SelectionDAG.cpp revision 07961cd7921c5cc75e77890a1435e41f6423f42f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isScalarToVector - Return true if the specified node is a
180/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
181/// element is not an undef.
182bool ISD::isScalarToVector(const SDNode *N) {
183  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
184    return true;
185
186  if (N->getOpcode() != ISD::BUILD_VECTOR)
187    return false;
188  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
189    return false;
190  unsigned NumElems = N->getNumOperands();
191  for (unsigned i = 1; i < NumElems; ++i) {
192    SDOperand V = N->getOperand(i);
193    if (V.getOpcode() != ISD::UNDEF)
194      return false;
195  }
196  return true;
197}
198
199
200/// isDebugLabel - Return true if the specified node represents a debug
201/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
202/// is 0).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDOperand Zero;
205  if (N->getOpcode() == ISD::LABEL)
206    Zero = N->getOperand(2);
207  else if (N->isTargetOpcode() &&
208           N->getTargetOpcode() == TargetInstrInfo::LABEL)
209    // Chain moved to last operand.
210    Zero = N->getOperand(1);
211  else
212    return false;
213  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
214}
215
216/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
217/// when given the operation for (X op Y).
218ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
219  // To perform this operation, we just need to swap the L and G bits of the
220  // operation.
221  unsigned OldL = (Operation >> 2) & 1;
222  unsigned OldG = (Operation >> 1) & 1;
223  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
224                       (OldL << 1) |       // New G bit
225                       (OldG << 2));        // New L bit.
226}
227
228/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
229/// 'op' is a valid SetCC operation.
230ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
231  unsigned Operation = Op;
232  if (isInteger)
233    Operation ^= 7;   // Flip L, G, E bits, but not U.
234  else
235    Operation ^= 15;  // Flip all of the condition bits.
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;     // Don't let N and U bits get set.
238  return ISD::CondCode(Operation);
239}
240
241
242/// isSignedOp - For an integer comparison, return 1 if the comparison is a
243/// signed operation and 2 if the result is an unsigned comparison.  Return zero
244/// if the operation does not depend on the sign of the input (setne and seteq).
245static int isSignedOp(ISD::CondCode Opcode) {
246  switch (Opcode) {
247  default: assert(0 && "Illegal integer setcc operation!");
248  case ISD::SETEQ:
249  case ISD::SETNE: return 0;
250  case ISD::SETLT:
251  case ISD::SETLE:
252  case ISD::SETGT:
253  case ISD::SETGE: return 1;
254  case ISD::SETULT:
255  case ISD::SETULE:
256  case ISD::SETUGT:
257  case ISD::SETUGE: return 2;
258  }
259}
260
261/// getSetCCOrOperation - Return the result of a logical OR between different
262/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
263/// returns SETCC_INVALID if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                       bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed integer setcc with an unsigned integer setcc.
269    return ISD::SETCC_INVALID;
270
271  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
272
273  // If the N and U bits get set then the resultant comparison DOES suddenly
274  // care about orderedness, and is true when ordered.
275  if (Op > ISD::SETTRUE2)
276    Op &= ~16;     // Clear the U bit if the N bit is set.
277
278  // Canonicalize illegal integer setcc's.
279  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
280    Op = ISD::SETNE;
281
282  return ISD::CondCode(Op);
283}
284
285/// getSetCCAndOperation - Return the result of a logical AND between different
286/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
287/// function returns zero if it is not possible to represent the resultant
288/// comparison.
289ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
290                                        bool isInteger) {
291  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
292    // Cannot fold a signed setcc with an unsigned setcc.
293    return ISD::SETCC_INVALID;
294
295  // Combine all of the condition bits.
296  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
297
298  // Canonicalize illegal integer setcc's.
299  if (isInteger) {
300    switch (Result) {
301    default: break;
302    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return TLI.getTargetMachine();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDOperand *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->Val);
338    ID.AddInteger(Ops->ResNo);
339  }
340}
341
342static void AddNodeIDNode(FoldingSetNodeID &ID,
343                          unsigned short OpC, SDVTList VTList,
344                          const SDOperand *OpList, unsigned N) {
345  AddNodeIDOpcode(ID, OpC);
346  AddNodeIDValueTypes(ID, VTList);
347  AddNodeIDOperands(ID, OpList, N);
348}
349
350/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
351/// data.
352static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
353  AddNodeIDOpcode(ID, N->getOpcode());
354  // Add the return value info.
355  AddNodeIDValueTypes(ID, N->getVTList());
356  // Add the operand info.
357  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
358
359  // Handle SDNode leafs with special info.
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::MEMOPERAND: {
390    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
391    ID.AddPointer(MO.getValue());
392    ID.AddInteger(MO.getFlags());
393    ID.AddInteger(MO.getOffset());
394    ID.AddInteger(MO.getSize());
395    ID.AddInteger(MO.getAlignment());
396    break;
397  }
398  case ISD::FrameIndex:
399  case ISD::TargetFrameIndex:
400    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
401    break;
402  case ISD::JumpTable:
403  case ISD::TargetJumpTable:
404    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
405    break;
406  case ISD::ConstantPool:
407  case ISD::TargetConstantPool: {
408    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
409    ID.AddInteger(CP->getAlignment());
410    ID.AddInteger(CP->getOffset());
411    if (CP->isMachineConstantPoolEntry())
412      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
413    else
414      ID.AddPointer(CP->getConstVal());
415    break;
416  }
417  case ISD::LOAD: {
418    LoadSDNode *LD = cast<LoadSDNode>(N);
419    ID.AddInteger(LD->getAddressingMode());
420    ID.AddInteger(LD->getExtensionType());
421    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
422    ID.AddInteger(LD->getAlignment());
423    ID.AddInteger(LD->isVolatile());
424    break;
425  }
426  case ISD::STORE: {
427    StoreSDNode *ST = cast<StoreSDNode>(N);
428    ID.AddInteger(ST->getAddressingMode());
429    ID.AddInteger(ST->isTruncatingStore());
430    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
431    ID.AddInteger(ST->getAlignment());
432    ID.AddInteger(ST->isVolatile());
433    break;
434  }
435  }
436}
437
438//===----------------------------------------------------------------------===//
439//                              SelectionDAG Class
440//===----------------------------------------------------------------------===//
441
442/// RemoveDeadNodes - This method deletes all unreachable nodes in the
443/// SelectionDAG.
444void SelectionDAG::RemoveDeadNodes() {
445  // Create a dummy node (which is not added to allnodes), that adds a reference
446  // to the root node, preventing it from being deleted.
447  HandleSDNode Dummy(getRoot());
448
449  SmallVector<SDNode*, 128> DeadNodes;
450
451  // Add all obviously-dead nodes to the DeadNodes worklist.
452  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
453    if (I->use_empty())
454      DeadNodes.push_back(I);
455
456  // Process the worklist, deleting the nodes and adding their uses to the
457  // worklist.
458  while (!DeadNodes.empty()) {
459    SDNode *N = DeadNodes.back();
460    DeadNodes.pop_back();
461
462    // Take the node out of the appropriate CSE map.
463    RemoveNodeFromCSEMaps(N);
464
465    // Next, brutally remove the operand list.  This is safe to do, as there are
466    // no cycles in the graph.
467    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
468      SDNode *Operand = I->Val;
469      Operand->removeUser(N);
470
471      // Now that we removed this operand, see if there are no uses of it left.
472      if (Operand->use_empty())
473        DeadNodes.push_back(Operand);
474    }
475    if (N->OperandsNeedDelete)
476      delete[] N->OperandList;
477    N->OperandList = 0;
478    N->NumOperands = 0;
479
480    // Finally, remove N itself.
481    AllNodes.erase(N);
482  }
483
484  // If the root changed (e.g. it was a dead load, update the root).
485  setRoot(Dummy.getValue());
486}
487
488void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
489  SmallVector<SDNode*, 16> DeadNodes;
490  DeadNodes.push_back(N);
491
492  // Process the worklist, deleting the nodes and adding their uses to the
493  // worklist.
494  while (!DeadNodes.empty()) {
495    SDNode *N = DeadNodes.back();
496    DeadNodes.pop_back();
497
498    if (UpdateListener)
499      UpdateListener->NodeDeleted(N);
500
501    // Take the node out of the appropriate CSE map.
502    RemoveNodeFromCSEMaps(N);
503
504    // Next, brutally remove the operand list.  This is safe to do, as there are
505    // no cycles in the graph.
506    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
507      SDNode *Operand = I->Val;
508      Operand->removeUser(N);
509
510      // Now that we removed this operand, see if there are no uses of it left.
511      if (Operand->use_empty())
512        DeadNodes.push_back(Operand);
513    }
514    if (N->OperandsNeedDelete)
515      delete[] N->OperandList;
516    N->OperandList = 0;
517    N->NumOperands = 0;
518
519    // Finally, remove N itself.
520    AllNodes.erase(N);
521  }
522}
523
524void SelectionDAG::DeleteNode(SDNode *N) {
525  assert(N->use_empty() && "Cannot delete a node that is not dead!");
526
527  // First take this out of the appropriate CSE map.
528  RemoveNodeFromCSEMaps(N);
529
530  // Finally, remove uses due to operands of this node, remove from the
531  // AllNodes list, and delete the node.
532  DeleteNodeNotInCSEMaps(N);
533}
534
535void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
536
537  // Remove it from the AllNodes list.
538  AllNodes.remove(N);
539
540  // Drop all of the operands and decrement used nodes use counts.
541  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
542    I->Val->removeUser(N);
543  if (N->OperandsNeedDelete)
544    delete[] N->OperandList;
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           const SDOperand *Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete)
706      delete [] N->OperandList;
707    N->OperandList = 0;
708    N->NumOperands = 0;
709    AllNodes.pop_front();
710  }
711}
712
713SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
714  if (Op.getValueType() == VT) return Op;
715  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
716  return getNode(ISD::AND, Op.getValueType(), Op,
717                 getConstant(Imm, Op.getValueType()));
718}
719
720SDOperand SelectionDAG::getString(const std::string &Val) {
721  StringSDNode *&N = StringNodes[Val];
722  if (!N) {
723    N = new StringSDNode(Val);
724    AllNodes.push_back(N);
725  }
726  return SDOperand(N, 0);
727}
728
729SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
730  MVT::ValueType EltVT =
731    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
732
733  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
734}
735
736SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
737  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
738
739  MVT::ValueType EltVT =
740    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
741
742  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
743         "APInt size does not match type size!");
744
745  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
748  ID.Add(Val);
749  void *IP = 0;
750  SDNode *N = NULL;
751  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
752    if (!MVT::isVector(VT))
753      return SDOperand(N, 0);
754  if (!N) {
755    N = new ConstantSDNode(isT, Val, EltVT);
756    CSEMap.InsertNode(N, IP);
757    AllNodes.push_back(N);
758  }
759
760  SDOperand Result(N, 0);
761  if (MVT::isVector(VT)) {
762    SmallVector<SDOperand, 8> Ops;
763    Ops.assign(MVT::getVectorNumElements(VT), Result);
764    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
765  }
766  return Result;
767}
768
769SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
770  return getConstant(Val, TLI.getPointerTy(), isTarget);
771}
772
773
774SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
775                                      bool isTarget) {
776  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
777
778  MVT::ValueType EltVT =
779    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
780
781  // Do the map lookup using the actual bit pattern for the floating point
782  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
783  // we don't have issues with SNANs.
784  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
785  FoldingSetNodeID ID;
786  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
787  ID.Add(V);
788  void *IP = 0;
789  SDNode *N = NULL;
790  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
791    if (!MVT::isVector(VT))
792      return SDOperand(N, 0);
793  if (!N) {
794    N = new ConstantFPSDNode(isTarget, V, EltVT);
795    CSEMap.InsertNode(N, IP);
796    AllNodes.push_back(N);
797  }
798
799  SDOperand Result(N, 0);
800  if (MVT::isVector(VT)) {
801    SmallVector<SDOperand, 8> Ops;
802    Ops.assign(MVT::getVectorNumElements(VT), Result);
803    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
804  }
805  return Result;
806}
807
808SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
809                                      bool isTarget) {
810  MVT::ValueType EltVT =
811    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
812  if (EltVT==MVT::f32)
813    return getConstantFP(APFloat((float)Val), VT, isTarget);
814  else
815    return getConstantFP(APFloat(Val), VT, isTarget);
816}
817
818SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
819                                         MVT::ValueType VT, int Offset,
820                                         bool isTargetGA) {
821  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
822  unsigned Opc;
823  if (GVar && GVar->isThreadLocal())
824    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
825  else
826    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
827  FoldingSetNodeID ID;
828  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
829  ID.AddPointer(GV);
830  ID.AddInteger(Offset);
831  void *IP = 0;
832  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
833   return SDOperand(E, 0);
834  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
835  CSEMap.InsertNode(N, IP);
836  AllNodes.push_back(N);
837  return SDOperand(N, 0);
838}
839
840SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
841                                      bool isTarget) {
842  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
843  FoldingSetNodeID ID;
844  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
845  ID.AddInteger(FI);
846  void *IP = 0;
847  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
848    return SDOperand(E, 0);
849  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
850  CSEMap.InsertNode(N, IP);
851  AllNodes.push_back(N);
852  return SDOperand(N, 0);
853}
854
855SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
856  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
857  FoldingSetNodeID ID;
858  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
859  ID.AddInteger(JTI);
860  void *IP = 0;
861  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
862    return SDOperand(E, 0);
863  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
864  CSEMap.InsertNode(N, IP);
865  AllNodes.push_back(N);
866  return SDOperand(N, 0);
867}
868
869SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
870                                        unsigned Alignment, int Offset,
871                                        bool isTarget) {
872  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
873  FoldingSetNodeID ID;
874  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
875  ID.AddInteger(Alignment);
876  ID.AddInteger(Offset);
877  ID.AddPointer(C);
878  void *IP = 0;
879  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
880    return SDOperand(E, 0);
881  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
882  CSEMap.InsertNode(N, IP);
883  AllNodes.push_back(N);
884  return SDOperand(N, 0);
885}
886
887
888SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
889                                        MVT::ValueType VT,
890                                        unsigned Alignment, int Offset,
891                                        bool isTarget) {
892  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
893  FoldingSetNodeID ID;
894  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
895  ID.AddInteger(Alignment);
896  ID.AddInteger(Offset);
897  C->AddSelectionDAGCSEId(ID);
898  void *IP = 0;
899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
900    return SDOperand(E, 0);
901  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
902  CSEMap.InsertNode(N, IP);
903  AllNodes.push_back(N);
904  return SDOperand(N, 0);
905}
906
907
908SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
909  FoldingSetNodeID ID;
910  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
911  ID.AddPointer(MBB);
912  void *IP = 0;
913  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
914    return SDOperand(E, 0);
915  SDNode *N = new BasicBlockSDNode(MBB);
916  CSEMap.InsertNode(N, IP);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
922  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
923    ValueTypeNodes.resize(VT+1);
924
925  SDNode *&N = MVT::isExtendedVT(VT) ?
926    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
927
928  if (N) return SDOperand(N, 0);
929  N = new VTSDNode(VT);
930  AllNodes.push_back(N);
931  return SDOperand(N, 0);
932}
933
934SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
935  SDNode *&N = ExternalSymbols[Sym];
936  if (N) return SDOperand(N, 0);
937  N = new ExternalSymbolSDNode(false, Sym, VT);
938  AllNodes.push_back(N);
939  return SDOperand(N, 0);
940}
941
942SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
943                                                MVT::ValueType VT) {
944  SDNode *&N = TargetExternalSymbols[Sym];
945  if (N) return SDOperand(N, 0);
946  N = new ExternalSymbolSDNode(true, Sym, VT);
947  AllNodes.push_back(N);
948  return SDOperand(N, 0);
949}
950
951SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
952  if ((unsigned)Cond >= CondCodeNodes.size())
953    CondCodeNodes.resize(Cond+1);
954
955  if (CondCodeNodes[Cond] == 0) {
956    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
957    AllNodes.push_back(CondCodeNodes[Cond]);
958  }
959  return SDOperand(CondCodeNodes[Cond], 0);
960}
961
962SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
963  FoldingSetNodeID ID;
964  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
965  ID.AddInteger(RegNo);
966  void *IP = 0;
967  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
968    return SDOperand(E, 0);
969  SDNode *N = new RegisterSDNode(RegNo, VT);
970  CSEMap.InsertNode(N, IP);
971  AllNodes.push_back(N);
972  return SDOperand(N, 0);
973}
974
975SDOperand SelectionDAG::getSrcValue(const Value *V) {
976  assert((!V || isa<PointerType>(V->getType())) &&
977         "SrcValue is not a pointer?");
978
979  FoldingSetNodeID ID;
980  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
981  ID.AddPointer(V);
982
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDOperand(E, 0);
986
987  SDNode *N = new SrcValueSDNode(V);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDOperand(N, 0);
991}
992
993SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
994  const Value *v = MO.getValue();
995  assert((!v || isa<PointerType>(v->getType())) &&
996         "SrcValue is not a pointer?");
997
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1000  ID.AddPointer(v);
1001  ID.AddInteger(MO.getFlags());
1002  ID.AddInteger(MO.getOffset());
1003  ID.AddInteger(MO.getSize());
1004  ID.AddInteger(MO.getAlignment());
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new MemOperandSDNode(MO);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1017/// specified value type.
1018SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1019  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1020  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1021  const Type *Ty = MVT::getTypeForValueType(VT);
1022  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1023  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1024  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1025}
1026
1027
1028SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1029                                  SDOperand N2, ISD::CondCode Cond) {
1030  // These setcc operations always fold.
1031  switch (Cond) {
1032  default: break;
1033  case ISD::SETFALSE:
1034  case ISD::SETFALSE2: return getConstant(0, VT);
1035  case ISD::SETTRUE:
1036  case ISD::SETTRUE2:  return getConstant(1, VT);
1037
1038  case ISD::SETOEQ:
1039  case ISD::SETOGT:
1040  case ISD::SETOGE:
1041  case ISD::SETOLT:
1042  case ISD::SETOLE:
1043  case ISD::SETONE:
1044  case ISD::SETO:
1045  case ISD::SETUO:
1046  case ISD::SETUEQ:
1047  case ISD::SETUNE:
1048    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1049    break;
1050  }
1051
1052  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1053    uint64_t C2 = N2C->getValue();
1054    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1055      uint64_t C1 = N1C->getValue();
1056
1057      // Sign extend the operands if required
1058      if (ISD::isSignedIntSetCC(Cond)) {
1059        C1 = N1C->getSignExtended();
1060        C2 = N2C->getSignExtended();
1061      }
1062
1063      switch (Cond) {
1064      default: assert(0 && "Unknown integer setcc!");
1065      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1066      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1067      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1068      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1069      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1070      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1071      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1072      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1073      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1074      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1075      }
1076    }
1077  }
1078  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1079    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1080      // No compile time operations on this type yet.
1081      if (N1C->getValueType(0) == MVT::ppcf128)
1082        return SDOperand();
1083
1084      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1085      switch (Cond) {
1086      default: break;
1087      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1088                          return getNode(ISD::UNDEF, VT);
1089                        // fall through
1090      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1091      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1092                          return getNode(ISD::UNDEF, VT);
1093                        // fall through
1094      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1095                                           R==APFloat::cmpLessThan, VT);
1096      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1097                          return getNode(ISD::UNDEF, VT);
1098                        // fall through
1099      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1100      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1101                          return getNode(ISD::UNDEF, VT);
1102                        // fall through
1103      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1104      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1108                                           R==APFloat::cmpEqual, VT);
1109      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1110                          return getNode(ISD::UNDEF, VT);
1111                        // fall through
1112      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1113                                           R==APFloat::cmpEqual, VT);
1114      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1115      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1116      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1117                                           R==APFloat::cmpEqual, VT);
1118      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1119      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1120                                           R==APFloat::cmpLessThan, VT);
1121      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1122                                           R==APFloat::cmpUnordered, VT);
1123      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1124      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1125      }
1126    } else {
1127      // Ensure that the constant occurs on the RHS.
1128      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1129    }
1130  }
1131
1132  // Could not fold it.
1133  return SDOperand();
1134}
1135
1136/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1137/// use this predicate to simplify operations downstream.
1138bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1139  unsigned BitWidth = Op.getValueSizeInBits();
1140  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1141}
1142
1143/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1144/// this predicate to simplify operations downstream.  Mask is known to be zero
1145/// for bits that V cannot have.
1146bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1147                                     unsigned Depth) const {
1148  APInt KnownZero, KnownOne;
1149  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1150  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1151  return (KnownZero & Mask) == Mask;
1152}
1153
1154/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1155/// known to be either zero or one and return them in the KnownZero/KnownOne
1156/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1157/// processing.
1158void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1159                                     APInt &KnownZero, APInt &KnownOne,
1160                                     unsigned Depth) const {
1161  unsigned BitWidth = Mask.getBitWidth();
1162  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1163         "Mask size mismatches value type size!");
1164
1165  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1166  if (Depth == 6 || Mask == 0)
1167    return;  // Limit search depth.
1168
1169  APInt KnownZero2, KnownOne2;
1170
1171  switch (Op.getOpcode()) {
1172  case ISD::Constant:
1173    // We know all of the bits for a constant!
1174    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1175    KnownZero = ~KnownOne & Mask;
1176    return;
1177  case ISD::AND:
1178    // If either the LHS or the RHS are Zero, the result is zero.
1179    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1180    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1181                      KnownZero2, KnownOne2, Depth+1);
1182    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1183    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1184
1185    // Output known-1 bits are only known if set in both the LHS & RHS.
1186    KnownOne &= KnownOne2;
1187    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1188    KnownZero |= KnownZero2;
1189    return;
1190  case ISD::OR:
1191    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1192    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1193                      KnownZero2, KnownOne2, Depth+1);
1194    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1195    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1196
1197    // Output known-0 bits are only known if clear in both the LHS & RHS.
1198    KnownZero &= KnownZero2;
1199    // Output known-1 are known to be set if set in either the LHS | RHS.
1200    KnownOne |= KnownOne2;
1201    return;
1202  case ISD::XOR: {
1203    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1204    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1205    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1206    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1207
1208    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1209    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1210    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1211    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1212    KnownZero = KnownZeroOut;
1213    return;
1214  }
1215  case ISD::SELECT:
1216    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1217    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1218    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1219    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1220
1221    // Only known if known in both the LHS and RHS.
1222    KnownOne &= KnownOne2;
1223    KnownZero &= KnownZero2;
1224    return;
1225  case ISD::SELECT_CC:
1226    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1227    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1228    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1229    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1230
1231    // Only known if known in both the LHS and RHS.
1232    KnownOne &= KnownOne2;
1233    KnownZero &= KnownZero2;
1234    return;
1235  case ISD::SETCC:
1236    // If we know the result of a setcc has the top bits zero, use this info.
1237    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1238        BitWidth > 1)
1239      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1240    return;
1241  case ISD::SHL:
1242    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1243    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1244      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(SA->getValue()),
1245                        KnownZero, KnownOne, Depth+1);
1246      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1247      KnownZero <<= SA->getValue();
1248      KnownOne  <<= SA->getValue();
1249      // low bits known zero.
1250      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
1251    }
1252    return;
1253  case ISD::SRL:
1254    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1255    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1256      unsigned ShAmt = SA->getValue();
1257
1258      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1259                        KnownZero, KnownOne, Depth+1);
1260      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1261      KnownZero = KnownZero.lshr(ShAmt);
1262      KnownOne  = KnownOne.lshr(ShAmt);
1263
1264      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1265      KnownZero |= HighBits;  // High bits known zero.
1266    }
1267    return;
1268  case ISD::SRA:
1269    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1270      unsigned ShAmt = SA->getValue();
1271
1272      APInt InDemandedMask = (Mask << ShAmt);
1273      // If any of the demanded bits are produced by the sign extension, we also
1274      // demand the input sign bit.
1275      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1276      if (HighBits.getBoolValue())
1277        InDemandedMask |= APInt::getSignBit(BitWidth);
1278
1279      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1280                        Depth+1);
1281      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1282      KnownZero = KnownZero.lshr(ShAmt);
1283      KnownOne  = KnownOne.lshr(ShAmt);
1284
1285      // Handle the sign bits.
1286      APInt SignBit = APInt::getSignBit(BitWidth);
1287      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1288
1289      if (KnownZero.intersects(SignBit)) {
1290        KnownZero |= HighBits;  // New bits are known zero.
1291      } else if (KnownOne.intersects(SignBit)) {
1292        KnownOne  |= HighBits;  // New bits are known one.
1293      }
1294    }
1295    return;
1296  case ISD::SIGN_EXTEND_INREG: {
1297    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1298    unsigned EBits = MVT::getSizeInBits(EVT);
1299
1300    // Sign extension.  Compute the demanded bits in the result that are not
1301    // present in the input.
1302    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1303
1304    APInt InSignBit = APInt::getSignBit(EBits);
1305    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1306
1307    // If the sign extended bits are demanded, we know that the sign
1308    // bit is demanded.
1309    InSignBit.zext(BitWidth);
1310    if (NewBits.getBoolValue())
1311      InputDemandedBits |= InSignBit;
1312
1313    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1314                      KnownZero, KnownOne, Depth+1);
1315    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1316
1317    // If the sign bit of the input is known set or clear, then we know the
1318    // top bits of the result.
1319    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1320      KnownZero |= NewBits;
1321      KnownOne  &= ~NewBits;
1322    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1323      KnownOne  |= NewBits;
1324      KnownZero &= ~NewBits;
1325    } else {                              // Input sign bit unknown
1326      KnownZero &= ~NewBits;
1327      KnownOne  &= ~NewBits;
1328    }
1329    return;
1330  }
1331  case ISD::CTTZ:
1332  case ISD::CTLZ:
1333  case ISD::CTPOP: {
1334    unsigned LowBits = Log2_32(BitWidth)+1;
1335    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1336    KnownOne  = APInt(BitWidth, 0);
1337    return;
1338  }
1339  case ISD::LOAD: {
1340    if (ISD::isZEXTLoad(Op.Val)) {
1341      LoadSDNode *LD = cast<LoadSDNode>(Op);
1342      MVT::ValueType VT = LD->getMemoryVT();
1343      unsigned MemBits = MVT::getSizeInBits(VT);
1344      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1345    }
1346    return;
1347  }
1348  case ISD::ZERO_EXTEND: {
1349    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1350    unsigned InBits = MVT::getSizeInBits(InVT);
1351    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1352    APInt InMask    = Mask;
1353    InMask.trunc(InBits);
1354    KnownZero.trunc(InBits);
1355    KnownOne.trunc(InBits);
1356    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1357    KnownZero.zext(BitWidth);
1358    KnownOne.zext(BitWidth);
1359    KnownZero |= NewBits;
1360    return;
1361  }
1362  case ISD::SIGN_EXTEND: {
1363    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1364    unsigned InBits = MVT::getSizeInBits(InVT);
1365    APInt InSignBit = APInt::getSignBit(InBits);
1366    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1367    APInt InMask = Mask;
1368    InMask.trunc(InBits);
1369
1370    // If any of the sign extended bits are demanded, we know that the sign
1371    // bit is demanded. Temporarily set this bit in the mask for our callee.
1372    if (NewBits.getBoolValue())
1373      InMask |= InSignBit;
1374
1375    KnownZero.trunc(InBits);
1376    KnownOne.trunc(InBits);
1377    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1378
1379    // Note if the sign bit is known to be zero or one.
1380    bool SignBitKnownZero = KnownZero.isNegative();
1381    bool SignBitKnownOne  = KnownOne.isNegative();
1382    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1383           "Sign bit can't be known to be both zero and one!");
1384
1385    // If the sign bit wasn't actually demanded by our caller, we don't
1386    // want it set in the KnownZero and KnownOne result values. Reset the
1387    // mask and reapply it to the result values.
1388    InMask = Mask;
1389    InMask.trunc(InBits);
1390    KnownZero &= InMask;
1391    KnownOne  &= InMask;
1392
1393    KnownZero.zext(BitWidth);
1394    KnownOne.zext(BitWidth);
1395
1396    // If the sign bit is known zero or one, the top bits match.
1397    if (SignBitKnownZero)
1398      KnownZero |= NewBits;
1399    else if (SignBitKnownOne)
1400      KnownOne  |= NewBits;
1401    return;
1402  }
1403  case ISD::ANY_EXTEND: {
1404    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1405    unsigned InBits = MVT::getSizeInBits(InVT);
1406    APInt InMask = Mask;
1407    InMask.trunc(InBits);
1408    KnownZero.trunc(InBits);
1409    KnownOne.trunc(InBits);
1410    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1411    KnownZero.zext(BitWidth);
1412    KnownOne.zext(BitWidth);
1413    return;
1414  }
1415  case ISD::TRUNCATE: {
1416    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1417    unsigned InBits = MVT::getSizeInBits(InVT);
1418    APInt InMask = Mask;
1419    InMask.zext(InBits);
1420    KnownZero.zext(InBits);
1421    KnownOne.zext(InBits);
1422    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1423    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1424    KnownZero.trunc(BitWidth);
1425    KnownOne.trunc(BitWidth);
1426    break;
1427  }
1428  case ISD::AssertZext: {
1429    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1430    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1431    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1432                      KnownOne, Depth+1);
1433    KnownZero |= (~InMask) & Mask;
1434    return;
1435  }
1436  case ISD::FGETSIGN:
1437    // All bits are zero except the low bit.
1438    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1439    return;
1440
1441  case ISD::ADD: {
1442    // If either the LHS or the RHS are Zero, the result is zero.
1443    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1444    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1445    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1446    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1447
1448    // Output known-0 bits are known if clear or set in both the low clear bits
1449    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1450    // low 3 bits clear.
1451    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1452                                     KnownZero2.countTrailingOnes());
1453
1454    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1455    KnownOne = APInt(BitWidth, 0);
1456    return;
1457  }
1458  case ISD::SUB: {
1459    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1460    if (!CLHS) return;
1461
1462    // We know that the top bits of C-X are clear if X contains less bits
1463    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1464    // positive if we can prove that X is >= 0 and < 16.
1465    if (CLHS->getAPIntValue().isNonNegative()) {
1466      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1467      // NLZ can't be BitWidth with no sign bit
1468      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1469      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1470
1471      // If all of the MaskV bits are known to be zero, then we know the output
1472      // top bits are zero, because we now know that the output is from [0-C].
1473      if ((KnownZero & MaskV) == MaskV) {
1474        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1475        // Top bits known zero.
1476        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1477        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1478      } else {
1479        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1480      }
1481    }
1482    return;
1483  }
1484  default:
1485    // Allow the target to implement this method for its nodes.
1486    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1487  case ISD::INTRINSIC_WO_CHAIN:
1488  case ISD::INTRINSIC_W_CHAIN:
1489  case ISD::INTRINSIC_VOID:
1490      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1491    }
1492    return;
1493  }
1494}
1495
1496/// ComputeMaskedBits - This is a wrapper around the APInt-using
1497/// form of ComputeMaskedBits for use by clients that haven't been converted
1498/// to APInt yet.
1499void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1500                                     uint64_t &KnownZero, uint64_t &KnownOne,
1501                                     unsigned Depth) const {
1502  // The masks are not wide enough to represent this type!  Should use APInt.
1503  if (Op.getValueType() == MVT::i128)
1504    return;
1505
1506  unsigned NumBits = MVT::getSizeInBits(Op.getValueType());
1507  APInt APIntMask(NumBits, Mask);
1508  APInt APIntKnownZero(NumBits, 0);
1509  APInt APIntKnownOne(NumBits, 0);
1510  ComputeMaskedBits(Op, APIntMask, APIntKnownZero, APIntKnownOne, Depth);
1511  KnownZero = APIntKnownZero.getZExtValue();
1512  KnownOne = APIntKnownOne.getZExtValue();
1513}
1514
1515/// ComputeNumSignBits - Return the number of times the sign bit of the
1516/// register is replicated into the other bits.  We know that at least 1 bit
1517/// is always equal to the sign bit (itself), but other cases can give us
1518/// information.  For example, immediately after an "SRA X, 2", we know that
1519/// the top 3 bits are all equal to each other, so we return 3.
1520unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1521  MVT::ValueType VT = Op.getValueType();
1522  assert(MVT::isInteger(VT) && "Invalid VT!");
1523  unsigned VTBits = MVT::getSizeInBits(VT);
1524  unsigned Tmp, Tmp2;
1525
1526  if (Depth == 6)
1527    return 1;  // Limit search depth.
1528
1529  switch (Op.getOpcode()) {
1530  default: break;
1531  case ISD::AssertSext:
1532    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1533    return VTBits-Tmp+1;
1534  case ISD::AssertZext:
1535    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1536    return VTBits-Tmp;
1537
1538  case ISD::Constant: {
1539    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1540    // If negative, invert the bits, then look at it.
1541    if (Val & MVT::getIntVTSignBit(VT))
1542      Val = ~Val;
1543
1544    // Shift the bits so they are the leading bits in the int64_t.
1545    Val <<= 64-VTBits;
1546
1547    // Return # leading zeros.  We use 'min' here in case Val was zero before
1548    // shifting.  We don't want to return '64' as for an i32 "0".
1549    return std::min(VTBits, CountLeadingZeros_64(Val));
1550  }
1551
1552  case ISD::SIGN_EXTEND:
1553    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1554    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1555
1556  case ISD::SIGN_EXTEND_INREG:
1557    // Max of the input and what this extends.
1558    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1559    Tmp = VTBits-Tmp+1;
1560
1561    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1562    return std::max(Tmp, Tmp2);
1563
1564  case ISD::SRA:
1565    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1566    // SRA X, C   -> adds C sign bits.
1567    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1568      Tmp += C->getValue();
1569      if (Tmp > VTBits) Tmp = VTBits;
1570    }
1571    return Tmp;
1572  case ISD::SHL:
1573    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1574      // shl destroys sign bits.
1575      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1576      if (C->getValue() >= VTBits ||      // Bad shift.
1577          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1578      return Tmp - C->getValue();
1579    }
1580    break;
1581  case ISD::AND:
1582  case ISD::OR:
1583  case ISD::XOR:    // NOT is handled here.
1584    // Logical binary ops preserve the number of sign bits.
1585    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1586    if (Tmp == 1) return 1;  // Early out.
1587    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1588    return std::min(Tmp, Tmp2);
1589
1590  case ISD::SELECT:
1591    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1592    if (Tmp == 1) return 1;  // Early out.
1593    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1594    return std::min(Tmp, Tmp2);
1595
1596  case ISD::SETCC:
1597    // If setcc returns 0/-1, all bits are sign bits.
1598    if (TLI.getSetCCResultContents() ==
1599        TargetLowering::ZeroOrNegativeOneSetCCResult)
1600      return VTBits;
1601    break;
1602  case ISD::ROTL:
1603  case ISD::ROTR:
1604    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1605      unsigned RotAmt = C->getValue() & (VTBits-1);
1606
1607      // Handle rotate right by N like a rotate left by 32-N.
1608      if (Op.getOpcode() == ISD::ROTR)
1609        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1610
1611      // If we aren't rotating out all of the known-in sign bits, return the
1612      // number that are left.  This handles rotl(sext(x), 1) for example.
1613      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1614      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1615    }
1616    break;
1617  case ISD::ADD:
1618    // Add can have at most one carry bit.  Thus we know that the output
1619    // is, at worst, one more bit than the inputs.
1620    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1621    if (Tmp == 1) return 1;  // Early out.
1622
1623    // Special case decrementing a value (ADD X, -1):
1624    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1625      if (CRHS->isAllOnesValue()) {
1626        uint64_t KnownZero, KnownOne;
1627        uint64_t Mask = MVT::getIntVTBitMask(VT);
1628        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1629
1630        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1631        // sign bits set.
1632        if ((KnownZero|1) == Mask)
1633          return VTBits;
1634
1635        // If we are subtracting one from a positive number, there is no carry
1636        // out of the result.
1637        if (KnownZero & MVT::getIntVTSignBit(VT))
1638          return Tmp;
1639      }
1640
1641    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1642    if (Tmp2 == 1) return 1;
1643      return std::min(Tmp, Tmp2)-1;
1644    break;
1645
1646  case ISD::SUB:
1647    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1648    if (Tmp2 == 1) return 1;
1649
1650    // Handle NEG.
1651    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1652      if (CLHS->getValue() == 0) {
1653        uint64_t KnownZero, KnownOne;
1654        uint64_t Mask = MVT::getIntVTBitMask(VT);
1655        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1656        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1657        // sign bits set.
1658        if ((KnownZero|1) == Mask)
1659          return VTBits;
1660
1661        // If the input is known to be positive (the sign bit is known clear),
1662        // the output of the NEG has the same number of sign bits as the input.
1663        if (KnownZero & MVT::getIntVTSignBit(VT))
1664          return Tmp2;
1665
1666        // Otherwise, we treat this like a SUB.
1667      }
1668
1669    // Sub can have at most one carry bit.  Thus we know that the output
1670    // is, at worst, one more bit than the inputs.
1671    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1672    if (Tmp == 1) return 1;  // Early out.
1673      return std::min(Tmp, Tmp2)-1;
1674    break;
1675  case ISD::TRUNCATE:
1676    // FIXME: it's tricky to do anything useful for this, but it is an important
1677    // case for targets like X86.
1678    break;
1679  }
1680
1681  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1682  if (Op.getOpcode() == ISD::LOAD) {
1683    LoadSDNode *LD = cast<LoadSDNode>(Op);
1684    unsigned ExtType = LD->getExtensionType();
1685    switch (ExtType) {
1686    default: break;
1687    case ISD::SEXTLOAD:    // '17' bits known
1688      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1689      return VTBits-Tmp+1;
1690    case ISD::ZEXTLOAD:    // '16' bits known
1691      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1692      return VTBits-Tmp;
1693    }
1694  }
1695
1696  // Allow the target to implement this method for its nodes.
1697  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1698      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1699      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1700      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1701    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1702    if (NumBits > 1) return NumBits;
1703  }
1704
1705  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1706  // use this information.
1707  uint64_t KnownZero, KnownOne;
1708  uint64_t Mask = MVT::getIntVTBitMask(VT);
1709  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1710
1711  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1712  if (KnownZero & SignBit) {        // SignBit is 0
1713    Mask = KnownZero;
1714  } else if (KnownOne & SignBit) {  // SignBit is 1;
1715    Mask = KnownOne;
1716  } else {
1717    // Nothing known.
1718    return 1;
1719  }
1720
1721  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1722  // the number of identical bits in the top of the input value.
1723  Mask ^= ~0ULL;
1724  Mask <<= 64-VTBits;
1725  // Return # leading zeros.  We use 'min' here in case Val was zero before
1726  // shifting.  We don't want to return '64' as for an i32 "0".
1727  return std::min(VTBits, CountLeadingZeros_64(Mask));
1728}
1729
1730
1731bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1732  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1733  if (!GA) return false;
1734  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1735  if (!GV) return false;
1736  MachineModuleInfo *MMI = getMachineModuleInfo();
1737  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1738}
1739
1740
1741/// getNode - Gets or creates the specified node.
1742///
1743SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1744  FoldingSetNodeID ID;
1745  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1746  void *IP = 0;
1747  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1748    return SDOperand(E, 0);
1749  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1750  CSEMap.InsertNode(N, IP);
1751
1752  AllNodes.push_back(N);
1753  return SDOperand(N, 0);
1754}
1755
1756SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1757                                SDOperand Operand) {
1758  unsigned Tmp1;
1759  // Constant fold unary operations with an integer constant operand.
1760  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1761    uint64_t Val = C->getValue();
1762    switch (Opcode) {
1763    default: break;
1764    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1765    case ISD::ANY_EXTEND:
1766    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1767    case ISD::TRUNCATE:    return getConstant(Val, VT);
1768    case ISD::UINT_TO_FP:
1769    case ISD::SINT_TO_FP: {
1770      const uint64_t zero[] = {0, 0};
1771      // No compile time operations on this type.
1772      if (VT==MVT::ppcf128)
1773        break;
1774      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1775      (void)apf.convertFromZeroExtendedInteger(&Val,
1776                               MVT::getSizeInBits(Operand.getValueType()),
1777                               Opcode==ISD::SINT_TO_FP,
1778                               APFloat::rmNearestTiesToEven);
1779      return getConstantFP(apf, VT);
1780    }
1781    case ISD::BIT_CONVERT:
1782      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1783        return getConstantFP(BitsToFloat(Val), VT);
1784      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1785        return getConstantFP(BitsToDouble(Val), VT);
1786      break;
1787    case ISD::BSWAP:
1788      switch(VT) {
1789      default: assert(0 && "Invalid bswap!"); break;
1790      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1791      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1792      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1793      }
1794      break;
1795    case ISD::CTPOP:
1796      switch(VT) {
1797      default: assert(0 && "Invalid ctpop!"); break;
1798      case MVT::i1: return getConstant(Val != 0, VT);
1799      case MVT::i8:
1800        Tmp1 = (unsigned)Val & 0xFF;
1801        return getConstant(CountPopulation_32(Tmp1), VT);
1802      case MVT::i16:
1803        Tmp1 = (unsigned)Val & 0xFFFF;
1804        return getConstant(CountPopulation_32(Tmp1), VT);
1805      case MVT::i32:
1806        return getConstant(CountPopulation_32((unsigned)Val), VT);
1807      case MVT::i64:
1808        return getConstant(CountPopulation_64(Val), VT);
1809      }
1810    case ISD::CTLZ:
1811      switch(VT) {
1812      default: assert(0 && "Invalid ctlz!"); break;
1813      case MVT::i1: return getConstant(Val == 0, VT);
1814      case MVT::i8:
1815        Tmp1 = (unsigned)Val & 0xFF;
1816        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1817      case MVT::i16:
1818        Tmp1 = (unsigned)Val & 0xFFFF;
1819        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1820      case MVT::i32:
1821        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1822      case MVT::i64:
1823        return getConstant(CountLeadingZeros_64(Val), VT);
1824      }
1825    case ISD::CTTZ:
1826      switch(VT) {
1827      default: assert(0 && "Invalid cttz!"); break;
1828      case MVT::i1: return getConstant(Val == 0, VT);
1829      case MVT::i8:
1830        Tmp1 = (unsigned)Val | 0x100;
1831        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1832      case MVT::i16:
1833        Tmp1 = (unsigned)Val | 0x10000;
1834        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1835      case MVT::i32:
1836        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1837      case MVT::i64:
1838        return getConstant(CountTrailingZeros_64(Val), VT);
1839      }
1840    }
1841  }
1842
1843  // Constant fold unary operations with a floating point constant operand.
1844  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1845    APFloat V = C->getValueAPF();    // make copy
1846    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1847      switch (Opcode) {
1848      case ISD::FNEG:
1849        V.changeSign();
1850        return getConstantFP(V, VT);
1851      case ISD::FABS:
1852        V.clearSign();
1853        return getConstantFP(V, VT);
1854      case ISD::FP_ROUND:
1855      case ISD::FP_EXTEND:
1856        // This can return overflow, underflow, or inexact; we don't care.
1857        // FIXME need to be more flexible about rounding mode.
1858        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1859                         VT==MVT::f64 ? APFloat::IEEEdouble :
1860                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1861                         VT==MVT::f128 ? APFloat::IEEEquad :
1862                         APFloat::Bogus,
1863                         APFloat::rmNearestTiesToEven);
1864        return getConstantFP(V, VT);
1865      case ISD::FP_TO_SINT:
1866      case ISD::FP_TO_UINT: {
1867        integerPart x;
1868        assert(integerPartWidth >= 64);
1869        // FIXME need to be more flexible about rounding mode.
1870        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1871                              Opcode==ISD::FP_TO_SINT,
1872                              APFloat::rmTowardZero);
1873        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1874          break;
1875        return getConstant(x, VT);
1876      }
1877      case ISD::BIT_CONVERT:
1878        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1879          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1880        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1881          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1882        break;
1883      }
1884    }
1885  }
1886
1887  unsigned OpOpcode = Operand.Val->getOpcode();
1888  switch (Opcode) {
1889  case ISD::TokenFactor:
1890    return Operand;         // Factor of one node?  No factor.
1891  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1892  case ISD::FP_EXTEND:
1893    assert(MVT::isFloatingPoint(VT) &&
1894           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1895    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1896    break;
1897    case ISD::SIGN_EXTEND:
1898    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1899           "Invalid SIGN_EXTEND!");
1900    if (Operand.getValueType() == VT) return Operand;   // noop extension
1901    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1902           && "Invalid sext node, dst < src!");
1903    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1904      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1905    break;
1906  case ISD::ZERO_EXTEND:
1907    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1908           "Invalid ZERO_EXTEND!");
1909    if (Operand.getValueType() == VT) return Operand;   // noop extension
1910    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1911           && "Invalid zext node, dst < src!");
1912    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1913      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1914    break;
1915  case ISD::ANY_EXTEND:
1916    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1917           "Invalid ANY_EXTEND!");
1918    if (Operand.getValueType() == VT) return Operand;   // noop extension
1919    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1920           && "Invalid anyext node, dst < src!");
1921    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1922      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1923      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1924    break;
1925  case ISD::TRUNCATE:
1926    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1927           "Invalid TRUNCATE!");
1928    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1929    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1930           && "Invalid truncate node, src < dst!");
1931    if (OpOpcode == ISD::TRUNCATE)
1932      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1933    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1934             OpOpcode == ISD::ANY_EXTEND) {
1935      // If the source is smaller than the dest, we still need an extend.
1936      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1937          < MVT::getSizeInBits(VT))
1938        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1939      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1940               > MVT::getSizeInBits(VT))
1941        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1942      else
1943        return Operand.Val->getOperand(0);
1944    }
1945    break;
1946  case ISD::BIT_CONVERT:
1947    // Basic sanity checking.
1948    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1949           && "Cannot BIT_CONVERT between types of different sizes!");
1950    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1951    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1952      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1953    if (OpOpcode == ISD::UNDEF)
1954      return getNode(ISD::UNDEF, VT);
1955    break;
1956  case ISD::SCALAR_TO_VECTOR:
1957    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1958           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1959           "Illegal SCALAR_TO_VECTOR node!");
1960    break;
1961  case ISD::FNEG:
1962    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1963      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1964                     Operand.Val->getOperand(0));
1965    if (OpOpcode == ISD::FNEG)  // --X -> X
1966      return Operand.Val->getOperand(0);
1967    break;
1968  case ISD::FABS:
1969    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1970      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1971    break;
1972  }
1973
1974  SDNode *N;
1975  SDVTList VTs = getVTList(VT);
1976  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1977    FoldingSetNodeID ID;
1978    SDOperand Ops[1] = { Operand };
1979    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1980    void *IP = 0;
1981    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1982      return SDOperand(E, 0);
1983    N = new UnarySDNode(Opcode, VTs, Operand);
1984    CSEMap.InsertNode(N, IP);
1985  } else {
1986    N = new UnarySDNode(Opcode, VTs, Operand);
1987  }
1988  AllNodes.push_back(N);
1989  return SDOperand(N, 0);
1990}
1991
1992
1993
1994SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1995                                SDOperand N1, SDOperand N2) {
1996  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1997  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1998  switch (Opcode) {
1999  default: break;
2000  case ISD::TokenFactor:
2001    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2002           N2.getValueType() == MVT::Other && "Invalid token factor!");
2003    // Fold trivial token factors.
2004    if (N1.getOpcode() == ISD::EntryToken) return N2;
2005    if (N2.getOpcode() == ISD::EntryToken) return N1;
2006    break;
2007  case ISD::AND:
2008    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2009           N1.getValueType() == VT && "Binary operator types must match!");
2010    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2011    // worth handling here.
2012    if (N2C && N2C->getValue() == 0)
2013      return N2;
2014    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2015      return N1;
2016    break;
2017  case ISD::OR:
2018  case ISD::XOR:
2019    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2020           N1.getValueType() == VT && "Binary operator types must match!");
2021    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2022    // worth handling here.
2023    if (N2C && N2C->getValue() == 0)
2024      return N1;
2025    break;
2026  case ISD::UDIV:
2027  case ISD::UREM:
2028  case ISD::MULHU:
2029  case ISD::MULHS:
2030    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2031    // fall through
2032  case ISD::ADD:
2033  case ISD::SUB:
2034  case ISD::MUL:
2035  case ISD::SDIV:
2036  case ISD::SREM:
2037  case ISD::FADD:
2038  case ISD::FSUB:
2039  case ISD::FMUL:
2040  case ISD::FDIV:
2041  case ISD::FREM:
2042    assert(N1.getValueType() == N2.getValueType() &&
2043           N1.getValueType() == VT && "Binary operator types must match!");
2044    break;
2045  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2046    assert(N1.getValueType() == VT &&
2047           MVT::isFloatingPoint(N1.getValueType()) &&
2048           MVT::isFloatingPoint(N2.getValueType()) &&
2049           "Invalid FCOPYSIGN!");
2050    break;
2051  case ISD::SHL:
2052  case ISD::SRA:
2053  case ISD::SRL:
2054  case ISD::ROTL:
2055  case ISD::ROTR:
2056    assert(VT == N1.getValueType() &&
2057           "Shift operators return type must be the same as their first arg");
2058    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2059           VT != MVT::i1 && "Shifts only work on integers");
2060    break;
2061  case ISD::FP_ROUND_INREG: {
2062    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2063    assert(VT == N1.getValueType() && "Not an inreg round!");
2064    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2065           "Cannot FP_ROUND_INREG integer types");
2066    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2067           "Not rounding down!");
2068    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2069    break;
2070  }
2071  case ISD::FP_ROUND:
2072    assert(MVT::isFloatingPoint(VT) &&
2073           MVT::isFloatingPoint(N1.getValueType()) &&
2074           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2075           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2076    if (N1.getValueType() == VT) return N1;  // noop conversion.
2077    break;
2078  case ISD::AssertSext:
2079  case ISD::AssertZext: {
2080    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2081    assert(VT == N1.getValueType() && "Not an inreg extend!");
2082    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2083           "Cannot *_EXTEND_INREG FP types");
2084    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2085           "Not extending!");
2086    if (VT == EVT) return N1; // noop assertion.
2087    break;
2088  }
2089  case ISD::SIGN_EXTEND_INREG: {
2090    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2091    assert(VT == N1.getValueType() && "Not an inreg extend!");
2092    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2093           "Cannot *_EXTEND_INREG FP types");
2094    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2095           "Not extending!");
2096    if (EVT == VT) return N1;  // Not actually extending
2097
2098    if (N1C) {
2099      int64_t Val = N1C->getValue();
2100      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2101      Val <<= 64-FromBits;
2102      Val >>= 64-FromBits;
2103      return getConstant(Val, VT);
2104    }
2105    break;
2106  }
2107  case ISD::EXTRACT_VECTOR_ELT:
2108    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2109
2110    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2111    // expanding copies of large vectors from registers.
2112    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2113        N1.getNumOperands() > 0) {
2114      unsigned Factor =
2115        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2116      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2117                     N1.getOperand(N2C->getValue() / Factor),
2118                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2119    }
2120
2121    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2122    // expanding large vector constants.
2123    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2124      return N1.getOperand(N2C->getValue());
2125
2126    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2127    // operations are lowered to scalars.
2128    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2129      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2130        if (IEC == N2C)
2131          return N1.getOperand(1);
2132        else
2133          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2134      }
2135    break;
2136  case ISD::EXTRACT_ELEMENT:
2137    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2138
2139    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2140    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2141    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2142    if (N1.getOpcode() == ISD::BUILD_PAIR)
2143      return N1.getOperand(N2C->getValue());
2144
2145    // EXTRACT_ELEMENT of a constant int is also very common.
2146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2147      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2148      return getConstant(C->getValue() >> Shift, VT);
2149    }
2150    break;
2151  case ISD::EXTRACT_SUBVECTOR:
2152    if (N1.getValueType() == VT) // Trivial extraction.
2153      return N1;
2154    break;
2155  }
2156
2157  if (N1C) {
2158    if (N2C) {
2159      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2160      switch (Opcode) {
2161      case ISD::ADD: return getConstant(C1 + C2, VT);
2162      case ISD::SUB: return getConstant(C1 - C2, VT);
2163      case ISD::MUL: return getConstant(C1 * C2, VT);
2164      case ISD::UDIV:
2165        if (C2) return getConstant(C1 / C2, VT);
2166        break;
2167      case ISD::UREM :
2168        if (C2) return getConstant(C1 % C2, VT);
2169        break;
2170      case ISD::SDIV :
2171        if (C2) return getConstant(N1C->getSignExtended() /
2172                                   N2C->getSignExtended(), VT);
2173        break;
2174      case ISD::SREM :
2175        if (C2) return getConstant(N1C->getSignExtended() %
2176                                   N2C->getSignExtended(), VT);
2177        break;
2178      case ISD::AND  : return getConstant(C1 & C2, VT);
2179      case ISD::OR   : return getConstant(C1 | C2, VT);
2180      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2181      case ISD::SHL  : return getConstant(C1 << C2, VT);
2182      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2183      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2184      case ISD::ROTL :
2185        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2186                           VT);
2187      case ISD::ROTR :
2188        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2189                           VT);
2190      default: break;
2191      }
2192    } else {      // Cannonicalize constant to RHS if commutative
2193      if (isCommutativeBinOp(Opcode)) {
2194        std::swap(N1C, N2C);
2195        std::swap(N1, N2);
2196      }
2197    }
2198  }
2199
2200  // Constant fold FP operations.
2201  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2202  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2203  if (N1CFP) {
2204    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2205      // Cannonicalize constant to RHS if commutative
2206      std::swap(N1CFP, N2CFP);
2207      std::swap(N1, N2);
2208    } else if (N2CFP && VT != MVT::ppcf128) {
2209      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2210      APFloat::opStatus s;
2211      switch (Opcode) {
2212      case ISD::FADD:
2213        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2214        if (s != APFloat::opInvalidOp)
2215          return getConstantFP(V1, VT);
2216        break;
2217      case ISD::FSUB:
2218        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2219        if (s!=APFloat::opInvalidOp)
2220          return getConstantFP(V1, VT);
2221        break;
2222      case ISD::FMUL:
2223        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2224        if (s!=APFloat::opInvalidOp)
2225          return getConstantFP(V1, VT);
2226        break;
2227      case ISD::FDIV:
2228        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2229        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2230          return getConstantFP(V1, VT);
2231        break;
2232      case ISD::FREM :
2233        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2234        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2235          return getConstantFP(V1, VT);
2236        break;
2237      case ISD::FCOPYSIGN:
2238        V1.copySign(V2);
2239        return getConstantFP(V1, VT);
2240      default: break;
2241      }
2242    }
2243  }
2244
2245  // Canonicalize an UNDEF to the RHS, even over a constant.
2246  if (N1.getOpcode() == ISD::UNDEF) {
2247    if (isCommutativeBinOp(Opcode)) {
2248      std::swap(N1, N2);
2249    } else {
2250      switch (Opcode) {
2251      case ISD::FP_ROUND_INREG:
2252      case ISD::SIGN_EXTEND_INREG:
2253      case ISD::SUB:
2254      case ISD::FSUB:
2255      case ISD::FDIV:
2256      case ISD::FREM:
2257      case ISD::SRA:
2258        return N1;     // fold op(undef, arg2) -> undef
2259      case ISD::UDIV:
2260      case ISD::SDIV:
2261      case ISD::UREM:
2262      case ISD::SREM:
2263      case ISD::SRL:
2264      case ISD::SHL:
2265        if (!MVT::isVector(VT))
2266          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2267        // For vectors, we can't easily build an all zero vector, just return
2268        // the LHS.
2269        return N2;
2270      }
2271    }
2272  }
2273
2274  // Fold a bunch of operators when the RHS is undef.
2275  if (N2.getOpcode() == ISD::UNDEF) {
2276    switch (Opcode) {
2277    case ISD::ADD:
2278    case ISD::ADDC:
2279    case ISD::ADDE:
2280    case ISD::SUB:
2281    case ISD::FADD:
2282    case ISD::FSUB:
2283    case ISD::FMUL:
2284    case ISD::FDIV:
2285    case ISD::FREM:
2286    case ISD::UDIV:
2287    case ISD::SDIV:
2288    case ISD::UREM:
2289    case ISD::SREM:
2290    case ISD::XOR:
2291      return N2;       // fold op(arg1, undef) -> undef
2292    case ISD::MUL:
2293    case ISD::AND:
2294    case ISD::SRL:
2295    case ISD::SHL:
2296      if (!MVT::isVector(VT))
2297        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2298      // For vectors, we can't easily build an all zero vector, just return
2299      // the LHS.
2300      return N1;
2301    case ISD::OR:
2302      if (!MVT::isVector(VT))
2303        return getConstant(MVT::getIntVTBitMask(VT), VT);
2304      // For vectors, we can't easily build an all one vector, just return
2305      // the LHS.
2306      return N1;
2307    case ISD::SRA:
2308      return N1;
2309    }
2310  }
2311
2312  // Memoize this node if possible.
2313  SDNode *N;
2314  SDVTList VTs = getVTList(VT);
2315  if (VT != MVT::Flag) {
2316    SDOperand Ops[] = { N1, N2 };
2317    FoldingSetNodeID ID;
2318    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2319    void *IP = 0;
2320    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2321      return SDOperand(E, 0);
2322    N = new BinarySDNode(Opcode, VTs, N1, N2);
2323    CSEMap.InsertNode(N, IP);
2324  } else {
2325    N = new BinarySDNode(Opcode, VTs, N1, N2);
2326  }
2327
2328  AllNodes.push_back(N);
2329  return SDOperand(N, 0);
2330}
2331
2332SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2333                                SDOperand N1, SDOperand N2, SDOperand N3) {
2334  // Perform various simplifications.
2335  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2336  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2337  switch (Opcode) {
2338  case ISD::SETCC: {
2339    // Use FoldSetCC to simplify SETCC's.
2340    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2341    if (Simp.Val) return Simp;
2342    break;
2343  }
2344  case ISD::SELECT:
2345    if (N1C) {
2346     if (N1C->getValue())
2347        return N2;             // select true, X, Y -> X
2348      else
2349        return N3;             // select false, X, Y -> Y
2350    }
2351
2352    if (N2 == N3) return N2;   // select C, X, X -> X
2353    break;
2354  case ISD::BRCOND:
2355    if (N2C) {
2356      if (N2C->getValue()) // Unconditional branch
2357        return getNode(ISD::BR, MVT::Other, N1, N3);
2358      else
2359        return N1;         // Never-taken branch
2360    }
2361    break;
2362  case ISD::VECTOR_SHUFFLE:
2363    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2364           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2365           N3.getOpcode() == ISD::BUILD_VECTOR &&
2366           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2367           "Illegal VECTOR_SHUFFLE node!");
2368    break;
2369  case ISD::BIT_CONVERT:
2370    // Fold bit_convert nodes from a type to themselves.
2371    if (N1.getValueType() == VT)
2372      return N1;
2373    break;
2374  }
2375
2376  // Memoize node if it doesn't produce a flag.
2377  SDNode *N;
2378  SDVTList VTs = getVTList(VT);
2379  if (VT != MVT::Flag) {
2380    SDOperand Ops[] = { N1, N2, N3 };
2381    FoldingSetNodeID ID;
2382    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2383    void *IP = 0;
2384    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2385      return SDOperand(E, 0);
2386    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2387    CSEMap.InsertNode(N, IP);
2388  } else {
2389    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2390  }
2391  AllNodes.push_back(N);
2392  return SDOperand(N, 0);
2393}
2394
2395SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2396                                SDOperand N1, SDOperand N2, SDOperand N3,
2397                                SDOperand N4) {
2398  SDOperand Ops[] = { N1, N2, N3, N4 };
2399  return getNode(Opcode, VT, Ops, 4);
2400}
2401
2402SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2403                                SDOperand N1, SDOperand N2, SDOperand N3,
2404                                SDOperand N4, SDOperand N5) {
2405  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2406  return getNode(Opcode, VT, Ops, 5);
2407}
2408
2409SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2410                                  SDOperand Src, SDOperand Size,
2411                                  SDOperand Align,
2412                                  SDOperand AlwaysInline) {
2413  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2414  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2415}
2416
2417SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2418                                  SDOperand Src, SDOperand Size,
2419                                  SDOperand Align,
2420                                  SDOperand AlwaysInline) {
2421  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2422  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2423}
2424
2425SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2426                                  SDOperand Src, SDOperand Size,
2427                                  SDOperand Align,
2428                                  SDOperand AlwaysInline) {
2429  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2430  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2431}
2432
2433SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2434                                  SDOperand Ptr, SDOperand Cmp,
2435                                  SDOperand Swp, MVT::ValueType VT) {
2436  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2437  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2438  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2439  FoldingSetNodeID ID;
2440  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2441  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2442  ID.AddInteger((unsigned int)VT);
2443  void* IP = 0;
2444  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2445    return SDOperand(E, 0);
2446  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2447  CSEMap.InsertNode(N, IP);
2448  AllNodes.push_back(N);
2449  return SDOperand(N, 0);
2450}
2451
2452SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2453                                  SDOperand Ptr, SDOperand Val,
2454                                  MVT::ValueType VT) {
2455  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2456         && "Invalid Atomic Op");
2457  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2458  FoldingSetNodeID ID;
2459  SDOperand Ops[] = {Chain, Ptr, Val};
2460  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2461  ID.AddInteger((unsigned int)VT);
2462  void* IP = 0;
2463  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2464    return SDOperand(E, 0);
2465  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2466  CSEMap.InsertNode(N, IP);
2467  AllNodes.push_back(N);
2468  return SDOperand(N, 0);
2469}
2470
2471SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2472                                SDOperand Chain, SDOperand Ptr,
2473                                const Value *SV, int SVOffset,
2474                                bool isVolatile, unsigned Alignment) {
2475  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2476    const Type *Ty = 0;
2477    if (VT != MVT::iPTR) {
2478      Ty = MVT::getTypeForValueType(VT);
2479    } else if (SV) {
2480      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2481      assert(PT && "Value for load must be a pointer");
2482      Ty = PT->getElementType();
2483    }
2484    assert(Ty && "Could not get type information for load");
2485    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2486  }
2487  SDVTList VTs = getVTList(VT, MVT::Other);
2488  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2489  SDOperand Ops[] = { Chain, Ptr, Undef };
2490  FoldingSetNodeID ID;
2491  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2492  ID.AddInteger(ISD::UNINDEXED);
2493  ID.AddInteger(ISD::NON_EXTLOAD);
2494  ID.AddInteger((unsigned int)VT);
2495  ID.AddInteger(Alignment);
2496  ID.AddInteger(isVolatile);
2497  void *IP = 0;
2498  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2499    return SDOperand(E, 0);
2500  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2501                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2502                             isVolatile);
2503  CSEMap.InsertNode(N, IP);
2504  AllNodes.push_back(N);
2505  return SDOperand(N, 0);
2506}
2507
2508SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2509                                   SDOperand Chain, SDOperand Ptr,
2510                                   const Value *SV,
2511                                   int SVOffset, MVT::ValueType EVT,
2512                                   bool isVolatile, unsigned Alignment) {
2513  // If they are asking for an extending load from/to the same thing, return a
2514  // normal load.
2515  if (VT == EVT)
2516    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2517
2518  if (MVT::isVector(VT))
2519    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2520  else
2521    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2522           "Should only be an extending load, not truncating!");
2523  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2524         "Cannot sign/zero extend a FP/Vector load!");
2525  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2526         "Cannot convert from FP to Int or Int -> FP!");
2527
2528  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2529    const Type *Ty = 0;
2530    if (VT != MVT::iPTR) {
2531      Ty = MVT::getTypeForValueType(VT);
2532    } else if (SV) {
2533      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2534      assert(PT && "Value for load must be a pointer");
2535      Ty = PT->getElementType();
2536    }
2537    assert(Ty && "Could not get type information for load");
2538    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2539  }
2540  SDVTList VTs = getVTList(VT, MVT::Other);
2541  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2542  SDOperand Ops[] = { Chain, Ptr, Undef };
2543  FoldingSetNodeID ID;
2544  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2545  ID.AddInteger(ISD::UNINDEXED);
2546  ID.AddInteger(ExtType);
2547  ID.AddInteger((unsigned int)EVT);
2548  ID.AddInteger(Alignment);
2549  ID.AddInteger(isVolatile);
2550  void *IP = 0;
2551  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2552    return SDOperand(E, 0);
2553  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2554                             SV, SVOffset, Alignment, isVolatile);
2555  CSEMap.InsertNode(N, IP);
2556  AllNodes.push_back(N);
2557  return SDOperand(N, 0);
2558}
2559
2560SDOperand
2561SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2562                             SDOperand Offset, ISD::MemIndexedMode AM) {
2563  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2564  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2565         "Load is already a indexed load!");
2566  MVT::ValueType VT = OrigLoad.getValueType();
2567  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2568  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2569  FoldingSetNodeID ID;
2570  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2571  ID.AddInteger(AM);
2572  ID.AddInteger(LD->getExtensionType());
2573  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2574  ID.AddInteger(LD->getAlignment());
2575  ID.AddInteger(LD->isVolatile());
2576  void *IP = 0;
2577  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2578    return SDOperand(E, 0);
2579  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2580                             LD->getExtensionType(), LD->getMemoryVT(),
2581                             LD->getSrcValue(), LD->getSrcValueOffset(),
2582                             LD->getAlignment(), LD->isVolatile());
2583  CSEMap.InsertNode(N, IP);
2584  AllNodes.push_back(N);
2585  return SDOperand(N, 0);
2586}
2587
2588SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2589                                 SDOperand Ptr, const Value *SV, int SVOffset,
2590                                 bool isVolatile, unsigned Alignment) {
2591  MVT::ValueType VT = Val.getValueType();
2592
2593  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2594    const Type *Ty = 0;
2595    if (VT != MVT::iPTR) {
2596      Ty = MVT::getTypeForValueType(VT);
2597    } else if (SV) {
2598      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2599      assert(PT && "Value for store must be a pointer");
2600      Ty = PT->getElementType();
2601    }
2602    assert(Ty && "Could not get type information for store");
2603    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2604  }
2605  SDVTList VTs = getVTList(MVT::Other);
2606  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2607  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2608  FoldingSetNodeID ID;
2609  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2610  ID.AddInteger(ISD::UNINDEXED);
2611  ID.AddInteger(false);
2612  ID.AddInteger((unsigned int)VT);
2613  ID.AddInteger(Alignment);
2614  ID.AddInteger(isVolatile);
2615  void *IP = 0;
2616  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2617    return SDOperand(E, 0);
2618  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2619                              VT, SV, SVOffset, Alignment, isVolatile);
2620  CSEMap.InsertNode(N, IP);
2621  AllNodes.push_back(N);
2622  return SDOperand(N, 0);
2623}
2624
2625SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2626                                      SDOperand Ptr, const Value *SV,
2627                                      int SVOffset, MVT::ValueType SVT,
2628                                      bool isVolatile, unsigned Alignment) {
2629  MVT::ValueType VT = Val.getValueType();
2630
2631  if (VT == SVT)
2632    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2633
2634  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2635         "Not a truncation?");
2636  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2637         "Can't do FP-INT conversion!");
2638
2639  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2640    const Type *Ty = 0;
2641    if (VT != MVT::iPTR) {
2642      Ty = MVT::getTypeForValueType(VT);
2643    } else if (SV) {
2644      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2645      assert(PT && "Value for store must be a pointer");
2646      Ty = PT->getElementType();
2647    }
2648    assert(Ty && "Could not get type information for store");
2649    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2650  }
2651  SDVTList VTs = getVTList(MVT::Other);
2652  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2653  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2654  FoldingSetNodeID ID;
2655  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2656  ID.AddInteger(ISD::UNINDEXED);
2657  ID.AddInteger(1);
2658  ID.AddInteger((unsigned int)SVT);
2659  ID.AddInteger(Alignment);
2660  ID.AddInteger(isVolatile);
2661  void *IP = 0;
2662  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2663    return SDOperand(E, 0);
2664  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2665                              SVT, SV, SVOffset, Alignment, isVolatile);
2666  CSEMap.InsertNode(N, IP);
2667  AllNodes.push_back(N);
2668  return SDOperand(N, 0);
2669}
2670
2671SDOperand
2672SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2673                              SDOperand Offset, ISD::MemIndexedMode AM) {
2674  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2675  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2676         "Store is already a indexed store!");
2677  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2678  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2679  FoldingSetNodeID ID;
2680  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2681  ID.AddInteger(AM);
2682  ID.AddInteger(ST->isTruncatingStore());
2683  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2684  ID.AddInteger(ST->getAlignment());
2685  ID.AddInteger(ST->isVolatile());
2686  void *IP = 0;
2687  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2688    return SDOperand(E, 0);
2689  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2690                              ST->isTruncatingStore(), ST->getMemoryVT(),
2691                              ST->getSrcValue(), ST->getSrcValueOffset(),
2692                              ST->getAlignment(), ST->isVolatile());
2693  CSEMap.InsertNode(N, IP);
2694  AllNodes.push_back(N);
2695  return SDOperand(N, 0);
2696}
2697
2698SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2699                                 SDOperand Chain, SDOperand Ptr,
2700                                 SDOperand SV) {
2701  SDOperand Ops[] = { Chain, Ptr, SV };
2702  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2703}
2704
2705SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2706                                const SDOperand *Ops, unsigned NumOps) {
2707  switch (NumOps) {
2708  case 0: return getNode(Opcode, VT);
2709  case 1: return getNode(Opcode, VT, Ops[0]);
2710  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2711  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2712  default: break;
2713  }
2714
2715  switch (Opcode) {
2716  default: break;
2717  case ISD::SELECT_CC: {
2718    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2719    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2720           "LHS and RHS of condition must have same type!");
2721    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2722           "True and False arms of SelectCC must have same type!");
2723    assert(Ops[2].getValueType() == VT &&
2724           "select_cc node must be of same type as true and false value!");
2725    break;
2726  }
2727  case ISD::BR_CC: {
2728    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2729    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2730           "LHS/RHS of comparison should match types!");
2731    break;
2732  }
2733  }
2734
2735  // Memoize nodes.
2736  SDNode *N;
2737  SDVTList VTs = getVTList(VT);
2738  if (VT != MVT::Flag) {
2739    FoldingSetNodeID ID;
2740    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2741    void *IP = 0;
2742    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2743      return SDOperand(E, 0);
2744    N = new SDNode(Opcode, VTs, Ops, NumOps);
2745    CSEMap.InsertNode(N, IP);
2746  } else {
2747    N = new SDNode(Opcode, VTs, Ops, NumOps);
2748  }
2749  AllNodes.push_back(N);
2750  return SDOperand(N, 0);
2751}
2752
2753SDOperand SelectionDAG::getNode(unsigned Opcode,
2754                                std::vector<MVT::ValueType> &ResultTys,
2755                                const SDOperand *Ops, unsigned NumOps) {
2756  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2757                 Ops, NumOps);
2758}
2759
2760SDOperand SelectionDAG::getNode(unsigned Opcode,
2761                                const MVT::ValueType *VTs, unsigned NumVTs,
2762                                const SDOperand *Ops, unsigned NumOps) {
2763  if (NumVTs == 1)
2764    return getNode(Opcode, VTs[0], Ops, NumOps);
2765  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2766}
2767
2768SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2769                                const SDOperand *Ops, unsigned NumOps) {
2770  if (VTList.NumVTs == 1)
2771    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2772
2773  switch (Opcode) {
2774  // FIXME: figure out how to safely handle things like
2775  // int foo(int x) { return 1 << (x & 255); }
2776  // int bar() { return foo(256); }
2777#if 0
2778  case ISD::SRA_PARTS:
2779  case ISD::SRL_PARTS:
2780  case ISD::SHL_PARTS:
2781    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2782        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2783      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2784    else if (N3.getOpcode() == ISD::AND)
2785      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2786        // If the and is only masking out bits that cannot effect the shift,
2787        // eliminate the and.
2788        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2789        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2790          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2791      }
2792    break;
2793#endif
2794  }
2795
2796  // Memoize the node unless it returns a flag.
2797  SDNode *N;
2798  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2799    FoldingSetNodeID ID;
2800    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2801    void *IP = 0;
2802    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2803      return SDOperand(E, 0);
2804    if (NumOps == 1)
2805      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2806    else if (NumOps == 2)
2807      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2808    else if (NumOps == 3)
2809      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2810    else
2811      N = new SDNode(Opcode, VTList, Ops, NumOps);
2812    CSEMap.InsertNode(N, IP);
2813  } else {
2814    if (NumOps == 1)
2815      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2816    else if (NumOps == 2)
2817      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2818    else if (NumOps == 3)
2819      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2820    else
2821      N = new SDNode(Opcode, VTList, Ops, NumOps);
2822  }
2823  AllNodes.push_back(N);
2824  return SDOperand(N, 0);
2825}
2826
2827SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2828  return getNode(Opcode, VTList, 0, 0);
2829}
2830
2831SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2832                                SDOperand N1) {
2833  SDOperand Ops[] = { N1 };
2834  return getNode(Opcode, VTList, Ops, 1);
2835}
2836
2837SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2838                                SDOperand N1, SDOperand N2) {
2839  SDOperand Ops[] = { N1, N2 };
2840  return getNode(Opcode, VTList, Ops, 2);
2841}
2842
2843SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2844                                SDOperand N1, SDOperand N2, SDOperand N3) {
2845  SDOperand Ops[] = { N1, N2, N3 };
2846  return getNode(Opcode, VTList, Ops, 3);
2847}
2848
2849SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2850                                SDOperand N1, SDOperand N2, SDOperand N3,
2851                                SDOperand N4) {
2852  SDOperand Ops[] = { N1, N2, N3, N4 };
2853  return getNode(Opcode, VTList, Ops, 4);
2854}
2855
2856SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2857                                SDOperand N1, SDOperand N2, SDOperand N3,
2858                                SDOperand N4, SDOperand N5) {
2859  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2860  return getNode(Opcode, VTList, Ops, 5);
2861}
2862
2863SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2864  return makeVTList(SDNode::getValueTypeList(VT), 1);
2865}
2866
2867SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2868  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2869       E = VTList.end(); I != E; ++I) {
2870    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2871      return makeVTList(&(*I)[0], 2);
2872  }
2873  std::vector<MVT::ValueType> V;
2874  V.push_back(VT1);
2875  V.push_back(VT2);
2876  VTList.push_front(V);
2877  return makeVTList(&(*VTList.begin())[0], 2);
2878}
2879SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2880                                 MVT::ValueType VT3) {
2881  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2882       E = VTList.end(); I != E; ++I) {
2883    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2884        (*I)[2] == VT3)
2885      return makeVTList(&(*I)[0], 3);
2886  }
2887  std::vector<MVT::ValueType> V;
2888  V.push_back(VT1);
2889  V.push_back(VT2);
2890  V.push_back(VT3);
2891  VTList.push_front(V);
2892  return makeVTList(&(*VTList.begin())[0], 3);
2893}
2894
2895SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2896  switch (NumVTs) {
2897    case 0: assert(0 && "Cannot have nodes without results!");
2898    case 1: return getVTList(VTs[0]);
2899    case 2: return getVTList(VTs[0], VTs[1]);
2900    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2901    default: break;
2902  }
2903
2904  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2905       E = VTList.end(); I != E; ++I) {
2906    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2907
2908    bool NoMatch = false;
2909    for (unsigned i = 2; i != NumVTs; ++i)
2910      if (VTs[i] != (*I)[i]) {
2911        NoMatch = true;
2912        break;
2913      }
2914    if (!NoMatch)
2915      return makeVTList(&*I->begin(), NumVTs);
2916  }
2917
2918  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2919  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2920}
2921
2922
2923/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2924/// specified operands.  If the resultant node already exists in the DAG,
2925/// this does not modify the specified node, instead it returns the node that
2926/// already exists.  If the resultant node does not exist in the DAG, the
2927/// input node is returned.  As a degenerate case, if you specify the same
2928/// input operands as the node already has, the input node is returned.
2929SDOperand SelectionDAG::
2930UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2931  SDNode *N = InN.Val;
2932  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2933
2934  // Check to see if there is no change.
2935  if (Op == N->getOperand(0)) return InN;
2936
2937  // See if the modified node already exists.
2938  void *InsertPos = 0;
2939  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2940    return SDOperand(Existing, InN.ResNo);
2941
2942  // Nope it doesn't.  Remove the node from it's current place in the maps.
2943  if (InsertPos)
2944    RemoveNodeFromCSEMaps(N);
2945
2946  // Now we update the operands.
2947  N->OperandList[0].Val->removeUser(N);
2948  Op.Val->addUser(N);
2949  N->OperandList[0] = Op;
2950
2951  // If this gets put into a CSE map, add it.
2952  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2953  return InN;
2954}
2955
2956SDOperand SelectionDAG::
2957UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2958  SDNode *N = InN.Val;
2959  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2960
2961  // Check to see if there is no change.
2962  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2963    return InN;   // No operands changed, just return the input node.
2964
2965  // See if the modified node already exists.
2966  void *InsertPos = 0;
2967  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2968    return SDOperand(Existing, InN.ResNo);
2969
2970  // Nope it doesn't.  Remove the node from it's current place in the maps.
2971  if (InsertPos)
2972    RemoveNodeFromCSEMaps(N);
2973
2974  // Now we update the operands.
2975  if (N->OperandList[0] != Op1) {
2976    N->OperandList[0].Val->removeUser(N);
2977    Op1.Val->addUser(N);
2978    N->OperandList[0] = Op1;
2979  }
2980  if (N->OperandList[1] != Op2) {
2981    N->OperandList[1].Val->removeUser(N);
2982    Op2.Val->addUser(N);
2983    N->OperandList[1] = Op2;
2984  }
2985
2986  // If this gets put into a CSE map, add it.
2987  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2988  return InN;
2989}
2990
2991SDOperand SelectionDAG::
2992UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2993  SDOperand Ops[] = { Op1, Op2, Op3 };
2994  return UpdateNodeOperands(N, Ops, 3);
2995}
2996
2997SDOperand SelectionDAG::
2998UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2999                   SDOperand Op3, SDOperand Op4) {
3000  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3001  return UpdateNodeOperands(N, Ops, 4);
3002}
3003
3004SDOperand SelectionDAG::
3005UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3006                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3007  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3008  return UpdateNodeOperands(N, Ops, 5);
3009}
3010
3011
3012SDOperand SelectionDAG::
3013UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
3014  SDNode *N = InN.Val;
3015  assert(N->getNumOperands() == NumOps &&
3016         "Update with wrong number of operands");
3017
3018  // Check to see if there is no change.
3019  bool AnyChange = false;
3020  for (unsigned i = 0; i != NumOps; ++i) {
3021    if (Ops[i] != N->getOperand(i)) {
3022      AnyChange = true;
3023      break;
3024    }
3025  }
3026
3027  // No operands changed, just return the input node.
3028  if (!AnyChange) return InN;
3029
3030  // See if the modified node already exists.
3031  void *InsertPos = 0;
3032  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3033    return SDOperand(Existing, InN.ResNo);
3034
3035  // Nope it doesn't.  Remove the node from it's current place in the maps.
3036  if (InsertPos)
3037    RemoveNodeFromCSEMaps(N);
3038
3039  // Now we update the operands.
3040  for (unsigned i = 0; i != NumOps; ++i) {
3041    if (N->OperandList[i] != Ops[i]) {
3042      N->OperandList[i].Val->removeUser(N);
3043      Ops[i].Val->addUser(N);
3044      N->OperandList[i] = Ops[i];
3045    }
3046  }
3047
3048  // If this gets put into a CSE map, add it.
3049  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3050  return InN;
3051}
3052
3053
3054/// MorphNodeTo - This frees the operands of the current node, resets the
3055/// opcode, types, and operands to the specified value.  This should only be
3056/// used by the SelectionDAG class.
3057void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3058                         const SDOperand *Ops, unsigned NumOps) {
3059  NodeType = Opc;
3060  ValueList = L.VTs;
3061  NumValues = L.NumVTs;
3062
3063  // Clear the operands list, updating used nodes to remove this from their
3064  // use list.
3065  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3066    I->Val->removeUser(this);
3067
3068  // If NumOps is larger than the # of operands we currently have, reallocate
3069  // the operand list.
3070  if (NumOps > NumOperands) {
3071    if (OperandsNeedDelete)
3072      delete [] OperandList;
3073    OperandList = new SDOperand[NumOps];
3074    OperandsNeedDelete = true;
3075  }
3076
3077  // Assign the new operands.
3078  NumOperands = NumOps;
3079
3080  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3081    OperandList[i] = Ops[i];
3082    SDNode *N = OperandList[i].Val;
3083    N->Uses.push_back(this);
3084  }
3085}
3086
3087/// SelectNodeTo - These are used for target selectors to *mutate* the
3088/// specified node to have the specified return type, Target opcode, and
3089/// operands.  Note that target opcodes are stored as
3090/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3091///
3092/// Note that SelectNodeTo returns the resultant node.  If there is already a
3093/// node of the specified opcode and operands, it returns that node instead of
3094/// the current one.
3095SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3096                                   MVT::ValueType VT) {
3097  SDVTList VTs = getVTList(VT);
3098  FoldingSetNodeID ID;
3099  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3100  void *IP = 0;
3101  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3102    return ON;
3103
3104  RemoveNodeFromCSEMaps(N);
3105
3106  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3107
3108  CSEMap.InsertNode(N, IP);
3109  return N;
3110}
3111
3112SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3113                                   MVT::ValueType VT, SDOperand Op1) {
3114  // If an identical node already exists, use it.
3115  SDVTList VTs = getVTList(VT);
3116  SDOperand Ops[] = { Op1 };
3117
3118  FoldingSetNodeID ID;
3119  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3120  void *IP = 0;
3121  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3122    return ON;
3123
3124  RemoveNodeFromCSEMaps(N);
3125  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3126  CSEMap.InsertNode(N, IP);
3127  return N;
3128}
3129
3130SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3131                                   MVT::ValueType VT, SDOperand Op1,
3132                                   SDOperand Op2) {
3133  // If an identical node already exists, use it.
3134  SDVTList VTs = getVTList(VT);
3135  SDOperand Ops[] = { Op1, Op2 };
3136
3137  FoldingSetNodeID ID;
3138  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3139  void *IP = 0;
3140  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3141    return ON;
3142
3143  RemoveNodeFromCSEMaps(N);
3144
3145  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3146
3147  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3148  return N;
3149}
3150
3151SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3152                                   MVT::ValueType VT, SDOperand Op1,
3153                                   SDOperand Op2, SDOperand Op3) {
3154  // If an identical node already exists, use it.
3155  SDVTList VTs = getVTList(VT);
3156  SDOperand Ops[] = { Op1, Op2, Op3 };
3157  FoldingSetNodeID ID;
3158  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3159  void *IP = 0;
3160  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3161    return ON;
3162
3163  RemoveNodeFromCSEMaps(N);
3164
3165  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3166
3167  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3168  return N;
3169}
3170
3171SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3172                                   MVT::ValueType VT, const SDOperand *Ops,
3173                                   unsigned NumOps) {
3174  // If an identical node already exists, use it.
3175  SDVTList VTs = getVTList(VT);
3176  FoldingSetNodeID ID;
3177  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3178  void *IP = 0;
3179  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3180    return ON;
3181
3182  RemoveNodeFromCSEMaps(N);
3183  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3184
3185  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3186  return N;
3187}
3188
3189SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3190                                   MVT::ValueType VT1, MVT::ValueType VT2,
3191                                   SDOperand Op1, SDOperand Op2) {
3192  SDVTList VTs = getVTList(VT1, VT2);
3193  FoldingSetNodeID ID;
3194  SDOperand Ops[] = { Op1, Op2 };
3195  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3196  void *IP = 0;
3197  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3198    return ON;
3199
3200  RemoveNodeFromCSEMaps(N);
3201  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3202  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3203  return N;
3204}
3205
3206SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3207                                   MVT::ValueType VT1, MVT::ValueType VT2,
3208                                   SDOperand Op1, SDOperand Op2,
3209                                   SDOperand Op3) {
3210  // If an identical node already exists, use it.
3211  SDVTList VTs = getVTList(VT1, VT2);
3212  SDOperand Ops[] = { Op1, Op2, Op3 };
3213  FoldingSetNodeID ID;
3214  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3215  void *IP = 0;
3216  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3217    return ON;
3218
3219  RemoveNodeFromCSEMaps(N);
3220
3221  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3222  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3223  return N;
3224}
3225
3226
3227/// getTargetNode - These are used for target selectors to create a new node
3228/// with specified return type(s), target opcode, and operands.
3229///
3230/// Note that getTargetNode returns the resultant node.  If there is already a
3231/// node of the specified opcode and operands, it returns that node instead of
3232/// the current one.
3233SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3234  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3235}
3236SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3237                                    SDOperand Op1) {
3238  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3239}
3240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3241                                    SDOperand Op1, SDOperand Op2) {
3242  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3243}
3244SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3245                                    SDOperand Op1, SDOperand Op2,
3246                                    SDOperand Op3) {
3247  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3248}
3249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3250                                    const SDOperand *Ops, unsigned NumOps) {
3251  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3252}
3253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3254                                    MVT::ValueType VT2) {
3255  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3256  SDOperand Op;
3257  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3258}
3259SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3260                                    MVT::ValueType VT2, SDOperand Op1) {
3261  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3262  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3263}
3264SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3265                                    MVT::ValueType VT2, SDOperand Op1,
3266                                    SDOperand Op2) {
3267  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3268  SDOperand Ops[] = { Op1, Op2 };
3269  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3270}
3271SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3272                                    MVT::ValueType VT2, SDOperand Op1,
3273                                    SDOperand Op2, SDOperand Op3) {
3274  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3275  SDOperand Ops[] = { Op1, Op2, Op3 };
3276  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3277}
3278SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3279                                    MVT::ValueType VT2,
3280                                    const SDOperand *Ops, unsigned NumOps) {
3281  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3282  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3283}
3284SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3285                                    MVT::ValueType VT2, MVT::ValueType VT3,
3286                                    SDOperand Op1, SDOperand Op2) {
3287  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3288  SDOperand Ops[] = { Op1, Op2 };
3289  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3290}
3291SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3292                                    MVT::ValueType VT2, MVT::ValueType VT3,
3293                                    SDOperand Op1, SDOperand Op2,
3294                                    SDOperand Op3) {
3295  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3296  SDOperand Ops[] = { Op1, Op2, Op3 };
3297  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3298}
3299SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3300                                    MVT::ValueType VT2, MVT::ValueType VT3,
3301                                    const SDOperand *Ops, unsigned NumOps) {
3302  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3303  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3304}
3305SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3306                                    MVT::ValueType VT2, MVT::ValueType VT3,
3307                                    MVT::ValueType VT4,
3308                                    const SDOperand *Ops, unsigned NumOps) {
3309  std::vector<MVT::ValueType> VTList;
3310  VTList.push_back(VT1);
3311  VTList.push_back(VT2);
3312  VTList.push_back(VT3);
3313  VTList.push_back(VT4);
3314  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3315  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3316}
3317SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3318                                    std::vector<MVT::ValueType> &ResultTys,
3319                                    const SDOperand *Ops, unsigned NumOps) {
3320  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3321  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3322                 Ops, NumOps).Val;
3323}
3324
3325
3326/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3327/// This can cause recursive merging of nodes in the DAG.
3328///
3329/// This version assumes From has a single result value.
3330///
3331void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3332                                      DAGUpdateListener *UpdateListener) {
3333  SDNode *From = FromN.Val;
3334  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3335         "Cannot replace with this method!");
3336  assert(From != To.Val && "Cannot replace uses of with self");
3337
3338  while (!From->use_empty()) {
3339    // Process users until they are all gone.
3340    SDNode *U = *From->use_begin();
3341
3342    // This node is about to morph, remove its old self from the CSE maps.
3343    RemoveNodeFromCSEMaps(U);
3344
3345    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3346         I != E; ++I)
3347      if (I->Val == From) {
3348        From->removeUser(U);
3349        *I = To;
3350        To.Val->addUser(U);
3351      }
3352
3353    // Now that we have modified U, add it back to the CSE maps.  If it already
3354    // exists there, recursively merge the results together.
3355    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3356      ReplaceAllUsesWith(U, Existing, UpdateListener);
3357      // U is now dead.  Inform the listener if it exists and delete it.
3358      if (UpdateListener)
3359        UpdateListener->NodeDeleted(U);
3360      DeleteNodeNotInCSEMaps(U);
3361    } else {
3362      // If the node doesn't already exist, we updated it.  Inform a listener if
3363      // it exists.
3364      if (UpdateListener)
3365        UpdateListener->NodeUpdated(U);
3366    }
3367  }
3368}
3369
3370/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3371/// This can cause recursive merging of nodes in the DAG.
3372///
3373/// This version assumes From/To have matching types and numbers of result
3374/// values.
3375///
3376void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3377                                      DAGUpdateListener *UpdateListener) {
3378  assert(From != To && "Cannot replace uses of with self");
3379  assert(From->getNumValues() == To->getNumValues() &&
3380         "Cannot use this version of ReplaceAllUsesWith!");
3381  if (From->getNumValues() == 1)   // If possible, use the faster version.
3382    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3383                              UpdateListener);
3384
3385  while (!From->use_empty()) {
3386    // Process users until they are all gone.
3387    SDNode *U = *From->use_begin();
3388
3389    // This node is about to morph, remove its old self from the CSE maps.
3390    RemoveNodeFromCSEMaps(U);
3391
3392    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3393         I != E; ++I)
3394      if (I->Val == From) {
3395        From->removeUser(U);
3396        I->Val = To;
3397        To->addUser(U);
3398      }
3399
3400    // Now that we have modified U, add it back to the CSE maps.  If it already
3401    // exists there, recursively merge the results together.
3402    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3403      ReplaceAllUsesWith(U, Existing, UpdateListener);
3404      // U is now dead.  Inform the listener if it exists and delete it.
3405      if (UpdateListener)
3406        UpdateListener->NodeDeleted(U);
3407      DeleteNodeNotInCSEMaps(U);
3408    } else {
3409      // If the node doesn't already exist, we updated it.  Inform a listener if
3410      // it exists.
3411      if (UpdateListener)
3412        UpdateListener->NodeUpdated(U);
3413    }
3414  }
3415}
3416
3417/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3418/// This can cause recursive merging of nodes in the DAG.
3419///
3420/// This version can replace From with any result values.  To must match the
3421/// number and types of values returned by From.
3422void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3423                                      const SDOperand *To,
3424                                      DAGUpdateListener *UpdateListener) {
3425  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3426    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3427
3428  while (!From->use_empty()) {
3429    // Process users until they are all gone.
3430    SDNode *U = *From->use_begin();
3431
3432    // This node is about to morph, remove its old self from the CSE maps.
3433    RemoveNodeFromCSEMaps(U);
3434
3435    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3436         I != E; ++I)
3437      if (I->Val == From) {
3438        const SDOperand &ToOp = To[I->ResNo];
3439        From->removeUser(U);
3440        *I = ToOp;
3441        ToOp.Val->addUser(U);
3442      }
3443
3444    // Now that we have modified U, add it back to the CSE maps.  If it already
3445    // exists there, recursively merge the results together.
3446    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3447      ReplaceAllUsesWith(U, Existing, UpdateListener);
3448      // U is now dead.  Inform the listener if it exists and delete it.
3449      if (UpdateListener)
3450        UpdateListener->NodeDeleted(U);
3451      DeleteNodeNotInCSEMaps(U);
3452    } else {
3453      // If the node doesn't already exist, we updated it.  Inform a listener if
3454      // it exists.
3455      if (UpdateListener)
3456        UpdateListener->NodeUpdated(U);
3457    }
3458  }
3459}
3460
3461namespace {
3462  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3463  /// any deleted nodes from the set passed into its constructor and recursively
3464  /// notifies another update listener if specified.
3465  class ChainedSetUpdaterListener :
3466  public SelectionDAG::DAGUpdateListener {
3467    SmallSetVector<SDNode*, 16> &Set;
3468    SelectionDAG::DAGUpdateListener *Chain;
3469  public:
3470    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3471                              SelectionDAG::DAGUpdateListener *chain)
3472      : Set(set), Chain(chain) {}
3473
3474    virtual void NodeDeleted(SDNode *N) {
3475      Set.remove(N);
3476      if (Chain) Chain->NodeDeleted(N);
3477    }
3478    virtual void NodeUpdated(SDNode *N) {
3479      if (Chain) Chain->NodeUpdated(N);
3480    }
3481  };
3482}
3483
3484/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3485/// uses of other values produced by From.Val alone.  The Deleted vector is
3486/// handled the same way as for ReplaceAllUsesWith.
3487void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3488                                             DAGUpdateListener *UpdateListener){
3489  assert(From != To && "Cannot replace a value with itself");
3490
3491  // Handle the simple, trivial, case efficiently.
3492  if (From.Val->getNumValues() == 1) {
3493    ReplaceAllUsesWith(From, To, UpdateListener);
3494    return;
3495  }
3496
3497  if (From.use_empty()) return;
3498
3499  // Get all of the users of From.Val.  We want these in a nice,
3500  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3501  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3502
3503  // When one of the recursive merges deletes nodes from the graph, we need to
3504  // make sure that UpdateListener is notified *and* that the node is removed
3505  // from Users if present.  CSUL does this.
3506  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3507
3508  while (!Users.empty()) {
3509    // We know that this user uses some value of From.  If it is the right
3510    // value, update it.
3511    SDNode *User = Users.back();
3512    Users.pop_back();
3513
3514    // Scan for an operand that matches From.
3515    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3516    for (; Op != E; ++Op)
3517      if (*Op == From) break;
3518
3519    // If there are no matches, the user must use some other result of From.
3520    if (Op == E) continue;
3521
3522    // Okay, we know this user needs to be updated.  Remove its old self
3523    // from the CSE maps.
3524    RemoveNodeFromCSEMaps(User);
3525
3526    // Update all operands that match "From" in case there are multiple uses.
3527    for (; Op != E; ++Op) {
3528      if (*Op == From) {
3529        From.Val->removeUser(User);
3530        *Op = To;
3531        To.Val->addUser(User);
3532      }
3533    }
3534
3535    // Now that we have modified User, add it back to the CSE maps.  If it
3536    // already exists there, recursively merge the results together.
3537    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3538    if (!Existing) {
3539      if (UpdateListener) UpdateListener->NodeUpdated(User);
3540      continue;  // Continue on to next user.
3541    }
3542
3543    // If there was already an existing matching node, use ReplaceAllUsesWith
3544    // to replace the dead one with the existing one.  This can cause
3545    // recursive merging of other unrelated nodes down the line.  The merging
3546    // can cause deletion of nodes that used the old value.  To handle this, we
3547    // use CSUL to remove them from the Users set.
3548    ReplaceAllUsesWith(User, Existing, &CSUL);
3549
3550    // User is now dead.  Notify a listener if present.
3551    if (UpdateListener) UpdateListener->NodeDeleted(User);
3552    DeleteNodeNotInCSEMaps(User);
3553  }
3554}
3555
3556
3557/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3558/// their allnodes order. It returns the maximum id.
3559unsigned SelectionDAG::AssignNodeIds() {
3560  unsigned Id = 0;
3561  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3562    SDNode *N = I;
3563    N->setNodeId(Id++);
3564  }
3565  return Id;
3566}
3567
3568/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3569/// based on their topological order. It returns the maximum id and a vector
3570/// of the SDNodes* in assigned order by reference.
3571unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3572  unsigned DAGSize = AllNodes.size();
3573  std::vector<unsigned> InDegree(DAGSize);
3574  std::vector<SDNode*> Sources;
3575
3576  // Use a two pass approach to avoid using a std::map which is slow.
3577  unsigned Id = 0;
3578  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3579    SDNode *N = I;
3580    N->setNodeId(Id++);
3581    unsigned Degree = N->use_size();
3582    InDegree[N->getNodeId()] = Degree;
3583    if (Degree == 0)
3584      Sources.push_back(N);
3585  }
3586
3587  TopOrder.clear();
3588  while (!Sources.empty()) {
3589    SDNode *N = Sources.back();
3590    Sources.pop_back();
3591    TopOrder.push_back(N);
3592    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3593      SDNode *P = I->Val;
3594      unsigned Degree = --InDegree[P->getNodeId()];
3595      if (Degree == 0)
3596        Sources.push_back(P);
3597    }
3598  }
3599
3600  // Second pass, assign the actual topological order as node ids.
3601  Id = 0;
3602  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3603       TI != TE; ++TI)
3604    (*TI)->setNodeId(Id++);
3605
3606  return Id;
3607}
3608
3609
3610
3611//===----------------------------------------------------------------------===//
3612//                              SDNode Class
3613//===----------------------------------------------------------------------===//
3614
3615// Out-of-line virtual method to give class a home.
3616void SDNode::ANCHOR() {}
3617void UnarySDNode::ANCHOR() {}
3618void BinarySDNode::ANCHOR() {}
3619void TernarySDNode::ANCHOR() {}
3620void HandleSDNode::ANCHOR() {}
3621void StringSDNode::ANCHOR() {}
3622void ConstantSDNode::ANCHOR() {}
3623void ConstantFPSDNode::ANCHOR() {}
3624void GlobalAddressSDNode::ANCHOR() {}
3625void FrameIndexSDNode::ANCHOR() {}
3626void JumpTableSDNode::ANCHOR() {}
3627void ConstantPoolSDNode::ANCHOR() {}
3628void BasicBlockSDNode::ANCHOR() {}
3629void SrcValueSDNode::ANCHOR() {}
3630void MemOperandSDNode::ANCHOR() {}
3631void RegisterSDNode::ANCHOR() {}
3632void ExternalSymbolSDNode::ANCHOR() {}
3633void CondCodeSDNode::ANCHOR() {}
3634void VTSDNode::ANCHOR() {}
3635void LoadSDNode::ANCHOR() {}
3636void StoreSDNode::ANCHOR() {}
3637void AtomicSDNode::ANCHOR() {}
3638
3639HandleSDNode::~HandleSDNode() {
3640  SDVTList VTs = { 0, 0 };
3641  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3642}
3643
3644GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3645                                         MVT::ValueType VT, int o)
3646  : SDNode(isa<GlobalVariable>(GA) &&
3647           cast<GlobalVariable>(GA)->isThreadLocal() ?
3648           // Thread Local
3649           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3650           // Non Thread Local
3651           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3652           getSDVTList(VT)), Offset(o) {
3653  TheGlobal = const_cast<GlobalValue*>(GA);
3654}
3655
3656/// getMemOperand - Return a MemOperand object describing the memory
3657/// reference performed by this load or store.
3658MemOperand LSBaseSDNode::getMemOperand() const {
3659  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3660  int Flags =
3661    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3662  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3663
3664  // Check if the load references a frame index, and does not have
3665  // an SV attached.
3666  const FrameIndexSDNode *FI =
3667    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3668  if (!getSrcValue() && FI)
3669    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3670                      FI->getIndex(), Size, Alignment);
3671  else
3672    return MemOperand(getSrcValue(), Flags,
3673                      getSrcValueOffset(), Size, Alignment);
3674}
3675
3676/// Profile - Gather unique data for the node.
3677///
3678void SDNode::Profile(FoldingSetNodeID &ID) {
3679  AddNodeIDNode(ID, this);
3680}
3681
3682/// getValueTypeList - Return a pointer to the specified value type.
3683///
3684const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3685  if (MVT::isExtendedVT(VT)) {
3686    static std::set<MVT::ValueType> EVTs;
3687    return &(*EVTs.insert(VT).first);
3688  } else {
3689    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3690    VTs[VT] = VT;
3691    return &VTs[VT];
3692  }
3693}
3694
3695/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3696/// indicated value.  This method ignores uses of other values defined by this
3697/// operation.
3698bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3699  assert(Value < getNumValues() && "Bad value!");
3700
3701  // If there is only one value, this is easy.
3702  if (getNumValues() == 1)
3703    return use_size() == NUses;
3704  if (use_size() < NUses) return false;
3705
3706  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3707
3708  SmallPtrSet<SDNode*, 32> UsersHandled;
3709
3710  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3711    SDNode *User = *UI;
3712    if (User->getNumOperands() == 1 ||
3713        UsersHandled.insert(User))     // First time we've seen this?
3714      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3715        if (User->getOperand(i) == TheValue) {
3716          if (NUses == 0)
3717            return false;   // too many uses
3718          --NUses;
3719        }
3720  }
3721
3722  // Found exactly the right number of uses?
3723  return NUses == 0;
3724}
3725
3726
3727/// hasAnyUseOfValue - Return true if there are any use of the indicated
3728/// value. This method ignores uses of other values defined by this operation.
3729bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3730  assert(Value < getNumValues() && "Bad value!");
3731
3732  if (use_empty()) return false;
3733
3734  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3735
3736  SmallPtrSet<SDNode*, 32> UsersHandled;
3737
3738  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3739    SDNode *User = *UI;
3740    if (User->getNumOperands() == 1 ||
3741        UsersHandled.insert(User))     // First time we've seen this?
3742      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3743        if (User->getOperand(i) == TheValue) {
3744          return true;
3745        }
3746  }
3747
3748  return false;
3749}
3750
3751
3752/// isOnlyUse - Return true if this node is the only use of N.
3753///
3754bool SDNode::isOnlyUse(SDNode *N) const {
3755  bool Seen = false;
3756  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3757    SDNode *User = *I;
3758    if (User == this)
3759      Seen = true;
3760    else
3761      return false;
3762  }
3763
3764  return Seen;
3765}
3766
3767/// isOperand - Return true if this node is an operand of N.
3768///
3769bool SDOperand::isOperand(SDNode *N) const {
3770  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3771    if (*this == N->getOperand(i))
3772      return true;
3773  return false;
3774}
3775
3776bool SDNode::isOperand(SDNode *N) const {
3777  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3778    if (this == N->OperandList[i].Val)
3779      return true;
3780  return false;
3781}
3782
3783/// reachesChainWithoutSideEffects - Return true if this operand (which must
3784/// be a chain) reaches the specified operand without crossing any
3785/// side-effecting instructions.  In practice, this looks through token
3786/// factors and non-volatile loads.  In order to remain efficient, this only
3787/// looks a couple of nodes in, it does not do an exhaustive search.
3788bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3789                                               unsigned Depth) const {
3790  if (*this == Dest) return true;
3791
3792  // Don't search too deeply, we just want to be able to see through
3793  // TokenFactor's etc.
3794  if (Depth == 0) return false;
3795
3796  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3797  // of the operands of the TF reach dest, then we can do the xform.
3798  if (getOpcode() == ISD::TokenFactor) {
3799    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3800      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3801        return true;
3802    return false;
3803  }
3804
3805  // Loads don't have side effects, look through them.
3806  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3807    if (!Ld->isVolatile())
3808      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3809  }
3810  return false;
3811}
3812
3813
3814static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3815                            SmallPtrSet<SDNode *, 32> &Visited) {
3816  if (found || !Visited.insert(N))
3817    return;
3818
3819  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3820    SDNode *Op = N->getOperand(i).Val;
3821    if (Op == P) {
3822      found = true;
3823      return;
3824    }
3825    findPredecessor(Op, P, found, Visited);
3826  }
3827}
3828
3829/// isPredecessor - Return true if this node is a predecessor of N. This node
3830/// is either an operand of N or it can be reached by recursively traversing
3831/// up the operands.
3832/// NOTE: this is an expensive method. Use it carefully.
3833bool SDNode::isPredecessor(SDNode *N) const {
3834  SmallPtrSet<SDNode *, 32> Visited;
3835  bool found = false;
3836  findPredecessor(N, this, found, Visited);
3837  return found;
3838}
3839
3840uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3841  assert(Num < NumOperands && "Invalid child # of SDNode!");
3842  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3843}
3844
3845std::string SDNode::getOperationName(const SelectionDAG *G) const {
3846  switch (getOpcode()) {
3847  default:
3848    if (getOpcode() < ISD::BUILTIN_OP_END)
3849      return "<<Unknown DAG Node>>";
3850    else {
3851      if (G) {
3852        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3853          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3854            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3855
3856        TargetLowering &TLI = G->getTargetLoweringInfo();
3857        const char *Name =
3858          TLI.getTargetNodeName(getOpcode());
3859        if (Name) return Name;
3860      }
3861
3862      return "<<Unknown Target Node>>";
3863    }
3864
3865  case ISD::MEMBARRIER:    return "MemBarrier";
3866  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3867  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3868  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3869  case ISD::PCMARKER:      return "PCMarker";
3870  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3871  case ISD::SRCVALUE:      return "SrcValue";
3872  case ISD::MEMOPERAND:    return "MemOperand";
3873  case ISD::EntryToken:    return "EntryToken";
3874  case ISD::TokenFactor:   return "TokenFactor";
3875  case ISD::AssertSext:    return "AssertSext";
3876  case ISD::AssertZext:    return "AssertZext";
3877
3878  case ISD::STRING:        return "String";
3879  case ISD::BasicBlock:    return "BasicBlock";
3880  case ISD::VALUETYPE:     return "ValueType";
3881  case ISD::Register:      return "Register";
3882
3883  case ISD::Constant:      return "Constant";
3884  case ISD::ConstantFP:    return "ConstantFP";
3885  case ISD::GlobalAddress: return "GlobalAddress";
3886  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3887  case ISD::FrameIndex:    return "FrameIndex";
3888  case ISD::JumpTable:     return "JumpTable";
3889  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3890  case ISD::RETURNADDR: return "RETURNADDR";
3891  case ISD::FRAMEADDR: return "FRAMEADDR";
3892  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3893  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3894  case ISD::EHSELECTION: return "EHSELECTION";
3895  case ISD::EH_RETURN: return "EH_RETURN";
3896  case ISD::ConstantPool:  return "ConstantPool";
3897  case ISD::ExternalSymbol: return "ExternalSymbol";
3898  case ISD::INTRINSIC_WO_CHAIN: {
3899    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3900    return Intrinsic::getName((Intrinsic::ID)IID);
3901  }
3902  case ISD::INTRINSIC_VOID:
3903  case ISD::INTRINSIC_W_CHAIN: {
3904    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3905    return Intrinsic::getName((Intrinsic::ID)IID);
3906  }
3907
3908  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3909  case ISD::TargetConstant: return "TargetConstant";
3910  case ISD::TargetConstantFP:return "TargetConstantFP";
3911  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3912  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3913  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3914  case ISD::TargetJumpTable:  return "TargetJumpTable";
3915  case ISD::TargetConstantPool:  return "TargetConstantPool";
3916  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3917
3918  case ISD::CopyToReg:     return "CopyToReg";
3919  case ISD::CopyFromReg:   return "CopyFromReg";
3920  case ISD::UNDEF:         return "undef";
3921  case ISD::MERGE_VALUES:  return "merge_values";
3922  case ISD::INLINEASM:     return "inlineasm";
3923  case ISD::LABEL:         return "label";
3924  case ISD::DECLARE:       return "declare";
3925  case ISD::HANDLENODE:    return "handlenode";
3926  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3927  case ISD::CALL:          return "call";
3928
3929  // Unary operators
3930  case ISD::FABS:   return "fabs";
3931  case ISD::FNEG:   return "fneg";
3932  case ISD::FSQRT:  return "fsqrt";
3933  case ISD::FSIN:   return "fsin";
3934  case ISD::FCOS:   return "fcos";
3935  case ISD::FPOWI:  return "fpowi";
3936  case ISD::FPOW:   return "fpow";
3937
3938  // Binary operators
3939  case ISD::ADD:    return "add";
3940  case ISD::SUB:    return "sub";
3941  case ISD::MUL:    return "mul";
3942  case ISD::MULHU:  return "mulhu";
3943  case ISD::MULHS:  return "mulhs";
3944  case ISD::SDIV:   return "sdiv";
3945  case ISD::UDIV:   return "udiv";
3946  case ISD::SREM:   return "srem";
3947  case ISD::UREM:   return "urem";
3948  case ISD::SMUL_LOHI:  return "smul_lohi";
3949  case ISD::UMUL_LOHI:  return "umul_lohi";
3950  case ISD::SDIVREM:    return "sdivrem";
3951  case ISD::UDIVREM:    return "divrem";
3952  case ISD::AND:    return "and";
3953  case ISD::OR:     return "or";
3954  case ISD::XOR:    return "xor";
3955  case ISD::SHL:    return "shl";
3956  case ISD::SRA:    return "sra";
3957  case ISD::SRL:    return "srl";
3958  case ISD::ROTL:   return "rotl";
3959  case ISD::ROTR:   return "rotr";
3960  case ISD::FADD:   return "fadd";
3961  case ISD::FSUB:   return "fsub";
3962  case ISD::FMUL:   return "fmul";
3963  case ISD::FDIV:   return "fdiv";
3964  case ISD::FREM:   return "frem";
3965  case ISD::FCOPYSIGN: return "fcopysign";
3966  case ISD::FGETSIGN:  return "fgetsign";
3967
3968  case ISD::SETCC:       return "setcc";
3969  case ISD::SELECT:      return "select";
3970  case ISD::SELECT_CC:   return "select_cc";
3971  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3972  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3973  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3974  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3975  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3976  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3977  case ISD::CARRY_FALSE:         return "carry_false";
3978  case ISD::ADDC:        return "addc";
3979  case ISD::ADDE:        return "adde";
3980  case ISD::SUBC:        return "subc";
3981  case ISD::SUBE:        return "sube";
3982  case ISD::SHL_PARTS:   return "shl_parts";
3983  case ISD::SRA_PARTS:   return "sra_parts";
3984  case ISD::SRL_PARTS:   return "srl_parts";
3985
3986  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3987  case ISD::INSERT_SUBREG:      return "insert_subreg";
3988
3989  // Conversion operators.
3990  case ISD::SIGN_EXTEND: return "sign_extend";
3991  case ISD::ZERO_EXTEND: return "zero_extend";
3992  case ISD::ANY_EXTEND:  return "any_extend";
3993  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3994  case ISD::TRUNCATE:    return "truncate";
3995  case ISD::FP_ROUND:    return "fp_round";
3996  case ISD::FLT_ROUNDS_: return "flt_rounds";
3997  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3998  case ISD::FP_EXTEND:   return "fp_extend";
3999
4000  case ISD::SINT_TO_FP:  return "sint_to_fp";
4001  case ISD::UINT_TO_FP:  return "uint_to_fp";
4002  case ISD::FP_TO_SINT:  return "fp_to_sint";
4003  case ISD::FP_TO_UINT:  return "fp_to_uint";
4004  case ISD::BIT_CONVERT: return "bit_convert";
4005
4006    // Control flow instructions
4007  case ISD::BR:      return "br";
4008  case ISD::BRIND:   return "brind";
4009  case ISD::BR_JT:   return "br_jt";
4010  case ISD::BRCOND:  return "brcond";
4011  case ISD::BR_CC:   return "br_cc";
4012  case ISD::RET:     return "ret";
4013  case ISD::CALLSEQ_START:  return "callseq_start";
4014  case ISD::CALLSEQ_END:    return "callseq_end";
4015
4016    // Other operators
4017  case ISD::LOAD:               return "load";
4018  case ISD::STORE:              return "store";
4019  case ISD::VAARG:              return "vaarg";
4020  case ISD::VACOPY:             return "vacopy";
4021  case ISD::VAEND:              return "vaend";
4022  case ISD::VASTART:            return "vastart";
4023  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4024  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4025  case ISD::BUILD_PAIR:         return "build_pair";
4026  case ISD::STACKSAVE:          return "stacksave";
4027  case ISD::STACKRESTORE:       return "stackrestore";
4028  case ISD::TRAP:               return "trap";
4029
4030  // Block memory operations.
4031  case ISD::MEMSET:  return "memset";
4032  case ISD::MEMCPY:  return "memcpy";
4033  case ISD::MEMMOVE: return "memmove";
4034
4035  // Bit manipulation
4036  case ISD::BSWAP:   return "bswap";
4037  case ISD::CTPOP:   return "ctpop";
4038  case ISD::CTTZ:    return "cttz";
4039  case ISD::CTLZ:    return "ctlz";
4040
4041  // Debug info
4042  case ISD::LOCATION: return "location";
4043  case ISD::DEBUG_LOC: return "debug_loc";
4044
4045  // Trampolines
4046  case ISD::TRAMPOLINE: return "trampoline";
4047
4048  case ISD::CONDCODE:
4049    switch (cast<CondCodeSDNode>(this)->get()) {
4050    default: assert(0 && "Unknown setcc condition!");
4051    case ISD::SETOEQ:  return "setoeq";
4052    case ISD::SETOGT:  return "setogt";
4053    case ISD::SETOGE:  return "setoge";
4054    case ISD::SETOLT:  return "setolt";
4055    case ISD::SETOLE:  return "setole";
4056    case ISD::SETONE:  return "setone";
4057
4058    case ISD::SETO:    return "seto";
4059    case ISD::SETUO:   return "setuo";
4060    case ISD::SETUEQ:  return "setue";
4061    case ISD::SETUGT:  return "setugt";
4062    case ISD::SETUGE:  return "setuge";
4063    case ISD::SETULT:  return "setult";
4064    case ISD::SETULE:  return "setule";
4065    case ISD::SETUNE:  return "setune";
4066
4067    case ISD::SETEQ:   return "seteq";
4068    case ISD::SETGT:   return "setgt";
4069    case ISD::SETGE:   return "setge";
4070    case ISD::SETLT:   return "setlt";
4071    case ISD::SETLE:   return "setle";
4072    case ISD::SETNE:   return "setne";
4073    }
4074  }
4075}
4076
4077const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4078  switch (AM) {
4079  default:
4080    return "";
4081  case ISD::PRE_INC:
4082    return "<pre-inc>";
4083  case ISD::PRE_DEC:
4084    return "<pre-dec>";
4085  case ISD::POST_INC:
4086    return "<post-inc>";
4087  case ISD::POST_DEC:
4088    return "<post-dec>";
4089  }
4090}
4091
4092void SDNode::dump() const { dump(0); }
4093void SDNode::dump(const SelectionDAG *G) const {
4094  cerr << (void*)this << ": ";
4095
4096  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4097    if (i) cerr << ",";
4098    if (getValueType(i) == MVT::Other)
4099      cerr << "ch";
4100    else
4101      cerr << MVT::getValueTypeString(getValueType(i));
4102  }
4103  cerr << " = " << getOperationName(G);
4104
4105  cerr << " ";
4106  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4107    if (i) cerr << ", ";
4108    cerr << (void*)getOperand(i).Val;
4109    if (unsigned RN = getOperand(i).ResNo)
4110      cerr << ":" << RN;
4111  }
4112
4113  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4114    SDNode *Mask = getOperand(2).Val;
4115    cerr << "<";
4116    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4117      if (i) cerr << ",";
4118      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4119        cerr << "u";
4120      else
4121        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4122    }
4123    cerr << ">";
4124  }
4125
4126  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4127    cerr << "<" << CSDN->getValue() << ">";
4128  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4129    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4130      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4131    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4132      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4133    else {
4134      cerr << "<APFloat(";
4135      CSDN->getValueAPF().convertToAPInt().dump();
4136      cerr << ")>";
4137    }
4138  } else if (const GlobalAddressSDNode *GADN =
4139             dyn_cast<GlobalAddressSDNode>(this)) {
4140    int offset = GADN->getOffset();
4141    cerr << "<";
4142    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4143    if (offset > 0)
4144      cerr << " + " << offset;
4145    else
4146      cerr << " " << offset;
4147  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4148    cerr << "<" << FIDN->getIndex() << ">";
4149  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4150    cerr << "<" << JTDN->getIndex() << ">";
4151  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4152    int offset = CP->getOffset();
4153    if (CP->isMachineConstantPoolEntry())
4154      cerr << "<" << *CP->getMachineCPVal() << ">";
4155    else
4156      cerr << "<" << *CP->getConstVal() << ">";
4157    if (offset > 0)
4158      cerr << " + " << offset;
4159    else
4160      cerr << " " << offset;
4161  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4162    cerr << "<";
4163    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4164    if (LBB)
4165      cerr << LBB->getName() << " ";
4166    cerr << (const void*)BBDN->getBasicBlock() << ">";
4167  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4168    if (G && R->getReg() &&
4169        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4170      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4171    } else {
4172      cerr << " #" << R->getReg();
4173    }
4174  } else if (const ExternalSymbolSDNode *ES =
4175             dyn_cast<ExternalSymbolSDNode>(this)) {
4176    cerr << "'" << ES->getSymbol() << "'";
4177  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4178    if (M->getValue())
4179      cerr << "<" << M->getValue() << ">";
4180    else
4181      cerr << "<null>";
4182  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4183    if (M->MO.getValue())
4184      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4185    else
4186      cerr << "<null:" << M->MO.getOffset() << ">";
4187  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4188    cerr << ":" << MVT::getValueTypeString(N->getVT());
4189  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4190    const Value *SrcValue = LD->getSrcValue();
4191    int SrcOffset = LD->getSrcValueOffset();
4192    cerr << " <";
4193    if (SrcValue)
4194      cerr << SrcValue;
4195    else
4196      cerr << "null";
4197    cerr << ":" << SrcOffset << ">";
4198
4199    bool doExt = true;
4200    switch (LD->getExtensionType()) {
4201    default: doExt = false; break;
4202    case ISD::EXTLOAD:
4203      cerr << " <anyext ";
4204      break;
4205    case ISD::SEXTLOAD:
4206      cerr << " <sext ";
4207      break;
4208    case ISD::ZEXTLOAD:
4209      cerr << " <zext ";
4210      break;
4211    }
4212    if (doExt)
4213      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4214
4215    const char *AM = getIndexedModeName(LD->getAddressingMode());
4216    if (*AM)
4217      cerr << " " << AM;
4218    if (LD->isVolatile())
4219      cerr << " <volatile>";
4220    cerr << " alignment=" << LD->getAlignment();
4221  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4222    const Value *SrcValue = ST->getSrcValue();
4223    int SrcOffset = ST->getSrcValueOffset();
4224    cerr << " <";
4225    if (SrcValue)
4226      cerr << SrcValue;
4227    else
4228      cerr << "null";
4229    cerr << ":" << SrcOffset << ">";
4230
4231    if (ST->isTruncatingStore())
4232      cerr << " <trunc "
4233           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4234
4235    const char *AM = getIndexedModeName(ST->getAddressingMode());
4236    if (*AM)
4237      cerr << " " << AM;
4238    if (ST->isVolatile())
4239      cerr << " <volatile>";
4240    cerr << " alignment=" << ST->getAlignment();
4241  }
4242}
4243
4244static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4245  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4246    if (N->getOperand(i).Val->hasOneUse())
4247      DumpNodes(N->getOperand(i).Val, indent+2, G);
4248    else
4249      cerr << "\n" << std::string(indent+2, ' ')
4250           << (void*)N->getOperand(i).Val << ": <multiple use>";
4251
4252
4253  cerr << "\n" << std::string(indent, ' ');
4254  N->dump(G);
4255}
4256
4257void SelectionDAG::dump() const {
4258  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4259  std::vector<const SDNode*> Nodes;
4260  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4261       I != E; ++I)
4262    Nodes.push_back(I);
4263
4264  std::sort(Nodes.begin(), Nodes.end());
4265
4266  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4267    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4268      DumpNodes(Nodes[i], 2, this);
4269  }
4270
4271  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4272
4273  cerr << "\n\n";
4274}
4275
4276const Type *ConstantPoolSDNode::getType() const {
4277  if (isMachineConstantPoolEntry())
4278    return Val.MachineCPVal->getType();
4279  return Val.ConstVal->getType();
4280}
4281