if (NumOps == 2) {
4171      N = NodeAllocator.Allocate<BinarySDNode>();
4172      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4173    } else if (NumOps == 3) {
4174      N = NodeAllocator.Allocate<TernarySDNode>();
4175      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4176    } else {
4177      N = NodeAllocator.Allocate<SDNode>();
4178      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4179    }
4180    CSEMap.InsertNode(N, IP);
4181  } else {
4182    if (NumOps == 1) {
4183      N = NodeAllocator.Allocate<UnarySDNode>();
4184      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4185    } else if (NumOps == 2) {
4186      N = NodeAllocator.Allocate<BinarySDNode>();
4187      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4188    } else if (NumOps == 3) {
4189      N = NodeAllocator.Allocate<TernarySDNode>();
4190      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4191    } else {
4192      N = NodeAllocator.Allocate<SDNode>();
4193      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4194    }
4195  }
4196  AllNodes.push_back(N);
4197#ifndef NDEBUG
4198  VerifyNode(N);
4199#endif
4200  return SDValue(N, 0);
4201}
4202
4203SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4204  return getNode(Opcode, DL, VTList, 0, 0);
4205}
4206
4207SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4208                              SDValue N1) {
4209  SDValue Ops[] = { N1 };
4210  return getNode(Opcode, DL, VTList, Ops, 1);
4211}
4212
4213SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4214                              SDValue N1, SDValue N2) {
4215  SDValue Ops[] = { N1, N2 };
4216  return getNode(Opcode, DL, VTList, Ops, 2);
4217}
4218
4219SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4220                              SDValue N1, SDValue N2, SDValue N3) {
4221  SDValue Ops[] = { N1, N2, N3 };
4222  return getNode(Opcode, DL, VTList, Ops, 3);
4223}
4224
4225SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4226                              SDValue N1, SDValue N2, SDValue N3,
4227                              SDValue N4) {
4228  SDValue Ops[] = { N1, N2, N3, N4 };
4229  return getNode(Opcode, DL, VTList, Ops, 4);
4230}
4231
4232SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4233                              SDValue N1, SDValue N2, SDValue N3,
4234                              SDValue N4, SDValue N5) {
4235  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4236  return getNode(Opcode, DL, VTList, Ops, 5);
4237}
4238
4239SDVTList SelectionDAG::getVTList(EVT VT) {
4240  return makeVTList(SDNode::getValueTypeList(VT), 1);
4241}
4242
4243SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4244  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4245       E = VTList.rend(); I != E; ++I)
4246    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4247      return *I;
4248
4249  EVT *Array = Allocator.Allocate<EVT>(2);
4250  Array[0] = VT1;
4251  Array[1] = VT2;
4252  SDVTList Result = makeVTList(Array, 2);
4253  VTList.push_back(Result);
4254  return Result;
4255}
4256
4257SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4258  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4259       E = VTList.rend(); I != E; ++I)
4260    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4261                          I->VTs[2] == VT3)
4262      return *I;
4263
4264  EVT *Array = Allocator.Allocate<EVT>(3);
4265  Array[0] = VT1;
4266  Array[1] = VT2;
4267  Array[2] = VT3;
4268  SDVTList Result = makeVTList(Array, 3);
4269  VTList.push_back(Result);
4270  return Result;
4271}
4272
4273SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4274  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4275       E = VTList.rend(); I != E; ++I)
4276    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4277                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4278      return *I;
4279
4280  EVT *Array = Allocator.Allocate<EVT>(4);
4281  Array[0] = VT1;
4282  Array[1] = VT2;
4283  Array[2] = VT3;
4284  Array[3] = VT4;
4285  SDVTList Result = makeVTList(Array, 4);
4286  VTList.push_back(Result);
4287  return Result;
4288}
4289
4290SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4291  switch (NumVTs) {
4292    case 0: llvm_unreachable("Cannot have nodes without results!");
4293    case 1: return getVTList(VTs[0]);
4294    case 2: return getVTList(VTs[0], VTs[1]);
4295    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4296    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4297    default: break;
4298  }
4299
4300  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4301       E = VTList.rend(); I != E; ++I) {
4302    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4303      continue;
4304
4305    bool NoMatch = false;
4306    for (unsigned i = 2; i != NumVTs; ++i)
4307      if (VTs[i] != I->VTs[i]) {
4308        NoMatch = true;
4309        break;
4310      }
4311    if (!NoMatch)
4312      return *I;
4313  }
4314
4315  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4316  std::copy(VTs, VTs+NumVTs, Array);
4317  SDVTList Result = makeVTList(Array, NumVTs);
4318  VTList.push_back(Result);
4319  return Result;
4320}
4321
4322
4323/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4324/// specified operands.  If the resultant node already exists in the DAG,
4325/// this does not modify the specified node, instead it returns the node that
4326/// already exists.  If the resultant node does not exist in the DAG, the
4327/// input node is returned.  As a degenerate case, if you specify the same
4328/// input operands as the node already has, the input node is returned.
4329SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4330  SDNode *N = InN.getNode();
4331  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4332
4333  // Check to see if there is no change.
4334  if (Op == N->getOperand(0)) return InN;
4335
4336  // See if the modified node already exists.
4337  void *InsertPos = 0;
4338  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4339    return SDValue(Existing, InN.getResNo());
4340
4341  // Nope it doesn't.  Remove the node from its current place in the maps.
4342  if (InsertPos)
4343    if (!RemoveNodeFromCSEMaps(N))
4344      InsertPos = 0;
4345
4346  // Now we update the operands.
4347  N->OperandList[0].set(Op);
4348
4349  // If this gets put into a CSE map, add it.
4350  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4351  return InN;
4352}
4353
4354SDValue SelectionDAG::
4355UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4356  SDNode *N = InN.getNode();
4357  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4358
4359  // Check to see if there is no change.
4360  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4361    return InN;   // No operands changed, just return the input node.
4362
4363  // See if the modified node already exists.
4364  void *InsertPos = 0;
4365  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4366    return SDValue(Existing, InN.getResNo());
4367
4368  // Nope it doesn't.  Remove the node from its current place in the maps.
4369  if (InsertPos)
4370    if (!RemoveNodeFromCSEMaps(N))
4371      InsertPos = 0;
4372
4373  // Now we update the operands.
4374  if (N->OperandList[0] != Op1)
4375    N->OperandList[0].set(Op1);
4376  if (N->OperandList[1] != Op2)
4377    N->OperandList[1].set(Op2);
4378
4379  // If this gets put into a CSE map, add it.
4380  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4381  return InN;
4382}
4383
4384SDValue SelectionDAG::
4385UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4386  SDValue Ops[] = { Op1, Op2, Op3 };
4387  return UpdateNodeOperands(N, Ops, 3);
4388}
4389
4390SDValue SelectionDAG::
4391UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4392                   SDValue Op3, SDValue Op4) {
4393  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4394  return UpdateNodeOperands(N, Ops, 4);
4395}
4396
4397SDValue SelectionDAG::
4398UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4399                   SDValue Op3, SDValue Op4, SDValue Op5) {
4400  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4401  return UpdateNodeOperands(N, Ops, 5);
4402}
4403
4404SDValue SelectionDAG::
4405UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4406  SDNode *N = InN.getNode();
4407  assert(N->getNumOperands() == NumOps &&
4408         "Update with wrong number of operands");
4409
4410  // Check to see if there is no change.
4411  bool AnyChange = false;
4412  for (unsigned i = 0; i != NumOps; ++i) {
4413    if (Ops[i] != N->getOperand(i)) {
4414      AnyChange = true;
4415      break;
4416    }
4417  }
4418
4419  // No operands changed, just return the input node.
4420  if (!AnyChange) return InN;
4421
4422  // See if the modified node already exists.
4423  void *InsertPos = 0;
4424  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4425    return SDValue(Existing, InN.getResNo());
4426
4427  // Nope it doesn't.  Remove the node from its current place in the maps.
4428  if (InsertPos)
4429    if (!RemoveNodeFromCSEMaps(N))
4430      InsertPos = 0;
4431
4432  // Now we update the operands.
4433  for (unsigned i = 0; i != NumOps; ++i)
4434    if (N->OperandList[i] != Ops[i])
4435      N->OperandList[i].set(Ops[i]);
4436
4437  // If this gets put into a CSE map, add it.
4438  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4439  return InN;
4440}
4441
4442/// DropOperands - Release the operands and set this node to have
4443/// zero operands.
4444void SDNode::DropOperands() {
4445  // Unlike the code in MorphNodeTo that does this, we don't need to
4446  // watch for dead nodes here.
4447  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4448    SDUse &Use = *I++;
4449    Use.set(SDValue());
4450  }
4451}
4452
4453/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4454/// machine opcode.
4455///
4456SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4457                                   EVT VT) {
4458  SDVTList VTs = getVTList(VT);
4459  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4460}
4461
4462SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4463                                   EVT VT, SDValue Op1) {
4464  SDVTList VTs = getVTList(VT);
4465  SDValue Ops[] = { Op1 };
4466  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4467}
4468
4469SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4470                                   EVT VT, SDValue Op1,
4471                                   SDValue Op2) {
4472  SDVTList VTs = getVTList(VT);
4473  SDValue Ops[] = { Op1, Op2 };
4474  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4475}
4476
4477SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4478                                   EVT VT, SDValue Op1,
4479                                   SDValue Op2, SDValue Op3) {
4480  SDVTList VTs = getVTList(VT);
4481  SDValue Ops[] = { Op1, Op2, Op3 };
4482  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4483}
4484
4485SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4486                                   EVT VT, const SDValue *Ops,
4487                                   unsigned NumOps) {
4488  SDVTList VTs = getVTList(VT);
4489  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4490}
4491
4492SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4493                                   EVT VT1, EVT VT2, const SDValue *Ops,
4494                                   unsigned NumOps) {
4495  SDVTList VTs = getVTList(VT1, VT2);
4496  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4497}
4498
4499SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4500                                   EVT VT1, EVT VT2) {
4501  SDVTList VTs = getVTList(VT1, VT2);
4502  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4503}
4504
4505SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4506                                   EVT VT1, EVT VT2, EVT VT3,
4507                                   const SDValue *Ops, unsigned NumOps) {
4508  SDVTList VTs = getVTList(VT1, VT2, VT3);
4509  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4510}
4511
4512SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4513                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4514                                   const SDValue *Ops, unsigned NumOps) {
4515  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4516  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4517}
4518
4519SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4520                                   EVT VT1, EVT VT2,
4521                                   SDValue Op1) {
4522  SDVTList VTs = getVTList(VT1, VT2);
4523  SDValue Ops[] = { Op1 };
4524  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4525}
4526
4527SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4528                                   EVT VT1, EVT VT2,
4529                                   SDValue Op1, SDValue Op2) {
4530  SDVTList VTs = getVTList(VT1, VT2);
4531  SDValue Ops[] = { Op1, Op2 };
4532  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4533}
4534
4535SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4536                                   EVT VT1, EVT VT2,
4537                                   SDValue Op1, SDValue Op2,
4538                                   SDValue Op3) {
4539  SDVTList VTs = getVTList(VT1, VT2);
4540  SDValue Ops[] = { Op1, Op2, Op3 };
4541  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4542}
4543
4544SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4545                                   EVT VT1, EVT VT2, EVT VT3,
4546                                   SDValue Op1, SDValue Op2,
4547                                   SDValue Op3) {
4548  SDVTList VTs = getVTList(VT1, VT2, VT3);
4549  SDValue Ops[] = { Op1, Op2, Op3 };
4550  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4551}
4552
4553SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4554                                   SDVTList VTs, const SDValue *Ops,
4555                                   unsigned NumOps) {
4556  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4557}
4558
4559SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4560                                  EVT VT) {
4561  SDVTList VTs = getVTList(VT);
4562  return MorphNodeTo(N, Opc, VTs, 0, 0);
4563}
4564
4565SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4566                                  EVT VT, SDValue Op1) {
4567  SDVTList VTs = getVTList(VT);
4568  SDValue Ops[] = { Op1 };
4569  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4570}
4571
4572SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4573                                  EVT VT, SDValue Op1,
4574                                  SDValue Op2) {
4575  SDVTList VTs = getVTList(VT);
4576  SDValue Ops[] = { Op1, Op2 };
4577  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4578}
4579
4580SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4581                                  EVT VT, SDValue Op1,
4582                                  SDValue Op2, SDValue Op3) {
4583  SDVTList VTs = getVTList(VT);
4584  SDValue Ops[] = { Op1, Op2, Op3 };
4585  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4586}
4587
4588SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4589                                  EVT VT, const SDValue *Ops,
4590                                  unsigned NumOps) {
4591  SDVTList VTs = getVTList(VT);
4592  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4593}
4594
4595SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4596                                  EVT VT1, EVT VT2, const SDValue *Ops,
4597                                  unsigned NumOps) {
4598  SDVTList VTs = getVTList(VT1, VT2);
4599  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4600}
4601
4602SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4603                                  EVT VT1, EVT VT2) {
4604  SDVTList VTs = getVTList(VT1, VT2);
4605  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4606}
4607
4608SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4609                                  EVT VT1, EVT VT2, EVT VT3,
4610                                  const SDValue *Ops, unsigned NumOps) {
4611  SDVTList VTs = getVTList(VT1, VT2, VT3);
4612  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4613}
4614
4615SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4616                                  EVT VT1, EVT VT2,
4617                                  SDValue Op1) {
4618  SDVTList VTs = getVTList(VT1, VT2);
4619  SDValue Ops[] = { Op1 };
4620  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4621}
4622
4623SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4624                                  EVT VT1, EVT VT2,
4625                                  SDValue Op1, SDValue Op2) {
4626  SDVTList VTs = getVTList(VT1, VT2);
4627  SDValue Ops[] = { Op1, Op2 };
4628  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4629}
4630
4631SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4632                                  EVT VT1, EVT VT2,
4633                                  SDValue Op1, SDValue Op2,
4634                                  SDValue Op3) {
4635  SDVTList VTs = getVTList(VT1, VT2);
4636  SDValue Ops[] = { Op1, Op2, Op3 };
4637  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4638}
4639
4640/// MorphNodeTo - These *mutate* the specified node to have the specified
4641/// return type, opcode, and operands.
4642///
4643/// Note that MorphNodeTo returns the resultant node.  If there is already a
4644/// node of the specified opcode and operands, it returns that node instead of
4645/// the current one.  Note that the DebugLoc need not be the same.
4646///
4647/// Using MorphNodeTo is faster than creating a new node and swapping it in
4648/// with ReplaceAllUsesWith both because it often avoids allocating a new
4649/// node, and because it doesn't require CSE recalculation for any of
4650/// the node's users.
4651///
4652SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4653                                  SDVTList VTs, const SDValue *Ops,
4654                                  unsigned NumOps) {
4655  // If an identical node already exists, use it.
4656  void *IP = 0;
4657  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4658    FoldingSetNodeID ID;
4659    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4660    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4661      return ON;
4662  }
4663
4664  if (!RemoveNodeFromCSEMaps(N))
4665    IP = 0;
4666
4667  // Start the morphing.
4668  N->NodeType = Opc;
4669  N->ValueList = VTs.VTs;
4670  N->NumValues = VTs.NumVTs;
4671
4672  // Clear the operands list, updating used nodes to remove this from their
4673  // use list.  Keep track of any operands that become dead as a result.
4674  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4675  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4676    SDUse &Use = *I++;
4677    SDNode *Used = Use.getNode();
4678    Use.set(SDValue());
4679    if (Used->use_empty())
4680      DeadNodeSet.insert(Used);
4681  }
4682
4683  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4684    // Initialize the memory references information.
4685    MN->setMemRefs(0, 0);
4686    // If NumOps is larger than the # of operands we can have in a
4687    // MachineSDNode, reallocate the operand list.
4688    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4689      if (MN->OperandsNeedDelete)
4690        delete[] MN->OperandList;
4691      if (NumOps > array_lengthof(MN->LocalOperands))
4692        // We're creating a final node that will live unmorphed for the
4693        // remainder of the current SelectionDAG iteration, so we can allocate
4694        // the operands directly out of a pool with no recycling metadata.
4695        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4696                        Ops, NumOps);
4697      else
4698        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4699      MN->OperandsNeedDelete = false;
4700    } else
4701      MN->InitOperands(MN->OperandList, Ops, NumOps);
4702  } else {
4703    // If NumOps is larger than the # of operands we currently have, reallocate
4704    // the operand list.
4705    if (NumOps > N->NumOperands) {
4706      if (N->OperandsNeedDelete)
4707        delete[] N->OperandList;
4708      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4709      N->OperandsNeedDelete = true;
4710    } else
4711      N->InitOperands(N->OperandList, Ops, NumOps);
4712  }
4713
4714  // Delete any nodes that are still dead after adding the uses for the
4715  // new operands.
4716  SmallVector<SDNode *, 16> DeadNodes;
4717  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4718       E = DeadNodeSet.end(); I != E; ++I)
4719    if ((*I)->use_empty())
4720      DeadNodes.push_back(*I);
4721  RemoveDeadNodes(DeadNodes);
4722
4723  if (IP)
4724    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4725  return N;
4726}
4727
4728
4729/// getMachineNode - These are used for target selectors to create a new node
4730/// with specified return type(s), MachineInstr opcode, and operands.
4731///
4732/// Note that getMachineNode returns the resultant node.  If there is already a
4733/// node of the specified opcode and operands, it returns that node instead of
4734/// the current one.
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4737  SDVTList VTs = getVTList(VT);
4738  return getMachineNode(Opcode, dl, VTs, 0, 0);
4739}
4740
4741MachineSDNode *
4742SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4743  SDVTList VTs = getVTList(VT);
4744  SDValue Ops[] = { Op1 };
4745  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4746}
4747
4748MachineSDNode *
4749SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4750                             SDValue Op1, SDValue Op2) {
4751  SDVTList VTs = getVTList(VT);
4752  SDValue Ops[] = { Op1, Op2 };
4753  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4754}
4755
4756MachineSDNode *
4757SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4758                             SDValue Op1, SDValue Op2, SDValue Op3) {
4759  SDVTList VTs = getVTList(VT);
4760  SDValue Ops[] = { Op1, Op2, Op3 };
4761  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4762}
4763
4764MachineSDNode *
4765SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4766                             const SDValue *Ops, unsigned NumOps) {
4767  SDVTList VTs = getVTList(VT);
4768  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4773  SDVTList VTs = getVTList(VT1, VT2);
4774  return getMachineNode(Opcode, dl, VTs, 0, 0);
4775}
4776
4777MachineSDNode *
4778SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4779                             EVT VT1, EVT VT2, SDValue Op1) {
4780  SDVTList VTs = getVTList(VT1, VT2);
4781  SDValue Ops[] = { Op1 };
4782  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4783}
4784
4785MachineSDNode *
4786SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4787                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4788  SDVTList VTs = getVTList(VT1, VT2);
4789  SDValue Ops[] = { Op1, Op2 };
4790  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4791}
4792
4793MachineSDNode *
4794SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4795                             EVT VT1, EVT VT2, SDValue Op1,
4796                             SDValue Op2, SDValue Op3) {
4797  SDVTList VTs = getVTList(VT1, VT2);
4798  SDValue Ops[] = { Op1, Op2, Op3 };
4799  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4800}
4801
4802MachineSDNode *
4803SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4804                             EVT VT1, EVT VT2,
4805                             const SDValue *Ops, unsigned NumOps) {
4806  SDVTList VTs = getVTList(VT1, VT2);
4807  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4808}
4809
4810MachineSDNode *
4811SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4812                             EVT VT1, EVT VT2, EVT VT3,
4813                             SDValue Op1, SDValue Op2) {
4814  SDVTList VTs = getVTList(VT1, VT2, VT3);
4815  SDValue Ops[] = { Op1, Op2 };
4816  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4817}
4818
4819MachineSDNode *
4820SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4821                             EVT VT1, EVT VT2, EVT VT3,
4822                             SDValue Op1, SDValue Op2, SDValue Op3) {
4823  SDVTList VTs = getVTList(VT1, VT2, VT3);
4824  SDValue Ops[] = { Op1, Op2, Op3 };
4825  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4826}
4827
4828MachineSDNode *
4829SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4830                             EVT VT1, EVT VT2, EVT VT3,
4831                             const SDValue *Ops, unsigned NumOps) {
4832  SDVTList VTs = getVTList(VT1, VT2, VT3);
4833  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4834}
4835
4836MachineSDNode *
4837SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4838                             EVT VT2, EVT VT3, EVT VT4,
4839                             const SDValue *Ops, unsigned NumOps) {
4840  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4841  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4842}
4843
4844MachineSDNode *
4845SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4846                             const std::vector<EVT> &ResultTys,
4847                             const SDValue *Ops, unsigned NumOps) {
4848  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4849  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4850}
4851
4852MachineSDNode *
4853SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4854                             const SDValue *Ops, unsigned NumOps) {
4855  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4856  MachineSDNode *N;
4857  void *IP;
4858
4859  if (DoCSE) {
4860    FoldingSetNodeID ID;
4861    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4862    IP = 0;
4863    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4864      return cast<MachineSDNode>(E);
4865  }
4866
4867  // Allocate a new MachineSDNode.
4868  N = NodeAllocator.Allocate<MachineSDNode>();
4869  new (N) MachineSDNode(~Opcode, DL, VTs);
4870
4871  // Initialize the operands list.
4872  if (NumOps > array_lengthof(N->LocalOperands))
4873    // We're creating a final node that will live unmorphed for the
4874    // remainder of the current SelectionDAG iteration, so we can allocate
4875    // the operands directly out of a pool with no recycling metadata.
4876    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4877                    Ops, NumOps);
4878  else
4879    N->InitOperands(N->LocalOperands, Ops, NumOps);
4880  N->OperandsNeedDelete = false;
4881
4882  if (DoCSE)
4883    CSEMap.InsertNode(N, IP);
4884
4885  AllNodes.push_back(N);
4886#ifndef NDEBUG
4887  VerifyNode(N);
4888#endif
4889  return N;
4890}
4891
4892/// getTargetExtractSubreg - A convenience function for creating
4893/// TargetOpcode::EXTRACT_SUBREG nodes.
4894SDValue
4895SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4896                                     SDValue Operand) {
4897  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4898  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4899                                  VT, Operand, SRIdxVal);
4900  return SDValue(Subreg, 0);
4901}
4902
4903/// getTargetInsertSubreg - A convenience function for creating
4904/// TargetOpcode::INSERT_SUBREG nodes.
4905SDValue
4906SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4907                                    SDValue Operand, SDValue Subreg) {
4908  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4909  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4910                                  VT, Operand, Subreg, SRIdxVal);
4911  return SDValue(Result, 0);
4912}
4913
4914/// getNodeIfExists - Get the specified node if it's already available, or
4915/// else return NULL.
4916SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4917                                      const SDValue *Ops, unsigned NumOps) {
4918  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4919    FoldingSetNodeID ID;
4920    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4921    void *IP = 0;
4922    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4923      return E;
4924  }
4925  return NULL;
4926}
4927
4928/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4929/// This can cause recursive merging of nodes in the DAG.
4930///
4931/// This version assumes From has a single result value.
4932///
4933void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4934                                      DAGUpdateListener *UpdateListener) {
4935  SDNode *From = FromN.getNode();
4936  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4937         "Cannot replace with this method!");
4938  assert(From != To.getNode() && "Cannot replace uses of with self");
4939
4940  // Iterate over all the existing uses of From. New uses will be added
4941  // to the beginning of the use list, which we avoid visiting.
4942  // This specifically avoids visiting uses of From that arise while the
4943  // replacement is happening, because any such uses would be the result
4944  // of CSE: If an existing node looks like From after one of its operands
4945  // is replaced by To, we don't want to replace of all its users with To
4946  // too. See PR3018 for more info.
4947  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4948  while (UI != UE) {
4949    SDNode *User = *UI;
4950
4951    // This node is about to morph, remove its old self from the CSE maps.
4952    RemoveNodeFromCSEMaps(User);
4953
4954    // A user can appear in a use list multiple times, and when this
4955    // happens the uses are usually next to each other in the list.
4956    // To help reduce the number of CSE recomputations, process all
4957    // the uses of this user that we can find this way.
4958    do {
4959      SDUse &Use = UI.getUse();
4960      ++UI;
4961      Use.set(To);
4962    } while (UI != UE && *UI == User);
4963
4964    // Now that we have modified User, add it back to the CSE maps.  If it
4965    // already exists there, recursively merge the results together.
4966    AddModifiedNodeToCSEMaps(User, UpdateListener);
4967  }
4968}
4969
4970/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4971/// This can cause recursive merging of nodes in the DAG.
4972///
4973/// This version assumes that for each value of From, there is a
4974/// corresponding value in To in the same position with the same type.
4975///
4976void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4977                                      DAGUpdateListener *UpdateListener) {
4978#ifndef NDEBUG
4979  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4980    assert((!From->hasAnyUseOfValue(i) ||
4981            From->getValueType(i) == To->getValueType(i)) &&
4982           "Cannot use this version of ReplaceAllUsesWith!");
4983#endif
4984
4985  // Handle the trivial case.
4986  if (From == To)
4987    return;
4988
4989  // Iterate over just the existing users of From. See the comments in
4990  // the ReplaceAllUsesWith above.
4991  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4992  while (UI != UE) {
4993    SDNode *User = *UI;
4994
4995    // This node is about to morph, remove its old self from the CSE maps.
4996    RemoveNodeFromCSEMaps(User);
4997
4998    // A user can appear in a use list multiple times, and when this
4999    // happens the uses are usually next to each other in the list.
5000    // To help reduce the number of CSE recomputations, process all
5001    // the uses of this user that we can find this way.
5002    do {
5003      SDUse &Use = UI.getUse();
5004      ++UI;
5005      Use.setNode(To);
5006    } while (UI != UE && *UI == User);
5007
5008    // Now that we have modified User, add it back to the CSE maps.  If it
5009    // already exists there, recursively merge the results together.
5010    AddModifiedNodeToCSEMaps(User, UpdateListener);
5011  }
5012}
5013
5014/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5015/// This can cause recursive merging of nodes in the DAG.
5016///
5017/// This version can replace From with any result values.  To must match the
5018/// number and types of values returned by From.
5019void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5020                                      const SDValue *To,
5021                                      DAGUpdateListener *UpdateListener) {
5022  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5023    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5024
5025  // Iterate over just the existing users of From. See the comments in
5026  // the ReplaceAllUsesWith above.
5027  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5028  while (UI != UE) {
5029    SDNode *User = *UI;
5030
5031    // This node is about to morph, remove its old self from the CSE maps.
5032    RemoveNodeFromCSEMaps(User);
5033
5034    // A user can appear in a use list multiple times, and when this
5035    // happens the uses are usually next to each other in the list.
5036    // To help reduce the number of CSE recomputations, process all
5037    // the uses of this user that we can find this way.
5038    do {
5039      SDUse &Use = UI.getUse();
5040      const SDValue &ToOp = To[Use.getResNo()];
5041      ++UI;
5042      Use.set(ToOp);
5043    } while (UI != UE && *UI == User);
5044
5045    // Now that we have modified User, add it back to the CSE maps.  If it
5046    // already exists there, recursively merge the results together.
5047    AddModifiedNodeToCSEMaps(User, UpdateListener);
5048  }
5049}
5050
5051/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5052/// uses of other values produced by From.getNode() alone.  The Deleted
5053/// vector is handled the same way as for ReplaceAllUsesWith.
5054void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5055                                             DAGUpdateListener *UpdateListener){
5056  // Handle the really simple, really trivial case efficiently.
5057  if (From == To) return;
5058
5059  // Handle the simple, trivial, case efficiently.
5060  if (From.getNode()->getNumValues() == 1) {
5061    ReplaceAllUsesWith(From, To, UpdateListener);
5062    return;
5063  }
5064
5065  // Iterate over just the existing users of From. See the comments in
5066  // the ReplaceAllUsesWith above.
5067  SDNode::use_iterator UI = From.getNode()->use_begin(),
5068                       UE = From.getNode()->use_end();
5069  while (UI != UE) {
5070    SDNode *User = *UI;
5071    bool UserRemovedFromCSEMaps = false;
5072
5073    // A user can appear in a use list multiple times, and when this
5074    // happens the uses are usually next to each other in the list.
5075    // To help reduce the number of CSE recomputations, process all
5076    // the uses of this user that we can find this way.
5077    do {
5078      SDUse &Use = UI.getUse();
5079
5080      // Skip uses of different values from the same node.
5081      if (Use.getResNo() != From.getResNo()) {
5082        ++UI;
5083        continue;
5084      }
5085
5086      // If this node hasn't been modified yet, it's still in the CSE maps,
5087      // so remove its old self from the CSE maps.
5088      if (!UserRemovedFromCSEMaps) {
5089        RemoveNodeFromCSEMaps(User);
5090        UserRemovedFromCSEMaps = true;
5091      }
5092
5093      ++UI;
5094      Use.set(To);
5095    } while (UI != UE && *UI == User);
5096
5097    // We are iterating over all uses of the From node, so if a use
5098    // doesn't use the specific value, no changes are made.
5099    if (!UserRemovedFromCSEMaps)
5100      continue;
5101
5102    // Now that we have modified User, add it back to the CSE maps.  If it
5103    // already exists there, recursively merge the results together.
5104    AddModifiedNodeToCSEMaps(User, UpdateListener);
5105  }
5106}
5107
5108namespace {
5109  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5110  /// to record information about a use.
5111  struct UseMemo {
5112    SDNode *User;
5113    unsigned Index;
5114    SDUse *Use;
5115  };
5116
5117  /// operator< - Sort Memos by User.
5118  bool operator<(const UseMemo &L, const UseMemo &R) {
5119    return (intptr_t)L.User < (intptr_t)R.User;
5120  }
5121}
5122
5123/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5124/// uses of other values produced by From.getNode() alone.  The same value
5125/// may appear in both the From and To list.  The Deleted vector is
5126/// handled the same way as for ReplaceAllUsesWith.
5127void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5128                                              const SDValue *To,
5129                                              unsigned Num,
5130                                              DAGUpdateListener *UpdateListener){
5131  // Handle the simple, trivial case efficiently.
5132  if (Num == 1)
5133    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5134
5135  // Read up all the uses and make records of them. This helps
5136  // processing new uses that are introduced during the
5137  // replacement process.
5138  SmallVector<UseMemo, 4> Uses;
5139  for (unsigned i = 0; i != Num; ++i) {
5140    unsigned FromResNo = From[i].getResNo();
5141    SDNode *FromNode = From[i].getNode();
5142    for (SDNode::use_iterator UI = FromNode->use_begin(),
5143         E = FromNode->use_end(); UI != E; ++UI) {
5144      SDUse &Use = UI.getUse();
5145      if (Use.getResNo() == FromResNo) {
5146        UseMemo Memo = { *UI, i, &Use };
5147        Uses.push_back(Memo);
5148      }
5149    }
5150  }
5151
5152  // Sort the uses, so that all the uses from a given User are together.
5153  std::sort(Uses.begin(), Uses.end());
5154
5155  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5156       UseIndex != UseIndexEnd; ) {
5157    // We know that this user uses some value of From.  If it is the right
5158    // value, update it.
5159    SDNode *User = Uses[UseIndex].User;
5160
5161    // This node is about to morph, remove its old self from the CSE maps.
5162    RemoveNodeFromCSEMaps(User);
5163
5164    // The Uses array is sorted, so all the uses for a given User
5165    // are next to each other in the list.
5166    // To help reduce the number of CSE recomputations, process all
5167    // the uses of this user that we can find this way.
5168    do {
5169      unsigned i = Uses[UseIndex].Index;
5170      SDUse &Use = *Uses[UseIndex].Use;
5171      ++UseIndex;
5172
5173      Use.set(To[i]);
5174    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5175
5176    // Now that we have modified User, add it back to the CSE maps.  If it
5177    // already exists there, recursively merge the results together.
5178    AddModifiedNodeToCSEMaps(User, UpdateListener);
5179  }
5180}
5181
5182/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5183/// based on their topological order. It returns the maximum id and a vector
5184/// of the SDNodes* in assigned order by reference.
5185unsigned SelectionDAG::AssignTopologicalOrder() {
5186
5187  unsigned DAGSize = 0;
5188
5189  // SortedPos tracks the progress of the algorithm. Nodes before it are
5190  // sorted, nodes after it are unsorted. When the algorithm completes
5191  // it is at the end of the list.
5192  allnodes_iterator SortedPos = allnodes_begin();
5193
5194  // Visit all the nodes. Move nodes with no operands to the front of
5195  // the list immediately. Annotate nodes that do have operands with their
5196  // operand count. Before we do this, the Node Id fields of the nodes
5197  // may contain arbitrary values. After, the Node Id fields for nodes
5198  // before SortedPos will contain the topological sort index, and the
5199  // Node Id fields for nodes At SortedPos and after will contain the
5200  // count of outstanding operands.
5201  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5202    SDNode *N = I++;
5203    checkForCycles(N);
5204    unsigned Degree = N->getNumOperands();
5205    if (Degree == 0) {
5206      // A node with no uses, add it to the result array immediately.
5207      N->setNodeId(DAGSize++);
5208      allnodes_iterator Q = N;
5209      if (Q != SortedPos)
5210        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5211      assert(SortedPos != AllNodes.end() && "Overran node list");
5212      ++SortedPos;
5213    } else {
5214      // Temporarily use the Node Id as scratch space for the degree count.
5215      N->setNodeId(Degree);
5216    }
5217  }
5218
5219  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5220  // such that by the time the end is reached all nodes will be sorted.
5221  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5222    SDNode *N = I;
5223    checkForCycles(N);
5224    // N is in sorted position, so all its uses have one less operand
5225    // that needs to be sorted.
5226    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5227         UI != UE; ++UI) {
5228      SDNode *P = *UI;
5229      unsigned Degree = P->getNodeId();
5230      assert(Degree != 0 && "Invalid node degree");
5231      --Degree;
5232      if (Degree == 0) {
5233        // All of P's operands are sorted, so P may sorted now.
5234        P->setNodeId(DAGSize++);
5235        if (P != SortedPos)
5236          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5237        assert(SortedPos != AllNodes.end() && "Overran node list");
5238        ++SortedPos;
5239      } else {
5240        // Update P's outstanding operand count.
5241        P->setNodeId(Degree);
5242      }
5243    }
5244    if (I == SortedPos) {
5245#ifndef NDEBUG
5246      SDNode *S = ++I;
5247      dbgs() << "Overran sorted position:\n";
5248      S->dumprFull();
5249#endif
5250      llvm_unreachable(0);
5251    }
5252  }
5253
5254  assert(SortedPos == AllNodes.end() &&
5255         "Topological sort incomplete!");
5256  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5257         "First node in topological sort is not the entry token!");
5258  assert(AllNodes.front().getNodeId() == 0 &&
5259         "First node in topological sort has non-zero id!");
5260  assert(AllNodes.front().getNumOperands() == 0 &&
5261         "First node in topological sort has operands!");
5262  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5263         "Last node in topologic sort has unexpected id!");
5264  assert(AllNodes.back().use_empty() &&
5265         "Last node in topologic sort has users!");
5266  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5267  return DAGSize;
5268}
5269
5270/// AssignOrdering - Assign an order to the SDNode.
5271void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5272  assert(SD && "Trying to assign an order to a null node!");
5273  Ordering->add(SD, Order);
5274}
5275
5276/// GetOrdering - Get the order for the SDNode.
5277unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5278  assert(SD && "Trying to get the order of a null node!");
5279  return Ordering->getOrder(SD);
5280}
5281
5282
5283//===----------------------------------------------------------------------===//
5284//                              SDNode Class
5285//===----------------------------------------------------------------------===//
5286
5287HandleSDNode::~HandleSDNode() {
5288  DropOperands();
5289}
5290
5291GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5292                                         EVT VT, int64_t o, unsigned char TF)
5293  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5294    Offset(o), TargetFlags(TF) {
5295  TheGlobal = const_cast<GlobalValue*>(GA);
5296}
5297
5298MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5299                     MachineMemOperand *mmo)
5300 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5301  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5302                                      MMO->isNonTemporal());
5303  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5304  assert(isNonTemporal() == MMO->isNonTemporal() &&
5305         "Non-temporal encoding error!");
5306  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5307}
5308
5309MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5310                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5311                     MachineMemOperand *mmo)
5312   : SDNode(Opc, dl, VTs, Ops, NumOps),
5313     MemoryVT(memvt), MMO(mmo) {
5314  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5315                                      MMO->isNonTemporal());
5316  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5317  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5318}
5319
5320/// Profile - Gather unique data for the node.
5321///
5322void SDNode::Profile(FoldingSetNodeID &ID) const {
5323  AddNodeIDNode(ID, this);
5324}
5325
5326namespace {
5327  struct EVTArray {
5328    std::vector<EVT> VTs;
5329
5330    EVTArray() {
5331      VTs.reserve(MVT::LAST_VALUETYPE);
5332      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5333        VTs.push_back(MVT((MVT::SimpleValueType)i));
5334    }
5335  };
5336}
5337
5338static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5339static ManagedStatic<EVTArray> SimpleVTArray;
5340static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5341
5342/// getValueTypeList - Return a pointer to the specified value type.
5343///
5344const EVT *SDNode::getValueTypeList(EVT VT) {
5345  if (VT.isExtended()) {
5346    sys::SmartScopedLock<true> Lock(*VTMutex);
5347    return &(*EVTs->insert(VT).first);
5348  } else {
5349    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5350  }
5351}
5352
5353/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5354/// indicated value.  This method ignores uses of other values defined by this
5355/// operation.
5356bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5357  assert(Value < getNumValues() && "Bad value!");
5358
5359  // TODO: Only iterate over uses of a given value of the node
5360  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5361    if (UI.getUse().getResNo() == Value) {
5362      if (NUses == 0)
5363        return false;
5364      --NUses;
5365    }
5366  }
5367
5368  // Found exactly the right number of uses?
5369  return NUses == 0;
5370}
5371
5372
5373/// hasAnyUseOfValue - Return true if there are any use of the indicated
5374/// value. This method ignores uses of other values defined by this operation.
5375bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5376  assert(Value < getNumValues() && "Bad value!");
5377
5378  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5379    if (UI.getUse().getResNo() == Value)
5380      return true;
5381
5382  return false;
5383}
5384
5385
5386/// isOnlyUserOf - Return true if this node is the only use of N.
5387///
5388bool SDNode::isOnlyUserOf(SDNode *N) const {
5389  bool Seen = false;
5390  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5391    SDNode *User = *I;
5392    if (User == this)
5393      Seen = true;
5394    else
5395      return false;
5396  }
5397
5398  return Seen;
5399}
5400
5401/// isOperand - Return true if this node is an operand of N.
5402///
5403bool SDValue::isOperandOf(SDNode *N) const {
5404  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5405    if (*this == N->getOperand(i))
5406      return true;
5407  return false;
5408}
5409
5410bool SDNode::isOperandOf(SDNode *N) const {
5411  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5412    if (this == N->OperandList[i].getNode())
5413      return true;
5414  return false;
5415}
5416
5417/// reachesChainWithoutSideEffects - Return true if this operand (which must
5418/// be a chain) reaches the specified operand without crossing any
5419/// side-effecting instructions.  In practice, this looks through token
5420/// factors and non-volatile loads.  In order to remain efficient, this only
5421/// looks a couple of nodes in, it does not do an exhaustive search.
5422bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5423                                               unsigned Depth) const {
5424  if (*this == Dest) return true;
5425
5426  // Don't search too deeply, we just want to be able to see through
5427  // TokenFactor's etc.
5428  if (Depth == 0) return false;
5429
5430  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5431  // of the operands of the TF reach dest, then we can do the xform.
5432  if (getOpcode() == ISD::TokenFactor) {
5433    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5434      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5435        return true;
5436    return false;
5437  }
5438
5439  // Loads don't have side effects, look through them.
5440  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5441    if (!Ld->isVolatile())
5442      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5443  }
5444  return false;
5445}
5446
5447/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5448/// is either an operand of N or it can be reached by traversing up the operands.
5449/// NOTE: this is an expensive method. Use it carefully.
5450bool SDNode::isPredecessorOf(SDNode *N) const {
5451  SmallPtrSet<SDNode *, 32> Visited;
5452  SmallVector<SDNode *, 16> Worklist;
5453  Worklist.push_back(N);
5454
5455  do {
5456    N = Worklist.pop_back_val();
5457    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5458      SDNode *Op = N->getOperand(i).getNode();
5459      if (Op == this)
5460        return true;
5461      if (Visited.insert(Op))
5462        Worklist.push_back(Op);
5463    }
5464  } while (!Worklist.empty());
5465
5466  return false;
5467}
5468
5469uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5470  assert(Num < NumOperands && "Invalid child # of SDNode!");
5471  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5472}
5473
5474std::string SDNode::getOperationName(const SelectionDAG *G) const {
5475  switch (getOpcode()) {
5476  default:
5477    if (getOpcode() < ISD::BUILTIN_OP_END)
5478      return "<<Unknown DAG Node>>";
5479    if (isMachineOpcode()) {
5480      if (G)
5481        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5482          if (getMachineOpcode() < TII->getNumOpcodes())
5483            return TII->get(getMachineOpcode()).getName();
5484      return "<<Unknown Machine Node>>";
5485    }
5486    if (G) {
5487      const TargetLowering &TLI = G->getTargetLoweringInfo();
5488      const char *Name = TLI.getTargetNodeName(getOpcode());
5489      if (Name) return Name;
5490      return "<<Unknown Target Node>>";
5491    }
5492    return "<<Unknown Node>>";
5493
5494#ifndef NDEBUG
5495  case ISD::DELETED_NODE:
5496    return "<<Deleted Node!>>";
5497#endif
5498  case ISD::PREFETCH:      return "Prefetch";
5499  case ISD::MEMBARRIER:    return "MemBarrier";
5500  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5501  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5502  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5503  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5504  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5505  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5506  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5507  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5508  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5509  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5510  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5511  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5512  case ISD::PCMARKER:      return "PCMarker";
5513  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5514  case ISD::SRCVALUE:      return "SrcValue";
5515  case ISD::EntryToken:    return "EntryToken";
5516  case ISD::TokenFactor:   return "TokenFactor";
5517  case ISD::AssertSext:    return "AssertSext";
5518  case ISD::AssertZext:    return "AssertZext";
5519
5520  case ISD::BasicBlock:    return "BasicBlock";
5521  case ISD::VALUETYPE:     return "ValueType";
5522  case ISD::Register:      return "Register";
5523
5524  case ISD::Constant:      return "Constant";
5525  case ISD::ConstantFP:    return "ConstantFP";
5526  case ISD::GlobalAddress: return "GlobalAddress";
5527  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5528  case ISD::FrameIndex:    return "FrameIndex";
5529  case ISD::JumpTable:     return "JumpTable";
5530  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5531  case ISD::RETURNADDR: return "RETURNADDR";
5532  case ISD::FRAMEADDR: return "FRAMEADDR";
5533  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5534  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5535  case ISD::LSDAADDR: return "LSDAADDR";
5536  case ISD::EHSELECTION: return "EHSELECTION";
5537  case ISD::EH_RETURN: return "EH_RETURN";
5538  case ISD::ConstantPool:  return "ConstantPool";
5539  case ISD::ExternalSymbol: return "ExternalSymbol";
5540  case ISD::BlockAddress:  return "BlockAddress";
5541  case ISD::INTRINSIC_WO_CHAIN:
5542  case ISD::INTRINSIC_VOID:
5543  case ISD::INTRINSIC_W_CHAIN: {
5544    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5545    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5546    if (IID < Intrinsic::num_intrinsics)
5547      return Intrinsic::getName((Intrinsic::ID)IID);
5548    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5549      return TII->getName(IID);
5550    llvm_unreachable("Invalid intrinsic ID");
5551  }
5552
5553  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5554  case ISD::TargetConstant: return "TargetConstant";
5555  case ISD::TargetConstantFP:return "TargetConstantFP";
5556  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5557  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5558  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5559  case ISD::TargetJumpTable:  return "TargetJumpTable";
5560  case ISD::TargetConstantPool:  return "TargetConstantPool";
5561  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5562  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5563
5564  case ISD::CopyToReg:     return "CopyToReg";
5565  case ISD::CopyFromReg:   return "CopyFromReg";
5566  case ISD::UNDEF:         return "undef";
5567  case ISD::MERGE_VALUES:  return "merge_values";
5568  case ISD::INLINEASM:     return "inlineasm";
5569  case ISD::EH_LABEL:      return "eh_label";
5570  case ISD::HANDLENODE:    return "handlenode";
5571
5572  // Unary operators
5573  case ISD::FABS:   return "fabs";
5574  case ISD::FNEG:   return "fneg";
5575  case ISD::FSQRT:  return "fsqrt";
5576  case ISD::FSIN:   return "fsin";
5577  case ISD::FCOS:   return "fcos";
5578  case ISD::FPOWI:  return "fpowi";
5579  case ISD::FPOW:   return "fpow";
5580  case ISD::FTRUNC: return "ftrunc";
5581  case ISD::FFLOOR: return "ffloor";
5582  case ISD::FCEIL:  return "fceil";
5583  case ISD::FRINT:  return "frint";
5584  case ISD::FNEARBYINT: return "fnearbyint";
5585
5586  // Binary operators
5587  case ISD::ADD:    return "add";
5588  case ISD::SUB:    return "sub";
5589  case ISD::MUL:    return "mul";
5590  case ISD::MULHU:  return "mulhu";
5591  case ISD::MULHS:  return "mulhs";
5592  case ISD::SDIV:   return "sdiv";
5593  case ISD::UDIV:   return "udiv";
5594  case ISD::SREM:   return "srem";
5595  case ISD::UREM:   return "urem";
5596  case ISD::SMUL_LOHI:  return "smul_lohi";
5597  case ISD::UMUL_LOHI:  return "umul_lohi";
5598  case ISD::SDIVREM:    return "sdivrem";
5599  case ISD::UDIVREM:    return "udivrem";
5600  case ISD::AND:    return "and";
5601  case ISD::OR:     return "or";
5602  case ISD::XOR:    return "xor";
5603  case ISD::SHL:    return "shl";
5604  case ISD::SRA:    return "sra";
5605  case ISD::SRL:    return "srl";
5606  case ISD::ROTL:   return "rotl";
5607  case ISD::ROTR:   return "rotr";
5608  case ISD::FADD:   return "fadd";
5609  case ISD::FSUB:   return "fsub";
5610  case ISD::FMUL:   return "fmul";
5611  case ISD::FDIV:   return "fdiv";
5612  case ISD::FREM:   return "frem";
5613  case ISD::FCOPYSIGN: return "fcopysign";
5614  case ISD::FGETSIGN:  return "fgetsign";
5615
5616  case ISD::SETCC:       return "setcc";
5617  case ISD::VSETCC:      return "vsetcc";
5618  case ISD::SELECT:      return "select";
5619  case ISD::SELECT_CC:   return "select_cc";
5620  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5621  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5622  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5623  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5624  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5625  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5626  case ISD::CARRY_FALSE:         return "carry_false";
5627  case ISD::ADDC:        return "addc";
5628  case ISD::ADDE:        return "adde";
5629  case ISD::SADDO:       return "saddo";
5630  case ISD::UADDO:       return "uaddo";
5631  case ISD::SSUBO:       return "ssubo";
5632  case ISD::USUBO:       return "usubo";
5633  case ISD::SMULO:       return "smulo";
5634  case ISD::UMULO:       return "umulo";
5635  case ISD::SUBC:        return "subc";
5636  case ISD::SUBE:        return "sube";
5637  case ISD::SHL_PARTS:   return "shl_parts";
5638  case ISD::SRA_PARTS:   return "sra_parts";
5639  case ISD::SRL_PARTS:   return "srl_parts";
5640
5641  // Conversion operators.
5642  case ISD::SIGN_EXTEND: return "sign_extend";
5643  case ISD::ZERO_EXTEND: return "zero_extend";
5644  case ISD::ANY_EXTEND:  return "any_extend";
5645  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5646  case ISD::TRUNCATE:    return "truncate";
5647  case ISD::FP_ROUND:    return "fp_round";
5648  case ISD::FLT_ROUNDS_: return "flt_rounds";
5649  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5650  case ISD::FP_EXTEND:   return "fp_extend";
5651
5652  case ISD::SINT_TO_FP:  return "sint_to_fp";
5653  case ISD::UINT_TO_FP:  return "uint_to_fp";
5654  case ISD::FP_TO_SINT:  return "fp_to_sint";
5655  case ISD::FP_TO_UINT:  return "fp_to_uint";
5656  case ISD::BIT_CONVERT: return "bit_convert";
5657
5658  case ISD::CONVERT_RNDSAT: {
5659    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5660    default: llvm_unreachable("Unknown cvt code!");
5661    case ISD::CVT_FF:  return "cvt_ff";
5662    case ISD::CVT_FS:  return "cvt_fs";
5663    case ISD::CVT_FU:  return "cvt_fu";
5664    case ISD::CVT_SF:  return "cvt_sf";
5665    case ISD::CVT_UF:  return "cvt_uf";
5666    case ISD::CVT_SS:  return "cvt_ss";
5667    case ISD::CVT_SU:  return "cvt_su";
5668    case ISD::CVT_US:  return "cvt_us";
5669    case ISD::CVT_UU:  return "cvt_uu";
5670    }
5671  }
5672
5673    // Control flow instructions
5674  case ISD::BR:      return "br";
5675  case ISD::BRIND:   return "brind";
5676  case ISD::BR_JT:   return "br_jt";
5677  case ISD::BRCOND:  return "brcond";
5678  case ISD::BR_CC:   return "br_cc";
5679  case ISD::CALLSEQ_START:  return "callseq_start";
5680  case ISD::CALLSEQ_END:    return "callseq_end";
5681
5682    // Other operators
5683  case ISD::LOAD:               return "load";
5684  case ISD::STORE:              return "store";
5685  case ISD::VAARG:              return "vaarg";
5686  case ISD::VACOPY:             return "vacopy";
5687  case ISD::VAEND:              return "vaend";
5688  case ISD::VASTART:            return "vastart";
5689  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5690  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5691  case ISD::BUILD_PAIR:         return "build_pair";
5692  case ISD::STACKSAVE:          return "stacksave";
5693  case ISD::STACKRESTORE:       return "stackrestore";
5694  case ISD::TRAP:               return "trap";
5695
5696  // Bit manipulation
5697  case ISD::BSWAP:   return "bswap";
5698  case ISD::CTPOP:   return "ctpop";
5699  case ISD::CTTZ:    return "cttz";
5700  case ISD::CTLZ:    return "ctlz";
5701
5702  // Trampolines
5703  case ISD::TRAMPOLINE: return "trampoline";
5704
5705  case ISD::CONDCODE:
5706    switch (cast<CondCodeSDNode>(this)->get()) {
5707    default: llvm_unreachable("Unknown setcc condition!");
5708    case ISD::SETOEQ:  return "setoeq";
5709    case ISD::SETOGT:  return "setogt";
5710    case ISD::SETOGE:  return "setoge";
5711    case ISD::SETOLT:  return "setolt";
5712    case ISD::SETOLE:  return "setole";
5713    case ISD::SETONE:  return "setone";
5714
5715    case ISD::SETO:    return "seto";
5716    case ISD::SETUO:   return "setuo";
5717    case ISD::SETUEQ:  return "setue";
5718    case ISD::SETUGT:  return "setugt";
5719    case ISD::SETUGE:  return "setuge";
5720    case ISD::SETULT:  return "setult";
5721    case ISD::SETULE:  return "setule";
5722    case ISD::SETUNE:  return "setune";
5723
5724    case ISD::SETEQ:   return "seteq";
5725    case ISD::SETGT:   return "setgt";
5726    case ISD::SETGE:   return "setge";
5727    case ISD::SETLT:   return "setlt";
5728    case ISD::SETLE:   return "setle";
5729    case ISD::SETNE:   return "setne";
5730    }
5731  }
5732}
5733
5734const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5735  switch (AM) {
5736  default:
5737    return "";
5738  case ISD::PRE_INC:
5739    return "<pre-inc>";
5740  case ISD::PRE_DEC:
5741    return "<pre-dec>";
5742  case ISD::POST_INC:
5743    return "<post-inc>";
5744  case ISD::POST_DEC:
5745    return "<post-dec>";
5746  }
5747}
5748
5749std::string ISD::ArgFlagsTy::getArgFlagsString() {
5750  std::string S = "< ";
5751
5752  if (isZExt())
5753    S += "zext ";
5754  if (isSExt())
5755    S += "sext ";
5756  if (isInReg())
5757    S += "inreg ";
5758  if (isSRet())
5759    S += "sret ";
5760  if (isByVal())
5761    S += "byval ";
5762  if (isNest())
5763    S += "nest ";
5764  if (getByValAlign())
5765    S += "byval-align:" + utostr(getByValAlign()) + " ";
5766  if (getOrigAlign())
5767    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5768  if (getByValSize())
5769    S += "byval-size:" + utostr(getByValSize()) + " ";
5770  return S + ">";
5771}
5772
5773void SDNode::dump() const { dump(0); }
5774void SDNode::dump(const SelectionDAG *G) const {
5775  print(dbgs(), G);
5776}
5777
5778void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5779  OS << (void*)this << ": ";
5780
5781  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5782    if (i) OS << ",";
5783    if (getValueType(i) == MVT::Other)
5784      OS << "ch";
5785    else
5786      OS << getValueType(i).getEVTString();
5787  }
5788  OS << " = " << getOperationName(G);
5789}
5790
5791void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5792  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5793    if (!MN->memoperands_empty()) {
5794      OS << "<";
5795      OS << "Mem:";
5796      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5797           e = MN->memoperands_end(); i != e; ++i) {
5798        OS << **i;
5799        if (next(i) != e)
5800          OS << " ";
5801      }
5802      OS << ">";
5803    }
5804  } else if (const ShuffleVectorSDNode *SVN =
5805               dyn_cast<ShuffleVectorSDNode>(this)) {
5806    OS << "<";
5807    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5808      int Idx = SVN->getMaskElt(i);
5809      if (i) OS << ",";
5810      if (Idx < 0)
5811        OS << "u";
5812      else
5813        OS << Idx;
5814    }
5815    OS << ">";
5816  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5817    OS << '<' << CSDN->getAPIntValue() << '>';
5818  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5819    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5820      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5821    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5822      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5823    else {
5824      OS << "<APFloat(";
5825      CSDN->getValueAPF().bitcastToAPInt().dump();
5826      OS << ")>";
5827    }
5828  } else if (const GlobalAddressSDNode *GADN =
5829             dyn_cast<GlobalAddressSDNode>(this)) {
5830    int64_t offset = GADN->getOffset();
5831    OS << '<';
5832    WriteAsOperand(OS, GADN->getGlobal());
5833    OS << '>';
5834    if (offset > 0)
5835      OS << " + " << offset;
5836    else
5837      OS << " " << offset;
5838    if (unsigned int TF = GADN->getTargetFlags())
5839      OS << " [TF=" << TF << ']';
5840  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5841    OS << "<" << FIDN->getIndex() << ">";
5842  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5843    OS << "<" << JTDN->getIndex() << ">";
5844    if (unsigned int TF = JTDN->getTargetFlags())
5845      OS << " [TF=" << TF << ']';
5846  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5847    int offset = CP->getOffset();
5848    if (CP->isMachineConstantPoolEntry())
5849      OS << "<" << *CP->getMachineCPVal() << ">";
5850    else
5851      OS << "<" << *CP->getConstVal() << ">";
5852    if (offset > 0)
5853      OS << " + " << offset;
5854    else
5855      OS << " " << offset;
5856    if (unsigned int TF = CP->getTargetFlags())
5857      OS << " [TF=" << TF << ']';
5858  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5859    OS << "<";
5860    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5861    if (LBB)
5862      OS << LBB->getName() << " ";
5863    OS << (const void*)BBDN->getBasicBlock() << ">";
5864  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5865    if (G && R->getReg() &&
5866        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5867      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5868    } else {
5869      OS << " %reg" << R->getReg();
5870    }
5871  } else if (const ExternalSymbolSDNode *ES =
5872             dyn_cast<ExternalSymbolSDNode>(this)) {
5873    OS << "'" << ES->getSymbol() << "'";
5874    if (unsigned int TF = ES->getTargetFlags())
5875      OS << " [TF=" << TF << ']';
5876  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5877    if (M->getValue())
5878      OS << "<" << M->getValue() << ">";
5879    else
5880      OS << "<null>";
5881  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5882    OS << ":" << N->getVT().getEVTString();
5883  }
5884  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5885    OS << "<" << *LD->getMemOperand();
5886
5887    bool doExt = true;
5888    switch (LD->getExtensionType()) {
5889    default: doExt = false; break;
5890    case ISD::EXTLOAD: OS << ", anyext"; break;
5891    case ISD::SEXTLOAD: OS << ", sext"; break;
5892    case ISD::ZEXTLOAD: OS << ", zext"; break;
5893    }
5894    if (doExt)
5895      OS << " from " << LD->getMemoryVT().getEVTString();
5896
5897    const char *AM = getIndexedModeName(LD->getAddressingMode());
5898    if (*AM)
5899      OS << ", " << AM;
5900
5901    OS << ">";
5902  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5903    OS << "<" << *ST->getMemOperand();
5904
5905    if (ST->isTruncatingStore())
5906      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5907
5908    const char *AM = getIndexedModeName(ST->getAddressingMode());
5909    if (*AM)
5910      OS << ", " << AM;
5911
5912    OS << ">";
5913  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5914    OS << "<" << *M->getMemOperand() << ">";
5915  } else if (const BlockAddressSDNode *BA =
5916               dyn_cast<BlockAddressSDNode>(this)) {
5917    OS << "<";
5918    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5919    OS << ", ";
5920    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5921    OS << ">";
5922    if (unsigned int TF = BA->getTargetFlags())
5923      OS << " [TF=" << TF << ']';
5924  }
5925
5926  if (G)
5927    if (unsigned Order = G->GetOrdering(this))
5928      OS << " [ORD=" << Order << ']';
5929}
5930
5931void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5932  print_types(OS, G);
5933  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5934    if (i) OS << ", "; else OS << " ";
5935    OS << (void*)getOperand(i).getNode();
5936    if (unsigned RN = getOperand(i).getResNo())
5937      OS << ":" << RN;
5938  }
5939  print_details(OS, G);
5940}
5941
5942static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5943                                  const SelectionDAG *G, unsigned depth,
5944                                  unsigned indent)
5945{
5946  if (depth == 0)
5947    return;
5948
5949  OS.indent(indent);
5950
5951  N->print(OS, G);
5952
5953  if (depth < 1)
5954    return;
5955
5956  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5957    OS << '\n';
5958    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5959  }
5960}
5961
5962void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5963                            unsigned depth) const {
5964  printrWithDepthHelper(OS, this, G, depth, 0);
5965}
5966
5967void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5968  // Don't print impossibly deep things.
5969  printrWithDepth(OS, G, 100);
5970}
5971
5972void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5973  printrWithDepth(dbgs(), G, depth);
5974}
5975
5976void SDNode::dumprFull(const SelectionDAG *G) const {
5977  // Don't print impossibly deep things.
5978  dumprWithDepth(G, 100);
5979}
5980
5981static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5982  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5983    if (N->getOperand(i).getNode()->hasOneUse())
5984      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5985    else
5986      dbgs() << "\n" << std::string(indent+2, ' ')
5987           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5988
5989
5990  dbgs() << "\n";
5991  dbgs().indent(indent);
5992  N->dump(G);
5993}
5994
5995SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5996  assert(N->getNumValues() == 1 &&
5997         "Can't unroll a vector with multiple results!");
5998
5999  EVT VT = N->getValueType(0);
6000  unsigned NE = VT.getVectorNumElements();
6001  EVT EltVT = VT.getVectorElementType();
6002  DebugLoc dl = N->getDebugLoc();
6003
6004  SmallVector<SDValue, 8> Scalars;
6005  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6006
6007  // If ResNE is 0, fully unroll the vector op.
6008  if (ResNE == 0)
6009    ResNE = NE;
6010  else if (NE > ResNE)
6011    NE = ResNE;
6012
6013  unsigned i;
6014  for (i= 0; i != NE; ++i) {
6015    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6016      SDValue Operand = N->getOperand(j);
6017      EVT OperandVT = Operand.getValueType();
6018      if (OperandVT.isVector()) {
6019        // A vector operand; extract a single element.
6020        EVT OperandEltVT = OperandVT.getVectorElementType();
6021        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6022                              OperandEltVT,
6023                              Operand,
6024                              getConstant(i, MVT::i32));
6025      } else {
6026        // A scalar operand; just use it as is.
6027        Operands[j] = Operand;
6028      }
6029    }
6030
6031    switch (N->getOpcode()) {
6032    default:
6033      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6034                                &Operands[0], Operands.size()));
6035      break;
6036    case ISD::SHL:
6037    case ISD::SRA:
6038    case ISD::SRL:
6039    case ISD::ROTL:
6040    case ISD::ROTR:
6041      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6042                                getShiftAmountOperand(Operands[1])));
6043      break;
6044    case ISD::SIGN_EXTEND_INREG:
6045    case ISD::FP_ROUND_INREG: {
6046      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6047      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6048                                Operands[0],
6049                                getValueType(ExtVT)));
6050    }
6051    }
6052  }
6053
6054  for (; i < ResNE; ++i)
6055    Scalars.push_back(getUNDEF(EltVT));
6056
6057  return getNode(ISD::BUILD_VECTOR, dl,
6058                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6059                 &Scalars[0], Scalars.size());
6060}
6061
6062
6063/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6064/// location that is 'Dist' units away from the location that the 'Base' load
6065/// is loading from.
6066bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6067                                     unsigned Bytes, int Dist) const {
6068  if (LD->getChain() != Base->getChain())
6069    return false;
6070  EVT VT = LD->getValueType(0);
6071  if (VT.getSizeInBits() / 8 != Bytes)
6072    return false;
6073
6074  SDValue Loc = LD->getOperand(1);
6075  SDValue BaseLoc = Base->getOperand(1);
6076  if (Loc.getOpcode() == ISD::FrameIndex) {
6077    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6078      return false;
6079    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6080    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6081    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6082    int FS  = MFI->getObjectSize(FI);
6083    int BFS = MFI->getObjectSize(BFI);
6084    if (FS != BFS || FS != (int)Bytes) return false;
6085    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6086  }
6087  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6088    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6089    if (V && (V->getSExtValue() == Dist*Bytes))
6090      return true;
6091  }
6092
6093  GlobalValue *GV1 = NULL;
6094  GlobalValue *GV2 = NULL;
6095  int64_t Offset1 = 0;
6096  int64_t Offset2 = 0;
6097  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6098  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6099  if (isGA1 && isGA2 && GV1 == GV2)
6100    return Offset1 == (Offset2 + Dist*Bytes);
6101  return false;
6102}
6103
6104
6105/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6106/// it cannot be inferred.
6107unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6108  // If this is a GlobalAddress + cst, return the alignment.
6109  GlobalValue *GV;
6110  int64_t GVOffset = 0;
6111  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6112    return MinAlign(GV->getAlignment(), GVOffset);
6113
6114  // If this is a direct reference to a stack slot, use information about the
6115  // stack slot's alignment.
6116  int FrameIdx = 1 << 31;
6117  int64_t FrameOffset = 0;
6118  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6119    FrameIdx = FI->getIndex();
6120  } else if (Ptr.getOpcode() == ISD::ADD &&
6121             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6122             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6123    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6124    FrameOffset = Ptr.getConstantOperandVal(1);
6125  }
6126
6127  if (FrameIdx != (1 << 31)) {
6128    // FIXME: Handle FI+CST.
6129    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6130    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6131                                    FrameOffset);
6132    if (MFI.isFixedObjectIndex(FrameIdx)) {
6133      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6134
6135      // The alignment of the frame index can be determined from its offset from
6136      // the incoming frame position.  If the frame object is at offset 32 and
6137      // the stack is guaranteed to be 16-byte aligned, then we know that the
6138      // object is 16-byte aligned.
6139      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6140      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6141
6142      // Finally, the frame object itself may have a known alignment.  Factor
6143      // the alignment + offset into a new alignment.  For example, if we know
6144      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6145      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6146      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6147      return std::max(Align, FIInfoAlign);
6148    }
6149    return FIInfoAlign;
6150  }
6151
6152  return 0;
6153}
6154
6155void SelectionDAG::dump() const {
6156  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6157
6158  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6159       I != E; ++I) {
6160    const SDNode *N = I;
6161    if (!N->hasOneUse() && N != getRoot().getNode())
6162      DumpNodes(N, 2, this);
6163  }
6164
6165  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6166
6167  dbgs() << "\n\n";
6168}
6169
6170void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6171  print_types(OS, G);
6172  print_details(OS, G);
6173}
6174
6175typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6176static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6177                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6178  if (!once.insert(N))          // If we've been here before, return now.
6179    return;
6180
6181  // Dump the current SDNode, but don't end the line yet.
6182  OS << std::string(indent, ' ');
6183  N->printr(OS, G);
6184
6185  // Having printed this SDNode, walk the children:
6186  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6187    const SDNode *child = N->getOperand(i).getNode();
6188
6189    if (i) OS << ",";
6190    OS << " ";
6191
6192    if (child->getNumOperands() == 0) {
6193      // This child has no grandchildren; print it inline right here.
6194      child->printr(OS, G);
6195      once.insert(child);
6196    } else {         // Just the address. FIXME: also print the child's opcode.
6197      OS << (void*)child;
6198      if (unsigned RN = N->getOperand(i).getResNo())
6199        OS << ":" << RN;
6200    }
6201  }
6202
6203  OS << "\n";
6204
6205  // Dump children that have grandchildren on their own line(s).
6206  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6207    const SDNode *child = N->getOperand(i).getNode();
6208    DumpNodesr(OS, child, indent+2, G, once);
6209  }
6210}
6211
6212void SDNode::dumpr() const {
6213  VisitedSDNodeSet once;
6214  DumpNodesr(dbgs(), this, 0, 0, once);
6215}
6216
6217void SDNode::dumpr(const SelectionDAG *G) const {
6218  VisitedSDNodeSet once;
6219  DumpNodesr(dbgs(), this, 0, G, once);
6220}
6221
6222
6223// getAddressSpace - Return the address space this GlobalAddress belongs to.
6224unsigned GlobalAddressSDNode::getAddressSpace() const {
6225  return getGlobal()->getType()->getAddressSpace();
6226}
6227
6228
6229const Type *ConstantPoolSDNode::getType() const {
6230  if (isMachineConstantPoolEntry())
6231    return Val.MachineCPVal->getType();
6232  return Val.ConstVal->getType();
6233}
6234
6235bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6236                                        APInt &SplatUndef,
6237                                        unsigned &SplatBitSize,
6238                                        bool &HasAnyUndefs,
6239                                        unsigned MinSplatBits,
6240                                        bool isBigEndian) {
6241  EVT VT = getValueType(0);
6242  assert(VT.isVector() && "Expected a vector type");
6243  unsigned sz = VT.getSizeInBits();
6244  if (MinSplatBits > sz)
6245    return false;
6246
6247  SplatValue = APInt(sz, 0);
6248  SplatUndef = APInt(sz, 0);
6249
6250  // Get the bits.  Bits with undefined values (when the corresponding element
6251  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6252  // in SplatValue.  If any of the values are not constant, give up and return
6253  // false.
6254  unsigned int nOps = getNumOperands();
6255  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6256  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6257
6258  for (unsigned j = 0; j < nOps; ++j) {
6259    unsigned i = isBigEndian ? nOps-1-j : j;
6260    SDValue OpVal = getOperand(i);
6261    unsigned BitPos = j * EltBitSize;
6262
6263    if (OpVal.getOpcode() == ISD::UNDEF)
6264      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6265    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6266      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6267                     zextOrTrunc(sz) << BitPos);
6268    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6269      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6270     else
6271      return false;
6272  }
6273
6274  // The build_vector is all constants or undefs.  Find the smallest element
6275  // size that splats the vector.
6276
6277  HasAnyUndefs = (SplatUndef != 0);
6278  while (sz > 8) {
6279
6280    unsigned HalfSize = sz / 2;
6281    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6282    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6283    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6284    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6285
6286    // If the two halves do not match (ignoring undef bits), stop here.
6287    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6288        MinSplatBits > HalfSize)
6289      break;
6290
6291    SplatValue = HighValue | LowValue;
6292    SplatUndef = HighUndef & LowUndef;
6293
6294    sz = HalfSize;
6295  }
6296
6297  SplatBitSize = sz;
6298  return true;
6299}
6300
6301bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6302  // Find the first non-undef value in the shuffle mask.
6303  unsigned i, e;
6304  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6305    /* search */;
6306
6307  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6308
6309  // Make sure all remaining elements are either undef or the same as the first
6310  // non-undef value.
6311  for (int Idx = Mask[i]; i != e; ++i)
6312    if (Mask[i] >= 0 && Mask[i] != Idx)
6313      return false;
6314  return true;
6315}
6316
6317static void checkForCyclesHelper(const SDNode *N,
6318                                 std::set<const SDNode *> &visited) {
6319  if (visited.find(N) != visited.end()) {
6320    dbgs() << "Offending node:\n";
6321    N->dumprFull();
6322    assert(0 && "Detected cycle in SelectionDAG");
6323  }
6324
6325  std::set<const SDNode*>::iterator i;
6326  bool inserted;
6327
6328  tie(i, inserted) = visited.insert(N);
6329  assert(inserted && "Missed cycle");
6330
6331  for(unsigned i = 0; i < N->getNumOperands(); ++i) {
6332    checkForCyclesHelper(N->getOperand(i).getNode(), visited);
6333  }
6334  visited.erase(i);
6335}
6336
6337void llvm::checkForCycles(const llvm::SDNode *N) {
6338#ifdef XDEBUG
6339  assert(N && "Checking nonexistant SDNode");
6340  std::set<const SDNode *> visited;
6341  checkForCyclesHelper(N, visited);
6342#endif
6343}
6344
6345void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6346  checkForCycles(DAG->getRoot().getNode());
6347}
6348