SelectionDAG.cpp revision 08addbd4770a60adb6dbdc29cf73e7720f08197a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30// Temporary boolean for testing the dag combiner
31namespace llvm {
32  extern bool CombinerEnabled;
33}
34
35static bool isCommutativeBinOp(unsigned Opcode) {
36  switch (Opcode) {
37  case ISD::ADD:
38  case ISD::MUL:
39  case ISD::AND:
40  case ISD::OR:
41  case ISD::XOR: return true;
42  default: return false; // FIXME: Need commutative info for user ops!
43  }
44}
45
46static bool isAssociativeBinOp(unsigned Opcode) {
47  switch (Opcode) {
48  case ISD::ADD:
49  case ISD::MUL:
50  case ISD::AND:
51  case ISD::OR:
52  case ISD::XOR: return true;
53  default: return false; // FIXME: Need associative info for user ops!
54  }
55}
56
57// isInvertibleForFree - Return true if there is no cost to emitting the logical
58// inverse of this node.
59static bool isInvertibleForFree(SDOperand N) {
60  if (isa<ConstantSDNode>(N.Val)) return true;
61  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
62    return true;
63  return false;
64}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(double V) const {
75  return DoubleToBits(V) == DoubleToBits(Value);
76}
77
78//===----------------------------------------------------------------------===//
79//                              ISD Class
80//===----------------------------------------------------------------------===//
81
82/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
83/// when given the operation for (X op Y).
84ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
85  // To perform this operation, we just need to swap the L and G bits of the
86  // operation.
87  unsigned OldL = (Operation >> 2) & 1;
88  unsigned OldG = (Operation >> 1) & 1;
89  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
90                       (OldL << 1) |       // New G bit
91                       (OldG << 2));        // New L bit.
92}
93
94/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
95/// 'op' is a valid SetCC operation.
96ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
97  unsigned Operation = Op;
98  if (isInteger)
99    Operation ^= 7;   // Flip L, G, E bits, but not U.
100  else
101    Operation ^= 15;  // Flip all of the condition bits.
102  if (Operation > ISD::SETTRUE2)
103    Operation &= ~8;     // Don't let N and U bits get set.
104  return ISD::CondCode(Operation);
105}
106
107
108/// isSignedOp - For an integer comparison, return 1 if the comparison is a
109/// signed operation and 2 if the result is an unsigned comparison.  Return zero
110/// if the operation does not depend on the sign of the input (setne and seteq).
111static int isSignedOp(ISD::CondCode Opcode) {
112  switch (Opcode) {
113  default: assert(0 && "Illegal integer setcc operation!");
114  case ISD::SETEQ:
115  case ISD::SETNE: return 0;
116  case ISD::SETLT:
117  case ISD::SETLE:
118  case ISD::SETGT:
119  case ISD::SETGE: return 1;
120  case ISD::SETULT:
121  case ISD::SETULE:
122  case ISD::SETUGT:
123  case ISD::SETUGE: return 2;
124  }
125}
126
127/// getSetCCOrOperation - Return the result of a logical OR between different
128/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
129/// returns SETCC_INVALID if it is not possible to represent the resultant
130/// comparison.
131ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
132                                       bool isInteger) {
133  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
134    // Cannot fold a signed integer setcc with an unsigned integer setcc.
135    return ISD::SETCC_INVALID;
136
137  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
138
139  // If the N and U bits get set then the resultant comparison DOES suddenly
140  // care about orderedness, and is true when ordered.
141  if (Op > ISD::SETTRUE2)
142    Op &= ~16;     // Clear the N bit.
143  return ISD::CondCode(Op);
144}
145
146/// getSetCCAndOperation - Return the result of a logical AND between different
147/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
148/// function returns zero if it is not possible to represent the resultant
149/// comparison.
150ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
151                                        bool isInteger) {
152  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
153    // Cannot fold a signed setcc with an unsigned setcc.
154    return ISD::SETCC_INVALID;
155
156  // Combine all of the condition bits.
157  return ISD::CondCode(Op1 & Op2);
158}
159
160const TargetMachine &SelectionDAG::getTarget() const {
161  return TLI.getTargetMachine();
162}
163
164//===----------------------------------------------------------------------===//
165//                              SelectionDAG Class
166//===----------------------------------------------------------------------===//
167
168/// RemoveDeadNodes - This method deletes all unreachable nodes in the
169/// SelectionDAG, including nodes (like loads) that have uses of their token
170/// chain but no other uses and no side effect.  If a node is passed in as an
171/// argument, it is used as the seed for node deletion.
172void SelectionDAG::RemoveDeadNodes(SDNode *N) {
173  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
174
175  // Create a dummy node (which is not added to allnodes), that adds a reference
176  // to the root node, preventing it from being deleted.
177  SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());
178
179  // If we have a hint to start from, use it.
180  if (N) DeleteNodeIfDead(N, &AllNodeSet);
181
182 Restart:
183  unsigned NumNodes = AllNodeSet.size();
184  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
185       I != E; ++I) {
186    // Try to delete this node.
187    DeleteNodeIfDead(*I, &AllNodeSet);
188
189    // If we actually deleted any nodes, do not use invalid iterators in
190    // AllNodeSet.
191    if (AllNodeSet.size() != NumNodes)
192      goto Restart;
193  }
194
195  // Restore AllNodes.
196  if (AllNodes.size() != NumNodes)
197    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
198
199  // If the root changed (e.g. it was a dead load, update the root).
200  setRoot(DummyNode->getOperand(0));
201
202  // Now that we are done with the dummy node, delete it.
203  DummyNode->getOperand(0).Val->removeUser(DummyNode);
204  delete DummyNode;
205}
206
207
208void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
209  if (!N->use_empty())
210    return;
211
212  // Okay, we really are going to delete this node.  First take this out of the
213  // appropriate CSE map.
214  RemoveNodeFromCSEMaps(N);
215
216  // Next, brutally remove the operand list.  This is safe to do, as there are
217  // no cycles in the graph.
218  while (!N->Operands.empty()) {
219    SDNode *O = N->Operands.back().Val;
220    N->Operands.pop_back();
221    O->removeUser(N);
222
223    // Now that we removed this operand, see if there are no uses of it left.
224    DeleteNodeIfDead(O, NodeSet);
225  }
226
227  // Remove the node from the nodes set and delete it.
228  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
229  AllNodeSet.erase(N);
230
231  // Now that the node is gone, check to see if any of the operands of this node
232  // are dead now.
233  delete N;
234}
235
236void SelectionDAG::DeleteNode(SDNode *N) {
237  assert(N->use_empty() && "Cannot delete a node that is not dead!");
238
239  // First take this out of the appropriate CSE map.
240  RemoveNodeFromCSEMaps(N);
241
242  // Finally, remove uses due to operands of this node, remove from the
243  // AllNodes list, and delete the node.
244  DeleteNodeNotInCSEMaps(N);
245}
246
247void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
248
249  // Remove it from the AllNodes list.
250  for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
251    assert(I != AllNodes.end() && "Node not in AllNodes list??");
252    if (*I == N) {
253      // Erase from the vector, which is not ordered.
254      std::swap(*I, AllNodes.back());
255      AllNodes.pop_back();
256      break;
257    }
258  }
259
260  // Drop all of the operands and decrement used nodes use counts.
261  while (!N->Operands.empty()) {
262    SDNode *O = N->Operands.back().Val;
263    N->Operands.pop_back();
264    O->removeUser(N);
265  }
266
267  delete N;
268}
269
270/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
271/// correspond to it.  This is useful when we're about to delete or repurpose
272/// the node.  We don't want future request for structurally identical nodes
273/// to return N anymore.
274void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
275  bool Erased = false;
276  switch (N->getOpcode()) {
277  case ISD::Constant:
278    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
279                                            N->getValueType(0)));
280    break;
281  case ISD::TargetConstant:
282    Erased = TargetConstants.erase(std::make_pair(
283                                    cast<ConstantSDNode>(N)->getValue(),
284                                                  N->getValueType(0)));
285    break;
286  case ISD::ConstantFP: {
287    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
288    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
289    break;
290  }
291  case ISD::CONDCODE:
292    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
293           "Cond code doesn't exist!");
294    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
295    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
296    break;
297  case ISD::GlobalAddress:
298    Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
299    break;
300  case ISD::TargetGlobalAddress:
301    Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
302    break;
303  case ISD::FrameIndex:
304    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
305    break;
306  case ISD::TargetFrameIndex:
307    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
308    break;
309  case ISD::ConstantPool:
310    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
311    break;
312  case ISD::TargetConstantPool:
313    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
314    break;
315  case ISD::BasicBlock:
316    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
317    break;
318  case ISD::ExternalSymbol:
319    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
320    break;
321  case ISD::VALUETYPE:
322    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
323    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
324    break;
325  case ISD::Register:
326    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
327                                           N->getValueType(0)));
328    break;
329  case ISD::SRCVALUE: {
330    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
331    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
332    break;
333  }
334  case ISD::LOAD:
335    Erased = Loads.erase(std::make_pair(N->getOperand(1),
336                                        std::make_pair(N->getOperand(0),
337                                                       N->getValueType(0))));
338    break;
339  default:
340    if (N->getNumValues() == 1) {
341      if (N->getNumOperands() == 0) {
342        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
343                                                 N->getValueType(0)));
344      } else if (N->getNumOperands() == 1) {
345        Erased =
346          UnaryOps.erase(std::make_pair(N->getOpcode(),
347                                        std::make_pair(N->getOperand(0),
348                                                       N->getValueType(0))));
349      } else if (N->getNumOperands() == 2) {
350        Erased =
351          BinaryOps.erase(std::make_pair(N->getOpcode(),
352                                         std::make_pair(N->getOperand(0),
353                                                        N->getOperand(1))));
354      } else {
355        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
356        Erased =
357          OneResultNodes.erase(std::make_pair(N->getOpcode(),
358                                              std::make_pair(N->getValueType(0),
359                                                             Ops)));
360      }
361    } else {
362      // Remove the node from the ArbitraryNodes map.
363      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
364      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
365      Erased =
366        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
367                                            std::make_pair(RV, Ops)));
368    }
369    break;
370  }
371#ifndef NDEBUG
372  // Verify that the node was actually in one of the CSE maps, unless it has a
373  // flag result (which cannot be CSE'd) or is one of the special cases that are
374  // not subject to CSE.
375  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
376      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
377      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
378
379    N->dump();
380    assert(0 && "Node is not in map!");
381  }
382#endif
383}
384
385/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
386/// has been taken out and modified in some way.  If the specified node already
387/// exists in the CSE maps, do not modify the maps, but return the existing node
388/// instead.  If it doesn't exist, add it and return null.
389///
390SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
391  assert(N->getNumOperands() && "This is a leaf node!");
392  if (N->getOpcode() == ISD::LOAD) {
393    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
394                                      std::make_pair(N->getOperand(0),
395                                                     N->getValueType(0)))];
396    if (L) return L;
397    L = N;
398  } else if (N->getNumOperands() == 1) {
399    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
400                                         std::make_pair(N->getOperand(0),
401                                                        N->getValueType(0)))];
402    if (U) return U;
403    U = N;
404  } else if (N->getNumOperands() == 2) {
405    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
406                                          std::make_pair(N->getOperand(0),
407                                                         N->getOperand(1)))];
408    if (B) return B;
409    B = N;
410  } else if (N->getNumValues() == 1) {
411    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
412    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
413                                  std::make_pair(N->getValueType(0), Ops))];
414    if (ORN) return ORN;
415    ORN = N;
416  } else {
417    // Remove the node from the ArbitraryNodes map.
418    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
419    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
420    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
421                                                std::make_pair(RV, Ops))];
422    if (AN) return AN;
423    AN = N;
424  }
425  return 0;
426
427}
428
429
430
431SelectionDAG::~SelectionDAG() {
432  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
433    delete AllNodes[i];
434}
435
436SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
437  if (Op.getValueType() == VT) return Op;
438  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
439  return getNode(ISD::AND, Op.getValueType(), Op,
440                 getConstant(Imm, Op.getValueType()));
441}
442
443SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
444  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
445  // Mask out any bits that are not valid for this constant.
446  if (VT != MVT::i64)
447    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
448
449  SDNode *&N = Constants[std::make_pair(Val, VT)];
450  if (N) return SDOperand(N, 0);
451  N = new ConstantSDNode(false, Val, VT);
452  AllNodes.push_back(N);
453  return SDOperand(N, 0);
454}
455
456SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
457  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
458  // Mask out any bits that are not valid for this constant.
459  if (VT != MVT::i64)
460    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
461
462  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
463  if (N) return SDOperand(N, 0);
464  N = new ConstantSDNode(true, Val, VT);
465  AllNodes.push_back(N);
466  return SDOperand(N, 0);
467}
468
469SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
470  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
471  if (VT == MVT::f32)
472    Val = (float)Val;  // Mask out extra precision.
473
474  // Do the map lookup using the actual bit pattern for the floating point
475  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
476  // we don't have issues with SNANs.
477  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
478  if (N) return SDOperand(N, 0);
479  N = new ConstantFPSDNode(Val, VT);
480  AllNodes.push_back(N);
481  return SDOperand(N, 0);
482}
483
484
485
486SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
487                                         MVT::ValueType VT) {
488  SDNode *&N = GlobalValues[GV];
489  if (N) return SDOperand(N, 0);
490  N = new GlobalAddressSDNode(false, GV, VT);
491  AllNodes.push_back(N);
492  return SDOperand(N, 0);
493}
494
495SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
496                                               MVT::ValueType VT) {
497  SDNode *&N = TargetGlobalValues[GV];
498  if (N) return SDOperand(N, 0);
499  N = new GlobalAddressSDNode(true, GV, VT);
500  AllNodes.push_back(N);
501  return SDOperand(N, 0);
502}
503
504SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
505  SDNode *&N = FrameIndices[FI];
506  if (N) return SDOperand(N, 0);
507  N = new FrameIndexSDNode(FI, VT, false);
508  AllNodes.push_back(N);
509  return SDOperand(N, 0);
510}
511
512SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
513  SDNode *&N = TargetFrameIndices[FI];
514  if (N) return SDOperand(N, 0);
515  N = new FrameIndexSDNode(FI, VT, true);
516  AllNodes.push_back(N);
517  return SDOperand(N, 0);
518}
519
520SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
521  SDNode *&N = ConstantPoolIndices[C];
522  if (N) return SDOperand(N, 0);
523  N = new ConstantPoolSDNode(C, VT, false);
524  AllNodes.push_back(N);
525  return SDOperand(N, 0);
526}
527
528SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
529  SDNode *&N = TargetConstantPoolIndices[C];
530  if (N) return SDOperand(N, 0);
531  N = new ConstantPoolSDNode(C, VT, true);
532  AllNodes.push_back(N);
533  return SDOperand(N, 0);
534}
535
536SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
537  SDNode *&N = BBNodes[MBB];
538  if (N) return SDOperand(N, 0);
539  N = new BasicBlockSDNode(MBB);
540  AllNodes.push_back(N);
541  return SDOperand(N, 0);
542}
543
544SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
545  if ((unsigned)VT >= ValueTypeNodes.size())
546    ValueTypeNodes.resize(VT+1);
547  if (ValueTypeNodes[VT] == 0) {
548    ValueTypeNodes[VT] = new VTSDNode(VT);
549    AllNodes.push_back(ValueTypeNodes[VT]);
550  }
551
552  return SDOperand(ValueTypeNodes[VT], 0);
553}
554
555SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
556  SDNode *&N = ExternalSymbols[Sym];
557  if (N) return SDOperand(N, 0);
558  N = new ExternalSymbolSDNode(Sym, VT);
559  AllNodes.push_back(N);
560  return SDOperand(N, 0);
561}
562
563SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
564  if ((unsigned)Cond >= CondCodeNodes.size())
565    CondCodeNodes.resize(Cond+1);
566
567  if (CondCodeNodes[Cond] == 0) {
568    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
569    AllNodes.push_back(CondCodeNodes[Cond]);
570  }
571  return SDOperand(CondCodeNodes[Cond], 0);
572}
573
574SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
575  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
576  if (!Reg) {
577    Reg = new RegisterSDNode(RegNo, VT);
578    AllNodes.push_back(Reg);
579  }
580  return SDOperand(Reg, 0);
581}
582
583SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
584                                      SDOperand N2, ISD::CondCode Cond) {
585  // These setcc operations always fold.
586  switch (Cond) {
587  default: break;
588  case ISD::SETFALSE:
589  case ISD::SETFALSE2: return getConstant(0, VT);
590  case ISD::SETTRUE:
591  case ISD::SETTRUE2:  return getConstant(1, VT);
592  }
593
594  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
595    uint64_t C2 = N2C->getValue();
596    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
597      uint64_t C1 = N1C->getValue();
598
599      // Sign extend the operands if required
600      if (ISD::isSignedIntSetCC(Cond)) {
601        C1 = N1C->getSignExtended();
602        C2 = N2C->getSignExtended();
603      }
604
605      switch (Cond) {
606      default: assert(0 && "Unknown integer setcc!");
607      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
608      case ISD::SETNE:  return getConstant(C1 != C2, VT);
609      case ISD::SETULT: return getConstant(C1 <  C2, VT);
610      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
611      case ISD::SETULE: return getConstant(C1 <= C2, VT);
612      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
613      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
614      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
615      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
616      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
617      }
618    } else {
619      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
620      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
621        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
622
623        // If the comparison constant has bits in the upper part, the
624        // zero-extended value could never match.
625        if (C2 & (~0ULL << InSize)) {
626          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
627          switch (Cond) {
628          case ISD::SETUGT:
629          case ISD::SETUGE:
630          case ISD::SETEQ: return getConstant(0, VT);
631          case ISD::SETULT:
632          case ISD::SETULE:
633          case ISD::SETNE: return getConstant(1, VT);
634          case ISD::SETGT:
635          case ISD::SETGE:
636            // True if the sign bit of C2 is set.
637            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
638          case ISD::SETLT:
639          case ISD::SETLE:
640            // True if the sign bit of C2 isn't set.
641            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
642          default:
643            break;
644          }
645        }
646
647        // Otherwise, we can perform the comparison with the low bits.
648        switch (Cond) {
649        case ISD::SETEQ:
650        case ISD::SETNE:
651        case ISD::SETUGT:
652        case ISD::SETUGE:
653        case ISD::SETULT:
654        case ISD::SETULE:
655          return getSetCC(VT, N1.getOperand(0),
656                          getConstant(C2, N1.getOperand(0).getValueType()),
657                          Cond);
658        default:
659          break;   // todo, be more careful with signed comparisons
660        }
661      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
662                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
663        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
664        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
665        MVT::ValueType ExtDstTy = N1.getValueType();
666        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
667
668        // If the extended part has any inconsistent bits, it cannot ever
669        // compare equal.  In other words, they have to be all ones or all
670        // zeros.
671        uint64_t ExtBits =
672          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
673        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
674          return getConstant(Cond == ISD::SETNE, VT);
675
676        // Otherwise, make this a use of a zext.
677        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
678                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
679                        Cond);
680      }
681
682      uint64_t MinVal, MaxVal;
683      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
684      if (ISD::isSignedIntSetCC(Cond)) {
685        MinVal = 1ULL << (OperandBitSize-1);
686        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
687          MaxVal = ~0ULL >> (65-OperandBitSize);
688        else
689          MaxVal = 0;
690      } else {
691        MinVal = 0;
692        MaxVal = ~0ULL >> (64-OperandBitSize);
693      }
694
695      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
696      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
697        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
698        --C2;                                          // X >= C1 --> X > (C1-1)
699        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
700                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
701      }
702
703      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
704        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
705        ++C2;                                          // X <= C1 --> X < (C1+1)
706        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
707                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
708      }
709
710      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
711        return getConstant(0, VT);      // X < MIN --> false
712
713      // Canonicalize setgt X, Min --> setne X, Min
714      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
715        return getSetCC(VT, N1, N2, ISD::SETNE);
716
717      // If we have setult X, 1, turn it into seteq X, 0
718      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
719        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
720                        ISD::SETEQ);
721      // If we have setugt X, Max-1, turn it into seteq X, Max
722      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
723        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
724                        ISD::SETEQ);
725
726      // If we have "setcc X, C1", check to see if we can shrink the immediate
727      // by changing cc.
728
729      // SETUGT X, SINTMAX  -> SETLT X, 0
730      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
731          C2 == (~0ULL >> (65-OperandBitSize)))
732        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
733
734      // FIXME: Implement the rest of these.
735
736
737      // Fold bit comparisons when we can.
738      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
739          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
740        if (ConstantSDNode *AndRHS =
741                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
742          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
743            // Perform the xform if the AND RHS is a single bit.
744            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
745              return getNode(ISD::SRL, VT, N1,
746                             getConstant(Log2_64(AndRHS->getValue()),
747                                                   TLI.getShiftAmountTy()));
748            }
749          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
750            // (X & 8) == 8  -->  (X & 8) >> 3
751            // Perform the xform if C2 is a single bit.
752            if ((C2 & (C2-1)) == 0) {
753              return getNode(ISD::SRL, VT, N1,
754                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
755            }
756          }
757        }
758    }
759  } else if (isa<ConstantSDNode>(N1.Val)) {
760      // Ensure that the constant occurs on the RHS.
761    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
762  }
763
764  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
765    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
766      double C1 = N1C->getValue(), C2 = N2C->getValue();
767
768      switch (Cond) {
769      default: break; // FIXME: Implement the rest of these!
770      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
771      case ISD::SETNE:  return getConstant(C1 != C2, VT);
772      case ISD::SETLT:  return getConstant(C1 < C2, VT);
773      case ISD::SETGT:  return getConstant(C1 > C2, VT);
774      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
775      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
776      }
777    } else {
778      // Ensure that the constant occurs on the RHS.
779      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
780    }
781
782  if (N1 == N2) {
783    // We can always fold X == Y for integer setcc's.
784    if (MVT::isInteger(N1.getValueType()))
785      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
786    unsigned UOF = ISD::getUnorderedFlavor(Cond);
787    if (UOF == 2)   // FP operators that are undefined on NaNs.
788      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
789    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
790      return getConstant(UOF, VT);
791    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
792    // if it is not already.
793    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
794    if (NewCond != Cond)
795      return getSetCC(VT, N1, N2, NewCond);
796  }
797
798  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
799      MVT::isInteger(N1.getValueType())) {
800    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
801        N1.getOpcode() == ISD::XOR) {
802      // Simplify (X+Y) == (X+Z) -->  Y == Z
803      if (N1.getOpcode() == N2.getOpcode()) {
804        if (N1.getOperand(0) == N2.getOperand(0))
805          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
806        if (N1.getOperand(1) == N2.getOperand(1))
807          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
808        if (isCommutativeBinOp(N1.getOpcode())) {
809          // If X op Y == Y op X, try other combinations.
810          if (N1.getOperand(0) == N2.getOperand(1))
811            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
812          if (N1.getOperand(1) == N2.getOperand(0))
813            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
814        }
815      }
816
817      // FIXME: move this stuff to the DAG Combiner when it exists!
818
819      // Simplify (X+Z) == X -->  Z == 0
820      if (N1.getOperand(0) == N2)
821        return getSetCC(VT, N1.getOperand(1),
822                        getConstant(0, N1.getValueType()), Cond);
823      if (N1.getOperand(1) == N2) {
824        if (isCommutativeBinOp(N1.getOpcode()))
825          return getSetCC(VT, N1.getOperand(0),
826                          getConstant(0, N1.getValueType()), Cond);
827        else {
828          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
829          // (Z-X) == X  --> Z == X<<1
830          return getSetCC(VT, N1.getOperand(0),
831                          getNode(ISD::SHL, N2.getValueType(),
832                                  N2, getConstant(1, TLI.getShiftAmountTy())),
833                          Cond);
834        }
835      }
836    }
837
838    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
839        N2.getOpcode() == ISD::XOR) {
840      // Simplify  X == (X+Z) -->  Z == 0
841      if (N2.getOperand(0) == N1) {
842        return getSetCC(VT, N2.getOperand(1),
843                        getConstant(0, N2.getValueType()), Cond);
844      } else if (N2.getOperand(1) == N1) {
845        if (isCommutativeBinOp(N2.getOpcode())) {
846          return getSetCC(VT, N2.getOperand(0),
847                          getConstant(0, N2.getValueType()), Cond);
848        } else {
849          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
850          // X == (Z-X)  --> X<<1 == Z
851          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
852                                      getConstant(1, TLI.getShiftAmountTy())),
853                          N2.getOperand(0), Cond);
854        }
855      }
856    }
857  }
858
859  // Fold away ALL boolean setcc's.
860  if (N1.getValueType() == MVT::i1) {
861    switch (Cond) {
862    default: assert(0 && "Unknown integer setcc!");
863    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
864      N1 = getNode(ISD::XOR, MVT::i1,
865                   getNode(ISD::XOR, MVT::i1, N1, N2),
866                   getConstant(1, MVT::i1));
867      break;
868    case ISD::SETNE:  // X != Y   -->  (X^Y)
869      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
870      break;
871    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
872    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
873      N1 = getNode(ISD::AND, MVT::i1, N2,
874                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
875      break;
876    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
877    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
878      N1 = getNode(ISD::AND, MVT::i1, N1,
879                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
880      break;
881    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
882    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
883      N1 = getNode(ISD::OR, MVT::i1, N2,
884                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
885      break;
886    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
887    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
888      N1 = getNode(ISD::OR, MVT::i1, N1,
889                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
890      break;
891    }
892    if (VT != MVT::i1)
893      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
894    return N1;
895  }
896
897  // Could not fold it.
898  return SDOperand();
899}
900
901SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
902                                         SDOperand N3, SDOperand N4,
903                                         ISD::CondCode CC) {
904  MVT::ValueType VT = N3.getValueType();
905  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
906  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
907  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
908  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
909
910  // Check to see if we can simplify the select into an fabs node
911  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
912    // Allow either -0.0 or 0.0
913    if (CFP->getValue() == 0.0) {
914      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
915      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
916          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
917          N1 == N4.getOperand(0))
918        return getNode(ISD::FABS, VT, N1);
919
920      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
921      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
922          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
923          N3.getOperand(0) == N4)
924        return getNode(ISD::FABS, VT, N4);
925    }
926  }
927
928  // check to see if we're select_cc'ing a select_cc.
929  // this allows us to turn:
930  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
931  // select_cc cc, lhs, rhs, true, false
932  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
933      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
934      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
935    SDOperand SCC = N1C ? N2 : N1;
936    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
937    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
938    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
939      if (CC == ISD::SETEQ) std::swap(N3, N4);
940      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
941                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
942    }
943  }
944
945  // Check to see if we can perform the "gzip trick", transforming
946  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
947  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
948      MVT::isInteger(N1.getValueType()) &&
949      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
950    MVT::ValueType XType = N1.getValueType();
951    MVT::ValueType AType = N3.getValueType();
952    if (XType >= AType) {
953      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
954      // single-bit constant.  FIXME: remove once the dag combiner
955      // exists.
956      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
957        unsigned ShCtV = Log2_64(N3C->getValue());
958        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
959        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
960        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
961        if (XType > AType)
962          Shift = getNode(ISD::TRUNCATE, AType, Shift);
963        return getNode(ISD::AND, AType, Shift, N3);
964      }
965      SDOperand Shift = getNode(ISD::SRA, XType, N1,
966                                getConstant(MVT::getSizeInBits(XType)-1,
967                                            TLI.getShiftAmountTy()));
968      if (XType > AType)
969        Shift = getNode(ISD::TRUNCATE, AType, Shift);
970      return getNode(ISD::AND, AType, Shift, N3);
971    }
972  }
973
974  // Check to see if this is the equivalent of setcc
975  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
976    MVT::ValueType XType = N1.getValueType();
977    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy()))
978      return getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
979
980    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
981    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
982        TLI.isOperationLegal(ISD::CTLZ, XType)) {
983      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
984      return getNode(ISD::SRL, XType, Ctlz,
985                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
986                                 TLI.getShiftAmountTy()));
987    }
988    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
989    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
990      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
991      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
992      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
993                     getConstant(MVT::getSizeInBits(XType)-1,
994                                 TLI.getShiftAmountTy()));
995    }
996    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
997    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
998      SDOperand Sign = getNode(ISD::SRL, XType, N1,
999                               getConstant(MVT::getSizeInBits(XType)-1,
1000                                           TLI.getShiftAmountTy()));
1001      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
1002    }
1003  }
1004
1005  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
1006  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
1007  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
1008      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
1009    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
1010      MVT::ValueType XType = N1.getValueType();
1011      if (SubC->isNullValue() && MVT::isInteger(XType)) {
1012        SDOperand Shift = getNode(ISD::SRA, XType, N1,
1013                                  getConstant(MVT::getSizeInBits(XType)-1,
1014                                              TLI.getShiftAmountTy()));
1015        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
1016                       Shift);
1017      }
1018    }
1019  }
1020
1021  // Could not fold it.
1022  return SDOperand();
1023}
1024
1025/// getNode - Gets or creates the specified node.
1026///
1027SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1028  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1029  if (!N) {
1030    N = new SDNode(Opcode, VT);
1031    AllNodes.push_back(N);
1032  }
1033  return SDOperand(N, 0);
1034}
1035
1036SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1037                                SDOperand Operand) {
1038  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1039    uint64_t Val = C->getValue();
1040    switch (Opcode) {
1041    default: break;
1042    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1043    case ISD::ANY_EXTEND:
1044    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1045    case ISD::TRUNCATE:    return getConstant(Val, VT);
1046    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1047    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1048    }
1049  }
1050
1051  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1052    switch (Opcode) {
1053    case ISD::FNEG:
1054      return getConstantFP(-C->getValue(), VT);
1055    case ISD::FP_ROUND:
1056    case ISD::FP_EXTEND:
1057      return getConstantFP(C->getValue(), VT);
1058    case ISD::FP_TO_SINT:
1059      return getConstant((int64_t)C->getValue(), VT);
1060    case ISD::FP_TO_UINT:
1061      return getConstant((uint64_t)C->getValue(), VT);
1062    }
1063
1064  unsigned OpOpcode = Operand.Val->getOpcode();
1065  switch (Opcode) {
1066  case ISD::TokenFactor:
1067    return Operand;         // Factor of one node?  No factor.
1068  case ISD::SIGN_EXTEND:
1069    if (Operand.getValueType() == VT) return Operand;   // noop extension
1070    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1071      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1072    break;
1073  case ISD::ZERO_EXTEND:
1074    if (Operand.getValueType() == VT) return Operand;   // noop extension
1075    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1076      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1077    break;
1078  case ISD::ANY_EXTEND:
1079    if (Operand.getValueType() == VT) return Operand;   // noop extension
1080    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1081      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1082      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1083    break;
1084  case ISD::TRUNCATE:
1085    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1086    if (OpOpcode == ISD::TRUNCATE)
1087      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1088    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1089             OpOpcode == ISD::ANY_EXTEND) {
1090      // If the source is smaller than the dest, we still need an extend.
1091      if (Operand.Val->getOperand(0).getValueType() < VT)
1092        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1093      else if (Operand.Val->getOperand(0).getValueType() > VT)
1094        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1095      else
1096        return Operand.Val->getOperand(0);
1097    }
1098    break;
1099  case ISD::FNEG:
1100    if (OpOpcode == ISD::SUB)   // -(X-Y) -> (Y-X)
1101      return getNode(ISD::SUB, VT, Operand.Val->getOperand(1),
1102                     Operand.Val->getOperand(0));
1103    if (OpOpcode == ISD::FNEG)  // --X -> X
1104      return Operand.Val->getOperand(0);
1105    break;
1106  case ISD::FABS:
1107    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1108      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1109    break;
1110  }
1111
1112  SDNode *N;
1113  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1114    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1115    if (E) return SDOperand(E, 0);
1116    E = N = new SDNode(Opcode, Operand);
1117  } else {
1118    N = new SDNode(Opcode, Operand);
1119  }
1120  N->setValueTypes(VT);
1121  AllNodes.push_back(N);
1122  return SDOperand(N, 0);
1123}
1124
1125/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1126/// this predicate to simplify operations downstream.  V and Mask are known to
1127/// be the same type.
1128static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
1129                              const TargetLowering &TLI) {
1130  unsigned SrcBits;
1131  if (Mask == 0) return true;
1132
1133  // If we know the result of a setcc has the top bits zero, use this info.
1134  switch (Op.getOpcode()) {
1135  case ISD::Constant:
1136    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
1137
1138  case ISD::SETCC:
1139    return ((Mask & 1) == 0) &&
1140           TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
1141
1142  case ISD::ZEXTLOAD:
1143    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1144    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1145  case ISD::ZERO_EXTEND:
1146    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
1147    return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
1148  case ISD::AssertZext:
1149    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1150    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1151  case ISD::AND:
1152    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
1153    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1154      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
1155
1156    // FALL THROUGH
1157  case ISD::OR:
1158  case ISD::XOR:
1159    return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
1160           MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
1161  case ISD::SELECT:
1162    return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
1163           MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
1164  case ISD::SELECT_CC:
1165    return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
1166           MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
1167  case ISD::SRL:
1168    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
1169    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1170      uint64_t NewVal = Mask << ShAmt->getValue();
1171      SrcBits = MVT::getSizeInBits(Op.getValueType());
1172      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
1173      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1174    }
1175    return false;
1176  case ISD::SHL:
1177    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
1178    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1179      uint64_t NewVal = Mask >> ShAmt->getValue();
1180      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1181    }
1182    return false;
1183  case ISD::CTTZ:
1184  case ISD::CTLZ:
1185  case ISD::CTPOP:
1186    // Bit counting instructions can not set the high bits of the result
1187    // register.  The max number of bits sets depends on the input.
1188    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
1189
1190    // TODO we could handle some SRA cases here.
1191  default: break;
1192  }
1193
1194  return false;
1195}
1196
1197
1198
1199SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1200                                SDOperand N1, SDOperand N2) {
1201#ifndef NDEBUG
1202  switch (Opcode) {
1203  case ISD::TokenFactor:
1204    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1205           N2.getValueType() == MVT::Other && "Invalid token factor!");
1206    break;
1207  case ISD::AND:
1208  case ISD::OR:
1209  case ISD::XOR:
1210  case ISD::UDIV:
1211  case ISD::UREM:
1212  case ISD::MULHU:
1213  case ISD::MULHS:
1214    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1215    // fall through
1216  case ISD::ADD:
1217  case ISD::SUB:
1218  case ISD::MUL:
1219  case ISD::SDIV:
1220  case ISD::SREM:
1221    assert(N1.getValueType() == N2.getValueType() &&
1222           N1.getValueType() == VT && "Binary operator types must match!");
1223    break;
1224
1225  case ISD::SHL:
1226  case ISD::SRA:
1227  case ISD::SRL:
1228    assert(VT == N1.getValueType() &&
1229           "Shift operators return type must be the same as their first arg");
1230    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1231           VT != MVT::i1 && "Shifts only work on integers");
1232    break;
1233  case ISD::FP_ROUND_INREG: {
1234    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1235    assert(VT == N1.getValueType() && "Not an inreg round!");
1236    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1237           "Cannot FP_ROUND_INREG integer types");
1238    assert(EVT <= VT && "Not rounding down!");
1239    break;
1240  }
1241  case ISD::AssertSext:
1242  case ISD::AssertZext:
1243  case ISD::SIGN_EXTEND_INREG: {
1244    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1245    assert(VT == N1.getValueType() && "Not an inreg extend!");
1246    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1247           "Cannot *_EXTEND_INREG FP types");
1248    assert(EVT <= VT && "Not extending!");
1249  }
1250
1251  default: break;
1252  }
1253#endif
1254
1255  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1256  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1257  if (N1C) {
1258    if (N2C) {
1259      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1260      switch (Opcode) {
1261      case ISD::ADD: return getConstant(C1 + C2, VT);
1262      case ISD::SUB: return getConstant(C1 - C2, VT);
1263      case ISD::MUL: return getConstant(C1 * C2, VT);
1264      case ISD::UDIV:
1265        if (C2) return getConstant(C1 / C2, VT);
1266        break;
1267      case ISD::UREM :
1268        if (C2) return getConstant(C1 % C2, VT);
1269        break;
1270      case ISD::SDIV :
1271        if (C2) return getConstant(N1C->getSignExtended() /
1272                                   N2C->getSignExtended(), VT);
1273        break;
1274      case ISD::SREM :
1275        if (C2) return getConstant(N1C->getSignExtended() %
1276                                   N2C->getSignExtended(), VT);
1277        break;
1278      case ISD::AND  : return getConstant(C1 & C2, VT);
1279      case ISD::OR   : return getConstant(C1 | C2, VT);
1280      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1281      case ISD::SHL  : return getConstant(C1 << C2, VT);
1282      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1283      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1284      default: break;
1285      }
1286    } else {      // Cannonicalize constant to RHS if commutative
1287      if (isCommutativeBinOp(Opcode)) {
1288        std::swap(N1C, N2C);
1289        std::swap(N1, N2);
1290      }
1291    }
1292
1293    if (!CombinerEnabled) {
1294    switch (Opcode) {
1295    default: break;
1296    case ISD::SHL:    // shl  0, X -> 0
1297      if (N1C->isNullValue()) return N1;
1298      break;
1299    case ISD::SRL:    // srl  0, X -> 0
1300      if (N1C->isNullValue()) return N1;
1301      break;
1302    case ISD::SRA:    // sra -1, X -> -1
1303      if (N1C->isAllOnesValue()) return N1;
1304      break;
1305    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1306      // Extending a constant?  Just return the extended constant.
1307      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1308      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1309    }
1310    }
1311  }
1312
1313  if (!CombinerEnabled) {
1314  if (N2C) {
1315    uint64_t C2 = N2C->getValue();
1316
1317    switch (Opcode) {
1318    case ISD::ADD:
1319      if (!C2) return N1;         // add X, 0 -> X
1320      break;
1321    case ISD::SUB:
1322      if (!C2) return N1;         // sub X, 0 -> X
1323      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1324    case ISD::MUL:
1325      if (!C2) return N2;         // mul X, 0 -> 0
1326      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1327        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1328
1329      // FIXME: Move this to the DAG combiner when it exists.
1330      if ((C2 & C2-1) == 0) {
1331        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1332        return getNode(ISD::SHL, VT, N1, ShAmt);
1333      }
1334      break;
1335
1336    case ISD::MULHU:
1337    case ISD::MULHS:
1338      if (!C2) return N2;         // mul X, 0 -> 0
1339
1340      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1341        return getConstant(0, VT);
1342
1343      // Many others could be handled here, including -1, powers of 2, etc.
1344      break;
1345
1346    case ISD::UDIV:
1347      // FIXME: Move this to the DAG combiner when it exists.
1348      if ((C2 & C2-1) == 0 && C2) {
1349        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1350        return getNode(ISD::SRL, VT, N1, ShAmt);
1351      }
1352      break;
1353
1354    case ISD::SHL:
1355    case ISD::SRL:
1356    case ISD::SRA:
1357      // If the shift amount is bigger than the size of the data, then all the
1358      // bits are shifted out.  Simplify to undef.
1359      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1360        return getNode(ISD::UNDEF, N1.getValueType());
1361      }
1362      if (C2 == 0) return N1;
1363
1364      if (Opcode == ISD::SRA) {
1365        // If the sign bit is known to be zero, switch this to a SRL.
1366        if (MaskedValueIsZero(N1,
1367                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1368                              TLI))
1369          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1370      } else {
1371        // If the part left over is known to be zero, the whole thing is zero.
1372        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1373        if (Opcode == ISD::SRL) {
1374          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1375            return getConstant(0, N1.getValueType());
1376        } else if (Opcode == ISD::SHL) {
1377          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1378            return getConstant(0, N1.getValueType());
1379        }
1380      }
1381
1382      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1383        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1384          unsigned OpSAC = OpSA->getValue();
1385          if (N1.getOpcode() == ISD::SHL) {
1386            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1387              return getConstant(0, N1.getValueType());
1388            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1389                           getConstant(C2+OpSAC, N2.getValueType()));
1390          } else if (N1.getOpcode() == ISD::SRL) {
1391            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1392            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1393                                     getConstant(~0ULL << OpSAC, VT));
1394            if (C2 > OpSAC) {
1395              return getNode(ISD::SHL, VT, Mask,
1396                             getConstant(C2-OpSAC, N2.getValueType()));
1397            } else {
1398              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1399              return getNode(ISD::SRL, VT, Mask,
1400                             getConstant(OpSAC-C2, N2.getValueType()));
1401            }
1402          } else if (N1.getOpcode() == ISD::SRA) {
1403            // if C1 == C2, just mask out low bits.
1404            if (C2 == OpSAC)
1405              return getNode(ISD::AND, VT, N1.getOperand(0),
1406                             getConstant(~0ULL << C2, VT));
1407          }
1408        }
1409      break;
1410
1411    case ISD::AND:
1412      if (!C2) return N2;         // X and 0 -> 0
1413      if (N2C->isAllOnesValue())
1414        return N1;                // X and -1 -> X
1415
1416      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1417        return getConstant(0, VT);
1418
1419      {
1420        uint64_t NotC2 = ~C2;
1421        if (VT != MVT::i64)
1422          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1423
1424        if (MaskedValueIsZero(N1, NotC2, TLI))
1425          return N1;                // if (X & ~C2) -> 0, the and is redundant
1426      }
1427
1428      // FIXME: Should add a corresponding version of this for
1429      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1430      // we don't have yet.
1431      // FIXME: NOW WE DO, add this.
1432
1433      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1434      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1435        // If we are masking out the part of our input that was extended, just
1436        // mask the input to the extension directly.
1437        unsigned ExtendBits =
1438          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1439        if ((C2 & (~0ULL << ExtendBits)) == 0)
1440          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1441      } else if (N1.getOpcode() == ISD::OR) {
1442        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1443          if ((ORI->getValue() & C2) == C2) {
1444            // If the 'or' is setting all of the bits that we are masking for,
1445            // we know the result of the AND will be the AND mask itself.
1446            return N2;
1447          }
1448      }
1449      break;
1450    case ISD::OR:
1451      if (!C2)return N1;          // X or 0 -> X
1452      if (N2C->isAllOnesValue())
1453        return N2;                // X or -1 -> -1
1454      break;
1455    case ISD::XOR:
1456      if (!C2) return N1;        // X xor 0 -> X
1457      if (N2C->getValue() == 1 && N1.Val->getOpcode() == ISD::SETCC) {
1458          SDNode *SetCC = N1.Val;
1459          // !(X op Y) -> (X !op Y)
1460          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1461          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1462          return getSetCC(SetCC->getValueType(0),
1463                          SetCC->getOperand(0), SetCC->getOperand(1),
1464                          ISD::getSetCCInverse(CC, isInteger));
1465      } else if (N2C->isAllOnesValue()) {
1466        if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1467          SDNode *Op = N1.Val;
1468          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1469          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1470          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1471          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1472            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1473            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1474            if (Op->getOpcode() == ISD::AND)
1475              return getNode(ISD::OR, VT, LHS, RHS);
1476            return getNode(ISD::AND, VT, LHS, RHS);
1477          }
1478        }
1479        // X xor -1 -> not(x)  ?
1480      }
1481      break;
1482    }
1483
1484    // Reassociate ((X op C1) op C2) if possible.
1485    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1486      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1487        return getNode(Opcode, VT, N1.Val->getOperand(0),
1488                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1489  }
1490  }
1491
1492  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1493  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1494  if (N1CFP) {
1495    if (N2CFP) {
1496      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1497      switch (Opcode) {
1498      case ISD::ADD: return getConstantFP(C1 + C2, VT);
1499      case ISD::SUB: return getConstantFP(C1 - C2, VT);
1500      case ISD::MUL: return getConstantFP(C1 * C2, VT);
1501      case ISD::SDIV:
1502        if (C2) return getConstantFP(C1 / C2, VT);
1503        break;
1504      case ISD::SREM :
1505        if (C2) return getConstantFP(fmod(C1, C2), VT);
1506        break;
1507      default: break;
1508      }
1509    } else {      // Cannonicalize constant to RHS if commutative
1510      if (isCommutativeBinOp(Opcode)) {
1511        std::swap(N1CFP, N2CFP);
1512        std::swap(N1, N2);
1513      }
1514    }
1515
1516    if (!CombinerEnabled) {
1517    if (Opcode == ISD::FP_ROUND_INREG)
1518      return getNode(ISD::FP_EXTEND, VT,
1519                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1520    }
1521  }
1522
1523  // Finally, fold operations that do not require constants.
1524  switch (Opcode) {
1525  case ISD::TokenFactor:
1526    if (!CombinerEnabled) {
1527    if (N1.getOpcode() == ISD::EntryToken)
1528      return N2;
1529    if (N2.getOpcode() == ISD::EntryToken)
1530      return N1;
1531    }
1532    break;
1533
1534  case ISD::AND:
1535  case ISD::OR:
1536    if (!CombinerEnabled) {
1537    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1538      SDNode *LHS = N1.Val, *RHS = N2.Val;
1539      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1540      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1541      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1542      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1543
1544      if (LR == RR && isa<ConstantSDNode>(LR) &&
1545          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1546        // (X != 0) | (Y != 0) -> (X|Y != 0)
1547        // (X == 0) & (Y == 0) -> (X|Y == 0)
1548        // (X <  0) | (Y <  0) -> (X|Y < 0)
1549        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1550            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1551             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1552             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1553          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1554                          Op2);
1555
1556        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1557          // (X == -1) & (Y == -1) -> (X&Y == -1)
1558          // (X != -1) | (Y != -1) -> (X&Y != -1)
1559          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1560          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1561              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1562              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1563            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1564                            LR, Op2);
1565          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1566          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1567            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1568                            LR, Op2);
1569        }
1570      }
1571
1572      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1573      if (LL == RR && LR == RL) {
1574        Op2 = ISD::getSetCCSwappedOperands(Op2);
1575        goto MatchedBackwards;
1576      }
1577
1578      if (LL == RL && LR == RR) {
1579      MatchedBackwards:
1580        ISD::CondCode Result;
1581        bool isInteger = MVT::isInteger(LL.getValueType());
1582        if (Opcode == ISD::OR)
1583          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1584        else
1585          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1586
1587        if (Result != ISD::SETCC_INVALID)
1588          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1589      }
1590    }
1591
1592    // and/or zext(a), zext(b) -> zext(and/or a, b)
1593    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1594        N2.getOpcode() == ISD::ZERO_EXTEND &&
1595        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1596      return getNode(ISD::ZERO_EXTEND, VT,
1597                     getNode(Opcode, N1.getOperand(0).getValueType(),
1598                             N1.getOperand(0), N2.getOperand(0)));
1599    }
1600    break;
1601  case ISD::XOR:
1602    if (!CombinerEnabled) {
1603    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1604    }
1605    break;
1606  case ISD::ADD:
1607    if (!CombinerEnabled) {
1608    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1609      return getNode(ISD::SUB, VT, N1, N2.getOperand(0));
1610    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1611      return getNode(ISD::SUB, VT, N2, N1.getOperand(0));
1612    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1613        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1614      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1615    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1616        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1617      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1618    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) &&
1619        !MVT::isFloatingPoint(N2.getValueType()))
1620      return N2.Val->getOperand(0); // A+(B-A) -> B
1621    }
1622    break;
1623  case ISD::SUB:
1624    if (!CombinerEnabled) {
1625    if (N1.getOpcode() == ISD::ADD) {
1626      if (N1.Val->getOperand(0) == N2 &&
1627          !MVT::isFloatingPoint(N2.getValueType()))
1628        return N1.Val->getOperand(1);         // (A+B)-A == B
1629      if (N1.Val->getOperand(1) == N2 &&
1630          !MVT::isFloatingPoint(N2.getValueType()))
1631        return N1.Val->getOperand(0);         // (A+B)-B == A
1632    }
1633    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1634      return getNode(ISD::ADD, VT, N1, N2.getOperand(0));
1635    }
1636    break;
1637  case ISD::FP_ROUND_INREG:
1638    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1639    break;
1640  case ISD::SIGN_EXTEND_INREG: {
1641    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1642    if (EVT == VT) return N1;  // Not actually extending
1643    if (!CombinerEnabled) {
1644    // If we are sign extending an extension, use the original source.
1645    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG ||
1646        N1.getOpcode() == ISD::AssertSext)
1647      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1648        return N1;
1649
1650    // If we are sign extending a sextload, return just the load.
1651    if (N1.getOpcode() == ISD::SEXTLOAD)
1652      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1653        return N1;
1654
1655    // If we are extending the result of a setcc, and we already know the
1656    // contents of the top bits, eliminate the extension.
1657    if (N1.getOpcode() == ISD::SETCC &&
1658        TLI.getSetCCResultContents() ==
1659                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1660      return N1;
1661
1662    // If we are sign extending the result of an (and X, C) operation, and we
1663    // know the extended bits are zeros already, don't do the extend.
1664    if (N1.getOpcode() == ISD::AND)
1665      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1666        uint64_t Mask = N1C->getValue();
1667        unsigned NumBits = MVT::getSizeInBits(EVT);
1668        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1669          return N1;
1670      }
1671    }
1672    break;
1673  }
1674
1675  // FIXME: figure out how to safely handle things like
1676  // int foo(int x) { return 1 << (x & 255); }
1677  // int bar() { return foo(256); }
1678#if 0
1679  case ISD::SHL:
1680  case ISD::SRL:
1681  case ISD::SRA:
1682    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1683        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1684      return getNode(Opcode, VT, N1, N2.getOperand(0));
1685    else if (N2.getOpcode() == ISD::AND)
1686      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1687        // If the and is only masking out bits that cannot effect the shift,
1688        // eliminate the and.
1689        unsigned NumBits = MVT::getSizeInBits(VT);
1690        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1691          return getNode(Opcode, VT, N1, N2.getOperand(0));
1692      }
1693    break;
1694#endif
1695  }
1696
1697  // Memoize this node if possible.
1698  SDNode *N;
1699  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1700      VT != MVT::Flag) {
1701    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1702    if (BON) return SDOperand(BON, 0);
1703
1704    BON = N = new SDNode(Opcode, N1, N2);
1705  } else {
1706    N = new SDNode(Opcode, N1, N2);
1707  }
1708
1709  N->setValueTypes(VT);
1710  AllNodes.push_back(N);
1711  return SDOperand(N, 0);
1712}
1713
1714// setAdjCallChain - This method changes the token chain of an
1715// CALLSEQ_START/END node to be the specified operand.
1716void SDNode::setAdjCallChain(SDOperand N) {
1717  assert(N.getValueType() == MVT::Other);
1718  assert((getOpcode() == ISD::CALLSEQ_START ||
1719          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1720
1721  Operands[0].Val->removeUser(this);
1722  Operands[0] = N;
1723  N.Val->Uses.push_back(this);
1724}
1725
1726
1727
1728SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1729                                SDOperand Chain, SDOperand Ptr,
1730                                SDOperand SV) {
1731  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1732  if (N) return SDOperand(N, 0);
1733  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1734
1735  // Loads have a token chain.
1736  N->setValueTypes(VT, MVT::Other);
1737  AllNodes.push_back(N);
1738  return SDOperand(N, 0);
1739}
1740
1741
1742SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1743                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1744                                   MVT::ValueType EVT) {
1745  std::vector<SDOperand> Ops;
1746  Ops.reserve(4);
1747  Ops.push_back(Chain);
1748  Ops.push_back(Ptr);
1749  Ops.push_back(SV);
1750  Ops.push_back(getValueType(EVT));
1751  std::vector<MVT::ValueType> VTs;
1752  VTs.reserve(2);
1753  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1754  return getNode(Opcode, VTs, Ops);
1755}
1756
1757SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1758                                SDOperand N1, SDOperand N2, SDOperand N3) {
1759  // Perform various simplifications.
1760  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1761  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1762  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1763  switch (Opcode) {
1764  case ISD::SETCC: {
1765    // Use SimplifySetCC  to simplify SETCC's.
1766    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1767    if (Simp.Val) return Simp;
1768    break;
1769  }
1770  case ISD::SELECT:
1771    if (N1C)
1772      if (N1C->getValue())
1773        return N2;             // select true, X, Y -> X
1774      else
1775        return N3;             // select false, X, Y -> Y
1776
1777    if (N2 == N3) return N2;   // select C, X, X -> X
1778
1779    if (VT == MVT::i1) {  // Boolean SELECT
1780      if (N2C) {
1781        if (N2C->getValue())   // select C, 1, X -> C | X
1782          return getNode(ISD::OR, VT, N1, N3);
1783        else                   // select C, 0, X -> ~C & X
1784          return getNode(ISD::AND, VT,
1785                         getNode(ISD::XOR, N1.getValueType(), N1,
1786                                 getConstant(1, N1.getValueType())), N3);
1787      } else if (N3C) {
1788        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1789          return getNode(ISD::OR, VT,
1790                         getNode(ISD::XOR, N1.getValueType(), N1,
1791                                 getConstant(1, N1.getValueType())), N2);
1792        else                   // select C, X, 0 -> C & X
1793          return getNode(ISD::AND, VT, N1, N2);
1794      }
1795
1796      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1797        return getNode(ISD::OR, VT, N1, N3);
1798      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1799        return getNode(ISD::AND, VT, N1, N2);
1800    }
1801    if (N1.getOpcode() == ISD::SETCC) {
1802      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1803                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1804      if (Simp.Val) return Simp;
1805    }
1806    break;
1807  case ISD::BRCOND:
1808    if (N2C)
1809      if (N2C->getValue()) // Unconditional branch
1810        return getNode(ISD::BR, MVT::Other, N1, N3);
1811      else
1812        return N1;         // Never-taken branch
1813    break;
1814  }
1815
1816  std::vector<SDOperand> Ops;
1817  Ops.reserve(3);
1818  Ops.push_back(N1);
1819  Ops.push_back(N2);
1820  Ops.push_back(N3);
1821
1822  // Memoize node if it doesn't produce a flag.
1823  SDNode *N;
1824  if (VT != MVT::Flag) {
1825    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1826    if (E) return SDOperand(E, 0);
1827    E = N = new SDNode(Opcode, N1, N2, N3);
1828  } else {
1829    N = new SDNode(Opcode, N1, N2, N3);
1830  }
1831  N->setValueTypes(VT);
1832  AllNodes.push_back(N);
1833  return SDOperand(N, 0);
1834}
1835
1836SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1837                                SDOperand N1, SDOperand N2, SDOperand N3,
1838                                SDOperand N4) {
1839  std::vector<SDOperand> Ops;
1840  Ops.reserve(4);
1841  Ops.push_back(N1);
1842  Ops.push_back(N2);
1843  Ops.push_back(N3);
1844  Ops.push_back(N4);
1845  return getNode(Opcode, VT, Ops);
1846}
1847
1848SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1849                                SDOperand N1, SDOperand N2, SDOperand N3,
1850                                SDOperand N4, SDOperand N5) {
1851  std::vector<SDOperand> Ops;
1852  Ops.reserve(5);
1853  Ops.push_back(N1);
1854  Ops.push_back(N2);
1855  Ops.push_back(N3);
1856  Ops.push_back(N4);
1857  Ops.push_back(N5);
1858  return getNode(Opcode, VT, Ops);
1859}
1860
1861
1862SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1863  assert((!V || isa<PointerType>(V->getType())) &&
1864         "SrcValue is not a pointer?");
1865  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1866  if (N) return SDOperand(N, 0);
1867
1868  N = new SrcValueSDNode(V, Offset);
1869  AllNodes.push_back(N);
1870  return SDOperand(N, 0);
1871}
1872
1873SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1874                                std::vector<SDOperand> &Ops) {
1875  switch (Ops.size()) {
1876  case 0: return getNode(Opcode, VT);
1877  case 1: return getNode(Opcode, VT, Ops[0]);
1878  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1879  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1880  default: break;
1881  }
1882
1883  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1884  switch (Opcode) {
1885  default: break;
1886  case ISD::BRCONDTWOWAY:
1887    if (N1C)
1888      if (N1C->getValue()) // Unconditional branch to true dest.
1889        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1890      else                 // Unconditional branch to false dest.
1891        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1892    break;
1893  case ISD::BRTWOWAY_CC:
1894    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1895    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1896           "LHS and RHS of comparison must have same type!");
1897    break;
1898  case ISD::TRUNCSTORE: {
1899    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1900    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1901#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1902    // If this is a truncating store of a constant, convert to the desired type
1903    // and store it instead.
1904    if (isa<Constant>(Ops[0])) {
1905      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1906      if (isa<Constant>(Op))
1907        N1 = Op;
1908    }
1909    // Also for ConstantFP?
1910#endif
1911    if (Ops[0].getValueType() == EVT)       // Normal store?
1912      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1913    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1914    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1915           "Can't do FP-INT conversion!");
1916    break;
1917  }
1918  case ISD::SELECT_CC: {
1919    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1920    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1921           "LHS and RHS of condition must have same type!");
1922    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1923           "True and False arms of SelectCC must have same type!");
1924    assert(Ops[2].getValueType() == VT &&
1925           "select_cc node must be of same type as true and false value!");
1926    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1927                                      cast<CondCodeSDNode>(Ops[4])->get());
1928    if (Simp.Val) return Simp;
1929    break;
1930  }
1931  case ISD::BR_CC: {
1932    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1933    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1934           "LHS/RHS of comparison should match types!");
1935    // Use SimplifySetCC  to simplify SETCC's.
1936    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1937                                   cast<CondCodeSDNode>(Ops[1])->get());
1938    if (Simp.Val) {
1939      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1940        if (C->getValue() & 1) // Unconditional branch
1941          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1942        else
1943          return Ops[0];          // Unconditional Fall through
1944      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1945        Ops[2] = Simp.getOperand(0);
1946        Ops[3] = Simp.getOperand(1);
1947        Ops[1] = Simp.getOperand(2);
1948      }
1949    }
1950    break;
1951  }
1952  }
1953
1954  // Memoize nodes.
1955  SDNode *N;
1956  if (VT != MVT::Flag) {
1957    SDNode *&E =
1958      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1959    if (E) return SDOperand(E, 0);
1960    E = N = new SDNode(Opcode, Ops);
1961  } else {
1962    N = new SDNode(Opcode, Ops);
1963  }
1964  N->setValueTypes(VT);
1965  AllNodes.push_back(N);
1966  return SDOperand(N, 0);
1967}
1968
1969SDOperand SelectionDAG::getNode(unsigned Opcode,
1970                                std::vector<MVT::ValueType> &ResultTys,
1971                                std::vector<SDOperand> &Ops) {
1972  if (ResultTys.size() == 1)
1973    return getNode(Opcode, ResultTys[0], Ops);
1974
1975  switch (Opcode) {
1976  case ISD::EXTLOAD:
1977  case ISD::SEXTLOAD:
1978  case ISD::ZEXTLOAD: {
1979    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1980    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1981    // If they are asking for an extending load from/to the same thing, return a
1982    // normal load.
1983    if (ResultTys[0] == EVT)
1984      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1985    assert(EVT < ResultTys[0] &&
1986           "Should only be an extending load, not truncating!");
1987    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1988           "Cannot sign/zero extend a FP load!");
1989    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1990           "Cannot convert from FP to Int or Int -> FP!");
1991    break;
1992  }
1993
1994  // FIXME: figure out how to safely handle things like
1995  // int foo(int x) { return 1 << (x & 255); }
1996  // int bar() { return foo(256); }
1997#if 0
1998  case ISD::SRA_PARTS:
1999  case ISD::SRL_PARTS:
2000  case ISD::SHL_PARTS:
2001    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2002        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2003      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2004    else if (N3.getOpcode() == ISD::AND)
2005      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2006        // If the and is only masking out bits that cannot effect the shift,
2007        // eliminate the and.
2008        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2009        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2010          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2011      }
2012    break;
2013#endif
2014  }
2015
2016  // Memoize the node unless it returns a flag.
2017  SDNode *N;
2018  if (ResultTys.back() != MVT::Flag) {
2019    SDNode *&E =
2020      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
2021    if (E) return SDOperand(E, 0);
2022    E = N = new SDNode(Opcode, Ops);
2023  } else {
2024    N = new SDNode(Opcode, Ops);
2025  }
2026  N->setValueTypes(ResultTys);
2027  AllNodes.push_back(N);
2028  return SDOperand(N, 0);
2029}
2030
2031
2032/// SelectNodeTo - These are used for target selectors to *mutate* the
2033/// specified node to have the specified return type, Target opcode, and
2034/// operands.  Note that target opcodes are stored as
2035/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2036void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2037                                MVT::ValueType VT) {
2038  RemoveNodeFromCSEMaps(N);
2039  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2040  N->setValueTypes(VT);
2041}
2042void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2043                                MVT::ValueType VT, SDOperand Op1) {
2044  RemoveNodeFromCSEMaps(N);
2045  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2046  N->setValueTypes(VT);
2047  N->setOperands(Op1);
2048}
2049void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2050                                MVT::ValueType VT, SDOperand Op1,
2051                                SDOperand Op2) {
2052  RemoveNodeFromCSEMaps(N);
2053  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2054  N->setValueTypes(VT);
2055  N->setOperands(Op1, Op2);
2056}
2057void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2058                                MVT::ValueType VT1, MVT::ValueType VT2,
2059                                SDOperand Op1, SDOperand Op2) {
2060  RemoveNodeFromCSEMaps(N);
2061  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2062  N->setValueTypes(VT1, VT2);
2063  N->setOperands(Op1, Op2);
2064}
2065void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2066                                MVT::ValueType VT, SDOperand Op1,
2067                                SDOperand Op2, SDOperand Op3) {
2068  RemoveNodeFromCSEMaps(N);
2069  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2070  N->setValueTypes(VT);
2071  N->setOperands(Op1, Op2, Op3);
2072}
2073void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2074                                MVT::ValueType VT1, MVT::ValueType VT2,
2075                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2076  RemoveNodeFromCSEMaps(N);
2077  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2078  N->setValueTypes(VT1, VT2);
2079  N->setOperands(Op1, Op2, Op3);
2080}
2081
2082void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2083                                MVT::ValueType VT, SDOperand Op1,
2084                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
2085  RemoveNodeFromCSEMaps(N);
2086  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2087  N->setValueTypes(VT);
2088  N->setOperands(Op1, Op2, Op3, Op4);
2089}
2090void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2091                                MVT::ValueType VT, SDOperand Op1,
2092                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
2093                                SDOperand Op5) {
2094  RemoveNodeFromCSEMaps(N);
2095  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2096  N->setValueTypes(VT);
2097  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2098}
2099
2100/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2101/// This can cause recursive merging of nodes in the DAG.
2102///
2103/// This version assumes From/To have a single result value.
2104///
2105void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2106                                      std::vector<SDNode*> *Deleted) {
2107  SDNode *From = FromN.Val, *To = ToN.Val;
2108  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2109         "Cannot replace with this method!");
2110  assert(From != To && "Cannot replace uses of with self");
2111
2112  while (!From->use_empty()) {
2113    // Process users until they are all gone.
2114    SDNode *U = *From->use_begin();
2115
2116    // This node is about to morph, remove its old self from the CSE maps.
2117    RemoveNodeFromCSEMaps(U);
2118
2119    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2120      if (U->getOperand(i).Val == From) {
2121        From->removeUser(U);
2122        U->Operands[i].Val = To;
2123        To->addUser(U);
2124      }
2125
2126    // Now that we have modified U, add it back to the CSE maps.  If it already
2127    // exists there, recursively merge the results together.
2128    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2129      ReplaceAllUsesWith(U, Existing, Deleted);
2130      // U is now dead.
2131      if (Deleted) Deleted->push_back(U);
2132      DeleteNodeNotInCSEMaps(U);
2133    }
2134  }
2135}
2136
2137/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2138/// This can cause recursive merging of nodes in the DAG.
2139///
2140/// This version assumes From/To have matching types and numbers of result
2141/// values.
2142///
2143void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2144                                      std::vector<SDNode*> *Deleted) {
2145  assert(From != To && "Cannot replace uses of with self");
2146  assert(From->getNumValues() == To->getNumValues() &&
2147         "Cannot use this version of ReplaceAllUsesWith!");
2148  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2149    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2150    return;
2151  }
2152
2153  while (!From->use_empty()) {
2154    // Process users until they are all gone.
2155    SDNode *U = *From->use_begin();
2156
2157    // This node is about to morph, remove its old self from the CSE maps.
2158    RemoveNodeFromCSEMaps(U);
2159
2160    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2161      if (U->getOperand(i).Val == From) {
2162        From->removeUser(U);
2163        U->Operands[i].Val = To;
2164        To->addUser(U);
2165      }
2166
2167    // Now that we have modified U, add it back to the CSE maps.  If it already
2168    // exists there, recursively merge the results together.
2169    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2170      ReplaceAllUsesWith(U, Existing, Deleted);
2171      // U is now dead.
2172      if (Deleted) Deleted->push_back(U);
2173      DeleteNodeNotInCSEMaps(U);
2174    }
2175  }
2176}
2177
2178/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2179/// This can cause recursive merging of nodes in the DAG.
2180///
2181/// This version can replace From with any result values.  To must match the
2182/// number and types of values returned by From.
2183void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2184                                      const std::vector<SDOperand> &To,
2185                                      std::vector<SDNode*> *Deleted) {
2186  assert(From->getNumValues() == To.size() &&
2187         "Incorrect number of values to replace with!");
2188  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2189    // Degenerate case handled above.
2190    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2191    return;
2192  }
2193
2194  while (!From->use_empty()) {
2195    // Process users until they are all gone.
2196    SDNode *U = *From->use_begin();
2197
2198    // This node is about to morph, remove its old self from the CSE maps.
2199    RemoveNodeFromCSEMaps(U);
2200
2201    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2202      if (U->getOperand(i).Val == From) {
2203        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
2204        From->removeUser(U);
2205        U->Operands[i] = ToOp;
2206        ToOp.Val->addUser(U);
2207      }
2208
2209    // Now that we have modified U, add it back to the CSE maps.  If it already
2210    // exists there, recursively merge the results together.
2211    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2212      ReplaceAllUsesWith(U, Existing, Deleted);
2213      // U is now dead.
2214      if (Deleted) Deleted->push_back(U);
2215      DeleteNodeNotInCSEMaps(U);
2216    }
2217  }
2218}
2219
2220
2221//===----------------------------------------------------------------------===//
2222//                              SDNode Class
2223//===----------------------------------------------------------------------===//
2224
2225/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2226/// indicated value.  This method ignores uses of other values defined by this
2227/// operation.
2228bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2229  assert(Value < getNumValues() && "Bad value!");
2230
2231  // If there is only one value, this is easy.
2232  if (getNumValues() == 1)
2233    return use_size() == NUses;
2234  if (Uses.size() < NUses) return false;
2235
2236  SDOperand TheValue(this, Value);
2237
2238  std::set<SDNode*> UsersHandled;
2239
2240  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2241       UI != E; ++UI) {
2242    SDNode *User = *UI;
2243    if (User->getNumOperands() == 1 ||
2244        UsersHandled.insert(User).second)     // First time we've seen this?
2245      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2246        if (User->getOperand(i) == TheValue) {
2247          if (NUses == 0)
2248            return false;   // too many uses
2249          --NUses;
2250        }
2251  }
2252
2253  // Found exactly the right number of uses?
2254  return NUses == 0;
2255}
2256
2257
2258const char *SDNode::getOperationName(const SelectionDAG *G) const {
2259  switch (getOpcode()) {
2260  default:
2261    if (getOpcode() < ISD::BUILTIN_OP_END)
2262      return "<<Unknown DAG Node>>";
2263    else {
2264      if (G)
2265        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2266          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2267            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2268      return "<<Unknown Target Node>>";
2269    }
2270
2271  case ISD::PCMARKER:      return "PCMarker";
2272  case ISD::SRCVALUE:      return "SrcValue";
2273  case ISD::VALUETYPE:     return "ValueType";
2274  case ISD::EntryToken:    return "EntryToken";
2275  case ISD::TokenFactor:   return "TokenFactor";
2276  case ISD::AssertSext:    return "AssertSext";
2277  case ISD::AssertZext:    return "AssertZext";
2278  case ISD::Constant:      return "Constant";
2279  case ISD::TargetConstant: return "TargetConstant";
2280  case ISD::ConstantFP:    return "ConstantFP";
2281  case ISD::GlobalAddress: return "GlobalAddress";
2282  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2283  case ISD::FrameIndex:    return "FrameIndex";
2284  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2285  case ISD::BasicBlock:    return "BasicBlock";
2286  case ISD::Register:      return "Register";
2287  case ISD::ExternalSymbol: return "ExternalSymbol";
2288  case ISD::ConstantPool:  return "ConstantPool";
2289  case ISD::TargetConstantPool:  return "TargetConstantPool";
2290  case ISD::CopyToReg:     return "CopyToReg";
2291  case ISD::CopyFromReg:   return "CopyFromReg";
2292  case ISD::ImplicitDef:   return "ImplicitDef";
2293  case ISD::UNDEF:         return "undef";
2294
2295  // Unary operators
2296  case ISD::FABS:   return "fabs";
2297  case ISD::FNEG:   return "fneg";
2298  case ISD::FSQRT:  return "fsqrt";
2299  case ISD::FSIN:   return "fsin";
2300  case ISD::FCOS:   return "fcos";
2301
2302  // Binary operators
2303  case ISD::ADD:    return "add";
2304  case ISD::SUB:    return "sub";
2305  case ISD::MUL:    return "mul";
2306  case ISD::MULHU:  return "mulhu";
2307  case ISD::MULHS:  return "mulhs";
2308  case ISD::SDIV:   return "sdiv";
2309  case ISD::UDIV:   return "udiv";
2310  case ISD::SREM:   return "srem";
2311  case ISD::UREM:   return "urem";
2312  case ISD::AND:    return "and";
2313  case ISD::OR:     return "or";
2314  case ISD::XOR:    return "xor";
2315  case ISD::SHL:    return "shl";
2316  case ISD::SRA:    return "sra";
2317  case ISD::SRL:    return "srl";
2318
2319  case ISD::SETCC:       return "setcc";
2320  case ISD::SELECT:      return "select";
2321  case ISD::SELECT_CC:   return "select_cc";
2322  case ISD::ADD_PARTS:   return "add_parts";
2323  case ISD::SUB_PARTS:   return "sub_parts";
2324  case ISD::SHL_PARTS:   return "shl_parts";
2325  case ISD::SRA_PARTS:   return "sra_parts";
2326  case ISD::SRL_PARTS:   return "srl_parts";
2327
2328  // Conversion operators.
2329  case ISD::SIGN_EXTEND: return "sign_extend";
2330  case ISD::ZERO_EXTEND: return "zero_extend";
2331  case ISD::ANY_EXTEND:  return "any_extend";
2332  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2333  case ISD::TRUNCATE:    return "truncate";
2334  case ISD::FP_ROUND:    return "fp_round";
2335  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2336  case ISD::FP_EXTEND:   return "fp_extend";
2337
2338  case ISD::SINT_TO_FP:  return "sint_to_fp";
2339  case ISD::UINT_TO_FP:  return "uint_to_fp";
2340  case ISD::FP_TO_SINT:  return "fp_to_sint";
2341  case ISD::FP_TO_UINT:  return "fp_to_uint";
2342
2343    // Control flow instructions
2344  case ISD::BR:      return "br";
2345  case ISD::BRCOND:  return "brcond";
2346  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2347  case ISD::BR_CC:  return "br_cc";
2348  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2349  case ISD::RET:     return "ret";
2350  case ISD::CALL:    return "call";
2351  case ISD::TAILCALL:return "tailcall";
2352  case ISD::CALLSEQ_START:  return "callseq_start";
2353  case ISD::CALLSEQ_END:    return "callseq_end";
2354
2355    // Other operators
2356  case ISD::LOAD:    return "load";
2357  case ISD::STORE:   return "store";
2358  case ISD::EXTLOAD:    return "extload";
2359  case ISD::SEXTLOAD:   return "sextload";
2360  case ISD::ZEXTLOAD:   return "zextload";
2361  case ISD::TRUNCSTORE: return "truncstore";
2362
2363  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2364  case ISD::EXTRACT_ELEMENT: return "extract_element";
2365  case ISD::BUILD_PAIR: return "build_pair";
2366  case ISD::MEMSET:  return "memset";
2367  case ISD::MEMCPY:  return "memcpy";
2368  case ISD::MEMMOVE: return "memmove";
2369
2370  // Bit counting
2371  case ISD::CTPOP:   return "ctpop";
2372  case ISD::CTTZ:    return "cttz";
2373  case ISD::CTLZ:    return "ctlz";
2374
2375  // IO Intrinsics
2376  case ISD::READPORT: return "readport";
2377  case ISD::WRITEPORT: return "writeport";
2378  case ISD::READIO: return "readio";
2379  case ISD::WRITEIO: return "writeio";
2380
2381  case ISD::CONDCODE:
2382    switch (cast<CondCodeSDNode>(this)->get()) {
2383    default: assert(0 && "Unknown setcc condition!");
2384    case ISD::SETOEQ:  return "setoeq";
2385    case ISD::SETOGT:  return "setogt";
2386    case ISD::SETOGE:  return "setoge";
2387    case ISD::SETOLT:  return "setolt";
2388    case ISD::SETOLE:  return "setole";
2389    case ISD::SETONE:  return "setone";
2390
2391    case ISD::SETO:    return "seto";
2392    case ISD::SETUO:   return "setuo";
2393    case ISD::SETUEQ:  return "setue";
2394    case ISD::SETUGT:  return "setugt";
2395    case ISD::SETUGE:  return "setuge";
2396    case ISD::SETULT:  return "setult";
2397    case ISD::SETULE:  return "setule";
2398    case ISD::SETUNE:  return "setune";
2399
2400    case ISD::SETEQ:   return "seteq";
2401    case ISD::SETGT:   return "setgt";
2402    case ISD::SETGE:   return "setge";
2403    case ISD::SETLT:   return "setlt";
2404    case ISD::SETLE:   return "setle";
2405    case ISD::SETNE:   return "setne";
2406    }
2407  }
2408}
2409
2410void SDNode::dump() const { dump(0); }
2411void SDNode::dump(const SelectionDAG *G) const {
2412  std::cerr << (void*)this << ": ";
2413
2414  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2415    if (i) std::cerr << ",";
2416    if (getValueType(i) == MVT::Other)
2417      std::cerr << "ch";
2418    else
2419      std::cerr << MVT::getValueTypeString(getValueType(i));
2420  }
2421  std::cerr << " = " << getOperationName(G);
2422
2423  std::cerr << " ";
2424  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2425    if (i) std::cerr << ", ";
2426    std::cerr << (void*)getOperand(i).Val;
2427    if (unsigned RN = getOperand(i).ResNo)
2428      std::cerr << ":" << RN;
2429  }
2430
2431  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2432    std::cerr << "<" << CSDN->getValue() << ">";
2433  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2434    std::cerr << "<" << CSDN->getValue() << ">";
2435  } else if (const GlobalAddressSDNode *GADN =
2436             dyn_cast<GlobalAddressSDNode>(this)) {
2437    std::cerr << "<";
2438    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2439  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2440    std::cerr << "<" << FIDN->getIndex() << ">";
2441  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2442    std::cerr << "<" << *CP->get() << ">";
2443  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2444    std::cerr << "<";
2445    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2446    if (LBB)
2447      std::cerr << LBB->getName() << " ";
2448    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2449  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2450    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2451      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2452    } else {
2453      std::cerr << " #" << R->getReg();
2454    }
2455  } else if (const ExternalSymbolSDNode *ES =
2456             dyn_cast<ExternalSymbolSDNode>(this)) {
2457    std::cerr << "'" << ES->getSymbol() << "'";
2458  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2459    if (M->getValue())
2460      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2461    else
2462      std::cerr << "<null:" << M->getOffset() << ">";
2463  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2464    std::cerr << ":" << getValueTypeString(N->getVT());
2465  }
2466}
2467
2468static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2469  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2470    if (N->getOperand(i).Val->hasOneUse())
2471      DumpNodes(N->getOperand(i).Val, indent+2, G);
2472    else
2473      std::cerr << "\n" << std::string(indent+2, ' ')
2474                << (void*)N->getOperand(i).Val << ": <multiple use>";
2475
2476
2477  std::cerr << "\n" << std::string(indent, ' ');
2478  N->dump(G);
2479}
2480
2481void SelectionDAG::dump() const {
2482  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2483  std::vector<SDNode*> Nodes(AllNodes);
2484  std::sort(Nodes.begin(), Nodes.end());
2485
2486  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2487    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2488      DumpNodes(Nodes[i], 2, this);
2489  }
2490
2491  DumpNodes(getRoot().Val, 2, this);
2492
2493  std::cerr << "\n\n";
2494}
2495
2496