SelectionDAG.cpp revision 10e63334f4a4a2bb420dc6aad7d4a0b7a5a70dec
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP:
446  case ISD::ATOMIC_SWAP:
447  case ISD::ATOMIC_LOAD_ADD:
448  case ISD::ATOMIC_LOAD_SUB:
449  case ISD::ATOMIC_LOAD_AND:
450  case ISD::ATOMIC_LOAD_OR:
451  case ISD::ATOMIC_LOAD_XOR:
452  case ISD::ATOMIC_LOAD_NAND:
453  case ISD::ATOMIC_LOAD_MIN:
454  case ISD::ATOMIC_LOAD_MAX:
455  case ISD::ATOMIC_LOAD_UMIN:
456  case ISD::ATOMIC_LOAD_UMAX: {
457    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
458    ID.AddInteger(AT->getRawFlags());
459    break;
460  }
461  } // end switch (N->getOpcode())
462}
463
464/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
465/// data.
466static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
467  AddNodeIDOpcode(ID, N->getOpcode());
468  // Add the return value info.
469  AddNodeIDValueTypes(ID, N->getVTList());
470  // Add the operand info.
471  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
472
473  // Handle SDNode leafs with special info.
474  AddNodeIDCustom(ID, N);
475}
476
477/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
478/// the CSE map that carries both alignment and volatility information.
479///
480static inline unsigned
481encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
482  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::DBG_LABEL:
498  case ISD::DBG_STOPPOINT:
499  case ISD::EH_LABEL:
500  case ISD::DECLARE:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.back();
541    DeadNodes.pop_back();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
552      SDNode *Operand = I->getVal();
553      Operand->removeUser(std::distance(N->op_begin(), I), N);
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    if (N->OperandsNeedDelete)
561      delete[] N->OperandList;
562
563    N->OperandList = 0;
564    N->NumOperands = 0;
565
566    // Finally, remove N itself.
567    NodeAllocator.Deallocate(AllNodes.remove(N));
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // First take this out of the appropriate CSE map.
580  RemoveNodeFromCSEMaps(N);
581
582  // Finally, remove uses due to operands of this node, remove from the
583  // AllNodes list, and delete the node.
584  DeleteNodeNotInCSEMaps(N);
585}
586
587void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
588  // Drop all of the operands and decrement used node's use counts.
589  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
590    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
591
592  if (N->OperandsNeedDelete) {
593    delete[] N->OperandList;
594    N->OperandList = 0;
595  }
596
597  assert(N != AllNodes.begin());
598  NodeAllocator.Deallocate(AllNodes.remove(N));
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    assert(0 && "EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol:
622    Erased =
623      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::VALUETYPE: {
626    MVT VT = cast<VTSDNode>(N)->getVT();
627    if (VT.isExtended()) {
628      Erased = ExtendedValueTypeNodes.erase(VT);
629    } else {
630      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
631      ValueTypeNodes[VT.getSimpleVT()] = 0;
632    }
633    break;
634  }
635  default:
636    // Remove it from the CSE Map.
637    Erased = CSEMap.RemoveNode(N);
638    break;
639  }
640#ifndef NDEBUG
641  // Verify that the node was actually in one of the CSE maps, unless it has a
642  // flag result (which cannot be CSE'd) or is one of the special cases that are
643  // not subject to CSE.
644  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
645      !N->isMachineOpcode() && !doNotCSE(N)) {
646    N->dump(this);
647    cerr << "\n";
648    assert(0 && "Node is not in map!");
649  }
650#endif
651  return Erased;
652}
653
654/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
655/// has been taken out and modified in some way.  If the specified node already
656/// exists in the CSE maps, do not modify the maps, but return the existing node
657/// instead.  If it doesn't exist, add it and return null.
658///
659SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
660  assert(N->getNumOperands() && "This is a leaf node!");
661
662  if (doNotCSE(N))
663    return 0;
664
665  SDNode *New = CSEMap.GetOrInsertNode(N);
666  if (New != N) return New;  // Node already existed.
667  return 0;
668}
669
670/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
671/// were replaced with those specified.  If this node is never memoized,
672/// return null, otherwise return a pointer to the slot it would take.  If a
673/// node already exists with these operands, the slot will be non-null.
674SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
675                                           void *&InsertPos) {
676  if (doNotCSE(N))
677    return 0;
678
679  SDValue Ops[] = { Op };
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
682  AddNodeIDCustom(ID, N);
683  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
684}
685
686/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
687/// were replaced with those specified.  If this node is never memoized,
688/// return null, otherwise return a pointer to the slot it would take.  If a
689/// node already exists with these operands, the slot will be non-null.
690SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
691                                           SDValue Op1, SDValue Op2,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op1, Op2 };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
699  AddNodeIDCustom(ID, N);
700  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701}
702
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           const SDValue *Ops,unsigned NumOps,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  FoldingSetNodeID ID;
715  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
716  AddNodeIDCustom(ID, N);
717  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
718}
719
720/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
721void SelectionDAG::VerifyNode(SDNode *N) {
722  switch (N->getOpcode()) {
723  default:
724    break;
725  case ISD::BUILD_PAIR: {
726    MVT VT = N->getValueType(0);
727    assert(N->getNumValues() == 1 && "Too many results!");
728    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
729           "Wrong return type!");
730    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
731    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
732           "Mismatched operand types!");
733    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
734           "Wrong operand type!");
735    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
736           "Wrong return type size");
737    break;
738  }
739  case ISD::BUILD_VECTOR: {
740    assert(N->getNumValues() == 1 && "Too many results!");
741    assert(N->getValueType(0).isVector() && "Wrong return type!");
742    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
743           "Wrong number of operands!");
744    // FIXME: Change vector_shuffle to a variadic node with mask elements being
745    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
746    // operand, and it is not always possible to legalize it.  Turning off the
747    // following checks at least makes it possible to legalize most of the time.
748//    MVT EltVT = N->getValueType(0).getVectorElementType();
749//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
750//      assert(I->getSDValue().getValueType() == EltVT &&
751//             "Wrong operand type!");
752    break;
753  }
754  }
755}
756
757/// getMVTAlignment - Compute the default alignment value for the
758/// given type.
759///
760unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
761  const Type *Ty = VT == MVT::iPTR ?
762                   PointerType::get(Type::Int8Ty, 0) :
763                   VT.getTypeForMVT();
764
765  return TLI.getTargetData()->getABITypeAlignment(Ty);
766}
767
768SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
769  : TLI(tli), FLI(fli),
770    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
771    Root(getEntryNode()) {
772  AllNodes.push_back(&EntryNode);
773}
774
775void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
776                        DwarfWriter *dw) {
777  MF = &mf;
778  MMI = mmi;
779  DW = dw;
780}
781
782SelectionDAG::~SelectionDAG() {
783  allnodes_clear();
784}
785
786void SelectionDAG::allnodes_clear() {
787  assert(&*AllNodes.begin() == &EntryNode);
788  AllNodes.remove(AllNodes.begin());
789  while (!AllNodes.empty()) {
790    SDNode *N = AllNodes.remove(AllNodes.begin());
791    N->SetNextInBucket(0);
792
793    if (N->OperandsNeedDelete) {
794      delete [] N->OperandList;
795      N->OperandList = 0;
796    }
797
798    NodeAllocator.Deallocate(N);
799  }
800}
801
802void SelectionDAG::clear() {
803  allnodes_clear();
804  OperandAllocator.Reset();
805  CSEMap.clear();
806
807  ExtendedValueTypeNodes.clear();
808  ExternalSymbols.clear();
809  TargetExternalSymbols.clear();
810  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
811            static_cast<CondCodeSDNode*>(0));
812  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
813            static_cast<SDNode*>(0));
814
815  EntryNode.Uses = 0;
816  AllNodes.push_back(&EntryNode);
817  Root = getEntryNode();
818}
819
820SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
821  if (Op.getValueType() == VT) return Op;
822  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
823                                   VT.getSizeInBits());
824  return getNode(ISD::AND, Op.getValueType(), Op,
825                 getConstant(Imm, Op.getValueType()));
826}
827
828SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
829  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
830  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
831}
832
833SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
834  return getConstant(*ConstantInt::get(Val), VT, isT);
835}
836
837SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
838  assert(VT.isInteger() && "Cannot create FP integer constant!");
839
840  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
841  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
842         "APInt size does not match type size!");
843
844  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
845  FoldingSetNodeID ID;
846  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
847  ID.AddPointer(&Val);
848  void *IP = 0;
849  SDNode *N = NULL;
850  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
851    if (!VT.isVector())
852      return SDValue(N, 0);
853  if (!N) {
854    N = NodeAllocator.Allocate<ConstantSDNode>();
855    new (N) ConstantSDNode(isT, &Val, EltVT);
856    CSEMap.InsertNode(N, IP);
857    AllNodes.push_back(N);
858  }
859
860  SDValue Result(N, 0);
861  if (VT.isVector()) {
862    SmallVector<SDValue, 8> Ops;
863    Ops.assign(VT.getVectorNumElements(), Result);
864    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
865  }
866  return Result;
867}
868
869SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
870  return getConstant(Val, TLI.getPointerTy(), isTarget);
871}
872
873
874SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
875  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
876}
877
878SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
879  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
880
881  MVT EltVT =
882    VT.isVector() ? VT.getVectorElementType() : VT;
883
884  // Do the map lookup using the actual bit pattern for the floating point
885  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
886  // we don't have issues with SNANs.
887  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
890  ID.AddPointer(&V);
891  void *IP = 0;
892  SDNode *N = NULL;
893  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
894    if (!VT.isVector())
895      return SDValue(N, 0);
896  if (!N) {
897    N = NodeAllocator.Allocate<ConstantFPSDNode>();
898    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
899    CSEMap.InsertNode(N, IP);
900    AllNodes.push_back(N);
901  }
902
903  SDValue Result(N, 0);
904  if (VT.isVector()) {
905    SmallVector<SDValue, 8> Ops;
906    Ops.assign(VT.getVectorNumElements(), Result);
907    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
908  }
909  return Result;
910}
911
912SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
913  MVT EltVT =
914    VT.isVector() ? VT.getVectorElementType() : VT;
915  if (EltVT==MVT::f32)
916    return getConstantFP(APFloat((float)Val), VT, isTarget);
917  else
918    return getConstantFP(APFloat(Val), VT, isTarget);
919}
920
921SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
922                                       MVT VT, int64_t Offset,
923                                       bool isTargetGA) {
924  unsigned Opc;
925
926  // Truncate (with sign-extension) the offset value to the pointer size.
927  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
928  if (BitWidth < 64)
929    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
930
931  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
932  if (!GVar) {
933    // If GV is an alias then use the aliasee for determining thread-localness.
934    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
935      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
936  }
937
938  if (GVar && GVar->isThreadLocal())
939    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
940  else
941    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
942
943  FoldingSetNodeID ID;
944  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
945  ID.AddPointer(GV);
946  ID.AddInteger(Offset);
947  void *IP = 0;
948  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
949   return SDValue(E, 0);
950  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
951  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
952  CSEMap.InsertNode(N, IP);
953  AllNodes.push_back(N);
954  return SDValue(N, 0);
955}
956
957SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
958  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
959  FoldingSetNodeID ID;
960  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
961  ID.AddInteger(FI);
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDValue(E, 0);
965  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
966  new (N) FrameIndexSDNode(FI, VT, isTarget);
967  CSEMap.InsertNode(N, IP);
968  AllNodes.push_back(N);
969  return SDValue(N, 0);
970}
971
972SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
973  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
976  ID.AddInteger(JTI);
977  void *IP = 0;
978  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
979    return SDValue(E, 0);
980  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
981  new (N) JumpTableSDNode(JTI, VT, isTarget);
982  CSEMap.InsertNode(N, IP);
983  AllNodes.push_back(N);
984  return SDValue(N, 0);
985}
986
987SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
988                                      unsigned Alignment, int Offset,
989                                      bool isTarget) {
990  if (Alignment == 0)
991    Alignment =
992      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
993  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(Alignment);
997  ID.AddInteger(Offset);
998  ID.AddPointer(C);
999  void *IP = 0;
1000  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1001    return SDValue(E, 0);
1002  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1003  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1004  CSEMap.InsertNode(N, IP);
1005  AllNodes.push_back(N);
1006  return SDValue(N, 0);
1007}
1008
1009
1010SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1011                                      unsigned Alignment, int Offset,
1012                                      bool isTarget) {
1013  if (Alignment == 0)
1014    Alignment =
1015      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1016  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1017  FoldingSetNodeID ID;
1018  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1019  ID.AddInteger(Alignment);
1020  ID.AddInteger(Offset);
1021  C->AddSelectionDAGCSEId(ID);
1022  void *IP = 0;
1023  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1024    return SDValue(E, 0);
1025  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1026  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1027  CSEMap.InsertNode(N, IP);
1028  AllNodes.push_back(N);
1029  return SDValue(N, 0);
1030}
1031
1032
1033SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1034  FoldingSetNodeID ID;
1035  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1036  ID.AddPointer(MBB);
1037  void *IP = 0;
1038  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1039    return SDValue(E, 0);
1040  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1041  new (N) BasicBlockSDNode(MBB);
1042  CSEMap.InsertNode(N, IP);
1043  AllNodes.push_back(N);
1044  return SDValue(N, 0);
1045}
1046
1047SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1050  ID.AddInteger(Flags.getRawBits());
1051  void *IP = 0;
1052  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1053    return SDValue(E, 0);
1054  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1055  new (N) ARG_FLAGSSDNode(Flags);
1056  CSEMap.InsertNode(N, IP);
1057  AllNodes.push_back(N);
1058  return SDValue(N, 0);
1059}
1060
1061SDValue SelectionDAG::getValueType(MVT VT) {
1062  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1063    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1064
1065  SDNode *&N = VT.isExtended() ?
1066    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1067
1068  if (N) return SDValue(N, 0);
1069  N = NodeAllocator.Allocate<VTSDNode>();
1070  new (N) VTSDNode(VT);
1071  AllNodes.push_back(N);
1072  return SDValue(N, 0);
1073}
1074
1075SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1076  SDNode *&N = ExternalSymbols[Sym];
1077  if (N) return SDValue(N, 0);
1078  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1079  new (N) ExternalSymbolSDNode(false, Sym, VT);
1080  AllNodes.push_back(N);
1081  return SDValue(N, 0);
1082}
1083
1084SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1085  SDNode *&N = TargetExternalSymbols[Sym];
1086  if (N) return SDValue(N, 0);
1087  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1088  new (N) ExternalSymbolSDNode(true, Sym, VT);
1089  AllNodes.push_back(N);
1090  return SDValue(N, 0);
1091}
1092
1093SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1094  if ((unsigned)Cond >= CondCodeNodes.size())
1095    CondCodeNodes.resize(Cond+1);
1096
1097  if (CondCodeNodes[Cond] == 0) {
1098    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1099    new (N) CondCodeSDNode(Cond);
1100    CondCodeNodes[Cond] = N;
1101    AllNodes.push_back(N);
1102  }
1103  return SDValue(CondCodeNodes[Cond], 0);
1104}
1105
1106SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1107                                       SDValue STy, SDValue Rnd, SDValue Sat,
1108                                       ISD::CvtCode Code) {
1109  // If the src and dest types are the same, no conversion is necessary.
1110  if (DTy == STy)
1111    return Val;
1112
1113  FoldingSetNodeID ID;
1114  void* IP = 0;
1115  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1116    return SDValue(E, 0);
1117  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1118  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1119  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1120  CSEMap.InsertNode(N, IP);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1126  FoldingSetNodeID ID;
1127  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1128  ID.AddInteger(RegNo);
1129  void *IP = 0;
1130  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1131    return SDValue(E, 0);
1132  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1133  new (N) RegisterSDNode(RegNo, VT);
1134  CSEMap.InsertNode(N, IP);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1140                                        unsigned Line, unsigned Col,
1141                                        const CompileUnitDesc *CU) {
1142  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1143  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getLabel(unsigned Opcode,
1149                               SDValue Root,
1150                               unsigned LabelID) {
1151  FoldingSetNodeID ID;
1152  SDValue Ops[] = { Root };
1153  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1154  ID.AddInteger(LabelID);
1155  void *IP = 0;
1156  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1157    return SDValue(E, 0);
1158  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1159  new (N) LabelSDNode(Opcode, Root, LabelID);
1160  CSEMap.InsertNode(N, IP);
1161  AllNodes.push_back(N);
1162  return SDValue(N, 0);
1163}
1164
1165SDValue SelectionDAG::getSrcValue(const Value *V) {
1166  assert((!V || isa<PointerType>(V->getType())) &&
1167         "SrcValue is not a pointer?");
1168
1169  FoldingSetNodeID ID;
1170  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1171  ID.AddPointer(V);
1172
1173  void *IP = 0;
1174  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1175    return SDValue(E, 0);
1176
1177  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1178  new (N) SrcValueSDNode(V);
1179  CSEMap.InsertNode(N, IP);
1180  AllNodes.push_back(N);
1181  return SDValue(N, 0);
1182}
1183
1184SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1185#ifndef NDEBUG
1186  const Value *v = MO.getValue();
1187  assert((!v || isa<PointerType>(v->getType())) &&
1188         "SrcValue is not a pointer?");
1189#endif
1190
1191  FoldingSetNodeID ID;
1192  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1193  MO.Profile(ID);
1194
1195  void *IP = 0;
1196  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1197    return SDValue(E, 0);
1198
1199  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1200  new (N) MemOperandSDNode(MO);
1201  CSEMap.InsertNode(N, IP);
1202  AllNodes.push_back(N);
1203  return SDValue(N, 0);
1204}
1205
1206/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1207/// specified value type.
1208SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1209  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1210  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1211  const Type *Ty = VT.getTypeForMVT();
1212  unsigned StackAlign =
1213  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1214
1215  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1216  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1217}
1218
1219/// CreateStackTemporary - Create a stack temporary suitable for holding
1220/// either of the specified value types.
1221SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1222  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1223                            VT2.getStoreSizeInBits())/8;
1224  const Type *Ty1 = VT1.getTypeForMVT();
1225  const Type *Ty2 = VT2.getTypeForMVT();
1226  const TargetData *TD = TLI.getTargetData();
1227  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1228                            TD->getPrefTypeAlignment(Ty2));
1229
1230  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1231  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1232  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1233}
1234
1235SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1236                                SDValue N2, ISD::CondCode Cond) {
1237  // These setcc operations always fold.
1238  switch (Cond) {
1239  default: break;
1240  case ISD::SETFALSE:
1241  case ISD::SETFALSE2: return getConstant(0, VT);
1242  case ISD::SETTRUE:
1243  case ISD::SETTRUE2:  return getConstant(1, VT);
1244
1245  case ISD::SETOEQ:
1246  case ISD::SETOGT:
1247  case ISD::SETOGE:
1248  case ISD::SETOLT:
1249  case ISD::SETOLE:
1250  case ISD::SETONE:
1251  case ISD::SETO:
1252  case ISD::SETUO:
1253  case ISD::SETUEQ:
1254  case ISD::SETUNE:
1255    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1256    break;
1257  }
1258
1259  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1260    const APInt &C2 = N2C->getAPIntValue();
1261    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1262      const APInt &C1 = N1C->getAPIntValue();
1263
1264      switch (Cond) {
1265      default: assert(0 && "Unknown integer setcc!");
1266      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1267      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1268      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1269      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1270      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1271      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1272      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1273      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1274      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1275      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1276      }
1277    }
1278  }
1279  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1280    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1281      // No compile time operations on this type yet.
1282      if (N1C->getValueType(0) == MVT::ppcf128)
1283        return SDValue();
1284
1285      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1286      switch (Cond) {
1287      default: break;
1288      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1289                          return getNode(ISD::UNDEF, VT);
1290                        // fall through
1291      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1292      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1293                          return getNode(ISD::UNDEF, VT);
1294                        // fall through
1295      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1296                                           R==APFloat::cmpLessThan, VT);
1297      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1298                          return getNode(ISD::UNDEF, VT);
1299                        // fall through
1300      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1301      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1302                          return getNode(ISD::UNDEF, VT);
1303                        // fall through
1304      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1305      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1306                          return getNode(ISD::UNDEF, VT);
1307                        // fall through
1308      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1309                                           R==APFloat::cmpEqual, VT);
1310      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1311                          return getNode(ISD::UNDEF, VT);
1312                        // fall through
1313      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1314                                           R==APFloat::cmpEqual, VT);
1315      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1316      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1317      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1318                                           R==APFloat::cmpEqual, VT);
1319      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1320      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1321                                           R==APFloat::cmpLessThan, VT);
1322      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1323                                           R==APFloat::cmpUnordered, VT);
1324      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1325      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1326      }
1327    } else {
1328      // Ensure that the constant occurs on the RHS.
1329      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1330    }
1331  }
1332
1333  // Could not fold it.
1334  return SDValue();
1335}
1336
1337/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1338/// use this predicate to simplify operations downstream.
1339bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1340  unsigned BitWidth = Op.getValueSizeInBits();
1341  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1342}
1343
1344/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1345/// this predicate to simplify operations downstream.  Mask is known to be zero
1346/// for bits that V cannot have.
1347bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1348                                     unsigned Depth) const {
1349  APInt KnownZero, KnownOne;
1350  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1351  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1352  return (KnownZero & Mask) == Mask;
1353}
1354
1355/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1356/// known to be either zero or one and return them in the KnownZero/KnownOne
1357/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1358/// processing.
1359void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1360                                     APInt &KnownZero, APInt &KnownOne,
1361                                     unsigned Depth) const {
1362  unsigned BitWidth = Mask.getBitWidth();
1363  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1364         "Mask size mismatches value type size!");
1365
1366  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1367  if (Depth == 6 || Mask == 0)
1368    return;  // Limit search depth.
1369
1370  APInt KnownZero2, KnownOne2;
1371
1372  switch (Op.getOpcode()) {
1373  case ISD::Constant:
1374    // We know all of the bits for a constant!
1375    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1376    KnownZero = ~KnownOne & Mask;
1377    return;
1378  case ISD::AND:
1379    // If either the LHS or the RHS are Zero, the result is zero.
1380    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1381    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1382                      KnownZero2, KnownOne2, Depth+1);
1383    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1384    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1385
1386    // Output known-1 bits are only known if set in both the LHS & RHS.
1387    KnownOne &= KnownOne2;
1388    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1389    KnownZero |= KnownZero2;
1390    return;
1391  case ISD::OR:
1392    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1393    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1394                      KnownZero2, KnownOne2, Depth+1);
1395    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1396    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1397
1398    // Output known-0 bits are only known if clear in both the LHS & RHS.
1399    KnownZero &= KnownZero2;
1400    // Output known-1 are known to be set if set in either the LHS | RHS.
1401    KnownOne |= KnownOne2;
1402    return;
1403  case ISD::XOR: {
1404    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1405    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1406    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1407    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1408
1409    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1410    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1411    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1412    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1413    KnownZero = KnownZeroOut;
1414    return;
1415  }
1416  case ISD::MUL: {
1417    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1418    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1419    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1422
1423    // If low bits are zero in either operand, output low known-0 bits.
1424    // Also compute a conserative estimate for high known-0 bits.
1425    // More trickiness is possible, but this is sufficient for the
1426    // interesting case of alignment computation.
1427    KnownOne.clear();
1428    unsigned TrailZ = KnownZero.countTrailingOnes() +
1429                      KnownZero2.countTrailingOnes();
1430    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1431                               KnownZero2.countLeadingOnes(),
1432                               BitWidth) - BitWidth;
1433
1434    TrailZ = std::min(TrailZ, BitWidth);
1435    LeadZ = std::min(LeadZ, BitWidth);
1436    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1437                APInt::getHighBitsSet(BitWidth, LeadZ);
1438    KnownZero &= Mask;
1439    return;
1440  }
1441  case ISD::UDIV: {
1442    // For the purposes of computing leading zeros we can conservatively
1443    // treat a udiv as a logical right shift by the power of 2 known to
1444    // be less than the denominator.
1445    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1446    ComputeMaskedBits(Op.getOperand(0),
1447                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1448    unsigned LeadZ = KnownZero2.countLeadingOnes();
1449
1450    KnownOne2.clear();
1451    KnownZero2.clear();
1452    ComputeMaskedBits(Op.getOperand(1),
1453                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1454    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1455    if (RHSUnknownLeadingOnes != BitWidth)
1456      LeadZ = std::min(BitWidth,
1457                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1458
1459    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1460    return;
1461  }
1462  case ISD::SELECT:
1463    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1464    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1465    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1466    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1467
1468    // Only known if known in both the LHS and RHS.
1469    KnownOne &= KnownOne2;
1470    KnownZero &= KnownZero2;
1471    return;
1472  case ISD::SELECT_CC:
1473    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1474    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1475    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1476    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1477
1478    // Only known if known in both the LHS and RHS.
1479    KnownOne &= KnownOne2;
1480    KnownZero &= KnownZero2;
1481    return;
1482  case ISD::SADDO:
1483  case ISD::UADDO:
1484  case ISD::SSUBO:
1485  case ISD::USUBO:
1486  case ISD::SMULO:
1487  case ISD::UMULO:
1488    if (Op.getResNo() != 1)
1489      return;
1490    // The boolean result conforms to getBooleanContents.  Fall through.
1491  case ISD::SETCC:
1492    // If we know the result of a setcc has the top bits zero, use this info.
1493    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1494        BitWidth > 1)
1495      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1496    return;
1497  case ISD::SHL:
1498    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1499    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1500      unsigned ShAmt = SA->getZExtValue();
1501
1502      // If the shift count is an invalid immediate, don't do anything.
1503      if (ShAmt >= BitWidth)
1504        return;
1505
1506      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1507                        KnownZero, KnownOne, Depth+1);
1508      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1509      KnownZero <<= ShAmt;
1510      KnownOne  <<= ShAmt;
1511      // low bits known zero.
1512      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1513    }
1514    return;
1515  case ISD::SRL:
1516    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1517    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1518      unsigned ShAmt = SA->getZExtValue();
1519
1520      // If the shift count is an invalid immediate, don't do anything.
1521      if (ShAmt >= BitWidth)
1522        return;
1523
1524      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1525                        KnownZero, KnownOne, Depth+1);
1526      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1527      KnownZero = KnownZero.lshr(ShAmt);
1528      KnownOne  = KnownOne.lshr(ShAmt);
1529
1530      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1531      KnownZero |= HighBits;  // High bits known zero.
1532    }
1533    return;
1534  case ISD::SRA:
1535    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1536      unsigned ShAmt = SA->getZExtValue();
1537
1538      // If the shift count is an invalid immediate, don't do anything.
1539      if (ShAmt >= BitWidth)
1540        return;
1541
1542      APInt InDemandedMask = (Mask << ShAmt);
1543      // If any of the demanded bits are produced by the sign extension, we also
1544      // demand the input sign bit.
1545      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1546      if (HighBits.getBoolValue())
1547        InDemandedMask |= APInt::getSignBit(BitWidth);
1548
1549      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1550                        Depth+1);
1551      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1552      KnownZero = KnownZero.lshr(ShAmt);
1553      KnownOne  = KnownOne.lshr(ShAmt);
1554
1555      // Handle the sign bits.
1556      APInt SignBit = APInt::getSignBit(BitWidth);
1557      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1558
1559      if (KnownZero.intersects(SignBit)) {
1560        KnownZero |= HighBits;  // New bits are known zero.
1561      } else if (KnownOne.intersects(SignBit)) {
1562        KnownOne  |= HighBits;  // New bits are known one.
1563      }
1564    }
1565    return;
1566  case ISD::SIGN_EXTEND_INREG: {
1567    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1568    unsigned EBits = EVT.getSizeInBits();
1569
1570    // Sign extension.  Compute the demanded bits in the result that are not
1571    // present in the input.
1572    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1573
1574    APInt InSignBit = APInt::getSignBit(EBits);
1575    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1576
1577    // If the sign extended bits are demanded, we know that the sign
1578    // bit is demanded.
1579    InSignBit.zext(BitWidth);
1580    if (NewBits.getBoolValue())
1581      InputDemandedBits |= InSignBit;
1582
1583    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1584                      KnownZero, KnownOne, Depth+1);
1585    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1586
1587    // If the sign bit of the input is known set or clear, then we know the
1588    // top bits of the result.
1589    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1590      KnownZero |= NewBits;
1591      KnownOne  &= ~NewBits;
1592    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1593      KnownOne  |= NewBits;
1594      KnownZero &= ~NewBits;
1595    } else {                              // Input sign bit unknown
1596      KnownZero &= ~NewBits;
1597      KnownOne  &= ~NewBits;
1598    }
1599    return;
1600  }
1601  case ISD::CTTZ:
1602  case ISD::CTLZ:
1603  case ISD::CTPOP: {
1604    unsigned LowBits = Log2_32(BitWidth)+1;
1605    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1606    KnownOne.clear();
1607    return;
1608  }
1609  case ISD::LOAD: {
1610    if (ISD::isZEXTLoad(Op.getNode())) {
1611      LoadSDNode *LD = cast<LoadSDNode>(Op);
1612      MVT VT = LD->getMemoryVT();
1613      unsigned MemBits = VT.getSizeInBits();
1614      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1615    }
1616    return;
1617  }
1618  case ISD::ZERO_EXTEND: {
1619    MVT InVT = Op.getOperand(0).getValueType();
1620    unsigned InBits = InVT.getSizeInBits();
1621    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1622    APInt InMask    = Mask;
1623    InMask.trunc(InBits);
1624    KnownZero.trunc(InBits);
1625    KnownOne.trunc(InBits);
1626    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1627    KnownZero.zext(BitWidth);
1628    KnownOne.zext(BitWidth);
1629    KnownZero |= NewBits;
1630    return;
1631  }
1632  case ISD::SIGN_EXTEND: {
1633    MVT InVT = Op.getOperand(0).getValueType();
1634    unsigned InBits = InVT.getSizeInBits();
1635    APInt InSignBit = APInt::getSignBit(InBits);
1636    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1637    APInt InMask = Mask;
1638    InMask.trunc(InBits);
1639
1640    // If any of the sign extended bits are demanded, we know that the sign
1641    // bit is demanded. Temporarily set this bit in the mask for our callee.
1642    if (NewBits.getBoolValue())
1643      InMask |= InSignBit;
1644
1645    KnownZero.trunc(InBits);
1646    KnownOne.trunc(InBits);
1647    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1648
1649    // Note if the sign bit is known to be zero or one.
1650    bool SignBitKnownZero = KnownZero.isNegative();
1651    bool SignBitKnownOne  = KnownOne.isNegative();
1652    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1653           "Sign bit can't be known to be both zero and one!");
1654
1655    // If the sign bit wasn't actually demanded by our caller, we don't
1656    // want it set in the KnownZero and KnownOne result values. Reset the
1657    // mask and reapply it to the result values.
1658    InMask = Mask;
1659    InMask.trunc(InBits);
1660    KnownZero &= InMask;
1661    KnownOne  &= InMask;
1662
1663    KnownZero.zext(BitWidth);
1664    KnownOne.zext(BitWidth);
1665
1666    // If the sign bit is known zero or one, the top bits match.
1667    if (SignBitKnownZero)
1668      KnownZero |= NewBits;
1669    else if (SignBitKnownOne)
1670      KnownOne  |= NewBits;
1671    return;
1672  }
1673  case ISD::ANY_EXTEND: {
1674    MVT InVT = Op.getOperand(0).getValueType();
1675    unsigned InBits = InVT.getSizeInBits();
1676    APInt InMask = Mask;
1677    InMask.trunc(InBits);
1678    KnownZero.trunc(InBits);
1679    KnownOne.trunc(InBits);
1680    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1681    KnownZero.zext(BitWidth);
1682    KnownOne.zext(BitWidth);
1683    return;
1684  }
1685  case ISD::TRUNCATE: {
1686    MVT InVT = Op.getOperand(0).getValueType();
1687    unsigned InBits = InVT.getSizeInBits();
1688    APInt InMask = Mask;
1689    InMask.zext(InBits);
1690    KnownZero.zext(InBits);
1691    KnownOne.zext(InBits);
1692    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    KnownZero.trunc(BitWidth);
1695    KnownOne.trunc(BitWidth);
1696    break;
1697  }
1698  case ISD::AssertZext: {
1699    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1700    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1701    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1702                      KnownOne, Depth+1);
1703    KnownZero |= (~InMask) & Mask;
1704    return;
1705  }
1706  case ISD::FGETSIGN:
1707    // All bits are zero except the low bit.
1708    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1709    return;
1710
1711  case ISD::SUB: {
1712    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1713      // We know that the top bits of C-X are clear if X contains less bits
1714      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1715      // positive if we can prove that X is >= 0 and < 16.
1716      if (CLHS->getAPIntValue().isNonNegative()) {
1717        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1718        // NLZ can't be BitWidth with no sign bit
1719        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1720        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1721                          Depth+1);
1722
1723        // If all of the MaskV bits are known to be zero, then we know the
1724        // output top bits are zero, because we now know that the output is
1725        // from [0-C].
1726        if ((KnownZero2 & MaskV) == MaskV) {
1727          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1728          // Top bits known zero.
1729          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1730        }
1731      }
1732    }
1733  }
1734  // fall through
1735  case ISD::ADD: {
1736    // Output known-0 bits are known if clear or set in both the low clear bits
1737    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1738    // low 3 bits clear.
1739    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1740    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1741    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1742    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1743
1744    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1745    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1746    KnownZeroOut = std::min(KnownZeroOut,
1747                            KnownZero2.countTrailingOnes());
1748
1749    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1750    return;
1751  }
1752  case ISD::SREM:
1753    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1754      const APInt &RA = Rem->getAPIntValue();
1755      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1756        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1757        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1758        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1759
1760        // If the sign bit of the first operand is zero, the sign bit of
1761        // the result is zero. If the first operand has no one bits below
1762        // the second operand's single 1 bit, its sign will be zero.
1763        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1764          KnownZero2 |= ~LowBits;
1765
1766        KnownZero |= KnownZero2 & Mask;
1767
1768        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1769      }
1770    }
1771    return;
1772  case ISD::UREM: {
1773    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1774      const APInt &RA = Rem->getAPIntValue();
1775      if (RA.isPowerOf2()) {
1776        APInt LowBits = (RA - 1);
1777        APInt Mask2 = LowBits & Mask;
1778        KnownZero |= ~LowBits & Mask;
1779        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1780        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1781        break;
1782      }
1783    }
1784
1785    // Since the result is less than or equal to either operand, any leading
1786    // zero bits in either operand must also exist in the result.
1787    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1788    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1789                      Depth+1);
1790    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1791                      Depth+1);
1792
1793    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1794                                KnownZero2.countLeadingOnes());
1795    KnownOne.clear();
1796    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1797    return;
1798  }
1799  default:
1800    // Allow the target to implement this method for its nodes.
1801    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1802  case ISD::INTRINSIC_WO_CHAIN:
1803  case ISD::INTRINSIC_W_CHAIN:
1804  case ISD::INTRINSIC_VOID:
1805      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1806    }
1807    return;
1808  }
1809}
1810
1811/// ComputeNumSignBits - Return the number of times the sign bit of the
1812/// register is replicated into the other bits.  We know that at least 1 bit
1813/// is always equal to the sign bit (itself), but other cases can give us
1814/// information.  For example, immediately after an "SRA X, 2", we know that
1815/// the top 3 bits are all equal to each other, so we return 3.
1816unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1817  MVT VT = Op.getValueType();
1818  assert(VT.isInteger() && "Invalid VT!");
1819  unsigned VTBits = VT.getSizeInBits();
1820  unsigned Tmp, Tmp2;
1821  unsigned FirstAnswer = 1;
1822
1823  if (Depth == 6)
1824    return 1;  // Limit search depth.
1825
1826  switch (Op.getOpcode()) {
1827  default: break;
1828  case ISD::AssertSext:
1829    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1830    return VTBits-Tmp+1;
1831  case ISD::AssertZext:
1832    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1833    return VTBits-Tmp;
1834
1835  case ISD::Constant: {
1836    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1837    // If negative, return # leading ones.
1838    if (Val.isNegative())
1839      return Val.countLeadingOnes();
1840
1841    // Return # leading zeros.
1842    return Val.countLeadingZeros();
1843  }
1844
1845  case ISD::SIGN_EXTEND:
1846    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1847    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1848
1849  case ISD::SIGN_EXTEND_INREG:
1850    // Max of the input and what this extends.
1851    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1852    Tmp = VTBits-Tmp+1;
1853
1854    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1855    return std::max(Tmp, Tmp2);
1856
1857  case ISD::SRA:
1858    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1859    // SRA X, C   -> adds C sign bits.
1860    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1861      Tmp += C->getZExtValue();
1862      if (Tmp > VTBits) Tmp = VTBits;
1863    }
1864    return Tmp;
1865  case ISD::SHL:
1866    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1867      // shl destroys sign bits.
1868      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1869      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1870          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1871      return Tmp - C->getZExtValue();
1872    }
1873    break;
1874  case ISD::AND:
1875  case ISD::OR:
1876  case ISD::XOR:    // NOT is handled here.
1877    // Logical binary ops preserve the number of sign bits at the worst.
1878    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1879    if (Tmp != 1) {
1880      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1881      FirstAnswer = std::min(Tmp, Tmp2);
1882      // We computed what we know about the sign bits as our first
1883      // answer. Now proceed to the generic code that uses
1884      // ComputeMaskedBits, and pick whichever answer is better.
1885    }
1886    break;
1887
1888  case ISD::SELECT:
1889    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1890    if (Tmp == 1) return 1;  // Early out.
1891    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1892    return std::min(Tmp, Tmp2);
1893
1894  case ISD::SADDO:
1895  case ISD::UADDO:
1896  case ISD::SSUBO:
1897  case ISD::USUBO:
1898  case ISD::SMULO:
1899  case ISD::UMULO:
1900    if (Op.getResNo() != 1)
1901      break;
1902    // The boolean result conforms to getBooleanContents.  Fall through.
1903  case ISD::SETCC:
1904    // If setcc returns 0/-1, all bits are sign bits.
1905    if (TLI.getBooleanContents() ==
1906        TargetLowering::ZeroOrNegativeOneBooleanContent)
1907      return VTBits;
1908    break;
1909  case ISD::ROTL:
1910  case ISD::ROTR:
1911    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1912      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1913
1914      // Handle rotate right by N like a rotate left by 32-N.
1915      if (Op.getOpcode() == ISD::ROTR)
1916        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1917
1918      // If we aren't rotating out all of the known-in sign bits, return the
1919      // number that are left.  This handles rotl(sext(x), 1) for example.
1920      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1921      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1922    }
1923    break;
1924  case ISD::ADD:
1925    // Add can have at most one carry bit.  Thus we know that the output
1926    // is, at worst, one more bit than the inputs.
1927    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1928    if (Tmp == 1) return 1;  // Early out.
1929
1930    // Special case decrementing a value (ADD X, -1):
1931    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1932      if (CRHS->isAllOnesValue()) {
1933        APInt KnownZero, KnownOne;
1934        APInt Mask = APInt::getAllOnesValue(VTBits);
1935        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1936
1937        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1938        // sign bits set.
1939        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1940          return VTBits;
1941
1942        // If we are subtracting one from a positive number, there is no carry
1943        // out of the result.
1944        if (KnownZero.isNegative())
1945          return Tmp;
1946      }
1947
1948    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1949    if (Tmp2 == 1) return 1;
1950      return std::min(Tmp, Tmp2)-1;
1951    break;
1952
1953  case ISD::SUB:
1954    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1955    if (Tmp2 == 1) return 1;
1956
1957    // Handle NEG.
1958    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1959      if (CLHS->isNullValue()) {
1960        APInt KnownZero, KnownOne;
1961        APInt Mask = APInt::getAllOnesValue(VTBits);
1962        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1963        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1964        // sign bits set.
1965        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1966          return VTBits;
1967
1968        // If the input is known to be positive (the sign bit is known clear),
1969        // the output of the NEG has the same number of sign bits as the input.
1970        if (KnownZero.isNegative())
1971          return Tmp2;
1972
1973        // Otherwise, we treat this like a SUB.
1974      }
1975
1976    // Sub can have at most one carry bit.  Thus we know that the output
1977    // is, at worst, one more bit than the inputs.
1978    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1979    if (Tmp == 1) return 1;  // Early out.
1980      return std::min(Tmp, Tmp2)-1;
1981    break;
1982  case ISD::TRUNCATE:
1983    // FIXME: it's tricky to do anything useful for this, but it is an important
1984    // case for targets like X86.
1985    break;
1986  }
1987
1988  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1989  if (Op.getOpcode() == ISD::LOAD) {
1990    LoadSDNode *LD = cast<LoadSDNode>(Op);
1991    unsigned ExtType = LD->getExtensionType();
1992    switch (ExtType) {
1993    default: break;
1994    case ISD::SEXTLOAD:    // '17' bits known
1995      Tmp = LD->getMemoryVT().getSizeInBits();
1996      return VTBits-Tmp+1;
1997    case ISD::ZEXTLOAD:    // '16' bits known
1998      Tmp = LD->getMemoryVT().getSizeInBits();
1999      return VTBits-Tmp;
2000    }
2001  }
2002
2003  // Allow the target to implement this method for its nodes.
2004  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2005      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2006      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2007      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2008    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2009    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2010  }
2011
2012  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2013  // use this information.
2014  APInt KnownZero, KnownOne;
2015  APInt Mask = APInt::getAllOnesValue(VTBits);
2016  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2017
2018  if (KnownZero.isNegative()) {        // sign bit is 0
2019    Mask = KnownZero;
2020  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2021    Mask = KnownOne;
2022  } else {
2023    // Nothing known.
2024    return FirstAnswer;
2025  }
2026
2027  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2028  // the number of identical bits in the top of the input value.
2029  Mask = ~Mask;
2030  Mask <<= Mask.getBitWidth()-VTBits;
2031  // Return # leading zeros.  We use 'min' here in case Val was zero before
2032  // shifting.  We don't want to return '64' as for an i32 "0".
2033  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2034}
2035
2036
2037bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2038  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2039  if (!GA) return false;
2040  if (GA->getOffset() != 0) return false;
2041  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2042  if (!GV) return false;
2043  MachineModuleInfo *MMI = getMachineModuleInfo();
2044  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2045}
2046
2047
2048/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2049/// element of the result of the vector shuffle.
2050SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2051  MVT VT = N->getValueType(0);
2052  SDValue PermMask = N->getOperand(2);
2053  SDValue Idx = PermMask.getOperand(i);
2054  if (Idx.getOpcode() == ISD::UNDEF)
2055    return getNode(ISD::UNDEF, VT.getVectorElementType());
2056  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2057  unsigned NumElems = PermMask.getNumOperands();
2058  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2059  Index %= NumElems;
2060
2061  if (V.getOpcode() == ISD::BIT_CONVERT) {
2062    V = V.getOperand(0);
2063    MVT VVT = V.getValueType();
2064    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2065      return SDValue();
2066  }
2067  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2068    return (Index == 0) ? V.getOperand(0)
2069                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2070  if (V.getOpcode() == ISD::BUILD_VECTOR)
2071    return V.getOperand(Index);
2072  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2073    return getShuffleScalarElt(V.getNode(), Index);
2074  return SDValue();
2075}
2076
2077
2078/// getNode - Gets or creates the specified node.
2079///
2080SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2081  FoldingSetNodeID ID;
2082  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2083  void *IP = 0;
2084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2085    return SDValue(E, 0);
2086  SDNode *N = NodeAllocator.Allocate<SDNode>();
2087  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2088  CSEMap.InsertNode(N, IP);
2089
2090  AllNodes.push_back(N);
2091#ifndef NDEBUG
2092  VerifyNode(N);
2093#endif
2094  return SDValue(N, 0);
2095}
2096
2097SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2098  // Constant fold unary operations with an integer constant operand.
2099  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2100    const APInt &Val = C->getAPIntValue();
2101    unsigned BitWidth = VT.getSizeInBits();
2102    switch (Opcode) {
2103    default: break;
2104    case ISD::SIGN_EXTEND:
2105      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2106    case ISD::ANY_EXTEND:
2107    case ISD::ZERO_EXTEND:
2108    case ISD::TRUNCATE:
2109      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2110    case ISD::UINT_TO_FP:
2111    case ISD::SINT_TO_FP: {
2112      const uint64_t zero[] = {0, 0};
2113      // No compile time operations on this type.
2114      if (VT==MVT::ppcf128)
2115        break;
2116      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2117      (void)apf.convertFromAPInt(Val,
2118                                 Opcode==ISD::SINT_TO_FP,
2119                                 APFloat::rmNearestTiesToEven);
2120      return getConstantFP(apf, VT);
2121    }
2122    case ISD::BIT_CONVERT:
2123      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2124        return getConstantFP(Val.bitsToFloat(), VT);
2125      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2126        return getConstantFP(Val.bitsToDouble(), VT);
2127      break;
2128    case ISD::BSWAP:
2129      return getConstant(Val.byteSwap(), VT);
2130    case ISD::CTPOP:
2131      return getConstant(Val.countPopulation(), VT);
2132    case ISD::CTLZ:
2133      return getConstant(Val.countLeadingZeros(), VT);
2134    case ISD::CTTZ:
2135      return getConstant(Val.countTrailingZeros(), VT);
2136    }
2137  }
2138
2139  // Constant fold unary operations with a floating point constant operand.
2140  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2141    APFloat V = C->getValueAPF();    // make copy
2142    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2143      switch (Opcode) {
2144      case ISD::FNEG:
2145        V.changeSign();
2146        return getConstantFP(V, VT);
2147      case ISD::FABS:
2148        V.clearSign();
2149        return getConstantFP(V, VT);
2150      case ISD::FP_ROUND:
2151      case ISD::FP_EXTEND: {
2152        bool ignored;
2153        // This can return overflow, underflow, or inexact; we don't care.
2154        // FIXME need to be more flexible about rounding mode.
2155        (void)V.convert(*MVTToAPFloatSemantics(VT),
2156                        APFloat::rmNearestTiesToEven, &ignored);
2157        return getConstantFP(V, VT);
2158      }
2159      case ISD::FP_TO_SINT:
2160      case ISD::FP_TO_UINT: {
2161        integerPart x;
2162        bool ignored;
2163        assert(integerPartWidth >= 64);
2164        // FIXME need to be more flexible about rounding mode.
2165        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2166                              Opcode==ISD::FP_TO_SINT,
2167                              APFloat::rmTowardZero, &ignored);
2168        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2169          break;
2170        return getConstant(x, VT);
2171      }
2172      case ISD::BIT_CONVERT:
2173        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2174          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2175        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2176          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2177        break;
2178      }
2179    }
2180  }
2181
2182  unsigned OpOpcode = Operand.getNode()->getOpcode();
2183  switch (Opcode) {
2184  case ISD::TokenFactor:
2185  case ISD::MERGE_VALUES:
2186  case ISD::CONCAT_VECTORS:
2187    return Operand;         // Factor, merge or concat of one node?  No need.
2188  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2189  case ISD::FP_EXTEND:
2190    assert(VT.isFloatingPoint() &&
2191           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2192    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2193    if (Operand.getOpcode() == ISD::UNDEF)
2194      return getNode(ISD::UNDEF, VT);
2195    break;
2196  case ISD::SIGN_EXTEND:
2197    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2198           "Invalid SIGN_EXTEND!");
2199    if (Operand.getValueType() == VT) return Operand;   // noop extension
2200    assert(Operand.getValueType().bitsLT(VT)
2201           && "Invalid sext node, dst < src!");
2202    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2203      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2204    break;
2205  case ISD::ZERO_EXTEND:
2206    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2207           "Invalid ZERO_EXTEND!");
2208    if (Operand.getValueType() == VT) return Operand;   // noop extension
2209    assert(Operand.getValueType().bitsLT(VT)
2210           && "Invalid zext node, dst < src!");
2211    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2212      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2213    break;
2214  case ISD::ANY_EXTEND:
2215    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2216           "Invalid ANY_EXTEND!");
2217    if (Operand.getValueType() == VT) return Operand;   // noop extension
2218    assert(Operand.getValueType().bitsLT(VT)
2219           && "Invalid anyext node, dst < src!");
2220    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2221      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2222      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2223    break;
2224  case ISD::TRUNCATE:
2225    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2226           "Invalid TRUNCATE!");
2227    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2228    assert(Operand.getValueType().bitsGT(VT)
2229           && "Invalid truncate node, src < dst!");
2230    if (OpOpcode == ISD::TRUNCATE)
2231      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2232    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2233             OpOpcode == ISD::ANY_EXTEND) {
2234      // If the source is smaller than the dest, we still need an extend.
2235      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2236        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2237      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2238        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2239      else
2240        return Operand.getNode()->getOperand(0);
2241    }
2242    break;
2243  case ISD::BIT_CONVERT:
2244    // Basic sanity checking.
2245    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2246           && "Cannot BIT_CONVERT between types of different sizes!");
2247    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2248    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2249      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2250    if (OpOpcode == ISD::UNDEF)
2251      return getNode(ISD::UNDEF, VT);
2252    break;
2253  case ISD::SCALAR_TO_VECTOR:
2254    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2255           VT.getVectorElementType() == Operand.getValueType() &&
2256           "Illegal SCALAR_TO_VECTOR node!");
2257    if (OpOpcode == ISD::UNDEF)
2258      return getNode(ISD::UNDEF, VT);
2259    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2260    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2261        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2262        Operand.getConstantOperandVal(1) == 0 &&
2263        Operand.getOperand(0).getValueType() == VT)
2264      return Operand.getOperand(0);
2265    break;
2266  case ISD::FNEG:
2267    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2268      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2269                     Operand.getNode()->getOperand(0));
2270    if (OpOpcode == ISD::FNEG)  // --X -> X
2271      return Operand.getNode()->getOperand(0);
2272    break;
2273  case ISD::FABS:
2274    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2275      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2276    break;
2277  }
2278
2279  SDNode *N;
2280  SDVTList VTs = getVTList(VT);
2281  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2282    FoldingSetNodeID ID;
2283    SDValue Ops[1] = { Operand };
2284    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2285    void *IP = 0;
2286    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2287      return SDValue(E, 0);
2288    N = NodeAllocator.Allocate<UnarySDNode>();
2289    new (N) UnarySDNode(Opcode, VTs, Operand);
2290    CSEMap.InsertNode(N, IP);
2291  } else {
2292    N = NodeAllocator.Allocate<UnarySDNode>();
2293    new (N) UnarySDNode(Opcode, VTs, Operand);
2294  }
2295
2296  AllNodes.push_back(N);
2297#ifndef NDEBUG
2298  VerifyNode(N);
2299#endif
2300  return SDValue(N, 0);
2301}
2302
2303SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2304                                             MVT VT,
2305                                             ConstantSDNode *Cst1,
2306                                             ConstantSDNode *Cst2) {
2307  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2308
2309  switch (Opcode) {
2310  case ISD::ADD:  return getConstant(C1 + C2, VT);
2311  case ISD::SUB:  return getConstant(C1 - C2, VT);
2312  case ISD::MUL:  return getConstant(C1 * C2, VT);
2313  case ISD::UDIV:
2314    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2315    break;
2316  case ISD::UREM:
2317    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2318    break;
2319  case ISD::SDIV:
2320    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2321    break;
2322  case ISD::SREM:
2323    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2324    break;
2325  case ISD::AND:  return getConstant(C1 & C2, VT);
2326  case ISD::OR:   return getConstant(C1 | C2, VT);
2327  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2328  case ISD::SHL:  return getConstant(C1 << C2, VT);
2329  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2330  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2331  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2332  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2333  default: break;
2334  }
2335
2336  return SDValue();
2337}
2338
2339SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2340                              SDValue N1, SDValue N2) {
2341  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2342  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2343  switch (Opcode) {
2344  default: break;
2345  case ISD::TokenFactor:
2346    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2347           N2.getValueType() == MVT::Other && "Invalid token factor!");
2348    // Fold trivial token factors.
2349    if (N1.getOpcode() == ISD::EntryToken) return N2;
2350    if (N2.getOpcode() == ISD::EntryToken) return N1;
2351    if (N1 == N2) return N1;
2352    break;
2353  case ISD::CONCAT_VECTORS:
2354    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2355    // one big BUILD_VECTOR.
2356    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2357        N2.getOpcode() == ISD::BUILD_VECTOR) {
2358      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2359      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2360      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2361    }
2362    break;
2363  case ISD::AND:
2364    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2365           N1.getValueType() == VT && "Binary operator types must match!");
2366    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2367    // worth handling here.
2368    if (N2C && N2C->isNullValue())
2369      return N2;
2370    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2371      return N1;
2372    break;
2373  case ISD::OR:
2374  case ISD::XOR:
2375  case ISD::ADD:
2376  case ISD::SUB:
2377    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2378           N1.getValueType() == VT && "Binary operator types must match!");
2379    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2380    // it's worth handling here.
2381    if (N2C && N2C->isNullValue())
2382      return N1;
2383    break;
2384  case ISD::UDIV:
2385  case ISD::UREM:
2386  case ISD::MULHU:
2387  case ISD::MULHS:
2388    assert(VT.isInteger() && "This operator does not apply to FP types!");
2389    // fall through
2390  case ISD::MUL:
2391  case ISD::SDIV:
2392  case ISD::SREM:
2393  case ISD::FADD:
2394  case ISD::FSUB:
2395  case ISD::FMUL:
2396  case ISD::FDIV:
2397  case ISD::FREM:
2398    assert(N1.getValueType() == N2.getValueType() &&
2399           N1.getValueType() == VT && "Binary operator types must match!");
2400    break;
2401  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2402    assert(N1.getValueType() == VT &&
2403           N1.getValueType().isFloatingPoint() &&
2404           N2.getValueType().isFloatingPoint() &&
2405           "Invalid FCOPYSIGN!");
2406    break;
2407  case ISD::SHL:
2408  case ISD::SRA:
2409  case ISD::SRL:
2410  case ISD::ROTL:
2411  case ISD::ROTR:
2412    assert(VT == N1.getValueType() &&
2413           "Shift operators return type must be the same as their first arg");
2414    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2415           "Shifts only work on integers");
2416    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2417            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2418           "Wrong type for shift amount");
2419
2420    // Always fold shifts of i1 values so the code generator doesn't need to
2421    // handle them.  Since we know the size of the shift has to be less than the
2422    // size of the value, the shift/rotate count is guaranteed to be zero.
2423    if (VT == MVT::i1)
2424      return N1;
2425    break;
2426  case ISD::FP_ROUND_INREG: {
2427    MVT EVT = cast<VTSDNode>(N2)->getVT();
2428    assert(VT == N1.getValueType() && "Not an inreg round!");
2429    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2430           "Cannot FP_ROUND_INREG integer types");
2431    assert(EVT.bitsLE(VT) && "Not rounding down!");
2432    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2433    break;
2434  }
2435  case ISD::FP_ROUND:
2436    assert(VT.isFloatingPoint() &&
2437           N1.getValueType().isFloatingPoint() &&
2438           VT.bitsLE(N1.getValueType()) &&
2439           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2440    if (N1.getValueType() == VT) return N1;  // noop conversion.
2441    break;
2442  case ISD::AssertSext:
2443  case ISD::AssertZext: {
2444    MVT EVT = cast<VTSDNode>(N2)->getVT();
2445    assert(VT == N1.getValueType() && "Not an inreg extend!");
2446    assert(VT.isInteger() && EVT.isInteger() &&
2447           "Cannot *_EXTEND_INREG FP types");
2448    assert(EVT.bitsLE(VT) && "Not extending!");
2449    if (VT == EVT) return N1; // noop assertion.
2450    break;
2451  }
2452  case ISD::SIGN_EXTEND_INREG: {
2453    MVT EVT = cast<VTSDNode>(N2)->getVT();
2454    assert(VT == N1.getValueType() && "Not an inreg extend!");
2455    assert(VT.isInteger() && EVT.isInteger() &&
2456           "Cannot *_EXTEND_INREG FP types");
2457    assert(EVT.bitsLE(VT) && "Not extending!");
2458    if (EVT == VT) return N1;  // Not actually extending
2459
2460    if (N1C) {
2461      APInt Val = N1C->getAPIntValue();
2462      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2463      Val <<= Val.getBitWidth()-FromBits;
2464      Val = Val.ashr(Val.getBitWidth()-FromBits);
2465      return getConstant(Val, VT);
2466    }
2467    break;
2468  }
2469  case ISD::EXTRACT_VECTOR_ELT:
2470    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2471    if (N1.getOpcode() == ISD::UNDEF)
2472      return getNode(ISD::UNDEF, VT);
2473
2474    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2475    // expanding copies of large vectors from registers.
2476    if (N2C &&
2477        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2478        N1.getNumOperands() > 0) {
2479      unsigned Factor =
2480        N1.getOperand(0).getValueType().getVectorNumElements();
2481      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2482                     N1.getOperand(N2C->getZExtValue() / Factor),
2483                     getConstant(N2C->getZExtValue() % Factor,
2484                                 N2.getValueType()));
2485    }
2486
2487    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2488    // expanding large vector constants.
2489    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2490      return N1.getOperand(N2C->getZExtValue());
2491
2492    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2493    // operations are lowered to scalars.
2494    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2495      if (N1.getOperand(2) == N2)
2496        return N1.getOperand(1);
2497      else
2498        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2499    }
2500    break;
2501  case ISD::EXTRACT_ELEMENT:
2502    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2503    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2504           (N1.getValueType().isInteger() == VT.isInteger()) &&
2505           "Wrong types for EXTRACT_ELEMENT!");
2506
2507    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2508    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2509    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2510    if (N1.getOpcode() == ISD::BUILD_PAIR)
2511      return N1.getOperand(N2C->getZExtValue());
2512
2513    // EXTRACT_ELEMENT of a constant int is also very common.
2514    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2515      unsigned ElementSize = VT.getSizeInBits();
2516      unsigned Shift = ElementSize * N2C->getZExtValue();
2517      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2518      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2519    }
2520    break;
2521  case ISD::EXTRACT_SUBVECTOR:
2522    if (N1.getValueType() == VT) // Trivial extraction.
2523      return N1;
2524    break;
2525  }
2526
2527  if (N1C) {
2528    if (N2C) {
2529      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2530      if (SV.getNode()) return SV;
2531    } else {      // Cannonicalize constant to RHS if commutative
2532      if (isCommutativeBinOp(Opcode)) {
2533        std::swap(N1C, N2C);
2534        std::swap(N1, N2);
2535      }
2536    }
2537  }
2538
2539  // Constant fold FP operations.
2540  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2541  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2542  if (N1CFP) {
2543    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2544      // Cannonicalize constant to RHS if commutative
2545      std::swap(N1CFP, N2CFP);
2546      std::swap(N1, N2);
2547    } else if (N2CFP && VT != MVT::ppcf128) {
2548      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2549      APFloat::opStatus s;
2550      switch (Opcode) {
2551      case ISD::FADD:
2552        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2553        if (s != APFloat::opInvalidOp)
2554          return getConstantFP(V1, VT);
2555        break;
2556      case ISD::FSUB:
2557        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2558        if (s!=APFloat::opInvalidOp)
2559          return getConstantFP(V1, VT);
2560        break;
2561      case ISD::FMUL:
2562        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2563        if (s!=APFloat::opInvalidOp)
2564          return getConstantFP(V1, VT);
2565        break;
2566      case ISD::FDIV:
2567        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2568        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2569          return getConstantFP(V1, VT);
2570        break;
2571      case ISD::FREM :
2572        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2573        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2574          return getConstantFP(V1, VT);
2575        break;
2576      case ISD::FCOPYSIGN:
2577        V1.copySign(V2);
2578        return getConstantFP(V1, VT);
2579      default: break;
2580      }
2581    }
2582  }
2583
2584  // Canonicalize an UNDEF to the RHS, even over a constant.
2585  if (N1.getOpcode() == ISD::UNDEF) {
2586    if (isCommutativeBinOp(Opcode)) {
2587      std::swap(N1, N2);
2588    } else {
2589      switch (Opcode) {
2590      case ISD::FP_ROUND_INREG:
2591      case ISD::SIGN_EXTEND_INREG:
2592      case ISD::SUB:
2593      case ISD::FSUB:
2594      case ISD::FDIV:
2595      case ISD::FREM:
2596      case ISD::SRA:
2597        return N1;     // fold op(undef, arg2) -> undef
2598      case ISD::UDIV:
2599      case ISD::SDIV:
2600      case ISD::UREM:
2601      case ISD::SREM:
2602      case ISD::SRL:
2603      case ISD::SHL:
2604        if (!VT.isVector())
2605          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2606        // For vectors, we can't easily build an all zero vector, just return
2607        // the LHS.
2608        return N2;
2609      }
2610    }
2611  }
2612
2613  // Fold a bunch of operators when the RHS is undef.
2614  if (N2.getOpcode() == ISD::UNDEF) {
2615    switch (Opcode) {
2616    case ISD::XOR:
2617      if (N1.getOpcode() == ISD::UNDEF)
2618        // Handle undef ^ undef -> 0 special case. This is a common
2619        // idiom (misuse).
2620        return getConstant(0, VT);
2621      // fallthrough
2622    case ISD::ADD:
2623    case ISD::ADDC:
2624    case ISD::ADDE:
2625    case ISD::SUB:
2626    case ISD::FADD:
2627    case ISD::FSUB:
2628    case ISD::FMUL:
2629    case ISD::FDIV:
2630    case ISD::FREM:
2631    case ISD::UDIV:
2632    case ISD::SDIV:
2633    case ISD::UREM:
2634    case ISD::SREM:
2635      return N2;       // fold op(arg1, undef) -> undef
2636    case ISD::MUL:
2637    case ISD::AND:
2638    case ISD::SRL:
2639    case ISD::SHL:
2640      if (!VT.isVector())
2641        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2642      // For vectors, we can't easily build an all zero vector, just return
2643      // the LHS.
2644      return N1;
2645    case ISD::OR:
2646      if (!VT.isVector())
2647        return getConstant(VT.getIntegerVTBitMask(), VT);
2648      // For vectors, we can't easily build an all one vector, just return
2649      // the LHS.
2650      return N1;
2651    case ISD::SRA:
2652      return N1;
2653    }
2654  }
2655
2656  // Memoize this node if possible.
2657  SDNode *N;
2658  SDVTList VTs = getVTList(VT);
2659  if (VT != MVT::Flag) {
2660    SDValue Ops[] = { N1, N2 };
2661    FoldingSetNodeID ID;
2662    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2663    void *IP = 0;
2664    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2665      return SDValue(E, 0);
2666    N = NodeAllocator.Allocate<BinarySDNode>();
2667    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2668    CSEMap.InsertNode(N, IP);
2669  } else {
2670    N = NodeAllocator.Allocate<BinarySDNode>();
2671    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2672  }
2673
2674  AllNodes.push_back(N);
2675#ifndef NDEBUG
2676  VerifyNode(N);
2677#endif
2678  return SDValue(N, 0);
2679}
2680
2681SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2682                              SDValue N1, SDValue N2, SDValue N3) {
2683  // Perform various simplifications.
2684  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2685  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2686  switch (Opcode) {
2687  case ISD::CONCAT_VECTORS:
2688    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2689    // one big BUILD_VECTOR.
2690    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2691        N2.getOpcode() == ISD::BUILD_VECTOR &&
2692        N3.getOpcode() == ISD::BUILD_VECTOR) {
2693      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2694      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2695      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2696      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2697    }
2698    break;
2699  case ISD::SETCC: {
2700    // Use FoldSetCC to simplify SETCC's.
2701    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2702    if (Simp.getNode()) return Simp;
2703    break;
2704  }
2705  case ISD::SELECT:
2706    if (N1C) {
2707     if (N1C->getZExtValue())
2708        return N2;             // select true, X, Y -> X
2709      else
2710        return N3;             // select false, X, Y -> Y
2711    }
2712
2713    if (N2 == N3) return N2;   // select C, X, X -> X
2714    break;
2715  case ISD::BRCOND:
2716    if (N2C) {
2717      if (N2C->getZExtValue()) // Unconditional branch
2718        return getNode(ISD::BR, MVT::Other, N1, N3);
2719      else
2720        return N1;         // Never-taken branch
2721    }
2722    break;
2723  case ISD::VECTOR_SHUFFLE:
2724    assert(N1.getValueType() == N2.getValueType() &&
2725           N1.getValueType().isVector() &&
2726           VT.isVector() && N3.getValueType().isVector() &&
2727           N3.getOpcode() == ISD::BUILD_VECTOR &&
2728           VT.getVectorNumElements() == N3.getNumOperands() &&
2729           "Illegal VECTOR_SHUFFLE node!");
2730    break;
2731  case ISD::BIT_CONVERT:
2732    // Fold bit_convert nodes from a type to themselves.
2733    if (N1.getValueType() == VT)
2734      return N1;
2735    break;
2736  }
2737
2738  // Memoize node if it doesn't produce a flag.
2739  SDNode *N;
2740  SDVTList VTs = getVTList(VT);
2741  if (VT != MVT::Flag) {
2742    SDValue Ops[] = { N1, N2, N3 };
2743    FoldingSetNodeID ID;
2744    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2745    void *IP = 0;
2746    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2747      return SDValue(E, 0);
2748    N = NodeAllocator.Allocate<TernarySDNode>();
2749    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2750    CSEMap.InsertNode(N, IP);
2751  } else {
2752    N = NodeAllocator.Allocate<TernarySDNode>();
2753    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2754  }
2755  AllNodes.push_back(N);
2756#ifndef NDEBUG
2757  VerifyNode(N);
2758#endif
2759  return SDValue(N, 0);
2760}
2761
2762SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2763                              SDValue N1, SDValue N2, SDValue N3,
2764                              SDValue N4) {
2765  SDValue Ops[] = { N1, N2, N3, N4 };
2766  return getNode(Opcode, VT, Ops, 4);
2767}
2768
2769SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2770                              SDValue N1, SDValue N2, SDValue N3,
2771                              SDValue N4, SDValue N5) {
2772  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2773  return getNode(Opcode, VT, Ops, 5);
2774}
2775
2776/// getMemsetValue - Vectorized representation of the memset value
2777/// operand.
2778static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2779  unsigned NumBits = VT.isVector() ?
2780    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2781  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2782    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2783    unsigned Shift = 8;
2784    for (unsigned i = NumBits; i > 8; i >>= 1) {
2785      Val = (Val << Shift) | Val;
2786      Shift <<= 1;
2787    }
2788    if (VT.isInteger())
2789      return DAG.getConstant(Val, VT);
2790    return DAG.getConstantFP(APFloat(Val), VT);
2791  }
2792
2793  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2794  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2795  unsigned Shift = 8;
2796  for (unsigned i = NumBits; i > 8; i >>= 1) {
2797    Value = DAG.getNode(ISD::OR, VT,
2798                        DAG.getNode(ISD::SHL, VT, Value,
2799                                    DAG.getConstant(Shift,
2800                                                    TLI.getShiftAmountTy())),
2801                        Value);
2802    Shift <<= 1;
2803  }
2804
2805  return Value;
2806}
2807
2808/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2809/// used when a memcpy is turned into a memset when the source is a constant
2810/// string ptr.
2811static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2812                                    const TargetLowering &TLI,
2813                                    std::string &Str, unsigned Offset) {
2814  // Handle vector with all elements zero.
2815  if (Str.empty()) {
2816    if (VT.isInteger())
2817      return DAG.getConstant(0, VT);
2818    unsigned NumElts = VT.getVectorNumElements();
2819    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2820    return DAG.getNode(ISD::BIT_CONVERT, VT,
2821                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2822  }
2823
2824  assert(!VT.isVector() && "Can't handle vector type here!");
2825  unsigned NumBits = VT.getSizeInBits();
2826  unsigned MSB = NumBits / 8;
2827  uint64_t Val = 0;
2828  if (TLI.isLittleEndian())
2829    Offset = Offset + MSB - 1;
2830  for (unsigned i = 0; i != MSB; ++i) {
2831    Val = (Val << 8) | (unsigned char)Str[Offset];
2832    Offset += TLI.isLittleEndian() ? -1 : 1;
2833  }
2834  return DAG.getConstant(Val, VT);
2835}
2836
2837/// getMemBasePlusOffset - Returns base and offset node for the
2838///
2839static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2840                                      SelectionDAG &DAG) {
2841  MVT VT = Base.getValueType();
2842  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2843}
2844
2845/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2846///
2847static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2848  unsigned SrcDelta = 0;
2849  GlobalAddressSDNode *G = NULL;
2850  if (Src.getOpcode() == ISD::GlobalAddress)
2851    G = cast<GlobalAddressSDNode>(Src);
2852  else if (Src.getOpcode() == ISD::ADD &&
2853           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2854           Src.getOperand(1).getOpcode() == ISD::Constant) {
2855    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2856    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2857  }
2858  if (!G)
2859    return false;
2860
2861  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2862  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2863    return true;
2864
2865  return false;
2866}
2867
2868/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2869/// to replace the memset / memcpy is below the threshold. It also returns the
2870/// types of the sequence of memory ops to perform memset / memcpy.
2871static
2872bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2873                              SDValue Dst, SDValue Src,
2874                              unsigned Limit, uint64_t Size, unsigned &Align,
2875                              std::string &Str, bool &isSrcStr,
2876                              SelectionDAG &DAG,
2877                              const TargetLowering &TLI) {
2878  isSrcStr = isMemSrcFromString(Src, Str);
2879  bool isSrcConst = isa<ConstantSDNode>(Src);
2880  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2881  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2882  if (VT != MVT::iAny) {
2883    unsigned NewAlign = (unsigned)
2884      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2885    // If source is a string constant, this will require an unaligned load.
2886    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2887      if (Dst.getOpcode() != ISD::FrameIndex) {
2888        // Can't change destination alignment. It requires a unaligned store.
2889        if (AllowUnalign)
2890          VT = MVT::iAny;
2891      } else {
2892        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2893        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2894        if (MFI->isFixedObjectIndex(FI)) {
2895          // Can't change destination alignment. It requires a unaligned store.
2896          if (AllowUnalign)
2897            VT = MVT::iAny;
2898        } else {
2899          // Give the stack frame object a larger alignment if needed.
2900          if (MFI->getObjectAlignment(FI) < NewAlign)
2901            MFI->setObjectAlignment(FI, NewAlign);
2902          Align = NewAlign;
2903        }
2904      }
2905    }
2906  }
2907
2908  if (VT == MVT::iAny) {
2909    if (AllowUnalign) {
2910      VT = MVT::i64;
2911    } else {
2912      switch (Align & 7) {
2913      case 0:  VT = MVT::i64; break;
2914      case 4:  VT = MVT::i32; break;
2915      case 2:  VT = MVT::i16; break;
2916      default: VT = MVT::i8;  break;
2917      }
2918    }
2919
2920    MVT LVT = MVT::i64;
2921    while (!TLI.isTypeLegal(LVT))
2922      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2923    assert(LVT.isInteger());
2924
2925    if (VT.bitsGT(LVT))
2926      VT = LVT;
2927  }
2928
2929  unsigned NumMemOps = 0;
2930  while (Size != 0) {
2931    unsigned VTSize = VT.getSizeInBits() / 8;
2932    while (VTSize > Size) {
2933      // For now, only use non-vector load / store's for the left-over pieces.
2934      if (VT.isVector()) {
2935        VT = MVT::i64;
2936        while (!TLI.isTypeLegal(VT))
2937          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2938        VTSize = VT.getSizeInBits() / 8;
2939      } else {
2940        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2941        VTSize >>= 1;
2942      }
2943    }
2944
2945    if (++NumMemOps > Limit)
2946      return false;
2947    MemOps.push_back(VT);
2948    Size -= VTSize;
2949  }
2950
2951  return true;
2952}
2953
2954static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2955                                         SDValue Chain, SDValue Dst,
2956                                         SDValue Src, uint64_t Size,
2957                                         unsigned Align, bool AlwaysInline,
2958                                         const Value *DstSV, uint64_t DstSVOff,
2959                                         const Value *SrcSV, uint64_t SrcSVOff){
2960  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2961
2962  // Expand memcpy to a series of load and store ops if the size operand falls
2963  // below a certain threshold.
2964  std::vector<MVT> MemOps;
2965  uint64_t Limit = -1ULL;
2966  if (!AlwaysInline)
2967    Limit = TLI.getMaxStoresPerMemcpy();
2968  unsigned DstAlign = Align;  // Destination alignment can change.
2969  std::string Str;
2970  bool CopyFromStr;
2971  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2972                                Str, CopyFromStr, DAG, TLI))
2973    return SDValue();
2974
2975
2976  bool isZeroStr = CopyFromStr && Str.empty();
2977  SmallVector<SDValue, 8> OutChains;
2978  unsigned NumMemOps = MemOps.size();
2979  uint64_t SrcOff = 0, DstOff = 0;
2980  for (unsigned i = 0; i < NumMemOps; i++) {
2981    MVT VT = MemOps[i];
2982    unsigned VTSize = VT.getSizeInBits() / 8;
2983    SDValue Value, Store;
2984
2985    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2986      // It's unlikely a store of a vector immediate can be done in a single
2987      // instruction. It would require a load from a constantpool first.
2988      // We also handle store a vector with all zero's.
2989      // FIXME: Handle other cases where store of vector immediate is done in
2990      // a single instruction.
2991      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2992      Store = DAG.getStore(Chain, Value,
2993                           getMemBasePlusOffset(Dst, DstOff, DAG),
2994                           DstSV, DstSVOff + DstOff, false, DstAlign);
2995    } else {
2996      Value = DAG.getLoad(VT, Chain,
2997                          getMemBasePlusOffset(Src, SrcOff, DAG),
2998                          SrcSV, SrcSVOff + SrcOff, false, Align);
2999      Store = DAG.getStore(Chain, Value,
3000                           getMemBasePlusOffset(Dst, DstOff, DAG),
3001                           DstSV, DstSVOff + DstOff, false, DstAlign);
3002    }
3003    OutChains.push_back(Store);
3004    SrcOff += VTSize;
3005    DstOff += VTSize;
3006  }
3007
3008  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3009                     &OutChains[0], OutChains.size());
3010}
3011
3012static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3013                                          SDValue Chain, SDValue Dst,
3014                                          SDValue Src, uint64_t Size,
3015                                          unsigned Align, bool AlwaysInline,
3016                                          const Value *DstSV, uint64_t DstSVOff,
3017                                          const Value *SrcSV, uint64_t SrcSVOff){
3018  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3019
3020  // Expand memmove to a series of load and store ops if the size operand falls
3021  // below a certain threshold.
3022  std::vector<MVT> MemOps;
3023  uint64_t Limit = -1ULL;
3024  if (!AlwaysInline)
3025    Limit = TLI.getMaxStoresPerMemmove();
3026  unsigned DstAlign = Align;  // Destination alignment can change.
3027  std::string Str;
3028  bool CopyFromStr;
3029  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3030                                Str, CopyFromStr, DAG, TLI))
3031    return SDValue();
3032
3033  uint64_t SrcOff = 0, DstOff = 0;
3034
3035  SmallVector<SDValue, 8> LoadValues;
3036  SmallVector<SDValue, 8> LoadChains;
3037  SmallVector<SDValue, 8> OutChains;
3038  unsigned NumMemOps = MemOps.size();
3039  for (unsigned i = 0; i < NumMemOps; i++) {
3040    MVT VT = MemOps[i];
3041    unsigned VTSize = VT.getSizeInBits() / 8;
3042    SDValue Value, Store;
3043
3044    Value = DAG.getLoad(VT, Chain,
3045                        getMemBasePlusOffset(Src, SrcOff, DAG),
3046                        SrcSV, SrcSVOff + SrcOff, false, Align);
3047    LoadValues.push_back(Value);
3048    LoadChains.push_back(Value.getValue(1));
3049    SrcOff += VTSize;
3050  }
3051  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3052                      &LoadChains[0], LoadChains.size());
3053  OutChains.clear();
3054  for (unsigned i = 0; i < NumMemOps; i++) {
3055    MVT VT = MemOps[i];
3056    unsigned VTSize = VT.getSizeInBits() / 8;
3057    SDValue Value, Store;
3058
3059    Store = DAG.getStore(Chain, LoadValues[i],
3060                         getMemBasePlusOffset(Dst, DstOff, DAG),
3061                         DstSV, DstSVOff + DstOff, false, DstAlign);
3062    OutChains.push_back(Store);
3063    DstOff += VTSize;
3064  }
3065
3066  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3067                     &OutChains[0], OutChains.size());
3068}
3069
3070static SDValue getMemsetStores(SelectionDAG &DAG,
3071                                 SDValue Chain, SDValue Dst,
3072                                 SDValue Src, uint64_t Size,
3073                                 unsigned Align,
3074                                 const Value *DstSV, uint64_t DstSVOff) {
3075  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3076
3077  // Expand memset to a series of load/store ops if the size operand
3078  // falls below a certain threshold.
3079  std::vector<MVT> MemOps;
3080  std::string Str;
3081  bool CopyFromStr;
3082  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3083                                Size, Align, Str, CopyFromStr, DAG, TLI))
3084    return SDValue();
3085
3086  SmallVector<SDValue, 8> OutChains;
3087  uint64_t DstOff = 0;
3088
3089  unsigned NumMemOps = MemOps.size();
3090  for (unsigned i = 0; i < NumMemOps; i++) {
3091    MVT VT = MemOps[i];
3092    unsigned VTSize = VT.getSizeInBits() / 8;
3093    SDValue Value = getMemsetValue(Src, VT, DAG);
3094    SDValue Store = DAG.getStore(Chain, Value,
3095                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3096                                 DstSV, DstSVOff + DstOff);
3097    OutChains.push_back(Store);
3098    DstOff += VTSize;
3099  }
3100
3101  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3102                     &OutChains[0], OutChains.size());
3103}
3104
3105SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3106                                SDValue Src, SDValue Size,
3107                                unsigned Align, bool AlwaysInline,
3108                                const Value *DstSV, uint64_t DstSVOff,
3109                                const Value *SrcSV, uint64_t SrcSVOff) {
3110
3111  // Check to see if we should lower the memcpy to loads and stores first.
3112  // For cases within the target-specified limits, this is the best choice.
3113  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3114  if (ConstantSize) {
3115    // Memcpy with size zero? Just return the original chain.
3116    if (ConstantSize->isNullValue())
3117      return Chain;
3118
3119    SDValue Result =
3120      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3121                              ConstantSize->getZExtValue(),
3122                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3123    if (Result.getNode())
3124      return Result;
3125  }
3126
3127  // Then check to see if we should lower the memcpy with target-specific
3128  // code. If the target chooses to do this, this is the next best.
3129  SDValue Result =
3130    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3131                                AlwaysInline,
3132                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3133  if (Result.getNode())
3134    return Result;
3135
3136  // If we really need inline code and the target declined to provide it,
3137  // use a (potentially long) sequence of loads and stores.
3138  if (AlwaysInline) {
3139    assert(ConstantSize && "AlwaysInline requires a constant size!");
3140    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3141                                   ConstantSize->getZExtValue(), Align, true,
3142                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3143  }
3144
3145  // Emit a library call.
3146  TargetLowering::ArgListTy Args;
3147  TargetLowering::ArgListEntry Entry;
3148  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3149  Entry.Node = Dst; Args.push_back(Entry);
3150  Entry.Node = Src; Args.push_back(Entry);
3151  Entry.Node = Size; Args.push_back(Entry);
3152  std::pair<SDValue,SDValue> CallResult =
3153    TLI.LowerCallTo(Chain, Type::VoidTy,
3154                    false, false, false, false, CallingConv::C, false,
3155                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3156                    Args, *this);
3157  return CallResult.second;
3158}
3159
3160SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3161                                 SDValue Src, SDValue Size,
3162                                 unsigned Align,
3163                                 const Value *DstSV, uint64_t DstSVOff,
3164                                 const Value *SrcSV, uint64_t SrcSVOff) {
3165
3166  // Check to see if we should lower the memmove to loads and stores first.
3167  // For cases within the target-specified limits, this is the best choice.
3168  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3169  if (ConstantSize) {
3170    // Memmove with size zero? Just return the original chain.
3171    if (ConstantSize->isNullValue())
3172      return Chain;
3173
3174    SDValue Result =
3175      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3176                               ConstantSize->getZExtValue(),
3177                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3178    if (Result.getNode())
3179      return Result;
3180  }
3181
3182  // Then check to see if we should lower the memmove with target-specific
3183  // code. If the target chooses to do this, this is the next best.
3184  SDValue Result =
3185    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3186                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3187  if (Result.getNode())
3188    return Result;
3189
3190  // Emit a library call.
3191  TargetLowering::ArgListTy Args;
3192  TargetLowering::ArgListEntry Entry;
3193  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3194  Entry.Node = Dst; Args.push_back(Entry);
3195  Entry.Node = Src; Args.push_back(Entry);
3196  Entry.Node = Size; Args.push_back(Entry);
3197  std::pair<SDValue,SDValue> CallResult =
3198    TLI.LowerCallTo(Chain, Type::VoidTy,
3199                    false, false, false, false, CallingConv::C, false,
3200                    getExternalSymbol("memmove", TLI.getPointerTy()),
3201                    Args, *this);
3202  return CallResult.second;
3203}
3204
3205SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3206                                SDValue Src, SDValue Size,
3207                                unsigned Align,
3208                                const Value *DstSV, uint64_t DstSVOff) {
3209
3210  // Check to see if we should lower the memset to stores first.
3211  // For cases within the target-specified limits, this is the best choice.
3212  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3213  if (ConstantSize) {
3214    // Memset with size zero? Just return the original chain.
3215    if (ConstantSize->isNullValue())
3216      return Chain;
3217
3218    SDValue Result =
3219      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3220                      Align, DstSV, DstSVOff);
3221    if (Result.getNode())
3222      return Result;
3223  }
3224
3225  // Then check to see if we should lower the memset with target-specific
3226  // code. If the target chooses to do this, this is the next best.
3227  SDValue Result =
3228    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3229                                DstSV, DstSVOff);
3230  if (Result.getNode())
3231    return Result;
3232
3233  // Emit a library call.
3234  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3235  TargetLowering::ArgListTy Args;
3236  TargetLowering::ArgListEntry Entry;
3237  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3238  Args.push_back(Entry);
3239  // Extend or truncate the argument to be an i32 value for the call.
3240  if (Src.getValueType().bitsGT(MVT::i32))
3241    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3242  else
3243    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3244  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3245  Args.push_back(Entry);
3246  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3247  Args.push_back(Entry);
3248  std::pair<SDValue,SDValue> CallResult =
3249    TLI.LowerCallTo(Chain, Type::VoidTy,
3250                    false, false, false, false, CallingConv::C, false,
3251                    getExternalSymbol("memset", TLI.getPointerTy()),
3252                    Args, *this);
3253  return CallResult.second;
3254}
3255
3256SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3257                                SDValue Chain,
3258                                SDValue Ptr, SDValue Cmp,
3259                                SDValue Swp, const Value* PtrVal,
3260                                unsigned Alignment) {
3261  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3262  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3263
3264  MVT VT = Cmp.getValueType();
3265
3266  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3267    Alignment = getMVTAlignment(MemVT);
3268
3269  SDVTList VTs = getVTList(VT, MVT::Other);
3270  FoldingSetNodeID ID;
3271  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3272  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3273  void* IP = 0;
3274  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3275    return SDValue(E, 0);
3276  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3277  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3278                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3279  CSEMap.InsertNode(N, IP);
3280  AllNodes.push_back(N);
3281  return SDValue(N, 0);
3282}
3283
3284SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3285                                SDValue Chain,
3286                                SDValue Ptr, SDValue Val,
3287                                const Value* PtrVal,
3288                                unsigned Alignment) {
3289  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3290          Opcode == ISD::ATOMIC_LOAD_SUB ||
3291          Opcode == ISD::ATOMIC_LOAD_AND ||
3292          Opcode == ISD::ATOMIC_LOAD_OR ||
3293          Opcode == ISD::ATOMIC_LOAD_XOR ||
3294          Opcode == ISD::ATOMIC_LOAD_NAND ||
3295          Opcode == ISD::ATOMIC_LOAD_MIN ||
3296          Opcode == ISD::ATOMIC_LOAD_MAX ||
3297          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3298          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3299          Opcode == ISD::ATOMIC_SWAP) &&
3300         "Invalid Atomic Op");
3301
3302  MVT VT = Val.getValueType();
3303
3304  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3305    Alignment = getMVTAlignment(MemVT);
3306
3307  SDVTList VTs = getVTList(VT, MVT::Other);
3308  FoldingSetNodeID ID;
3309  SDValue Ops[] = {Chain, Ptr, Val};
3310  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3311  void* IP = 0;
3312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3313    return SDValue(E, 0);
3314  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3315  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3316                       Chain, Ptr, Val, PtrVal, Alignment);
3317  CSEMap.InsertNode(N, IP);
3318  AllNodes.push_back(N);
3319  return SDValue(N, 0);
3320}
3321
3322/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3323/// Allowed to return something different (and simpler) if Simplify is true.
3324SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3325  if (NumOps == 1)
3326    return Ops[0];
3327
3328  SmallVector<MVT, 4> VTs;
3329  VTs.reserve(NumOps);
3330  for (unsigned i = 0; i < NumOps; ++i)
3331    VTs.push_back(Ops[i].getValueType());
3332  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3333}
3334
3335SDValue
3336SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3337                                  const MVT *VTs, unsigned NumVTs,
3338                                  const SDValue *Ops, unsigned NumOps,
3339                                  MVT MemVT, const Value *srcValue, int SVOff,
3340                                  unsigned Align, bool Vol,
3341                                  bool ReadMem, bool WriteMem) {
3342  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3343                             MemVT, srcValue, SVOff, Align, Vol,
3344                             ReadMem, WriteMem);
3345}
3346
3347SDValue
3348SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3349                                  const SDValue *Ops, unsigned NumOps,
3350                                  MVT MemVT, const Value *srcValue, int SVOff,
3351                                  unsigned Align, bool Vol,
3352                                  bool ReadMem, bool WriteMem) {
3353  // Memoize the node unless it returns a flag.
3354  MemIntrinsicSDNode *N;
3355  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3356    FoldingSetNodeID ID;
3357    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3358    void *IP = 0;
3359    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3360      return SDValue(E, 0);
3361
3362    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3363    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3364                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3365    CSEMap.InsertNode(N, IP);
3366  } else {
3367    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3368    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3369                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3370  }
3371  AllNodes.push_back(N);
3372  return SDValue(N, 0);
3373}
3374
3375SDValue
3376SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3377                      bool IsInreg, SDVTList VTs,
3378                      const SDValue *Operands, unsigned NumOperands) {
3379  // Do not include isTailCall in the folding set profile.
3380  FoldingSetNodeID ID;
3381  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3382  ID.AddInteger(CallingConv);
3383  ID.AddInteger(IsVarArgs);
3384  void *IP = 0;
3385  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3386    // Instead of including isTailCall in the folding set, we just
3387    // set the flag of the existing node.
3388    if (!IsTailCall)
3389      cast<CallSDNode>(E)->setNotTailCall();
3390    return SDValue(E, 0);
3391  }
3392  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3393  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3394                     VTs, Operands, NumOperands);
3395  CSEMap.InsertNode(N, IP);
3396  AllNodes.push_back(N);
3397  return SDValue(N, 0);
3398}
3399
3400SDValue
3401SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3402                      MVT VT, SDValue Chain,
3403                      SDValue Ptr, SDValue Offset,
3404                      const Value *SV, int SVOffset, MVT EVT,
3405                      bool isVolatile, unsigned Alignment) {
3406  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3407    Alignment = getMVTAlignment(VT);
3408
3409  if (VT == EVT) {
3410    ExtType = ISD::NON_EXTLOAD;
3411  } else if (ExtType == ISD::NON_EXTLOAD) {
3412    assert(VT == EVT && "Non-extending load from different memory type!");
3413  } else {
3414    // Extending load.
3415    if (VT.isVector())
3416      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3417             "Invalid vector extload!");
3418    else
3419      assert(EVT.bitsLT(VT) &&
3420             "Should only be an extending load, not truncating!");
3421    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3422           "Cannot sign/zero extend a FP/Vector load!");
3423    assert(VT.isInteger() == EVT.isInteger() &&
3424           "Cannot convert from FP to Int or Int -> FP!");
3425  }
3426
3427  bool Indexed = AM != ISD::UNINDEXED;
3428  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3429         "Unindexed load with an offset!");
3430
3431  SDVTList VTs = Indexed ?
3432    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3433  SDValue Ops[] = { Chain, Ptr, Offset };
3434  FoldingSetNodeID ID;
3435  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3436  ID.AddInteger(AM);
3437  ID.AddInteger(ExtType);
3438  ID.AddInteger(EVT.getRawBits());
3439  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3440  void *IP = 0;
3441  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3442    return SDValue(E, 0);
3443  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3444  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3445                     Alignment, isVolatile);
3446  CSEMap.InsertNode(N, IP);
3447  AllNodes.push_back(N);
3448  return SDValue(N, 0);
3449}
3450
3451SDValue SelectionDAG::getLoad(MVT VT,
3452                              SDValue Chain, SDValue Ptr,
3453                              const Value *SV, int SVOffset,
3454                              bool isVolatile, unsigned Alignment) {
3455  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3456  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3457                 SV, SVOffset, VT, isVolatile, Alignment);
3458}
3459
3460SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3461                                 SDValue Chain, SDValue Ptr,
3462                                 const Value *SV,
3463                                 int SVOffset, MVT EVT,
3464                                 bool isVolatile, unsigned Alignment) {
3465  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3466  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3467                 SV, SVOffset, EVT, isVolatile, Alignment);
3468}
3469
3470SDValue
3471SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3472                             SDValue Offset, ISD::MemIndexedMode AM) {
3473  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3474  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3475         "Load is already a indexed load!");
3476  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3477                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3478                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3479                 LD->isVolatile(), LD->getAlignment());
3480}
3481
3482SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3483                               SDValue Ptr, const Value *SV, int SVOffset,
3484                               bool isVolatile, unsigned Alignment) {
3485  MVT VT = Val.getValueType();
3486
3487  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3488    Alignment = getMVTAlignment(VT);
3489
3490  SDVTList VTs = getVTList(MVT::Other);
3491  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3492  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3493  FoldingSetNodeID ID;
3494  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3495  ID.AddInteger(ISD::UNINDEXED);
3496  ID.AddInteger(false);
3497  ID.AddInteger(VT.getRawBits());
3498  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3499  void *IP = 0;
3500  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3501    return SDValue(E, 0);
3502  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3503  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3504                      VT, SV, SVOffset, Alignment, isVolatile);
3505  CSEMap.InsertNode(N, IP);
3506  AllNodes.push_back(N);
3507  return SDValue(N, 0);
3508}
3509
3510SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3511                                    SDValue Ptr, const Value *SV,
3512                                    int SVOffset, MVT SVT,
3513                                    bool isVolatile, unsigned Alignment) {
3514  MVT VT = Val.getValueType();
3515
3516  if (VT == SVT)
3517    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3518
3519  assert(VT.bitsGT(SVT) && "Not a truncation?");
3520  assert(VT.isInteger() == SVT.isInteger() &&
3521         "Can't do FP-INT conversion!");
3522
3523  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3524    Alignment = getMVTAlignment(VT);
3525
3526  SDVTList VTs = getVTList(MVT::Other);
3527  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3528  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3529  FoldingSetNodeID ID;
3530  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3531  ID.AddInteger(ISD::UNINDEXED);
3532  ID.AddInteger(1);
3533  ID.AddInteger(SVT.getRawBits());
3534  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3535  void *IP = 0;
3536  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3537    return SDValue(E, 0);
3538  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3539  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3540                      SVT, SV, SVOffset, Alignment, isVolatile);
3541  CSEMap.InsertNode(N, IP);
3542  AllNodes.push_back(N);
3543  return SDValue(N, 0);
3544}
3545
3546SDValue
3547SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3548                              SDValue Offset, ISD::MemIndexedMode AM) {
3549  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3550  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3551         "Store is already a indexed store!");
3552  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3553  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3554  FoldingSetNodeID ID;
3555  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3556  ID.AddInteger(AM);
3557  ID.AddInteger(ST->isTruncatingStore());
3558  ID.AddInteger(ST->getMemoryVT().getRawBits());
3559  ID.AddInteger(ST->getRawFlags());
3560  void *IP = 0;
3561  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3562    return SDValue(E, 0);
3563  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3564  new (N) StoreSDNode(Ops, VTs, AM,
3565                      ST->isTruncatingStore(), ST->getMemoryVT(),
3566                      ST->getSrcValue(), ST->getSrcValueOffset(),
3567                      ST->getAlignment(), ST->isVolatile());
3568  CSEMap.InsertNode(N, IP);
3569  AllNodes.push_back(N);
3570  return SDValue(N, 0);
3571}
3572
3573SDValue SelectionDAG::getVAArg(MVT VT,
3574                               SDValue Chain, SDValue Ptr,
3575                               SDValue SV) {
3576  SDValue Ops[] = { Chain, Ptr, SV };
3577  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3578}
3579
3580SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3581                              const SDUse *Ops, unsigned NumOps) {
3582  switch (NumOps) {
3583  case 0: return getNode(Opcode, VT);
3584  case 1: return getNode(Opcode, VT, Ops[0]);
3585  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3586  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3587  default: break;
3588  }
3589
3590  // Copy from an SDUse array into an SDValue array for use with
3591  // the regular getNode logic.
3592  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3593  return getNode(Opcode, VT, &NewOps[0], NumOps);
3594}
3595
3596SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3597                              const SDValue *Ops, unsigned NumOps) {
3598  switch (NumOps) {
3599  case 0: return getNode(Opcode, VT);
3600  case 1: return getNode(Opcode, VT, Ops[0]);
3601  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3602  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3603  default: break;
3604  }
3605
3606  switch (Opcode) {
3607  default: break;
3608  case ISD::SELECT_CC: {
3609    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3610    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3611           "LHS and RHS of condition must have same type!");
3612    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3613           "True and False arms of SelectCC must have same type!");
3614    assert(Ops[2].getValueType() == VT &&
3615           "select_cc node must be of same type as true and false value!");
3616    break;
3617  }
3618  case ISD::BR_CC: {
3619    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3620    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3621           "LHS/RHS of comparison should match types!");
3622    break;
3623  }
3624  }
3625
3626  // Memoize nodes.
3627  SDNode *N;
3628  SDVTList VTs = getVTList(VT);
3629  if (VT != MVT::Flag) {
3630    FoldingSetNodeID ID;
3631    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3632    void *IP = 0;
3633    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3634      return SDValue(E, 0);
3635    N = NodeAllocator.Allocate<SDNode>();
3636    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3637    CSEMap.InsertNode(N, IP);
3638  } else {
3639    N = NodeAllocator.Allocate<SDNode>();
3640    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3641  }
3642  AllNodes.push_back(N);
3643#ifndef NDEBUG
3644  VerifyNode(N);
3645#endif
3646  return SDValue(N, 0);
3647}
3648
3649SDValue SelectionDAG::getNode(unsigned Opcode,
3650                              const std::vector<MVT> &ResultTys,
3651                              const SDValue *Ops, unsigned NumOps) {
3652  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3653                 Ops, NumOps);
3654}
3655
3656SDValue SelectionDAG::getNode(unsigned Opcode,
3657                              const MVT *VTs, unsigned NumVTs,
3658                              const SDValue *Ops, unsigned NumOps) {
3659  if (NumVTs == 1)
3660    return getNode(Opcode, VTs[0], Ops, NumOps);
3661  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3662}
3663
3664SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3665                              const SDValue *Ops, unsigned NumOps) {
3666  if (VTList.NumVTs == 1)
3667    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3668
3669  switch (Opcode) {
3670  // FIXME: figure out how to safely handle things like
3671  // int foo(int x) { return 1 << (x & 255); }
3672  // int bar() { return foo(256); }
3673#if 0
3674  case ISD::SRA_PARTS:
3675  case ISD::SRL_PARTS:
3676  case ISD::SHL_PARTS:
3677    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3678        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3679      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3680    else if (N3.getOpcode() == ISD::AND)
3681      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3682        // If the and is only masking out bits that cannot effect the shift,
3683        // eliminate the and.
3684        unsigned NumBits = VT.getSizeInBits()*2;
3685        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3686          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3687      }
3688    break;
3689#endif
3690  }
3691
3692  // Memoize the node unless it returns a flag.
3693  SDNode *N;
3694  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3695    FoldingSetNodeID ID;
3696    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3697    void *IP = 0;
3698    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3699      return SDValue(E, 0);
3700    if (NumOps == 1) {
3701      N = NodeAllocator.Allocate<UnarySDNode>();
3702      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3703    } else if (NumOps == 2) {
3704      N = NodeAllocator.Allocate<BinarySDNode>();
3705      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3706    } else if (NumOps == 3) {
3707      N = NodeAllocator.Allocate<TernarySDNode>();
3708      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3709    } else {
3710      N = NodeAllocator.Allocate<SDNode>();
3711      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3712    }
3713    CSEMap.InsertNode(N, IP);
3714  } else {
3715    if (NumOps == 1) {
3716      N = NodeAllocator.Allocate<UnarySDNode>();
3717      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3718    } else if (NumOps == 2) {
3719      N = NodeAllocator.Allocate<BinarySDNode>();
3720      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3721    } else if (NumOps == 3) {
3722      N = NodeAllocator.Allocate<TernarySDNode>();
3723      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3724    } else {
3725      N = NodeAllocator.Allocate<SDNode>();
3726      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3727    }
3728  }
3729  AllNodes.push_back(N);
3730#ifndef NDEBUG
3731  VerifyNode(N);
3732#endif
3733  return SDValue(N, 0);
3734}
3735
3736SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3737  return getNode(Opcode, VTList, 0, 0);
3738}
3739
3740SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3741                                SDValue N1) {
3742  SDValue Ops[] = { N1 };
3743  return getNode(Opcode, VTList, Ops, 1);
3744}
3745
3746SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3747                              SDValue N1, SDValue N2) {
3748  SDValue Ops[] = { N1, N2 };
3749  return getNode(Opcode, VTList, Ops, 2);
3750}
3751
3752SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3753                              SDValue N1, SDValue N2, SDValue N3) {
3754  SDValue Ops[] = { N1, N2, N3 };
3755  return getNode(Opcode, VTList, Ops, 3);
3756}
3757
3758SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3759                              SDValue N1, SDValue N2, SDValue N3,
3760                              SDValue N4) {
3761  SDValue Ops[] = { N1, N2, N3, N4 };
3762  return getNode(Opcode, VTList, Ops, 4);
3763}
3764
3765SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3766                              SDValue N1, SDValue N2, SDValue N3,
3767                              SDValue N4, SDValue N5) {
3768  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3769  return getNode(Opcode, VTList, Ops, 5);
3770}
3771
3772SDVTList SelectionDAG::getVTList(MVT VT) {
3773  return makeVTList(SDNode::getValueTypeList(VT), 1);
3774}
3775
3776SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3777  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3778       E = VTList.rend(); I != E; ++I)
3779    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3780      return *I;
3781
3782  MVT *Array = Allocator.Allocate<MVT>(2);
3783  Array[0] = VT1;
3784  Array[1] = VT2;
3785  SDVTList Result = makeVTList(Array, 2);
3786  VTList.push_back(Result);
3787  return Result;
3788}
3789
3790SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3791  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3792       E = VTList.rend(); I != E; ++I)
3793    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3794                          I->VTs[2] == VT3)
3795      return *I;
3796
3797  MVT *Array = Allocator.Allocate<MVT>(3);
3798  Array[0] = VT1;
3799  Array[1] = VT2;
3800  Array[2] = VT3;
3801  SDVTList Result = makeVTList(Array, 3);
3802  VTList.push_back(Result);
3803  return Result;
3804}
3805
3806SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3807  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3808       E = VTList.rend(); I != E; ++I)
3809    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3810                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3811      return *I;
3812
3813  MVT *Array = Allocator.Allocate<MVT>(3);
3814  Array[0] = VT1;
3815  Array[1] = VT2;
3816  Array[2] = VT3;
3817  Array[3] = VT4;
3818  SDVTList Result = makeVTList(Array, 4);
3819  VTList.push_back(Result);
3820  return Result;
3821}
3822
3823SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3824  switch (NumVTs) {
3825    case 0: assert(0 && "Cannot have nodes without results!");
3826    case 1: return getVTList(VTs[0]);
3827    case 2: return getVTList(VTs[0], VTs[1]);
3828    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3829    default: break;
3830  }
3831
3832  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3833       E = VTList.rend(); I != E; ++I) {
3834    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3835      continue;
3836
3837    bool NoMatch = false;
3838    for (unsigned i = 2; i != NumVTs; ++i)
3839      if (VTs[i] != I->VTs[i]) {
3840        NoMatch = true;
3841        break;
3842      }
3843    if (!NoMatch)
3844      return *I;
3845  }
3846
3847  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3848  std::copy(VTs, VTs+NumVTs, Array);
3849  SDVTList Result = makeVTList(Array, NumVTs);
3850  VTList.push_back(Result);
3851  return Result;
3852}
3853
3854
3855/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3856/// specified operands.  If the resultant node already exists in the DAG,
3857/// this does not modify the specified node, instead it returns the node that
3858/// already exists.  If the resultant node does not exist in the DAG, the
3859/// input node is returned.  As a degenerate case, if you specify the same
3860/// input operands as the node already has, the input node is returned.
3861SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3862  SDNode *N = InN.getNode();
3863  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3864
3865  // Check to see if there is no change.
3866  if (Op == N->getOperand(0)) return InN;
3867
3868  // See if the modified node already exists.
3869  void *InsertPos = 0;
3870  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3871    return SDValue(Existing, InN.getResNo());
3872
3873  // Nope it doesn't.  Remove the node from its current place in the maps.
3874  if (InsertPos)
3875    if (!RemoveNodeFromCSEMaps(N))
3876      InsertPos = 0;
3877
3878  // Now we update the operands.
3879  N->OperandList[0].getVal()->removeUser(0, N);
3880  N->OperandList[0] = Op;
3881  N->OperandList[0].setUser(N);
3882  Op.getNode()->addUser(0, N);
3883
3884  // If this gets put into a CSE map, add it.
3885  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3886  return InN;
3887}
3888
3889SDValue SelectionDAG::
3890UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3891  SDNode *N = InN.getNode();
3892  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3893
3894  // Check to see if there is no change.
3895  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3896    return InN;   // No operands changed, just return the input node.
3897
3898  // See if the modified node already exists.
3899  void *InsertPos = 0;
3900  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3901    return SDValue(Existing, InN.getResNo());
3902
3903  // Nope it doesn't.  Remove the node from its current place in the maps.
3904  if (InsertPos)
3905    if (!RemoveNodeFromCSEMaps(N))
3906      InsertPos = 0;
3907
3908  // Now we update the operands.
3909  if (N->OperandList[0] != Op1) {
3910    N->OperandList[0].getVal()->removeUser(0, N);
3911    N->OperandList[0] = Op1;
3912    N->OperandList[0].setUser(N);
3913    Op1.getNode()->addUser(0, N);
3914  }
3915  if (N->OperandList[1] != Op2) {
3916    N->OperandList[1].getVal()->removeUser(1, N);
3917    N->OperandList[1] = Op2;
3918    N->OperandList[1].setUser(N);
3919    Op2.getNode()->addUser(1, N);
3920  }
3921
3922  // If this gets put into a CSE map, add it.
3923  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3924  return InN;
3925}
3926
3927SDValue SelectionDAG::
3928UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3929  SDValue Ops[] = { Op1, Op2, Op3 };
3930  return UpdateNodeOperands(N, Ops, 3);
3931}
3932
3933SDValue SelectionDAG::
3934UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3935                   SDValue Op3, SDValue Op4) {
3936  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3937  return UpdateNodeOperands(N, Ops, 4);
3938}
3939
3940SDValue SelectionDAG::
3941UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3942                   SDValue Op3, SDValue Op4, SDValue Op5) {
3943  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3944  return UpdateNodeOperands(N, Ops, 5);
3945}
3946
3947SDValue SelectionDAG::
3948UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3949  SDNode *N = InN.getNode();
3950  assert(N->getNumOperands() == NumOps &&
3951         "Update with wrong number of operands");
3952
3953  // Check to see if there is no change.
3954  bool AnyChange = false;
3955  for (unsigned i = 0; i != NumOps; ++i) {
3956    if (Ops[i] != N->getOperand(i)) {
3957      AnyChange = true;
3958      break;
3959    }
3960  }
3961
3962  // No operands changed, just return the input node.
3963  if (!AnyChange) return InN;
3964
3965  // See if the modified node already exists.
3966  void *InsertPos = 0;
3967  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3968    return SDValue(Existing, InN.getResNo());
3969
3970  // Nope it doesn't.  Remove the node from its current place in the maps.
3971  if (InsertPos)
3972    if (!RemoveNodeFromCSEMaps(N))
3973      InsertPos = 0;
3974
3975  // Now we update the operands.
3976  for (unsigned i = 0; i != NumOps; ++i) {
3977    if (N->OperandList[i] != Ops[i]) {
3978      N->OperandList[i].getVal()->removeUser(i, N);
3979      N->OperandList[i] = Ops[i];
3980      N->OperandList[i].setUser(N);
3981      Ops[i].getNode()->addUser(i, N);
3982    }
3983  }
3984
3985  // If this gets put into a CSE map, add it.
3986  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3987  return InN;
3988}
3989
3990/// DropOperands - Release the operands and set this node to have
3991/// zero operands.
3992void SDNode::DropOperands() {
3993  // Unlike the code in MorphNodeTo that does this, we don't need to
3994  // watch for dead nodes here.
3995  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3996    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3997
3998  NumOperands = 0;
3999}
4000
4001/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4002/// machine opcode.
4003///
4004SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4005                                   MVT VT) {
4006  SDVTList VTs = getVTList(VT);
4007  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4008}
4009
4010SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4011                                   MVT VT, SDValue Op1) {
4012  SDVTList VTs = getVTList(VT);
4013  SDValue Ops[] = { Op1 };
4014  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4015}
4016
4017SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4018                                   MVT VT, SDValue Op1,
4019                                   SDValue Op2) {
4020  SDVTList VTs = getVTList(VT);
4021  SDValue Ops[] = { Op1, Op2 };
4022  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4023}
4024
4025SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4026                                   MVT VT, SDValue Op1,
4027                                   SDValue Op2, SDValue Op3) {
4028  SDVTList VTs = getVTList(VT);
4029  SDValue Ops[] = { Op1, Op2, Op3 };
4030  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4031}
4032
4033SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4034                                   MVT VT, const SDValue *Ops,
4035                                   unsigned NumOps) {
4036  SDVTList VTs = getVTList(VT);
4037  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4038}
4039
4040SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4041                                   MVT VT1, MVT VT2, const SDValue *Ops,
4042                                   unsigned NumOps) {
4043  SDVTList VTs = getVTList(VT1, VT2);
4044  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4045}
4046
4047SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4048                                   MVT VT1, MVT VT2) {
4049  SDVTList VTs = getVTList(VT1, VT2);
4050  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4051}
4052
4053SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4054                                   MVT VT1, MVT VT2, MVT VT3,
4055                                   const SDValue *Ops, unsigned NumOps) {
4056  SDVTList VTs = getVTList(VT1, VT2, VT3);
4057  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4058}
4059
4060SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4061                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4062                                   const SDValue *Ops, unsigned NumOps) {
4063  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4064  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4065}
4066
4067SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4068                                   MVT VT1, MVT VT2,
4069                                   SDValue Op1) {
4070  SDVTList VTs = getVTList(VT1, VT2);
4071  SDValue Ops[] = { Op1 };
4072  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4073}
4074
4075SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4076                                   MVT VT1, MVT VT2,
4077                                   SDValue Op1, SDValue Op2) {
4078  SDVTList VTs = getVTList(VT1, VT2);
4079  SDValue Ops[] = { Op1, Op2 };
4080  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4081}
4082
4083SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4084                                   MVT VT1, MVT VT2,
4085                                   SDValue Op1, SDValue Op2,
4086                                   SDValue Op3) {
4087  SDVTList VTs = getVTList(VT1, VT2);
4088  SDValue Ops[] = { Op1, Op2, Op3 };
4089  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4090}
4091
4092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4093                                   MVT VT1, MVT VT2, MVT VT3,
4094                                   SDValue Op1, SDValue Op2,
4095                                   SDValue Op3) {
4096  SDVTList VTs = getVTList(VT1, VT2, VT3);
4097  SDValue Ops[] = { Op1, Op2, Op3 };
4098  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4099}
4100
4101SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4102                                   SDVTList VTs, const SDValue *Ops,
4103                                   unsigned NumOps) {
4104  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4105}
4106
4107SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4108                                  MVT VT) {
4109  SDVTList VTs = getVTList(VT);
4110  return MorphNodeTo(N, Opc, VTs, 0, 0);
4111}
4112
4113SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4114                                  MVT VT, SDValue Op1) {
4115  SDVTList VTs = getVTList(VT);
4116  SDValue Ops[] = { Op1 };
4117  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4118}
4119
4120SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4121                                  MVT VT, SDValue Op1,
4122                                  SDValue Op2) {
4123  SDVTList VTs = getVTList(VT);
4124  SDValue Ops[] = { Op1, Op2 };
4125  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4126}
4127
4128SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4129                                  MVT VT, SDValue Op1,
4130                                  SDValue Op2, SDValue Op3) {
4131  SDVTList VTs = getVTList(VT);
4132  SDValue Ops[] = { Op1, Op2, Op3 };
4133  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4134}
4135
4136SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4137                                  MVT VT, const SDValue *Ops,
4138                                  unsigned NumOps) {
4139  SDVTList VTs = getVTList(VT);
4140  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4141}
4142
4143SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4144                                  MVT VT1, MVT VT2, const SDValue *Ops,
4145                                  unsigned NumOps) {
4146  SDVTList VTs = getVTList(VT1, VT2);
4147  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4148}
4149
4150SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4151                                  MVT VT1, MVT VT2) {
4152  SDVTList VTs = getVTList(VT1, VT2);
4153  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4154}
4155
4156SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4157                                  MVT VT1, MVT VT2, MVT VT3,
4158                                  const SDValue *Ops, unsigned NumOps) {
4159  SDVTList VTs = getVTList(VT1, VT2, VT3);
4160  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4161}
4162
4163SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4164                                  MVT VT1, MVT VT2,
4165                                  SDValue Op1) {
4166  SDVTList VTs = getVTList(VT1, VT2);
4167  SDValue Ops[] = { Op1 };
4168  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4169}
4170
4171SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4172                                  MVT VT1, MVT VT2,
4173                                  SDValue Op1, SDValue Op2) {
4174  SDVTList VTs = getVTList(VT1, VT2);
4175  SDValue Ops[] = { Op1, Op2 };
4176  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4177}
4178
4179SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4180                                  MVT VT1, MVT VT2,
4181                                  SDValue Op1, SDValue Op2,
4182                                  SDValue Op3) {
4183  SDVTList VTs = getVTList(VT1, VT2);
4184  SDValue Ops[] = { Op1, Op2, Op3 };
4185  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4186}
4187
4188/// MorphNodeTo - These *mutate* the specified node to have the specified
4189/// return type, opcode, and operands.
4190///
4191/// Note that MorphNodeTo returns the resultant node.  If there is already a
4192/// node of the specified opcode and operands, it returns that node instead of
4193/// the current one.
4194///
4195/// Using MorphNodeTo is faster than creating a new node and swapping it in
4196/// with ReplaceAllUsesWith both because it often avoids allocating a new
4197/// node, and because it doesn't require CSE recalculation for any of
4198/// the node's users.
4199///
4200SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4201                                  SDVTList VTs, const SDValue *Ops,
4202                                  unsigned NumOps) {
4203  // If an identical node already exists, use it.
4204  void *IP = 0;
4205  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4206    FoldingSetNodeID ID;
4207    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4208    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4209      return ON;
4210  }
4211
4212  if (!RemoveNodeFromCSEMaps(N))
4213    IP = 0;
4214
4215  // Start the morphing.
4216  N->NodeType = Opc;
4217  N->ValueList = VTs.VTs;
4218  N->NumValues = VTs.NumVTs;
4219
4220  // Clear the operands list, updating used nodes to remove this from their
4221  // use list.  Keep track of any operands that become dead as a result.
4222  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4223  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4224       I != E; ++I) {
4225    SDNode *Used = I->getVal();
4226    Used->removeUser(std::distance(B, I), N);
4227    if (Used->use_empty())
4228      DeadNodeSet.insert(Used);
4229  }
4230
4231  // If NumOps is larger than the # of operands we currently have, reallocate
4232  // the operand list.
4233  if (NumOps > N->NumOperands) {
4234    if (N->OperandsNeedDelete)
4235      delete[] N->OperandList;
4236
4237    if (N->isMachineOpcode()) {
4238      // We're creating a final node that will live unmorphed for the
4239      // remainder of the current SelectionDAG iteration, so we can allocate
4240      // the operands directly out of a pool with no recycling metadata.
4241      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4242      N->OperandsNeedDelete = false;
4243    } else {
4244      N->OperandList = new SDUse[NumOps];
4245      N->OperandsNeedDelete = true;
4246    }
4247  }
4248
4249  // Assign the new operands.
4250  N->NumOperands = NumOps;
4251  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4252    N->OperandList[i] = Ops[i];
4253    N->OperandList[i].setUser(N);
4254    SDNode *ToUse = N->OperandList[i].getVal();
4255    ToUse->addUser(i, N);
4256  }
4257
4258  // Delete any nodes that are still dead after adding the uses for the
4259  // new operands.
4260  SmallVector<SDNode *, 16> DeadNodes;
4261  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4262       E = DeadNodeSet.end(); I != E; ++I)
4263    if ((*I)->use_empty())
4264      DeadNodes.push_back(*I);
4265  RemoveDeadNodes(DeadNodes);
4266
4267  if (IP)
4268    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4269  return N;
4270}
4271
4272
4273/// getTargetNode - These are used for target selectors to create a new node
4274/// with specified return type(s), target opcode, and operands.
4275///
4276/// Note that getTargetNode returns the resultant node.  If there is already a
4277/// node of the specified opcode and operands, it returns that node instead of
4278/// the current one.
4279SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4280  return getNode(~Opcode, VT).getNode();
4281}
4282SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4283  return getNode(~Opcode, VT, Op1).getNode();
4284}
4285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4286                                    SDValue Op1, SDValue Op2) {
4287  return getNode(~Opcode, VT, Op1, Op2).getNode();
4288}
4289SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4290                                    SDValue Op1, SDValue Op2,
4291                                    SDValue Op3) {
4292  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4293}
4294SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4295                                    const SDValue *Ops, unsigned NumOps) {
4296  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4297}
4298SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4299  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4300  SDValue Op;
4301  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4302}
4303SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4304                                    MVT VT2, SDValue Op1) {
4305  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4306  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4307}
4308SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4309                                    MVT VT2, SDValue Op1,
4310                                    SDValue Op2) {
4311  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4312  SDValue Ops[] = { Op1, Op2 };
4313  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4314}
4315SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4316                                    MVT VT2, SDValue Op1,
4317                                    SDValue Op2, SDValue Op3) {
4318  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4319  SDValue Ops[] = { Op1, Op2, Op3 };
4320  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4321}
4322SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4323                                    const SDValue *Ops, unsigned NumOps) {
4324  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4325  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4326}
4327SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4328                                    SDValue Op1, SDValue Op2) {
4329  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4330  SDValue Ops[] = { Op1, Op2 };
4331  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4332}
4333SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4334                                    SDValue Op1, SDValue Op2,
4335                                    SDValue Op3) {
4336  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4337  SDValue Ops[] = { Op1, Op2, Op3 };
4338  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4339}
4340SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4341                                    const SDValue *Ops, unsigned NumOps) {
4342  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4343  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4344}
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4346                                    MVT VT2, MVT VT3, MVT VT4,
4347                                    const SDValue *Ops, unsigned NumOps) {
4348  std::vector<MVT> VTList;
4349  VTList.push_back(VT1);
4350  VTList.push_back(VT2);
4351  VTList.push_back(VT3);
4352  VTList.push_back(VT4);
4353  const MVT *VTs = getNodeValueTypes(VTList);
4354  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4355}
4356SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4357                                    const std::vector<MVT> &ResultTys,
4358                                    const SDValue *Ops, unsigned NumOps) {
4359  const MVT *VTs = getNodeValueTypes(ResultTys);
4360  return getNode(~Opcode, VTs, ResultTys.size(),
4361                 Ops, NumOps).getNode();
4362}
4363
4364/// getNodeIfExists - Get the specified node if it's already available, or
4365/// else return NULL.
4366SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4367                                      const SDValue *Ops, unsigned NumOps) {
4368  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4369    FoldingSetNodeID ID;
4370    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4371    void *IP = 0;
4372    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4373      return E;
4374  }
4375  return NULL;
4376}
4377
4378
4379/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4380/// This can cause recursive merging of nodes in the DAG.
4381///
4382/// This version assumes From has a single result value.
4383///
4384void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4385                                      DAGUpdateListener *UpdateListener) {
4386  SDNode *From = FromN.getNode();
4387  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4388         "Cannot replace with this method!");
4389  assert(From != To.getNode() && "Cannot replace uses of with self");
4390
4391  while (!From->use_empty()) {
4392    SDNode::use_iterator UI = From->use_begin();
4393    SDNode *U = *UI;
4394
4395    // This node is about to morph, remove its old self from the CSE maps.
4396    RemoveNodeFromCSEMaps(U);
4397    int operandNum = 0;
4398    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4399         I != E; ++I, ++operandNum)
4400      if (I->getVal() == From) {
4401        From->removeUser(operandNum, U);
4402        *I = To;
4403        I->setUser(U);
4404        To.getNode()->addUser(operandNum, U);
4405      }
4406
4407    // Now that we have modified U, add it back to the CSE maps.  If it already
4408    // exists there, recursively merge the results together.
4409    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4410      ReplaceAllUsesWith(U, Existing, UpdateListener);
4411      // U is now dead.  Inform the listener if it exists and delete it.
4412      if (UpdateListener)
4413        UpdateListener->NodeDeleted(U, Existing);
4414      DeleteNodeNotInCSEMaps(U);
4415    } else {
4416      // If the node doesn't already exist, we updated it.  Inform a listener if
4417      // it exists.
4418      if (UpdateListener)
4419        UpdateListener->NodeUpdated(U);
4420    }
4421  }
4422}
4423
4424/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4425/// This can cause recursive merging of nodes in the DAG.
4426///
4427/// This version assumes From/To have matching types and numbers of result
4428/// values.
4429///
4430void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4431                                      DAGUpdateListener *UpdateListener) {
4432  assert(From->getVTList().VTs == To->getVTList().VTs &&
4433         From->getNumValues() == To->getNumValues() &&
4434         "Cannot use this version of ReplaceAllUsesWith!");
4435
4436  // Handle the trivial case.
4437  if (From == To)
4438    return;
4439
4440  while (!From->use_empty()) {
4441    SDNode::use_iterator UI = From->use_begin();
4442    SDNode *U = *UI;
4443
4444    // This node is about to morph, remove its old self from the CSE maps.
4445    RemoveNodeFromCSEMaps(U);
4446    int operandNum = 0;
4447    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4448         I != E; ++I, ++operandNum)
4449      if (I->getVal() == From) {
4450        From->removeUser(operandNum, U);
4451        I->getSDValue().setNode(To);
4452        To->addUser(operandNum, U);
4453      }
4454
4455    // Now that we have modified U, add it back to the CSE maps.  If it already
4456    // exists there, recursively merge the results together.
4457    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4458      ReplaceAllUsesWith(U, Existing, UpdateListener);
4459      // U is now dead.  Inform the listener if it exists and delete it.
4460      if (UpdateListener)
4461        UpdateListener->NodeDeleted(U, Existing);
4462      DeleteNodeNotInCSEMaps(U);
4463    } else {
4464      // If the node doesn't already exist, we updated it.  Inform a listener if
4465      // it exists.
4466      if (UpdateListener)
4467        UpdateListener->NodeUpdated(U);
4468    }
4469  }
4470}
4471
4472/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4473/// This can cause recursive merging of nodes in the DAG.
4474///
4475/// This version can replace From with any result values.  To must match the
4476/// number and types of values returned by From.
4477void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4478                                      const SDValue *To,
4479                                      DAGUpdateListener *UpdateListener) {
4480  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4481    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4482
4483  while (!From->use_empty()) {
4484    SDNode::use_iterator UI = From->use_begin();
4485    SDNode *U = *UI;
4486
4487    // This node is about to morph, remove its old self from the CSE maps.
4488    RemoveNodeFromCSEMaps(U);
4489    int operandNum = 0;
4490    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4491         I != E; ++I, ++operandNum)
4492      if (I->getVal() == From) {
4493        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4494        From->removeUser(operandNum, U);
4495        *I = ToOp;
4496        I->setUser(U);
4497        ToOp.getNode()->addUser(operandNum, U);
4498      }
4499
4500    // Now that we have modified U, add it back to the CSE maps.  If it already
4501    // exists there, recursively merge the results together.
4502    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4503      ReplaceAllUsesWith(U, Existing, UpdateListener);
4504      // U is now dead.  Inform the listener if it exists and delete it.
4505      if (UpdateListener)
4506        UpdateListener->NodeDeleted(U, Existing);
4507      DeleteNodeNotInCSEMaps(U);
4508    } else {
4509      // If the node doesn't already exist, we updated it.  Inform a listener if
4510      // it exists.
4511      if (UpdateListener)
4512        UpdateListener->NodeUpdated(U);
4513    }
4514  }
4515}
4516
4517/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4518/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4519/// handled the same way as for ReplaceAllUsesWith.
4520void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4521                                             DAGUpdateListener *UpdateListener){
4522  // Handle the really simple, really trivial case efficiently.
4523  if (From == To) return;
4524
4525  // Handle the simple, trivial, case efficiently.
4526  if (From.getNode()->getNumValues() == 1) {
4527    ReplaceAllUsesWith(From, To, UpdateListener);
4528    return;
4529  }
4530
4531  // Get all of the users of From.getNode().  We want these in a nice,
4532  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4533  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4534
4535  while (!Users.empty()) {
4536    // We know that this user uses some value of From.  If it is the right
4537    // value, update it.
4538    SDNode *User = Users.back();
4539    Users.pop_back();
4540
4541    // Scan for an operand that matches From.
4542    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4543    for (; Op != E; ++Op)
4544      if (*Op == From) break;
4545
4546    // If there are no matches, the user must use some other result of From.
4547    if (Op == E) continue;
4548
4549    // Okay, we know this user needs to be updated.  Remove its old self
4550    // from the CSE maps.
4551    RemoveNodeFromCSEMaps(User);
4552
4553    // Update all operands that match "From" in case there are multiple uses.
4554    for (; Op != E; ++Op) {
4555      if (*Op == From) {
4556        From.getNode()->removeUser(Op-User->op_begin(), User);
4557        *Op = To;
4558        Op->setUser(User);
4559        To.getNode()->addUser(Op-User->op_begin(), User);
4560      }
4561    }
4562
4563    // Now that we have modified User, add it back to the CSE maps.  If it
4564    // already exists there, recursively merge the results together.
4565    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4566    if (!Existing) {
4567      if (UpdateListener) UpdateListener->NodeUpdated(User);
4568      continue;  // Continue on to next user.
4569    }
4570
4571    // If there was already an existing matching node, use ReplaceAllUsesWith
4572    // to replace the dead one with the existing one.  This can cause
4573    // recursive merging of other unrelated nodes down the line.
4574    ReplaceAllUsesWith(User, Existing, UpdateListener);
4575
4576    // User is now dead.  Notify a listener if present.
4577    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4578    DeleteNodeNotInCSEMaps(User);
4579  }
4580}
4581
4582/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4583/// uses of other values produced by From.getVal() alone.  The same value may
4584/// appear in both the From and To list.  The Deleted vector is
4585/// handled the same way as for ReplaceAllUsesWith.
4586void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4587                                              const SDValue *To,
4588                                              unsigned Num,
4589                                              DAGUpdateListener *UpdateListener){
4590  // Handle the simple, trivial case efficiently.
4591  if (Num == 1)
4592    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4593
4594  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4595  for (unsigned i = 0; i != Num; ++i)
4596    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4597         E = From[i].getNode()->use_end(); UI != E; ++UI)
4598      Users.push_back(std::make_pair(*UI, i));
4599
4600  while (!Users.empty()) {
4601    // We know that this user uses some value of From.  If it is the right
4602    // value, update it.
4603    SDNode *User = Users.back().first;
4604    unsigned i = Users.back().second;
4605    Users.pop_back();
4606
4607    // Scan for an operand that matches From.
4608    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4609    for (; Op != E; ++Op)
4610      if (*Op == From[i]) break;
4611
4612    // If there are no matches, the user must use some other result of From.
4613    if (Op == E) continue;
4614
4615    // Okay, we know this user needs to be updated.  Remove its old self
4616    // from the CSE maps.
4617    RemoveNodeFromCSEMaps(User);
4618
4619    // Update all operands that match "From" in case there are multiple uses.
4620    for (; Op != E; ++Op) {
4621      if (*Op == From[i]) {
4622        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4623        *Op = To[i];
4624        Op->setUser(User);
4625        To[i].getNode()->addUser(Op-User->op_begin(), User);
4626      }
4627    }
4628
4629    // Now that we have modified User, add it back to the CSE maps.  If it
4630    // already exists there, recursively merge the results together.
4631    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4632    if (!Existing) {
4633      if (UpdateListener) UpdateListener->NodeUpdated(User);
4634      continue;  // Continue on to next user.
4635    }
4636
4637    // If there was already an existing matching node, use ReplaceAllUsesWith
4638    // to replace the dead one with the existing one.  This can cause
4639    // recursive merging of other unrelated nodes down the line.
4640    ReplaceAllUsesWith(User, Existing, UpdateListener);
4641
4642    // User is now dead.  Notify a listener if present.
4643    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4644    DeleteNodeNotInCSEMaps(User);
4645  }
4646}
4647
4648/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4649/// based on their topological order. It returns the maximum id and a vector
4650/// of the SDNodes* in assigned order by reference.
4651unsigned SelectionDAG::AssignTopologicalOrder() {
4652
4653  unsigned DAGSize = 0;
4654
4655  // SortedPos tracks the progress of the algorithm. Nodes before it are
4656  // sorted, nodes after it are unsorted. When the algorithm completes
4657  // it is at the end of the list.
4658  allnodes_iterator SortedPos = allnodes_begin();
4659
4660  // Visit all the nodes. Move nodes with no operands to the front of
4661  // the list immediately. Annotate nodes that do have operands with their
4662  // operand count. Before we do this, the Node Id fields of the nodes
4663  // may contain arbitrary values. After, the Node Id fields for nodes
4664  // before SortedPos will contain the topological sort index, and the
4665  // Node Id fields for nodes At SortedPos and after will contain the
4666  // count of outstanding operands.
4667  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4668    SDNode *N = I++;
4669    unsigned Degree = N->getNumOperands();
4670    if (Degree == 0) {
4671      // A node with no uses, add it to the result array immediately.
4672      N->setNodeId(DAGSize++);
4673      allnodes_iterator Q = N;
4674      if (Q != SortedPos)
4675        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4676      ++SortedPos;
4677    } else {
4678      // Temporarily use the Node Id as scratch space for the degree count.
4679      N->setNodeId(Degree);
4680    }
4681  }
4682
4683  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4684  // such that by the time the end is reached all nodes will be sorted.
4685  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4686    SDNode *N = I;
4687    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4688         UI != UE; ++UI) {
4689      SDNode *P = *UI;
4690      unsigned Degree = P->getNodeId();
4691      --Degree;
4692      if (Degree == 0) {
4693        // All of P's operands are sorted, so P may sorted now.
4694        P->setNodeId(DAGSize++);
4695        if (P != SortedPos)
4696          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4697        ++SortedPos;
4698      } else {
4699        // Update P's outstanding operand count.
4700        P->setNodeId(Degree);
4701      }
4702    }
4703  }
4704
4705  assert(SortedPos == AllNodes.end() &&
4706         "Topological sort incomplete!");
4707  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4708         "First node in topological sort is not the entry token!");
4709  assert(AllNodes.front().getNodeId() == 0 &&
4710         "First node in topological sort has non-zero id!");
4711  assert(AllNodes.front().getNumOperands() == 0 &&
4712         "First node in topological sort has operands!");
4713  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4714         "Last node in topologic sort has unexpected id!");
4715  assert(AllNodes.back().use_empty() &&
4716         "Last node in topologic sort has users!");
4717  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4718  return DAGSize;
4719}
4720
4721
4722
4723//===----------------------------------------------------------------------===//
4724//                              SDNode Class
4725//===----------------------------------------------------------------------===//
4726
4727// Out-of-line virtual method to give class a home.
4728void SDNode::ANCHOR() {}
4729void UnarySDNode::ANCHOR() {}
4730void BinarySDNode::ANCHOR() {}
4731void TernarySDNode::ANCHOR() {}
4732void HandleSDNode::ANCHOR() {}
4733void ConstantSDNode::ANCHOR() {}
4734void ConstantFPSDNode::ANCHOR() {}
4735void GlobalAddressSDNode::ANCHOR() {}
4736void FrameIndexSDNode::ANCHOR() {}
4737void JumpTableSDNode::ANCHOR() {}
4738void ConstantPoolSDNode::ANCHOR() {}
4739void BasicBlockSDNode::ANCHOR() {}
4740void SrcValueSDNode::ANCHOR() {}
4741void MemOperandSDNode::ANCHOR() {}
4742void RegisterSDNode::ANCHOR() {}
4743void DbgStopPointSDNode::ANCHOR() {}
4744void LabelSDNode::ANCHOR() {}
4745void ExternalSymbolSDNode::ANCHOR() {}
4746void CondCodeSDNode::ANCHOR() {}
4747void ARG_FLAGSSDNode::ANCHOR() {}
4748void VTSDNode::ANCHOR() {}
4749void MemSDNode::ANCHOR() {}
4750void LoadSDNode::ANCHOR() {}
4751void StoreSDNode::ANCHOR() {}
4752void AtomicSDNode::ANCHOR() {}
4753void MemIntrinsicSDNode::ANCHOR() {}
4754void CallSDNode::ANCHOR() {}
4755void CvtRndSatSDNode::ANCHOR() {}
4756
4757HandleSDNode::~HandleSDNode() {
4758  DropOperands();
4759}
4760
4761GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4762                                         MVT VT, int64_t o)
4763  : SDNode(isa<GlobalVariable>(GA) &&
4764           cast<GlobalVariable>(GA)->isThreadLocal() ?
4765           // Thread Local
4766           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4767           // Non Thread Local
4768           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4769           getSDVTList(VT)), Offset(o) {
4770  TheGlobal = const_cast<GlobalValue*>(GA);
4771}
4772
4773MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4774                     const Value *srcValue, int SVO,
4775                     unsigned alignment, bool vol)
4776 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4777   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4778
4779  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4780  assert(getAlignment() == alignment && "Alignment representation error!");
4781  assert(isVolatile() == vol && "Volatile representation error!");
4782}
4783
4784MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4785                     unsigned NumOps, MVT memvt, const Value *srcValue,
4786                     int SVO, unsigned alignment, bool vol)
4787   : SDNode(Opc, VTs, Ops, NumOps),
4788     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4789     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4790  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4791  assert(getAlignment() == alignment && "Alignment representation error!");
4792  assert(isVolatile() == vol && "Volatile representation error!");
4793}
4794
4795/// getMemOperand - Return a MachineMemOperand object describing the memory
4796/// reference performed by this memory reference.
4797MachineMemOperand MemSDNode::getMemOperand() const {
4798  int Flags = 0;
4799  if (isa<LoadSDNode>(this))
4800    Flags = MachineMemOperand::MOLoad;
4801  else if (isa<StoreSDNode>(this))
4802    Flags = MachineMemOperand::MOStore;
4803  else if (isa<AtomicSDNode>(this)) {
4804    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4805  }
4806  else {
4807    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4808    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4809    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4810    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4811  }
4812
4813  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4814  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4815
4816  // Check if the memory reference references a frame index
4817  const FrameIndexSDNode *FI =
4818  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4819  if (!getSrcValue() && FI)
4820    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4821                             Flags, 0, Size, getAlignment());
4822  else
4823    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4824                             Size, getAlignment());
4825}
4826
4827/// Profile - Gather unique data for the node.
4828///
4829void SDNode::Profile(FoldingSetNodeID &ID) const {
4830  AddNodeIDNode(ID, this);
4831}
4832
4833/// getValueTypeList - Return a pointer to the specified value type.
4834///
4835const MVT *SDNode::getValueTypeList(MVT VT) {
4836  if (VT.isExtended()) {
4837    static std::set<MVT, MVT::compareRawBits> EVTs;
4838    return &(*EVTs.insert(VT).first);
4839  } else {
4840    static MVT VTs[MVT::LAST_VALUETYPE];
4841    VTs[VT.getSimpleVT()] = VT;
4842    return &VTs[VT.getSimpleVT()];
4843  }
4844}
4845
4846/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4847/// indicated value.  This method ignores uses of other values defined by this
4848/// operation.
4849bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4850  assert(Value < getNumValues() && "Bad value!");
4851
4852  // TODO: Only iterate over uses of a given value of the node
4853  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4854    if (UI.getUse().getSDValue().getResNo() == Value) {
4855      if (NUses == 0)
4856        return false;
4857      --NUses;
4858    }
4859  }
4860
4861  // Found exactly the right number of uses?
4862  return NUses == 0;
4863}
4864
4865
4866/// hasAnyUseOfValue - Return true if there are any use of the indicated
4867/// value. This method ignores uses of other values defined by this operation.
4868bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4869  assert(Value < getNumValues() && "Bad value!");
4870
4871  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4872    if (UI.getUse().getSDValue().getResNo() == Value)
4873      return true;
4874
4875  return false;
4876}
4877
4878
4879/// isOnlyUserOf - Return true if this node is the only use of N.
4880///
4881bool SDNode::isOnlyUserOf(SDNode *N) const {
4882  bool Seen = false;
4883  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4884    SDNode *User = *I;
4885    if (User == this)
4886      Seen = true;
4887    else
4888      return false;
4889  }
4890
4891  return Seen;
4892}
4893
4894/// isOperand - Return true if this node is an operand of N.
4895///
4896bool SDValue::isOperandOf(SDNode *N) const {
4897  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4898    if (*this == N->getOperand(i))
4899      return true;
4900  return false;
4901}
4902
4903bool SDNode::isOperandOf(SDNode *N) const {
4904  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4905    if (this == N->OperandList[i].getVal())
4906      return true;
4907  return false;
4908}
4909
4910/// reachesChainWithoutSideEffects - Return true if this operand (which must
4911/// be a chain) reaches the specified operand without crossing any
4912/// side-effecting instructions.  In practice, this looks through token
4913/// factors and non-volatile loads.  In order to remain efficient, this only
4914/// looks a couple of nodes in, it does not do an exhaustive search.
4915bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4916                                               unsigned Depth) const {
4917  if (*this == Dest) return true;
4918
4919  // Don't search too deeply, we just want to be able to see through
4920  // TokenFactor's etc.
4921  if (Depth == 0) return false;
4922
4923  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4924  // of the operands of the TF reach dest, then we can do the xform.
4925  if (getOpcode() == ISD::TokenFactor) {
4926    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4927      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4928        return true;
4929    return false;
4930  }
4931
4932  // Loads don't have side effects, look through them.
4933  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4934    if (!Ld->isVolatile())
4935      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4936  }
4937  return false;
4938}
4939
4940
4941static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4942                            SmallPtrSet<SDNode *, 32> &Visited) {
4943  if (found || !Visited.insert(N))
4944    return;
4945
4946  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4947    SDNode *Op = N->getOperand(i).getNode();
4948    if (Op == P) {
4949      found = true;
4950      return;
4951    }
4952    findPredecessor(Op, P, found, Visited);
4953  }
4954}
4955
4956/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4957/// is either an operand of N or it can be reached by recursively traversing
4958/// up the operands.
4959/// NOTE: this is an expensive method. Use it carefully.
4960bool SDNode::isPredecessorOf(SDNode *N) const {
4961  SmallPtrSet<SDNode *, 32> Visited;
4962  bool found = false;
4963  findPredecessor(N, this, found, Visited);
4964  return found;
4965}
4966
4967uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4968  assert(Num < NumOperands && "Invalid child # of SDNode!");
4969  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4970}
4971
4972std::string SDNode::getOperationName(const SelectionDAG *G) const {
4973  switch (getOpcode()) {
4974  default:
4975    if (getOpcode() < ISD::BUILTIN_OP_END)
4976      return "<<Unknown DAG Node>>";
4977    if (isMachineOpcode()) {
4978      if (G)
4979        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4980          if (getMachineOpcode() < TII->getNumOpcodes())
4981            return TII->get(getMachineOpcode()).getName();
4982      return "<<Unknown Machine Node>>";
4983    }
4984    if (G) {
4985      TargetLowering &TLI = G->getTargetLoweringInfo();
4986      const char *Name = TLI.getTargetNodeName(getOpcode());
4987      if (Name) return Name;
4988      return "<<Unknown Target Node>>";
4989    }
4990    return "<<Unknown Node>>";
4991
4992#ifndef NDEBUG
4993  case ISD::DELETED_NODE:
4994    return "<<Deleted Node!>>";
4995#endif
4996  case ISD::PREFETCH:      return "Prefetch";
4997  case ISD::MEMBARRIER:    return "MemBarrier";
4998  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
4999  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5000  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5001  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5002  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5003  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5004  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5005  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5006  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5007  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5008  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5009  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5010  case ISD::PCMARKER:      return "PCMarker";
5011  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5012  case ISD::SRCVALUE:      return "SrcValue";
5013  case ISD::MEMOPERAND:    return "MemOperand";
5014  case ISD::EntryToken:    return "EntryToken";
5015  case ISD::TokenFactor:   return "TokenFactor";
5016  case ISD::AssertSext:    return "AssertSext";
5017  case ISD::AssertZext:    return "AssertZext";
5018
5019  case ISD::BasicBlock:    return "BasicBlock";
5020  case ISD::ARG_FLAGS:     return "ArgFlags";
5021  case ISD::VALUETYPE:     return "ValueType";
5022  case ISD::Register:      return "Register";
5023
5024  case ISD::Constant:      return "Constant";
5025  case ISD::ConstantFP:    return "ConstantFP";
5026  case ISD::GlobalAddress: return "GlobalAddress";
5027  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5028  case ISD::FrameIndex:    return "FrameIndex";
5029  case ISD::JumpTable:     return "JumpTable";
5030  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5031  case ISD::RETURNADDR: return "RETURNADDR";
5032  case ISD::FRAMEADDR: return "FRAMEADDR";
5033  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5034  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5035  case ISD::EHSELECTION: return "EHSELECTION";
5036  case ISD::EH_RETURN: return "EH_RETURN";
5037  case ISD::ConstantPool:  return "ConstantPool";
5038  case ISD::ExternalSymbol: return "ExternalSymbol";
5039  case ISD::INTRINSIC_WO_CHAIN: {
5040    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5041    return Intrinsic::getName((Intrinsic::ID)IID);
5042  }
5043  case ISD::INTRINSIC_VOID:
5044  case ISD::INTRINSIC_W_CHAIN: {
5045    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5046    return Intrinsic::getName((Intrinsic::ID)IID);
5047  }
5048
5049  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5050  case ISD::TargetConstant: return "TargetConstant";
5051  case ISD::TargetConstantFP:return "TargetConstantFP";
5052  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5053  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5054  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5055  case ISD::TargetJumpTable:  return "TargetJumpTable";
5056  case ISD::TargetConstantPool:  return "TargetConstantPool";
5057  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5058
5059  case ISD::CopyToReg:     return "CopyToReg";
5060  case ISD::CopyFromReg:   return "CopyFromReg";
5061  case ISD::UNDEF:         return "undef";
5062  case ISD::MERGE_VALUES:  return "merge_values";
5063  case ISD::INLINEASM:     return "inlineasm";
5064  case ISD::DBG_LABEL:     return "dbg_label";
5065  case ISD::EH_LABEL:      return "eh_label";
5066  case ISD::DECLARE:       return "declare";
5067  case ISD::HANDLENODE:    return "handlenode";
5068  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5069  case ISD::CALL:          return "call";
5070
5071  // Unary operators
5072  case ISD::FABS:   return "fabs";
5073  case ISD::FNEG:   return "fneg";
5074  case ISD::FSQRT:  return "fsqrt";
5075  case ISD::FSIN:   return "fsin";
5076  case ISD::FCOS:   return "fcos";
5077  case ISD::FPOWI:  return "fpowi";
5078  case ISD::FPOW:   return "fpow";
5079  case ISD::FTRUNC: return "ftrunc";
5080  case ISD::FFLOOR: return "ffloor";
5081  case ISD::FCEIL:  return "fceil";
5082  case ISD::FRINT:  return "frint";
5083  case ISD::FNEARBYINT: return "fnearbyint";
5084
5085  // Binary operators
5086  case ISD::ADD:    return "add";
5087  case ISD::SUB:    return "sub";
5088  case ISD::MUL:    return "mul";
5089  case ISD::MULHU:  return "mulhu";
5090  case ISD::MULHS:  return "mulhs";
5091  case ISD::SDIV:   return "sdiv";
5092  case ISD::UDIV:   return "udiv";
5093  case ISD::SREM:   return "srem";
5094  case ISD::UREM:   return "urem";
5095  case ISD::SMUL_LOHI:  return "smul_lohi";
5096  case ISD::UMUL_LOHI:  return "umul_lohi";
5097  case ISD::SDIVREM:    return "sdivrem";
5098  case ISD::UDIVREM:    return "udivrem";
5099  case ISD::AND:    return "and";
5100  case ISD::OR:     return "or";
5101  case ISD::XOR:    return "xor";
5102  case ISD::SHL:    return "shl";
5103  case ISD::SRA:    return "sra";
5104  case ISD::SRL:    return "srl";
5105  case ISD::ROTL:   return "rotl";
5106  case ISD::ROTR:   return "rotr";
5107  case ISD::FADD:   return "fadd";
5108  case ISD::FSUB:   return "fsub";
5109  case ISD::FMUL:   return "fmul";
5110  case ISD::FDIV:   return "fdiv";
5111  case ISD::FREM:   return "frem";
5112  case ISD::FCOPYSIGN: return "fcopysign";
5113  case ISD::FGETSIGN:  return "fgetsign";
5114
5115  case ISD::SETCC:       return "setcc";
5116  case ISD::VSETCC:      return "vsetcc";
5117  case ISD::SELECT:      return "select";
5118  case ISD::SELECT_CC:   return "select_cc";
5119  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5120  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5121  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5122  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5123  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5124  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5125  case ISD::CARRY_FALSE:         return "carry_false";
5126  case ISD::ADDC:        return "addc";
5127  case ISD::ADDE:        return "adde";
5128  case ISD::SADDO:       return "saddo";
5129  case ISD::UADDO:       return "uaddo";
5130  case ISD::SSUBO:       return "ssubo";
5131  case ISD::USUBO:       return "usubo";
5132  case ISD::SMULO:       return "smulo";
5133  case ISD::UMULO:       return "umulo";
5134  case ISD::SUBC:        return "subc";
5135  case ISD::SUBE:        return "sube";
5136  case ISD::SHL_PARTS:   return "shl_parts";
5137  case ISD::SRA_PARTS:   return "sra_parts";
5138  case ISD::SRL_PARTS:   return "srl_parts";
5139
5140  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5141  case ISD::INSERT_SUBREG:      return "insert_subreg";
5142
5143  // Conversion operators.
5144  case ISD::SIGN_EXTEND: return "sign_extend";
5145  case ISD::ZERO_EXTEND: return "zero_extend";
5146  case ISD::ANY_EXTEND:  return "any_extend";
5147  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5148  case ISD::TRUNCATE:    return "truncate";
5149  case ISD::FP_ROUND:    return "fp_round";
5150  case ISD::FLT_ROUNDS_: return "flt_rounds";
5151  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5152  case ISD::FP_EXTEND:   return "fp_extend";
5153
5154  case ISD::SINT_TO_FP:  return "sint_to_fp";
5155  case ISD::UINT_TO_FP:  return "uint_to_fp";
5156  case ISD::FP_TO_SINT:  return "fp_to_sint";
5157  case ISD::FP_TO_UINT:  return "fp_to_uint";
5158  case ISD::BIT_CONVERT: return "bit_convert";
5159
5160  case ISD::CONVERT_RNDSAT: {
5161    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5162    default: assert(0 && "Unknown cvt code!");
5163    case ISD::CVT_FF:  return "cvt_ff";
5164    case ISD::CVT_FS:  return "cvt_fs";
5165    case ISD::CVT_FU:  return "cvt_fu";
5166    case ISD::CVT_SF:  return "cvt_sf";
5167    case ISD::CVT_UF:  return "cvt_uf";
5168    case ISD::CVT_SS:  return "cvt_ss";
5169    case ISD::CVT_SU:  return "cvt_su";
5170    case ISD::CVT_US:  return "cvt_us";
5171    case ISD::CVT_UU:  return "cvt_uu";
5172    }
5173  }
5174
5175    // Control flow instructions
5176  case ISD::BR:      return "br";
5177  case ISD::BRIND:   return "brind";
5178  case ISD::BR_JT:   return "br_jt";
5179  case ISD::BRCOND:  return "brcond";
5180  case ISD::BR_CC:   return "br_cc";
5181  case ISD::RET:     return "ret";
5182  case ISD::CALLSEQ_START:  return "callseq_start";
5183  case ISD::CALLSEQ_END:    return "callseq_end";
5184
5185    // Other operators
5186  case ISD::LOAD:               return "load";
5187  case ISD::STORE:              return "store";
5188  case ISD::VAARG:              return "vaarg";
5189  case ISD::VACOPY:             return "vacopy";
5190  case ISD::VAEND:              return "vaend";
5191  case ISD::VASTART:            return "vastart";
5192  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5193  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5194  case ISD::BUILD_PAIR:         return "build_pair";
5195  case ISD::STACKSAVE:          return "stacksave";
5196  case ISD::STACKRESTORE:       return "stackrestore";
5197  case ISD::TRAP:               return "trap";
5198
5199  // Bit manipulation
5200  case ISD::BSWAP:   return "bswap";
5201  case ISD::CTPOP:   return "ctpop";
5202  case ISD::CTTZ:    return "cttz";
5203  case ISD::CTLZ:    return "ctlz";
5204
5205  // Debug info
5206  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5207  case ISD::DEBUG_LOC: return "debug_loc";
5208
5209  // Trampolines
5210  case ISD::TRAMPOLINE: return "trampoline";
5211
5212  case ISD::CONDCODE:
5213    switch (cast<CondCodeSDNode>(this)->get()) {
5214    default: assert(0 && "Unknown setcc condition!");
5215    case ISD::SETOEQ:  return "setoeq";
5216    case ISD::SETOGT:  return "setogt";
5217    case ISD::SETOGE:  return "setoge";
5218    case ISD::SETOLT:  return "setolt";
5219    case ISD::SETOLE:  return "setole";
5220    case ISD::SETONE:  return "setone";
5221
5222    case ISD::SETO:    return "seto";
5223    case ISD::SETUO:   return "setuo";
5224    case ISD::SETUEQ:  return "setue";
5225    case ISD::SETUGT:  return "setugt";
5226    case ISD::SETUGE:  return "setuge";
5227    case ISD::SETULT:  return "setult";
5228    case ISD::SETULE:  return "setule";
5229    case ISD::SETUNE:  return "setune";
5230
5231    case ISD::SETEQ:   return "seteq";
5232    case ISD::SETGT:   return "setgt";
5233    case ISD::SETGE:   return "setge";
5234    case ISD::SETLT:   return "setlt";
5235    case ISD::SETLE:   return "setle";
5236    case ISD::SETNE:   return "setne";
5237    }
5238  }
5239}
5240
5241const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5242  switch (AM) {
5243  default:
5244    return "";
5245  case ISD::PRE_INC:
5246    return "<pre-inc>";
5247  case ISD::PRE_DEC:
5248    return "<pre-dec>";
5249  case ISD::POST_INC:
5250    return "<post-inc>";
5251  case ISD::POST_DEC:
5252    return "<post-dec>";
5253  }
5254}
5255
5256std::string ISD::ArgFlagsTy::getArgFlagsString() {
5257  std::string S = "< ";
5258
5259  if (isZExt())
5260    S += "zext ";
5261  if (isSExt())
5262    S += "sext ";
5263  if (isInReg())
5264    S += "inreg ";
5265  if (isSRet())
5266    S += "sret ";
5267  if (isByVal())
5268    S += "byval ";
5269  if (isNest())
5270    S += "nest ";
5271  if (getByValAlign())
5272    S += "byval-align:" + utostr(getByValAlign()) + " ";
5273  if (getOrigAlign())
5274    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5275  if (getByValSize())
5276    S += "byval-size:" + utostr(getByValSize()) + " ";
5277  return S + ">";
5278}
5279
5280void SDNode::dump() const { dump(0); }
5281void SDNode::dump(const SelectionDAG *G) const {
5282  print(errs(), G);
5283  errs().flush();
5284}
5285
5286void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5287  OS << (void*)this << ": ";
5288
5289  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5290    if (i) OS << ",";
5291    if (getValueType(i) == MVT::Other)
5292      OS << "ch";
5293    else
5294      OS << getValueType(i).getMVTString();
5295  }
5296  OS << " = " << getOperationName(G);
5297
5298  OS << " ";
5299  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5300    if (i) OS << ", ";
5301    OS << (void*)getOperand(i).getNode();
5302    if (unsigned RN = getOperand(i).getResNo())
5303      OS << ":" << RN;
5304  }
5305
5306  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5307    SDNode *Mask = getOperand(2).getNode();
5308    OS << "<";
5309    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5310      if (i) OS << ",";
5311      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5312        OS << "u";
5313      else
5314        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5315    }
5316    OS << ">";
5317  }
5318
5319  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5320    OS << '<' << CSDN->getAPIntValue() << '>';
5321  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5322    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5323      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5324    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5325      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5326    else {
5327      OS << "<APFloat(";
5328      CSDN->getValueAPF().bitcastToAPInt().dump();
5329      OS << ")>";
5330    }
5331  } else if (const GlobalAddressSDNode *GADN =
5332             dyn_cast<GlobalAddressSDNode>(this)) {
5333    int64_t offset = GADN->getOffset();
5334    OS << '<';
5335    WriteAsOperand(OS, GADN->getGlobal());
5336    OS << '>';
5337    if (offset > 0)
5338      OS << " + " << offset;
5339    else
5340      OS << " " << offset;
5341  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5342    OS << "<" << FIDN->getIndex() << ">";
5343  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5344    OS << "<" << JTDN->getIndex() << ">";
5345  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5346    int offset = CP->getOffset();
5347    if (CP->isMachineConstantPoolEntry())
5348      OS << "<" << *CP->getMachineCPVal() << ">";
5349    else
5350      OS << "<" << *CP->getConstVal() << ">";
5351    if (offset > 0)
5352      OS << " + " << offset;
5353    else
5354      OS << " " << offset;
5355  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5356    OS << "<";
5357    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5358    if (LBB)
5359      OS << LBB->getName() << " ";
5360    OS << (const void*)BBDN->getBasicBlock() << ">";
5361  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5362    if (G && R->getReg() &&
5363        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5364      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5365    } else {
5366      OS << " #" << R->getReg();
5367    }
5368  } else if (const ExternalSymbolSDNode *ES =
5369             dyn_cast<ExternalSymbolSDNode>(this)) {
5370    OS << "'" << ES->getSymbol() << "'";
5371  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5372    if (M->getValue())
5373      OS << "<" << M->getValue() << ">";
5374    else
5375      OS << "<null>";
5376  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5377    if (M->MO.getValue())
5378      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5379    else
5380      OS << "<null:" << M->MO.getOffset() << ">";
5381  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5382    OS << N->getArgFlags().getArgFlagsString();
5383  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5384    OS << ":" << N->getVT().getMVTString();
5385  }
5386  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5387    const Value *SrcValue = LD->getSrcValue();
5388    int SrcOffset = LD->getSrcValueOffset();
5389    OS << " <";
5390    if (SrcValue)
5391      OS << SrcValue;
5392    else
5393      OS << "null";
5394    OS << ":" << SrcOffset << ">";
5395
5396    bool doExt = true;
5397    switch (LD->getExtensionType()) {
5398    default: doExt = false; break;
5399    case ISD::EXTLOAD: OS << " <anyext "; break;
5400    case ISD::SEXTLOAD: OS << " <sext "; break;
5401    case ISD::ZEXTLOAD: OS << " <zext "; break;
5402    }
5403    if (doExt)
5404      OS << LD->getMemoryVT().getMVTString() << ">";
5405
5406    const char *AM = getIndexedModeName(LD->getAddressingMode());
5407    if (*AM)
5408      OS << " " << AM;
5409    if (LD->isVolatile())
5410      OS << " <volatile>";
5411    OS << " alignment=" << LD->getAlignment();
5412  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5413    const Value *SrcValue = ST->getSrcValue();
5414    int SrcOffset = ST->getSrcValueOffset();
5415    OS << " <";
5416    if (SrcValue)
5417      OS << SrcValue;
5418    else
5419      OS << "null";
5420    OS << ":" << SrcOffset << ">";
5421
5422    if (ST->isTruncatingStore())
5423      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5424
5425    const char *AM = getIndexedModeName(ST->getAddressingMode());
5426    if (*AM)
5427      OS << " " << AM;
5428    if (ST->isVolatile())
5429      OS << " <volatile>";
5430    OS << " alignment=" << ST->getAlignment();
5431  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5432    const Value *SrcValue = AT->getSrcValue();
5433    int SrcOffset = AT->getSrcValueOffset();
5434    OS << " <";
5435    if (SrcValue)
5436      OS << SrcValue;
5437    else
5438      OS << "null";
5439    OS << ":" << SrcOffset << ">";
5440    if (AT->isVolatile())
5441      OS << " <volatile>";
5442    OS << " alignment=" << AT->getAlignment();
5443  }
5444}
5445
5446static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5447  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5448    if (N->getOperand(i).getNode()->hasOneUse())
5449      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5450    else
5451      cerr << "\n" << std::string(indent+2, ' ')
5452           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5453
5454
5455  cerr << "\n" << std::string(indent, ' ');
5456  N->dump(G);
5457}
5458
5459void SelectionDAG::dump() const {
5460  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5461
5462  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5463       I != E; ++I) {
5464    const SDNode *N = I;
5465    if (!N->hasOneUse() && N != getRoot().getNode())
5466      DumpNodes(N, 2, this);
5467  }
5468
5469  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5470
5471  cerr << "\n\n";
5472}
5473
5474const Type *ConstantPoolSDNode::getType() const {
5475  if (isMachineConstantPoolEntry())
5476    return Val.MachineCPVal->getType();
5477  return Val.ConstVal->getType();
5478}
5479