SelectionDAG.cpp revision 10d94f95f8be674d9511d0de1e0fcc2066607fee
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41  SDVTList Res = {VTs, NumVTs};
42  return Res;
43}
44
45//===----------------------------------------------------------------------===//
46//                              ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
53bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
54  return Value.bitwiseIsEqual(V);
55}
56
57bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58                                           const APFloat& Val) {
59  // convert modifies in place, so make a copy.
60  APFloat Val2 = APFloat(Val);
61  switch (VT) {
62  default:
63    return false;         // These can't be represented as floating point!
64
65  // FIXME rounding mode needs to be more flexible
66  case MVT::f32:
67    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69              APFloat::opOK;
70  case MVT::f64:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           &Val2.getSemantics() == &APFloat::IEEEdouble ||
73           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74             APFloat::opOK;
75  // TODO: Figure out how to test if we can use a shorter type instead!
76  case MVT::f80:
77  case MVT::f128:
78  case MVT::ppcf128:
79    return true;
80  }
81}
82
83//===----------------------------------------------------------------------===//
84//                              ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90  // Look through a bit convert.
91  if (N->getOpcode() == ISD::BIT_CONVERT)
92    N = N->getOperand(0).Val;
93
94  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96  unsigned i = 0, e = N->getNumOperands();
97
98  // Skip over all of the undef values.
99  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100    ++i;
101
102  // Do not accept an all-undef vector.
103  if (i == e) return false;
104
105  // Do not accept build_vectors that aren't all constants or which have non-~0
106  // elements.
107  SDOperand NotZero = N->getOperand(i);
108  if (isa<ConstantSDNode>(NotZero)) {
109    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110      return false;
111  } else if (isa<ConstantFPSDNode>(NotZero)) {
112    MVT::ValueType VT = NotZero.getValueType();
113    if (VT== MVT::f64) {
114      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
116        return false;
117    } else {
118      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119                      getValueAPF().convertToAPInt().getZExtValue() !=
120          (uint32_t)-1)
121        return false;
122    }
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178  // To perform this operation, we just need to swap the L and G bits of the
179  // operation.
180  unsigned OldL = (Operation >> 2) & 1;
181  unsigned OldG = (Operation >> 1) & 1;
182  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
183                       (OldL << 1) |       // New G bit
184                       (OldG << 2));        // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190  unsigned Operation = Op;
191  if (isInteger)
192    Operation ^= 7;   // Flip L, G, E bits, but not U.
193  else
194    Operation ^= 15;  // Flip all of the condition bits.
195  if (Operation > ISD::SETTRUE2)
196    Operation &= ~8;     // Don't let N and U bits get set.
197  return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison.  Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205  switch (Opcode) {
206  default: assert(0 && "Illegal integer setcc operation!");
207  case ISD::SETEQ:
208  case ISD::SETNE: return 0;
209  case ISD::SETLT:
210  case ISD::SETLE:
211  case ISD::SETGT:
212  case ISD::SETGE: return 1;
213  case ISD::SETULT:
214  case ISD::SETULE:
215  case ISD::SETUGT:
216  case ISD::SETUGE: return 2;
217  }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225                                       bool isInteger) {
226  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227    // Cannot fold a signed integer setcc with an unsigned integer setcc.
228    return ISD::SETCC_INVALID;
229
230  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
231
232  // If the N and U bits get set then the resultant comparison DOES suddenly
233  // care about orderedness, and is true when ordered.
234  if (Op > ISD::SETTRUE2)
235    Op &= ~16;     // Clear the U bit if the N bit is set.
236
237  // Canonicalize illegal integer setcc's.
238  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
239    Op = ISD::SETNE;
240
241  return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249                                        bool isInteger) {
250  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251    // Cannot fold a signed setcc with an unsigned setcc.
252    return ISD::SETCC_INVALID;
253
254  // Combine all of the condition bits.
255  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger) {
259    switch (Result) {
260    default: break;
261    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
262    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
263    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
264    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
265    }
266  }
267
268  return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272  return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276//                           SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
282  ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288  ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294                              const SDOperand *Ops, unsigned NumOps) {
295  for (; NumOps; --NumOps, ++Ops) {
296    ID.AddPointer(Ops->Val);
297    ID.AddInteger(Ops->ResNo);
298  }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302                          unsigned short OpC, SDVTList VTList,
303                          const SDOperand *OpList, unsigned N) {
304  AddNodeIDOpcode(ID, OpC);
305  AddNodeIDValueTypes(ID, VTList);
306  AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312  AddNodeIDOpcode(ID, N->getOpcode());
313  // Add the return value info.
314  AddNodeIDValueTypes(ID, N->getVTList());
315  // Add the operand info.
316  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318  // Handle SDNode leafs with special info.
319  switch (N->getOpcode()) {
320  default: break;  // Normal nodes don't need extra info.
321  case ISD::TargetConstant:
322  case ISD::Constant:
323    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324    break;
325  case ISD::TargetConstantFP:
326  case ISD::ConstantFP: {
327    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
328    break;
329  }
330  case ISD::TargetGlobalAddress:
331  case ISD::GlobalAddress:
332  case ISD::TargetGlobalTLSAddress:
333  case ISD::GlobalTLSAddress: {
334    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335    ID.AddPointer(GA->getGlobal());
336    ID.AddInteger(GA->getOffset());
337    break;
338  }
339  case ISD::BasicBlock:
340    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341    break;
342  case ISD::Register:
343    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344    break;
345  case ISD::SRCVALUE: {
346    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347    ID.AddPointer(SV->getValue());
348    ID.AddInteger(SV->getOffset());
349    break;
350  }
351  case ISD::FrameIndex:
352  case ISD::TargetFrameIndex:
353    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354    break;
355  case ISD::JumpTable:
356  case ISD::TargetJumpTable:
357    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358    break;
359  case ISD::ConstantPool:
360  case ISD::TargetConstantPool: {
361    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362    ID.AddInteger(CP->getAlignment());
363    ID.AddInteger(CP->getOffset());
364    if (CP->isMachineConstantPoolEntry())
365      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366    else
367      ID.AddPointer(CP->getConstVal());
368    break;
369  }
370  case ISD::LOAD: {
371    LoadSDNode *LD = cast<LoadSDNode>(N);
372    ID.AddInteger(LD->getAddressingMode());
373    ID.AddInteger(LD->getExtensionType());
374    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
375    ID.AddInteger(LD->getAlignment());
376    ID.AddInteger(LD->isVolatile());
377    break;
378  }
379  case ISD::STORE: {
380    StoreSDNode *ST = cast<StoreSDNode>(N);
381    ID.AddInteger(ST->getAddressingMode());
382    ID.AddInteger(ST->isTruncatingStore());
383    ID.AddInteger((unsigned int)(ST->getStoredVT()));
384    ID.AddInteger(ST->getAlignment());
385    ID.AddInteger(ST->isVolatile());
386    break;
387  }
388  }
389}
390
391//===----------------------------------------------------------------------===//
392//                              SelectionDAG Class
393//===----------------------------------------------------------------------===//
394
395/// RemoveDeadNodes - This method deletes all unreachable nodes in the
396/// SelectionDAG.
397void SelectionDAG::RemoveDeadNodes() {
398  // Create a dummy node (which is not added to allnodes), that adds a reference
399  // to the root node, preventing it from being deleted.
400  HandleSDNode Dummy(getRoot());
401
402  SmallVector<SDNode*, 128> DeadNodes;
403
404  // Add all obviously-dead nodes to the DeadNodes worklist.
405  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
406    if (I->use_empty())
407      DeadNodes.push_back(I);
408
409  // Process the worklist, deleting the nodes and adding their uses to the
410  // worklist.
411  while (!DeadNodes.empty()) {
412    SDNode *N = DeadNodes.back();
413    DeadNodes.pop_back();
414
415    // Take the node out of the appropriate CSE map.
416    RemoveNodeFromCSEMaps(N);
417
418    // Next, brutally remove the operand list.  This is safe to do, as there are
419    // no cycles in the graph.
420    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
421      SDNode *Operand = I->Val;
422      Operand->removeUser(N);
423
424      // Now that we removed this operand, see if there are no uses of it left.
425      if (Operand->use_empty())
426        DeadNodes.push_back(Operand);
427    }
428    if (N->OperandsNeedDelete)
429      delete[] N->OperandList;
430    N->OperandList = 0;
431    N->NumOperands = 0;
432
433    // Finally, remove N itself.
434    AllNodes.erase(N);
435  }
436
437  // If the root changed (e.g. it was a dead load, update the root).
438  setRoot(Dummy.getValue());
439}
440
441void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
442  SmallVector<SDNode*, 16> DeadNodes;
443  DeadNodes.push_back(N);
444
445  // Process the worklist, deleting the nodes and adding their uses to the
446  // worklist.
447  while (!DeadNodes.empty()) {
448    SDNode *N = DeadNodes.back();
449    DeadNodes.pop_back();
450
451    // Take the node out of the appropriate CSE map.
452    RemoveNodeFromCSEMaps(N);
453
454    // Next, brutally remove the operand list.  This is safe to do, as there are
455    // no cycles in the graph.
456    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
457      SDNode *Operand = I->Val;
458      Operand->removeUser(N);
459
460      // Now that we removed this operand, see if there are no uses of it left.
461      if (Operand->use_empty())
462        DeadNodes.push_back(Operand);
463    }
464    if (N->OperandsNeedDelete)
465      delete[] N->OperandList;
466    N->OperandList = 0;
467    N->NumOperands = 0;
468
469    // Finally, remove N itself.
470    Deleted.push_back(N);
471    AllNodes.erase(N);
472  }
473}
474
475void SelectionDAG::DeleteNode(SDNode *N) {
476  assert(N->use_empty() && "Cannot delete a node that is not dead!");
477
478  // First take this out of the appropriate CSE map.
479  RemoveNodeFromCSEMaps(N);
480
481  // Finally, remove uses due to operands of this node, remove from the
482  // AllNodes list, and delete the node.
483  DeleteNodeNotInCSEMaps(N);
484}
485
486void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
487
488  // Remove it from the AllNodes list.
489  AllNodes.remove(N);
490
491  // Drop all of the operands and decrement used nodes use counts.
492  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
493    I->Val->removeUser(N);
494  if (N->OperandsNeedDelete)
495    delete[] N->OperandList;
496  N->OperandList = 0;
497  N->NumOperands = 0;
498
499  delete N;
500}
501
502/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
503/// correspond to it.  This is useful when we're about to delete or repurpose
504/// the node.  We don't want future request for structurally identical nodes
505/// to return N anymore.
506void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
507  bool Erased = false;
508  switch (N->getOpcode()) {
509  case ISD::HANDLENODE: return;  // noop.
510  case ISD::STRING:
511    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
512    break;
513  case ISD::CONDCODE:
514    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
515           "Cond code doesn't exist!");
516    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
517    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
518    break;
519  case ISD::ExternalSymbol:
520    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
521    break;
522  case ISD::TargetExternalSymbol:
523    Erased =
524      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525    break;
526  case ISD::VALUETYPE: {
527    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
528    if (MVT::isExtendedVT(VT)) {
529      Erased = ExtendedValueTypeNodes.erase(VT);
530    } else {
531      Erased = ValueTypeNodes[VT] != 0;
532      ValueTypeNodes[VT] = 0;
533    }
534    break;
535  }
536  default:
537    // Remove it from the CSE Map.
538    Erased = CSEMap.RemoveNode(N);
539    break;
540  }
541#ifndef NDEBUG
542  // Verify that the node was actually in one of the CSE maps, unless it has a
543  // flag result (which cannot be CSE'd) or is one of the special cases that are
544  // not subject to CSE.
545  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
546      !N->isTargetOpcode()) {
547    N->dump(this);
548    cerr << "\n";
549    assert(0 && "Node is not in map!");
550  }
551#endif
552}
553
554/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
555/// has been taken out and modified in some way.  If the specified node already
556/// exists in the CSE maps, do not modify the maps, but return the existing node
557/// instead.  If it doesn't exist, add it and return null.
558///
559SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
560  assert(N->getNumOperands() && "This is a leaf node!");
561  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
562    return 0;    // Never add these nodes.
563
564  // Check that remaining values produced are not flags.
565  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
566    if (N->getValueType(i) == MVT::Flag)
567      return 0;   // Never CSE anything that produces a flag.
568
569  SDNode *New = CSEMap.GetOrInsertNode(N);
570  if (New != N) return New;  // Node already existed.
571  return 0;
572}
573
574/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
575/// were replaced with those specified.  If this node is never memoized,
576/// return null, otherwise return a pointer to the slot it would take.  If a
577/// node already exists with these operands, the slot will be non-null.
578SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
579                                           void *&InsertPos) {
580  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
581    return 0;    // Never add these nodes.
582
583  // Check that remaining values produced are not flags.
584  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
585    if (N->getValueType(i) == MVT::Flag)
586      return 0;   // Never CSE anything that produces a flag.
587
588  SDOperand Ops[] = { Op };
589  FoldingSetNodeID ID;
590  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
591  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
592}
593
594/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
595/// were replaced with those specified.  If this node is never memoized,
596/// return null, otherwise return a pointer to the slot it would take.  If a
597/// node already exists with these operands, the slot will be non-null.
598SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
599                                           SDOperand Op1, SDOperand Op2,
600                                           void *&InsertPos) {
601  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
602    return 0;    // Never add these nodes.
603
604  // Check that remaining values produced are not flags.
605  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
606    if (N->getValueType(i) == MVT::Flag)
607      return 0;   // Never CSE anything that produces a flag.
608
609  SDOperand Ops[] = { Op1, Op2 };
610  FoldingSetNodeID ID;
611  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
612  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
613}
614
615
616/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
617/// were replaced with those specified.  If this node is never memoized,
618/// return null, otherwise return a pointer to the slot it would take.  If a
619/// node already exists with these operands, the slot will be non-null.
620SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
621                                           const SDOperand *Ops,unsigned NumOps,
622                                           void *&InsertPos) {
623  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
624    return 0;    // Never add these nodes.
625
626  // Check that remaining values produced are not flags.
627  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
628    if (N->getValueType(i) == MVT::Flag)
629      return 0;   // Never CSE anything that produces a flag.
630
631  FoldingSetNodeID ID;
632  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
633
634  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
635    ID.AddInteger(LD->getAddressingMode());
636    ID.AddInteger(LD->getExtensionType());
637    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
638    ID.AddInteger(LD->getAlignment());
639    ID.AddInteger(LD->isVolatile());
640  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
641    ID.AddInteger(ST->getAddressingMode());
642    ID.AddInteger(ST->isTruncatingStore());
643    ID.AddInteger((unsigned int)(ST->getStoredVT()));
644    ID.AddInteger(ST->getAlignment());
645    ID.AddInteger(ST->isVolatile());
646  }
647
648  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653  while (!AllNodes.empty()) {
654    SDNode *N = AllNodes.begin();
655    N->SetNextInBucket(0);
656    if (N->OperandsNeedDelete)
657      delete [] N->OperandList;
658    N->OperandList = 0;
659    N->NumOperands = 0;
660    AllNodes.pop_front();
661  }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665  if (Op.getValueType() == VT) return Op;
666  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667  return getNode(ISD::AND, Op.getValueType(), Op,
668                 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672  StringSDNode *&N = StringNodes[Val];
673  if (!N) {
674    N = new StringSDNode(Val);
675    AllNodes.push_back(N);
676  }
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682
683  MVT::ValueType EltVT =
684    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
685
686  // Mask out any bits that are not valid for this constant.
687  Val &= MVT::getIntVTBitMask(EltVT);
688
689  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
690  FoldingSetNodeID ID;
691  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
692  ID.AddInteger(Val);
693  void *IP = 0;
694  SDNode *N = NULL;
695  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
696    if (!MVT::isVector(VT))
697      return SDOperand(N, 0);
698  if (!N) {
699    N = new ConstantSDNode(isT, Val, EltVT);
700    CSEMap.InsertNode(N, IP);
701    AllNodes.push_back(N);
702  }
703
704  SDOperand Result(N, 0);
705  if (MVT::isVector(VT)) {
706    SmallVector<SDOperand, 8> Ops;
707    Ops.assign(MVT::getVectorNumElements(VT), Result);
708    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
709  }
710  return Result;
711}
712
713SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
714                                      bool isTarget) {
715  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
716
717  MVT::ValueType EltVT =
718    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
719
720  // Do the map lookup using the actual bit pattern for the floating point
721  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
722  // we don't have issues with SNANs.
723  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
724  FoldingSetNodeID ID;
725  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
726  ID.AddAPFloat(V);
727  void *IP = 0;
728  SDNode *N = NULL;
729  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
730    if (!MVT::isVector(VT))
731      return SDOperand(N, 0);
732  if (!N) {
733    N = new ConstantFPSDNode(isTarget, V, EltVT);
734    CSEMap.InsertNode(N, IP);
735    AllNodes.push_back(N);
736  }
737
738  SDOperand Result(N, 0);
739  if (MVT::isVector(VT)) {
740    SmallVector<SDOperand, 8> Ops;
741    Ops.assign(MVT::getVectorNumElements(VT), Result);
742    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
743  }
744  return Result;
745}
746
747SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
748                                      bool isTarget) {
749  MVT::ValueType EltVT =
750    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
751  if (EltVT==MVT::f32)
752    return getConstantFP(APFloat((float)Val), VT, isTarget);
753  else
754    return getConstantFP(APFloat(Val), VT, isTarget);
755}
756
757SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
758                                         MVT::ValueType VT, int Offset,
759                                         bool isTargetGA) {
760  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
761  unsigned Opc;
762  if (GVar && GVar->isThreadLocal())
763    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
764  else
765    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
766  FoldingSetNodeID ID;
767  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
768  ID.AddPointer(GV);
769  ID.AddInteger(Offset);
770  void *IP = 0;
771  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
772   return SDOperand(E, 0);
773  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
774  CSEMap.InsertNode(N, IP);
775  AllNodes.push_back(N);
776  return SDOperand(N, 0);
777}
778
779SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
780                                      bool isTarget) {
781  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
782  FoldingSetNodeID ID;
783  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
784  ID.AddInteger(FI);
785  void *IP = 0;
786  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
787    return SDOperand(E, 0);
788  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
789  CSEMap.InsertNode(N, IP);
790  AllNodes.push_back(N);
791  return SDOperand(N, 0);
792}
793
794SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
795  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
796  FoldingSetNodeID ID;
797  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
798  ID.AddInteger(JTI);
799  void *IP = 0;
800  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
801    return SDOperand(E, 0);
802  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
803  CSEMap.InsertNode(N, IP);
804  AllNodes.push_back(N);
805  return SDOperand(N, 0);
806}
807
808SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
809                                        unsigned Alignment, int Offset,
810                                        bool isTarget) {
811  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
812  FoldingSetNodeID ID;
813  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
814  ID.AddInteger(Alignment);
815  ID.AddInteger(Offset);
816  ID.AddPointer(C);
817  void *IP = 0;
818  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
819    return SDOperand(E, 0);
820  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
821  CSEMap.InsertNode(N, IP);
822  AllNodes.push_back(N);
823  return SDOperand(N, 0);
824}
825
826
827SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
828                                        MVT::ValueType VT,
829                                        unsigned Alignment, int Offset,
830                                        bool isTarget) {
831  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
832  FoldingSetNodeID ID;
833  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
834  ID.AddInteger(Alignment);
835  ID.AddInteger(Offset);
836  C->AddSelectionDAGCSEId(ID);
837  void *IP = 0;
838  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
839    return SDOperand(E, 0);
840  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
841  CSEMap.InsertNode(N, IP);
842  AllNodes.push_back(N);
843  return SDOperand(N, 0);
844}
845
846
847SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
848  FoldingSetNodeID ID;
849  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
850  ID.AddPointer(MBB);
851  void *IP = 0;
852  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
853    return SDOperand(E, 0);
854  SDNode *N = new BasicBlockSDNode(MBB);
855  CSEMap.InsertNode(N, IP);
856  AllNodes.push_back(N);
857  return SDOperand(N, 0);
858}
859
860SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
861  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
862    ValueTypeNodes.resize(VT+1);
863
864  SDNode *&N = MVT::isExtendedVT(VT) ?
865    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
866
867  if (N) return SDOperand(N, 0);
868  N = new VTSDNode(VT);
869  AllNodes.push_back(N);
870  return SDOperand(N, 0);
871}
872
873SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
874  SDNode *&N = ExternalSymbols[Sym];
875  if (N) return SDOperand(N, 0);
876  N = new ExternalSymbolSDNode(false, Sym, VT);
877  AllNodes.push_back(N);
878  return SDOperand(N, 0);
879}
880
881SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
882                                                MVT::ValueType VT) {
883  SDNode *&N = TargetExternalSymbols[Sym];
884  if (N) return SDOperand(N, 0);
885  N = new ExternalSymbolSDNode(true, Sym, VT);
886  AllNodes.push_back(N);
887  return SDOperand(N, 0);
888}
889
890SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
891  if ((unsigned)Cond >= CondCodeNodes.size())
892    CondCodeNodes.resize(Cond+1);
893
894  if (CondCodeNodes[Cond] == 0) {
895    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
896    AllNodes.push_back(CondCodeNodes[Cond]);
897  }
898  return SDOperand(CondCodeNodes[Cond], 0);
899}
900
901SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
902  FoldingSetNodeID ID;
903  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
904  ID.AddInteger(RegNo);
905  void *IP = 0;
906  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
907    return SDOperand(E, 0);
908  SDNode *N = new RegisterSDNode(RegNo, VT);
909  CSEMap.InsertNode(N, IP);
910  AllNodes.push_back(N);
911  return SDOperand(N, 0);
912}
913
914SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
915  assert((!V || isa<PointerType>(V->getType())) &&
916         "SrcValue is not a pointer?");
917
918  FoldingSetNodeID ID;
919  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
920  ID.AddPointer(V);
921  ID.AddInteger(Offset);
922  void *IP = 0;
923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924    return SDOperand(E, 0);
925  SDNode *N = new SrcValueSDNode(V, Offset);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931/// CreateStackTemporary - Create a stack temporary, suitable for holding the
932/// specified value type.
933SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
934  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
935  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
936  const Type *Ty = MVT::getTypeForValueType(VT);
937  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
938  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
939  return getFrameIndex(FrameIdx, TLI.getPointerTy());
940}
941
942
943SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
944                                  SDOperand N2, ISD::CondCode Cond) {
945  // These setcc operations always fold.
946  switch (Cond) {
947  default: break;
948  case ISD::SETFALSE:
949  case ISD::SETFALSE2: return getConstant(0, VT);
950  case ISD::SETTRUE:
951  case ISD::SETTRUE2:  return getConstant(1, VT);
952
953  case ISD::SETOEQ:
954  case ISD::SETOGT:
955  case ISD::SETOGE:
956  case ISD::SETOLT:
957  case ISD::SETOLE:
958  case ISD::SETONE:
959  case ISD::SETO:
960  case ISD::SETUO:
961  case ISD::SETUEQ:
962  case ISD::SETUNE:
963    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
964    break;
965  }
966
967  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
968    uint64_t C2 = N2C->getValue();
969    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
970      uint64_t C1 = N1C->getValue();
971
972      // Sign extend the operands if required
973      if (ISD::isSignedIntSetCC(Cond)) {
974        C1 = N1C->getSignExtended();
975        C2 = N2C->getSignExtended();
976      }
977
978      switch (Cond) {
979      default: assert(0 && "Unknown integer setcc!");
980      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
981      case ISD::SETNE:  return getConstant(C1 != C2, VT);
982      case ISD::SETULT: return getConstant(C1 <  C2, VT);
983      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
984      case ISD::SETULE: return getConstant(C1 <= C2, VT);
985      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
986      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
987      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
988      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
989      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
990      }
991    }
992  }
993  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
994    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
995      // No compile time operations on this type yet.
996      if (N1C->getValueType(0) == MVT::ppcf128)
997        return SDOperand();
998
999      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1000      switch (Cond) {
1001      default: break;
1002      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1003                          return getNode(ISD::UNDEF, VT);
1004                        // fall through
1005      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1006      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1007                          return getNode(ISD::UNDEF, VT);
1008                        // fall through
1009      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1010                                           R==APFloat::cmpLessThan, VT);
1011      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1012                          return getNode(ISD::UNDEF, VT);
1013                        // fall through
1014      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1015      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1016                          return getNode(ISD::UNDEF, VT);
1017                        // fall through
1018      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1019      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1020                          return getNode(ISD::UNDEF, VT);
1021                        // fall through
1022      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1023                                           R==APFloat::cmpEqual, VT);
1024      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1025                          return getNode(ISD::UNDEF, VT);
1026                        // fall through
1027      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1028                                           R==APFloat::cmpEqual, VT);
1029      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1030      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1031      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1032                                           R==APFloat::cmpEqual, VT);
1033      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1034      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1035                                           R==APFloat::cmpLessThan, VT);
1036      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1037                                           R==APFloat::cmpUnordered, VT);
1038      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1039      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1040      }
1041    } else {
1042      // Ensure that the constant occurs on the RHS.
1043      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1044    }
1045
1046  // Could not fold it.
1047  return SDOperand();
1048}
1049
1050/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1051/// this predicate to simplify operations downstream.  Mask is known to be zero
1052/// for bits that V cannot have.
1053bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1054                                     unsigned Depth) const {
1055  // The masks are not wide enough to represent this type!  Should use APInt.
1056  if (Op.getValueType() == MVT::i128)
1057    return false;
1058
1059  uint64_t KnownZero, KnownOne;
1060  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1061  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1062  return (KnownZero & Mask) == Mask;
1063}
1064
1065/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1066/// known to be either zero or one and return them in the KnownZero/KnownOne
1067/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1068/// processing.
1069void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1070                                     uint64_t &KnownZero, uint64_t &KnownOne,
1071                                     unsigned Depth) const {
1072  KnownZero = KnownOne = 0;   // Don't know anything.
1073  if (Depth == 6 || Mask == 0)
1074    return;  // Limit search depth.
1075
1076  // The masks are not wide enough to represent this type!  Should use APInt.
1077  if (Op.getValueType() == MVT::i128)
1078    return;
1079
1080  uint64_t KnownZero2, KnownOne2;
1081
1082  switch (Op.getOpcode()) {
1083  case ISD::Constant:
1084    // We know all of the bits for a constant!
1085    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1086    KnownZero = ~KnownOne & Mask;
1087    return;
1088  case ISD::AND:
1089    // If either the LHS or the RHS are Zero, the result is zero.
1090    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1091    Mask &= ~KnownZero;
1092    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1093    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1094    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1095
1096    // Output known-1 bits are only known if set in both the LHS & RHS.
1097    KnownOne &= KnownOne2;
1098    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1099    KnownZero |= KnownZero2;
1100    return;
1101  case ISD::OR:
1102    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1103    Mask &= ~KnownOne;
1104    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1105    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1106    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1107
1108    // Output known-0 bits are only known if clear in both the LHS & RHS.
1109    KnownZero &= KnownZero2;
1110    // Output known-1 are known to be set if set in either the LHS | RHS.
1111    KnownOne |= KnownOne2;
1112    return;
1113  case ISD::XOR: {
1114    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1115    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1116    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1117    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1118
1119    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1120    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1121    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1122    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1123    KnownZero = KnownZeroOut;
1124    return;
1125  }
1126  case ISD::SELECT:
1127    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1128    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1129    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1130    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1131
1132    // Only known if known in both the LHS and RHS.
1133    KnownOne &= KnownOne2;
1134    KnownZero &= KnownZero2;
1135    return;
1136  case ISD::SELECT_CC:
1137    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1138    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1139    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1140    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1141
1142    // Only known if known in both the LHS and RHS.
1143    KnownOne &= KnownOne2;
1144    KnownZero &= KnownZero2;
1145    return;
1146  case ISD::SETCC:
1147    // If we know the result of a setcc has the top bits zero, use this info.
1148    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1149      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1150    return;
1151  case ISD::SHL:
1152    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1153    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1155                        KnownZero, KnownOne, Depth+1);
1156      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1157      KnownZero <<= SA->getValue();
1158      KnownOne  <<= SA->getValue();
1159      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1160    }
1161    return;
1162  case ISD::SRL:
1163    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1164    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1165      MVT::ValueType VT = Op.getValueType();
1166      unsigned ShAmt = SA->getValue();
1167
1168      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1169      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1170                        KnownZero, KnownOne, Depth+1);
1171      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1172      KnownZero &= TypeMask;
1173      KnownOne  &= TypeMask;
1174      KnownZero >>= ShAmt;
1175      KnownOne  >>= ShAmt;
1176
1177      uint64_t HighBits = (1ULL << ShAmt)-1;
1178      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1179      KnownZero |= HighBits;  // High bits known zero.
1180    }
1181    return;
1182  case ISD::SRA:
1183    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1184      MVT::ValueType VT = Op.getValueType();
1185      unsigned ShAmt = SA->getValue();
1186
1187      // Compute the new bits that are at the top now.
1188      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1189
1190      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1191      // If any of the demanded bits are produced by the sign extension, we also
1192      // demand the input sign bit.
1193      uint64_t HighBits = (1ULL << ShAmt)-1;
1194      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1195      if (HighBits & Mask)
1196        InDemandedMask |= MVT::getIntVTSignBit(VT);
1197
1198      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1199                        Depth+1);
1200      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1201      KnownZero &= TypeMask;
1202      KnownOne  &= TypeMask;
1203      KnownZero >>= ShAmt;
1204      KnownOne  >>= ShAmt;
1205
1206      // Handle the sign bits.
1207      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1208      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1209
1210      if (KnownZero & SignBit) {
1211        KnownZero |= HighBits;  // New bits are known zero.
1212      } else if (KnownOne & SignBit) {
1213        KnownOne  |= HighBits;  // New bits are known one.
1214      }
1215    }
1216    return;
1217  case ISD::SIGN_EXTEND_INREG: {
1218    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1219
1220    // Sign extension.  Compute the demanded bits in the result that are not
1221    // present in the input.
1222    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1223
1224    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1225    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1226
1227    // If the sign extended bits are demanded, we know that the sign
1228    // bit is demanded.
1229    if (NewBits)
1230      InputDemandedBits |= InSignBit;
1231
1232    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1233                      KnownZero, KnownOne, Depth+1);
1234    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1235
1236    // If the sign bit of the input is known set or clear, then we know the
1237    // top bits of the result.
1238    if (KnownZero & InSignBit) {          // Input sign bit known clear
1239      KnownZero |= NewBits;
1240      KnownOne  &= ~NewBits;
1241    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1242      KnownOne  |= NewBits;
1243      KnownZero &= ~NewBits;
1244    } else {                              // Input sign bit unknown
1245      KnownZero &= ~NewBits;
1246      KnownOne  &= ~NewBits;
1247    }
1248    return;
1249  }
1250  case ISD::CTTZ:
1251  case ISD::CTLZ:
1252  case ISD::CTPOP: {
1253    MVT::ValueType VT = Op.getValueType();
1254    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1255    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1256    KnownOne  = 0;
1257    return;
1258  }
1259  case ISD::LOAD: {
1260    if (ISD::isZEXTLoad(Op.Val)) {
1261      LoadSDNode *LD = cast<LoadSDNode>(Op);
1262      MVT::ValueType VT = LD->getLoadedVT();
1263      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1264    }
1265    return;
1266  }
1267  case ISD::ZERO_EXTEND: {
1268    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1269    uint64_t NewBits = (~InMask) & Mask;
1270    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1271                      KnownOne, Depth+1);
1272    KnownZero |= NewBits & Mask;
1273    KnownOne  &= ~NewBits;
1274    return;
1275  }
1276  case ISD::SIGN_EXTEND: {
1277    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1278    unsigned InBits    = MVT::getSizeInBits(InVT);
1279    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1280    uint64_t InSignBit = 1ULL << (InBits-1);
1281    uint64_t NewBits   = (~InMask) & Mask;
1282    uint64_t InDemandedBits = Mask & InMask;
1283
1284    // If any of the sign extended bits are demanded, we know that the sign
1285    // bit is demanded.
1286    if (NewBits & Mask)
1287      InDemandedBits |= InSignBit;
1288
1289    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1290                      KnownOne, Depth+1);
1291    // If the sign bit is known zero or one, the  top bits match.
1292    if (KnownZero & InSignBit) {
1293      KnownZero |= NewBits;
1294      KnownOne  &= ~NewBits;
1295    } else if (KnownOne & InSignBit) {
1296      KnownOne  |= NewBits;
1297      KnownZero &= ~NewBits;
1298    } else {   // Otherwise, top bits aren't known.
1299      KnownOne  &= ~NewBits;
1300      KnownZero &= ~NewBits;
1301    }
1302    return;
1303  }
1304  case ISD::ANY_EXTEND: {
1305    MVT::ValueType VT = Op.getOperand(0).getValueType();
1306    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1307                      KnownZero, KnownOne, Depth+1);
1308    return;
1309  }
1310  case ISD::TRUNCATE: {
1311    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1312    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1313    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1314    KnownZero &= OutMask;
1315    KnownOne &= OutMask;
1316    break;
1317  }
1318  case ISD::AssertZext: {
1319    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1320    uint64_t InMask = MVT::getIntVTBitMask(VT);
1321    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1322                      KnownOne, Depth+1);
1323    KnownZero |= (~InMask) & Mask;
1324    return;
1325  }
1326  case ISD::FGETSIGN:
1327    // All bits are zero except the low bit.
1328    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1329    return;
1330
1331  case ISD::ADD: {
1332    // If either the LHS or the RHS are Zero, the result is zero.
1333    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1334    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1335    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1336    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1337
1338    // Output known-0 bits are known if clear or set in both the low clear bits
1339    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1340    // low 3 bits clear.
1341    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1342                                     CountTrailingZeros_64(~KnownZero2));
1343
1344    KnownZero = (1ULL << KnownZeroOut) - 1;
1345    KnownOne = 0;
1346    return;
1347  }
1348  case ISD::SUB: {
1349    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1350    if (!CLHS) return;
1351
1352    // We know that the top bits of C-X are clear if X contains less bits
1353    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1354    // positive if we can prove that X is >= 0 and < 16.
1355    MVT::ValueType VT = CLHS->getValueType(0);
1356    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1357      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1358      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1359      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1360      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1361
1362      // If all of the MaskV bits are known to be zero, then we know the output
1363      // top bits are zero, because we now know that the output is from [0-C].
1364      if ((KnownZero & MaskV) == MaskV) {
1365        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1366        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1367        KnownOne = 0;   // No one bits known.
1368      } else {
1369        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1370      }
1371    }
1372    return;
1373  }
1374  default:
1375    // Allow the target to implement this method for its nodes.
1376    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1377  case ISD::INTRINSIC_WO_CHAIN:
1378  case ISD::INTRINSIC_W_CHAIN:
1379  case ISD::INTRINSIC_VOID:
1380      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1381    }
1382    return;
1383  }
1384}
1385
1386/// ComputeNumSignBits - Return the number of times the sign bit of the
1387/// register is replicated into the other bits.  We know that at least 1 bit
1388/// is always equal to the sign bit (itself), but other cases can give us
1389/// information.  For example, immediately after an "SRA X, 2", we know that
1390/// the top 3 bits are all equal to each other, so we return 3.
1391unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1392  MVT::ValueType VT = Op.getValueType();
1393  assert(MVT::isInteger(VT) && "Invalid VT!");
1394  unsigned VTBits = MVT::getSizeInBits(VT);
1395  unsigned Tmp, Tmp2;
1396
1397  if (Depth == 6)
1398    return 1;  // Limit search depth.
1399
1400  switch (Op.getOpcode()) {
1401  default: break;
1402  case ISD::AssertSext:
1403    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1404    return VTBits-Tmp+1;
1405  case ISD::AssertZext:
1406    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1407    return VTBits-Tmp;
1408
1409  case ISD::Constant: {
1410    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1411    // If negative, invert the bits, then look at it.
1412    if (Val & MVT::getIntVTSignBit(VT))
1413      Val = ~Val;
1414
1415    // Shift the bits so they are the leading bits in the int64_t.
1416    Val <<= 64-VTBits;
1417
1418    // Return # leading zeros.  We use 'min' here in case Val was zero before
1419    // shifting.  We don't want to return '64' as for an i32 "0".
1420    return std::min(VTBits, CountLeadingZeros_64(Val));
1421  }
1422
1423  case ISD::SIGN_EXTEND:
1424    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1425    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1426
1427  case ISD::SIGN_EXTEND_INREG:
1428    // Max of the input and what this extends.
1429    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1430    Tmp = VTBits-Tmp+1;
1431
1432    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1433    return std::max(Tmp, Tmp2);
1434
1435  case ISD::SRA:
1436    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1437    // SRA X, C   -> adds C sign bits.
1438    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1439      Tmp += C->getValue();
1440      if (Tmp > VTBits) Tmp = VTBits;
1441    }
1442    return Tmp;
1443  case ISD::SHL:
1444    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1445      // shl destroys sign bits.
1446      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1447      if (C->getValue() >= VTBits ||      // Bad shift.
1448          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1449      return Tmp - C->getValue();
1450    }
1451    break;
1452  case ISD::AND:
1453  case ISD::OR:
1454  case ISD::XOR:    // NOT is handled here.
1455    // Logical binary ops preserve the number of sign bits.
1456    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1457    if (Tmp == 1) return 1;  // Early out.
1458    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1459    return std::min(Tmp, Tmp2);
1460
1461  case ISD::SELECT:
1462    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1463    if (Tmp == 1) return 1;  // Early out.
1464    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1465    return std::min(Tmp, Tmp2);
1466
1467  case ISD::SETCC:
1468    // If setcc returns 0/-1, all bits are sign bits.
1469    if (TLI.getSetCCResultContents() ==
1470        TargetLowering::ZeroOrNegativeOneSetCCResult)
1471      return VTBits;
1472    break;
1473  case ISD::ROTL:
1474  case ISD::ROTR:
1475    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1476      unsigned RotAmt = C->getValue() & (VTBits-1);
1477
1478      // Handle rotate right by N like a rotate left by 32-N.
1479      if (Op.getOpcode() == ISD::ROTR)
1480        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1481
1482      // If we aren't rotating out all of the known-in sign bits, return the
1483      // number that are left.  This handles rotl(sext(x), 1) for example.
1484      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1485      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1486    }
1487    break;
1488  case ISD::ADD:
1489    // Add can have at most one carry bit.  Thus we know that the output
1490    // is, at worst, one more bit than the inputs.
1491    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1492    if (Tmp == 1) return 1;  // Early out.
1493
1494    // Special case decrementing a value (ADD X, -1):
1495    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1496      if (CRHS->isAllOnesValue()) {
1497        uint64_t KnownZero, KnownOne;
1498        uint64_t Mask = MVT::getIntVTBitMask(VT);
1499        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1500
1501        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1502        // sign bits set.
1503        if ((KnownZero|1) == Mask)
1504          return VTBits;
1505
1506        // If we are subtracting one from a positive number, there is no carry
1507        // out of the result.
1508        if (KnownZero & MVT::getIntVTSignBit(VT))
1509          return Tmp;
1510      }
1511
1512    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1513    if (Tmp2 == 1) return 1;
1514      return std::min(Tmp, Tmp2)-1;
1515    break;
1516
1517  case ISD::SUB:
1518    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1519    if (Tmp2 == 1) return 1;
1520
1521    // Handle NEG.
1522    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1523      if (CLHS->getValue() == 0) {
1524        uint64_t KnownZero, KnownOne;
1525        uint64_t Mask = MVT::getIntVTBitMask(VT);
1526        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1527        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1528        // sign bits set.
1529        if ((KnownZero|1) == Mask)
1530          return VTBits;
1531
1532        // If the input is known to be positive (the sign bit is known clear),
1533        // the output of the NEG has the same number of sign bits as the input.
1534        if (KnownZero & MVT::getIntVTSignBit(VT))
1535          return Tmp2;
1536
1537        // Otherwise, we treat this like a SUB.
1538      }
1539
1540    // Sub can have at most one carry bit.  Thus we know that the output
1541    // is, at worst, one more bit than the inputs.
1542    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1543    if (Tmp == 1) return 1;  // Early out.
1544      return std::min(Tmp, Tmp2)-1;
1545    break;
1546  case ISD::TRUNCATE:
1547    // FIXME: it's tricky to do anything useful for this, but it is an important
1548    // case for targets like X86.
1549    break;
1550  }
1551
1552  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1553  if (Op.getOpcode() == ISD::LOAD) {
1554    LoadSDNode *LD = cast<LoadSDNode>(Op);
1555    unsigned ExtType = LD->getExtensionType();
1556    switch (ExtType) {
1557    default: break;
1558    case ISD::SEXTLOAD:    // '17' bits known
1559      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1560      return VTBits-Tmp+1;
1561    case ISD::ZEXTLOAD:    // '16' bits known
1562      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1563      return VTBits-Tmp;
1564    }
1565  }
1566
1567  // Allow the target to implement this method for its nodes.
1568  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1569      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1570      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1571      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1572    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1573    if (NumBits > 1) return NumBits;
1574  }
1575
1576  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1577  // use this information.
1578  uint64_t KnownZero, KnownOne;
1579  uint64_t Mask = MVT::getIntVTBitMask(VT);
1580  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1581
1582  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1583  if (KnownZero & SignBit) {        // SignBit is 0
1584    Mask = KnownZero;
1585  } else if (KnownOne & SignBit) {  // SignBit is 1;
1586    Mask = KnownOne;
1587  } else {
1588    // Nothing known.
1589    return 1;
1590  }
1591
1592  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1593  // the number of identical bits in the top of the input value.
1594  Mask ^= ~0ULL;
1595  Mask <<= 64-VTBits;
1596  // Return # leading zeros.  We use 'min' here in case Val was zero before
1597  // shifting.  We don't want to return '64' as for an i32 "0".
1598  return std::min(VTBits, CountLeadingZeros_64(Mask));
1599}
1600
1601
1602/// getNode - Gets or creates the specified node.
1603///
1604SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1605  FoldingSetNodeID ID;
1606  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1607  void *IP = 0;
1608  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1609    return SDOperand(E, 0);
1610  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1611  CSEMap.InsertNode(N, IP);
1612
1613  AllNodes.push_back(N);
1614  return SDOperand(N, 0);
1615}
1616
1617SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1618                                SDOperand Operand) {
1619  unsigned Tmp1;
1620  // Constant fold unary operations with an integer constant operand.
1621  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1622    uint64_t Val = C->getValue();
1623    switch (Opcode) {
1624    default: break;
1625    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1626    case ISD::ANY_EXTEND:
1627    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1628    case ISD::TRUNCATE:    return getConstant(Val, VT);
1629    case ISD::UINT_TO_FP:
1630    case ISD::SINT_TO_FP: {
1631      const uint64_t zero[] = {0, 0};
1632      // No compile time operations on this type.
1633      if (VT==MVT::ppcf128)
1634        break;
1635      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1636      (void)apf.convertFromZeroExtendedInteger(&Val,
1637                               MVT::getSizeInBits(Operand.getValueType()),
1638                               Opcode==ISD::SINT_TO_FP,
1639                               APFloat::rmNearestTiesToEven);
1640      return getConstantFP(apf, VT);
1641    }
1642    case ISD::BIT_CONVERT:
1643      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1644        return getConstantFP(BitsToFloat(Val), VT);
1645      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1646        return getConstantFP(BitsToDouble(Val), VT);
1647      break;
1648    case ISD::BSWAP:
1649      switch(VT) {
1650      default: assert(0 && "Invalid bswap!"); break;
1651      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1652      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1653      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1654      }
1655      break;
1656    case ISD::CTPOP:
1657      switch(VT) {
1658      default: assert(0 && "Invalid ctpop!"); break;
1659      case MVT::i1: return getConstant(Val != 0, VT);
1660      case MVT::i8:
1661        Tmp1 = (unsigned)Val & 0xFF;
1662        return getConstant(CountPopulation_32(Tmp1), VT);
1663      case MVT::i16:
1664        Tmp1 = (unsigned)Val & 0xFFFF;
1665        return getConstant(CountPopulation_32(Tmp1), VT);
1666      case MVT::i32:
1667        return getConstant(CountPopulation_32((unsigned)Val), VT);
1668      case MVT::i64:
1669        return getConstant(CountPopulation_64(Val), VT);
1670      }
1671    case ISD::CTLZ:
1672      switch(VT) {
1673      default: assert(0 && "Invalid ctlz!"); break;
1674      case MVT::i1: return getConstant(Val == 0, VT);
1675      case MVT::i8:
1676        Tmp1 = (unsigned)Val & 0xFF;
1677        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1678      case MVT::i16:
1679        Tmp1 = (unsigned)Val & 0xFFFF;
1680        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1681      case MVT::i32:
1682        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1683      case MVT::i64:
1684        return getConstant(CountLeadingZeros_64(Val), VT);
1685      }
1686    case ISD::CTTZ:
1687      switch(VT) {
1688      default: assert(0 && "Invalid cttz!"); break;
1689      case MVT::i1: return getConstant(Val == 0, VT);
1690      case MVT::i8:
1691        Tmp1 = (unsigned)Val | 0x100;
1692        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1693      case MVT::i16:
1694        Tmp1 = (unsigned)Val | 0x10000;
1695        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1696      case MVT::i32:
1697        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1698      case MVT::i64:
1699        return getConstant(CountTrailingZeros_64(Val), VT);
1700      }
1701    }
1702  }
1703
1704  // Constant fold unary operations with a floating point constant operand.
1705  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1706    APFloat V = C->getValueAPF();    // make copy
1707    if (VT!=MVT::ppcf128 && Operand.getValueType()!=MVT::ppcf128) {
1708      switch (Opcode) {
1709      case ISD::FNEG:
1710        V.changeSign();
1711        return getConstantFP(V, VT);
1712      case ISD::FABS:
1713        V.clearSign();
1714        return getConstantFP(V, VT);
1715      case ISD::FP_ROUND:
1716      case ISD::FP_EXTEND:
1717        // This can return overflow, underflow, or inexact; we don't care.
1718        // FIXME need to be more flexible about rounding mode.
1719        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1720                         VT==MVT::f64 ? APFloat::IEEEdouble :
1721                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1722                         VT==MVT::f128 ? APFloat::IEEEquad :
1723                         APFloat::Bogus,
1724                         APFloat::rmNearestTiesToEven);
1725        return getConstantFP(V, VT);
1726      case ISD::FP_TO_SINT:
1727      case ISD::FP_TO_UINT: {
1728        integerPart x;
1729        assert(integerPartWidth >= 64);
1730        // FIXME need to be more flexible about rounding mode.
1731        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1732                              Opcode==ISD::FP_TO_SINT,
1733                              APFloat::rmTowardZero);
1734        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1735          break;
1736        return getConstant(x, VT);
1737      }
1738      case ISD::BIT_CONVERT:
1739        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1740          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1741        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1742          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1743        break;
1744      }
1745    }
1746  }
1747
1748  unsigned OpOpcode = Operand.Val->getOpcode();
1749  switch (Opcode) {
1750  case ISD::TokenFactor:
1751    return Operand;         // Factor of one node?  No factor.
1752  case ISD::FP_ROUND:
1753  case ISD::FP_EXTEND:
1754    assert(MVT::isFloatingPoint(VT) &&
1755           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1756    break;
1757  case ISD::SIGN_EXTEND:
1758    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1759           "Invalid SIGN_EXTEND!");
1760    if (Operand.getValueType() == VT) return Operand;   // noop extension
1761    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1762           && "Invalid sext node, dst < src!");
1763    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1764      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1765    break;
1766  case ISD::ZERO_EXTEND:
1767    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1768           "Invalid ZERO_EXTEND!");
1769    if (Operand.getValueType() == VT) return Operand;   // noop extension
1770    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1771           && "Invalid zext node, dst < src!");
1772    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1773      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1774    break;
1775  case ISD::ANY_EXTEND:
1776    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1777           "Invalid ANY_EXTEND!");
1778    if (Operand.getValueType() == VT) return Operand;   // noop extension
1779    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1780           && "Invalid anyext node, dst < src!");
1781    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1782      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1783      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1784    break;
1785  case ISD::TRUNCATE:
1786    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1787           "Invalid TRUNCATE!");
1788    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1789    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1790           && "Invalid truncate node, src < dst!");
1791    if (OpOpcode == ISD::TRUNCATE)
1792      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1793    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1794             OpOpcode == ISD::ANY_EXTEND) {
1795      // If the source is smaller than the dest, we still need an extend.
1796      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1797          < MVT::getSizeInBits(VT))
1798        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1799      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1800               > MVT::getSizeInBits(VT))
1801        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1802      else
1803        return Operand.Val->getOperand(0);
1804    }
1805    break;
1806  case ISD::BIT_CONVERT:
1807    // Basic sanity checking.
1808    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1809           && "Cannot BIT_CONVERT between types of different sizes!");
1810    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1811    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1812      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1813    if (OpOpcode == ISD::UNDEF)
1814      return getNode(ISD::UNDEF, VT);
1815    break;
1816  case ISD::SCALAR_TO_VECTOR:
1817    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1818           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1819           "Illegal SCALAR_TO_VECTOR node!");
1820    break;
1821  case ISD::FNEG:
1822    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1823      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1824                     Operand.Val->getOperand(0));
1825    if (OpOpcode == ISD::FNEG)  // --X -> X
1826      return Operand.Val->getOperand(0);
1827    break;
1828  case ISD::FABS:
1829    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1830      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1831    break;
1832  }
1833
1834  SDNode *N;
1835  SDVTList VTs = getVTList(VT);
1836  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1837    FoldingSetNodeID ID;
1838    SDOperand Ops[1] = { Operand };
1839    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1840    void *IP = 0;
1841    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1842      return SDOperand(E, 0);
1843    N = new UnarySDNode(Opcode, VTs, Operand);
1844    CSEMap.InsertNode(N, IP);
1845  } else {
1846    N = new UnarySDNode(Opcode, VTs, Operand);
1847  }
1848  AllNodes.push_back(N);
1849  return SDOperand(N, 0);
1850}
1851
1852
1853
1854SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1855                                SDOperand N1, SDOperand N2) {
1856#ifndef NDEBUG
1857  switch (Opcode) {
1858  case ISD::TokenFactor:
1859    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1860           N2.getValueType() == MVT::Other && "Invalid token factor!");
1861    break;
1862  case ISD::AND:
1863  case ISD::OR:
1864  case ISD::XOR:
1865  case ISD::UDIV:
1866  case ISD::UREM:
1867  case ISD::MULHU:
1868  case ISD::MULHS:
1869    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1870    // fall through
1871  case ISD::ADD:
1872  case ISD::SUB:
1873  case ISD::MUL:
1874  case ISD::SDIV:
1875  case ISD::SREM:
1876    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1877    // fall through.
1878  case ISD::FADD:
1879  case ISD::FSUB:
1880  case ISD::FMUL:
1881  case ISD::FDIV:
1882  case ISD::FREM:
1883    assert(N1.getValueType() == N2.getValueType() &&
1884           N1.getValueType() == VT && "Binary operator types must match!");
1885    break;
1886  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1887    assert(N1.getValueType() == VT &&
1888           MVT::isFloatingPoint(N1.getValueType()) &&
1889           MVT::isFloatingPoint(N2.getValueType()) &&
1890           "Invalid FCOPYSIGN!");
1891    break;
1892  case ISD::SHL:
1893  case ISD::SRA:
1894  case ISD::SRL:
1895  case ISD::ROTL:
1896  case ISD::ROTR:
1897    assert(VT == N1.getValueType() &&
1898           "Shift operators return type must be the same as their first arg");
1899    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1900           VT != MVT::i1 && "Shifts only work on integers");
1901    break;
1902  case ISD::FP_ROUND_INREG: {
1903    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1904    assert(VT == N1.getValueType() && "Not an inreg round!");
1905    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1906           "Cannot FP_ROUND_INREG integer types");
1907    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1908           "Not rounding down!");
1909    break;
1910  }
1911  case ISD::AssertSext:
1912  case ISD::AssertZext:
1913  case ISD::SIGN_EXTEND_INREG: {
1914    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1915    assert(VT == N1.getValueType() && "Not an inreg extend!");
1916    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1917           "Cannot *_EXTEND_INREG FP types");
1918    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1919           "Not extending!");
1920  }
1921
1922  default: break;
1923  }
1924#endif
1925
1926  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1927  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1928  if (N1C) {
1929    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1930      int64_t Val = N1C->getValue();
1931      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1932      Val <<= 64-FromBits;
1933      Val >>= 64-FromBits;
1934      return getConstant(Val, VT);
1935    }
1936
1937    if (N2C) {
1938      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1939      switch (Opcode) {
1940      case ISD::ADD: return getConstant(C1 + C2, VT);
1941      case ISD::SUB: return getConstant(C1 - C2, VT);
1942      case ISD::MUL: return getConstant(C1 * C2, VT);
1943      case ISD::UDIV:
1944        if (C2) return getConstant(C1 / C2, VT);
1945        break;
1946      case ISD::UREM :
1947        if (C2) return getConstant(C1 % C2, VT);
1948        break;
1949      case ISD::SDIV :
1950        if (C2) return getConstant(N1C->getSignExtended() /
1951                                   N2C->getSignExtended(), VT);
1952        break;
1953      case ISD::SREM :
1954        if (C2) return getConstant(N1C->getSignExtended() %
1955                                   N2C->getSignExtended(), VT);
1956        break;
1957      case ISD::AND  : return getConstant(C1 & C2, VT);
1958      case ISD::OR   : return getConstant(C1 | C2, VT);
1959      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1960      case ISD::SHL  : return getConstant(C1 << C2, VT);
1961      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1962      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1963      case ISD::ROTL :
1964        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1965                           VT);
1966      case ISD::ROTR :
1967        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1968                           VT);
1969      default: break;
1970      }
1971    } else {      // Cannonicalize constant to RHS if commutative
1972      if (isCommutativeBinOp(Opcode)) {
1973        std::swap(N1C, N2C);
1974        std::swap(N1, N2);
1975      }
1976    }
1977  }
1978
1979  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1980  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1981  if (N1CFP) {
1982    if (N2CFP && VT!=MVT::ppcf128) {
1983      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1984      APFloat::opStatus s;
1985      switch (Opcode) {
1986      case ISD::FADD:
1987        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1988        if (s!=APFloat::opInvalidOp)
1989          return getConstantFP(V1, VT);
1990        break;
1991      case ISD::FSUB:
1992        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1993        if (s!=APFloat::opInvalidOp)
1994          return getConstantFP(V1, VT);
1995        break;
1996      case ISD::FMUL:
1997        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1998        if (s!=APFloat::opInvalidOp)
1999          return getConstantFP(V1, VT);
2000        break;
2001      case ISD::FDIV:
2002        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2003        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2004          return getConstantFP(V1, VT);
2005        break;
2006      case ISD::FREM :
2007        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2008        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2009          return getConstantFP(V1, VT);
2010        break;
2011      case ISD::FCOPYSIGN:
2012        V1.copySign(V2);
2013        return getConstantFP(V1, VT);
2014      default: break;
2015      }
2016    } else {      // Cannonicalize constant to RHS if commutative
2017      if (isCommutativeBinOp(Opcode)) {
2018        std::swap(N1CFP, N2CFP);
2019        std::swap(N1, N2);
2020      }
2021    }
2022  }
2023
2024  // Canonicalize an UNDEF to the RHS, even over a constant.
2025  if (N1.getOpcode() == ISD::UNDEF) {
2026    if (isCommutativeBinOp(Opcode)) {
2027      std::swap(N1, N2);
2028    } else {
2029      switch (Opcode) {
2030      case ISD::FP_ROUND_INREG:
2031      case ISD::SIGN_EXTEND_INREG:
2032      case ISD::SUB:
2033      case ISD::FSUB:
2034      case ISD::FDIV:
2035      case ISD::FREM:
2036      case ISD::SRA:
2037        return N1;     // fold op(undef, arg2) -> undef
2038      case ISD::UDIV:
2039      case ISD::SDIV:
2040      case ISD::UREM:
2041      case ISD::SREM:
2042      case ISD::SRL:
2043      case ISD::SHL:
2044        if (!MVT::isVector(VT))
2045          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2046        // For vectors, we can't easily build an all zero vector, just return
2047        // the LHS.
2048        return N2;
2049      }
2050    }
2051  }
2052
2053  // Fold a bunch of operators when the RHS is undef.
2054  if (N2.getOpcode() == ISD::UNDEF) {
2055    switch (Opcode) {
2056    case ISD::ADD:
2057    case ISD::ADDC:
2058    case ISD::ADDE:
2059    case ISD::SUB:
2060    case ISD::FADD:
2061    case ISD::FSUB:
2062    case ISD::FMUL:
2063    case ISD::FDIV:
2064    case ISD::FREM:
2065    case ISD::UDIV:
2066    case ISD::SDIV:
2067    case ISD::UREM:
2068    case ISD::SREM:
2069    case ISD::XOR:
2070      return N2;       // fold op(arg1, undef) -> undef
2071    case ISD::MUL:
2072    case ISD::AND:
2073    case ISD::SRL:
2074    case ISD::SHL:
2075      if (!MVT::isVector(VT))
2076        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2077      // For vectors, we can't easily build an all zero vector, just return
2078      // the LHS.
2079      return N1;
2080    case ISD::OR:
2081      if (!MVT::isVector(VT))
2082        return getConstant(MVT::getIntVTBitMask(VT), VT);
2083      // For vectors, we can't easily build an all one vector, just return
2084      // the LHS.
2085      return N1;
2086    case ISD::SRA:
2087      return N1;
2088    }
2089  }
2090
2091  // Fold operations.
2092  switch (Opcode) {
2093  case ISD::TokenFactor:
2094    // Fold trivial token factors.
2095    if (N1.getOpcode() == ISD::EntryToken) return N2;
2096    if (N2.getOpcode() == ISD::EntryToken) return N1;
2097    break;
2098
2099  case ISD::AND:
2100    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2101    // worth handling here.
2102    if (N2C && N2C->getValue() == 0)
2103      return N2;
2104    break;
2105  case ISD::OR:
2106  case ISD::XOR:
2107    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2108    // worth handling here.
2109    if (N2C && N2C->getValue() == 0)
2110      return N1;
2111    break;
2112  case ISD::FP_ROUND_INREG:
2113    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2114    break;
2115  case ISD::SIGN_EXTEND_INREG: {
2116    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2117    if (EVT == VT) return N1;  // Not actually extending
2118    break;
2119  }
2120  case ISD::EXTRACT_VECTOR_ELT:
2121    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2122
2123    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2124    // expanding copies of large vectors from registers.
2125    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2126        N1.getNumOperands() > 0) {
2127      unsigned Factor =
2128        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2129      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2130                     N1.getOperand(N2C->getValue() / Factor),
2131                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2132    }
2133
2134    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2135    // expanding large vector constants.
2136    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2137      return N1.getOperand(N2C->getValue());
2138
2139    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2140    // operations are lowered to scalars.
2141    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2142      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2143        if (IEC == N2C)
2144          return N1.getOperand(1);
2145        else
2146          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2147      }
2148    break;
2149  case ISD::EXTRACT_ELEMENT:
2150    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2151
2152    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2153    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2154    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2155    if (N1.getOpcode() == ISD::BUILD_PAIR)
2156      return N1.getOperand(N2C->getValue());
2157
2158    // EXTRACT_ELEMENT of a constant int is also very common.
2159    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2160      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2161      return getConstant(C->getValue() >> Shift, VT);
2162    }
2163    break;
2164
2165  // FIXME: figure out how to safely handle things like
2166  // int foo(int x) { return 1 << (x & 255); }
2167  // int bar() { return foo(256); }
2168#if 0
2169  case ISD::SHL:
2170  case ISD::SRL:
2171  case ISD::SRA:
2172    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2173        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2174      return getNode(Opcode, VT, N1, N2.getOperand(0));
2175    else if (N2.getOpcode() == ISD::AND)
2176      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2177        // If the and is only masking out bits that cannot effect the shift,
2178        // eliminate the and.
2179        unsigned NumBits = MVT::getSizeInBits(VT);
2180        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2181          return getNode(Opcode, VT, N1, N2.getOperand(0));
2182      }
2183    break;
2184#endif
2185  }
2186
2187  // Memoize this node if possible.
2188  SDNode *N;
2189  SDVTList VTs = getVTList(VT);
2190  if (VT != MVT::Flag) {
2191    SDOperand Ops[] = { N1, N2 };
2192    FoldingSetNodeID ID;
2193    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2194    void *IP = 0;
2195    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2196      return SDOperand(E, 0);
2197    N = new BinarySDNode(Opcode, VTs, N1, N2);
2198    CSEMap.InsertNode(N, IP);
2199  } else {
2200    N = new BinarySDNode(Opcode, VTs, N1, N2);
2201  }
2202
2203  AllNodes.push_back(N);
2204  return SDOperand(N, 0);
2205}
2206
2207SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2208                                SDOperand N1, SDOperand N2, SDOperand N3) {
2209  // Perform various simplifications.
2210  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2211  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2212  switch (Opcode) {
2213  case ISD::SETCC: {
2214    // Use FoldSetCC to simplify SETCC's.
2215    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2216    if (Simp.Val) return Simp;
2217    break;
2218  }
2219  case ISD::SELECT:
2220    if (N1C)
2221      if (N1C->getValue())
2222        return N2;             // select true, X, Y -> X
2223      else
2224        return N3;             // select false, X, Y -> Y
2225
2226    if (N2 == N3) return N2;   // select C, X, X -> X
2227    break;
2228  case ISD::BRCOND:
2229    if (N2C)
2230      if (N2C->getValue()) // Unconditional branch
2231        return getNode(ISD::BR, MVT::Other, N1, N3);
2232      else
2233        return N1;         // Never-taken branch
2234    break;
2235  case ISD::VECTOR_SHUFFLE:
2236    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2237           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2238           N3.getOpcode() == ISD::BUILD_VECTOR &&
2239           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2240           "Illegal VECTOR_SHUFFLE node!");
2241    break;
2242  case ISD::BIT_CONVERT:
2243    // Fold bit_convert nodes from a type to themselves.
2244    if (N1.getValueType() == VT)
2245      return N1;
2246    break;
2247  }
2248
2249  // Memoize node if it doesn't produce a flag.
2250  SDNode *N;
2251  SDVTList VTs = getVTList(VT);
2252  if (VT != MVT::Flag) {
2253    SDOperand Ops[] = { N1, N2, N3 };
2254    FoldingSetNodeID ID;
2255    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2256    void *IP = 0;
2257    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2258      return SDOperand(E, 0);
2259    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2260    CSEMap.InsertNode(N, IP);
2261  } else {
2262    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2263  }
2264  AllNodes.push_back(N);
2265  return SDOperand(N, 0);
2266}
2267
2268SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2269                                SDOperand N1, SDOperand N2, SDOperand N3,
2270                                SDOperand N4) {
2271  SDOperand Ops[] = { N1, N2, N3, N4 };
2272  return getNode(Opcode, VT, Ops, 4);
2273}
2274
2275SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2276                                SDOperand N1, SDOperand N2, SDOperand N3,
2277                                SDOperand N4, SDOperand N5) {
2278  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2279  return getNode(Opcode, VT, Ops, 5);
2280}
2281
2282SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2283                                  SDOperand Src, SDOperand Size,
2284                                  SDOperand Align,
2285                                  SDOperand AlwaysInline) {
2286  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2287  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2288}
2289
2290SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2291                                  SDOperand Src, SDOperand Size,
2292                                  SDOperand Align,
2293                                  SDOperand AlwaysInline) {
2294  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2295  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2296}
2297
2298SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2299                                  SDOperand Src, SDOperand Size,
2300                                  SDOperand Align,
2301                                  SDOperand AlwaysInline) {
2302  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2303  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2304}
2305
2306SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2307                                SDOperand Chain, SDOperand Ptr,
2308                                const Value *SV, int SVOffset,
2309                                bool isVolatile, unsigned Alignment) {
2310  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2311    const Type *Ty = 0;
2312    if (VT != MVT::iPTR) {
2313      Ty = MVT::getTypeForValueType(VT);
2314    } else if (SV) {
2315      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2316      assert(PT && "Value for load must be a pointer");
2317      Ty = PT->getElementType();
2318    }
2319    assert(Ty && "Could not get type information for load");
2320    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2321  }
2322  SDVTList VTs = getVTList(VT, MVT::Other);
2323  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2324  SDOperand Ops[] = { Chain, Ptr, Undef };
2325  FoldingSetNodeID ID;
2326  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2327  ID.AddInteger(ISD::UNINDEXED);
2328  ID.AddInteger(ISD::NON_EXTLOAD);
2329  ID.AddInteger((unsigned int)VT);
2330  ID.AddInteger(Alignment);
2331  ID.AddInteger(isVolatile);
2332  void *IP = 0;
2333  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2334    return SDOperand(E, 0);
2335  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2336                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2337                             isVolatile);
2338  CSEMap.InsertNode(N, IP);
2339  AllNodes.push_back(N);
2340  return SDOperand(N, 0);
2341}
2342
2343SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2344                                   SDOperand Chain, SDOperand Ptr,
2345                                   const Value *SV,
2346                                   int SVOffset, MVT::ValueType EVT,
2347                                   bool isVolatile, unsigned Alignment) {
2348  // If they are asking for an extending load from/to the same thing, return a
2349  // normal load.
2350  if (VT == EVT)
2351    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2352
2353  if (MVT::isVector(VT))
2354    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2355  else
2356    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2357           "Should only be an extending load, not truncating!");
2358  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2359         "Cannot sign/zero extend a FP/Vector load!");
2360  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2361         "Cannot convert from FP to Int or Int -> FP!");
2362
2363  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2364    const Type *Ty = 0;
2365    if (VT != MVT::iPTR) {
2366      Ty = MVT::getTypeForValueType(VT);
2367    } else if (SV) {
2368      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2369      assert(PT && "Value for load must be a pointer");
2370      Ty = PT->getElementType();
2371    }
2372    assert(Ty && "Could not get type information for load");
2373    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2374  }
2375  SDVTList VTs = getVTList(VT, MVT::Other);
2376  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2377  SDOperand Ops[] = { Chain, Ptr, Undef };
2378  FoldingSetNodeID ID;
2379  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2380  ID.AddInteger(ISD::UNINDEXED);
2381  ID.AddInteger(ExtType);
2382  ID.AddInteger((unsigned int)EVT);
2383  ID.AddInteger(Alignment);
2384  ID.AddInteger(isVolatile);
2385  void *IP = 0;
2386  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2387    return SDOperand(E, 0);
2388  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2389                             SV, SVOffset, Alignment, isVolatile);
2390  CSEMap.InsertNode(N, IP);
2391  AllNodes.push_back(N);
2392  return SDOperand(N, 0);
2393}
2394
2395SDOperand
2396SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2397                             SDOperand Offset, ISD::MemIndexedMode AM) {
2398  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2399  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2400         "Load is already a indexed load!");
2401  MVT::ValueType VT = OrigLoad.getValueType();
2402  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2403  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2404  FoldingSetNodeID ID;
2405  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2406  ID.AddInteger(AM);
2407  ID.AddInteger(LD->getExtensionType());
2408  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2409  ID.AddInteger(LD->getAlignment());
2410  ID.AddInteger(LD->isVolatile());
2411  void *IP = 0;
2412  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2413    return SDOperand(E, 0);
2414  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2415                             LD->getExtensionType(), LD->getLoadedVT(),
2416                             LD->getSrcValue(), LD->getSrcValueOffset(),
2417                             LD->getAlignment(), LD->isVolatile());
2418  CSEMap.InsertNode(N, IP);
2419  AllNodes.push_back(N);
2420  return SDOperand(N, 0);
2421}
2422
2423SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2424                                 SDOperand Ptr, const Value *SV, int SVOffset,
2425                                 bool isVolatile, unsigned Alignment) {
2426  MVT::ValueType VT = Val.getValueType();
2427
2428  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2429    const Type *Ty = 0;
2430    if (VT != MVT::iPTR) {
2431      Ty = MVT::getTypeForValueType(VT);
2432    } else if (SV) {
2433      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2434      assert(PT && "Value for store must be a pointer");
2435      Ty = PT->getElementType();
2436    }
2437    assert(Ty && "Could not get type information for store");
2438    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2439  }
2440  SDVTList VTs = getVTList(MVT::Other);
2441  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2442  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2443  FoldingSetNodeID ID;
2444  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2445  ID.AddInteger(ISD::UNINDEXED);
2446  ID.AddInteger(false);
2447  ID.AddInteger((unsigned int)VT);
2448  ID.AddInteger(Alignment);
2449  ID.AddInteger(isVolatile);
2450  void *IP = 0;
2451  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2452    return SDOperand(E, 0);
2453  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2454                              VT, SV, SVOffset, Alignment, isVolatile);
2455  CSEMap.InsertNode(N, IP);
2456  AllNodes.push_back(N);
2457  return SDOperand(N, 0);
2458}
2459
2460SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2461                                      SDOperand Ptr, const Value *SV,
2462                                      int SVOffset, MVT::ValueType SVT,
2463                                      bool isVolatile, unsigned Alignment) {
2464  MVT::ValueType VT = Val.getValueType();
2465
2466  if (VT == SVT)
2467    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2468
2469  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2470         "Not a truncation?");
2471  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2472         "Can't do FP-INT conversion!");
2473
2474  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2475    const Type *Ty = 0;
2476    if (VT != MVT::iPTR) {
2477      Ty = MVT::getTypeForValueType(VT);
2478    } else if (SV) {
2479      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2480      assert(PT && "Value for store must be a pointer");
2481      Ty = PT->getElementType();
2482    }
2483    assert(Ty && "Could not get type information for store");
2484    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2485  }
2486  SDVTList VTs = getVTList(MVT::Other);
2487  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2488  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2489  FoldingSetNodeID ID;
2490  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2491  ID.AddInteger(ISD::UNINDEXED);
2492  ID.AddInteger(1);
2493  ID.AddInteger((unsigned int)SVT);
2494  ID.AddInteger(Alignment);
2495  ID.AddInteger(isVolatile);
2496  void *IP = 0;
2497  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2498    return SDOperand(E, 0);
2499  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2500                              SVT, SV, SVOffset, Alignment, isVolatile);
2501  CSEMap.InsertNode(N, IP);
2502  AllNodes.push_back(N);
2503  return SDOperand(N, 0);
2504}
2505
2506SDOperand
2507SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2508                              SDOperand Offset, ISD::MemIndexedMode AM) {
2509  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2510  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2511         "Store is already a indexed store!");
2512  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2513  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2514  FoldingSetNodeID ID;
2515  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2516  ID.AddInteger(AM);
2517  ID.AddInteger(ST->isTruncatingStore());
2518  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2519  ID.AddInteger(ST->getAlignment());
2520  ID.AddInteger(ST->isVolatile());
2521  void *IP = 0;
2522  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2523    return SDOperand(E, 0);
2524  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2525                              ST->isTruncatingStore(), ST->getStoredVT(),
2526                              ST->getSrcValue(), ST->getSrcValueOffset(),
2527                              ST->getAlignment(), ST->isVolatile());
2528  CSEMap.InsertNode(N, IP);
2529  AllNodes.push_back(N);
2530  return SDOperand(N, 0);
2531}
2532
2533SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2534                                 SDOperand Chain, SDOperand Ptr,
2535                                 SDOperand SV) {
2536  SDOperand Ops[] = { Chain, Ptr, SV };
2537  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2538}
2539
2540SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2541                                const SDOperand *Ops, unsigned NumOps) {
2542  switch (NumOps) {
2543  case 0: return getNode(Opcode, VT);
2544  case 1: return getNode(Opcode, VT, Ops[0]);
2545  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2546  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2547  default: break;
2548  }
2549
2550  switch (Opcode) {
2551  default: break;
2552  case ISD::SELECT_CC: {
2553    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2554    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2555           "LHS and RHS of condition must have same type!");
2556    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2557           "True and False arms of SelectCC must have same type!");
2558    assert(Ops[2].getValueType() == VT &&
2559           "select_cc node must be of same type as true and false value!");
2560    break;
2561  }
2562  case ISD::BR_CC: {
2563    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2564    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2565           "LHS/RHS of comparison should match types!");
2566    break;
2567  }
2568  }
2569
2570  // Memoize nodes.
2571  SDNode *N;
2572  SDVTList VTs = getVTList(VT);
2573  if (VT != MVT::Flag) {
2574    FoldingSetNodeID ID;
2575    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2576    void *IP = 0;
2577    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2578      return SDOperand(E, 0);
2579    N = new SDNode(Opcode, VTs, Ops, NumOps);
2580    CSEMap.InsertNode(N, IP);
2581  } else {
2582    N = new SDNode(Opcode, VTs, Ops, NumOps);
2583  }
2584  AllNodes.push_back(N);
2585  return SDOperand(N, 0);
2586}
2587
2588SDOperand SelectionDAG::getNode(unsigned Opcode,
2589                                std::vector<MVT::ValueType> &ResultTys,
2590                                const SDOperand *Ops, unsigned NumOps) {
2591  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2592                 Ops, NumOps);
2593}
2594
2595SDOperand SelectionDAG::getNode(unsigned Opcode,
2596                                const MVT::ValueType *VTs, unsigned NumVTs,
2597                                const SDOperand *Ops, unsigned NumOps) {
2598  if (NumVTs == 1)
2599    return getNode(Opcode, VTs[0], Ops, NumOps);
2600  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2601}
2602
2603SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2604                                const SDOperand *Ops, unsigned NumOps) {
2605  if (VTList.NumVTs == 1)
2606    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2607
2608  switch (Opcode) {
2609  // FIXME: figure out how to safely handle things like
2610  // int foo(int x) { return 1 << (x & 255); }
2611  // int bar() { return foo(256); }
2612#if 0
2613  case ISD::SRA_PARTS:
2614  case ISD::SRL_PARTS:
2615  case ISD::SHL_PARTS:
2616    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2617        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2618      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2619    else if (N3.getOpcode() == ISD::AND)
2620      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2621        // If the and is only masking out bits that cannot effect the shift,
2622        // eliminate the and.
2623        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2624        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2625          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2626      }
2627    break;
2628#endif
2629  }
2630
2631  // Memoize the node unless it returns a flag.
2632  SDNode *N;
2633  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2634    FoldingSetNodeID ID;
2635    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2636    void *IP = 0;
2637    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2638      return SDOperand(E, 0);
2639    if (NumOps == 1)
2640      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2641    else if (NumOps == 2)
2642      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2643    else if (NumOps == 3)
2644      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2645    else
2646      N = new SDNode(Opcode, VTList, Ops, NumOps);
2647    CSEMap.InsertNode(N, IP);
2648  } else {
2649    if (NumOps == 1)
2650      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2651    else if (NumOps == 2)
2652      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2653    else if (NumOps == 3)
2654      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2655    else
2656      N = new SDNode(Opcode, VTList, Ops, NumOps);
2657  }
2658  AllNodes.push_back(N);
2659  return SDOperand(N, 0);
2660}
2661
2662SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2663  return getNode(Opcode, VTList, 0, 0);
2664}
2665
2666SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2667                                SDOperand N1) {
2668  SDOperand Ops[] = { N1 };
2669  return getNode(Opcode, VTList, Ops, 1);
2670}
2671
2672SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2673                                SDOperand N1, SDOperand N2) {
2674  SDOperand Ops[] = { N1, N2 };
2675  return getNode(Opcode, VTList, Ops, 2);
2676}
2677
2678SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2679                                SDOperand N1, SDOperand N2, SDOperand N3) {
2680  SDOperand Ops[] = { N1, N2, N3 };
2681  return getNode(Opcode, VTList, Ops, 3);
2682}
2683
2684SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2685                                SDOperand N1, SDOperand N2, SDOperand N3,
2686                                SDOperand N4) {
2687  SDOperand Ops[] = { N1, N2, N3, N4 };
2688  return getNode(Opcode, VTList, Ops, 4);
2689}
2690
2691SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2692                                SDOperand N1, SDOperand N2, SDOperand N3,
2693                                SDOperand N4, SDOperand N5) {
2694  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2695  return getNode(Opcode, VTList, Ops, 5);
2696}
2697
2698SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2699  return makeVTList(SDNode::getValueTypeList(VT), 1);
2700}
2701
2702SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2703  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2704       E = VTList.end(); I != E; ++I) {
2705    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2706      return makeVTList(&(*I)[0], 2);
2707  }
2708  std::vector<MVT::ValueType> V;
2709  V.push_back(VT1);
2710  V.push_back(VT2);
2711  VTList.push_front(V);
2712  return makeVTList(&(*VTList.begin())[0], 2);
2713}
2714SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2715                                 MVT::ValueType VT3) {
2716  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2717       E = VTList.end(); I != E; ++I) {
2718    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2719        (*I)[2] == VT3)
2720      return makeVTList(&(*I)[0], 3);
2721  }
2722  std::vector<MVT::ValueType> V;
2723  V.push_back(VT1);
2724  V.push_back(VT2);
2725  V.push_back(VT3);
2726  VTList.push_front(V);
2727  return makeVTList(&(*VTList.begin())[0], 3);
2728}
2729
2730SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2731  switch (NumVTs) {
2732    case 0: assert(0 && "Cannot have nodes without results!");
2733    case 1: return getVTList(VTs[0]);
2734    case 2: return getVTList(VTs[0], VTs[1]);
2735    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2736    default: break;
2737  }
2738
2739  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2740       E = VTList.end(); I != E; ++I) {
2741    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2742
2743    bool NoMatch = false;
2744    for (unsigned i = 2; i != NumVTs; ++i)
2745      if (VTs[i] != (*I)[i]) {
2746        NoMatch = true;
2747        break;
2748      }
2749    if (!NoMatch)
2750      return makeVTList(&*I->begin(), NumVTs);
2751  }
2752
2753  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2754  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2755}
2756
2757
2758/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2759/// specified operands.  If the resultant node already exists in the DAG,
2760/// this does not modify the specified node, instead it returns the node that
2761/// already exists.  If the resultant node does not exist in the DAG, the
2762/// input node is returned.  As a degenerate case, if you specify the same
2763/// input operands as the node already has, the input node is returned.
2764SDOperand SelectionDAG::
2765UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2766  SDNode *N = InN.Val;
2767  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2768
2769  // Check to see if there is no change.
2770  if (Op == N->getOperand(0)) return InN;
2771
2772  // See if the modified node already exists.
2773  void *InsertPos = 0;
2774  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2775    return SDOperand(Existing, InN.ResNo);
2776
2777  // Nope it doesn't.  Remove the node from it's current place in the maps.
2778  if (InsertPos)
2779    RemoveNodeFromCSEMaps(N);
2780
2781  // Now we update the operands.
2782  N->OperandList[0].Val->removeUser(N);
2783  Op.Val->addUser(N);
2784  N->OperandList[0] = Op;
2785
2786  // If this gets put into a CSE map, add it.
2787  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2788  return InN;
2789}
2790
2791SDOperand SelectionDAG::
2792UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2793  SDNode *N = InN.Val;
2794  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2795
2796  // Check to see if there is no change.
2797  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2798    return InN;   // No operands changed, just return the input node.
2799
2800  // See if the modified node already exists.
2801  void *InsertPos = 0;
2802  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2803    return SDOperand(Existing, InN.ResNo);
2804
2805  // Nope it doesn't.  Remove the node from it's current place in the maps.
2806  if (InsertPos)
2807    RemoveNodeFromCSEMaps(N);
2808
2809  // Now we update the operands.
2810  if (N->OperandList[0] != Op1) {
2811    N->OperandList[0].Val->removeUser(N);
2812    Op1.Val->addUser(N);
2813    N->OperandList[0] = Op1;
2814  }
2815  if (N->OperandList[1] != Op2) {
2816    N->OperandList[1].Val->removeUser(N);
2817    Op2.Val->addUser(N);
2818    N->OperandList[1] = Op2;
2819  }
2820
2821  // If this gets put into a CSE map, add it.
2822  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2823  return InN;
2824}
2825
2826SDOperand SelectionDAG::
2827UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2828  SDOperand Ops[] = { Op1, Op2, Op3 };
2829  return UpdateNodeOperands(N, Ops, 3);
2830}
2831
2832SDOperand SelectionDAG::
2833UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2834                   SDOperand Op3, SDOperand Op4) {
2835  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2836  return UpdateNodeOperands(N, Ops, 4);
2837}
2838
2839SDOperand SelectionDAG::
2840UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2841                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2842  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2843  return UpdateNodeOperands(N, Ops, 5);
2844}
2845
2846
2847SDOperand SelectionDAG::
2848UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2849  SDNode *N = InN.Val;
2850  assert(N->getNumOperands() == NumOps &&
2851         "Update with wrong number of operands");
2852
2853  // Check to see if there is no change.
2854  bool AnyChange = false;
2855  for (unsigned i = 0; i != NumOps; ++i) {
2856    if (Ops[i] != N->getOperand(i)) {
2857      AnyChange = true;
2858      break;
2859    }
2860  }
2861
2862  // No operands changed, just return the input node.
2863  if (!AnyChange) return InN;
2864
2865  // See if the modified node already exists.
2866  void *InsertPos = 0;
2867  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2868    return SDOperand(Existing, InN.ResNo);
2869
2870  // Nope it doesn't.  Remove the node from it's current place in the maps.
2871  if (InsertPos)
2872    RemoveNodeFromCSEMaps(N);
2873
2874  // Now we update the operands.
2875  for (unsigned i = 0; i != NumOps; ++i) {
2876    if (N->OperandList[i] != Ops[i]) {
2877      N->OperandList[i].Val->removeUser(N);
2878      Ops[i].Val->addUser(N);
2879      N->OperandList[i] = Ops[i];
2880    }
2881  }
2882
2883  // If this gets put into a CSE map, add it.
2884  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2885  return InN;
2886}
2887
2888
2889/// MorphNodeTo - This frees the operands of the current node, resets the
2890/// opcode, types, and operands to the specified value.  This should only be
2891/// used by the SelectionDAG class.
2892void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2893                         const SDOperand *Ops, unsigned NumOps) {
2894  NodeType = Opc;
2895  ValueList = L.VTs;
2896  NumValues = L.NumVTs;
2897
2898  // Clear the operands list, updating used nodes to remove this from their
2899  // use list.
2900  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2901    I->Val->removeUser(this);
2902
2903  // If NumOps is larger than the # of operands we currently have, reallocate
2904  // the operand list.
2905  if (NumOps > NumOperands) {
2906    if (OperandsNeedDelete)
2907      delete [] OperandList;
2908    OperandList = new SDOperand[NumOps];
2909    OperandsNeedDelete = true;
2910  }
2911
2912  // Assign the new operands.
2913  NumOperands = NumOps;
2914
2915  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2916    OperandList[i] = Ops[i];
2917    SDNode *N = OperandList[i].Val;
2918    N->Uses.push_back(this);
2919  }
2920}
2921
2922/// SelectNodeTo - These are used for target selectors to *mutate* the
2923/// specified node to have the specified return type, Target opcode, and
2924/// operands.  Note that target opcodes are stored as
2925/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2926///
2927/// Note that SelectNodeTo returns the resultant node.  If there is already a
2928/// node of the specified opcode and operands, it returns that node instead of
2929/// the current one.
2930SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2931                                   MVT::ValueType VT) {
2932  SDVTList VTs = getVTList(VT);
2933  FoldingSetNodeID ID;
2934  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2935  void *IP = 0;
2936  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2937    return ON;
2938
2939  RemoveNodeFromCSEMaps(N);
2940
2941  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2942
2943  CSEMap.InsertNode(N, IP);
2944  return N;
2945}
2946
2947SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2948                                   MVT::ValueType VT, SDOperand Op1) {
2949  // If an identical node already exists, use it.
2950  SDVTList VTs = getVTList(VT);
2951  SDOperand Ops[] = { Op1 };
2952
2953  FoldingSetNodeID ID;
2954  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2955  void *IP = 0;
2956  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2957    return ON;
2958
2959  RemoveNodeFromCSEMaps(N);
2960  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2961  CSEMap.InsertNode(N, IP);
2962  return N;
2963}
2964
2965SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2966                                   MVT::ValueType VT, SDOperand Op1,
2967                                   SDOperand Op2) {
2968  // If an identical node already exists, use it.
2969  SDVTList VTs = getVTList(VT);
2970  SDOperand Ops[] = { Op1, Op2 };
2971
2972  FoldingSetNodeID ID;
2973  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2974  void *IP = 0;
2975  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2976    return ON;
2977
2978  RemoveNodeFromCSEMaps(N);
2979
2980  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2981
2982  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2983  return N;
2984}
2985
2986SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2987                                   MVT::ValueType VT, SDOperand Op1,
2988                                   SDOperand Op2, SDOperand Op3) {
2989  // If an identical node already exists, use it.
2990  SDVTList VTs = getVTList(VT);
2991  SDOperand Ops[] = { Op1, Op2, Op3 };
2992  FoldingSetNodeID ID;
2993  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2994  void *IP = 0;
2995  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2996    return ON;
2997
2998  RemoveNodeFromCSEMaps(N);
2999
3000  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3001
3002  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3003  return N;
3004}
3005
3006SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3007                                   MVT::ValueType VT, const SDOperand *Ops,
3008                                   unsigned NumOps) {
3009  // If an identical node already exists, use it.
3010  SDVTList VTs = getVTList(VT);
3011  FoldingSetNodeID ID;
3012  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3013  void *IP = 0;
3014  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3015    return ON;
3016
3017  RemoveNodeFromCSEMaps(N);
3018  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3019
3020  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3021  return N;
3022}
3023
3024SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3025                                   MVT::ValueType VT1, MVT::ValueType VT2,
3026                                   SDOperand Op1, SDOperand Op2) {
3027  SDVTList VTs = getVTList(VT1, VT2);
3028  FoldingSetNodeID ID;
3029  SDOperand Ops[] = { Op1, Op2 };
3030  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3031  void *IP = 0;
3032  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3033    return ON;
3034
3035  RemoveNodeFromCSEMaps(N);
3036  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3037  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3038  return N;
3039}
3040
3041SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3042                                   MVT::ValueType VT1, MVT::ValueType VT2,
3043                                   SDOperand Op1, SDOperand Op2,
3044                                   SDOperand Op3) {
3045  // If an identical node already exists, use it.
3046  SDVTList VTs = getVTList(VT1, VT2);
3047  SDOperand Ops[] = { Op1, Op2, Op3 };
3048  FoldingSetNodeID ID;
3049  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3050  void *IP = 0;
3051  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3052    return ON;
3053
3054  RemoveNodeFromCSEMaps(N);
3055
3056  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3057  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3058  return N;
3059}
3060
3061
3062/// getTargetNode - These are used for target selectors to create a new node
3063/// with specified return type(s), target opcode, and operands.
3064///
3065/// Note that getTargetNode returns the resultant node.  If there is already a
3066/// node of the specified opcode and operands, it returns that node instead of
3067/// the current one.
3068SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3069  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3070}
3071SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3072                                    SDOperand Op1) {
3073  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3074}
3075SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3076                                    SDOperand Op1, SDOperand Op2) {
3077  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3078}
3079SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3080                                    SDOperand Op1, SDOperand Op2,
3081                                    SDOperand Op3) {
3082  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3083}
3084SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3085                                    const SDOperand *Ops, unsigned NumOps) {
3086  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3087}
3088SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3089                                    MVT::ValueType VT2) {
3090  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3091  SDOperand Op;
3092  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3093}
3094SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3095                                    MVT::ValueType VT2, SDOperand Op1) {
3096  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3097  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3098}
3099SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3100                                    MVT::ValueType VT2, SDOperand Op1,
3101                                    SDOperand Op2) {
3102  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3103  SDOperand Ops[] = { Op1, Op2 };
3104  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3105}
3106SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3107                                    MVT::ValueType VT2, SDOperand Op1,
3108                                    SDOperand Op2, SDOperand Op3) {
3109  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3110  SDOperand Ops[] = { Op1, Op2, Op3 };
3111  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3112}
3113SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3114                                    MVT::ValueType VT2,
3115                                    const SDOperand *Ops, unsigned NumOps) {
3116  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3117  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3118}
3119SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3120                                    MVT::ValueType VT2, MVT::ValueType VT3,
3121                                    SDOperand Op1, SDOperand Op2) {
3122  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3123  SDOperand Ops[] = { Op1, Op2 };
3124  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3125}
3126SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3127                                    MVT::ValueType VT2, MVT::ValueType VT3,
3128                                    SDOperand Op1, SDOperand Op2,
3129                                    SDOperand Op3) {
3130  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3131  SDOperand Ops[] = { Op1, Op2, Op3 };
3132  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3133}
3134SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3135                                    MVT::ValueType VT2, MVT::ValueType VT3,
3136                                    const SDOperand *Ops, unsigned NumOps) {
3137  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3138  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3139}
3140SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3141                                    MVT::ValueType VT2, MVT::ValueType VT3,
3142                                    MVT::ValueType VT4,
3143                                    const SDOperand *Ops, unsigned NumOps) {
3144  std::vector<MVT::ValueType> VTList;
3145  VTList.push_back(VT1);
3146  VTList.push_back(VT2);
3147  VTList.push_back(VT3);
3148  VTList.push_back(VT4);
3149  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3150  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3151}
3152SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3153                                    std::vector<MVT::ValueType> &ResultTys,
3154                                    const SDOperand *Ops, unsigned NumOps) {
3155  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3156  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3157                 Ops, NumOps).Val;
3158}
3159
3160/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3161/// This can cause recursive merging of nodes in the DAG.
3162///
3163/// This version assumes From/To have a single result value.
3164///
3165void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3166                                      std::vector<SDNode*> *Deleted) {
3167  SDNode *From = FromN.Val, *To = ToN.Val;
3168  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3169         "Cannot replace with this method!");
3170  assert(From != To && "Cannot replace uses of with self");
3171
3172  while (!From->use_empty()) {
3173    // Process users until they are all gone.
3174    SDNode *U = *From->use_begin();
3175
3176    // This node is about to morph, remove its old self from the CSE maps.
3177    RemoveNodeFromCSEMaps(U);
3178
3179    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3180         I != E; ++I)
3181      if (I->Val == From) {
3182        From->removeUser(U);
3183        I->Val = To;
3184        To->addUser(U);
3185      }
3186
3187    // Now that we have modified U, add it back to the CSE maps.  If it already
3188    // exists there, recursively merge the results together.
3189    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3190      ReplaceAllUsesWith(U, Existing, Deleted);
3191      // U is now dead.
3192      if (Deleted) Deleted->push_back(U);
3193      DeleteNodeNotInCSEMaps(U);
3194    }
3195  }
3196}
3197
3198/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3199/// This can cause recursive merging of nodes in the DAG.
3200///
3201/// This version assumes From/To have matching types and numbers of result
3202/// values.
3203///
3204void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3205                                      std::vector<SDNode*> *Deleted) {
3206  assert(From != To && "Cannot replace uses of with self");
3207  assert(From->getNumValues() == To->getNumValues() &&
3208         "Cannot use this version of ReplaceAllUsesWith!");
3209  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3210    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3211    return;
3212  }
3213
3214  while (!From->use_empty()) {
3215    // Process users until they are all gone.
3216    SDNode *U = *From->use_begin();
3217
3218    // This node is about to morph, remove its old self from the CSE maps.
3219    RemoveNodeFromCSEMaps(U);
3220
3221    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3222         I != E; ++I)
3223      if (I->Val == From) {
3224        From->removeUser(U);
3225        I->Val = To;
3226        To->addUser(U);
3227      }
3228
3229    // Now that we have modified U, add it back to the CSE maps.  If it already
3230    // exists there, recursively merge the results together.
3231    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3232      ReplaceAllUsesWith(U, Existing, Deleted);
3233      // U is now dead.
3234      if (Deleted) Deleted->push_back(U);
3235      DeleteNodeNotInCSEMaps(U);
3236    }
3237  }
3238}
3239
3240/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3241/// This can cause recursive merging of nodes in the DAG.
3242///
3243/// This version can replace From with any result values.  To must match the
3244/// number and types of values returned by From.
3245void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3246                                      const SDOperand *To,
3247                                      std::vector<SDNode*> *Deleted) {
3248  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3249    // Degenerate case handled above.
3250    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3251    return;
3252  }
3253
3254  while (!From->use_empty()) {
3255    // Process users until they are all gone.
3256    SDNode *U = *From->use_begin();
3257
3258    // This node is about to morph, remove its old self from the CSE maps.
3259    RemoveNodeFromCSEMaps(U);
3260
3261    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3262         I != E; ++I)
3263      if (I->Val == From) {
3264        const SDOperand &ToOp = To[I->ResNo];
3265        From->removeUser(U);
3266        *I = ToOp;
3267        ToOp.Val->addUser(U);
3268      }
3269
3270    // Now that we have modified U, add it back to the CSE maps.  If it already
3271    // exists there, recursively merge the results together.
3272    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3273      ReplaceAllUsesWith(U, Existing, Deleted);
3274      // U is now dead.
3275      if (Deleted) Deleted->push_back(U);
3276      DeleteNodeNotInCSEMaps(U);
3277    }
3278  }
3279}
3280
3281/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3282/// uses of other values produced by From.Val alone.  The Deleted vector is
3283/// handled the same was as for ReplaceAllUsesWith.
3284void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3285                                             std::vector<SDNode*> *Deleted) {
3286  assert(From != To && "Cannot replace a value with itself");
3287  // Handle the simple, trivial, case efficiently.
3288  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3289    ReplaceAllUsesWith(From, To, Deleted);
3290    return;
3291  }
3292
3293  // Get all of the users of From.Val.  We want these in a nice,
3294  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3295  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3296
3297  std::vector<SDNode*> LocalDeletionVector;
3298
3299  // Pick a deletion vector to use.  If the user specified one, use theirs,
3300  // otherwise use a local one.
3301  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3302  while (!Users.empty()) {
3303    // We know that this user uses some value of From.  If it is the right
3304    // value, update it.
3305    SDNode *User = Users.back();
3306    Users.pop_back();
3307
3308    // Scan for an operand that matches From.
3309    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3310    for (; Op != E; ++Op)
3311      if (*Op == From) break;
3312
3313    // If there are no matches, the user must use some other result of From.
3314    if (Op == E) continue;
3315
3316    // Okay, we know this user needs to be updated.  Remove its old self
3317    // from the CSE maps.
3318    RemoveNodeFromCSEMaps(User);
3319
3320    // Update all operands that match "From".
3321    for (; Op != E; ++Op) {
3322      if (*Op == From) {
3323        From.Val->removeUser(User);
3324        *Op = To;
3325        To.Val->addUser(User);
3326      }
3327    }
3328
3329    // Now that we have modified User, add it back to the CSE maps.  If it
3330    // already exists there, recursively merge the results together.
3331    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3332    if (!Existing) continue;  // Continue on to next user.
3333
3334    // If there was already an existing matching node, use ReplaceAllUsesWith
3335    // to replace the dead one with the existing one.  However, this can cause
3336    // recursive merging of other unrelated nodes down the line.  The merging
3337    // can cause deletion of nodes that used the old value.  In this case,
3338    // we have to be certain to remove them from the Users set.
3339    unsigned NumDeleted = DeleteVector->size();
3340    ReplaceAllUsesWith(User, Existing, DeleteVector);
3341
3342    // User is now dead.
3343    DeleteVector->push_back(User);
3344    DeleteNodeNotInCSEMaps(User);
3345
3346    // We have to be careful here, because ReplaceAllUsesWith could have
3347    // deleted a user of From, which means there may be dangling pointers
3348    // in the "Users" setvector.  Scan over the deleted node pointers and
3349    // remove them from the setvector.
3350    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3351      Users.remove((*DeleteVector)[i]);
3352
3353    // If the user doesn't need the set of deleted elements, don't retain them
3354    // to the next loop iteration.
3355    if (Deleted == 0)
3356      LocalDeletionVector.clear();
3357  }
3358}
3359
3360
3361/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3362/// their allnodes order. It returns the maximum id.
3363unsigned SelectionDAG::AssignNodeIds() {
3364  unsigned Id = 0;
3365  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3366    SDNode *N = I;
3367    N->setNodeId(Id++);
3368  }
3369  return Id;
3370}
3371
3372/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3373/// based on their topological order. It returns the maximum id and a vector
3374/// of the SDNodes* in assigned order by reference.
3375unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3376  unsigned DAGSize = AllNodes.size();
3377  std::vector<unsigned> InDegree(DAGSize);
3378  std::vector<SDNode*> Sources;
3379
3380  // Use a two pass approach to avoid using a std::map which is slow.
3381  unsigned Id = 0;
3382  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3383    SDNode *N = I;
3384    N->setNodeId(Id++);
3385    unsigned Degree = N->use_size();
3386    InDegree[N->getNodeId()] = Degree;
3387    if (Degree == 0)
3388      Sources.push_back(N);
3389  }
3390
3391  TopOrder.clear();
3392  while (!Sources.empty()) {
3393    SDNode *N = Sources.back();
3394    Sources.pop_back();
3395    TopOrder.push_back(N);
3396    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3397      SDNode *P = I->Val;
3398      unsigned Degree = --InDegree[P->getNodeId()];
3399      if (Degree == 0)
3400        Sources.push_back(P);
3401    }
3402  }
3403
3404  // Second pass, assign the actual topological order as node ids.
3405  Id = 0;
3406  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3407       TI != TE; ++TI)
3408    (*TI)->setNodeId(Id++);
3409
3410  return Id;
3411}
3412
3413
3414
3415//===----------------------------------------------------------------------===//
3416//                              SDNode Class
3417//===----------------------------------------------------------------------===//
3418
3419// Out-of-line virtual method to give class a home.
3420void SDNode::ANCHOR() {}
3421void UnarySDNode::ANCHOR() {}
3422void BinarySDNode::ANCHOR() {}
3423void TernarySDNode::ANCHOR() {}
3424void HandleSDNode::ANCHOR() {}
3425void StringSDNode::ANCHOR() {}
3426void ConstantSDNode::ANCHOR() {}
3427void ConstantFPSDNode::ANCHOR() {}
3428void GlobalAddressSDNode::ANCHOR() {}
3429void FrameIndexSDNode::ANCHOR() {}
3430void JumpTableSDNode::ANCHOR() {}
3431void ConstantPoolSDNode::ANCHOR() {}
3432void BasicBlockSDNode::ANCHOR() {}
3433void SrcValueSDNode::ANCHOR() {}
3434void RegisterSDNode::ANCHOR() {}
3435void ExternalSymbolSDNode::ANCHOR() {}
3436void CondCodeSDNode::ANCHOR() {}
3437void VTSDNode::ANCHOR() {}
3438void LoadSDNode::ANCHOR() {}
3439void StoreSDNode::ANCHOR() {}
3440
3441HandleSDNode::~HandleSDNode() {
3442  SDVTList VTs = { 0, 0 };
3443  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3444}
3445
3446GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3447                                         MVT::ValueType VT, int o)
3448  : SDNode(isa<GlobalVariable>(GA) &&
3449           cast<GlobalVariable>(GA)->isThreadLocal() ?
3450           // Thread Local
3451           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3452           // Non Thread Local
3453           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3454           getSDVTList(VT)), Offset(o) {
3455  TheGlobal = const_cast<GlobalValue*>(GA);
3456}
3457
3458/// Profile - Gather unique data for the node.
3459///
3460void SDNode::Profile(FoldingSetNodeID &ID) {
3461  AddNodeIDNode(ID, this);
3462}
3463
3464/// getValueTypeList - Return a pointer to the specified value type.
3465///
3466MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3467  if (MVT::isExtendedVT(VT)) {
3468    static std::set<MVT::ValueType> EVTs;
3469    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3470  } else {
3471    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3472    VTs[VT] = VT;
3473    return &VTs[VT];
3474  }
3475}
3476
3477/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3478/// indicated value.  This method ignores uses of other values defined by this
3479/// operation.
3480bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3481  assert(Value < getNumValues() && "Bad value!");
3482
3483  // If there is only one value, this is easy.
3484  if (getNumValues() == 1)
3485    return use_size() == NUses;
3486  if (use_size() < NUses) return false;
3487
3488  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3489
3490  SmallPtrSet<SDNode*, 32> UsersHandled;
3491
3492  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3493    SDNode *User = *UI;
3494    if (User->getNumOperands() == 1 ||
3495        UsersHandled.insert(User))     // First time we've seen this?
3496      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3497        if (User->getOperand(i) == TheValue) {
3498          if (NUses == 0)
3499            return false;   // too many uses
3500          --NUses;
3501        }
3502  }
3503
3504  // Found exactly the right number of uses?
3505  return NUses == 0;
3506}
3507
3508
3509/// hasAnyUseOfValue - Return true if there are any use of the indicated
3510/// value. This method ignores uses of other values defined by this operation.
3511bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3512  assert(Value < getNumValues() && "Bad value!");
3513
3514  if (use_size() == 0) return false;
3515
3516  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3517
3518  SmallPtrSet<SDNode*, 32> UsersHandled;
3519
3520  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3521    SDNode *User = *UI;
3522    if (User->getNumOperands() == 1 ||
3523        UsersHandled.insert(User))     // First time we've seen this?
3524      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3525        if (User->getOperand(i) == TheValue) {
3526          return true;
3527        }
3528  }
3529
3530  return false;
3531}
3532
3533
3534/// isOnlyUse - Return true if this node is the only use of N.
3535///
3536bool SDNode::isOnlyUse(SDNode *N) const {
3537  bool Seen = false;
3538  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3539    SDNode *User = *I;
3540    if (User == this)
3541      Seen = true;
3542    else
3543      return false;
3544  }
3545
3546  return Seen;
3547}
3548
3549/// isOperand - Return true if this node is an operand of N.
3550///
3551bool SDOperand::isOperand(SDNode *N) const {
3552  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3553    if (*this == N->getOperand(i))
3554      return true;
3555  return false;
3556}
3557
3558bool SDNode::isOperand(SDNode *N) const {
3559  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3560    if (this == N->OperandList[i].Val)
3561      return true;
3562  return false;
3563}
3564
3565/// reachesChainWithoutSideEffects - Return true if this operand (which must
3566/// be a chain) reaches the specified operand without crossing any
3567/// side-effecting instructions.  In practice, this looks through token
3568/// factors and non-volatile loads.  In order to remain efficient, this only
3569/// looks a couple of nodes in, it does not do an exhaustive search.
3570bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3571                                               unsigned Depth) const {
3572  if (*this == Dest) return true;
3573
3574  // Don't search too deeply, we just want to be able to see through
3575  // TokenFactor's etc.
3576  if (Depth == 0) return false;
3577
3578  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3579  // of the operands of the TF reach dest, then we can do the xform.
3580  if (getOpcode() == ISD::TokenFactor) {
3581    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3582      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3583        return true;
3584    return false;
3585  }
3586
3587  // Loads don't have side effects, look through them.
3588  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3589    if (!Ld->isVolatile())
3590      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3591  }
3592  return false;
3593}
3594
3595
3596static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3597                            SmallPtrSet<SDNode *, 32> &Visited) {
3598  if (found || !Visited.insert(N))
3599    return;
3600
3601  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3602    SDNode *Op = N->getOperand(i).Val;
3603    if (Op == P) {
3604      found = true;
3605      return;
3606    }
3607    findPredecessor(Op, P, found, Visited);
3608  }
3609}
3610
3611/// isPredecessor - Return true if this node is a predecessor of N. This node
3612/// is either an operand of N or it can be reached by recursively traversing
3613/// up the operands.
3614/// NOTE: this is an expensive method. Use it carefully.
3615bool SDNode::isPredecessor(SDNode *N) const {
3616  SmallPtrSet<SDNode *, 32> Visited;
3617  bool found = false;
3618  findPredecessor(N, this, found, Visited);
3619  return found;
3620}
3621
3622uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3623  assert(Num < NumOperands && "Invalid child # of SDNode!");
3624  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3625}
3626
3627std::string SDNode::getOperationName(const SelectionDAG *G) const {
3628  switch (getOpcode()) {
3629  default:
3630    if (getOpcode() < ISD::BUILTIN_OP_END)
3631      return "<<Unknown DAG Node>>";
3632    else {
3633      if (G) {
3634        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3635          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3636            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3637
3638        TargetLowering &TLI = G->getTargetLoweringInfo();
3639        const char *Name =
3640          TLI.getTargetNodeName(getOpcode());
3641        if (Name) return Name;
3642      }
3643
3644      return "<<Unknown Target Node>>";
3645    }
3646
3647  case ISD::PCMARKER:      return "PCMarker";
3648  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3649  case ISD::SRCVALUE:      return "SrcValue";
3650  case ISD::EntryToken:    return "EntryToken";
3651  case ISD::TokenFactor:   return "TokenFactor";
3652  case ISD::AssertSext:    return "AssertSext";
3653  case ISD::AssertZext:    return "AssertZext";
3654
3655  case ISD::STRING:        return "String";
3656  case ISD::BasicBlock:    return "BasicBlock";
3657  case ISD::VALUETYPE:     return "ValueType";
3658  case ISD::Register:      return "Register";
3659
3660  case ISD::Constant:      return "Constant";
3661  case ISD::ConstantFP:    return "ConstantFP";
3662  case ISD::GlobalAddress: return "GlobalAddress";
3663  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3664  case ISD::FrameIndex:    return "FrameIndex";
3665  case ISD::JumpTable:     return "JumpTable";
3666  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3667  case ISD::RETURNADDR: return "RETURNADDR";
3668  case ISD::FRAMEADDR: return "FRAMEADDR";
3669  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3670  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3671  case ISD::EHSELECTION: return "EHSELECTION";
3672  case ISD::EH_RETURN: return "EH_RETURN";
3673  case ISD::ConstantPool:  return "ConstantPool";
3674  case ISD::ExternalSymbol: return "ExternalSymbol";
3675  case ISD::INTRINSIC_WO_CHAIN: {
3676    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3677    return Intrinsic::getName((Intrinsic::ID)IID);
3678  }
3679  case ISD::INTRINSIC_VOID:
3680  case ISD::INTRINSIC_W_CHAIN: {
3681    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3682    return Intrinsic::getName((Intrinsic::ID)IID);
3683  }
3684
3685  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3686  case ISD::TargetConstant: return "TargetConstant";
3687  case ISD::TargetConstantFP:return "TargetConstantFP";
3688  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3689  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3690  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3691  case ISD::TargetJumpTable:  return "TargetJumpTable";
3692  case ISD::TargetConstantPool:  return "TargetConstantPool";
3693  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3694
3695  case ISD::CopyToReg:     return "CopyToReg";
3696  case ISD::CopyFromReg:   return "CopyFromReg";
3697  case ISD::UNDEF:         return "undef";
3698  case ISD::MERGE_VALUES:  return "merge_values";
3699  case ISD::INLINEASM:     return "inlineasm";
3700  case ISD::LABEL:         return "label";
3701  case ISD::HANDLENODE:    return "handlenode";
3702  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3703  case ISD::CALL:          return "call";
3704
3705  // Unary operators
3706  case ISD::FABS:   return "fabs";
3707  case ISD::FNEG:   return "fneg";
3708  case ISD::FSQRT:  return "fsqrt";
3709  case ISD::FSIN:   return "fsin";
3710  case ISD::FCOS:   return "fcos";
3711  case ISD::FPOWI:  return "fpowi";
3712  case ISD::FPOW:   return "fpow";
3713
3714  // Binary operators
3715  case ISD::ADD:    return "add";
3716  case ISD::SUB:    return "sub";
3717  case ISD::MUL:    return "mul";
3718  case ISD::MULHU:  return "mulhu";
3719  case ISD::MULHS:  return "mulhs";
3720  case ISD::SDIV:   return "sdiv";
3721  case ISD::UDIV:   return "udiv";
3722  case ISD::SREM:   return "srem";
3723  case ISD::UREM:   return "urem";
3724  case ISD::SMUL_LOHI:  return "smul_lohi";
3725  case ISD::UMUL_LOHI:  return "umul_lohi";
3726  case ISD::SDIVREM:    return "sdivrem";
3727  case ISD::UDIVREM:    return "divrem";
3728  case ISD::AND:    return "and";
3729  case ISD::OR:     return "or";
3730  case ISD::XOR:    return "xor";
3731  case ISD::SHL:    return "shl";
3732  case ISD::SRA:    return "sra";
3733  case ISD::SRL:    return "srl";
3734  case ISD::ROTL:   return "rotl";
3735  case ISD::ROTR:   return "rotr";
3736  case ISD::FADD:   return "fadd";
3737  case ISD::FSUB:   return "fsub";
3738  case ISD::FMUL:   return "fmul";
3739  case ISD::FDIV:   return "fdiv";
3740  case ISD::FREM:   return "frem";
3741  case ISD::FCOPYSIGN: return "fcopysign";
3742  case ISD::FGETSIGN:  return "fgetsign";
3743
3744  case ISD::SETCC:       return "setcc";
3745  case ISD::SELECT:      return "select";
3746  case ISD::SELECT_CC:   return "select_cc";
3747  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3748  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3749  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3750  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3751  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3752  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3753  case ISD::CARRY_FALSE:         return "carry_false";
3754  case ISD::ADDC:        return "addc";
3755  case ISD::ADDE:        return "adde";
3756  case ISD::SUBC:        return "subc";
3757  case ISD::SUBE:        return "sube";
3758  case ISD::SHL_PARTS:   return "shl_parts";
3759  case ISD::SRA_PARTS:   return "sra_parts";
3760  case ISD::SRL_PARTS:   return "srl_parts";
3761
3762  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3763  case ISD::INSERT_SUBREG:      return "insert_subreg";
3764
3765  // Conversion operators.
3766  case ISD::SIGN_EXTEND: return "sign_extend";
3767  case ISD::ZERO_EXTEND: return "zero_extend";
3768  case ISD::ANY_EXTEND:  return "any_extend";
3769  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3770  case ISD::TRUNCATE:    return "truncate";
3771  case ISD::FP_ROUND:    return "fp_round";
3772  case ISD::FLT_ROUNDS:  return "flt_rounds";
3773  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3774  case ISD::FP_EXTEND:   return "fp_extend";
3775
3776  case ISD::SINT_TO_FP:  return "sint_to_fp";
3777  case ISD::UINT_TO_FP:  return "uint_to_fp";
3778  case ISD::FP_TO_SINT:  return "fp_to_sint";
3779  case ISD::FP_TO_UINT:  return "fp_to_uint";
3780  case ISD::BIT_CONVERT: return "bit_convert";
3781
3782    // Control flow instructions
3783  case ISD::BR:      return "br";
3784  case ISD::BRIND:   return "brind";
3785  case ISD::BR_JT:   return "br_jt";
3786  case ISD::BRCOND:  return "brcond";
3787  case ISD::BR_CC:   return "br_cc";
3788  case ISD::RET:     return "ret";
3789  case ISD::CALLSEQ_START:  return "callseq_start";
3790  case ISD::CALLSEQ_END:    return "callseq_end";
3791
3792    // Other operators
3793  case ISD::LOAD:               return "load";
3794  case ISD::STORE:              return "store";
3795  case ISD::VAARG:              return "vaarg";
3796  case ISD::VACOPY:             return "vacopy";
3797  case ISD::VAEND:              return "vaend";
3798  case ISD::VASTART:            return "vastart";
3799  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3800  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3801  case ISD::BUILD_PAIR:         return "build_pair";
3802  case ISD::STACKSAVE:          return "stacksave";
3803  case ISD::STACKRESTORE:       return "stackrestore";
3804  case ISD::TRAP:               return "trap";
3805
3806  // Block memory operations.
3807  case ISD::MEMSET:  return "memset";
3808  case ISD::MEMCPY:  return "memcpy";
3809  case ISD::MEMMOVE: return "memmove";
3810
3811  // Bit manipulation
3812  case ISD::BSWAP:   return "bswap";
3813  case ISD::CTPOP:   return "ctpop";
3814  case ISD::CTTZ:    return "cttz";
3815  case ISD::CTLZ:    return "ctlz";
3816
3817  // Debug info
3818  case ISD::LOCATION: return "location";
3819  case ISD::DEBUG_LOC: return "debug_loc";
3820
3821  // Trampolines
3822  case ISD::TRAMPOLINE: return "trampoline";
3823
3824  case ISD::CONDCODE:
3825    switch (cast<CondCodeSDNode>(this)->get()) {
3826    default: assert(0 && "Unknown setcc condition!");
3827    case ISD::SETOEQ:  return "setoeq";
3828    case ISD::SETOGT:  return "setogt";
3829    case ISD::SETOGE:  return "setoge";
3830    case ISD::SETOLT:  return "setolt";
3831    case ISD::SETOLE:  return "setole";
3832    case ISD::SETONE:  return "setone";
3833
3834    case ISD::SETO:    return "seto";
3835    case ISD::SETUO:   return "setuo";
3836    case ISD::SETUEQ:  return "setue";
3837    case ISD::SETUGT:  return "setugt";
3838    case ISD::SETUGE:  return "setuge";
3839    case ISD::SETULT:  return "setult";
3840    case ISD::SETULE:  return "setule";
3841    case ISD::SETUNE:  return "setune";
3842
3843    case ISD::SETEQ:   return "seteq";
3844    case ISD::SETGT:   return "setgt";
3845    case ISD::SETGE:   return "setge";
3846    case ISD::SETLT:   return "setlt";
3847    case ISD::SETLE:   return "setle";
3848    case ISD::SETNE:   return "setne";
3849    }
3850  }
3851}
3852
3853const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3854  switch (AM) {
3855  default:
3856    return "";
3857  case ISD::PRE_INC:
3858    return "<pre-inc>";
3859  case ISD::PRE_DEC:
3860    return "<pre-dec>";
3861  case ISD::POST_INC:
3862    return "<post-inc>";
3863  case ISD::POST_DEC:
3864    return "<post-dec>";
3865  }
3866}
3867
3868void SDNode::dump() const { dump(0); }
3869void SDNode::dump(const SelectionDAG *G) const {
3870  cerr << (void*)this << ": ";
3871
3872  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3873    if (i) cerr << ",";
3874    if (getValueType(i) == MVT::Other)
3875      cerr << "ch";
3876    else
3877      cerr << MVT::getValueTypeString(getValueType(i));
3878  }
3879  cerr << " = " << getOperationName(G);
3880
3881  cerr << " ";
3882  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3883    if (i) cerr << ", ";
3884    cerr << (void*)getOperand(i).Val;
3885    if (unsigned RN = getOperand(i).ResNo)
3886      cerr << ":" << RN;
3887  }
3888
3889  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3890    SDNode *Mask = getOperand(2).Val;
3891    cerr << "<";
3892    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3893      if (i) cerr << ",";
3894      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3895        cerr << "u";
3896      else
3897        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3898    }
3899    cerr << ">";
3900  }
3901
3902  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3903    cerr << "<" << CSDN->getValue() << ">";
3904  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3905    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3906      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3907    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3908      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3909    else {
3910      cerr << "<APFloat(";
3911      CSDN->getValueAPF().convertToAPInt().dump();
3912      cerr << ")>";
3913    }
3914  } else if (const GlobalAddressSDNode *GADN =
3915             dyn_cast<GlobalAddressSDNode>(this)) {
3916    int offset = GADN->getOffset();
3917    cerr << "<";
3918    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3919    if (offset > 0)
3920      cerr << " + " << offset;
3921    else
3922      cerr << " " << offset;
3923  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3924    cerr << "<" << FIDN->getIndex() << ">";
3925  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3926    cerr << "<" << JTDN->getIndex() << ">";
3927  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3928    int offset = CP->getOffset();
3929    if (CP->isMachineConstantPoolEntry())
3930      cerr << "<" << *CP->getMachineCPVal() << ">";
3931    else
3932      cerr << "<" << *CP->getConstVal() << ">";
3933    if (offset > 0)
3934      cerr << " + " << offset;
3935    else
3936      cerr << " " << offset;
3937  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3938    cerr << "<";
3939    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3940    if (LBB)
3941      cerr << LBB->getName() << " ";
3942    cerr << (const void*)BBDN->getBasicBlock() << ">";
3943  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3944    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3945      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3946    } else {
3947      cerr << " #" << R->getReg();
3948    }
3949  } else if (const ExternalSymbolSDNode *ES =
3950             dyn_cast<ExternalSymbolSDNode>(this)) {
3951    cerr << "'" << ES->getSymbol() << "'";
3952  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3953    if (M->getValue())
3954      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3955    else
3956      cerr << "<null:" << M->getOffset() << ">";
3957  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3958    cerr << ":" << MVT::getValueTypeString(N->getVT());
3959  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3960    const Value *SrcValue = LD->getSrcValue();
3961    int SrcOffset = LD->getSrcValueOffset();
3962    cerr << " <";
3963    if (SrcValue)
3964      cerr << SrcValue;
3965    else
3966      cerr << "null";
3967    cerr << ":" << SrcOffset << ">";
3968
3969    bool doExt = true;
3970    switch (LD->getExtensionType()) {
3971    default: doExt = false; break;
3972    case ISD::EXTLOAD:
3973      cerr << " <anyext ";
3974      break;
3975    case ISD::SEXTLOAD:
3976      cerr << " <sext ";
3977      break;
3978    case ISD::ZEXTLOAD:
3979      cerr << " <zext ";
3980      break;
3981    }
3982    if (doExt)
3983      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3984
3985    const char *AM = getIndexedModeName(LD->getAddressingMode());
3986    if (*AM)
3987      cerr << " " << AM;
3988    if (LD->isVolatile())
3989      cerr << " <volatile>";
3990    cerr << " alignment=" << LD->getAlignment();
3991  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3992    const Value *SrcValue = ST->getSrcValue();
3993    int SrcOffset = ST->getSrcValueOffset();
3994    cerr << " <";
3995    if (SrcValue)
3996      cerr << SrcValue;
3997    else
3998      cerr << "null";
3999    cerr << ":" << SrcOffset << ">";
4000
4001    if (ST->isTruncatingStore())
4002      cerr << " <trunc "
4003           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
4004
4005    const char *AM = getIndexedModeName(ST->getAddressingMode());
4006    if (*AM)
4007      cerr << " " << AM;
4008    if (ST->isVolatile())
4009      cerr << " <volatile>";
4010    cerr << " alignment=" << ST->getAlignment();
4011  }
4012}
4013
4014static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4015  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4016    if (N->getOperand(i).Val->hasOneUse())
4017      DumpNodes(N->getOperand(i).Val, indent+2, G);
4018    else
4019      cerr << "\n" << std::string(indent+2, ' ')
4020           << (void*)N->getOperand(i).Val << ": <multiple use>";
4021
4022
4023  cerr << "\n" << std::string(indent, ' ');
4024  N->dump(G);
4025}
4026
4027void SelectionDAG::dump() const {
4028  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4029  std::vector<const SDNode*> Nodes;
4030  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4031       I != E; ++I)
4032    Nodes.push_back(I);
4033
4034  std::sort(Nodes.begin(), Nodes.end());
4035
4036  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4037    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4038      DumpNodes(Nodes[i], 2, this);
4039  }
4040
4041  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4042
4043  cerr << "\n\n";
4044}
4045
4046const Type *ConstantPoolSDNode::getType() const {
4047  if (isMachineConstantPoolEntry())
4048    return Val.MachineCPVal->getType();
4049  return Val.ConstVal->getType();
4050}
4051