SelectionDAG.cpp revision 102f3851bbde16fdd826d072240731365fe6da5d
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  for (unsigned i = 1; i < NumElems; ++i) {
203    SDValue V = N->getOperand(i);
204    if (V.getOpcode() != ISD::UNDEF)
205      return false;
206  }
207  return true;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: llvm_unreachable("Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354/// the NodeID data.
355static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356  switch (N->getOpcode()) {
357  case ISD::TargetExternalSymbol:
358  case ISD::ExternalSymbol:
359    llvm_unreachable("Should only be used on nodes with operands");
360  default: break;  // Normal nodes don't need extra info.
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    ID.AddInteger(GA->getTargetFlags());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386
387  case ISD::SRCVALUE:
388    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389    break;
390  case ISD::FrameIndex:
391  case ISD::TargetFrameIndex:
392    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393    break;
394  case ISD::JumpTable:
395  case ISD::TargetJumpTable:
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398    break;
399  case ISD::ConstantPool:
400  case ISD::TargetConstantPool: {
401    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402    ID.AddInteger(CP->getAlignment());
403    ID.AddInteger(CP->getOffset());
404    if (CP->isMachineConstantPoolEntry())
405      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406    else
407      ID.AddPointer(CP->getConstVal());
408    ID.AddInteger(CP->getTargetFlags());
409    break;
410  }
411  case ISD::LOAD: {
412    const LoadSDNode *LD = cast<LoadSDNode>(N);
413    ID.AddInteger(LD->getMemoryVT().getRawBits());
414    ID.AddInteger(LD->getRawSubclassData());
415    break;
416  }
417  case ISD::STORE: {
418    const StoreSDNode *ST = cast<StoreSDNode>(N);
419    ID.AddInteger(ST->getMemoryVT().getRawBits());
420    ID.AddInteger(ST->getRawSubclassData());
421    break;
422  }
423  case ISD::ATOMIC_CMP_SWAP:
424  case ISD::ATOMIC_SWAP:
425  case ISD::ATOMIC_LOAD_ADD:
426  case ISD::ATOMIC_LOAD_SUB:
427  case ISD::ATOMIC_LOAD_AND:
428  case ISD::ATOMIC_LOAD_OR:
429  case ISD::ATOMIC_LOAD_XOR:
430  case ISD::ATOMIC_LOAD_NAND:
431  case ISD::ATOMIC_LOAD_MIN:
432  case ISD::ATOMIC_LOAD_MAX:
433  case ISD::ATOMIC_LOAD_UMIN:
434  case ISD::ATOMIC_LOAD_UMAX: {
435    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436    ID.AddInteger(AT->getMemoryVT().getRawBits());
437    ID.AddInteger(AT->getRawSubclassData());
438    break;
439  }
440  case ISD::VECTOR_SHUFFLE: {
441    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443         i != e; ++i)
444      ID.AddInteger(SVN->getMaskElt(i));
445    break;
446  }
447  case ISD::TargetBlockAddress:
448  case ISD::BlockAddress: {
449    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451    break;
452  }
453  } // end switch (N->getOpcode())
454}
455
456/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457/// data.
458static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459  AddNodeIDOpcode(ID, N->getOpcode());
460  // Add the return value info.
461  AddNodeIDValueTypes(ID, N->getVTList());
462  // Add the operand info.
463  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464
465  // Handle SDNode leafs with special info.
466  AddNodeIDCustom(ID, N);
467}
468
469/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470/// the CSE map that carries volatility, temporalness, indexing mode, and
471/// extension/truncation information.
472///
473static inline unsigned
474encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                     bool isNonTemporal) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5) |
483         (isNonTemporal << 6);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::EH_LABEL:
499    return true;   // Never CSE these nodes.
500  }
501
502  // Check that remaining values produced are not flags.
503  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504    if (N->getValueType(i) == MVT::Flag)
505      return true; // Never CSE anything that produces a flag.
506
507  return false;
508}
509
510/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511/// SelectionDAG.
512void SelectionDAG::RemoveDeadNodes() {
513  // Create a dummy node (which is not added to allnodes), that adds a reference
514  // to the root node, preventing it from being deleted.
515  HandleSDNode Dummy(getRoot());
516
517  SmallVector<SDNode*, 128> DeadNodes;
518
519  // Add all obviously-dead nodes to the DeadNodes worklist.
520  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521    if (I->use_empty())
522      DeadNodes.push_back(I);
523
524  RemoveDeadNodes(DeadNodes);
525
526  // If the root changed (e.g. it was a dead load, update the root).
527  setRoot(Dummy.getValue());
528}
529
530/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531/// given list, and any nodes that become unreachable as a result.
532void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                   DAGUpdateListener *UpdateListener) {
534
535  // Process the worklist, deleting the nodes and adding their uses to the
536  // worklist.
537  while (!DeadNodes.empty()) {
538    SDNode *N = DeadNodes.pop_back_val();
539
540    if (UpdateListener)
541      UpdateListener->NodeDeleted(N, 0);
542
543    // Take the node out of the appropriate CSE map.
544    RemoveNodeFromCSEMaps(N);
545
546    // Next, brutally remove the operand list.  This is safe to do, as there are
547    // no cycles in the graph.
548    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549      SDUse &Use = *I++;
550      SDNode *Operand = Use.getNode();
551      Use.set(SDValue());
552
553      // Now that we removed this operand, see if there are no uses of it left.
554      if (Operand->use_empty())
555        DeadNodes.push_back(Operand);
556    }
557
558    DeallocateNode(N);
559  }
560}
561
562void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563  SmallVector<SDNode*, 16> DeadNodes(1, N);
564  RemoveDeadNodes(DeadNodes, UpdateListener);
565}
566
567void SelectionDAG::DeleteNode(SDNode *N) {
568  // First take this out of the appropriate CSE map.
569  RemoveNodeFromCSEMaps(N);
570
571  // Finally, remove uses due to operands of this node, remove from the
572  // AllNodes list, and delete the node.
573  DeleteNodeNotInCSEMaps(N);
574}
575
576void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // Drop all of the operands and decrement used node's use counts.
581  N->DropOperands();
582
583  DeallocateNode(N);
584}
585
586void SelectionDAG::DeallocateNode(SDNode *N) {
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  // Set the opcode to DELETED_NODE to help catch bugs when node
591  // memory is reallocated.
592  N->NodeType = ISD::DELETED_NODE;
593
594  NodeAllocator.Deallocate(AllNodes.remove(N));
595
596  // Remove the ordering of this node.
597  Ordering->remove(N);
598
599  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602    DbgVals[i]->setIsInvalidated();
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(const TargetMachine &tm)
794  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
796    Root(getEntryNode()), Ordering(0) {
797  AllNodes.push_back(&EntryNode);
798  Ordering = new SDNodeOrdering();
799  DbgInfo = new SDDbgInfo();
800}
801
802void SelectionDAG::init(MachineFunction &mf) {
803  MF = &mf;
804  Context = &mf.getFunction()->getContext();
805}
806
807SelectionDAG::~SelectionDAG() {
808  allnodes_clear();
809  delete Ordering;
810  delete DbgInfo;
811}
812
813void SelectionDAG::allnodes_clear() {
814  assert(&*AllNodes.begin() == &EntryNode);
815  AllNodes.remove(AllNodes.begin());
816  while (!AllNodes.empty())
817    DeallocateNode(AllNodes.begin());
818}
819
820void SelectionDAG::clear() {
821  allnodes_clear();
822  OperandAllocator.Reset();
823  CSEMap.clear();
824
825  ExtendedValueTypeNodes.clear();
826  ExternalSymbols.clear();
827  TargetExternalSymbols.clear();
828  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829            static_cast<CondCodeSDNode*>(0));
830  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831            static_cast<SDNode*>(0));
832
833  EntryNode.UseList = 0;
834  AllNodes.push_back(&EntryNode);
835  Root = getEntryNode();
836  Ordering->clear();
837  DbgInfo->clear();
838}
839
840SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
841  return VT.bitsGT(Op.getValueType()) ?
842    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
843    getNode(ISD::TRUNCATE, DL, VT, Op);
844}
845
846SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
853  assert(!VT.isVector() &&
854         "getZeroExtendInReg should use the vector element type instead of "
855         "the vector type!");
856  if (Op.getValueType() == VT) return Op;
857  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
858  APInt Imm = APInt::getLowBitsSet(BitWidth,
859                                   VT.getSizeInBits());
860  return getNode(ISD::AND, DL, Op.getValueType(), Op,
861                 getConstant(Imm, Op.getValueType()));
862}
863
864/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
865///
866SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
867  EVT EltVT = VT.getScalarType();
868  SDValue NegOne =
869    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
870  return getNode(ISD::XOR, DL, VT, Val, NegOne);
871}
872
873SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
874  EVT EltVT = VT.getScalarType();
875  assert((EltVT.getSizeInBits() >= 64 ||
876         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
877         "getConstant with a uint64_t value that doesn't fit in the type!");
878  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
879}
880
881SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
882  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
883}
884
885SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
886  assert(VT.isInteger() && "Cannot create FP integer constant!");
887
888  EVT EltVT = VT.getScalarType();
889  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
890         "APInt size does not match type size!");
891
892  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
893  FoldingSetNodeID ID;
894  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
895  ID.AddPointer(&Val);
896  void *IP = 0;
897  SDNode *N = NULL;
898  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
899    if (!VT.isVector())
900      return SDValue(N, 0);
901
902  if (!N) {
903    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
904    CSEMap.InsertNode(N, IP);
905    AllNodes.push_back(N);
906  }
907
908  SDValue Result(N, 0);
909  if (VT.isVector()) {
910    SmallVector<SDValue, 8> Ops;
911    Ops.assign(VT.getVectorNumElements(), Result);
912    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
913  }
914  return Result;
915}
916
917SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918  return getConstant(Val, TLI.getPointerTy(), isTarget);
919}
920
921
922SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
924}
925
926SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928
929  EVT EltVT = VT.getScalarType();
930
931  // Do the map lookup using the actual bit pattern for the floating point
932  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933  // we don't have issues with SNANs.
934  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937  ID.AddPointer(&V);
938  void *IP = 0;
939  SDNode *N = NULL;
940  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941    if (!VT.isVector())
942      return SDValue(N, 0);
943
944  if (!N) {
945    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
946    CSEMap.InsertNode(N, IP);
947    AllNodes.push_back(N);
948  }
949
950  SDValue Result(N, 0);
951  if (VT.isVector()) {
952    SmallVector<SDValue, 8> Ops;
953    Ops.assign(VT.getVectorNumElements(), Result);
954    // FIXME DebugLoc info might be appropriate here
955    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
956  }
957  return Result;
958}
959
960SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961  EVT EltVT = VT.getScalarType();
962  if (EltVT==MVT::f32)
963    return getConstantFP(APFloat((float)Val), VT, isTarget);
964  else if (EltVT==MVT::f64)
965    return getConstantFP(APFloat(Val), VT, isTarget);
966  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
967    bool ignored;
968    APFloat apf = APFloat(Val);
969    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
970                &ignored);
971    return getConstantFP(apf, VT, isTarget);
972  } else {
973    assert(0 && "Unsupported type in getConstantFP");
974    return SDValue();
975  }
976}
977
978SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
979                                       EVT VT, int64_t Offset,
980                                       bool isTargetGA,
981                                       unsigned char TargetFlags) {
982  assert((TargetFlags == 0 || isTargetGA) &&
983         "Cannot set target flags on target-independent globals");
984
985  // Truncate (with sign-extension) the offset value to the pointer size.
986  EVT PTy = TLI.getPointerTy();
987  unsigned BitWidth = PTy.getSizeInBits();
988  if (BitWidth < 64)
989    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
990
991  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
992  if (!GVar) {
993    // If GV is an alias then use the aliasee for determining thread-localness.
994    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
995      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
996  }
997
998  unsigned Opc;
999  if (GVar && GVar->isThreadLocal())
1000    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1001  else
1002    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1003
1004  FoldingSetNodeID ID;
1005  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1006  ID.AddPointer(GV);
1007  ID.AddInteger(Offset);
1008  ID.AddInteger(TargetFlags);
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDValue(E, 0);
1012
1013  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1014                                                      Offset, TargetFlags);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1021  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1022  FoldingSetNodeID ID;
1023  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1024  ID.AddInteger(FI);
1025  void *IP = 0;
1026  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1027    return SDValue(E, 0);
1028
1029  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1030  CSEMap.InsertNode(N, IP);
1031  AllNodes.push_back(N);
1032  return SDValue(N, 0);
1033}
1034
1035SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1036                                   unsigned char TargetFlags) {
1037  assert((TargetFlags == 0 || isTarget) &&
1038         "Cannot set target flags on target-independent jump tables");
1039  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1040  FoldingSetNodeID ID;
1041  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1042  ID.AddInteger(JTI);
1043  ID.AddInteger(TargetFlags);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047
1048  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1049                                                  TargetFlags);
1050  CSEMap.InsertNode(N, IP);
1051  AllNodes.push_back(N);
1052  return SDValue(N, 0);
1053}
1054
1055SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1056                                      unsigned Alignment, int Offset,
1057                                      bool isTarget,
1058                                      unsigned char TargetFlags) {
1059  assert((TargetFlags == 0 || isTarget) &&
1060         "Cannot set target flags on target-independent globals");
1061  if (Alignment == 0)
1062    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1063  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1064  FoldingSetNodeID ID;
1065  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1066  ID.AddInteger(Alignment);
1067  ID.AddInteger(Offset);
1068  ID.AddPointer(C);
1069  ID.AddInteger(TargetFlags);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073
1074  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1075                                                     Alignment, TargetFlags);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081
1082SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1083                                      unsigned Alignment, int Offset,
1084                                      bool isTarget,
1085                                      unsigned char TargetFlags) {
1086  assert((TargetFlags == 0 || isTarget) &&
1087         "Cannot set target flags on target-independent globals");
1088  if (Alignment == 0)
1089    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1090  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1091  FoldingSetNodeID ID;
1092  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1093  ID.AddInteger(Alignment);
1094  ID.AddInteger(Offset);
1095  C->AddSelectionDAGCSEId(ID);
1096  ID.AddInteger(TargetFlags);
1097  void *IP = 0;
1098  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1099    return SDValue(E, 0);
1100
1101  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1102                                                     Alignment, TargetFlags);
1103  CSEMap.InsertNode(N, IP);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1109  FoldingSetNodeID ID;
1110  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1111  ID.AddPointer(MBB);
1112  void *IP = 0;
1113  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1114    return SDValue(E, 0);
1115
1116  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1117  CSEMap.InsertNode(N, IP);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getValueType(EVT VT) {
1123  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1124      ValueTypeNodes.size())
1125    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1126
1127  SDNode *&N = VT.isExtended() ?
1128    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1129
1130  if (N) return SDValue(N, 0);
1131  N = new (NodeAllocator) VTSDNode(VT);
1132  AllNodes.push_back(N);
1133  return SDValue(N, 0);
1134}
1135
1136SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1137  SDNode *&N = ExternalSymbols[Sym];
1138  if (N) return SDValue(N, 0);
1139  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1140  AllNodes.push_back(N);
1141  return SDValue(N, 0);
1142}
1143
1144SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1145                                              unsigned char TargetFlags) {
1146  SDNode *&N =
1147    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1148                                                               TargetFlags)];
1149  if (N) return SDValue(N, 0);
1150  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1156  if ((unsigned)Cond >= CondCodeNodes.size())
1157    CondCodeNodes.resize(Cond+1);
1158
1159  if (CondCodeNodes[Cond] == 0) {
1160    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1161    CondCodeNodes[Cond] = N;
1162    AllNodes.push_back(N);
1163  }
1164
1165  return SDValue(CondCodeNodes[Cond], 0);
1166}
1167
1168// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169// the shuffle mask M that point at N1 to point at N2, and indices that point
1170// N2 to point at N1.
1171static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172  std::swap(N1, N2);
1173  int NElts = M.size();
1174  for (int i = 0; i != NElts; ++i) {
1175    if (M[i] >= NElts)
1176      M[i] -= NElts;
1177    else if (M[i] >= 0)
1178      M[i] += NElts;
1179  }
1180}
1181
1182SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1183                                       SDValue N2, const int *Mask) {
1184  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185  assert(VT.isVector() && N1.getValueType().isVector() &&
1186         "Vector Shuffle VTs must be a vectors");
1187  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188         && "Vector Shuffle VTs must have same element type");
1189
1190  // Canonicalize shuffle undef, undef -> undef
1191  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192    return getUNDEF(VT);
1193
1194  // Validate that all indices in Mask are within the range of the elements
1195  // input to the shuffle.
1196  unsigned NElts = VT.getVectorNumElements();
1197  SmallVector<int, 8> MaskVec;
1198  for (unsigned i = 0; i != NElts; ++i) {
1199    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200    MaskVec.push_back(Mask[i]);
1201  }
1202
1203  // Canonicalize shuffle v, v -> v, undef
1204  if (N1 == N2) {
1205    N2 = getUNDEF(VT);
1206    for (unsigned i = 0; i != NElts; ++i)
1207      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1208  }
1209
1210  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1211  if (N1.getOpcode() == ISD::UNDEF)
1212    commuteShuffle(N1, N2, MaskVec);
1213
1214  // Canonicalize all index into lhs, -> shuffle lhs, undef
1215  // Canonicalize all index into rhs, -> shuffle rhs, undef
1216  bool AllLHS = true, AllRHS = true;
1217  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218  for (unsigned i = 0; i != NElts; ++i) {
1219    if (MaskVec[i] >= (int)NElts) {
1220      if (N2Undef)
1221        MaskVec[i] = -1;
1222      else
1223        AllLHS = false;
1224    } else if (MaskVec[i] >= 0) {
1225      AllRHS = false;
1226    }
1227  }
1228  if (AllLHS && AllRHS)
1229    return getUNDEF(VT);
1230  if (AllLHS && !N2Undef)
1231    N2 = getUNDEF(VT);
1232  if (AllRHS) {
1233    N1 = getUNDEF(VT);
1234    commuteShuffle(N1, N2, MaskVec);
1235  }
1236
1237  // If Identity shuffle, or all shuffle in to undef, return that node.
1238  bool AllUndef = true;
1239  bool Identity = true;
1240  for (unsigned i = 0; i != NElts; ++i) {
1241    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242    if (MaskVec[i] >= 0) AllUndef = false;
1243  }
1244  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245    return N1;
1246  if (AllUndef)
1247    return getUNDEF(VT);
1248
1249  FoldingSetNodeID ID;
1250  SDValue Ops[2] = { N1, N2 };
1251  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252  for (unsigned i = 0; i != NElts; ++i)
1253    ID.AddInteger(MaskVec[i]);
1254
1255  void* IP = 0;
1256  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257    return SDValue(E, 0);
1258
1259  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260  // SDNode doesn't have access to it.  This memory will be "leaked" when
1261  // the node is deallocated, but recovered when the NodeAllocator is released.
1262  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264
1265  ShuffleVectorSDNode *N =
1266    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267  CSEMap.InsertNode(N, IP);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1273                                       SDValue Val, SDValue DTy,
1274                                       SDValue STy, SDValue Rnd, SDValue Sat,
1275                                       ISD::CvtCode Code) {
1276  // If the src and dest types are the same and the conversion is between
1277  // integer types of the same sign or two floats, no conversion is necessary.
1278  if (DTy == STy &&
1279      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280    return Val;
1281
1282  FoldingSetNodeID ID;
1283  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1284  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1285  void* IP = 0;
1286  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1287    return SDValue(E, 0);
1288
1289  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1290                                                           Code);
1291  CSEMap.InsertNode(N, IP);
1292  AllNodes.push_back(N);
1293  return SDValue(N, 0);
1294}
1295
1296SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1297  FoldingSetNodeID ID;
1298  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1299  ID.AddInteger(RegNo);
1300  void *IP = 0;
1301  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1302    return SDValue(E, 0);
1303
1304  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1305  CSEMap.InsertNode(N, IP);
1306  AllNodes.push_back(N);
1307  return SDValue(N, 0);
1308}
1309
1310SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1311  FoldingSetNodeID ID;
1312  SDValue Ops[] = { Root };
1313  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1314  ID.AddPointer(Label);
1315  void *IP = 0;
1316  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317    return SDValue(E, 0);
1318
1319  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1320  CSEMap.InsertNode(N, IP);
1321  AllNodes.push_back(N);
1322  return SDValue(N, 0);
1323}
1324
1325
1326SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1327                                      bool isTarget,
1328                                      unsigned char TargetFlags) {
1329  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1330
1331  FoldingSetNodeID ID;
1332  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1333  ID.AddPointer(BA);
1334  ID.AddInteger(TargetFlags);
1335  void *IP = 0;
1336  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337    return SDValue(E, 0);
1338
1339  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1340  CSEMap.InsertNode(N, IP);
1341  AllNodes.push_back(N);
1342  return SDValue(N, 0);
1343}
1344
1345SDValue SelectionDAG::getSrcValue(const Value *V) {
1346  assert((!V || V->getType()->isPointerTy()) &&
1347         "SrcValue is not a pointer?");
1348
1349  FoldingSetNodeID ID;
1350  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1351  ID.AddPointer(V);
1352
1353  void *IP = 0;
1354  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1355    return SDValue(E, 0);
1356
1357  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1358  CSEMap.InsertNode(N, IP);
1359  AllNodes.push_back(N);
1360  return SDValue(N, 0);
1361}
1362
1363/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1364SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1365  FoldingSetNodeID ID;
1366  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1367  ID.AddPointer(MD);
1368
1369  void *IP = 0;
1370  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1371    return SDValue(E, 0);
1372
1373  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1374  CSEMap.InsertNode(N, IP);
1375  AllNodes.push_back(N);
1376  return SDValue(N, 0);
1377}
1378
1379
1380/// getShiftAmountOperand - Return the specified value casted to
1381/// the target's desired shift amount type.
1382SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1383  EVT OpTy = Op.getValueType();
1384  MVT ShTy = TLI.getShiftAmountTy();
1385  if (OpTy == ShTy || OpTy.isVector()) return Op;
1386
1387  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1388  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1389}
1390
1391/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1392/// specified value type.
1393SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1394  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1395  unsigned ByteSize = VT.getStoreSize();
1396  const Type *Ty = VT.getTypeForEVT(*getContext());
1397  unsigned StackAlign =
1398  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1399
1400  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1401  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1402}
1403
1404/// CreateStackTemporary - Create a stack temporary suitable for holding
1405/// either of the specified value types.
1406SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1407  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1408                            VT2.getStoreSizeInBits())/8;
1409  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1410  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1411  const TargetData *TD = TLI.getTargetData();
1412  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1413                            TD->getPrefTypeAlignment(Ty2));
1414
1415  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1416  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1417  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1418}
1419
1420SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1421                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1422  // These setcc operations always fold.
1423  switch (Cond) {
1424  default: break;
1425  case ISD::SETFALSE:
1426  case ISD::SETFALSE2: return getConstant(0, VT);
1427  case ISD::SETTRUE:
1428  case ISD::SETTRUE2:  return getConstant(1, VT);
1429
1430  case ISD::SETOEQ:
1431  case ISD::SETOGT:
1432  case ISD::SETOGE:
1433  case ISD::SETOLT:
1434  case ISD::SETOLE:
1435  case ISD::SETONE:
1436  case ISD::SETO:
1437  case ISD::SETUO:
1438  case ISD::SETUEQ:
1439  case ISD::SETUNE:
1440    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1441    break;
1442  }
1443
1444  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1445    const APInt &C2 = N2C->getAPIntValue();
1446    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1447      const APInt &C1 = N1C->getAPIntValue();
1448
1449      switch (Cond) {
1450      default: llvm_unreachable("Unknown integer setcc!");
1451      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1452      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1453      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1454      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1455      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1456      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1457      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1458      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1459      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1460      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1461      }
1462    }
1463  }
1464  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1465    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1466      // No compile time operations on this type yet.
1467      if (N1C->getValueType(0) == MVT::ppcf128)
1468        return SDValue();
1469
1470      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1471      switch (Cond) {
1472      default: break;
1473      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1474                          return getUNDEF(VT);
1475                        // fall through
1476      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1477      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1478                          return getUNDEF(VT);
1479                        // fall through
1480      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1481                                           R==APFloat::cmpLessThan, VT);
1482      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1486      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1490      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1491                          return getUNDEF(VT);
1492                        // fall through
1493      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1494                                           R==APFloat::cmpEqual, VT);
1495      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1496                          return getUNDEF(VT);
1497                        // fall through
1498      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1501      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1502      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1503                                           R==APFloat::cmpEqual, VT);
1504      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1505      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1506                                           R==APFloat::cmpLessThan, VT);
1507      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1508                                           R==APFloat::cmpUnordered, VT);
1509      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1510      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1511      }
1512    } else {
1513      // Ensure that the constant occurs on the RHS.
1514      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1515    }
1516  }
1517
1518  // Could not fold it.
1519  return SDValue();
1520}
1521
1522/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1523/// use this predicate to simplify operations downstream.
1524bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1525  // This predicate is not safe for vector operations.
1526  if (Op.getValueType().isVector())
1527    return false;
1528
1529  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1530  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1531}
1532
1533/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1534/// this predicate to simplify operations downstream.  Mask is known to be zero
1535/// for bits that V cannot have.
1536bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1537                                     unsigned Depth) const {
1538  APInt KnownZero, KnownOne;
1539  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1540  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1541  return (KnownZero & Mask) == Mask;
1542}
1543
1544/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1545/// known to be either zero or one and return them in the KnownZero/KnownOne
1546/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1547/// processing.
1548void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1549                                     APInt &KnownZero, APInt &KnownOne,
1550                                     unsigned Depth) const {
1551  unsigned BitWidth = Mask.getBitWidth();
1552  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1553         "Mask size mismatches value type size!");
1554
1555  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1556  if (Depth == 6 || Mask == 0)
1557    return;  // Limit search depth.
1558
1559  APInt KnownZero2, KnownOne2;
1560
1561  switch (Op.getOpcode()) {
1562  case ISD::Constant:
1563    // We know all of the bits for a constant!
1564    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1565    KnownZero = ~KnownOne & Mask;
1566    return;
1567  case ISD::AND:
1568    // If either the LHS or the RHS are Zero, the result is zero.
1569    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1571                      KnownZero2, KnownOne2, Depth+1);
1572    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1574
1575    // Output known-1 bits are only known if set in both the LHS & RHS.
1576    KnownOne &= KnownOne2;
1577    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1578    KnownZero |= KnownZero2;
1579    return;
1580  case ISD::OR:
1581    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1582    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1583                      KnownZero2, KnownOne2, Depth+1);
1584    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1585    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1586
1587    // Output known-0 bits are only known if clear in both the LHS & RHS.
1588    KnownZero &= KnownZero2;
1589    // Output known-1 are known to be set if set in either the LHS | RHS.
1590    KnownOne |= KnownOne2;
1591    return;
1592  case ISD::XOR: {
1593    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1594    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1597
1598    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1599    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1600    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1601    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1602    KnownZero = KnownZeroOut;
1603    return;
1604  }
1605  case ISD::MUL: {
1606    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1607    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1608    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1609    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1610    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1611
1612    // If low bits are zero in either operand, output low known-0 bits.
1613    // Also compute a conserative estimate for high known-0 bits.
1614    // More trickiness is possible, but this is sufficient for the
1615    // interesting case of alignment computation.
1616    KnownOne.clear();
1617    unsigned TrailZ = KnownZero.countTrailingOnes() +
1618                      KnownZero2.countTrailingOnes();
1619    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1620                               KnownZero2.countLeadingOnes(),
1621                               BitWidth) - BitWidth;
1622
1623    TrailZ = std::min(TrailZ, BitWidth);
1624    LeadZ = std::min(LeadZ, BitWidth);
1625    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1626                APInt::getHighBitsSet(BitWidth, LeadZ);
1627    KnownZero &= Mask;
1628    return;
1629  }
1630  case ISD::UDIV: {
1631    // For the purposes of computing leading zeros we can conservatively
1632    // treat a udiv as a logical right shift by the power of 2 known to
1633    // be less than the denominator.
1634    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1635    ComputeMaskedBits(Op.getOperand(0),
1636                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1637    unsigned LeadZ = KnownZero2.countLeadingOnes();
1638
1639    KnownOne2.clear();
1640    KnownZero2.clear();
1641    ComputeMaskedBits(Op.getOperand(1),
1642                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1643    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1644    if (RHSUnknownLeadingOnes != BitWidth)
1645      LeadZ = std::min(BitWidth,
1646                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1647
1648    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1649    return;
1650  }
1651  case ISD::SELECT:
1652    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1653    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1654    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1655    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1656
1657    // Only known if known in both the LHS and RHS.
1658    KnownOne &= KnownOne2;
1659    KnownZero &= KnownZero2;
1660    return;
1661  case ISD::SELECT_CC:
1662    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1663    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1664    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1665    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1666
1667    // Only known if known in both the LHS and RHS.
1668    KnownOne &= KnownOne2;
1669    KnownZero &= KnownZero2;
1670    return;
1671  case ISD::SADDO:
1672  case ISD::UADDO:
1673  case ISD::SSUBO:
1674  case ISD::USUBO:
1675  case ISD::SMULO:
1676  case ISD::UMULO:
1677    if (Op.getResNo() != 1)
1678      return;
1679    // The boolean result conforms to getBooleanContents.  Fall through.
1680  case ISD::SETCC:
1681    // If we know the result of a setcc has the top bits zero, use this info.
1682    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1683        BitWidth > 1)
1684      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1685    return;
1686  case ISD::SHL:
1687    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1688    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1689      unsigned ShAmt = SA->getZExtValue();
1690
1691      // If the shift count is an invalid immediate, don't do anything.
1692      if (ShAmt >= BitWidth)
1693        return;
1694
1695      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1696                        KnownZero, KnownOne, Depth+1);
1697      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698      KnownZero <<= ShAmt;
1699      KnownOne  <<= ShAmt;
1700      // low bits known zero.
1701      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1702    }
1703    return;
1704  case ISD::SRL:
1705    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1706    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1707      unsigned ShAmt = SA->getZExtValue();
1708
1709      // If the shift count is an invalid immediate, don't do anything.
1710      if (ShAmt >= BitWidth)
1711        return;
1712
1713      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1714                        KnownZero, KnownOne, Depth+1);
1715      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1716      KnownZero = KnownZero.lshr(ShAmt);
1717      KnownOne  = KnownOne.lshr(ShAmt);
1718
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      KnownZero |= HighBits;  // High bits known zero.
1721    }
1722    return;
1723  case ISD::SRA:
1724    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1725      unsigned ShAmt = SA->getZExtValue();
1726
1727      // If the shift count is an invalid immediate, don't do anything.
1728      if (ShAmt >= BitWidth)
1729        return;
1730
1731      APInt InDemandedMask = (Mask << ShAmt);
1732      // If any of the demanded bits are produced by the sign extension, we also
1733      // demand the input sign bit.
1734      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1735      if (HighBits.getBoolValue())
1736        InDemandedMask |= APInt::getSignBit(BitWidth);
1737
1738      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1739                        Depth+1);
1740      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1741      KnownZero = KnownZero.lshr(ShAmt);
1742      KnownOne  = KnownOne.lshr(ShAmt);
1743
1744      // Handle the sign bits.
1745      APInt SignBit = APInt::getSignBit(BitWidth);
1746      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1747
1748      if (KnownZero.intersects(SignBit)) {
1749        KnownZero |= HighBits;  // New bits are known zero.
1750      } else if (KnownOne.intersects(SignBit)) {
1751        KnownOne  |= HighBits;  // New bits are known one.
1752      }
1753    }
1754    return;
1755  case ISD::SIGN_EXTEND_INREG: {
1756    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757    unsigned EBits = EVT.getScalarType().getSizeInBits();
1758
1759    // Sign extension.  Compute the demanded bits in the result that are not
1760    // present in the input.
1761    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1762
1763    APInt InSignBit = APInt::getSignBit(EBits);
1764    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1765
1766    // If the sign extended bits are demanded, we know that the sign
1767    // bit is demanded.
1768    InSignBit.zext(BitWidth);
1769    if (NewBits.getBoolValue())
1770      InputDemandedBits |= InSignBit;
1771
1772    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1773                      KnownZero, KnownOne, Depth+1);
1774    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1775
1776    // If the sign bit of the input is known set or clear, then we know the
1777    // top bits of the result.
1778    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1779      KnownZero |= NewBits;
1780      KnownOne  &= ~NewBits;
1781    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1782      KnownOne  |= NewBits;
1783      KnownZero &= ~NewBits;
1784    } else {                              // Input sign bit unknown
1785      KnownZero &= ~NewBits;
1786      KnownOne  &= ~NewBits;
1787    }
1788    return;
1789  }
1790  case ISD::CTTZ:
1791  case ISD::CTLZ:
1792  case ISD::CTPOP: {
1793    unsigned LowBits = Log2_32(BitWidth)+1;
1794    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1795    KnownOne.clear();
1796    return;
1797  }
1798  case ISD::LOAD: {
1799    if (ISD::isZEXTLoad(Op.getNode())) {
1800      LoadSDNode *LD = cast<LoadSDNode>(Op);
1801      EVT VT = LD->getMemoryVT();
1802      unsigned MemBits = VT.getScalarType().getSizeInBits();
1803      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1804    }
1805    return;
1806  }
1807  case ISD::ZERO_EXTEND: {
1808    EVT InVT = Op.getOperand(0).getValueType();
1809    unsigned InBits = InVT.getScalarType().getSizeInBits();
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask    = Mask;
1812    InMask.trunc(InBits);
1813    KnownZero.trunc(InBits);
1814    KnownOne.trunc(InBits);
1815    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816    KnownZero.zext(BitWidth);
1817    KnownOne.zext(BitWidth);
1818    KnownZero |= NewBits;
1819    return;
1820  }
1821  case ISD::SIGN_EXTEND: {
1822    EVT InVT = Op.getOperand(0).getValueType();
1823    unsigned InBits = InVT.getScalarType().getSizeInBits();
1824    APInt InSignBit = APInt::getSignBit(InBits);
1825    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1826    APInt InMask = Mask;
1827    InMask.trunc(InBits);
1828
1829    // If any of the sign extended bits are demanded, we know that the sign
1830    // bit is demanded. Temporarily set this bit in the mask for our callee.
1831    if (NewBits.getBoolValue())
1832      InMask |= InSignBit;
1833
1834    KnownZero.trunc(InBits);
1835    KnownOne.trunc(InBits);
1836    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1837
1838    // Note if the sign bit is known to be zero or one.
1839    bool SignBitKnownZero = KnownZero.isNegative();
1840    bool SignBitKnownOne  = KnownOne.isNegative();
1841    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1842           "Sign bit can't be known to be both zero and one!");
1843
1844    // If the sign bit wasn't actually demanded by our caller, we don't
1845    // want it set in the KnownZero and KnownOne result values. Reset the
1846    // mask and reapply it to the result values.
1847    InMask = Mask;
1848    InMask.trunc(InBits);
1849    KnownZero &= InMask;
1850    KnownOne  &= InMask;
1851
1852    KnownZero.zext(BitWidth);
1853    KnownOne.zext(BitWidth);
1854
1855    // If the sign bit is known zero or one, the top bits match.
1856    if (SignBitKnownZero)
1857      KnownZero |= NewBits;
1858    else if (SignBitKnownOne)
1859      KnownOne  |= NewBits;
1860    return;
1861  }
1862  case ISD::ANY_EXTEND: {
1863    EVT InVT = Op.getOperand(0).getValueType();
1864    unsigned InBits = InVT.getScalarType().getSizeInBits();
1865    APInt InMask = Mask;
1866    InMask.trunc(InBits);
1867    KnownZero.trunc(InBits);
1868    KnownOne.trunc(InBits);
1869    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1870    KnownZero.zext(BitWidth);
1871    KnownOne.zext(BitWidth);
1872    return;
1873  }
1874  case ISD::TRUNCATE: {
1875    EVT InVT = Op.getOperand(0).getValueType();
1876    unsigned InBits = InVT.getScalarType().getSizeInBits();
1877    APInt InMask = Mask;
1878    InMask.zext(InBits);
1879    KnownZero.zext(InBits);
1880    KnownOne.zext(InBits);
1881    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1882    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1883    KnownZero.trunc(BitWidth);
1884    KnownOne.trunc(BitWidth);
1885    break;
1886  }
1887  case ISD::AssertZext: {
1888    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1889    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1890    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1891                      KnownOne, Depth+1);
1892    KnownZero |= (~InMask) & Mask;
1893    return;
1894  }
1895  case ISD::FGETSIGN:
1896    // All bits are zero except the low bit.
1897    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1898    return;
1899
1900  case ISD::SUB: {
1901    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1902      // We know that the top bits of C-X are clear if X contains less bits
1903      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1904      // positive if we can prove that X is >= 0 and < 16.
1905      if (CLHS->getAPIntValue().isNonNegative()) {
1906        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1907        // NLZ can't be BitWidth with no sign bit
1908        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1909        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1910                          Depth+1);
1911
1912        // If all of the MaskV bits are known to be zero, then we know the
1913        // output top bits are zero, because we now know that the output is
1914        // from [0-C].
1915        if ((KnownZero2 & MaskV) == MaskV) {
1916          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1917          // Top bits known zero.
1918          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1919        }
1920      }
1921    }
1922  }
1923  // fall through
1924  case ISD::ADD: {
1925    // Output known-0 bits are known if clear or set in both the low clear bits
1926    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1927    // low 3 bits clear.
1928    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1929                                       BitWidth - Mask.countLeadingZeros());
1930    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1931    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1932    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1933
1934    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1935    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1936    KnownZeroOut = std::min(KnownZeroOut,
1937                            KnownZero2.countTrailingOnes());
1938
1939    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1940    return;
1941  }
1942  case ISD::SREM:
1943    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1944      const APInt &RA = Rem->getAPIntValue().abs();
1945      if (RA.isPowerOf2()) {
1946        APInt LowBits = RA - 1;
1947        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1948        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1949
1950        // The low bits of the first operand are unchanged by the srem.
1951        KnownZero = KnownZero2 & LowBits;
1952        KnownOne = KnownOne2 & LowBits;
1953
1954        // If the first operand is non-negative or has all low bits zero, then
1955        // the upper bits are all zero.
1956        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1957          KnownZero |= ~LowBits;
1958
1959        // If the first operand is negative and not all low bits are zero, then
1960        // the upper bits are all one.
1961        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1962          KnownOne |= ~LowBits;
1963
1964        KnownZero &= Mask;
1965        KnownOne &= Mask;
1966
1967        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1968      }
1969    }
1970    return;
1971  case ISD::UREM: {
1972    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1973      const APInt &RA = Rem->getAPIntValue();
1974      if (RA.isPowerOf2()) {
1975        APInt LowBits = (RA - 1);
1976        APInt Mask2 = LowBits & Mask;
1977        KnownZero |= ~LowBits & Mask;
1978        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1979        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1980        break;
1981      }
1982    }
1983
1984    // Since the result is less than or equal to either operand, any leading
1985    // zero bits in either operand must also exist in the result.
1986    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1987    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1988                      Depth+1);
1989    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1990                      Depth+1);
1991
1992    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1993                                KnownZero2.countLeadingOnes());
1994    KnownOne.clear();
1995    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1996    return;
1997  }
1998  default:
1999    // Allow the target to implement this method for its nodes.
2000    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2001  case ISD::INTRINSIC_WO_CHAIN:
2002  case ISD::INTRINSIC_W_CHAIN:
2003  case ISD::INTRINSIC_VOID:
2004      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2005                                         Depth);
2006    }
2007    return;
2008  }
2009}
2010
2011/// ComputeNumSignBits - Return the number of times the sign bit of the
2012/// register is replicated into the other bits.  We know that at least 1 bit
2013/// is always equal to the sign bit (itself), but other cases can give us
2014/// information.  For example, immediately after an "SRA X, 2", we know that
2015/// the top 3 bits are all equal to each other, so we return 3.
2016unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2017  EVT VT = Op.getValueType();
2018  assert(VT.isInteger() && "Invalid VT!");
2019  unsigned VTBits = VT.getScalarType().getSizeInBits();
2020  unsigned Tmp, Tmp2;
2021  unsigned FirstAnswer = 1;
2022
2023  if (Depth == 6)
2024    return 1;  // Limit search depth.
2025
2026  switch (Op.getOpcode()) {
2027  default: break;
2028  case ISD::AssertSext:
2029    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2030    return VTBits-Tmp+1;
2031  case ISD::AssertZext:
2032    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2033    return VTBits-Tmp;
2034
2035  case ISD::Constant: {
2036    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2037    // If negative, return # leading ones.
2038    if (Val.isNegative())
2039      return Val.countLeadingOnes();
2040
2041    // Return # leading zeros.
2042    return Val.countLeadingZeros();
2043  }
2044
2045  case ISD::SIGN_EXTEND:
2046    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2047    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2048
2049  case ISD::SIGN_EXTEND_INREG:
2050    // Max of the input and what this extends.
2051    Tmp =
2052      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2053    Tmp = VTBits-Tmp+1;
2054
2055    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2056    return std::max(Tmp, Tmp2);
2057
2058  case ISD::SRA:
2059    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2060    // SRA X, C   -> adds C sign bits.
2061    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2062      Tmp += C->getZExtValue();
2063      if (Tmp > VTBits) Tmp = VTBits;
2064    }
2065    return Tmp;
2066  case ISD::SHL:
2067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2068      // shl destroys sign bits.
2069      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2071          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2072      return Tmp - C->getZExtValue();
2073    }
2074    break;
2075  case ISD::AND:
2076  case ISD::OR:
2077  case ISD::XOR:    // NOT is handled here.
2078    // Logical binary ops preserve the number of sign bits at the worst.
2079    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2080    if (Tmp != 1) {
2081      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2082      FirstAnswer = std::min(Tmp, Tmp2);
2083      // We computed what we know about the sign bits as our first
2084      // answer. Now proceed to the generic code that uses
2085      // ComputeMaskedBits, and pick whichever answer is better.
2086    }
2087    break;
2088
2089  case ISD::SELECT:
2090    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2091    if (Tmp == 1) return 1;  // Early out.
2092    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2093    return std::min(Tmp, Tmp2);
2094
2095  case ISD::SADDO:
2096  case ISD::UADDO:
2097  case ISD::SSUBO:
2098  case ISD::USUBO:
2099  case ISD::SMULO:
2100  case ISD::UMULO:
2101    if (Op.getResNo() != 1)
2102      break;
2103    // The boolean result conforms to getBooleanContents.  Fall through.
2104  case ISD::SETCC:
2105    // If setcc returns 0/-1, all bits are sign bits.
2106    if (TLI.getBooleanContents() ==
2107        TargetLowering::ZeroOrNegativeOneBooleanContent)
2108      return VTBits;
2109    break;
2110  case ISD::ROTL:
2111  case ISD::ROTR:
2112    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2113      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2114
2115      // Handle rotate right by N like a rotate left by 32-N.
2116      if (Op.getOpcode() == ISD::ROTR)
2117        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2118
2119      // If we aren't rotating out all of the known-in sign bits, return the
2120      // number that are left.  This handles rotl(sext(x), 1) for example.
2121      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2122      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2123    }
2124    break;
2125  case ISD::ADD:
2126    // Add can have at most one carry bit.  Thus we know that the output
2127    // is, at worst, one more bit than the inputs.
2128    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129    if (Tmp == 1) return 1;  // Early out.
2130
2131    // Special case decrementing a value (ADD X, -1):
2132    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2133      if (CRHS->isAllOnesValue()) {
2134        APInt KnownZero, KnownOne;
2135        APInt Mask = APInt::getAllOnesValue(VTBits);
2136        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2137
2138        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2139        // sign bits set.
2140        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2141          return VTBits;
2142
2143        // If we are subtracting one from a positive number, there is no carry
2144        // out of the result.
2145        if (KnownZero.isNegative())
2146          return Tmp;
2147      }
2148
2149    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2150    if (Tmp2 == 1) return 1;
2151      return std::min(Tmp, Tmp2)-1;
2152    break;
2153
2154  case ISD::SUB:
2155    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2156    if (Tmp2 == 1) return 1;
2157
2158    // Handle NEG.
2159    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2160      if (CLHS->isNullValue()) {
2161        APInt KnownZero, KnownOne;
2162        APInt Mask = APInt::getAllOnesValue(VTBits);
2163        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2164        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2165        // sign bits set.
2166        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2167          return VTBits;
2168
2169        // If the input is known to be positive (the sign bit is known clear),
2170        // the output of the NEG has the same number of sign bits as the input.
2171        if (KnownZero.isNegative())
2172          return Tmp2;
2173
2174        // Otherwise, we treat this like a SUB.
2175      }
2176
2177    // Sub can have at most one carry bit.  Thus we know that the output
2178    // is, at worst, one more bit than the inputs.
2179    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2180    if (Tmp == 1) return 1;  // Early out.
2181      return std::min(Tmp, Tmp2)-1;
2182    break;
2183  case ISD::TRUNCATE:
2184    // FIXME: it's tricky to do anything useful for this, but it is an important
2185    // case for targets like X86.
2186    break;
2187  }
2188
2189  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2190  if (Op.getOpcode() == ISD::LOAD) {
2191    LoadSDNode *LD = cast<LoadSDNode>(Op);
2192    unsigned ExtType = LD->getExtensionType();
2193    switch (ExtType) {
2194    default: break;
2195    case ISD::SEXTLOAD:    // '17' bits known
2196      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2197      return VTBits-Tmp+1;
2198    case ISD::ZEXTLOAD:    // '16' bits known
2199      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2200      return VTBits-Tmp;
2201    }
2202  }
2203
2204  // Allow the target to implement this method for its nodes.
2205  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2206      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2207      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2208      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2209    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2210    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2211  }
2212
2213  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2214  // use this information.
2215  APInt KnownZero, KnownOne;
2216  APInt Mask = APInt::getAllOnesValue(VTBits);
2217  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2218
2219  if (KnownZero.isNegative()) {        // sign bit is 0
2220    Mask = KnownZero;
2221  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2222    Mask = KnownOne;
2223  } else {
2224    // Nothing known.
2225    return FirstAnswer;
2226  }
2227
2228  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2229  // the number of identical bits in the top of the input value.
2230  Mask = ~Mask;
2231  Mask <<= Mask.getBitWidth()-VTBits;
2232  // Return # leading zeros.  We use 'min' here in case Val was zero before
2233  // shifting.  We don't want to return '64' as for an i32 "0".
2234  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2235}
2236
2237bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2238  // If we're told that NaNs won't happen, assume they won't.
2239  if (FiniteOnlyFPMath())
2240    return true;
2241
2242  // If the value is a constant, we can obviously see if it is a NaN or not.
2243  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2244    return !C->getValueAPF().isNaN();
2245
2246  // TODO: Recognize more cases here.
2247
2248  return false;
2249}
2250
2251bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2252  // If the value is a constant, we can obviously see if it is a zero or not.
2253  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2254    return !C->isZero();
2255
2256  // TODO: Recognize more cases here.
2257
2258  return false;
2259}
2260
2261bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2262  // Check the obvious case.
2263  if (A == B) return true;
2264
2265  // For for negative and positive zero.
2266  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2267    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2268      if (CA->isZero() && CB->isZero()) return true;
2269
2270  // Otherwise they may not be equal.
2271  return false;
2272}
2273
2274bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2275  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2276  if (!GA) return false;
2277  if (GA->getOffset() != 0) return false;
2278  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2279  if (!GV) return false;
2280  return MF->getMMI().hasDebugInfo();
2281}
2282
2283
2284/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2285/// element of the result of the vector shuffle.
2286SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2287                                          unsigned i) {
2288  EVT VT = N->getValueType(0);
2289  DebugLoc dl = N->getDebugLoc();
2290  if (N->getMaskElt(i) < 0)
2291    return getUNDEF(VT.getVectorElementType());
2292  unsigned Index = N->getMaskElt(i);
2293  unsigned NumElems = VT.getVectorNumElements();
2294  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2295  Index %= NumElems;
2296
2297  if (V.getOpcode() == ISD::BIT_CONVERT) {
2298    V = V.getOperand(0);
2299    EVT VVT = V.getValueType();
2300    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2301      return SDValue();
2302  }
2303  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2304    return (Index == 0) ? V.getOperand(0)
2305                      : getUNDEF(VT.getVectorElementType());
2306  if (V.getOpcode() == ISD::BUILD_VECTOR)
2307    return V.getOperand(Index);
2308  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2309    return getShuffleScalarElt(SVN, Index);
2310  return SDValue();
2311}
2312
2313
2314/// getNode - Gets or creates the specified node.
2315///
2316SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2317  FoldingSetNodeID ID;
2318  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2319  void *IP = 0;
2320  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2321    return SDValue(E, 0);
2322
2323  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2324  CSEMap.InsertNode(N, IP);
2325
2326  AllNodes.push_back(N);
2327#ifndef NDEBUG
2328  VerifyNode(N);
2329#endif
2330  return SDValue(N, 0);
2331}
2332
2333SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2334                              EVT VT, SDValue Operand) {
2335  // Constant fold unary operations with an integer constant operand.
2336  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2337    const APInt &Val = C->getAPIntValue();
2338    switch (Opcode) {
2339    default: break;
2340    case ISD::SIGN_EXTEND:
2341      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2342    case ISD::ANY_EXTEND:
2343    case ISD::ZERO_EXTEND:
2344    case ISD::TRUNCATE:
2345      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2346    case ISD::UINT_TO_FP:
2347    case ISD::SINT_TO_FP: {
2348      const uint64_t zero[] = {0, 0};
2349      // No compile time operations on ppcf128.
2350      if (VT == MVT::ppcf128) break;
2351      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2352      (void)apf.convertFromAPInt(Val,
2353                                 Opcode==ISD::SINT_TO_FP,
2354                                 APFloat::rmNearestTiesToEven);
2355      return getConstantFP(apf, VT);
2356    }
2357    case ISD::BIT_CONVERT:
2358      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2359        return getConstantFP(Val.bitsToFloat(), VT);
2360      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2361        return getConstantFP(Val.bitsToDouble(), VT);
2362      break;
2363    case ISD::BSWAP:
2364      return getConstant(Val.byteSwap(), VT);
2365    case ISD::CTPOP:
2366      return getConstant(Val.countPopulation(), VT);
2367    case ISD::CTLZ:
2368      return getConstant(Val.countLeadingZeros(), VT);
2369    case ISD::CTTZ:
2370      return getConstant(Val.countTrailingZeros(), VT);
2371    }
2372  }
2373
2374  // Constant fold unary operations with a floating point constant operand.
2375  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2376    APFloat V = C->getValueAPF();    // make copy
2377    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2378      switch (Opcode) {
2379      case ISD::FNEG:
2380        V.changeSign();
2381        return getConstantFP(V, VT);
2382      case ISD::FABS:
2383        V.clearSign();
2384        return getConstantFP(V, VT);
2385      case ISD::FP_ROUND:
2386      case ISD::FP_EXTEND: {
2387        bool ignored;
2388        // This can return overflow, underflow, or inexact; we don't care.
2389        // FIXME need to be more flexible about rounding mode.
2390        (void)V.convert(*EVTToAPFloatSemantics(VT),
2391                        APFloat::rmNearestTiesToEven, &ignored);
2392        return getConstantFP(V, VT);
2393      }
2394      case ISD::FP_TO_SINT:
2395      case ISD::FP_TO_UINT: {
2396        integerPart x[2];
2397        bool ignored;
2398        assert(integerPartWidth >= 64);
2399        // FIXME need to be more flexible about rounding mode.
2400        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2401                              Opcode==ISD::FP_TO_SINT,
2402                              APFloat::rmTowardZero, &ignored);
2403        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2404          break;
2405        APInt api(VT.getSizeInBits(), 2, x);
2406        return getConstant(api, VT);
2407      }
2408      case ISD::BIT_CONVERT:
2409        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2410          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2411        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2412          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2413        break;
2414      }
2415    }
2416  }
2417
2418  unsigned OpOpcode = Operand.getNode()->getOpcode();
2419  switch (Opcode) {
2420  case ISD::TokenFactor:
2421  case ISD::MERGE_VALUES:
2422  case ISD::CONCAT_VECTORS:
2423    return Operand;         // Factor, merge or concat of one node?  No need.
2424  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2425  case ISD::FP_EXTEND:
2426    assert(VT.isFloatingPoint() &&
2427           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2428    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2429    assert((!VT.isVector() ||
2430            VT.getVectorNumElements() ==
2431            Operand.getValueType().getVectorNumElements()) &&
2432           "Vector element count mismatch!");
2433    if (Operand.getOpcode() == ISD::UNDEF)
2434      return getUNDEF(VT);
2435    break;
2436  case ISD::SIGN_EXTEND:
2437    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2438           "Invalid SIGN_EXTEND!");
2439    if (Operand.getValueType() == VT) return Operand;   // noop extension
2440    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2441           "Invalid sext node, dst < src!");
2442    assert((!VT.isVector() ||
2443            VT.getVectorNumElements() ==
2444            Operand.getValueType().getVectorNumElements()) &&
2445           "Vector element count mismatch!");
2446    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2447      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2448    break;
2449  case ISD::ZERO_EXTEND:
2450    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2451           "Invalid ZERO_EXTEND!");
2452    if (Operand.getValueType() == VT) return Operand;   // noop extension
2453    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2454           "Invalid zext node, dst < src!");
2455    assert((!VT.isVector() ||
2456            VT.getVectorNumElements() ==
2457            Operand.getValueType().getVectorNumElements()) &&
2458           "Vector element count mismatch!");
2459    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2460      return getNode(ISD::ZERO_EXTEND, DL, VT,
2461                     Operand.getNode()->getOperand(0));
2462    break;
2463  case ISD::ANY_EXTEND:
2464    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2465           "Invalid ANY_EXTEND!");
2466    if (Operand.getValueType() == VT) return Operand;   // noop extension
2467    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2468           "Invalid anyext node, dst < src!");
2469    assert((!VT.isVector() ||
2470            VT.getVectorNumElements() ==
2471            Operand.getValueType().getVectorNumElements()) &&
2472           "Vector element count mismatch!");
2473
2474    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2475        OpOpcode == ISD::ANY_EXTEND)
2476      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2477      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2478
2479    // (ext (trunx x)) -> x
2480    if (OpOpcode == ISD::TRUNCATE) {
2481      SDValue OpOp = Operand.getNode()->getOperand(0);
2482      if (OpOp.getValueType() == VT)
2483        return OpOp;
2484    }
2485    break;
2486  case ISD::TRUNCATE:
2487    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2488           "Invalid TRUNCATE!");
2489    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2490    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2491           "Invalid truncate node, src < dst!");
2492    assert((!VT.isVector() ||
2493            VT.getVectorNumElements() ==
2494            Operand.getValueType().getVectorNumElements()) &&
2495           "Vector element count mismatch!");
2496    if (OpOpcode == ISD::TRUNCATE)
2497      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2498    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2499             OpOpcode == ISD::ANY_EXTEND) {
2500      // If the source is smaller than the dest, we still need an extend.
2501      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2502            .bitsLT(VT.getScalarType()))
2503        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2504      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2505        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2506      else
2507        return Operand.getNode()->getOperand(0);
2508    }
2509    break;
2510  case ISD::BIT_CONVERT:
2511    // Basic sanity checking.
2512    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2513           && "Cannot BIT_CONVERT between types of different sizes!");
2514    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2515    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2516      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2517    if (OpOpcode == ISD::UNDEF)
2518      return getUNDEF(VT);
2519    break;
2520  case ISD::SCALAR_TO_VECTOR:
2521    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2522           (VT.getVectorElementType() == Operand.getValueType() ||
2523            (VT.getVectorElementType().isInteger() &&
2524             Operand.getValueType().isInteger() &&
2525             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2526           "Illegal SCALAR_TO_VECTOR node!");
2527    if (OpOpcode == ISD::UNDEF)
2528      return getUNDEF(VT);
2529    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2530    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2531        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2532        Operand.getConstantOperandVal(1) == 0 &&
2533        Operand.getOperand(0).getValueType() == VT)
2534      return Operand.getOperand(0);
2535    break;
2536  case ISD::FNEG:
2537    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2538    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2539      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2540                     Operand.getNode()->getOperand(0));
2541    if (OpOpcode == ISD::FNEG)  // --X -> X
2542      return Operand.getNode()->getOperand(0);
2543    break;
2544  case ISD::FABS:
2545    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2546      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2547    break;
2548  }
2549
2550  SDNode *N;
2551  SDVTList VTs = getVTList(VT);
2552  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2553    FoldingSetNodeID ID;
2554    SDValue Ops[1] = { Operand };
2555    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2556    void *IP = 0;
2557    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2558      return SDValue(E, 0);
2559
2560    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2561    CSEMap.InsertNode(N, IP);
2562  } else {
2563    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2564  }
2565
2566  AllNodes.push_back(N);
2567#ifndef NDEBUG
2568  VerifyNode(N);
2569#endif
2570  return SDValue(N, 0);
2571}
2572
2573SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2574                                             EVT VT,
2575                                             ConstantSDNode *Cst1,
2576                                             ConstantSDNode *Cst2) {
2577  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2578
2579  switch (Opcode) {
2580  case ISD::ADD:  return getConstant(C1 + C2, VT);
2581  case ISD::SUB:  return getConstant(C1 - C2, VT);
2582  case ISD::MUL:  return getConstant(C1 * C2, VT);
2583  case ISD::UDIV:
2584    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2585    break;
2586  case ISD::UREM:
2587    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2588    break;
2589  case ISD::SDIV:
2590    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2591    break;
2592  case ISD::SREM:
2593    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2594    break;
2595  case ISD::AND:  return getConstant(C1 & C2, VT);
2596  case ISD::OR:   return getConstant(C1 | C2, VT);
2597  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2598  case ISD::SHL:  return getConstant(C1 << C2, VT);
2599  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2600  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2601  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2602  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2603  default: break;
2604  }
2605
2606  return SDValue();
2607}
2608
2609SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2610                              SDValue N1, SDValue N2) {
2611  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2612  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2613  switch (Opcode) {
2614  default: break;
2615  case ISD::TokenFactor:
2616    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2617           N2.getValueType() == MVT::Other && "Invalid token factor!");
2618    // Fold trivial token factors.
2619    if (N1.getOpcode() == ISD::EntryToken) return N2;
2620    if (N2.getOpcode() == ISD::EntryToken) return N1;
2621    if (N1 == N2) return N1;
2622    break;
2623  case ISD::CONCAT_VECTORS:
2624    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2625    // one big BUILD_VECTOR.
2626    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2627        N2.getOpcode() == ISD::BUILD_VECTOR) {
2628      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2629      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2630      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2631    }
2632    break;
2633  case ISD::AND:
2634    assert(VT.isInteger() && "This operator does not apply to FP types!");
2635    assert(N1.getValueType() == N2.getValueType() &&
2636           N1.getValueType() == VT && "Binary operator types must match!");
2637    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2638    // worth handling here.
2639    if (N2C && N2C->isNullValue())
2640      return N2;
2641    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2642      return N1;
2643    break;
2644  case ISD::OR:
2645  case ISD::XOR:
2646  case ISD::ADD:
2647  case ISD::SUB:
2648    assert(VT.isInteger() && "This operator does not apply to FP types!");
2649    assert(N1.getValueType() == N2.getValueType() &&
2650           N1.getValueType() == VT && "Binary operator types must match!");
2651    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2652    // it's worth handling here.
2653    if (N2C && N2C->isNullValue())
2654      return N1;
2655    break;
2656  case ISD::UDIV:
2657  case ISD::UREM:
2658  case ISD::MULHU:
2659  case ISD::MULHS:
2660  case ISD::MUL:
2661  case ISD::SDIV:
2662  case ISD::SREM:
2663    assert(VT.isInteger() && "This operator does not apply to FP types!");
2664    assert(N1.getValueType() == N2.getValueType() &&
2665           N1.getValueType() == VT && "Binary operator types must match!");
2666    break;
2667  case ISD::FADD:
2668  case ISD::FSUB:
2669  case ISD::FMUL:
2670  case ISD::FDIV:
2671  case ISD::FREM:
2672    if (UnsafeFPMath) {
2673      if (Opcode == ISD::FADD) {
2674        // 0+x --> x
2675        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2676          if (CFP->getValueAPF().isZero())
2677            return N2;
2678        // x+0 --> x
2679        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2680          if (CFP->getValueAPF().isZero())
2681            return N1;
2682      } else if (Opcode == ISD::FSUB) {
2683        // x-0 --> x
2684        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2685          if (CFP->getValueAPF().isZero())
2686            return N1;
2687      }
2688    }
2689    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2690    assert(N1.getValueType() == N2.getValueType() &&
2691           N1.getValueType() == VT && "Binary operator types must match!");
2692    break;
2693  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2694    assert(N1.getValueType() == VT &&
2695           N1.getValueType().isFloatingPoint() &&
2696           N2.getValueType().isFloatingPoint() &&
2697           "Invalid FCOPYSIGN!");
2698    break;
2699  case ISD::SHL:
2700  case ISD::SRA:
2701  case ISD::SRL:
2702  case ISD::ROTL:
2703  case ISD::ROTR:
2704    assert(VT == N1.getValueType() &&
2705           "Shift operators return type must be the same as their first arg");
2706    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2707           "Shifts only work on integers");
2708
2709    // Always fold shifts of i1 values so the code generator doesn't need to
2710    // handle them.  Since we know the size of the shift has to be less than the
2711    // size of the value, the shift/rotate count is guaranteed to be zero.
2712    if (VT == MVT::i1)
2713      return N1;
2714    if (N2C && N2C->isNullValue())
2715      return N1;
2716    break;
2717  case ISD::FP_ROUND_INREG: {
2718    EVT EVT = cast<VTSDNode>(N2)->getVT();
2719    assert(VT == N1.getValueType() && "Not an inreg round!");
2720    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2721           "Cannot FP_ROUND_INREG integer types");
2722    assert(EVT.isVector() == VT.isVector() &&
2723           "FP_ROUND_INREG type should be vector iff the operand "
2724           "type is vector!");
2725    assert((!EVT.isVector() ||
2726            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2727           "Vector element counts must match in FP_ROUND_INREG");
2728    assert(EVT.bitsLE(VT) && "Not rounding down!");
2729    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2730    break;
2731  }
2732  case ISD::FP_ROUND:
2733    assert(VT.isFloatingPoint() &&
2734           N1.getValueType().isFloatingPoint() &&
2735           VT.bitsLE(N1.getValueType()) &&
2736           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2737    if (N1.getValueType() == VT) return N1;  // noop conversion.
2738    break;
2739  case ISD::AssertSext:
2740  case ISD::AssertZext: {
2741    EVT EVT = cast<VTSDNode>(N2)->getVT();
2742    assert(VT == N1.getValueType() && "Not an inreg extend!");
2743    assert(VT.isInteger() && EVT.isInteger() &&
2744           "Cannot *_EXTEND_INREG FP types");
2745    assert(!EVT.isVector() &&
2746           "AssertSExt/AssertZExt type should be the vector element type "
2747           "rather than the vector type!");
2748    assert(EVT.bitsLE(VT) && "Not extending!");
2749    if (VT == EVT) return N1; // noop assertion.
2750    break;
2751  }
2752  case ISD::SIGN_EXTEND_INREG: {
2753    EVT EVT = cast<VTSDNode>(N2)->getVT();
2754    assert(VT == N1.getValueType() && "Not an inreg extend!");
2755    assert(VT.isInteger() && EVT.isInteger() &&
2756           "Cannot *_EXTEND_INREG FP types");
2757    assert(EVT.isVector() == VT.isVector() &&
2758           "SIGN_EXTEND_INREG type should be vector iff the operand "
2759           "type is vector!");
2760    assert((!EVT.isVector() ||
2761            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2762           "Vector element counts must match in SIGN_EXTEND_INREG");
2763    assert(EVT.bitsLE(VT) && "Not extending!");
2764    if (EVT == VT) return N1;  // Not actually extending
2765
2766    if (N1C) {
2767      APInt Val = N1C->getAPIntValue();
2768      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2769      Val <<= Val.getBitWidth()-FromBits;
2770      Val = Val.ashr(Val.getBitWidth()-FromBits);
2771      return getConstant(Val, VT);
2772    }
2773    break;
2774  }
2775  case ISD::EXTRACT_VECTOR_ELT:
2776    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2777    if (N1.getOpcode() == ISD::UNDEF)
2778      return getUNDEF(VT);
2779
2780    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2781    // expanding copies of large vectors from registers.
2782    if (N2C &&
2783        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2784        N1.getNumOperands() > 0) {
2785      unsigned Factor =
2786        N1.getOperand(0).getValueType().getVectorNumElements();
2787      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2788                     N1.getOperand(N2C->getZExtValue() / Factor),
2789                     getConstant(N2C->getZExtValue() % Factor,
2790                                 N2.getValueType()));
2791    }
2792
2793    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2794    // expanding large vector constants.
2795    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2796      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2797      EVT VEltTy = N1.getValueType().getVectorElementType();
2798      if (Elt.getValueType() != VEltTy) {
2799        // If the vector element type is not legal, the BUILD_VECTOR operands
2800        // are promoted and implicitly truncated.  Make that explicit here.
2801        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2802      }
2803      if (VT != VEltTy) {
2804        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2805        // result is implicitly extended.
2806        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2807      }
2808      return Elt;
2809    }
2810
2811    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2812    // operations are lowered to scalars.
2813    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2814      // If the indices are the same, return the inserted element else
2815      // if the indices are known different, extract the element from
2816      // the original vector.
2817      SDValue N1Op2 = N1.getOperand(2);
2818      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2819
2820      if (N1Op2C && N2C) {
2821        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2822          if (VT == N1.getOperand(1).getValueType())
2823            return N1.getOperand(1);
2824          else
2825            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2826        }
2827
2828        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2829      }
2830    }
2831    break;
2832  case ISD::EXTRACT_ELEMENT:
2833    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2834    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2835           (N1.getValueType().isInteger() == VT.isInteger()) &&
2836           "Wrong types for EXTRACT_ELEMENT!");
2837
2838    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2839    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2840    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2841    if (N1.getOpcode() == ISD::BUILD_PAIR)
2842      return N1.getOperand(N2C->getZExtValue());
2843
2844    // EXTRACT_ELEMENT of a constant int is also very common.
2845    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2846      unsigned ElementSize = VT.getSizeInBits();
2847      unsigned Shift = ElementSize * N2C->getZExtValue();
2848      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2849      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2850    }
2851    break;
2852  case ISD::EXTRACT_SUBVECTOR:
2853    if (N1.getValueType() == VT) // Trivial extraction.
2854      return N1;
2855    break;
2856  }
2857
2858  if (N1C) {
2859    if (N2C) {
2860      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2861      if (SV.getNode()) return SV;
2862    } else {      // Cannonicalize constant to RHS if commutative
2863      if (isCommutativeBinOp(Opcode)) {
2864        std::swap(N1C, N2C);
2865        std::swap(N1, N2);
2866      }
2867    }
2868  }
2869
2870  // Constant fold FP operations.
2871  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2872  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2873  if (N1CFP) {
2874    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2875      // Cannonicalize constant to RHS if commutative
2876      std::swap(N1CFP, N2CFP);
2877      std::swap(N1, N2);
2878    } else if (N2CFP && VT != MVT::ppcf128) {
2879      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2880      APFloat::opStatus s;
2881      switch (Opcode) {
2882      case ISD::FADD:
2883        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2884        if (s != APFloat::opInvalidOp)
2885          return getConstantFP(V1, VT);
2886        break;
2887      case ISD::FSUB:
2888        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2889        if (s!=APFloat::opInvalidOp)
2890          return getConstantFP(V1, VT);
2891        break;
2892      case ISD::FMUL:
2893        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2894        if (s!=APFloat::opInvalidOp)
2895          return getConstantFP(V1, VT);
2896        break;
2897      case ISD::FDIV:
2898        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2899        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2900          return getConstantFP(V1, VT);
2901        break;
2902      case ISD::FREM :
2903        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2904        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2905          return getConstantFP(V1, VT);
2906        break;
2907      case ISD::FCOPYSIGN:
2908        V1.copySign(V2);
2909        return getConstantFP(V1, VT);
2910      default: break;
2911      }
2912    }
2913  }
2914
2915  // Canonicalize an UNDEF to the RHS, even over a constant.
2916  if (N1.getOpcode() == ISD::UNDEF) {
2917    if (isCommutativeBinOp(Opcode)) {
2918      std::swap(N1, N2);
2919    } else {
2920      switch (Opcode) {
2921      case ISD::FP_ROUND_INREG:
2922      case ISD::SIGN_EXTEND_INREG:
2923      case ISD::SUB:
2924      case ISD::FSUB:
2925      case ISD::FDIV:
2926      case ISD::FREM:
2927      case ISD::SRA:
2928        return N1;     // fold op(undef, arg2) -> undef
2929      case ISD::UDIV:
2930      case ISD::SDIV:
2931      case ISD::UREM:
2932      case ISD::SREM:
2933      case ISD::SRL:
2934      case ISD::SHL:
2935        if (!VT.isVector())
2936          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2937        // For vectors, we can't easily build an all zero vector, just return
2938        // the LHS.
2939        return N2;
2940      }
2941    }
2942  }
2943
2944  // Fold a bunch of operators when the RHS is undef.
2945  if (N2.getOpcode() == ISD::UNDEF) {
2946    switch (Opcode) {
2947    case ISD::XOR:
2948      if (N1.getOpcode() == ISD::UNDEF)
2949        // Handle undef ^ undef -> 0 special case. This is a common
2950        // idiom (misuse).
2951        return getConstant(0, VT);
2952      // fallthrough
2953    case ISD::ADD:
2954    case ISD::ADDC:
2955    case ISD::ADDE:
2956    case ISD::SUB:
2957    case ISD::UDIV:
2958    case ISD::SDIV:
2959    case ISD::UREM:
2960    case ISD::SREM:
2961      return N2;       // fold op(arg1, undef) -> undef
2962    case ISD::FADD:
2963    case ISD::FSUB:
2964    case ISD::FMUL:
2965    case ISD::FDIV:
2966    case ISD::FREM:
2967      if (UnsafeFPMath)
2968        return N2;
2969      break;
2970    case ISD::MUL:
2971    case ISD::AND:
2972    case ISD::SRL:
2973    case ISD::SHL:
2974      if (!VT.isVector())
2975        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2976      // For vectors, we can't easily build an all zero vector, just return
2977      // the LHS.
2978      return N1;
2979    case ISD::OR:
2980      if (!VT.isVector())
2981        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2982      // For vectors, we can't easily build an all one vector, just return
2983      // the LHS.
2984      return N1;
2985    case ISD::SRA:
2986      return N1;
2987    }
2988  }
2989
2990  // Memoize this node if possible.
2991  SDNode *N;
2992  SDVTList VTs = getVTList(VT);
2993  if (VT != MVT::Flag) {
2994    SDValue Ops[] = { N1, N2 };
2995    FoldingSetNodeID ID;
2996    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2997    void *IP = 0;
2998    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2999      return SDValue(E, 0);
3000
3001    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3002    CSEMap.InsertNode(N, IP);
3003  } else {
3004    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3005  }
3006
3007  AllNodes.push_back(N);
3008#ifndef NDEBUG
3009  VerifyNode(N);
3010#endif
3011  return SDValue(N, 0);
3012}
3013
3014SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3015                              SDValue N1, SDValue N2, SDValue N3) {
3016  // Perform various simplifications.
3017  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3018  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3019  switch (Opcode) {
3020  case ISD::CONCAT_VECTORS:
3021    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3022    // one big BUILD_VECTOR.
3023    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3024        N2.getOpcode() == ISD::BUILD_VECTOR &&
3025        N3.getOpcode() == ISD::BUILD_VECTOR) {
3026      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3027      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3028      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3029      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3030    }
3031    break;
3032  case ISD::SETCC: {
3033    // Use FoldSetCC to simplify SETCC's.
3034    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3035    if (Simp.getNode()) return Simp;
3036    break;
3037  }
3038  case ISD::SELECT:
3039    if (N1C) {
3040     if (N1C->getZExtValue())
3041        return N2;             // select true, X, Y -> X
3042      else
3043        return N3;             // select false, X, Y -> Y
3044    }
3045
3046    if (N2 == N3) return N2;   // select C, X, X -> X
3047    break;
3048  case ISD::BRCOND:
3049    if (N2C) {
3050      if (!N2C->getZExtValue()) // Unconditional branch
3051        return N1;         // Never-taken branch
3052    }
3053    break;
3054  case ISD::VECTOR_SHUFFLE:
3055    llvm_unreachable("should use getVectorShuffle constructor!");
3056    break;
3057  case ISD::BIT_CONVERT:
3058    // Fold bit_convert nodes from a type to themselves.
3059    if (N1.getValueType() == VT)
3060      return N1;
3061    break;
3062  }
3063
3064  // Memoize node if it doesn't produce a flag.
3065  SDNode *N;
3066  SDVTList VTs = getVTList(VT);
3067  if (VT != MVT::Flag) {
3068    SDValue Ops[] = { N1, N2, N3 };
3069    FoldingSetNodeID ID;
3070    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3071    void *IP = 0;
3072    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3073      return SDValue(E, 0);
3074
3075    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3076    CSEMap.InsertNode(N, IP);
3077  } else {
3078    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3079  }
3080
3081  AllNodes.push_back(N);
3082#ifndef NDEBUG
3083  VerifyNode(N);
3084#endif
3085  return SDValue(N, 0);
3086}
3087
3088SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3089                              SDValue N1, SDValue N2, SDValue N3,
3090                              SDValue N4) {
3091  SDValue Ops[] = { N1, N2, N3, N4 };
3092  return getNode(Opcode, DL, VT, Ops, 4);
3093}
3094
3095SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3096                              SDValue N1, SDValue N2, SDValue N3,
3097                              SDValue N4, SDValue N5) {
3098  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3099  return getNode(Opcode, DL, VT, Ops, 5);
3100}
3101
3102/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3103/// the incoming stack arguments to be loaded from the stack.
3104SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3105  SmallVector<SDValue, 8> ArgChains;
3106
3107  // Include the original chain at the beginning of the list. When this is
3108  // used by target LowerCall hooks, this helps legalize find the
3109  // CALLSEQ_BEGIN node.
3110  ArgChains.push_back(Chain);
3111
3112  // Add a chain value for each stack argument.
3113  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3114       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3115    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3116      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3117        if (FI->getIndex() < 0)
3118          ArgChains.push_back(SDValue(L, 1));
3119
3120  // Build a tokenfactor for all the chains.
3121  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3122                 &ArgChains[0], ArgChains.size());
3123}
3124
3125/// getMemsetValue - Vectorized representation of the memset value
3126/// operand.
3127static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3128                              DebugLoc dl) {
3129  assert(Value.getOpcode() != ISD::UNDEF);
3130
3131  unsigned NumBits = VT.getScalarType().getSizeInBits();
3132  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3133    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3134    unsigned Shift = 8;
3135    for (unsigned i = NumBits; i > 8; i >>= 1) {
3136      Val = (Val << Shift) | Val;
3137      Shift <<= 1;
3138    }
3139    if (VT.isInteger())
3140      return DAG.getConstant(Val, VT);
3141    return DAG.getConstantFP(APFloat(Val), VT);
3142  }
3143
3144  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3145  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3146  unsigned Shift = 8;
3147  for (unsigned i = NumBits; i > 8; i >>= 1) {
3148    Value = DAG.getNode(ISD::OR, dl, VT,
3149                        DAG.getNode(ISD::SHL, dl, VT, Value,
3150                                    DAG.getConstant(Shift,
3151                                                    TLI.getShiftAmountTy())),
3152                        Value);
3153    Shift <<= 1;
3154  }
3155
3156  return Value;
3157}
3158
3159/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3160/// used when a memcpy is turned into a memset when the source is a constant
3161/// string ptr.
3162static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3163                                  const TargetLowering &TLI,
3164                                  std::string &Str, unsigned Offset) {
3165  // Handle vector with all elements zero.
3166  if (Str.empty()) {
3167    if (VT.isInteger())
3168      return DAG.getConstant(0, VT);
3169    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3170             VT.getSimpleVT().SimpleTy == MVT::f64)
3171      return DAG.getConstantFP(0.0, VT);
3172    else if (VT.isVector()) {
3173      unsigned NumElts = VT.getVectorNumElements();
3174      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3175      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3176                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3177                                                             EltVT, NumElts)));
3178    } else
3179      llvm_unreachable("Expected type!");
3180  }
3181
3182  assert(!VT.isVector() && "Can't handle vector type here!");
3183  unsigned NumBits = VT.getSizeInBits();
3184  unsigned MSB = NumBits / 8;
3185  uint64_t Val = 0;
3186  if (TLI.isLittleEndian())
3187    Offset = Offset + MSB - 1;
3188  for (unsigned i = 0; i != MSB; ++i) {
3189    Val = (Val << 8) | (unsigned char)Str[Offset];
3190    Offset += TLI.isLittleEndian() ? -1 : 1;
3191  }
3192  return DAG.getConstant(Val, VT);
3193}
3194
3195/// getMemBasePlusOffset - Returns base and offset node for the
3196///
3197static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3198                                      SelectionDAG &DAG) {
3199  EVT VT = Base.getValueType();
3200  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3201                     VT, Base, DAG.getConstant(Offset, VT));
3202}
3203
3204/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3205///
3206static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3207  unsigned SrcDelta = 0;
3208  GlobalAddressSDNode *G = NULL;
3209  if (Src.getOpcode() == ISD::GlobalAddress)
3210    G = cast<GlobalAddressSDNode>(Src);
3211  else if (Src.getOpcode() == ISD::ADD &&
3212           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3213           Src.getOperand(1).getOpcode() == ISD::Constant) {
3214    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3215    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3216  }
3217  if (!G)
3218    return false;
3219
3220  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3221  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3222    return true;
3223
3224  return false;
3225}
3226
3227/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3228/// to replace the memset / memcpy. Return true if the number of memory ops
3229/// is below the threshold. It returns the types of the sequence of
3230/// memory ops to perform memset / memcpy by reference.
3231static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3232                                     unsigned Limit, uint64_t Size,
3233                                     unsigned DstAlign, unsigned SrcAlign,
3234                                     bool NonScalarIntSafe,
3235                                     bool MemcpyStrSrc,
3236                                     SelectionDAG &DAG,
3237                                     const TargetLowering &TLI) {
3238  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3239         "Expecting memcpy / memset source to meet alignment requirement!");
3240  // If 'SrcAlign' is zero, that means the memory operation does not need load
3241  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3242  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3243  // specified alignment of the memory operation. If it is zero, that means
3244  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3245  // indicates whether the memcpy source is constant so it does not need to be
3246  // loaded.
3247  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3248                                   NonScalarIntSafe, MemcpyStrSrc,
3249                                   DAG.getMachineFunction());
3250
3251  if (VT == MVT::Other) {
3252    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3253        TLI.allowsUnalignedMemoryAccesses(VT)) {
3254      VT = TLI.getPointerTy();
3255    } else {
3256      switch (DstAlign & 7) {
3257      case 0:  VT = MVT::i64; break;
3258      case 4:  VT = MVT::i32; break;
3259      case 2:  VT = MVT::i16; break;
3260      default: VT = MVT::i8;  break;
3261      }
3262    }
3263
3264    MVT LVT = MVT::i64;
3265    while (!TLI.isTypeLegal(LVT))
3266      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3267    assert(LVT.isInteger());
3268
3269    if (VT.bitsGT(LVT))
3270      VT = LVT;
3271  }
3272
3273  // If we're optimizing for size, and there is a limit, bump the maximum number
3274  // of operations inserted down to 4.  This is a wild guess that approximates
3275  // the size of a call to memcpy or memset (3 arguments + call).
3276  if (Limit != ~0U) {
3277    const Function *F = DAG.getMachineFunction().getFunction();
3278    if (F->hasFnAttr(Attribute::OptimizeForSize))
3279      Limit = 4;
3280  }
3281
3282  unsigned NumMemOps = 0;
3283  while (Size != 0) {
3284    unsigned VTSize = VT.getSizeInBits() / 8;
3285    while (VTSize > Size) {
3286      // For now, only use non-vector load / store's for the left-over pieces.
3287      if (VT.isVector() || VT.isFloatingPoint()) {
3288        VT = MVT::i64;
3289        while (!TLI.isTypeLegal(VT))
3290          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3291        VTSize = VT.getSizeInBits() / 8;
3292      } else {
3293        // This can result in a type that is not legal on the target, e.g.
3294        // 1 or 2 bytes on PPC.
3295        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3296        VTSize >>= 1;
3297      }
3298    }
3299
3300    if (++NumMemOps > Limit)
3301      return false;
3302    MemOps.push_back(VT);
3303    Size -= VTSize;
3304  }
3305
3306  return true;
3307}
3308
3309static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3310                                       SDValue Chain, SDValue Dst,
3311                                       SDValue Src, uint64_t Size,
3312                                       unsigned Align, bool isVol,
3313                                       bool AlwaysInline,
3314                                       const Value *DstSV, uint64_t DstSVOff,
3315                                       const Value *SrcSV, uint64_t SrcSVOff) {
3316  // Turn a memcpy of undef to nop.
3317  if (Src.getOpcode() == ISD::UNDEF)
3318    return Chain;
3319
3320  // Expand memcpy to a series of load and store ops if the size operand falls
3321  // below a certain threshold.
3322  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3323  std::vector<EVT> MemOps;
3324  bool DstAlignCanChange = false;
3325  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3326  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3327  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3328    DstAlignCanChange = true;
3329  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3330  if (Align > SrcAlign)
3331    SrcAlign = Align;
3332  std::string Str;
3333  bool CopyFromStr = isMemSrcFromString(Src, Str);
3334  bool isZeroStr = CopyFromStr && Str.empty();
3335  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3336
3337  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3338                                (DstAlignCanChange ? 0 : Align),
3339                                (isZeroStr ? 0 : SrcAlign),
3340                                true, CopyFromStr, DAG, TLI))
3341    return SDValue();
3342
3343  if (DstAlignCanChange) {
3344    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3345    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3346    if (NewAlign > Align) {
3347      // Give the stack frame object a larger alignment if needed.
3348      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3349        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3350      Align = NewAlign;
3351    }
3352  }
3353
3354  SmallVector<SDValue, 8> OutChains;
3355  unsigned NumMemOps = MemOps.size();
3356  uint64_t SrcOff = 0, DstOff = 0;
3357  for (unsigned i = 0; i != NumMemOps; ++i) {
3358    EVT VT = MemOps[i];
3359    unsigned VTSize = VT.getSizeInBits() / 8;
3360    SDValue Value, Store;
3361
3362    if (CopyFromStr &&
3363        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3364      // It's unlikely a store of a vector immediate can be done in a single
3365      // instruction. It would require a load from a constantpool first.
3366      // We only handle zero vectors here.
3367      // FIXME: Handle other cases where store of vector immediate is done in
3368      // a single instruction.
3369      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3370      Store = DAG.getStore(Chain, dl, Value,
3371                           getMemBasePlusOffset(Dst, DstOff, DAG),
3372                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3373    } else {
3374      // The type might not be legal for the target.  This should only happen
3375      // if the type is smaller than a legal type, as on PPC, so the right
3376      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3377      // to Load/Store if NVT==VT.
3378      // FIXME does the case above also need this?
3379      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3380      assert(NVT.bitsGE(VT));
3381      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3382                             getMemBasePlusOffset(Src, SrcOff, DAG),
3383                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3384                             MinAlign(SrcAlign, SrcOff));
3385      Store = DAG.getTruncStore(Chain, dl, Value,
3386                                getMemBasePlusOffset(Dst, DstOff, DAG),
3387                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3388                                Align);
3389    }
3390    OutChains.push_back(Store);
3391    SrcOff += VTSize;
3392    DstOff += VTSize;
3393  }
3394
3395  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3396                     &OutChains[0], OutChains.size());
3397}
3398
3399static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3400                                        SDValue Chain, SDValue Dst,
3401                                        SDValue Src, uint64_t Size,
3402                                        unsigned Align,  bool isVol,
3403                                        bool AlwaysInline,
3404                                        const Value *DstSV, uint64_t DstSVOff,
3405                                        const Value *SrcSV, uint64_t SrcSVOff) {
3406  // Turn a memmove of undef to nop.
3407  if (Src.getOpcode() == ISD::UNDEF)
3408    return Chain;
3409
3410  // Expand memmove to a series of load and store ops if the size operand falls
3411  // below a certain threshold.
3412  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3413  std::vector<EVT> MemOps;
3414  bool DstAlignCanChange = false;
3415  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3416  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3417  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3418    DstAlignCanChange = true;
3419  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3420  if (Align > SrcAlign)
3421    SrcAlign = Align;
3422  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3423
3424  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3425                                (DstAlignCanChange ? 0 : Align),
3426                                SrcAlign, true, false, DAG, TLI))
3427    return SDValue();
3428
3429  if (DstAlignCanChange) {
3430    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3431    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3432    if (NewAlign > Align) {
3433      // Give the stack frame object a larger alignment if needed.
3434      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3435        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3436      Align = NewAlign;
3437    }
3438  }
3439
3440  uint64_t SrcOff = 0, DstOff = 0;
3441  SmallVector<SDValue, 8> LoadValues;
3442  SmallVector<SDValue, 8> LoadChains;
3443  SmallVector<SDValue, 8> OutChains;
3444  unsigned NumMemOps = MemOps.size();
3445  for (unsigned i = 0; i < NumMemOps; i++) {
3446    EVT VT = MemOps[i];
3447    unsigned VTSize = VT.getSizeInBits() / 8;
3448    SDValue Value, Store;
3449
3450    Value = DAG.getLoad(VT, dl, Chain,
3451                        getMemBasePlusOffset(Src, SrcOff, DAG),
3452                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3453    LoadValues.push_back(Value);
3454    LoadChains.push_back(Value.getValue(1));
3455    SrcOff += VTSize;
3456  }
3457  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3458                      &LoadChains[0], LoadChains.size());
3459  OutChains.clear();
3460  for (unsigned i = 0; i < NumMemOps; i++) {
3461    EVT VT = MemOps[i];
3462    unsigned VTSize = VT.getSizeInBits() / 8;
3463    SDValue Value, Store;
3464
3465    Store = DAG.getStore(Chain, dl, LoadValues[i],
3466                         getMemBasePlusOffset(Dst, DstOff, DAG),
3467                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3468    OutChains.push_back(Store);
3469    DstOff += VTSize;
3470  }
3471
3472  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3473                     &OutChains[0], OutChains.size());
3474}
3475
3476static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3477                               SDValue Chain, SDValue Dst,
3478                               SDValue Src, uint64_t Size,
3479                               unsigned Align, bool isVol,
3480                               const Value *DstSV, uint64_t DstSVOff) {
3481  // Turn a memset of undef to nop.
3482  if (Src.getOpcode() == ISD::UNDEF)
3483    return Chain;
3484
3485  // Expand memset to a series of load/store ops if the size operand
3486  // falls below a certain threshold.
3487  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3488  std::vector<EVT> MemOps;
3489  bool DstAlignCanChange = false;
3490  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3491  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3492  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3493    DstAlignCanChange = true;
3494  bool NonScalarIntSafe =
3495    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3496  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3497                                Size, (DstAlignCanChange ? 0 : Align), 0,
3498                                NonScalarIntSafe, false, DAG, TLI))
3499    return SDValue();
3500
3501  if (DstAlignCanChange) {
3502    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3503    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3504    if (NewAlign > Align) {
3505      // Give the stack frame object a larger alignment if needed.
3506      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3507        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3508      Align = NewAlign;
3509    }
3510  }
3511
3512  SmallVector<SDValue, 8> OutChains;
3513  uint64_t DstOff = 0;
3514  unsigned NumMemOps = MemOps.size();
3515  for (unsigned i = 0; i < NumMemOps; i++) {
3516    EVT VT = MemOps[i];
3517    unsigned VTSize = VT.getSizeInBits() / 8;
3518    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3519    SDValue Store = DAG.getStore(Chain, dl, Value,
3520                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3521                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3522    OutChains.push_back(Store);
3523    DstOff += VTSize;
3524  }
3525
3526  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3527                     &OutChains[0], OutChains.size());
3528}
3529
3530SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3531                                SDValue Src, SDValue Size,
3532                                unsigned Align, bool isVol, bool AlwaysInline,
3533                                const Value *DstSV, uint64_t DstSVOff,
3534                                const Value *SrcSV, uint64_t SrcSVOff) {
3535
3536  // Check to see if we should lower the memcpy to loads and stores first.
3537  // For cases within the target-specified limits, this is the best choice.
3538  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3539  if (ConstantSize) {
3540    // Memcpy with size zero? Just return the original chain.
3541    if (ConstantSize->isNullValue())
3542      return Chain;
3543
3544    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3545                                             ConstantSize->getZExtValue(),Align,
3546                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3547    if (Result.getNode())
3548      return Result;
3549  }
3550
3551  // Then check to see if we should lower the memcpy with target-specific
3552  // code. If the target chooses to do this, this is the next best.
3553  SDValue Result =
3554    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3555                                isVol, AlwaysInline,
3556                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3557  if (Result.getNode())
3558    return Result;
3559
3560  // If we really need inline code and the target declined to provide it,
3561  // use a (potentially long) sequence of loads and stores.
3562  if (AlwaysInline) {
3563    assert(ConstantSize && "AlwaysInline requires a constant size!");
3564    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3565                                   ConstantSize->getZExtValue(), Align, isVol,
3566                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3567  }
3568
3569  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3570  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3571  // respect volatile, so they may do things like read or write memory
3572  // beyond the given memory regions. But fixing this isn't easy, and most
3573  // people don't care.
3574
3575  // Emit a library call.
3576  TargetLowering::ArgListTy Args;
3577  TargetLowering::ArgListEntry Entry;
3578  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3579  Entry.Node = Dst; Args.push_back(Entry);
3580  Entry.Node = Src; Args.push_back(Entry);
3581  Entry.Node = Size; Args.push_back(Entry);
3582  // FIXME: pass in DebugLoc
3583  std::pair<SDValue,SDValue> CallResult =
3584    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3585                    false, false, false, false, 0,
3586                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3587                    /*isReturnValueUsed=*/false,
3588                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3589                                      TLI.getPointerTy()),
3590                    Args, *this, dl);
3591  return CallResult.second;
3592}
3593
3594SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3595                                 SDValue Src, SDValue Size,
3596                                 unsigned Align, bool isVol,
3597                                 const Value *DstSV, uint64_t DstSVOff,
3598                                 const Value *SrcSV, uint64_t SrcSVOff) {
3599
3600  // Check to see if we should lower the memmove to loads and stores first.
3601  // For cases within the target-specified limits, this is the best choice.
3602  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3603  if (ConstantSize) {
3604    // Memmove with size zero? Just return the original chain.
3605    if (ConstantSize->isNullValue())
3606      return Chain;
3607
3608    SDValue Result =
3609      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3610                               ConstantSize->getZExtValue(), Align, isVol,
3611                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3612    if (Result.getNode())
3613      return Result;
3614  }
3615
3616  // Then check to see if we should lower the memmove with target-specific
3617  // code. If the target chooses to do this, this is the next best.
3618  SDValue Result =
3619    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3620                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3621  if (Result.getNode())
3622    return Result;
3623
3624  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3625  // not be safe.  See memcpy above for more details.
3626
3627  // Emit a library call.
3628  TargetLowering::ArgListTy Args;
3629  TargetLowering::ArgListEntry Entry;
3630  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3631  Entry.Node = Dst; Args.push_back(Entry);
3632  Entry.Node = Src; Args.push_back(Entry);
3633  Entry.Node = Size; Args.push_back(Entry);
3634  // FIXME:  pass in DebugLoc
3635  std::pair<SDValue,SDValue> CallResult =
3636    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3637                    false, false, false, false, 0,
3638                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3639                    /*isReturnValueUsed=*/false,
3640                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3641                                      TLI.getPointerTy()),
3642                    Args, *this, dl);
3643  return CallResult.second;
3644}
3645
3646SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3647                                SDValue Src, SDValue Size,
3648                                unsigned Align, bool isVol,
3649                                const Value *DstSV, uint64_t DstSVOff) {
3650
3651  // Check to see if we should lower the memset to stores first.
3652  // For cases within the target-specified limits, this is the best choice.
3653  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3654  if (ConstantSize) {
3655    // Memset with size zero? Just return the original chain.
3656    if (ConstantSize->isNullValue())
3657      return Chain;
3658
3659    SDValue Result =
3660      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3661                      Align, isVol, DstSV, DstSVOff);
3662
3663    if (Result.getNode())
3664      return Result;
3665  }
3666
3667  // Then check to see if we should lower the memset with target-specific
3668  // code. If the target chooses to do this, this is the next best.
3669  SDValue Result =
3670    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3671                                DstSV, DstSVOff);
3672  if (Result.getNode())
3673    return Result;
3674
3675  // Emit a library call.
3676  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3677  TargetLowering::ArgListTy Args;
3678  TargetLowering::ArgListEntry Entry;
3679  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3680  Args.push_back(Entry);
3681  // Extend or truncate the argument to be an i32 value for the call.
3682  if (Src.getValueType().bitsGT(MVT::i32))
3683    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3684  else
3685    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3686  Entry.Node = Src;
3687  Entry.Ty = Type::getInt32Ty(*getContext());
3688  Entry.isSExt = true;
3689  Args.push_back(Entry);
3690  Entry.Node = Size;
3691  Entry.Ty = IntPtrTy;
3692  Entry.isSExt = false;
3693  Args.push_back(Entry);
3694  // FIXME: pass in DebugLoc
3695  std::pair<SDValue,SDValue> CallResult =
3696    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3697                    false, false, false, false, 0,
3698                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3699                    /*isReturnValueUsed=*/false,
3700                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3701                                      TLI.getPointerTy()),
3702                    Args, *this, dl);
3703  return CallResult.second;
3704}
3705
3706SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3707                                SDValue Chain,
3708                                SDValue Ptr, SDValue Cmp,
3709                                SDValue Swp, const Value* PtrVal,
3710                                unsigned Alignment) {
3711  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3712    Alignment = getEVTAlignment(MemVT);
3713
3714  // Check if the memory reference references a frame index
3715  if (!PtrVal)
3716    if (const FrameIndexSDNode *FI =
3717          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3718      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3719
3720  MachineFunction &MF = getMachineFunction();
3721  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3722
3723  // For now, atomics are considered to be volatile always.
3724  Flags |= MachineMemOperand::MOVolatile;
3725
3726  MachineMemOperand *MMO =
3727    MF.getMachineMemOperand(PtrVal, Flags, 0,
3728                            MemVT.getStoreSize(), Alignment);
3729
3730  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3731}
3732
3733SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3734                                SDValue Chain,
3735                                SDValue Ptr, SDValue Cmp,
3736                                SDValue Swp, MachineMemOperand *MMO) {
3737  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3738  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3739
3740  EVT VT = Cmp.getValueType();
3741
3742  SDVTList VTs = getVTList(VT, MVT::Other);
3743  FoldingSetNodeID ID;
3744  ID.AddInteger(MemVT.getRawBits());
3745  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3746  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3747  void* IP = 0;
3748  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3749    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3750    return SDValue(E, 0);
3751  }
3752  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3753                                               Ptr, Cmp, Swp, MMO);
3754  CSEMap.InsertNode(N, IP);
3755  AllNodes.push_back(N);
3756  return SDValue(N, 0);
3757}
3758
3759SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3760                                SDValue Chain,
3761                                SDValue Ptr, SDValue Val,
3762                                const Value* PtrVal,
3763                                unsigned Alignment) {
3764  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3765    Alignment = getEVTAlignment(MemVT);
3766
3767  // Check if the memory reference references a frame index
3768  if (!PtrVal)
3769    if (const FrameIndexSDNode *FI =
3770          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3771      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3772
3773  MachineFunction &MF = getMachineFunction();
3774  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3775
3776  // For now, atomics are considered to be volatile always.
3777  Flags |= MachineMemOperand::MOVolatile;
3778
3779  MachineMemOperand *MMO =
3780    MF.getMachineMemOperand(PtrVal, Flags, 0,
3781                            MemVT.getStoreSize(), Alignment);
3782
3783  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3784}
3785
3786SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3787                                SDValue Chain,
3788                                SDValue Ptr, SDValue Val,
3789                                MachineMemOperand *MMO) {
3790  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3791          Opcode == ISD::ATOMIC_LOAD_SUB ||
3792          Opcode == ISD::ATOMIC_LOAD_AND ||
3793          Opcode == ISD::ATOMIC_LOAD_OR ||
3794          Opcode == ISD::ATOMIC_LOAD_XOR ||
3795          Opcode == ISD::ATOMIC_LOAD_NAND ||
3796          Opcode == ISD::ATOMIC_LOAD_MIN ||
3797          Opcode == ISD::ATOMIC_LOAD_MAX ||
3798          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3799          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3800          Opcode == ISD::ATOMIC_SWAP) &&
3801         "Invalid Atomic Op");
3802
3803  EVT VT = Val.getValueType();
3804
3805  SDVTList VTs = getVTList(VT, MVT::Other);
3806  FoldingSetNodeID ID;
3807  ID.AddInteger(MemVT.getRawBits());
3808  SDValue Ops[] = {Chain, Ptr, Val};
3809  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3810  void* IP = 0;
3811  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3812    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3813    return SDValue(E, 0);
3814  }
3815  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3816                                               Ptr, Val, MMO);
3817  CSEMap.InsertNode(N, IP);
3818  AllNodes.push_back(N);
3819  return SDValue(N, 0);
3820}
3821
3822/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3823/// Allowed to return something different (and simpler) if Simplify is true.
3824SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3825                                     DebugLoc dl) {
3826  if (NumOps == 1)
3827    return Ops[0];
3828
3829  SmallVector<EVT, 4> VTs;
3830  VTs.reserve(NumOps);
3831  for (unsigned i = 0; i < NumOps; ++i)
3832    VTs.push_back(Ops[i].getValueType());
3833  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3834                 Ops, NumOps);
3835}
3836
3837SDValue
3838SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3839                                  const EVT *VTs, unsigned NumVTs,
3840                                  const SDValue *Ops, unsigned NumOps,
3841                                  EVT MemVT, const Value *srcValue, int SVOff,
3842                                  unsigned Align, bool Vol,
3843                                  bool ReadMem, bool WriteMem) {
3844  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3845                             MemVT, srcValue, SVOff, Align, Vol,
3846                             ReadMem, WriteMem);
3847}
3848
3849SDValue
3850SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3851                                  const SDValue *Ops, unsigned NumOps,
3852                                  EVT MemVT, const Value *srcValue, int SVOff,
3853                                  unsigned Align, bool Vol,
3854                                  bool ReadMem, bool WriteMem) {
3855  if (Align == 0)  // Ensure that codegen never sees alignment 0
3856    Align = getEVTAlignment(MemVT);
3857
3858  MachineFunction &MF = getMachineFunction();
3859  unsigned Flags = 0;
3860  if (WriteMem)
3861    Flags |= MachineMemOperand::MOStore;
3862  if (ReadMem)
3863    Flags |= MachineMemOperand::MOLoad;
3864  if (Vol)
3865    Flags |= MachineMemOperand::MOVolatile;
3866  MachineMemOperand *MMO =
3867    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3868                            MemVT.getStoreSize(), Align);
3869
3870  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3871}
3872
3873SDValue
3874SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3875                                  const SDValue *Ops, unsigned NumOps,
3876                                  EVT MemVT, MachineMemOperand *MMO) {
3877  assert((Opcode == ISD::INTRINSIC_VOID ||
3878          Opcode == ISD::INTRINSIC_W_CHAIN ||
3879          (Opcode <= INT_MAX &&
3880           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3881         "Opcode is not a memory-accessing opcode!");
3882
3883  // Memoize the node unless it returns a flag.
3884  MemIntrinsicSDNode *N;
3885  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3886    FoldingSetNodeID ID;
3887    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3888    void *IP = 0;
3889    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3890      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3891      return SDValue(E, 0);
3892    }
3893
3894    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3895                                               MemVT, MMO);
3896    CSEMap.InsertNode(N, IP);
3897  } else {
3898    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3899                                               MemVT, MMO);
3900  }
3901  AllNodes.push_back(N);
3902  return SDValue(N, 0);
3903}
3904
3905SDValue
3906SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3907                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3908                      SDValue Ptr, SDValue Offset,
3909                      const Value *SV, int SVOffset, EVT MemVT,
3910                      bool isVolatile, bool isNonTemporal,
3911                      unsigned Alignment) {
3912  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3913    Alignment = getEVTAlignment(VT);
3914
3915  // Check if the memory reference references a frame index
3916  if (!SV)
3917    if (const FrameIndexSDNode *FI =
3918          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3919      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3920
3921  MachineFunction &MF = getMachineFunction();
3922  unsigned Flags = MachineMemOperand::MOLoad;
3923  if (isVolatile)
3924    Flags |= MachineMemOperand::MOVolatile;
3925  if (isNonTemporal)
3926    Flags |= MachineMemOperand::MONonTemporal;
3927  MachineMemOperand *MMO =
3928    MF.getMachineMemOperand(SV, Flags, SVOffset,
3929                            MemVT.getStoreSize(), Alignment);
3930  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3931}
3932
3933SDValue
3934SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3935                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3936                      SDValue Ptr, SDValue Offset, EVT MemVT,
3937                      MachineMemOperand *MMO) {
3938  if (VT == MemVT) {
3939    ExtType = ISD::NON_EXTLOAD;
3940  } else if (ExtType == ISD::NON_EXTLOAD) {
3941    assert(VT == MemVT && "Non-extending load from different memory type!");
3942  } else {
3943    // Extending load.
3944    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3945           "Should only be an extending load, not truncating!");
3946    assert(VT.isInteger() == MemVT.isInteger() &&
3947           "Cannot convert from FP to Int or Int -> FP!");
3948    assert(VT.isVector() == MemVT.isVector() &&
3949           "Cannot use trunc store to convert to or from a vector!");
3950    assert((!VT.isVector() ||
3951            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3952           "Cannot use trunc store to change the number of vector elements!");
3953  }
3954
3955  bool Indexed = AM != ISD::UNINDEXED;
3956  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3957         "Unindexed load with an offset!");
3958
3959  SDVTList VTs = Indexed ?
3960    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3961  SDValue Ops[] = { Chain, Ptr, Offset };
3962  FoldingSetNodeID ID;
3963  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3964  ID.AddInteger(MemVT.getRawBits());
3965  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3966                                     MMO->isNonTemporal()));
3967  void *IP = 0;
3968  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3969    cast<LoadSDNode>(E)->refineAlignment(MMO);
3970    return SDValue(E, 0);
3971  }
3972  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3973                                             MemVT, MMO);
3974  CSEMap.InsertNode(N, IP);
3975  AllNodes.push_back(N);
3976  return SDValue(N, 0);
3977}
3978
3979SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3980                              SDValue Chain, SDValue Ptr,
3981                              const Value *SV, int SVOffset,
3982                              bool isVolatile, bool isNonTemporal,
3983                              unsigned Alignment) {
3984  SDValue Undef = getUNDEF(Ptr.getValueType());
3985  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3986                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3987}
3988
3989SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3990                                 SDValue Chain, SDValue Ptr,
3991                                 const Value *SV,
3992                                 int SVOffset, EVT MemVT,
3993                                 bool isVolatile, bool isNonTemporal,
3994                                 unsigned Alignment) {
3995  SDValue Undef = getUNDEF(Ptr.getValueType());
3996  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3997                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3998}
3999
4000SDValue
4001SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4002                             SDValue Offset, ISD::MemIndexedMode AM) {
4003  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4004  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4005         "Load is already a indexed load!");
4006  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
4007                 LD->getChain(), Base, Offset, LD->getSrcValue(),
4008                 LD->getSrcValueOffset(), LD->getMemoryVT(),
4009                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4010}
4011
4012SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4013                               SDValue Ptr, const Value *SV, int SVOffset,
4014                               bool isVolatile, bool isNonTemporal,
4015                               unsigned Alignment) {
4016  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4017    Alignment = getEVTAlignment(Val.getValueType());
4018
4019  // Check if the memory reference references a frame index
4020  if (!SV)
4021    if (const FrameIndexSDNode *FI =
4022          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4023      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4024
4025  MachineFunction &MF = getMachineFunction();
4026  unsigned Flags = MachineMemOperand::MOStore;
4027  if (isVolatile)
4028    Flags |= MachineMemOperand::MOVolatile;
4029  if (isNonTemporal)
4030    Flags |= MachineMemOperand::MONonTemporal;
4031  MachineMemOperand *MMO =
4032    MF.getMachineMemOperand(SV, Flags, SVOffset,
4033                            Val.getValueType().getStoreSize(), Alignment);
4034
4035  return getStore(Chain, dl, Val, Ptr, MMO);
4036}
4037
4038SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4039                               SDValue Ptr, MachineMemOperand *MMO) {
4040  EVT VT = Val.getValueType();
4041  SDVTList VTs = getVTList(MVT::Other);
4042  SDValue Undef = getUNDEF(Ptr.getValueType());
4043  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4044  FoldingSetNodeID ID;
4045  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4046  ID.AddInteger(VT.getRawBits());
4047  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4048                                     MMO->isNonTemporal()));
4049  void *IP = 0;
4050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4051    cast<StoreSDNode>(E)->refineAlignment(MMO);
4052    return SDValue(E, 0);
4053  }
4054  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4055                                              false, VT, MMO);
4056  CSEMap.InsertNode(N, IP);
4057  AllNodes.push_back(N);
4058  return SDValue(N, 0);
4059}
4060
4061SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4062                                    SDValue Ptr, const Value *SV,
4063                                    int SVOffset, EVT SVT,
4064                                    bool isVolatile, bool isNonTemporal,
4065                                    unsigned Alignment) {
4066  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4067    Alignment = getEVTAlignment(SVT);
4068
4069  // Check if the memory reference references a frame index
4070  if (!SV)
4071    if (const FrameIndexSDNode *FI =
4072          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4073      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4074
4075  MachineFunction &MF = getMachineFunction();
4076  unsigned Flags = MachineMemOperand::MOStore;
4077  if (isVolatile)
4078    Flags |= MachineMemOperand::MOVolatile;
4079  if (isNonTemporal)
4080    Flags |= MachineMemOperand::MONonTemporal;
4081  MachineMemOperand *MMO =
4082    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4083
4084  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4085}
4086
4087SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4088                                    SDValue Ptr, EVT SVT,
4089                                    MachineMemOperand *MMO) {
4090  EVT VT = Val.getValueType();
4091
4092  if (VT == SVT)
4093    return getStore(Chain, dl, Val, Ptr, MMO);
4094
4095  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4096         "Should only be a truncating store, not extending!");
4097  assert(VT.isInteger() == SVT.isInteger() &&
4098         "Can't do FP-INT conversion!");
4099  assert(VT.isVector() == SVT.isVector() &&
4100         "Cannot use trunc store to convert to or from a vector!");
4101  assert((!VT.isVector() ||
4102          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4103         "Cannot use trunc store to change the number of vector elements!");
4104
4105  SDVTList VTs = getVTList(MVT::Other);
4106  SDValue Undef = getUNDEF(Ptr.getValueType());
4107  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4108  FoldingSetNodeID ID;
4109  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4110  ID.AddInteger(SVT.getRawBits());
4111  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4112                                     MMO->isNonTemporal()));
4113  void *IP = 0;
4114  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4115    cast<StoreSDNode>(E)->refineAlignment(MMO);
4116    return SDValue(E, 0);
4117  }
4118  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4119                                              true, SVT, MMO);
4120  CSEMap.InsertNode(N, IP);
4121  AllNodes.push_back(N);
4122  return SDValue(N, 0);
4123}
4124
4125SDValue
4126SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4127                              SDValue Offset, ISD::MemIndexedMode AM) {
4128  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4129  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4130         "Store is already a indexed store!");
4131  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4132  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4133  FoldingSetNodeID ID;
4134  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4135  ID.AddInteger(ST->getMemoryVT().getRawBits());
4136  ID.AddInteger(ST->getRawSubclassData());
4137  void *IP = 0;
4138  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4139    return SDValue(E, 0);
4140
4141  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4142                                              ST->isTruncatingStore(),
4143                                              ST->getMemoryVT(),
4144                                              ST->getMemOperand());
4145  CSEMap.InsertNode(N, IP);
4146  AllNodes.push_back(N);
4147  return SDValue(N, 0);
4148}
4149
4150SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4151                               SDValue Chain, SDValue Ptr,
4152                               SDValue SV) {
4153  SDValue Ops[] = { Chain, Ptr, SV };
4154  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4155}
4156
4157SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4158                              const SDUse *Ops, unsigned NumOps) {
4159  switch (NumOps) {
4160  case 0: return getNode(Opcode, DL, VT);
4161  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4162  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4163  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4164  default: break;
4165  }
4166
4167  // Copy from an SDUse array into an SDValue array for use with
4168  // the regular getNode logic.
4169  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4170  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4171}
4172
4173SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4174                              const SDValue *Ops, unsigned NumOps) {
4175  switch (NumOps) {
4176  case 0: return getNode(Opcode, DL, VT);
4177  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4178  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4179  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4180  default: break;
4181  }
4182
4183  switch (Opcode) {
4184  default: break;
4185  case ISD::SELECT_CC: {
4186    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4187    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4188           "LHS and RHS of condition must have same type!");
4189    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4190           "True and False arms of SelectCC must have same type!");
4191    assert(Ops[2].getValueType() == VT &&
4192           "select_cc node must be of same type as true and false value!");
4193    break;
4194  }
4195  case ISD::BR_CC: {
4196    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4197    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4198           "LHS/RHS of comparison should match types!");
4199    break;
4200  }
4201  }
4202
4203  // Memoize nodes.
4204  SDNode *N;
4205  SDVTList VTs = getVTList(VT);
4206
4207  if (VT != MVT::Flag) {
4208    FoldingSetNodeID ID;
4209    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4210    void *IP = 0;
4211
4212    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4213      return SDValue(E, 0);
4214
4215    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4216    CSEMap.InsertNode(N, IP);
4217  } else {
4218    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4219  }
4220
4221  AllNodes.push_back(N);
4222#ifndef NDEBUG
4223  VerifyNode(N);
4224#endif
4225  return SDValue(N, 0);
4226}
4227
4228SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4229                              const std::vector<EVT> &ResultTys,
4230                              const SDValue *Ops, unsigned NumOps) {
4231  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4232                 Ops, NumOps);
4233}
4234
4235SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4236                              const EVT *VTs, unsigned NumVTs,
4237                              const SDValue *Ops, unsigned NumOps) {
4238  if (NumVTs == 1)
4239    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4240  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4241}
4242
4243SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4244                              const SDValue *Ops, unsigned NumOps) {
4245  if (VTList.NumVTs == 1)
4246    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4247
4248#if 0
4249  switch (Opcode) {
4250  // FIXME: figure out how to safely handle things like
4251  // int foo(int x) { return 1 << (x & 255); }
4252  // int bar() { return foo(256); }
4253  case ISD::SRA_PARTS:
4254  case ISD::SRL_PARTS:
4255  case ISD::SHL_PARTS:
4256    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4257        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4258      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4259    else if (N3.getOpcode() == ISD::AND)
4260      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4261        // If the and is only masking out bits that cannot effect the shift,
4262        // eliminate the and.
4263        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4264        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4265          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4266      }
4267    break;
4268  }
4269#endif
4270
4271  // Memoize the node unless it returns a flag.
4272  SDNode *N;
4273  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4274    FoldingSetNodeID ID;
4275    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4276    void *IP = 0;
4277    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4278      return SDValue(E, 0);
4279
4280    if (NumOps == 1) {
4281      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4282    } else if (NumOps == 2) {
4283      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4284    } else if (NumOps == 3) {
4285      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4286                                            Ops[2]);
4287    } else {
4288      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4289    }
4290    CSEMap.InsertNode(N, IP);
4291  } else {
4292    if (NumOps == 1) {
4293      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4294    } else if (NumOps == 2) {
4295      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4296    } else if (NumOps == 3) {
4297      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4298                                            Ops[2]);
4299    } else {
4300      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4301    }
4302  }
4303  AllNodes.push_back(N);
4304#ifndef NDEBUG
4305  VerifyNode(N);
4306#endif
4307  return SDValue(N, 0);
4308}
4309
4310SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4311  return getNode(Opcode, DL, VTList, 0, 0);
4312}
4313
4314SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4315                              SDValue N1) {
4316  SDValue Ops[] = { N1 };
4317  return getNode(Opcode, DL, VTList, Ops, 1);
4318}
4319
4320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4321                              SDValue N1, SDValue N2) {
4322  SDValue Ops[] = { N1, N2 };
4323  return getNode(Opcode, DL, VTList, Ops, 2);
4324}
4325
4326SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4327                              SDValue N1, SDValue N2, SDValue N3) {
4328  SDValue Ops[] = { N1, N2, N3 };
4329  return getNode(Opcode, DL, VTList, Ops, 3);
4330}
4331
4332SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4333                              SDValue N1, SDValue N2, SDValue N3,
4334                              SDValue N4) {
4335  SDValue Ops[] = { N1, N2, N3, N4 };
4336  return getNode(Opcode, DL, VTList, Ops, 4);
4337}
4338
4339SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4340                              SDValue N1, SDValue N2, SDValue N3,
4341                              SDValue N4, SDValue N5) {
4342  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4343  return getNode(Opcode, DL, VTList, Ops, 5);
4344}
4345
4346SDVTList SelectionDAG::getVTList(EVT VT) {
4347  return makeVTList(SDNode::getValueTypeList(VT), 1);
4348}
4349
4350SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4351  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4352       E = VTList.rend(); I != E; ++I)
4353    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4354      return *I;
4355
4356  EVT *Array = Allocator.Allocate<EVT>(2);
4357  Array[0] = VT1;
4358  Array[1] = VT2;
4359  SDVTList Result = makeVTList(Array, 2);
4360  VTList.push_back(Result);
4361  return Result;
4362}
4363
4364SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4365  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4366       E = VTList.rend(); I != E; ++I)
4367    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4368                          I->VTs[2] == VT3)
4369      return *I;
4370
4371  EVT *Array = Allocator.Allocate<EVT>(3);
4372  Array[0] = VT1;
4373  Array[1] = VT2;
4374  Array[2] = VT3;
4375  SDVTList Result = makeVTList(Array, 3);
4376  VTList.push_back(Result);
4377  return Result;
4378}
4379
4380SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4381  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4382       E = VTList.rend(); I != E; ++I)
4383    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4384                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4385      return *I;
4386
4387  EVT *Array = Allocator.Allocate<EVT>(4);
4388  Array[0] = VT1;
4389  Array[1] = VT2;
4390  Array[2] = VT3;
4391  Array[3] = VT4;
4392  SDVTList Result = makeVTList(Array, 4);
4393  VTList.push_back(Result);
4394  return Result;
4395}
4396
4397SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4398  switch (NumVTs) {
4399    case 0: llvm_unreachable("Cannot have nodes without results!");
4400    case 1: return getVTList(VTs[0]);
4401    case 2: return getVTList(VTs[0], VTs[1]);
4402    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4403    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4404    default: break;
4405  }
4406
4407  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4408       E = VTList.rend(); I != E; ++I) {
4409    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4410      continue;
4411
4412    bool NoMatch = false;
4413    for (unsigned i = 2; i != NumVTs; ++i)
4414      if (VTs[i] != I->VTs[i]) {
4415        NoMatch = true;
4416        break;
4417      }
4418    if (!NoMatch)
4419      return *I;
4420  }
4421
4422  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4423  std::copy(VTs, VTs+NumVTs, Array);
4424  SDVTList Result = makeVTList(Array, NumVTs);
4425  VTList.push_back(Result);
4426  return Result;
4427}
4428
4429
4430/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4431/// specified operands.  If the resultant node already exists in the DAG,
4432/// this does not modify the specified node, instead it returns the node that
4433/// already exists.  If the resultant node does not exist in the DAG, the
4434/// input node is returned.  As a degenerate case, if you specify the same
4435/// input operands as the node already has, the input node is returned.
4436SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4437  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4438
4439  // Check to see if there is no change.
4440  if (Op == N->getOperand(0)) return N;
4441
4442  // See if the modified node already exists.
4443  void *InsertPos = 0;
4444  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4445    return Existing;
4446
4447  // Nope it doesn't.  Remove the node from its current place in the maps.
4448  if (InsertPos)
4449    if (!RemoveNodeFromCSEMaps(N))
4450      InsertPos = 0;
4451
4452  // Now we update the operands.
4453  N->OperandList[0].set(Op);
4454
4455  // If this gets put into a CSE map, add it.
4456  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4457  return N;
4458}
4459
4460SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4461  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4462
4463  // Check to see if there is no change.
4464  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4465    return N;   // No operands changed, just return the input node.
4466
4467  // See if the modified node already exists.
4468  void *InsertPos = 0;
4469  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4470    return Existing;
4471
4472  // Nope it doesn't.  Remove the node from its current place in the maps.
4473  if (InsertPos)
4474    if (!RemoveNodeFromCSEMaps(N))
4475      InsertPos = 0;
4476
4477  // Now we update the operands.
4478  if (N->OperandList[0] != Op1)
4479    N->OperandList[0].set(Op1);
4480  if (N->OperandList[1] != Op2)
4481    N->OperandList[1].set(Op2);
4482
4483  // If this gets put into a CSE map, add it.
4484  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4485  return N;
4486}
4487
4488SDNode *SelectionDAG::
4489UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4490  SDValue Ops[] = { Op1, Op2, Op3 };
4491  return UpdateNodeOperands(N, Ops, 3);
4492}
4493
4494SDNode *SelectionDAG::
4495UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4496                   SDValue Op3, SDValue Op4) {
4497  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4498  return UpdateNodeOperands(N, Ops, 4);
4499}
4500
4501SDNode *SelectionDAG::
4502UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4503                   SDValue Op3, SDValue Op4, SDValue Op5) {
4504  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4505  return UpdateNodeOperands(N, Ops, 5);
4506}
4507
4508SDNode *SelectionDAG::
4509UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4510  assert(N->getNumOperands() == NumOps &&
4511         "Update with wrong number of operands");
4512
4513  // Check to see if there is no change.
4514  bool AnyChange = false;
4515  for (unsigned i = 0; i != NumOps; ++i) {
4516    if (Ops[i] != N->getOperand(i)) {
4517      AnyChange = true;
4518      break;
4519    }
4520  }
4521
4522  // No operands changed, just return the input node.
4523  if (!AnyChange) return N;
4524
4525  // See if the modified node already exists.
4526  void *InsertPos = 0;
4527  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4528    return Existing;
4529
4530  // Nope it doesn't.  Remove the node from its current place in the maps.
4531  if (InsertPos)
4532    if (!RemoveNodeFromCSEMaps(N))
4533      InsertPos = 0;
4534
4535  // Now we update the operands.
4536  for (unsigned i = 0; i != NumOps; ++i)
4537    if (N->OperandList[i] != Ops[i])
4538      N->OperandList[i].set(Ops[i]);
4539
4540  // If this gets put into a CSE map, add it.
4541  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4542  return N;
4543}
4544
4545/// DropOperands - Release the operands and set this node to have
4546/// zero operands.
4547void SDNode::DropOperands() {
4548  // Unlike the code in MorphNodeTo that does this, we don't need to
4549  // watch for dead nodes here.
4550  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4551    SDUse &Use = *I++;
4552    Use.set(SDValue());
4553  }
4554}
4555
4556/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4557/// machine opcode.
4558///
4559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560                                   EVT VT) {
4561  SDVTList VTs = getVTList(VT);
4562  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4563}
4564
4565SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4566                                   EVT VT, SDValue Op1) {
4567  SDVTList VTs = getVTList(VT);
4568  SDValue Ops[] = { Op1 };
4569  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4570}
4571
4572SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4573                                   EVT VT, SDValue Op1,
4574                                   SDValue Op2) {
4575  SDVTList VTs = getVTList(VT);
4576  SDValue Ops[] = { Op1, Op2 };
4577  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4578}
4579
4580SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4581                                   EVT VT, SDValue Op1,
4582                                   SDValue Op2, SDValue Op3) {
4583  SDVTList VTs = getVTList(VT);
4584  SDValue Ops[] = { Op1, Op2, Op3 };
4585  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4586}
4587
4588SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4589                                   EVT VT, const SDValue *Ops,
4590                                   unsigned NumOps) {
4591  SDVTList VTs = getVTList(VT);
4592  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4593}
4594
4595SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4596                                   EVT VT1, EVT VT2, const SDValue *Ops,
4597                                   unsigned NumOps) {
4598  SDVTList VTs = getVTList(VT1, VT2);
4599  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4600}
4601
4602SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4603                                   EVT VT1, EVT VT2) {
4604  SDVTList VTs = getVTList(VT1, VT2);
4605  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4606}
4607
4608SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4609                                   EVT VT1, EVT VT2, EVT VT3,
4610                                   const SDValue *Ops, unsigned NumOps) {
4611  SDVTList VTs = getVTList(VT1, VT2, VT3);
4612  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4613}
4614
4615SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4616                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4617                                   const SDValue *Ops, unsigned NumOps) {
4618  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4619  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4620}
4621
4622SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4623                                   EVT VT1, EVT VT2,
4624                                   SDValue Op1) {
4625  SDVTList VTs = getVTList(VT1, VT2);
4626  SDValue Ops[] = { Op1 };
4627  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4628}
4629
4630SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4631                                   EVT VT1, EVT VT2,
4632                                   SDValue Op1, SDValue Op2) {
4633  SDVTList VTs = getVTList(VT1, VT2);
4634  SDValue Ops[] = { Op1, Op2 };
4635  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4636}
4637
4638SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4639                                   EVT VT1, EVT VT2,
4640                                   SDValue Op1, SDValue Op2,
4641                                   SDValue Op3) {
4642  SDVTList VTs = getVTList(VT1, VT2);
4643  SDValue Ops[] = { Op1, Op2, Op3 };
4644  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4645}
4646
4647SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4648                                   EVT VT1, EVT VT2, EVT VT3,
4649                                   SDValue Op1, SDValue Op2,
4650                                   SDValue Op3) {
4651  SDVTList VTs = getVTList(VT1, VT2, VT3);
4652  SDValue Ops[] = { Op1, Op2, Op3 };
4653  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4654}
4655
4656SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4657                                   SDVTList VTs, const SDValue *Ops,
4658                                   unsigned NumOps) {
4659  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4660  // Reset the NodeID to -1.
4661  N->setNodeId(-1);
4662  return N;
4663}
4664
4665/// MorphNodeTo - This *mutates* the specified node to have the specified
4666/// return type, opcode, and operands.
4667///
4668/// Note that MorphNodeTo returns the resultant node.  If there is already a
4669/// node of the specified opcode and operands, it returns that node instead of
4670/// the current one.  Note that the DebugLoc need not be the same.
4671///
4672/// Using MorphNodeTo is faster than creating a new node and swapping it in
4673/// with ReplaceAllUsesWith both because it often avoids allocating a new
4674/// node, and because it doesn't require CSE recalculation for any of
4675/// the node's users.
4676///
4677SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4678                                  SDVTList VTs, const SDValue *Ops,
4679                                  unsigned NumOps) {
4680  // If an identical node already exists, use it.
4681  void *IP = 0;
4682  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4683    FoldingSetNodeID ID;
4684    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4685    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4686      return ON;
4687  }
4688
4689  if (!RemoveNodeFromCSEMaps(N))
4690    IP = 0;
4691
4692  // Start the morphing.
4693  N->NodeType = Opc;
4694  N->ValueList = VTs.VTs;
4695  N->NumValues = VTs.NumVTs;
4696
4697  // Clear the operands list, updating used nodes to remove this from their
4698  // use list.  Keep track of any operands that become dead as a result.
4699  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4700  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4701    SDUse &Use = *I++;
4702    SDNode *Used = Use.getNode();
4703    Use.set(SDValue());
4704    if (Used->use_empty())
4705      DeadNodeSet.insert(Used);
4706  }
4707
4708  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4709    // Initialize the memory references information.
4710    MN->setMemRefs(0, 0);
4711    // If NumOps is larger than the # of operands we can have in a
4712    // MachineSDNode, reallocate the operand list.
4713    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4714      if (MN->OperandsNeedDelete)
4715        delete[] MN->OperandList;
4716      if (NumOps > array_lengthof(MN->LocalOperands))
4717        // We're creating a final node that will live unmorphed for the
4718        // remainder of the current SelectionDAG iteration, so we can allocate
4719        // the operands directly out of a pool with no recycling metadata.
4720        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4721                         Ops, NumOps);
4722      else
4723        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4724      MN->OperandsNeedDelete = false;
4725    } else
4726      MN->InitOperands(MN->OperandList, Ops, NumOps);
4727  } else {
4728    // If NumOps is larger than the # of operands we currently have, reallocate
4729    // the operand list.
4730    if (NumOps > N->NumOperands) {
4731      if (N->OperandsNeedDelete)
4732        delete[] N->OperandList;
4733      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4734      N->OperandsNeedDelete = true;
4735    } else
4736      N->InitOperands(N->OperandList, Ops, NumOps);
4737  }
4738
4739  // Delete any nodes that are still dead after adding the uses for the
4740  // new operands.
4741  if (!DeadNodeSet.empty()) {
4742    SmallVector<SDNode *, 16> DeadNodes;
4743    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4744         E = DeadNodeSet.end(); I != E; ++I)
4745      if ((*I)->use_empty())
4746        DeadNodes.push_back(*I);
4747    RemoveDeadNodes(DeadNodes);
4748  }
4749
4750  if (IP)
4751    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4752  return N;
4753}
4754
4755
4756/// getMachineNode - These are used for target selectors to create a new node
4757/// with specified return type(s), MachineInstr opcode, and operands.
4758///
4759/// Note that getMachineNode returns the resultant node.  If there is already a
4760/// node of the specified opcode and operands, it returns that node instead of
4761/// the current one.
4762MachineSDNode *
4763SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4764  SDVTList VTs = getVTList(VT);
4765  return getMachineNode(Opcode, dl, VTs, 0, 0);
4766}
4767
4768MachineSDNode *
4769SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4770  SDVTList VTs = getVTList(VT);
4771  SDValue Ops[] = { Op1 };
4772  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4773}
4774
4775MachineSDNode *
4776SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4777                             SDValue Op1, SDValue Op2) {
4778  SDVTList VTs = getVTList(VT);
4779  SDValue Ops[] = { Op1, Op2 };
4780  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4781}
4782
4783MachineSDNode *
4784SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4785                             SDValue Op1, SDValue Op2, SDValue Op3) {
4786  SDVTList VTs = getVTList(VT);
4787  SDValue Ops[] = { Op1, Op2, Op3 };
4788  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4789}
4790
4791MachineSDNode *
4792SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4793                             const SDValue *Ops, unsigned NumOps) {
4794  SDVTList VTs = getVTList(VT);
4795  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4796}
4797
4798MachineSDNode *
4799SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4800  SDVTList VTs = getVTList(VT1, VT2);
4801  return getMachineNode(Opcode, dl, VTs, 0, 0);
4802}
4803
4804MachineSDNode *
4805SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4806                             EVT VT1, EVT VT2, SDValue Op1) {
4807  SDVTList VTs = getVTList(VT1, VT2);
4808  SDValue Ops[] = { Op1 };
4809  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4810}
4811
4812MachineSDNode *
4813SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4814                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4815  SDVTList VTs = getVTList(VT1, VT2);
4816  SDValue Ops[] = { Op1, Op2 };
4817  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4818}
4819
4820MachineSDNode *
4821SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4822                             EVT VT1, EVT VT2, SDValue Op1,
4823                             SDValue Op2, SDValue Op3) {
4824  SDVTList VTs = getVTList(VT1, VT2);
4825  SDValue Ops[] = { Op1, Op2, Op3 };
4826  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4827}
4828
4829MachineSDNode *
4830SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4831                             EVT VT1, EVT VT2,
4832                             const SDValue *Ops, unsigned NumOps) {
4833  SDVTList VTs = getVTList(VT1, VT2);
4834  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4835}
4836
4837MachineSDNode *
4838SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4839                             EVT VT1, EVT VT2, EVT VT3,
4840                             SDValue Op1, SDValue Op2) {
4841  SDVTList VTs = getVTList(VT1, VT2, VT3);
4842  SDValue Ops[] = { Op1, Op2 };
4843  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4844}
4845
4846MachineSDNode *
4847SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4848                             EVT VT1, EVT VT2, EVT VT3,
4849                             SDValue Op1, SDValue Op2, SDValue Op3) {
4850  SDVTList VTs = getVTList(VT1, VT2, VT3);
4851  SDValue Ops[] = { Op1, Op2, Op3 };
4852  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4853}
4854
4855MachineSDNode *
4856SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4857                             EVT VT1, EVT VT2, EVT VT3,
4858                             const SDValue *Ops, unsigned NumOps) {
4859  SDVTList VTs = getVTList(VT1, VT2, VT3);
4860  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4861}
4862
4863MachineSDNode *
4864SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4865                             EVT VT2, EVT VT3, EVT VT4,
4866                             const SDValue *Ops, unsigned NumOps) {
4867  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4868  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4869}
4870
4871MachineSDNode *
4872SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4873                             const std::vector<EVT> &ResultTys,
4874                             const SDValue *Ops, unsigned NumOps) {
4875  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4876  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4877}
4878
4879MachineSDNode *
4880SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4881                             const SDValue *Ops, unsigned NumOps) {
4882  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4883  MachineSDNode *N;
4884  void *IP;
4885
4886  if (DoCSE) {
4887    FoldingSetNodeID ID;
4888    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4889    IP = 0;
4890    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4891      return cast<MachineSDNode>(E);
4892  }
4893
4894  // Allocate a new MachineSDNode.
4895  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4896
4897  // Initialize the operands list.
4898  if (NumOps > array_lengthof(N->LocalOperands))
4899    // We're creating a final node that will live unmorphed for the
4900    // remainder of the current SelectionDAG iteration, so we can allocate
4901    // the operands directly out of a pool with no recycling metadata.
4902    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4903                    Ops, NumOps);
4904  else
4905    N->InitOperands(N->LocalOperands, Ops, NumOps);
4906  N->OperandsNeedDelete = false;
4907
4908  if (DoCSE)
4909    CSEMap.InsertNode(N, IP);
4910
4911  AllNodes.push_back(N);
4912#ifndef NDEBUG
4913  VerifyNode(N);
4914#endif
4915  return N;
4916}
4917
4918/// getTargetExtractSubreg - A convenience function for creating
4919/// TargetOpcode::EXTRACT_SUBREG nodes.
4920SDValue
4921SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4922                                     SDValue Operand) {
4923  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4924  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4925                                  VT, Operand, SRIdxVal);
4926  return SDValue(Subreg, 0);
4927}
4928
4929/// getTargetInsertSubreg - A convenience function for creating
4930/// TargetOpcode::INSERT_SUBREG nodes.
4931SDValue
4932SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4933                                    SDValue Operand, SDValue Subreg) {
4934  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4935  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4936                                  VT, Operand, Subreg, SRIdxVal);
4937  return SDValue(Result, 0);
4938}
4939
4940/// getNodeIfExists - Get the specified node if it's already available, or
4941/// else return NULL.
4942SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4943                                      const SDValue *Ops, unsigned NumOps) {
4944  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4945    FoldingSetNodeID ID;
4946    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4947    void *IP = 0;
4948    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4949      return E;
4950  }
4951  return NULL;
4952}
4953
4954/// getDbgValue - Creates a SDDbgValue node.
4955///
4956SDDbgValue *
4957SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4958                          DebugLoc DL, unsigned O) {
4959  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4960}
4961
4962SDDbgValue *
4963SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4964                          DebugLoc DL, unsigned O) {
4965  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4966}
4967
4968SDDbgValue *
4969SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4970                          DebugLoc DL, unsigned O) {
4971  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4972}
4973
4974namespace {
4975
4976/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4977/// pointed to by a use iterator is deleted, increment the use iterator
4978/// so that it doesn't dangle.
4979///
4980/// This class also manages a "downlink" DAGUpdateListener, to forward
4981/// messages to ReplaceAllUsesWith's callers.
4982///
4983class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4984  SelectionDAG::DAGUpdateListener *DownLink;
4985  SDNode::use_iterator &UI;
4986  SDNode::use_iterator &UE;
4987
4988  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4989    // Increment the iterator as needed.
4990    while (UI != UE && N == *UI)
4991      ++UI;
4992
4993    // Then forward the message.
4994    if (DownLink) DownLink->NodeDeleted(N, E);
4995  }
4996
4997  virtual void NodeUpdated(SDNode *N) {
4998    // Just forward the message.
4999    if (DownLink) DownLink->NodeUpdated(N);
5000  }
5001
5002public:
5003  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5004                     SDNode::use_iterator &ui,
5005                     SDNode::use_iterator &ue)
5006    : DownLink(dl), UI(ui), UE(ue) {}
5007};
5008
5009}
5010
5011/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5012/// This can cause recursive merging of nodes in the DAG.
5013///
5014/// This version assumes From has a single result value.
5015///
5016void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5017                                      DAGUpdateListener *UpdateListener) {
5018  SDNode *From = FromN.getNode();
5019  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5020         "Cannot replace with this method!");
5021  assert(From != To.getNode() && "Cannot replace uses of with self");
5022
5023  // Iterate over all the existing uses of From. New uses will be added
5024  // to the beginning of the use list, which we avoid visiting.
5025  // This specifically avoids visiting uses of From that arise while the
5026  // replacement is happening, because any such uses would be the result
5027  // of CSE: If an existing node looks like From after one of its operands
5028  // is replaced by To, we don't want to replace of all its users with To
5029  // too. See PR3018 for more info.
5030  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5031  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5032  while (UI != UE) {
5033    SDNode *User = *UI;
5034
5035    // This node is about to morph, remove its old self from the CSE maps.
5036    RemoveNodeFromCSEMaps(User);
5037
5038    // A user can appear in a use list multiple times, and when this
5039    // happens the uses are usually next to each other in the list.
5040    // To help reduce the number of CSE recomputations, process all
5041    // the uses of this user that we can find this way.
5042    do {
5043      SDUse &Use = UI.getUse();
5044      ++UI;
5045      Use.set(To);
5046    } while (UI != UE && *UI == User);
5047
5048    // Now that we have modified User, add it back to the CSE maps.  If it
5049    // already exists there, recursively merge the results together.
5050    AddModifiedNodeToCSEMaps(User, &Listener);
5051  }
5052}
5053
5054/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5055/// This can cause recursive merging of nodes in the DAG.
5056///
5057/// This version assumes that for each value of From, there is a
5058/// corresponding value in To in the same position with the same type.
5059///
5060void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5061                                      DAGUpdateListener *UpdateListener) {
5062#ifndef NDEBUG
5063  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5064    assert((!From->hasAnyUseOfValue(i) ||
5065            From->getValueType(i) == To->getValueType(i)) &&
5066           "Cannot use this version of ReplaceAllUsesWith!");
5067#endif
5068
5069  // Handle the trivial case.
5070  if (From == To)
5071    return;
5072
5073  // Iterate over just the existing users of From. See the comments in
5074  // the ReplaceAllUsesWith above.
5075  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5076  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5077  while (UI != UE) {
5078    SDNode *User = *UI;
5079
5080    // This node is about to morph, remove its old self from the CSE maps.
5081    RemoveNodeFromCSEMaps(User);
5082
5083    // A user can appear in a use list multiple times, and when this
5084    // happens the uses are usually next to each other in the list.
5085    // To help reduce the number of CSE recomputations, process all
5086    // the uses of this user that we can find this way.
5087    do {
5088      SDUse &Use = UI.getUse();
5089      ++UI;
5090      Use.setNode(To);
5091    } while (UI != UE && *UI == User);
5092
5093    // Now that we have modified User, add it back to the CSE maps.  If it
5094    // already exists there, recursively merge the results together.
5095    AddModifiedNodeToCSEMaps(User, &Listener);
5096  }
5097}
5098
5099/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5100/// This can cause recursive merging of nodes in the DAG.
5101///
5102/// This version can replace From with any result values.  To must match the
5103/// number and types of values returned by From.
5104void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5105                                      const SDValue *To,
5106                                      DAGUpdateListener *UpdateListener) {
5107  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5108    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5109
5110  // Iterate over just the existing users of From. See the comments in
5111  // the ReplaceAllUsesWith above.
5112  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5113  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5114  while (UI != UE) {
5115    SDNode *User = *UI;
5116
5117    // This node is about to morph, remove its old self from the CSE maps.
5118    RemoveNodeFromCSEMaps(User);
5119
5120    // A user can appear in a use list multiple times, and when this
5121    // happens the uses are usually next to each other in the list.
5122    // To help reduce the number of CSE recomputations, process all
5123    // the uses of this user that we can find this way.
5124    do {
5125      SDUse &Use = UI.getUse();
5126      const SDValue &ToOp = To[Use.getResNo()];
5127      ++UI;
5128      Use.set(ToOp);
5129    } while (UI != UE && *UI == User);
5130
5131    // Now that we have modified User, add it back to the CSE maps.  If it
5132    // already exists there, recursively merge the results together.
5133    AddModifiedNodeToCSEMaps(User, &Listener);
5134  }
5135}
5136
5137/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5138/// uses of other values produced by From.getNode() alone.  The Deleted
5139/// vector is handled the same way as for ReplaceAllUsesWith.
5140void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5141                                             DAGUpdateListener *UpdateListener){
5142  // Handle the really simple, really trivial case efficiently.
5143  if (From == To) return;
5144
5145  // Handle the simple, trivial, case efficiently.
5146  if (From.getNode()->getNumValues() == 1) {
5147    ReplaceAllUsesWith(From, To, UpdateListener);
5148    return;
5149  }
5150
5151  // Iterate over just the existing users of From. See the comments in
5152  // the ReplaceAllUsesWith above.
5153  SDNode::use_iterator UI = From.getNode()->use_begin(),
5154                       UE = From.getNode()->use_end();
5155  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5156  while (UI != UE) {
5157    SDNode *User = *UI;
5158    bool UserRemovedFromCSEMaps = false;
5159
5160    // A user can appear in a use list multiple times, and when this
5161    // happens the uses are usually next to each other in the list.
5162    // To help reduce the number of CSE recomputations, process all
5163    // the uses of this user that we can find this way.
5164    do {
5165      SDUse &Use = UI.getUse();
5166
5167      // Skip uses of different values from the same node.
5168      if (Use.getResNo() != From.getResNo()) {
5169        ++UI;
5170        continue;
5171      }
5172
5173      // If this node hasn't been modified yet, it's still in the CSE maps,
5174      // so remove its old self from the CSE maps.
5175      if (!UserRemovedFromCSEMaps) {
5176        RemoveNodeFromCSEMaps(User);
5177        UserRemovedFromCSEMaps = true;
5178      }
5179
5180      ++UI;
5181      Use.set(To);
5182    } while (UI != UE && *UI == User);
5183
5184    // We are iterating over all uses of the From node, so if a use
5185    // doesn't use the specific value, no changes are made.
5186    if (!UserRemovedFromCSEMaps)
5187      continue;
5188
5189    // Now that we have modified User, add it back to the CSE maps.  If it
5190    // already exists there, recursively merge the results together.
5191    AddModifiedNodeToCSEMaps(User, &Listener);
5192  }
5193}
5194
5195namespace {
5196  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5197  /// to record information about a use.
5198  struct UseMemo {
5199    SDNode *User;
5200    unsigned Index;
5201    SDUse *Use;
5202  };
5203
5204  /// operator< - Sort Memos by User.
5205  bool operator<(const UseMemo &L, const UseMemo &R) {
5206    return (intptr_t)L.User < (intptr_t)R.User;
5207  }
5208}
5209
5210/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5211/// uses of other values produced by From.getNode() alone.  The same value
5212/// may appear in both the From and To list.  The Deleted vector is
5213/// handled the same way as for ReplaceAllUsesWith.
5214void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5215                                              const SDValue *To,
5216                                              unsigned Num,
5217                                              DAGUpdateListener *UpdateListener){
5218  // Handle the simple, trivial case efficiently.
5219  if (Num == 1)
5220    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5221
5222  // Read up all the uses and make records of them. This helps
5223  // processing new uses that are introduced during the
5224  // replacement process.
5225  SmallVector<UseMemo, 4> Uses;
5226  for (unsigned i = 0; i != Num; ++i) {
5227    unsigned FromResNo = From[i].getResNo();
5228    SDNode *FromNode = From[i].getNode();
5229    for (SDNode::use_iterator UI = FromNode->use_begin(),
5230         E = FromNode->use_end(); UI != E; ++UI) {
5231      SDUse &Use = UI.getUse();
5232      if (Use.getResNo() == FromResNo) {
5233        UseMemo Memo = { *UI, i, &Use };
5234        Uses.push_back(Memo);
5235      }
5236    }
5237  }
5238
5239  // Sort the uses, so that all the uses from a given User are together.
5240  std::sort(Uses.begin(), Uses.end());
5241
5242  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5243       UseIndex != UseIndexEnd; ) {
5244    // We know that this user uses some value of From.  If it is the right
5245    // value, update it.
5246    SDNode *User = Uses[UseIndex].User;
5247
5248    // This node is about to morph, remove its old self from the CSE maps.
5249    RemoveNodeFromCSEMaps(User);
5250
5251    // The Uses array is sorted, so all the uses for a given User
5252    // are next to each other in the list.
5253    // To help reduce the number of CSE recomputations, process all
5254    // the uses of this user that we can find this way.
5255    do {
5256      unsigned i = Uses[UseIndex].Index;
5257      SDUse &Use = *Uses[UseIndex].Use;
5258      ++UseIndex;
5259
5260      Use.set(To[i]);
5261    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5262
5263    // Now that we have modified User, add it back to the CSE maps.  If it
5264    // already exists there, recursively merge the results together.
5265    AddModifiedNodeToCSEMaps(User, UpdateListener);
5266  }
5267}
5268
5269/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5270/// based on their topological order. It returns the maximum id and a vector
5271/// of the SDNodes* in assigned order by reference.
5272unsigned SelectionDAG::AssignTopologicalOrder() {
5273
5274  unsigned DAGSize = 0;
5275
5276  // SortedPos tracks the progress of the algorithm. Nodes before it are
5277  // sorted, nodes after it are unsorted. When the algorithm completes
5278  // it is at the end of the list.
5279  allnodes_iterator SortedPos = allnodes_begin();
5280
5281  // Visit all the nodes. Move nodes with no operands to the front of
5282  // the list immediately. Annotate nodes that do have operands with their
5283  // operand count. Before we do this, the Node Id fields of the nodes
5284  // may contain arbitrary values. After, the Node Id fields for nodes
5285  // before SortedPos will contain the topological sort index, and the
5286  // Node Id fields for nodes At SortedPos and after will contain the
5287  // count of outstanding operands.
5288  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5289    SDNode *N = I++;
5290    checkForCycles(N);
5291    unsigned Degree = N->getNumOperands();
5292    if (Degree == 0) {
5293      // A node with no uses, add it to the result array immediately.
5294      N->setNodeId(DAGSize++);
5295      allnodes_iterator Q = N;
5296      if (Q != SortedPos)
5297        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5298      assert(SortedPos != AllNodes.end() && "Overran node list");
5299      ++SortedPos;
5300    } else {
5301      // Temporarily use the Node Id as scratch space for the degree count.
5302      N->setNodeId(Degree);
5303    }
5304  }
5305
5306  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5307  // such that by the time the end is reached all nodes will be sorted.
5308  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5309    SDNode *N = I;
5310    checkForCycles(N);
5311    // N is in sorted position, so all its uses have one less operand
5312    // that needs to be sorted.
5313    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5314         UI != UE; ++UI) {
5315      SDNode *P = *UI;
5316      unsigned Degree = P->getNodeId();
5317      assert(Degree != 0 && "Invalid node degree");
5318      --Degree;
5319      if (Degree == 0) {
5320        // All of P's operands are sorted, so P may sorted now.
5321        P->setNodeId(DAGSize++);
5322        if (P != SortedPos)
5323          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5324        assert(SortedPos != AllNodes.end() && "Overran node list");
5325        ++SortedPos;
5326      } else {
5327        // Update P's outstanding operand count.
5328        P->setNodeId(Degree);
5329      }
5330    }
5331    if (I == SortedPos) {
5332#ifndef NDEBUG
5333      SDNode *S = ++I;
5334      dbgs() << "Overran sorted position:\n";
5335      S->dumprFull();
5336#endif
5337      llvm_unreachable(0);
5338    }
5339  }
5340
5341  assert(SortedPos == AllNodes.end() &&
5342         "Topological sort incomplete!");
5343  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5344         "First node in topological sort is not the entry token!");
5345  assert(AllNodes.front().getNodeId() == 0 &&
5346         "First node in topological sort has non-zero id!");
5347  assert(AllNodes.front().getNumOperands() == 0 &&
5348         "First node in topological sort has operands!");
5349  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5350         "Last node in topologic sort has unexpected id!");
5351  assert(AllNodes.back().use_empty() &&
5352         "Last node in topologic sort has users!");
5353  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5354  return DAGSize;
5355}
5356
5357/// AssignOrdering - Assign an order to the SDNode.
5358void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5359  assert(SD && "Trying to assign an order to a null node!");
5360  Ordering->add(SD, Order);
5361}
5362
5363/// GetOrdering - Get the order for the SDNode.
5364unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5365  assert(SD && "Trying to get the order of a null node!");
5366  return Ordering->getOrder(SD);
5367}
5368
5369/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5370/// value is produced by SD.
5371void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5372  DbgInfo->add(DB, SD, isParameter);
5373  if (SD)
5374    SD->setHasDebugValue(true);
5375}
5376
5377//===----------------------------------------------------------------------===//
5378//                              SDNode Class
5379//===----------------------------------------------------------------------===//
5380
5381HandleSDNode::~HandleSDNode() {
5382  DropOperands();
5383}
5384
5385GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5386                                         EVT VT, int64_t o, unsigned char TF)
5387  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5388  TheGlobal = GA;
5389}
5390
5391MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5392                     MachineMemOperand *mmo)
5393 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5394  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5395                                      MMO->isNonTemporal());
5396  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5397  assert(isNonTemporal() == MMO->isNonTemporal() &&
5398         "Non-temporal encoding error!");
5399  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5400}
5401
5402MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5403                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5404                     MachineMemOperand *mmo)
5405   : SDNode(Opc, dl, VTs, Ops, NumOps),
5406     MemoryVT(memvt), MMO(mmo) {
5407  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5408                                      MMO->isNonTemporal());
5409  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5410  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5411}
5412
5413/// Profile - Gather unique data for the node.
5414///
5415void SDNode::Profile(FoldingSetNodeID &ID) const {
5416  AddNodeIDNode(ID, this);
5417}
5418
5419namespace {
5420  struct EVTArray {
5421    std::vector<EVT> VTs;
5422
5423    EVTArray() {
5424      VTs.reserve(MVT::LAST_VALUETYPE);
5425      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5426        VTs.push_back(MVT((MVT::SimpleValueType)i));
5427    }
5428  };
5429}
5430
5431static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5432static ManagedStatic<EVTArray> SimpleVTArray;
5433static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5434
5435/// getValueTypeList - Return a pointer to the specified value type.
5436///
5437const EVT *SDNode::getValueTypeList(EVT VT) {
5438  if (VT.isExtended()) {
5439    sys::SmartScopedLock<true> Lock(*VTMutex);
5440    return &(*EVTs->insert(VT).first);
5441  } else {
5442    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5443           "Value type out of range!");
5444    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5445  }
5446}
5447
5448/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5449/// indicated value.  This method ignores uses of other values defined by this
5450/// operation.
5451bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5452  assert(Value < getNumValues() && "Bad value!");
5453
5454  // TODO: Only iterate over uses of a given value of the node
5455  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5456    if (UI.getUse().getResNo() == Value) {
5457      if (NUses == 0)
5458        return false;
5459      --NUses;
5460    }
5461  }
5462
5463  // Found exactly the right number of uses?
5464  return NUses == 0;
5465}
5466
5467
5468/// hasAnyUseOfValue - Return true if there are any use of the indicated
5469/// value. This method ignores uses of other values defined by this operation.
5470bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5471  assert(Value < getNumValues() && "Bad value!");
5472
5473  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5474    if (UI.getUse().getResNo() == Value)
5475      return true;
5476
5477  return false;
5478}
5479
5480
5481/// isOnlyUserOf - Return true if this node is the only use of N.
5482///
5483bool SDNode::isOnlyUserOf(SDNode *N) const {
5484  bool Seen = false;
5485  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5486    SDNode *User = *I;
5487    if (User == this)
5488      Seen = true;
5489    else
5490      return false;
5491  }
5492
5493  return Seen;
5494}
5495
5496/// isOperand - Return true if this node is an operand of N.
5497///
5498bool SDValue::isOperandOf(SDNode *N) const {
5499  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5500    if (*this == N->getOperand(i))
5501      return true;
5502  return false;
5503}
5504
5505bool SDNode::isOperandOf(SDNode *N) const {
5506  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5507    if (this == N->OperandList[i].getNode())
5508      return true;
5509  return false;
5510}
5511
5512/// reachesChainWithoutSideEffects - Return true if this operand (which must
5513/// be a chain) reaches the specified operand without crossing any
5514/// side-effecting instructions.  In practice, this looks through token
5515/// factors and non-volatile loads.  In order to remain efficient, this only
5516/// looks a couple of nodes in, it does not do an exhaustive search.
5517bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5518                                               unsigned Depth) const {
5519  if (*this == Dest) return true;
5520
5521  // Don't search too deeply, we just want to be able to see through
5522  // TokenFactor's etc.
5523  if (Depth == 0) return false;
5524
5525  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5526  // of the operands of the TF reach dest, then we can do the xform.
5527  if (getOpcode() == ISD::TokenFactor) {
5528    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5529      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5530        return true;
5531    return false;
5532  }
5533
5534  // Loads don't have side effects, look through them.
5535  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5536    if (!Ld->isVolatile())
5537      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5538  }
5539  return false;
5540}
5541
5542/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5543/// is either an operand of N or it can be reached by traversing up the operands.
5544/// NOTE: this is an expensive method. Use it carefully.
5545bool SDNode::isPredecessorOf(SDNode *N) const {
5546  SmallPtrSet<SDNode *, 32> Visited;
5547  SmallVector<SDNode *, 16> Worklist;
5548  Worklist.push_back(N);
5549
5550  do {
5551    N = Worklist.pop_back_val();
5552    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5553      SDNode *Op = N->getOperand(i).getNode();
5554      if (Op == this)
5555        return true;
5556      if (Visited.insert(Op))
5557        Worklist.push_back(Op);
5558    }
5559  } while (!Worklist.empty());
5560
5561  return false;
5562}
5563
5564uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5565  assert(Num < NumOperands && "Invalid child # of SDNode!");
5566  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5567}
5568
5569std::string SDNode::getOperationName(const SelectionDAG *G) const {
5570  switch (getOpcode()) {
5571  default:
5572    if (getOpcode() < ISD::BUILTIN_OP_END)
5573      return "<<Unknown DAG Node>>";
5574    if (isMachineOpcode()) {
5575      if (G)
5576        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5577          if (getMachineOpcode() < TII->getNumOpcodes())
5578            return TII->get(getMachineOpcode()).getName();
5579      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5580    }
5581    if (G) {
5582      const TargetLowering &TLI = G->getTargetLoweringInfo();
5583      const char *Name = TLI.getTargetNodeName(getOpcode());
5584      if (Name) return Name;
5585      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5586    }
5587    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5588
5589#ifndef NDEBUG
5590  case ISD::DELETED_NODE:
5591    return "<<Deleted Node!>>";
5592#endif
5593  case ISD::PREFETCH:      return "Prefetch";
5594  case ISD::MEMBARRIER:    return "MemBarrier";
5595  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5596  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5597  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5598  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5599  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5600  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5601  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5602  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5603  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5604  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5605  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5606  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5607  case ISD::PCMARKER:      return "PCMarker";
5608  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5609  case ISD::SRCVALUE:      return "SrcValue";
5610  case ISD::MDNODE_SDNODE: return "MDNode";
5611  case ISD::EntryToken:    return "EntryToken";
5612  case ISD::TokenFactor:   return "TokenFactor";
5613  case ISD::AssertSext:    return "AssertSext";
5614  case ISD::AssertZext:    return "AssertZext";
5615
5616  case ISD::BasicBlock:    return "BasicBlock";
5617  case ISD::VALUETYPE:     return "ValueType";
5618  case ISD::Register:      return "Register";
5619
5620  case ISD::Constant:      return "Constant";
5621  case ISD::ConstantFP:    return "ConstantFP";
5622  case ISD::GlobalAddress: return "GlobalAddress";
5623  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5624  case ISD::FrameIndex:    return "FrameIndex";
5625  case ISD::JumpTable:     return "JumpTable";
5626  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5627  case ISD::RETURNADDR: return "RETURNADDR";
5628  case ISD::FRAMEADDR: return "FRAMEADDR";
5629  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5630  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5631  case ISD::LSDAADDR: return "LSDAADDR";
5632  case ISD::EHSELECTION: return "EHSELECTION";
5633  case ISD::EH_RETURN: return "EH_RETURN";
5634  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5635  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5636  case ISD::ConstantPool:  return "ConstantPool";
5637  case ISD::ExternalSymbol: return "ExternalSymbol";
5638  case ISD::BlockAddress:  return "BlockAddress";
5639  case ISD::INTRINSIC_WO_CHAIN:
5640  case ISD::INTRINSIC_VOID:
5641  case ISD::INTRINSIC_W_CHAIN: {
5642    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5643    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5644    if (IID < Intrinsic::num_intrinsics)
5645      return Intrinsic::getName((Intrinsic::ID)IID);
5646    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5647      return TII->getName(IID);
5648    llvm_unreachable("Invalid intrinsic ID");
5649  }
5650
5651  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5652  case ISD::TargetConstant: return "TargetConstant";
5653  case ISD::TargetConstantFP:return "TargetConstantFP";
5654  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5655  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5656  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5657  case ISD::TargetJumpTable:  return "TargetJumpTable";
5658  case ISD::TargetConstantPool:  return "TargetConstantPool";
5659  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5660  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5661
5662  case ISD::CopyToReg:     return "CopyToReg";
5663  case ISD::CopyFromReg:   return "CopyFromReg";
5664  case ISD::UNDEF:         return "undef";
5665  case ISD::MERGE_VALUES:  return "merge_values";
5666  case ISD::INLINEASM:     return "inlineasm";
5667  case ISD::EH_LABEL:      return "eh_label";
5668  case ISD::HANDLENODE:    return "handlenode";
5669
5670  // Unary operators
5671  case ISD::FABS:   return "fabs";
5672  case ISD::FNEG:   return "fneg";
5673  case ISD::FSQRT:  return "fsqrt";
5674  case ISD::FSIN:   return "fsin";
5675  case ISD::FCOS:   return "fcos";
5676  case ISD::FTRUNC: return "ftrunc";
5677  case ISD::FFLOOR: return "ffloor";
5678  case ISD::FCEIL:  return "fceil";
5679  case ISD::FRINT:  return "frint";
5680  case ISD::FNEARBYINT: return "fnearbyint";
5681  case ISD::FEXP:   return "fexp";
5682  case ISD::FEXP2:  return "fexp2";
5683  case ISD::FLOG:   return "flog";
5684  case ISD::FLOG2:  return "flog2";
5685  case ISD::FLOG10: return "flog10";
5686
5687  // Binary operators
5688  case ISD::ADD:    return "add";
5689  case ISD::SUB:    return "sub";
5690  case ISD::MUL:    return "mul";
5691  case ISD::MULHU:  return "mulhu";
5692  case ISD::MULHS:  return "mulhs";
5693  case ISD::SDIV:   return "sdiv";
5694  case ISD::UDIV:   return "udiv";
5695  case ISD::SREM:   return "srem";
5696  case ISD::UREM:   return "urem";
5697  case ISD::SMUL_LOHI:  return "smul_lohi";
5698  case ISD::UMUL_LOHI:  return "umul_lohi";
5699  case ISD::SDIVREM:    return "sdivrem";
5700  case ISD::UDIVREM:    return "udivrem";
5701  case ISD::AND:    return "and";
5702  case ISD::OR:     return "or";
5703  case ISD::XOR:    return "xor";
5704  case ISD::SHL:    return "shl";
5705  case ISD::SRA:    return "sra";
5706  case ISD::SRL:    return "srl";
5707  case ISD::ROTL:   return "rotl";
5708  case ISD::ROTR:   return "rotr";
5709  case ISD::FADD:   return "fadd";
5710  case ISD::FSUB:   return "fsub";
5711  case ISD::FMUL:   return "fmul";
5712  case ISD::FDIV:   return "fdiv";
5713  case ISD::FREM:   return "frem";
5714  case ISD::FCOPYSIGN: return "fcopysign";
5715  case ISD::FGETSIGN:  return "fgetsign";
5716  case ISD::FPOW:   return "fpow";
5717
5718  case ISD::FPOWI:  return "fpowi";
5719  case ISD::SETCC:       return "setcc";
5720  case ISD::VSETCC:      return "vsetcc";
5721  case ISD::SELECT:      return "select";
5722  case ISD::SELECT_CC:   return "select_cc";
5723  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5724  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5725  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5726  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5727  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5728  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5729  case ISD::CARRY_FALSE:         return "carry_false";
5730  case ISD::ADDC:        return "addc";
5731  case ISD::ADDE:        return "adde";
5732  case ISD::SADDO:       return "saddo";
5733  case ISD::UADDO:       return "uaddo";
5734  case ISD::SSUBO:       return "ssubo";
5735  case ISD::USUBO:       return "usubo";
5736  case ISD::SMULO:       return "smulo";
5737  case ISD::UMULO:       return "umulo";
5738  case ISD::SUBC:        return "subc";
5739  case ISD::SUBE:        return "sube";
5740  case ISD::SHL_PARTS:   return "shl_parts";
5741  case ISD::SRA_PARTS:   return "sra_parts";
5742  case ISD::SRL_PARTS:   return "srl_parts";
5743
5744  // Conversion operators.
5745  case ISD::SIGN_EXTEND: return "sign_extend";
5746  case ISD::ZERO_EXTEND: return "zero_extend";
5747  case ISD::ANY_EXTEND:  return "any_extend";
5748  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5749  case ISD::TRUNCATE:    return "truncate";
5750  case ISD::FP_ROUND:    return "fp_round";
5751  case ISD::FLT_ROUNDS_: return "flt_rounds";
5752  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5753  case ISD::FP_EXTEND:   return "fp_extend";
5754
5755  case ISD::SINT_TO_FP:  return "sint_to_fp";
5756  case ISD::UINT_TO_FP:  return "uint_to_fp";
5757  case ISD::FP_TO_SINT:  return "fp_to_sint";
5758  case ISD::FP_TO_UINT:  return "fp_to_uint";
5759  case ISD::BIT_CONVERT: return "bit_convert";
5760  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5761  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5762
5763  case ISD::CONVERT_RNDSAT: {
5764    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5765    default: llvm_unreachable("Unknown cvt code!");
5766    case ISD::CVT_FF:  return "cvt_ff";
5767    case ISD::CVT_FS:  return "cvt_fs";
5768    case ISD::CVT_FU:  return "cvt_fu";
5769    case ISD::CVT_SF:  return "cvt_sf";
5770    case ISD::CVT_UF:  return "cvt_uf";
5771    case ISD::CVT_SS:  return "cvt_ss";
5772    case ISD::CVT_SU:  return "cvt_su";
5773    case ISD::CVT_US:  return "cvt_us";
5774    case ISD::CVT_UU:  return "cvt_uu";
5775    }
5776  }
5777
5778    // Control flow instructions
5779  case ISD::BR:      return "br";
5780  case ISD::BRIND:   return "brind";
5781  case ISD::BR_JT:   return "br_jt";
5782  case ISD::BRCOND:  return "brcond";
5783  case ISD::BR_CC:   return "br_cc";
5784  case ISD::CALLSEQ_START:  return "callseq_start";
5785  case ISD::CALLSEQ_END:    return "callseq_end";
5786
5787    // Other operators
5788  case ISD::LOAD:               return "load";
5789  case ISD::STORE:              return "store";
5790  case ISD::VAARG:              return "vaarg";
5791  case ISD::VACOPY:             return "vacopy";
5792  case ISD::VAEND:              return "vaend";
5793  case ISD::VASTART:            return "vastart";
5794  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5795  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5796  case ISD::BUILD_PAIR:         return "build_pair";
5797  case ISD::STACKSAVE:          return "stacksave";
5798  case ISD::STACKRESTORE:       return "stackrestore";
5799  case ISD::TRAP:               return "trap";
5800
5801  // Bit manipulation
5802  case ISD::BSWAP:   return "bswap";
5803  case ISD::CTPOP:   return "ctpop";
5804  case ISD::CTTZ:    return "cttz";
5805  case ISD::CTLZ:    return "ctlz";
5806
5807  // Trampolines
5808  case ISD::TRAMPOLINE: return "trampoline";
5809
5810  case ISD::CONDCODE:
5811    switch (cast<CondCodeSDNode>(this)->get()) {
5812    default: llvm_unreachable("Unknown setcc condition!");
5813    case ISD::SETOEQ:  return "setoeq";
5814    case ISD::SETOGT:  return "setogt";
5815    case ISD::SETOGE:  return "setoge";
5816    case ISD::SETOLT:  return "setolt";
5817    case ISD::SETOLE:  return "setole";
5818    case ISD::SETONE:  return "setone";
5819
5820    case ISD::SETO:    return "seto";
5821    case ISD::SETUO:   return "setuo";
5822    case ISD::SETUEQ:  return "setue";
5823    case ISD::SETUGT:  return "setugt";
5824    case ISD::SETUGE:  return "setuge";
5825    case ISD::SETULT:  return "setult";
5826    case ISD::SETULE:  return "setule";
5827    case ISD::SETUNE:  return "setune";
5828
5829    case ISD::SETEQ:   return "seteq";
5830    case ISD::SETGT:   return "setgt";
5831    case ISD::SETGE:   return "setge";
5832    case ISD::SETLT:   return "setlt";
5833    case ISD::SETLE:   return "setle";
5834    case ISD::SETNE:   return "setne";
5835    }
5836  }
5837}
5838
5839const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5840  switch (AM) {
5841  default:
5842    return "";
5843  case ISD::PRE_INC:
5844    return "<pre-inc>";
5845  case ISD::PRE_DEC:
5846    return "<pre-dec>";
5847  case ISD::POST_INC:
5848    return "<post-inc>";
5849  case ISD::POST_DEC:
5850    return "<post-dec>";
5851  }
5852}
5853
5854std::string ISD::ArgFlagsTy::getArgFlagsString() {
5855  std::string S = "< ";
5856
5857  if (isZExt())
5858    S += "zext ";
5859  if (isSExt())
5860    S += "sext ";
5861  if (isInReg())
5862    S += "inreg ";
5863  if (isSRet())
5864    S += "sret ";
5865  if (isByVal())
5866    S += "byval ";
5867  if (isNest())
5868    S += "nest ";
5869  if (getByValAlign())
5870    S += "byval-align:" + utostr(getByValAlign()) + " ";
5871  if (getOrigAlign())
5872    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5873  if (getByValSize())
5874    S += "byval-size:" + utostr(getByValSize()) + " ";
5875  return S + ">";
5876}
5877
5878void SDNode::dump() const { dump(0); }
5879void SDNode::dump(const SelectionDAG *G) const {
5880  print(dbgs(), G);
5881}
5882
5883void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5884  OS << (void*)this << ": ";
5885
5886  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5887    if (i) OS << ",";
5888    if (getValueType(i) == MVT::Other)
5889      OS << "ch";
5890    else
5891      OS << getValueType(i).getEVTString();
5892  }
5893  OS << " = " << getOperationName(G);
5894}
5895
5896void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5897  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5898    if (!MN->memoperands_empty()) {
5899      OS << "<";
5900      OS << "Mem:";
5901      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5902           e = MN->memoperands_end(); i != e; ++i) {
5903        OS << **i;
5904        if (next(i) != e)
5905          OS << " ";
5906      }
5907      OS << ">";
5908    }
5909  } else if (const ShuffleVectorSDNode *SVN =
5910               dyn_cast<ShuffleVectorSDNode>(this)) {
5911    OS << "<";
5912    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5913      int Idx = SVN->getMaskElt(i);
5914      if (i) OS << ",";
5915      if (Idx < 0)
5916        OS << "u";
5917      else
5918        OS << Idx;
5919    }
5920    OS << ">";
5921  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5922    OS << '<' << CSDN->getAPIntValue() << '>';
5923  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5924    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5925      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5926    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5927      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5928    else {
5929      OS << "<APFloat(";
5930      CSDN->getValueAPF().bitcastToAPInt().dump();
5931      OS << ")>";
5932    }
5933  } else if (const GlobalAddressSDNode *GADN =
5934             dyn_cast<GlobalAddressSDNode>(this)) {
5935    int64_t offset = GADN->getOffset();
5936    OS << '<';
5937    WriteAsOperand(OS, GADN->getGlobal());
5938    OS << '>';
5939    if (offset > 0)
5940      OS << " + " << offset;
5941    else
5942      OS << " " << offset;
5943    if (unsigned int TF = GADN->getTargetFlags())
5944      OS << " [TF=" << TF << ']';
5945  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5946    OS << "<" << FIDN->getIndex() << ">";
5947  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5948    OS << "<" << JTDN->getIndex() << ">";
5949    if (unsigned int TF = JTDN->getTargetFlags())
5950      OS << " [TF=" << TF << ']';
5951  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5952    int offset = CP->getOffset();
5953    if (CP->isMachineConstantPoolEntry())
5954      OS << "<" << *CP->getMachineCPVal() << ">";
5955    else
5956      OS << "<" << *CP->getConstVal() << ">";
5957    if (offset > 0)
5958      OS << " + " << offset;
5959    else
5960      OS << " " << offset;
5961    if (unsigned int TF = CP->getTargetFlags())
5962      OS << " [TF=" << TF << ']';
5963  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5964    OS << "<";
5965    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5966    if (LBB)
5967      OS << LBB->getName() << " ";
5968    OS << (const void*)BBDN->getBasicBlock() << ">";
5969  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5970    if (G && R->getReg() &&
5971        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5972      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5973    } else {
5974      OS << " %reg" << R->getReg();
5975    }
5976  } else if (const ExternalSymbolSDNode *ES =
5977             dyn_cast<ExternalSymbolSDNode>(this)) {
5978    OS << "'" << ES->getSymbol() << "'";
5979    if (unsigned int TF = ES->getTargetFlags())
5980      OS << " [TF=" << TF << ']';
5981  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5982    if (M->getValue())
5983      OS << "<" << M->getValue() << ">";
5984    else
5985      OS << "<null>";
5986  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5987    if (MD->getMD())
5988      OS << "<" << MD->getMD() << ">";
5989    else
5990      OS << "<null>";
5991  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5992    OS << ":" << N->getVT().getEVTString();
5993  }
5994  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5995    OS << "<" << *LD->getMemOperand();
5996
5997    bool doExt = true;
5998    switch (LD->getExtensionType()) {
5999    default: doExt = false; break;
6000    case ISD::EXTLOAD: OS << ", anyext"; break;
6001    case ISD::SEXTLOAD: OS << ", sext"; break;
6002    case ISD::ZEXTLOAD: OS << ", zext"; break;
6003    }
6004    if (doExt)
6005      OS << " from " << LD->getMemoryVT().getEVTString();
6006
6007    const char *AM = getIndexedModeName(LD->getAddressingMode());
6008    if (*AM)
6009      OS << ", " << AM;
6010
6011    OS << ">";
6012  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6013    OS << "<" << *ST->getMemOperand();
6014
6015    if (ST->isTruncatingStore())
6016      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6017
6018    const char *AM = getIndexedModeName(ST->getAddressingMode());
6019    if (*AM)
6020      OS << ", " << AM;
6021
6022    OS << ">";
6023  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6024    OS << "<" << *M->getMemOperand() << ">";
6025  } else if (const BlockAddressSDNode *BA =
6026               dyn_cast<BlockAddressSDNode>(this)) {
6027    OS << "<";
6028    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6029    OS << ", ";
6030    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6031    OS << ">";
6032    if (unsigned int TF = BA->getTargetFlags())
6033      OS << " [TF=" << TF << ']';
6034  }
6035
6036  if (G)
6037    if (unsigned Order = G->GetOrdering(this))
6038      OS << " [ORD=" << Order << ']';
6039
6040  if (getNodeId() != -1)
6041    OS << " [ID=" << getNodeId() << ']';
6042
6043  DebugLoc dl = getDebugLoc();
6044  if (G && !dl.isUnknown()) {
6045    DIScope
6046      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6047    OS << " dbg:";
6048    // Omit the directory, since it's usually long and uninteresting.
6049    if (Scope.Verify())
6050      OS << Scope.getFilename();
6051    else
6052      OS << "<unknown>";
6053    OS << ':' << dl.getLine();
6054    if (dl.getCol() != 0)
6055      OS << ':' << dl.getCol();
6056  }
6057}
6058
6059void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6060  print_types(OS, G);
6061  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6062    if (i) OS << ", "; else OS << " ";
6063    OS << (void*)getOperand(i).getNode();
6064    if (unsigned RN = getOperand(i).getResNo())
6065      OS << ":" << RN;
6066  }
6067  print_details(OS, G);
6068}
6069
6070static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6071                                  const SelectionDAG *G, unsigned depth,
6072                                  unsigned indent)
6073{
6074  if (depth == 0)
6075    return;
6076
6077  OS.indent(indent);
6078
6079  N->print(OS, G);
6080
6081  if (depth < 1)
6082    return;
6083
6084  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6085    OS << '\n';
6086    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6087  }
6088}
6089
6090void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6091                            unsigned depth) const {
6092  printrWithDepthHelper(OS, this, G, depth, 0);
6093}
6094
6095void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6096  // Don't print impossibly deep things.
6097  printrWithDepth(OS, G, 100);
6098}
6099
6100void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6101  printrWithDepth(dbgs(), G, depth);
6102}
6103
6104void SDNode::dumprFull(const SelectionDAG *G) const {
6105  // Don't print impossibly deep things.
6106  dumprWithDepth(G, 100);
6107}
6108
6109static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6110  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6111    if (N->getOperand(i).getNode()->hasOneUse())
6112      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6113    else
6114      dbgs() << "\n" << std::string(indent+2, ' ')
6115           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6116
6117
6118  dbgs() << "\n";
6119  dbgs().indent(indent);
6120  N->dump(G);
6121}
6122
6123SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6124  assert(N->getNumValues() == 1 &&
6125         "Can't unroll a vector with multiple results!");
6126
6127  EVT VT = N->getValueType(0);
6128  unsigned NE = VT.getVectorNumElements();
6129  EVT EltVT = VT.getVectorElementType();
6130  DebugLoc dl = N->getDebugLoc();
6131
6132  SmallVector<SDValue, 8> Scalars;
6133  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6134
6135  // If ResNE is 0, fully unroll the vector op.
6136  if (ResNE == 0)
6137    ResNE = NE;
6138  else if (NE > ResNE)
6139    NE = ResNE;
6140
6141  unsigned i;
6142  for (i= 0; i != NE; ++i) {
6143    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6144      SDValue Operand = N->getOperand(j);
6145      EVT OperandVT = Operand.getValueType();
6146      if (OperandVT.isVector()) {
6147        // A vector operand; extract a single element.
6148        EVT OperandEltVT = OperandVT.getVectorElementType();
6149        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6150                              OperandEltVT,
6151                              Operand,
6152                              getConstant(i, MVT::i32));
6153      } else {
6154        // A scalar operand; just use it as is.
6155        Operands[j] = Operand;
6156      }
6157    }
6158
6159    switch (N->getOpcode()) {
6160    default:
6161      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6162                                &Operands[0], Operands.size()));
6163      break;
6164    case ISD::SHL:
6165    case ISD::SRA:
6166    case ISD::SRL:
6167    case ISD::ROTL:
6168    case ISD::ROTR:
6169      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6170                                getShiftAmountOperand(Operands[1])));
6171      break;
6172    case ISD::SIGN_EXTEND_INREG:
6173    case ISD::FP_ROUND_INREG: {
6174      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6175      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6176                                Operands[0],
6177                                getValueType(ExtVT)));
6178    }
6179    }
6180  }
6181
6182  for (; i < ResNE; ++i)
6183    Scalars.push_back(getUNDEF(EltVT));
6184
6185  return getNode(ISD::BUILD_VECTOR, dl,
6186                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6187                 &Scalars[0], Scalars.size());
6188}
6189
6190
6191/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6192/// location that is 'Dist' units away from the location that the 'Base' load
6193/// is loading from.
6194bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6195                                     unsigned Bytes, int Dist) const {
6196  if (LD->getChain() != Base->getChain())
6197    return false;
6198  EVT VT = LD->getValueType(0);
6199  if (VT.getSizeInBits() / 8 != Bytes)
6200    return false;
6201
6202  SDValue Loc = LD->getOperand(1);
6203  SDValue BaseLoc = Base->getOperand(1);
6204  if (Loc.getOpcode() == ISD::FrameIndex) {
6205    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6206      return false;
6207    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6208    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6209    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6210    int FS  = MFI->getObjectSize(FI);
6211    int BFS = MFI->getObjectSize(BFI);
6212    if (FS != BFS || FS != (int)Bytes) return false;
6213    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6214  }
6215  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6216    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6217    if (V && (V->getSExtValue() == Dist*Bytes))
6218      return true;
6219  }
6220
6221  const GlobalValue *GV1 = NULL;
6222  const GlobalValue *GV2 = NULL;
6223  int64_t Offset1 = 0;
6224  int64_t Offset2 = 0;
6225  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6226  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6227  if (isGA1 && isGA2 && GV1 == GV2)
6228    return Offset1 == (Offset2 + Dist*Bytes);
6229  return false;
6230}
6231
6232
6233/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6234/// it cannot be inferred.
6235unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6236  // If this is a GlobalAddress + cst, return the alignment.
6237  const GlobalValue *GV;
6238  int64_t GVOffset = 0;
6239  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6240    // If GV has specified alignment, then use it. Otherwise, use the preferred
6241    // alignment.
6242    unsigned Align = GV->getAlignment();
6243    if (!Align) {
6244      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6245        if (GVar->hasInitializer()) {
6246          const TargetData *TD = TLI.getTargetData();
6247          Align = TD->getPreferredAlignment(GVar);
6248        }
6249      }
6250    }
6251    return MinAlign(Align, GVOffset);
6252  }
6253
6254  // If this is a direct reference to a stack slot, use information about the
6255  // stack slot's alignment.
6256  int FrameIdx = 1 << 31;
6257  int64_t FrameOffset = 0;
6258  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6259    FrameIdx = FI->getIndex();
6260  } else if (Ptr.getOpcode() == ISD::ADD &&
6261             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6262             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6263    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6264    FrameOffset = Ptr.getConstantOperandVal(1);
6265  }
6266
6267  if (FrameIdx != (1 << 31)) {
6268    // FIXME: Handle FI+CST.
6269    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6270    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6271                                    FrameOffset);
6272    if (MFI.isFixedObjectIndex(FrameIdx)) {
6273      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6274
6275      // The alignment of the frame index can be determined from its offset from
6276      // the incoming frame position.  If the frame object is at offset 32 and
6277      // the stack is guaranteed to be 16-byte aligned, then we know that the
6278      // object is 16-byte aligned.
6279      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6280      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6281
6282      // Finally, the frame object itself may have a known alignment.  Factor
6283      // the alignment + offset into a new alignment.  For example, if we know
6284      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6285      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6286      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6287      return std::max(Align, FIInfoAlign);
6288    }
6289    return FIInfoAlign;
6290  }
6291
6292  return 0;
6293}
6294
6295void SelectionDAG::dump() const {
6296  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6297
6298  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6299       I != E; ++I) {
6300    const SDNode *N = I;
6301    if (!N->hasOneUse() && N != getRoot().getNode())
6302      DumpNodes(N, 2, this);
6303  }
6304
6305  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6306
6307  dbgs() << "\n\n";
6308}
6309
6310void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6311  print_types(OS, G);
6312  print_details(OS, G);
6313}
6314
6315typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6316static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6317                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6318  if (!once.insert(N))          // If we've been here before, return now.
6319    return;
6320
6321  // Dump the current SDNode, but don't end the line yet.
6322  OS << std::string(indent, ' ');
6323  N->printr(OS, G);
6324
6325  // Having printed this SDNode, walk the children:
6326  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6327    const SDNode *child = N->getOperand(i).getNode();
6328
6329    if (i) OS << ",";
6330    OS << " ";
6331
6332    if (child->getNumOperands() == 0) {
6333      // This child has no grandchildren; print it inline right here.
6334      child->printr(OS, G);
6335      once.insert(child);
6336    } else {         // Just the address. FIXME: also print the child's opcode.
6337      OS << (void*)child;
6338      if (unsigned RN = N->getOperand(i).getResNo())
6339        OS << ":" << RN;
6340    }
6341  }
6342
6343  OS << "\n";
6344
6345  // Dump children that have grandchildren on their own line(s).
6346  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6347    const SDNode *child = N->getOperand(i).getNode();
6348    DumpNodesr(OS, child, indent+2, G, once);
6349  }
6350}
6351
6352void SDNode::dumpr() const {
6353  VisitedSDNodeSet once;
6354  DumpNodesr(dbgs(), this, 0, 0, once);
6355}
6356
6357void SDNode::dumpr(const SelectionDAG *G) const {
6358  VisitedSDNodeSet once;
6359  DumpNodesr(dbgs(), this, 0, G, once);
6360}
6361
6362
6363// getAddressSpace - Return the address space this GlobalAddress belongs to.
6364unsigned GlobalAddressSDNode::getAddressSpace() const {
6365  return getGlobal()->getType()->getAddressSpace();
6366}
6367
6368
6369const Type *ConstantPoolSDNode::getType() const {
6370  if (isMachineConstantPoolEntry())
6371    return Val.MachineCPVal->getType();
6372  return Val.ConstVal->getType();
6373}
6374
6375bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6376                                        APInt &SplatUndef,
6377                                        unsigned &SplatBitSize,
6378                                        bool &HasAnyUndefs,
6379                                        unsigned MinSplatBits,
6380                                        bool isBigEndian) {
6381  EVT VT = getValueType(0);
6382  assert(VT.isVector() && "Expected a vector type");
6383  unsigned sz = VT.getSizeInBits();
6384  if (MinSplatBits > sz)
6385    return false;
6386
6387  SplatValue = APInt(sz, 0);
6388  SplatUndef = APInt(sz, 0);
6389
6390  // Get the bits.  Bits with undefined values (when the corresponding element
6391  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6392  // in SplatValue.  If any of the values are not constant, give up and return
6393  // false.
6394  unsigned int nOps = getNumOperands();
6395  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6396  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6397
6398  for (unsigned j = 0; j < nOps; ++j) {
6399    unsigned i = isBigEndian ? nOps-1-j : j;
6400    SDValue OpVal = getOperand(i);
6401    unsigned BitPos = j * EltBitSize;
6402
6403    if (OpVal.getOpcode() == ISD::UNDEF)
6404      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6405    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6406      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6407                    zextOrTrunc(sz) << BitPos;
6408    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6409      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6410     else
6411      return false;
6412  }
6413
6414  // The build_vector is all constants or undefs.  Find the smallest element
6415  // size that splats the vector.
6416
6417  HasAnyUndefs = (SplatUndef != 0);
6418  while (sz > 8) {
6419
6420    unsigned HalfSize = sz / 2;
6421    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6422    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6423    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6424    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6425
6426    // If the two halves do not match (ignoring undef bits), stop here.
6427    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6428        MinSplatBits > HalfSize)
6429      break;
6430
6431    SplatValue = HighValue | LowValue;
6432    SplatUndef = HighUndef & LowUndef;
6433
6434    sz = HalfSize;
6435  }
6436
6437  SplatBitSize = sz;
6438  return true;
6439}
6440
6441bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6442  // Find the first non-undef value in the shuffle mask.
6443  unsigned i, e;
6444  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6445    /* search */;
6446
6447  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6448
6449  // Make sure all remaining elements are either undef or the same as the first
6450  // non-undef value.
6451  for (int Idx = Mask[i]; i != e; ++i)
6452    if (Mask[i] >= 0 && Mask[i] != Idx)
6453      return false;
6454  return true;
6455}
6456
6457#ifdef XDEBUG
6458static void checkForCyclesHelper(const SDNode *N,
6459                                 SmallPtrSet<const SDNode*, 32> &Visited,
6460                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6461  // If this node has already been checked, don't check it again.
6462  if (Checked.count(N))
6463    return;
6464
6465  // If a node has already been visited on this depth-first walk, reject it as
6466  // a cycle.
6467  if (!Visited.insert(N)) {
6468    dbgs() << "Offending node:\n";
6469    N->dumprFull();
6470    errs() << "Detected cycle in SelectionDAG\n";
6471    abort();
6472  }
6473
6474  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6475    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6476
6477  Checked.insert(N);
6478  Visited.erase(N);
6479}
6480#endif
6481
6482void llvm::checkForCycles(const llvm::SDNode *N) {
6483#ifdef XDEBUG
6484  assert(N && "Checking nonexistant SDNode");
6485  SmallPtrSet<const SDNode*, 32> visited;
6486  SmallPtrSet<const SDNode*, 32> checked;
6487  checkForCyclesHelper(N, visited, checked);
6488#endif
6489}
6490
6491void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6492  checkForCycles(DAG->getRoot().getNode());
6493}
6494