SelectionDAG.cpp revision 14a6644251df9ccb261bb4e3ab386b738df36633
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include <algorithm>
39#include <cmath>
40using namespace llvm;
41
42/// makeVTList - Return an instance of the SDVTList struct initialized with the
43/// specified members.
44static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
45  SDVTList Res = {VTs, NumVTs};
46  return Res;
47}
48
49static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
50  switch (VT.getSimpleVT()) {
51  default: assert(0 && "Unknown FP format");
52  case MVT::f32:     return &APFloat::IEEEsingle;
53  case MVT::f64:     return &APFloat::IEEEdouble;
54  case MVT::f80:     return &APFloat::x87DoubleExtended;
55  case MVT::f128:    return &APFloat::IEEEquad;
56  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
57  }
58}
59
60SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
61
62//===----------------------------------------------------------------------===//
63//                              ConstantFPSDNode Class
64//===----------------------------------------------------------------------===//
65
66/// isExactlyValue - We don't rely on operator== working on double values, as
67/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
68/// As such, this method can be used to do an exact bit-for-bit comparison of
69/// two floating point values.
70bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
71  return Value.bitwiseIsEqual(V);
72}
73
74bool ConstantFPSDNode::isValueValidForType(MVT VT,
75                                           const APFloat& Val) {
76  assert(VT.isFloatingPoint() && "Can only convert between FP types");
77
78  // PPC long double cannot be converted to any other type.
79  if (VT == MVT::ppcf128 ||
80      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
81    return false;
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  return Val2.convert(*MVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
87}
88
89//===----------------------------------------------------------------------===//
90//                              ISD Namespace
91//===----------------------------------------------------------------------===//
92
93/// isBuildVectorAllOnes - Return true if the specified node is a
94/// BUILD_VECTOR where all of the elements are ~0 or undef.
95bool ISD::isBuildVectorAllOnes(const SDNode *N) {
96  // Look through a bit convert.
97  if (N->getOpcode() == ISD::BIT_CONVERT)
98    N = N->getOperand(0).Val;
99
100  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
101
102  unsigned i = 0, e = N->getNumOperands();
103
104  // Skip over all of the undef values.
105  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
106    ++i;
107
108  // Do not accept an all-undef vector.
109  if (i == e) return false;
110
111  // Do not accept build_vectors that aren't all constants or which have non-~0
112  // elements.
113  SDValue NotZero = N->getOperand(i);
114  if (isa<ConstantSDNode>(NotZero)) {
115    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
116      return false;
117  } else if (isa<ConstantFPSDNode>(NotZero)) {
118    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                convertToAPInt().isAllOnesValue())
120      return false;
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDValue Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// isScalarToVector - Return true if the specified node is a
174/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
175/// element is not an undef.
176bool ISD::isScalarToVector(const SDNode *N) {
177  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
178    return true;
179
180  if (N->getOpcode() != ISD::BUILD_VECTOR)
181    return false;
182  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
183    return false;
184  unsigned NumElems = N->getNumOperands();
185  for (unsigned i = 1; i < NumElems; ++i) {
186    SDValue V = N->getOperand(i);
187    if (V.getOpcode() != ISD::UNDEF)
188      return false;
189  }
190  return true;
191}
192
193
194/// isDebugLabel - Return true if the specified node represents a debug
195/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDValue Zero;
198  if (N->getOpcode() == ISD::DBG_LABEL)
199    return true;
200  if (N->isMachineOpcode() &&
201      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
202    return true;
203  return false;
204}
205
206/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
207/// when given the operation for (X op Y).
208ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
209  // To perform this operation, we just need to swap the L and G bits of the
210  // operation.
211  unsigned OldL = (Operation >> 2) & 1;
212  unsigned OldG = (Operation >> 1) & 1;
213  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
214                       (OldL << 1) |       // New G bit
215                       (OldG << 2));        // New L bit.
216}
217
218/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
219/// 'op' is a valid SetCC operation.
220ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
221  unsigned Operation = Op;
222  if (isInteger)
223    Operation ^= 7;   // Flip L, G, E bits, but not U.
224  else
225    Operation ^= 15;  // Flip all of the condition bits.
226  if (Operation > ISD::SETTRUE2)
227    Operation &= ~8;     // Don't let N and U bits get set.
228  return ISD::CondCode(Operation);
229}
230
231
232/// isSignedOp - For an integer comparison, return 1 if the comparison is a
233/// signed operation and 2 if the result is an unsigned comparison.  Return zero
234/// if the operation does not depend on the sign of the input (setne and seteq).
235static int isSignedOp(ISD::CondCode Opcode) {
236  switch (Opcode) {
237  default: assert(0 && "Illegal integer setcc operation!");
238  case ISD::SETEQ:
239  case ISD::SETNE: return 0;
240  case ISD::SETLT:
241  case ISD::SETLE:
242  case ISD::SETGT:
243  case ISD::SETGE: return 1;
244  case ISD::SETULT:
245  case ISD::SETULE:
246  case ISD::SETUGT:
247  case ISD::SETUGE: return 2;
248  }
249}
250
251/// getSetCCOrOperation - Return the result of a logical OR between different
252/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
253/// returns SETCC_INVALID if it is not possible to represent the resultant
254/// comparison.
255ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
256                                       bool isInteger) {
257  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
258    // Cannot fold a signed integer setcc with an unsigned integer setcc.
259    return ISD::SETCC_INVALID;
260
261  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
262
263  // If the N and U bits get set then the resultant comparison DOES suddenly
264  // care about orderedness, and is true when ordered.
265  if (Op > ISD::SETTRUE2)
266    Op &= ~16;     // Clear the U bit if the N bit is set.
267
268  // Canonicalize illegal integer setcc's.
269  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
270    Op = ISD::SETNE;
271
272  return ISD::CondCode(Op);
273}
274
275/// getSetCCAndOperation - Return the result of a logical AND between different
276/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
277/// function returns zero if it is not possible to represent the resultant
278/// comparison.
279ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
280                                        bool isInteger) {
281  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
282    // Cannot fold a signed setcc with an unsigned setcc.
283    return ISD::SETCC_INVALID;
284
285  // Combine all of the condition bits.
286  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
287
288  // Canonicalize illegal integer setcc's.
289  if (isInteger) {
290    switch (Result) {
291    default: break;
292    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
293    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
294    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
295    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
296    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
297    }
298  }
299
300  return Result;
301}
302
303const TargetMachine &SelectionDAG::getTarget() const {
304  return TLI.getTargetMachine();
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDValue *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->Val);
329    ID.AddInteger(Ops->ResNo);
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getVal());
339    ID.AddInteger(Ops->getSDValue().ResNo);
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDValue *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351
352/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
353/// data.
354static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
355  AddNodeIDOpcode(ID, N->getOpcode());
356  // Add the return value info.
357  AddNodeIDValueTypes(ID, N->getVTList());
358  // Add the operand info.
359  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
360
361  // Handle SDNode leafs with special info.
362  switch (N->getOpcode()) {
363  default: break;  // Normal nodes don't need extra info.
364  case ISD::ARG_FLAGS:
365    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
366    break;
367  case ISD::TargetConstant:
368  case ISD::Constant:
369    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
370    break;
371  case ISD::TargetConstantFP:
372  case ISD::ConstantFP: {
373    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
374    break;
375  }
376  case ISD::TargetGlobalAddress:
377  case ISD::GlobalAddress:
378  case ISD::TargetGlobalTLSAddress:
379  case ISD::GlobalTLSAddress: {
380    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
381    ID.AddPointer(GA->getGlobal());
382    ID.AddInteger(GA->getOffset());
383    break;
384  }
385  case ISD::BasicBlock:
386    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
387    break;
388  case ISD::Register:
389    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
390    break;
391  case ISD::DBG_STOPPOINT: {
392    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
393    ID.AddInteger(DSP->getLine());
394    ID.AddInteger(DSP->getColumn());
395    ID.AddPointer(DSP->getCompileUnit());
396    break;
397  }
398  case ISD::SRCVALUE:
399    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
400    break;
401  case ISD::MEMOPERAND: {
402    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
403    MO.Profile(ID);
404    break;
405  }
406  case ISD::FrameIndex:
407  case ISD::TargetFrameIndex:
408    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
409    break;
410  case ISD::JumpTable:
411  case ISD::TargetJumpTable:
412    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
413    break;
414  case ISD::ConstantPool:
415  case ISD::TargetConstantPool: {
416    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
417    ID.AddInteger(CP->getAlignment());
418    ID.AddInteger(CP->getOffset());
419    if (CP->isMachineConstantPoolEntry())
420      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
421    else
422      ID.AddPointer(CP->getConstVal());
423    break;
424  }
425  case ISD::LOAD: {
426    const LoadSDNode *LD = cast<LoadSDNode>(N);
427    ID.AddInteger(LD->getAddressingMode());
428    ID.AddInteger(LD->getExtensionType());
429    ID.AddInteger(LD->getMemoryVT().getRawBits());
430    ID.AddInteger(LD->getRawFlags());
431    break;
432  }
433  case ISD::STORE: {
434    const StoreSDNode *ST = cast<StoreSDNode>(N);
435    ID.AddInteger(ST->getAddressingMode());
436    ID.AddInteger(ST->isTruncatingStore());
437    ID.AddInteger(ST->getMemoryVT().getRawBits());
438    ID.AddInteger(ST->getRawFlags());
439    break;
440  }
441  case ISD::ATOMIC_CMP_SWAP:
442  case ISD::ATOMIC_LOAD_ADD:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_SUB:
445  case ISD::ATOMIC_LOAD_AND:
446  case ISD::ATOMIC_LOAD_OR:
447  case ISD::ATOMIC_LOAD_XOR:
448  case ISD::ATOMIC_LOAD_NAND:
449  case ISD::ATOMIC_LOAD_MIN:
450  case ISD::ATOMIC_LOAD_MAX:
451  case ISD::ATOMIC_LOAD_UMIN:
452  case ISD::ATOMIC_LOAD_UMAX: {
453    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
454    ID.AddInteger(AT->getRawFlags());
455    break;
456  }
457  } // end switch (N->getOpcode())
458}
459
460/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
461/// the CSE map that carries both alignment and volatility information.
462///
463static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
464  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
465}
466
467//===----------------------------------------------------------------------===//
468//                              SelectionDAG Class
469//===----------------------------------------------------------------------===//
470
471/// RemoveDeadNodes - This method deletes all unreachable nodes in the
472/// SelectionDAG.
473void SelectionDAG::RemoveDeadNodes() {
474  // Create a dummy node (which is not added to allnodes), that adds a reference
475  // to the root node, preventing it from being deleted.
476  HandleSDNode Dummy(getRoot());
477
478  SmallVector<SDNode*, 128> DeadNodes;
479
480  // Add all obviously-dead nodes to the DeadNodes worklist.
481  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
482    if (I->use_empty())
483      DeadNodes.push_back(I);
484
485  RemoveDeadNodes(DeadNodes);
486
487  // If the root changed (e.g. it was a dead load, update the root).
488  setRoot(Dummy.getValue());
489}
490
491/// RemoveDeadNodes - This method deletes the unreachable nodes in the
492/// given list, and any nodes that become unreachable as a result.
493void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
494                                   DAGUpdateListener *UpdateListener) {
495
496  // Process the worklist, deleting the nodes and adding their uses to the
497  // worklist.
498  while (!DeadNodes.empty()) {
499    SDNode *N = DeadNodes.back();
500    DeadNodes.pop_back();
501
502    if (UpdateListener)
503      UpdateListener->NodeDeleted(N, 0);
504
505    // Take the node out of the appropriate CSE map.
506    RemoveNodeFromCSEMaps(N);
507
508    // Next, brutally remove the operand list.  This is safe to do, as there are
509    // no cycles in the graph.
510    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
511      SDNode *Operand = I->getVal();
512      Operand->removeUser(std::distance(N->op_begin(), I), N);
513
514      // Now that we removed this operand, see if there are no uses of it left.
515      if (Operand->use_empty())
516        DeadNodes.push_back(Operand);
517    }
518    if (N->OperandsNeedDelete) {
519      delete[] N->OperandList;
520    }
521    N->OperandList = 0;
522    N->NumOperands = 0;
523
524    // Finally, remove N itself.
525    AllNodes.remove(N);
526  }
527}
528
529void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
530  SmallVector<SDNode*, 16> DeadNodes(1, N);
531  RemoveDeadNodes(DeadNodes, UpdateListener);
532}
533
534void SelectionDAG::DeleteNode(SDNode *N) {
535  assert(N->use_empty() && "Cannot delete a node that is not dead!");
536
537  // First take this out of the appropriate CSE map.
538  RemoveNodeFromCSEMaps(N);
539
540  // Finally, remove uses due to operands of this node, remove from the
541  // AllNodes list, and delete the node.
542  DeleteNodeNotInCSEMaps(N);
543}
544
545void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
546
547  // Drop all of the operands and decrement used nodes use counts.
548  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
549    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
550  if (N->OperandsNeedDelete)
551    delete[] N->OperandList;
552
553  AllNodes.remove(N);
554}
555
556/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
557/// correspond to it.  This is useful when we're about to delete or repurpose
558/// the node.  We don't want future request for structurally identical nodes
559/// to return N anymore.
560void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
561  bool Erased = false;
562  switch (N->getOpcode()) {
563  case ISD::EntryToken:
564    assert(0 && "EntryToken should not be in CSEMaps!");
565    return;
566  case ISD::HANDLENODE: return;  // noop.
567  case ISD::CONDCODE:
568    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
569           "Cond code doesn't exist!");
570    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
571    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
572    break;
573  case ISD::ExternalSymbol:
574    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
575    break;
576  case ISD::TargetExternalSymbol:
577    Erased =
578      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
579    break;
580  case ISD::VALUETYPE: {
581    MVT VT = cast<VTSDNode>(N)->getVT();
582    if (VT.isExtended()) {
583      Erased = ExtendedValueTypeNodes.erase(VT);
584    } else {
585      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
586      ValueTypeNodes[VT.getSimpleVT()] = 0;
587    }
588    break;
589  }
590  default:
591    // Remove it from the CSE Map.
592    Erased = CSEMap.RemoveNode(N);
593    break;
594  }
595#ifndef NDEBUG
596  // Verify that the node was actually in one of the CSE maps, unless it has a
597  // flag result (which cannot be CSE'd) or is one of the special cases that are
598  // not subject to CSE.
599  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
600      !N->isTargetOpcode() &&
601      N->getOpcode() != ISD::DBG_LABEL &&
602      N->getOpcode() != ISD::DBG_STOPPOINT &&
603      N->getOpcode() != ISD::EH_LABEL &&
604      N->getOpcode() != ISD::DECLARE) {
605    N->dump(this);
606    cerr << "\n";
607    assert(0 && "Node is not in map!");
608  }
609#endif
610}
611
612/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
613/// has been taken out and modified in some way.  If the specified node already
614/// exists in the CSE maps, do not modify the maps, but return the existing node
615/// instead.  If it doesn't exist, add it and return null.
616///
617SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
618  assert(N->getNumOperands() && "This is a leaf node!");
619
620  if (N->getValueType(0) == MVT::Flag)
621    return 0;   // Never CSE anything that produces a flag.
622
623  switch (N->getOpcode()) {
624  default: break;
625  case ISD::HANDLENODE:
626  case ISD::DBG_LABEL:
627  case ISD::DBG_STOPPOINT:
628  case ISD::EH_LABEL:
629  case ISD::DECLARE:
630    return 0;    // Never add these nodes.
631  }
632
633  // Check that remaining values produced are not flags.
634  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
635    if (N->getValueType(i) == MVT::Flag)
636      return 0;   // Never CSE anything that produces a flag.
637
638  SDNode *New = CSEMap.GetOrInsertNode(N);
639  if (New != N) return New;  // Node already existed.
640  return 0;
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
648                                           void *&InsertPos) {
649  if (N->getValueType(0) == MVT::Flag)
650    return 0;   // Never CSE anything that produces a flag.
651
652  switch (N->getOpcode()) {
653  default: break;
654  case ISD::HANDLENODE:
655  case ISD::DBG_LABEL:
656  case ISD::DBG_STOPPOINT:
657  case ISD::EH_LABEL:
658    return 0;    // Never add these nodes.
659  }
660
661  // Check that remaining values produced are not flags.
662  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
663    if (N->getValueType(i) == MVT::Flag)
664      return 0;   // Never CSE anything that produces a flag.
665
666  SDValue Ops[] = { Op };
667  FoldingSetNodeID ID;
668  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
669  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
670}
671
672/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
673/// were replaced with those specified.  If this node is never memoized,
674/// return null, otherwise return a pointer to the slot it would take.  If a
675/// node already exists with these operands, the slot will be non-null.
676SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
677                                           SDValue Op1, SDValue Op2,
678                                           void *&InsertPos) {
679  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
680
681  // Check that remaining values produced are not flags.
682  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
683    if (N->getValueType(i) == MVT::Flag)
684      return 0;   // Never CSE anything that produces a flag.
685
686  SDValue Ops[] = { Op1, Op2 };
687  FoldingSetNodeID ID;
688  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
689  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
690}
691
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
698                                           const SDValue *Ops,unsigned NumOps,
699                                           void *&InsertPos) {
700  if (N->getValueType(0) == MVT::Flag)
701    return 0;   // Never CSE anything that produces a flag.
702
703  switch (N->getOpcode()) {
704  default: break;
705  case ISD::HANDLENODE:
706  case ISD::DBG_LABEL:
707  case ISD::DBG_STOPPOINT:
708  case ISD::EH_LABEL:
709  case ISD::DECLARE:
710    return 0;    // Never add these nodes.
711  }
712
713  // Check that remaining values produced are not flags.
714  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
715    if (N->getValueType(i) == MVT::Flag)
716      return 0;   // Never CSE anything that produces a flag.
717
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
720
721  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
722    ID.AddInteger(LD->getAddressingMode());
723    ID.AddInteger(LD->getExtensionType());
724    ID.AddInteger(LD->getMemoryVT().getRawBits());
725    ID.AddInteger(LD->getRawFlags());
726  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
727    ID.AddInteger(ST->getAddressingMode());
728    ID.AddInteger(ST->isTruncatingStore());
729    ID.AddInteger(ST->getMemoryVT().getRawBits());
730    ID.AddInteger(ST->getRawFlags());
731  }
732
733  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
734}
735
736/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
737void SelectionDAG::VerifyNode(SDNode *N) {
738  switch (N->getOpcode()) {
739  default:
740    break;
741  case ISD::BUILD_VECTOR: {
742    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
743    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
744    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
745           "Wrong number of BUILD_VECTOR operands!");
746    MVT EltVT = N->getValueType(0).getVectorElementType();
747    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
748      assert(I->getSDValue().getValueType() == EltVT &&
749             "Wrong BUILD_VECTOR operand type!");
750    break;
751  }
752  }
753}
754
755/// getMVTAlignment - Compute the default alignment value for the
756/// given type.
757///
758unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
759  const Type *Ty = VT == MVT::iPTR ?
760                   PointerType::get(Type::Int8Ty, 0) :
761                   VT.getTypeForMVT();
762
763  return TLI.getTargetData()->getABITypeAlignment(Ty);
764}
765
766SelectionDAG::SelectionDAG(TargetLowering &tli, MachineFunction &mf,
767                           FunctionLoweringInfo &fli, MachineModuleInfo *mmi)
768  : TLI(tli), MF(mf), FLI(fli), MMI(mmi),
769    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
770    Root(getEntryNode()) {
771  AllNodes.push_back(&EntryNode);
772}
773
774SelectionDAG::~SelectionDAG() {
775  allnodes_clear();
776}
777
778void SelectionDAG::allnodes_clear() {
779  while (!AllNodes.empty()) {
780    SDNode *N = AllNodes.remove(AllNodes.begin());
781    N->SetNextInBucket(0);
782    if (N->OperandsNeedDelete)
783      delete [] N->OperandList;
784  }
785}
786
787void SelectionDAG::reset() {
788  allnodes_clear();
789  OperandAllocator.Reset();
790  CSEMap.clear();
791
792  ExtendedValueTypeNodes.clear();
793  ExternalSymbols.clear();
794  TargetExternalSymbols.clear();
795  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
796            static_cast<CondCodeSDNode*>(0));
797  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
798            static_cast<SDNode*>(0));
799
800  EntryNode.Uses = 0;
801  AllNodes.push_back(&EntryNode);
802  Root = getEntryNode();
803}
804
805SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
806  if (Op.getValueType() == VT) return Op;
807  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
808                                   VT.getSizeInBits());
809  return getNode(ISD::AND, Op.getValueType(), Op,
810                 getConstant(Imm, Op.getValueType()));
811}
812
813SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
814  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
815  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
816}
817
818SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
819  assert(VT.isInteger() && "Cannot create FP integer constant!");
820
821  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
822  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
823         "APInt size does not match type size!");
824
825  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
826  FoldingSetNodeID ID;
827  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
828  ID.Add(Val);
829  void *IP = 0;
830  SDNode *N = NULL;
831  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
832    if (!VT.isVector())
833      return SDValue(N, 0);
834  if (!N) {
835    N = NodeAllocator.Allocate<ConstantSDNode>();
836    new (N) ConstantSDNode(isT, Val, EltVT);
837    CSEMap.InsertNode(N, IP);
838    AllNodes.push_back(N);
839  }
840
841  SDValue Result(N, 0);
842  if (VT.isVector()) {
843    SmallVector<SDValue, 8> Ops;
844    Ops.assign(VT.getVectorNumElements(), Result);
845    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
846  }
847  return Result;
848}
849
850SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
851  return getConstant(Val, TLI.getPointerTy(), isTarget);
852}
853
854
855SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
856  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
857
858  MVT EltVT =
859    VT.isVector() ? VT.getVectorElementType() : VT;
860
861  // Do the map lookup using the actual bit pattern for the floating point
862  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
863  // we don't have issues with SNANs.
864  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
865  FoldingSetNodeID ID;
866  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
867  ID.Add(V);
868  void *IP = 0;
869  SDNode *N = NULL;
870  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
871    if (!VT.isVector())
872      return SDValue(N, 0);
873  if (!N) {
874    N = NodeAllocator.Allocate<ConstantFPSDNode>();
875    new (N) ConstantFPSDNode(isTarget, V, EltVT);
876    CSEMap.InsertNode(N, IP);
877    AllNodes.push_back(N);
878  }
879
880  SDValue Result(N, 0);
881  if (VT.isVector()) {
882    SmallVector<SDValue, 8> Ops;
883    Ops.assign(VT.getVectorNumElements(), Result);
884    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
885  }
886  return Result;
887}
888
889SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
890  MVT EltVT =
891    VT.isVector() ? VT.getVectorElementType() : VT;
892  if (EltVT==MVT::f32)
893    return getConstantFP(APFloat((float)Val), VT, isTarget);
894  else
895    return getConstantFP(APFloat(Val), VT, isTarget);
896}
897
898SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
899                                       MVT VT, int Offset,
900                                       bool isTargetGA) {
901  unsigned Opc;
902
903  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
904  if (!GVar) {
905    // If GV is an alias then use the aliasee for determining thread-localness.
906    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
907      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
908  }
909
910  if (GVar && GVar->isThreadLocal())
911    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
912  else
913    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
914
915  FoldingSetNodeID ID;
916  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
917  ID.AddPointer(GV);
918  ID.AddInteger(Offset);
919  void *IP = 0;
920  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
921   return SDValue(E, 0);
922  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
923  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
924  CSEMap.InsertNode(N, IP);
925  AllNodes.push_back(N);
926  return SDValue(N, 0);
927}
928
929SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
930  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
931  FoldingSetNodeID ID;
932  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
933  ID.AddInteger(FI);
934  void *IP = 0;
935  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
936    return SDValue(E, 0);
937  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
938  new (N) FrameIndexSDNode(FI, VT, isTarget);
939  CSEMap.InsertNode(N, IP);
940  AllNodes.push_back(N);
941  return SDValue(N, 0);
942}
943
944SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
945  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
946  FoldingSetNodeID ID;
947  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
948  ID.AddInteger(JTI);
949  void *IP = 0;
950  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
951    return SDValue(E, 0);
952  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
953  new (N) JumpTableSDNode(JTI, VT, isTarget);
954  CSEMap.InsertNode(N, IP);
955  AllNodes.push_back(N);
956  return SDValue(N, 0);
957}
958
959SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
960                                      unsigned Alignment, int Offset,
961                                      bool isTarget) {
962  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
963  FoldingSetNodeID ID;
964  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
965  ID.AddInteger(Alignment);
966  ID.AddInteger(Offset);
967  ID.AddPointer(C);
968  void *IP = 0;
969  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
970    return SDValue(E, 0);
971  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
972  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
973  CSEMap.InsertNode(N, IP);
974  AllNodes.push_back(N);
975  return SDValue(N, 0);
976}
977
978
979SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
980                                      unsigned Alignment, int Offset,
981                                      bool isTarget) {
982  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
983  FoldingSetNodeID ID;
984  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
985  ID.AddInteger(Alignment);
986  ID.AddInteger(Offset);
987  C->AddSelectionDAGCSEId(ID);
988  void *IP = 0;
989  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
990    return SDValue(E, 0);
991  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
992  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDValue(N, 0);
996}
997
998
999SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1002  ID.AddPointer(MBB);
1003  void *IP = 0;
1004  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1005    return SDValue(E, 0);
1006  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1007  new (N) BasicBlockSDNode(MBB);
1008  CSEMap.InsertNode(N, IP);
1009  AllNodes.push_back(N);
1010  return SDValue(N, 0);
1011}
1012
1013SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1016  ID.AddInteger(Flags.getRawBits());
1017  void *IP = 0;
1018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019    return SDValue(E, 0);
1020  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1021  new (N) ARG_FLAGSSDNode(Flags);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getValueType(MVT VT) {
1028  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1029    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1030
1031  SDNode *&N = VT.isExtended() ?
1032    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1033
1034  if (N) return SDValue(N, 0);
1035  N = NodeAllocator.Allocate<VTSDNode>();
1036  new (N) VTSDNode(VT);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1042  SDNode *&N = ExternalSymbols[Sym];
1043  if (N) return SDValue(N, 0);
1044  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1045  new (N) ExternalSymbolSDNode(false, Sym, VT);
1046  AllNodes.push_back(N);
1047  return SDValue(N, 0);
1048}
1049
1050SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1051  SDNode *&N = TargetExternalSymbols[Sym];
1052  if (N) return SDValue(N, 0);
1053  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1054  new (N) ExternalSymbolSDNode(true, Sym, VT);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1060  if ((unsigned)Cond >= CondCodeNodes.size())
1061    CondCodeNodes.resize(Cond+1);
1062
1063  if (CondCodeNodes[Cond] == 0) {
1064    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1065    new (N) CondCodeSDNode(Cond);
1066    CondCodeNodes[Cond] = N;
1067    AllNodes.push_back(N);
1068  }
1069  return SDValue(CondCodeNodes[Cond], 0);
1070}
1071
1072SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1073  FoldingSetNodeID ID;
1074  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1075  ID.AddInteger(RegNo);
1076  void *IP = 0;
1077  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1078    return SDValue(E, 0);
1079  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1080  new (N) RegisterSDNode(RegNo, VT);
1081  CSEMap.InsertNode(N, IP);
1082  AllNodes.push_back(N);
1083  return SDValue(N, 0);
1084}
1085
1086SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1087                                        unsigned Line, unsigned Col,
1088                                        const CompileUnitDesc *CU) {
1089  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1090  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getLabel(unsigned Opcode,
1096                               SDValue Root,
1097                               unsigned LabelID) {
1098  FoldingSetNodeID ID;
1099  SDValue Ops[] = { Root };
1100  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1101  ID.AddInteger(LabelID);
1102  void *IP = 0;
1103  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1104    return SDValue(E, 0);
1105  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1106  new (N) LabelSDNode(Opcode, Root, LabelID);
1107  CSEMap.InsertNode(N, IP);
1108  AllNodes.push_back(N);
1109  return SDValue(N, 0);
1110}
1111
1112SDValue SelectionDAG::getSrcValue(const Value *V) {
1113  assert((!V || isa<PointerType>(V->getType())) &&
1114         "SrcValue is not a pointer?");
1115
1116  FoldingSetNodeID ID;
1117  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1118  ID.AddPointer(V);
1119
1120  void *IP = 0;
1121  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1122    return SDValue(E, 0);
1123
1124  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1125  new (N) SrcValueSDNode(V);
1126  CSEMap.InsertNode(N, IP);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1132  const Value *v = MO.getValue();
1133  assert((!v || isa<PointerType>(v->getType())) &&
1134         "SrcValue is not a pointer?");
1135
1136  FoldingSetNodeID ID;
1137  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1138  MO.Profile(ID);
1139
1140  void *IP = 0;
1141  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1142    return SDValue(E, 0);
1143
1144  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1145  new (N) MemOperandSDNode(MO);
1146  CSEMap.InsertNode(N, IP);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1152/// specified value type.
1153SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1154  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1155  unsigned ByteSize = VT.getSizeInBits()/8;
1156  const Type *Ty = VT.getTypeForMVT();
1157  unsigned StackAlign =
1158  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1159
1160  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1161  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1162}
1163
1164SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1165                                SDValue N2, ISD::CondCode Cond) {
1166  // These setcc operations always fold.
1167  switch (Cond) {
1168  default: break;
1169  case ISD::SETFALSE:
1170  case ISD::SETFALSE2: return getConstant(0, VT);
1171  case ISD::SETTRUE:
1172  case ISD::SETTRUE2:  return getConstant(1, VT);
1173
1174  case ISD::SETOEQ:
1175  case ISD::SETOGT:
1176  case ISD::SETOGE:
1177  case ISD::SETOLT:
1178  case ISD::SETOLE:
1179  case ISD::SETONE:
1180  case ISD::SETO:
1181  case ISD::SETUO:
1182  case ISD::SETUEQ:
1183  case ISD::SETUNE:
1184    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1185    break;
1186  }
1187
1188  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1189    const APInt &C2 = N2C->getAPIntValue();
1190    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1191      const APInt &C1 = N1C->getAPIntValue();
1192
1193      switch (Cond) {
1194      default: assert(0 && "Unknown integer setcc!");
1195      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1196      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1197      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1198      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1199      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1200      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1201      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1202      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1203      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1204      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1205      }
1206    }
1207  }
1208  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1209    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1210      // No compile time operations on this type yet.
1211      if (N1C->getValueType(0) == MVT::ppcf128)
1212        return SDValue();
1213
1214      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1215      switch (Cond) {
1216      default: break;
1217      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1218                          return getNode(ISD::UNDEF, VT);
1219                        // fall through
1220      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1221      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1222                          return getNode(ISD::UNDEF, VT);
1223                        // fall through
1224      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1225                                           R==APFloat::cmpLessThan, VT);
1226      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1227                          return getNode(ISD::UNDEF, VT);
1228                        // fall through
1229      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1230      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1231                          return getNode(ISD::UNDEF, VT);
1232                        // fall through
1233      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1234      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1235                          return getNode(ISD::UNDEF, VT);
1236                        // fall through
1237      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1238                                           R==APFloat::cmpEqual, VT);
1239      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1240                          return getNode(ISD::UNDEF, VT);
1241                        // fall through
1242      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1243                                           R==APFloat::cmpEqual, VT);
1244      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1245      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1246      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1247                                           R==APFloat::cmpEqual, VT);
1248      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1249      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1250                                           R==APFloat::cmpLessThan, VT);
1251      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1252                                           R==APFloat::cmpUnordered, VT);
1253      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1254      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1255      }
1256    } else {
1257      // Ensure that the constant occurs on the RHS.
1258      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1259    }
1260  }
1261
1262  // Could not fold it.
1263  return SDValue();
1264}
1265
1266/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1267/// use this predicate to simplify operations downstream.
1268bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1269  unsigned BitWidth = Op.getValueSizeInBits();
1270  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1271}
1272
1273/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1274/// this predicate to simplify operations downstream.  Mask is known to be zero
1275/// for bits that V cannot have.
1276bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1277                                     unsigned Depth) const {
1278  APInt KnownZero, KnownOne;
1279  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1280  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1281  return (KnownZero & Mask) == Mask;
1282}
1283
1284/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1285/// known to be either zero or one and return them in the KnownZero/KnownOne
1286/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1287/// processing.
1288void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1289                                     APInt &KnownZero, APInt &KnownOne,
1290                                     unsigned Depth) const {
1291  unsigned BitWidth = Mask.getBitWidth();
1292  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1293         "Mask size mismatches value type size!");
1294
1295  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1296  if (Depth == 6 || Mask == 0)
1297    return;  // Limit search depth.
1298
1299  APInt KnownZero2, KnownOne2;
1300
1301  switch (Op.getOpcode()) {
1302  case ISD::Constant:
1303    // We know all of the bits for a constant!
1304    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1305    KnownZero = ~KnownOne & Mask;
1306    return;
1307  case ISD::AND:
1308    // If either the LHS or the RHS are Zero, the result is zero.
1309    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1310    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1311                      KnownZero2, KnownOne2, Depth+1);
1312    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1313    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1314
1315    // Output known-1 bits are only known if set in both the LHS & RHS.
1316    KnownOne &= KnownOne2;
1317    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1318    KnownZero |= KnownZero2;
1319    return;
1320  case ISD::OR:
1321    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1322    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1323                      KnownZero2, KnownOne2, Depth+1);
1324    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1325    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1326
1327    // Output known-0 bits are only known if clear in both the LHS & RHS.
1328    KnownZero &= KnownZero2;
1329    // Output known-1 are known to be set if set in either the LHS | RHS.
1330    KnownOne |= KnownOne2;
1331    return;
1332  case ISD::XOR: {
1333    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1334    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1335    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1336    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1337
1338    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1339    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1340    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1341    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1342    KnownZero = KnownZeroOut;
1343    return;
1344  }
1345  case ISD::MUL: {
1346    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1347    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1348    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1349    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1350    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1351
1352    // If low bits are zero in either operand, output low known-0 bits.
1353    // Also compute a conserative estimate for high known-0 bits.
1354    // More trickiness is possible, but this is sufficient for the
1355    // interesting case of alignment computation.
1356    KnownOne.clear();
1357    unsigned TrailZ = KnownZero.countTrailingOnes() +
1358                      KnownZero2.countTrailingOnes();
1359    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1360                               KnownZero2.countLeadingOnes(),
1361                               BitWidth) - BitWidth;
1362
1363    TrailZ = std::min(TrailZ, BitWidth);
1364    LeadZ = std::min(LeadZ, BitWidth);
1365    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1366                APInt::getHighBitsSet(BitWidth, LeadZ);
1367    KnownZero &= Mask;
1368    return;
1369  }
1370  case ISD::UDIV: {
1371    // For the purposes of computing leading zeros we can conservatively
1372    // treat a udiv as a logical right shift by the power of 2 known to
1373    // be less than the denominator.
1374    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1375    ComputeMaskedBits(Op.getOperand(0),
1376                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1377    unsigned LeadZ = KnownZero2.countLeadingOnes();
1378
1379    KnownOne2.clear();
1380    KnownZero2.clear();
1381    ComputeMaskedBits(Op.getOperand(1),
1382                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1383    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1384    if (RHSUnknownLeadingOnes != BitWidth)
1385      LeadZ = std::min(BitWidth,
1386                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1387
1388    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1389    return;
1390  }
1391  case ISD::SELECT:
1392    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1393    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1394    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1395    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1396
1397    // Only known if known in both the LHS and RHS.
1398    KnownOne &= KnownOne2;
1399    KnownZero &= KnownZero2;
1400    return;
1401  case ISD::SELECT_CC:
1402    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1403    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1404    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1405    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1406
1407    // Only known if known in both the LHS and RHS.
1408    KnownOne &= KnownOne2;
1409    KnownZero &= KnownZero2;
1410    return;
1411  case ISD::SETCC:
1412    // If we know the result of a setcc has the top bits zero, use this info.
1413    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1414        BitWidth > 1)
1415      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1416    return;
1417  case ISD::SHL:
1418    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1419    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1420      unsigned ShAmt = SA->getValue();
1421
1422      // If the shift count is an invalid immediate, don't do anything.
1423      if (ShAmt >= BitWidth)
1424        return;
1425
1426      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1427                        KnownZero, KnownOne, Depth+1);
1428      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1429      KnownZero <<= ShAmt;
1430      KnownOne  <<= ShAmt;
1431      // low bits known zero.
1432      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1433    }
1434    return;
1435  case ISD::SRL:
1436    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1437    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1438      unsigned ShAmt = SA->getValue();
1439
1440      // If the shift count is an invalid immediate, don't do anything.
1441      if (ShAmt >= BitWidth)
1442        return;
1443
1444      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1445                        KnownZero, KnownOne, Depth+1);
1446      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1447      KnownZero = KnownZero.lshr(ShAmt);
1448      KnownOne  = KnownOne.lshr(ShAmt);
1449
1450      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1451      KnownZero |= HighBits;  // High bits known zero.
1452    }
1453    return;
1454  case ISD::SRA:
1455    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1456      unsigned ShAmt = SA->getValue();
1457
1458      // If the shift count is an invalid immediate, don't do anything.
1459      if (ShAmt >= BitWidth)
1460        return;
1461
1462      APInt InDemandedMask = (Mask << ShAmt);
1463      // If any of the demanded bits are produced by the sign extension, we also
1464      // demand the input sign bit.
1465      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1466      if (HighBits.getBoolValue())
1467        InDemandedMask |= APInt::getSignBit(BitWidth);
1468
1469      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1470                        Depth+1);
1471      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1472      KnownZero = KnownZero.lshr(ShAmt);
1473      KnownOne  = KnownOne.lshr(ShAmt);
1474
1475      // Handle the sign bits.
1476      APInt SignBit = APInt::getSignBit(BitWidth);
1477      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1478
1479      if (KnownZero.intersects(SignBit)) {
1480        KnownZero |= HighBits;  // New bits are known zero.
1481      } else if (KnownOne.intersects(SignBit)) {
1482        KnownOne  |= HighBits;  // New bits are known one.
1483      }
1484    }
1485    return;
1486  case ISD::SIGN_EXTEND_INREG: {
1487    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1488    unsigned EBits = EVT.getSizeInBits();
1489
1490    // Sign extension.  Compute the demanded bits in the result that are not
1491    // present in the input.
1492    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1493
1494    APInt InSignBit = APInt::getSignBit(EBits);
1495    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1496
1497    // If the sign extended bits are demanded, we know that the sign
1498    // bit is demanded.
1499    InSignBit.zext(BitWidth);
1500    if (NewBits.getBoolValue())
1501      InputDemandedBits |= InSignBit;
1502
1503    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1504                      KnownZero, KnownOne, Depth+1);
1505    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1506
1507    // If the sign bit of the input is known set or clear, then we know the
1508    // top bits of the result.
1509    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1510      KnownZero |= NewBits;
1511      KnownOne  &= ~NewBits;
1512    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1513      KnownOne  |= NewBits;
1514      KnownZero &= ~NewBits;
1515    } else {                              // Input sign bit unknown
1516      KnownZero &= ~NewBits;
1517      KnownOne  &= ~NewBits;
1518    }
1519    return;
1520  }
1521  case ISD::CTTZ:
1522  case ISD::CTLZ:
1523  case ISD::CTPOP: {
1524    unsigned LowBits = Log2_32(BitWidth)+1;
1525    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1526    KnownOne.clear();
1527    return;
1528  }
1529  case ISD::LOAD: {
1530    if (ISD::isZEXTLoad(Op.Val)) {
1531      LoadSDNode *LD = cast<LoadSDNode>(Op);
1532      MVT VT = LD->getMemoryVT();
1533      unsigned MemBits = VT.getSizeInBits();
1534      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1535    }
1536    return;
1537  }
1538  case ISD::ZERO_EXTEND: {
1539    MVT InVT = Op.getOperand(0).getValueType();
1540    unsigned InBits = InVT.getSizeInBits();
1541    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1542    APInt InMask    = Mask;
1543    InMask.trunc(InBits);
1544    KnownZero.trunc(InBits);
1545    KnownOne.trunc(InBits);
1546    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1547    KnownZero.zext(BitWidth);
1548    KnownOne.zext(BitWidth);
1549    KnownZero |= NewBits;
1550    return;
1551  }
1552  case ISD::SIGN_EXTEND: {
1553    MVT InVT = Op.getOperand(0).getValueType();
1554    unsigned InBits = InVT.getSizeInBits();
1555    APInt InSignBit = APInt::getSignBit(InBits);
1556    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1557    APInt InMask = Mask;
1558    InMask.trunc(InBits);
1559
1560    // If any of the sign extended bits are demanded, we know that the sign
1561    // bit is demanded. Temporarily set this bit in the mask for our callee.
1562    if (NewBits.getBoolValue())
1563      InMask |= InSignBit;
1564
1565    KnownZero.trunc(InBits);
1566    KnownOne.trunc(InBits);
1567    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1568
1569    // Note if the sign bit is known to be zero or one.
1570    bool SignBitKnownZero = KnownZero.isNegative();
1571    bool SignBitKnownOne  = KnownOne.isNegative();
1572    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1573           "Sign bit can't be known to be both zero and one!");
1574
1575    // If the sign bit wasn't actually demanded by our caller, we don't
1576    // want it set in the KnownZero and KnownOne result values. Reset the
1577    // mask and reapply it to the result values.
1578    InMask = Mask;
1579    InMask.trunc(InBits);
1580    KnownZero &= InMask;
1581    KnownOne  &= InMask;
1582
1583    KnownZero.zext(BitWidth);
1584    KnownOne.zext(BitWidth);
1585
1586    // If the sign bit is known zero or one, the top bits match.
1587    if (SignBitKnownZero)
1588      KnownZero |= NewBits;
1589    else if (SignBitKnownOne)
1590      KnownOne  |= NewBits;
1591    return;
1592  }
1593  case ISD::ANY_EXTEND: {
1594    MVT InVT = Op.getOperand(0).getValueType();
1595    unsigned InBits = InVT.getSizeInBits();
1596    APInt InMask = Mask;
1597    InMask.trunc(InBits);
1598    KnownZero.trunc(InBits);
1599    KnownOne.trunc(InBits);
1600    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1601    KnownZero.zext(BitWidth);
1602    KnownOne.zext(BitWidth);
1603    return;
1604  }
1605  case ISD::TRUNCATE: {
1606    MVT InVT = Op.getOperand(0).getValueType();
1607    unsigned InBits = InVT.getSizeInBits();
1608    APInt InMask = Mask;
1609    InMask.zext(InBits);
1610    KnownZero.zext(InBits);
1611    KnownOne.zext(InBits);
1612    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    KnownZero.trunc(BitWidth);
1615    KnownOne.trunc(BitWidth);
1616    break;
1617  }
1618  case ISD::AssertZext: {
1619    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1620    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1621    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1622                      KnownOne, Depth+1);
1623    KnownZero |= (~InMask) & Mask;
1624    return;
1625  }
1626  case ISD::FGETSIGN:
1627    // All bits are zero except the low bit.
1628    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1629    return;
1630
1631  case ISD::SUB: {
1632    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1633      // We know that the top bits of C-X are clear if X contains less bits
1634      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1635      // positive if we can prove that X is >= 0 and < 16.
1636      if (CLHS->getAPIntValue().isNonNegative()) {
1637        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1638        // NLZ can't be BitWidth with no sign bit
1639        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1640        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1641                          Depth+1);
1642
1643        // If all of the MaskV bits are known to be zero, then we know the
1644        // output top bits are zero, because we now know that the output is
1645        // from [0-C].
1646        if ((KnownZero2 & MaskV) == MaskV) {
1647          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1648          // Top bits known zero.
1649          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1650        }
1651      }
1652    }
1653  }
1654  // fall through
1655  case ISD::ADD: {
1656    // Output known-0 bits are known if clear or set in both the low clear bits
1657    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1658    // low 3 bits clear.
1659    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1660    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1661    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1662    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1663
1664    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1665    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1666    KnownZeroOut = std::min(KnownZeroOut,
1667                            KnownZero2.countTrailingOnes());
1668
1669    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1670    return;
1671  }
1672  case ISD::SREM:
1673    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      const APInt &RA = Rem->getAPIntValue();
1675      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1676        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1677        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1678        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1679
1680        // If the sign bit of the first operand is zero, the sign bit of
1681        // the result is zero. If the first operand has no one bits below
1682        // the second operand's single 1 bit, its sign will be zero.
1683        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1684          KnownZero2 |= ~LowBits;
1685
1686        KnownZero |= KnownZero2 & Mask;
1687
1688        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1689      }
1690    }
1691    return;
1692  case ISD::UREM: {
1693    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1694      const APInt &RA = Rem->getAPIntValue();
1695      if (RA.isPowerOf2()) {
1696        APInt LowBits = (RA - 1);
1697        APInt Mask2 = LowBits & Mask;
1698        KnownZero |= ~LowBits & Mask;
1699        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1700        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1701        break;
1702      }
1703    }
1704
1705    // Since the result is less than or equal to either operand, any leading
1706    // zero bits in either operand must also exist in the result.
1707    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1708    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1709                      Depth+1);
1710    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1711                      Depth+1);
1712
1713    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1714                                KnownZero2.countLeadingOnes());
1715    KnownOne.clear();
1716    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1717    return;
1718  }
1719  default:
1720    // Allow the target to implement this method for its nodes.
1721    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1722  case ISD::INTRINSIC_WO_CHAIN:
1723  case ISD::INTRINSIC_W_CHAIN:
1724  case ISD::INTRINSIC_VOID:
1725      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1726    }
1727    return;
1728  }
1729}
1730
1731/// ComputeNumSignBits - Return the number of times the sign bit of the
1732/// register is replicated into the other bits.  We know that at least 1 bit
1733/// is always equal to the sign bit (itself), but other cases can give us
1734/// information.  For example, immediately after an "SRA X, 2", we know that
1735/// the top 3 bits are all equal to each other, so we return 3.
1736unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1737  MVT VT = Op.getValueType();
1738  assert(VT.isInteger() && "Invalid VT!");
1739  unsigned VTBits = VT.getSizeInBits();
1740  unsigned Tmp, Tmp2;
1741  unsigned FirstAnswer = 1;
1742
1743  if (Depth == 6)
1744    return 1;  // Limit search depth.
1745
1746  switch (Op.getOpcode()) {
1747  default: break;
1748  case ISD::AssertSext:
1749    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1750    return VTBits-Tmp+1;
1751  case ISD::AssertZext:
1752    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1753    return VTBits-Tmp;
1754
1755  case ISD::Constant: {
1756    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1757    // If negative, return # leading ones.
1758    if (Val.isNegative())
1759      return Val.countLeadingOnes();
1760
1761    // Return # leading zeros.
1762    return Val.countLeadingZeros();
1763  }
1764
1765  case ISD::SIGN_EXTEND:
1766    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1767    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1768
1769  case ISD::SIGN_EXTEND_INREG:
1770    // Max of the input and what this extends.
1771    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1772    Tmp = VTBits-Tmp+1;
1773
1774    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1775    return std::max(Tmp, Tmp2);
1776
1777  case ISD::SRA:
1778    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1779    // SRA X, C   -> adds C sign bits.
1780    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1781      Tmp += C->getValue();
1782      if (Tmp > VTBits) Tmp = VTBits;
1783    }
1784    return Tmp;
1785  case ISD::SHL:
1786    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1787      // shl destroys sign bits.
1788      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1789      if (C->getValue() >= VTBits ||      // Bad shift.
1790          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1791      return Tmp - C->getValue();
1792    }
1793    break;
1794  case ISD::AND:
1795  case ISD::OR:
1796  case ISD::XOR:    // NOT is handled here.
1797    // Logical binary ops preserve the number of sign bits at the worst.
1798    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1799    if (Tmp != 1) {
1800      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1801      FirstAnswer = std::min(Tmp, Tmp2);
1802      // We computed what we know about the sign bits as our first
1803      // answer. Now proceed to the generic code that uses
1804      // ComputeMaskedBits, and pick whichever answer is better.
1805    }
1806    break;
1807
1808  case ISD::SELECT:
1809    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1810    if (Tmp == 1) return 1;  // Early out.
1811    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1812    return std::min(Tmp, Tmp2);
1813
1814  case ISD::SETCC:
1815    // If setcc returns 0/-1, all bits are sign bits.
1816    if (TLI.getSetCCResultContents() ==
1817        TargetLowering::ZeroOrNegativeOneSetCCResult)
1818      return VTBits;
1819    break;
1820  case ISD::ROTL:
1821  case ISD::ROTR:
1822    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1823      unsigned RotAmt = C->getValue() & (VTBits-1);
1824
1825      // Handle rotate right by N like a rotate left by 32-N.
1826      if (Op.getOpcode() == ISD::ROTR)
1827        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1828
1829      // If we aren't rotating out all of the known-in sign bits, return the
1830      // number that are left.  This handles rotl(sext(x), 1) for example.
1831      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1832      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1833    }
1834    break;
1835  case ISD::ADD:
1836    // Add can have at most one carry bit.  Thus we know that the output
1837    // is, at worst, one more bit than the inputs.
1838    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1839    if (Tmp == 1) return 1;  // Early out.
1840
1841    // Special case decrementing a value (ADD X, -1):
1842    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1843      if (CRHS->isAllOnesValue()) {
1844        APInt KnownZero, KnownOne;
1845        APInt Mask = APInt::getAllOnesValue(VTBits);
1846        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1847
1848        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1849        // sign bits set.
1850        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1851          return VTBits;
1852
1853        // If we are subtracting one from a positive number, there is no carry
1854        // out of the result.
1855        if (KnownZero.isNegative())
1856          return Tmp;
1857      }
1858
1859    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1860    if (Tmp2 == 1) return 1;
1861      return std::min(Tmp, Tmp2)-1;
1862    break;
1863
1864  case ISD::SUB:
1865    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1866    if (Tmp2 == 1) return 1;
1867
1868    // Handle NEG.
1869    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1870      if (CLHS->isNullValue()) {
1871        APInt KnownZero, KnownOne;
1872        APInt Mask = APInt::getAllOnesValue(VTBits);
1873        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1874        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1875        // sign bits set.
1876        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1877          return VTBits;
1878
1879        // If the input is known to be positive (the sign bit is known clear),
1880        // the output of the NEG has the same number of sign bits as the input.
1881        if (KnownZero.isNegative())
1882          return Tmp2;
1883
1884        // Otherwise, we treat this like a SUB.
1885      }
1886
1887    // Sub can have at most one carry bit.  Thus we know that the output
1888    // is, at worst, one more bit than the inputs.
1889    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1890    if (Tmp == 1) return 1;  // Early out.
1891      return std::min(Tmp, Tmp2)-1;
1892    break;
1893  case ISD::TRUNCATE:
1894    // FIXME: it's tricky to do anything useful for this, but it is an important
1895    // case for targets like X86.
1896    break;
1897  }
1898
1899  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1900  if (Op.getOpcode() == ISD::LOAD) {
1901    LoadSDNode *LD = cast<LoadSDNode>(Op);
1902    unsigned ExtType = LD->getExtensionType();
1903    switch (ExtType) {
1904    default: break;
1905    case ISD::SEXTLOAD:    // '17' bits known
1906      Tmp = LD->getMemoryVT().getSizeInBits();
1907      return VTBits-Tmp+1;
1908    case ISD::ZEXTLOAD:    // '16' bits known
1909      Tmp = LD->getMemoryVT().getSizeInBits();
1910      return VTBits-Tmp;
1911    }
1912  }
1913
1914  // Allow the target to implement this method for its nodes.
1915  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1916      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1917      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1918      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1919    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1920    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1921  }
1922
1923  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1924  // use this information.
1925  APInt KnownZero, KnownOne;
1926  APInt Mask = APInt::getAllOnesValue(VTBits);
1927  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1928
1929  if (KnownZero.isNegative()) {        // sign bit is 0
1930    Mask = KnownZero;
1931  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1932    Mask = KnownOne;
1933  } else {
1934    // Nothing known.
1935    return FirstAnswer;
1936  }
1937
1938  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1939  // the number of identical bits in the top of the input value.
1940  Mask = ~Mask;
1941  Mask <<= Mask.getBitWidth()-VTBits;
1942  // Return # leading zeros.  We use 'min' here in case Val was zero before
1943  // shifting.  We don't want to return '64' as for an i32 "0".
1944  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1945}
1946
1947
1948bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
1949  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1950  if (!GA) return false;
1951  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1952  if (!GV) return false;
1953  MachineModuleInfo *MMI = getMachineModuleInfo();
1954  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1955}
1956
1957
1958/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1959/// element of the result of the vector shuffle.
1960SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
1961  MVT VT = N->getValueType(0);
1962  SDValue PermMask = N->getOperand(2);
1963  SDValue Idx = PermMask.getOperand(i);
1964  if (Idx.getOpcode() == ISD::UNDEF)
1965    return getNode(ISD::UNDEF, VT.getVectorElementType());
1966  unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
1967  unsigned NumElems = PermMask.getNumOperands();
1968  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
1969  Index %= NumElems;
1970
1971  if (V.getOpcode() == ISD::BIT_CONVERT) {
1972    V = V.getOperand(0);
1973    if (V.getValueType().getVectorNumElements() != NumElems)
1974      return SDValue();
1975  }
1976  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1977    return (Index == 0) ? V.getOperand(0)
1978                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1979  if (V.getOpcode() == ISD::BUILD_VECTOR)
1980    return V.getOperand(Index);
1981  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
1982    return getShuffleScalarElt(V.Val, Index);
1983  return SDValue();
1984}
1985
1986
1987/// getNode - Gets or creates the specified node.
1988///
1989SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1990  FoldingSetNodeID ID;
1991  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1992  void *IP = 0;
1993  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1994    return SDValue(E, 0);
1995  SDNode *N = NodeAllocator.Allocate<SDNode>();
1996  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
1997  CSEMap.InsertNode(N, IP);
1998
1999  AllNodes.push_back(N);
2000#ifndef NDEBUG
2001  VerifyNode(N);
2002#endif
2003  return SDValue(N, 0);
2004}
2005
2006SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2007  // Constant fold unary operations with an integer constant operand.
2008  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
2009    const APInt &Val = C->getAPIntValue();
2010    unsigned BitWidth = VT.getSizeInBits();
2011    switch (Opcode) {
2012    default: break;
2013    case ISD::SIGN_EXTEND:
2014      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2015    case ISD::ANY_EXTEND:
2016    case ISD::ZERO_EXTEND:
2017    case ISD::TRUNCATE:
2018      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2019    case ISD::UINT_TO_FP:
2020    case ISD::SINT_TO_FP: {
2021      const uint64_t zero[] = {0, 0};
2022      // No compile time operations on this type.
2023      if (VT==MVT::ppcf128)
2024        break;
2025      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2026      (void)apf.convertFromAPInt(Val,
2027                                 Opcode==ISD::SINT_TO_FP,
2028                                 APFloat::rmNearestTiesToEven);
2029      return getConstantFP(apf, VT);
2030    }
2031    case ISD::BIT_CONVERT:
2032      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2033        return getConstantFP(Val.bitsToFloat(), VT);
2034      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2035        return getConstantFP(Val.bitsToDouble(), VT);
2036      break;
2037    case ISD::BSWAP:
2038      return getConstant(Val.byteSwap(), VT);
2039    case ISD::CTPOP:
2040      return getConstant(Val.countPopulation(), VT);
2041    case ISD::CTLZ:
2042      return getConstant(Val.countLeadingZeros(), VT);
2043    case ISD::CTTZ:
2044      return getConstant(Val.countTrailingZeros(), VT);
2045    }
2046  }
2047
2048  // Constant fold unary operations with a floating point constant operand.
2049  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
2050    APFloat V = C->getValueAPF();    // make copy
2051    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2052      switch (Opcode) {
2053      case ISD::FNEG:
2054        V.changeSign();
2055        return getConstantFP(V, VT);
2056      case ISD::FABS:
2057        V.clearSign();
2058        return getConstantFP(V, VT);
2059      case ISD::FP_ROUND:
2060      case ISD::FP_EXTEND:
2061        // This can return overflow, underflow, or inexact; we don't care.
2062        // FIXME need to be more flexible about rounding mode.
2063        (void)V.convert(*MVTToAPFloatSemantics(VT),
2064                        APFloat::rmNearestTiesToEven);
2065        return getConstantFP(V, VT);
2066      case ISD::FP_TO_SINT:
2067      case ISD::FP_TO_UINT: {
2068        integerPart x;
2069        assert(integerPartWidth >= 64);
2070        // FIXME need to be more flexible about rounding mode.
2071        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2072                              Opcode==ISD::FP_TO_SINT,
2073                              APFloat::rmTowardZero);
2074        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2075          break;
2076        return getConstant(x, VT);
2077      }
2078      case ISD::BIT_CONVERT:
2079        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2080          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2081        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2082          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2083        break;
2084      }
2085    }
2086  }
2087
2088  unsigned OpOpcode = Operand.Val->getOpcode();
2089  switch (Opcode) {
2090  case ISD::TokenFactor:
2091  case ISD::CONCAT_VECTORS:
2092    return Operand;         // Factor or concat of one node?  No need.
2093  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2094  case ISD::FP_EXTEND:
2095    assert(VT.isFloatingPoint() &&
2096           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2097    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2098    if (Operand.getOpcode() == ISD::UNDEF)
2099      return getNode(ISD::UNDEF, VT);
2100    break;
2101  case ISD::SIGN_EXTEND:
2102    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2103           "Invalid SIGN_EXTEND!");
2104    if (Operand.getValueType() == VT) return Operand;   // noop extension
2105    assert(Operand.getValueType().bitsLT(VT)
2106           && "Invalid sext node, dst < src!");
2107    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2108      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2109    break;
2110  case ISD::ZERO_EXTEND:
2111    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2112           "Invalid ZERO_EXTEND!");
2113    if (Operand.getValueType() == VT) return Operand;   // noop extension
2114    assert(Operand.getValueType().bitsLT(VT)
2115           && "Invalid zext node, dst < src!");
2116    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2117      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2118    break;
2119  case ISD::ANY_EXTEND:
2120    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2121           "Invalid ANY_EXTEND!");
2122    if (Operand.getValueType() == VT) return Operand;   // noop extension
2123    assert(Operand.getValueType().bitsLT(VT)
2124           && "Invalid anyext node, dst < src!");
2125    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2126      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2127      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2128    break;
2129  case ISD::TRUNCATE:
2130    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2131           "Invalid TRUNCATE!");
2132    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2133    assert(Operand.getValueType().bitsGT(VT)
2134           && "Invalid truncate node, src < dst!");
2135    if (OpOpcode == ISD::TRUNCATE)
2136      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2137    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2138             OpOpcode == ISD::ANY_EXTEND) {
2139      // If the source is smaller than the dest, we still need an extend.
2140      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2141        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2142      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2143        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2144      else
2145        return Operand.Val->getOperand(0);
2146    }
2147    break;
2148  case ISD::BIT_CONVERT:
2149    // Basic sanity checking.
2150    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2151           && "Cannot BIT_CONVERT between types of different sizes!");
2152    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2153    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2154      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2155    if (OpOpcode == ISD::UNDEF)
2156      return getNode(ISD::UNDEF, VT);
2157    break;
2158  case ISD::SCALAR_TO_VECTOR:
2159    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2160           VT.getVectorElementType() == Operand.getValueType() &&
2161           "Illegal SCALAR_TO_VECTOR node!");
2162    if (OpOpcode == ISD::UNDEF)
2163      return getNode(ISD::UNDEF, VT);
2164    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2165    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2166        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2167        Operand.getConstantOperandVal(1) == 0 &&
2168        Operand.getOperand(0).getValueType() == VT)
2169      return Operand.getOperand(0);
2170    break;
2171  case ISD::FNEG:
2172    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2173      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2174                     Operand.Val->getOperand(0));
2175    if (OpOpcode == ISD::FNEG)  // --X -> X
2176      return Operand.Val->getOperand(0);
2177    break;
2178  case ISD::FABS:
2179    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2180      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2181    break;
2182  }
2183
2184  SDNode *N;
2185  SDVTList VTs = getVTList(VT);
2186  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2187    FoldingSetNodeID ID;
2188    SDValue Ops[1] = { Operand };
2189    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2190    void *IP = 0;
2191    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2192      return SDValue(E, 0);
2193    N = NodeAllocator.Allocate<UnarySDNode>();
2194    new (N) UnarySDNode(Opcode, VTs, Operand);
2195    CSEMap.InsertNode(N, IP);
2196  } else {
2197    N = NodeAllocator.Allocate<UnarySDNode>();
2198    new (N) UnarySDNode(Opcode, VTs, Operand);
2199  }
2200
2201  AllNodes.push_back(N);
2202#ifndef NDEBUG
2203  VerifyNode(N);
2204#endif
2205  return SDValue(N, 0);
2206}
2207
2208SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2209                              SDValue N1, SDValue N2) {
2210  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2211  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2212  switch (Opcode) {
2213  default: break;
2214  case ISD::TokenFactor:
2215    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2216           N2.getValueType() == MVT::Other && "Invalid token factor!");
2217    // Fold trivial token factors.
2218    if (N1.getOpcode() == ISD::EntryToken) return N2;
2219    if (N2.getOpcode() == ISD::EntryToken) return N1;
2220    break;
2221  case ISD::CONCAT_VECTORS:
2222    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2223    // one big BUILD_VECTOR.
2224    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2225        N2.getOpcode() == ISD::BUILD_VECTOR) {
2226      SmallVector<SDValue, 16> Elts(N1.Val->op_begin(), N1.Val->op_end());
2227      Elts.insert(Elts.end(), N2.Val->op_begin(), N2.Val->op_end());
2228      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2229    }
2230    break;
2231  case ISD::AND:
2232    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2233           N1.getValueType() == VT && "Binary operator types must match!");
2234    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2235    // worth handling here.
2236    if (N2C && N2C->isNullValue())
2237      return N2;
2238    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2239      return N1;
2240    break;
2241  case ISD::OR:
2242  case ISD::XOR:
2243  case ISD::ADD:
2244  case ISD::SUB:
2245    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2246           N1.getValueType() == VT && "Binary operator types must match!");
2247    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2248    // it's worth handling here.
2249    if (N2C && N2C->isNullValue())
2250      return N1;
2251    break;
2252  case ISD::UDIV:
2253  case ISD::UREM:
2254  case ISD::MULHU:
2255  case ISD::MULHS:
2256    assert(VT.isInteger() && "This operator does not apply to FP types!");
2257    // fall through
2258  case ISD::MUL:
2259  case ISD::SDIV:
2260  case ISD::SREM:
2261  case ISD::FADD:
2262  case ISD::FSUB:
2263  case ISD::FMUL:
2264  case ISD::FDIV:
2265  case ISD::FREM:
2266    assert(N1.getValueType() == N2.getValueType() &&
2267           N1.getValueType() == VT && "Binary operator types must match!");
2268    break;
2269  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2270    assert(N1.getValueType() == VT &&
2271           N1.getValueType().isFloatingPoint() &&
2272           N2.getValueType().isFloatingPoint() &&
2273           "Invalid FCOPYSIGN!");
2274    break;
2275  case ISD::SHL:
2276  case ISD::SRA:
2277  case ISD::SRL:
2278  case ISD::ROTL:
2279  case ISD::ROTR:
2280    assert(VT == N1.getValueType() &&
2281           "Shift operators return type must be the same as their first arg");
2282    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2283           "Shifts only work on integers");
2284
2285    // Always fold shifts of i1 values so the code generator doesn't need to
2286    // handle them.  Since we know the size of the shift has to be less than the
2287    // size of the value, the shift/rotate count is guaranteed to be zero.
2288    if (VT == MVT::i1)
2289      return N1;
2290    break;
2291  case ISD::FP_ROUND_INREG: {
2292    MVT EVT = cast<VTSDNode>(N2)->getVT();
2293    assert(VT == N1.getValueType() && "Not an inreg round!");
2294    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2295           "Cannot FP_ROUND_INREG integer types");
2296    assert(EVT.bitsLE(VT) && "Not rounding down!");
2297    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2298    break;
2299  }
2300  case ISD::FP_ROUND:
2301    assert(VT.isFloatingPoint() &&
2302           N1.getValueType().isFloatingPoint() &&
2303           VT.bitsLE(N1.getValueType()) &&
2304           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2305    if (N1.getValueType() == VT) return N1;  // noop conversion.
2306    break;
2307  case ISD::AssertSext:
2308  case ISD::AssertZext: {
2309    MVT EVT = cast<VTSDNode>(N2)->getVT();
2310    assert(VT == N1.getValueType() && "Not an inreg extend!");
2311    assert(VT.isInteger() && EVT.isInteger() &&
2312           "Cannot *_EXTEND_INREG FP types");
2313    assert(EVT.bitsLE(VT) && "Not extending!");
2314    if (VT == EVT) return N1; // noop assertion.
2315    break;
2316  }
2317  case ISD::SIGN_EXTEND_INREG: {
2318    MVT EVT = cast<VTSDNode>(N2)->getVT();
2319    assert(VT == N1.getValueType() && "Not an inreg extend!");
2320    assert(VT.isInteger() && EVT.isInteger() &&
2321           "Cannot *_EXTEND_INREG FP types");
2322    assert(EVT.bitsLE(VT) && "Not extending!");
2323    if (EVT == VT) return N1;  // Not actually extending
2324
2325    if (N1C) {
2326      APInt Val = N1C->getAPIntValue();
2327      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2328      Val <<= Val.getBitWidth()-FromBits;
2329      Val = Val.ashr(Val.getBitWidth()-FromBits);
2330      return getConstant(Val, VT);
2331    }
2332    break;
2333  }
2334  case ISD::EXTRACT_VECTOR_ELT:
2335    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2336    if (N1.getOpcode() == ISD::UNDEF)
2337      return getNode(ISD::UNDEF, VT);
2338
2339    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2340    // expanding copies of large vectors from registers.
2341    if (N2C &&
2342        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2343        N1.getNumOperands() > 0) {
2344      unsigned Factor =
2345        N1.getOperand(0).getValueType().getVectorNumElements();
2346      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2347                     N1.getOperand(N2C->getValue() / Factor),
2348                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2349    }
2350
2351    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2352    // expanding large vector constants.
2353    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2354      return N1.getOperand(N2C->getValue());
2355
2356    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2357    // operations are lowered to scalars.
2358    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2359      if (N1.getOperand(2) == N2)
2360        return N1.getOperand(1);
2361      else
2362        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2363    }
2364    break;
2365  case ISD::EXTRACT_ELEMENT:
2366    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2367    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2368           (N1.getValueType().isInteger() == VT.isInteger()) &&
2369           "Wrong types for EXTRACT_ELEMENT!");
2370
2371    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2372    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2373    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2374    if (N1.getOpcode() == ISD::BUILD_PAIR)
2375      return N1.getOperand(N2C->getValue());
2376
2377    // EXTRACT_ELEMENT of a constant int is also very common.
2378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2379      unsigned ElementSize = VT.getSizeInBits();
2380      unsigned Shift = ElementSize * N2C->getValue();
2381      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2382      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2383    }
2384    break;
2385  case ISD::EXTRACT_SUBVECTOR:
2386    if (N1.getValueType() == VT) // Trivial extraction.
2387      return N1;
2388    break;
2389  }
2390
2391  if (N1C) {
2392    if (N2C) {
2393      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2394      switch (Opcode) {
2395      case ISD::ADD: return getConstant(C1 + C2, VT);
2396      case ISD::SUB: return getConstant(C1 - C2, VT);
2397      case ISD::MUL: return getConstant(C1 * C2, VT);
2398      case ISD::UDIV:
2399        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2400        break;
2401      case ISD::UREM :
2402        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2403        break;
2404      case ISD::SDIV :
2405        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2406        break;
2407      case ISD::SREM :
2408        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2409        break;
2410      case ISD::AND  : return getConstant(C1 & C2, VT);
2411      case ISD::OR   : return getConstant(C1 | C2, VT);
2412      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2413      case ISD::SHL  : return getConstant(C1 << C2, VT);
2414      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2415      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2416      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2417      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2418      default: break;
2419      }
2420    } else {      // Cannonicalize constant to RHS if commutative
2421      if (isCommutativeBinOp(Opcode)) {
2422        std::swap(N1C, N2C);
2423        std::swap(N1, N2);
2424      }
2425    }
2426  }
2427
2428  // Constant fold FP operations.
2429  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2430  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2431  if (N1CFP) {
2432    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2433      // Cannonicalize constant to RHS if commutative
2434      std::swap(N1CFP, N2CFP);
2435      std::swap(N1, N2);
2436    } else if (N2CFP && VT != MVT::ppcf128) {
2437      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2438      APFloat::opStatus s;
2439      switch (Opcode) {
2440      case ISD::FADD:
2441        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2442        if (s != APFloat::opInvalidOp)
2443          return getConstantFP(V1, VT);
2444        break;
2445      case ISD::FSUB:
2446        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2447        if (s!=APFloat::opInvalidOp)
2448          return getConstantFP(V1, VT);
2449        break;
2450      case ISD::FMUL:
2451        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2452        if (s!=APFloat::opInvalidOp)
2453          return getConstantFP(V1, VT);
2454        break;
2455      case ISD::FDIV:
2456        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2457        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2458          return getConstantFP(V1, VT);
2459        break;
2460      case ISD::FREM :
2461        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2462        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2463          return getConstantFP(V1, VT);
2464        break;
2465      case ISD::FCOPYSIGN:
2466        V1.copySign(V2);
2467        return getConstantFP(V1, VT);
2468      default: break;
2469      }
2470    }
2471  }
2472
2473  // Canonicalize an UNDEF to the RHS, even over a constant.
2474  if (N1.getOpcode() == ISD::UNDEF) {
2475    if (isCommutativeBinOp(Opcode)) {
2476      std::swap(N1, N2);
2477    } else {
2478      switch (Opcode) {
2479      case ISD::FP_ROUND_INREG:
2480      case ISD::SIGN_EXTEND_INREG:
2481      case ISD::SUB:
2482      case ISD::FSUB:
2483      case ISD::FDIV:
2484      case ISD::FREM:
2485      case ISD::SRA:
2486        return N1;     // fold op(undef, arg2) -> undef
2487      case ISD::UDIV:
2488      case ISD::SDIV:
2489      case ISD::UREM:
2490      case ISD::SREM:
2491      case ISD::SRL:
2492      case ISD::SHL:
2493        if (!VT.isVector())
2494          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2495        // For vectors, we can't easily build an all zero vector, just return
2496        // the LHS.
2497        return N2;
2498      }
2499    }
2500  }
2501
2502  // Fold a bunch of operators when the RHS is undef.
2503  if (N2.getOpcode() == ISD::UNDEF) {
2504    switch (Opcode) {
2505    case ISD::XOR:
2506      if (N1.getOpcode() == ISD::UNDEF)
2507        // Handle undef ^ undef -> 0 special case. This is a common
2508        // idiom (misuse).
2509        return getConstant(0, VT);
2510      // fallthrough
2511    case ISD::ADD:
2512    case ISD::ADDC:
2513    case ISD::ADDE:
2514    case ISD::SUB:
2515    case ISD::FADD:
2516    case ISD::FSUB:
2517    case ISD::FMUL:
2518    case ISD::FDIV:
2519    case ISD::FREM:
2520    case ISD::UDIV:
2521    case ISD::SDIV:
2522    case ISD::UREM:
2523    case ISD::SREM:
2524      return N2;       // fold op(arg1, undef) -> undef
2525    case ISD::MUL:
2526    case ISD::AND:
2527    case ISD::SRL:
2528    case ISD::SHL:
2529      if (!VT.isVector())
2530        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2531      // For vectors, we can't easily build an all zero vector, just return
2532      // the LHS.
2533      return N1;
2534    case ISD::OR:
2535      if (!VT.isVector())
2536        return getConstant(VT.getIntegerVTBitMask(), VT);
2537      // For vectors, we can't easily build an all one vector, just return
2538      // the LHS.
2539      return N1;
2540    case ISD::SRA:
2541      return N1;
2542    }
2543  }
2544
2545  // Memoize this node if possible.
2546  SDNode *N;
2547  SDVTList VTs = getVTList(VT);
2548  if (VT != MVT::Flag) {
2549    SDValue Ops[] = { N1, N2 };
2550    FoldingSetNodeID ID;
2551    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2552    void *IP = 0;
2553    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2554      return SDValue(E, 0);
2555    N = NodeAllocator.Allocate<BinarySDNode>();
2556    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2557    CSEMap.InsertNode(N, IP);
2558  } else {
2559    N = NodeAllocator.Allocate<BinarySDNode>();
2560    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2561  }
2562
2563  AllNodes.push_back(N);
2564#ifndef NDEBUG
2565  VerifyNode(N);
2566#endif
2567  return SDValue(N, 0);
2568}
2569
2570SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2571                              SDValue N1, SDValue N2, SDValue N3) {
2572  // Perform various simplifications.
2573  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2574  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2575  switch (Opcode) {
2576  case ISD::CONCAT_VECTORS:
2577    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2578    // one big BUILD_VECTOR.
2579    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2580        N2.getOpcode() == ISD::BUILD_VECTOR &&
2581        N3.getOpcode() == ISD::BUILD_VECTOR) {
2582      SmallVector<SDValue, 16> Elts(N1.Val->op_begin(), N1.Val->op_end());
2583      Elts.insert(Elts.end(), N2.Val->op_begin(), N2.Val->op_end());
2584      Elts.insert(Elts.end(), N3.Val->op_begin(), N3.Val->op_end());
2585      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2586    }
2587    break;
2588  case ISD::SETCC: {
2589    // Use FoldSetCC to simplify SETCC's.
2590    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2591    if (Simp.Val) return Simp;
2592    break;
2593  }
2594  case ISD::SELECT:
2595    if (N1C) {
2596     if (N1C->getValue())
2597        return N2;             // select true, X, Y -> X
2598      else
2599        return N3;             // select false, X, Y -> Y
2600    }
2601
2602    if (N2 == N3) return N2;   // select C, X, X -> X
2603    break;
2604  case ISD::BRCOND:
2605    if (N2C) {
2606      if (N2C->getValue()) // Unconditional branch
2607        return getNode(ISD::BR, MVT::Other, N1, N3);
2608      else
2609        return N1;         // Never-taken branch
2610    }
2611    break;
2612  case ISD::VECTOR_SHUFFLE:
2613    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2614           VT.isVector() && N3.getValueType().isVector() &&
2615           N3.getOpcode() == ISD::BUILD_VECTOR &&
2616           VT.getVectorNumElements() == N3.getNumOperands() &&
2617           "Illegal VECTOR_SHUFFLE node!");
2618    break;
2619  case ISD::BIT_CONVERT:
2620    // Fold bit_convert nodes from a type to themselves.
2621    if (N1.getValueType() == VT)
2622      return N1;
2623    break;
2624  }
2625
2626  // Memoize node if it doesn't produce a flag.
2627  SDNode *N;
2628  SDVTList VTs = getVTList(VT);
2629  if (VT != MVT::Flag) {
2630    SDValue Ops[] = { N1, N2, N3 };
2631    FoldingSetNodeID ID;
2632    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2633    void *IP = 0;
2634    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2635      return SDValue(E, 0);
2636    N = NodeAllocator.Allocate<TernarySDNode>();
2637    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2638    CSEMap.InsertNode(N, IP);
2639  } else {
2640    N = NodeAllocator.Allocate<TernarySDNode>();
2641    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2642  }
2643  AllNodes.push_back(N);
2644#ifndef NDEBUG
2645  VerifyNode(N);
2646#endif
2647  return SDValue(N, 0);
2648}
2649
2650SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2651                              SDValue N1, SDValue N2, SDValue N3,
2652                              SDValue N4) {
2653  SDValue Ops[] = { N1, N2, N3, N4 };
2654  return getNode(Opcode, VT, Ops, 4);
2655}
2656
2657SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2658                              SDValue N1, SDValue N2, SDValue N3,
2659                              SDValue N4, SDValue N5) {
2660  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2661  return getNode(Opcode, VT, Ops, 5);
2662}
2663
2664/// getMemsetValue - Vectorized representation of the memset value
2665/// operand.
2666static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2667  unsigned NumBits = VT.isVector() ?
2668    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2669  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2670    APInt Val = APInt(NumBits, C->getValue() & 255);
2671    unsigned Shift = 8;
2672    for (unsigned i = NumBits; i > 8; i >>= 1) {
2673      Val = (Val << Shift) | Val;
2674      Shift <<= 1;
2675    }
2676    if (VT.isInteger())
2677      return DAG.getConstant(Val, VT);
2678    return DAG.getConstantFP(APFloat(Val), VT);
2679  }
2680
2681  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2682  unsigned Shift = 8;
2683  for (unsigned i = NumBits; i > 8; i >>= 1) {
2684    Value = DAG.getNode(ISD::OR, VT,
2685                        DAG.getNode(ISD::SHL, VT, Value,
2686                                    DAG.getConstant(Shift, MVT::i8)), Value);
2687    Shift <<= 1;
2688  }
2689
2690  return Value;
2691}
2692
2693/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2694/// used when a memcpy is turned into a memset when the source is a constant
2695/// string ptr.
2696static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2697                                    const TargetLowering &TLI,
2698                                    std::string &Str, unsigned Offset) {
2699  // Handle vector with all elements zero.
2700  if (Str.empty()) {
2701    if (VT.isInteger())
2702      return DAG.getConstant(0, VT);
2703    unsigned NumElts = VT.getVectorNumElements();
2704    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2705    return DAG.getNode(ISD::BIT_CONVERT, VT,
2706                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2707  }
2708
2709  assert(!VT.isVector() && "Can't handle vector type here!");
2710  unsigned NumBits = VT.getSizeInBits();
2711  unsigned MSB = NumBits / 8;
2712  uint64_t Val = 0;
2713  if (TLI.isLittleEndian())
2714    Offset = Offset + MSB - 1;
2715  for (unsigned i = 0; i != MSB; ++i) {
2716    Val = (Val << 8) | (unsigned char)Str[Offset];
2717    Offset += TLI.isLittleEndian() ? -1 : 1;
2718  }
2719  return DAG.getConstant(Val, VT);
2720}
2721
2722/// getMemBasePlusOffset - Returns base and offset node for the
2723///
2724static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2725                                      SelectionDAG &DAG) {
2726  MVT VT = Base.getValueType();
2727  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2728}
2729
2730/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2731///
2732static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2733  unsigned SrcDelta = 0;
2734  GlobalAddressSDNode *G = NULL;
2735  if (Src.getOpcode() == ISD::GlobalAddress)
2736    G = cast<GlobalAddressSDNode>(Src);
2737  else if (Src.getOpcode() == ISD::ADD &&
2738           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2739           Src.getOperand(1).getOpcode() == ISD::Constant) {
2740    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2741    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2742  }
2743  if (!G)
2744    return false;
2745
2746  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2747  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2748    return true;
2749
2750  return false;
2751}
2752
2753/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2754/// to replace the memset / memcpy is below the threshold. It also returns the
2755/// types of the sequence of memory ops to perform memset / memcpy.
2756static
2757bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2758                              SDValue Dst, SDValue Src,
2759                              unsigned Limit, uint64_t Size, unsigned &Align,
2760                              std::string &Str, bool &isSrcStr,
2761                              SelectionDAG &DAG,
2762                              const TargetLowering &TLI) {
2763  isSrcStr = isMemSrcFromString(Src, Str);
2764  bool isSrcConst = isa<ConstantSDNode>(Src);
2765  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2766  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2767  if (VT != MVT::iAny) {
2768    unsigned NewAlign = (unsigned)
2769      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2770    // If source is a string constant, this will require an unaligned load.
2771    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2772      if (Dst.getOpcode() != ISD::FrameIndex) {
2773        // Can't change destination alignment. It requires a unaligned store.
2774        if (AllowUnalign)
2775          VT = MVT::iAny;
2776      } else {
2777        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2778        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2779        if (MFI->isFixedObjectIndex(FI)) {
2780          // Can't change destination alignment. It requires a unaligned store.
2781          if (AllowUnalign)
2782            VT = MVT::iAny;
2783        } else {
2784          // Give the stack frame object a larger alignment if needed.
2785          if (MFI->getObjectAlignment(FI) < NewAlign)
2786            MFI->setObjectAlignment(FI, NewAlign);
2787          Align = NewAlign;
2788        }
2789      }
2790    }
2791  }
2792
2793  if (VT == MVT::iAny) {
2794    if (AllowUnalign) {
2795      VT = MVT::i64;
2796    } else {
2797      switch (Align & 7) {
2798      case 0:  VT = MVT::i64; break;
2799      case 4:  VT = MVT::i32; break;
2800      case 2:  VT = MVT::i16; break;
2801      default: VT = MVT::i8;  break;
2802      }
2803    }
2804
2805    MVT LVT = MVT::i64;
2806    while (!TLI.isTypeLegal(LVT))
2807      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2808    assert(LVT.isInteger());
2809
2810    if (VT.bitsGT(LVT))
2811      VT = LVT;
2812  }
2813
2814  unsigned NumMemOps = 0;
2815  while (Size != 0) {
2816    unsigned VTSize = VT.getSizeInBits() / 8;
2817    while (VTSize > Size) {
2818      // For now, only use non-vector load / store's for the left-over pieces.
2819      if (VT.isVector()) {
2820        VT = MVT::i64;
2821        while (!TLI.isTypeLegal(VT))
2822          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2823        VTSize = VT.getSizeInBits() / 8;
2824      } else {
2825        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2826        VTSize >>= 1;
2827      }
2828    }
2829
2830    if (++NumMemOps > Limit)
2831      return false;
2832    MemOps.push_back(VT);
2833    Size -= VTSize;
2834  }
2835
2836  return true;
2837}
2838
2839static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2840                                         SDValue Chain, SDValue Dst,
2841                                         SDValue Src, uint64_t Size,
2842                                         unsigned Align, bool AlwaysInline,
2843                                         const Value *DstSV, uint64_t DstSVOff,
2844                                         const Value *SrcSV, uint64_t SrcSVOff){
2845  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2846
2847  // Expand memcpy to a series of load and store ops if the size operand falls
2848  // below a certain threshold.
2849  std::vector<MVT> MemOps;
2850  uint64_t Limit = -1;
2851  if (!AlwaysInline)
2852    Limit = TLI.getMaxStoresPerMemcpy();
2853  unsigned DstAlign = Align;  // Destination alignment can change.
2854  std::string Str;
2855  bool CopyFromStr;
2856  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2857                                Str, CopyFromStr, DAG, TLI))
2858    return SDValue();
2859
2860
2861  bool isZeroStr = CopyFromStr && Str.empty();
2862  SmallVector<SDValue, 8> OutChains;
2863  unsigned NumMemOps = MemOps.size();
2864  uint64_t SrcOff = 0, DstOff = 0;
2865  for (unsigned i = 0; i < NumMemOps; i++) {
2866    MVT VT = MemOps[i];
2867    unsigned VTSize = VT.getSizeInBits() / 8;
2868    SDValue Value, Store;
2869
2870    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2871      // It's unlikely a store of a vector immediate can be done in a single
2872      // instruction. It would require a load from a constantpool first.
2873      // We also handle store a vector with all zero's.
2874      // FIXME: Handle other cases where store of vector immediate is done in
2875      // a single instruction.
2876      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2877      Store = DAG.getStore(Chain, Value,
2878                           getMemBasePlusOffset(Dst, DstOff, DAG),
2879                           DstSV, DstSVOff + DstOff, false, DstAlign);
2880    } else {
2881      Value = DAG.getLoad(VT, Chain,
2882                          getMemBasePlusOffset(Src, SrcOff, DAG),
2883                          SrcSV, SrcSVOff + SrcOff, false, Align);
2884      Store = DAG.getStore(Chain, Value,
2885                           getMemBasePlusOffset(Dst, DstOff, DAG),
2886                           DstSV, DstSVOff + DstOff, false, DstAlign);
2887    }
2888    OutChains.push_back(Store);
2889    SrcOff += VTSize;
2890    DstOff += VTSize;
2891  }
2892
2893  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2894                     &OutChains[0], OutChains.size());
2895}
2896
2897static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2898                                          SDValue Chain, SDValue Dst,
2899                                          SDValue Src, uint64_t Size,
2900                                          unsigned Align, bool AlwaysInline,
2901                                          const Value *DstSV, uint64_t DstSVOff,
2902                                          const Value *SrcSV, uint64_t SrcSVOff){
2903  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2904
2905  // Expand memmove to a series of load and store ops if the size operand falls
2906  // below a certain threshold.
2907  std::vector<MVT> MemOps;
2908  uint64_t Limit = -1;
2909  if (!AlwaysInline)
2910    Limit = TLI.getMaxStoresPerMemmove();
2911  unsigned DstAlign = Align;  // Destination alignment can change.
2912  std::string Str;
2913  bool CopyFromStr;
2914  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2915                                Str, CopyFromStr, DAG, TLI))
2916    return SDValue();
2917
2918  uint64_t SrcOff = 0, DstOff = 0;
2919
2920  SmallVector<SDValue, 8> LoadValues;
2921  SmallVector<SDValue, 8> LoadChains;
2922  SmallVector<SDValue, 8> OutChains;
2923  unsigned NumMemOps = MemOps.size();
2924  for (unsigned i = 0; i < NumMemOps; i++) {
2925    MVT VT = MemOps[i];
2926    unsigned VTSize = VT.getSizeInBits() / 8;
2927    SDValue Value, Store;
2928
2929    Value = DAG.getLoad(VT, Chain,
2930                        getMemBasePlusOffset(Src, SrcOff, DAG),
2931                        SrcSV, SrcSVOff + SrcOff, false, Align);
2932    LoadValues.push_back(Value);
2933    LoadChains.push_back(Value.getValue(1));
2934    SrcOff += VTSize;
2935  }
2936  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2937                      &LoadChains[0], LoadChains.size());
2938  OutChains.clear();
2939  for (unsigned i = 0; i < NumMemOps; i++) {
2940    MVT VT = MemOps[i];
2941    unsigned VTSize = VT.getSizeInBits() / 8;
2942    SDValue Value, Store;
2943
2944    Store = DAG.getStore(Chain, LoadValues[i],
2945                         getMemBasePlusOffset(Dst, DstOff, DAG),
2946                         DstSV, DstSVOff + DstOff, false, DstAlign);
2947    OutChains.push_back(Store);
2948    DstOff += VTSize;
2949  }
2950
2951  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2952                     &OutChains[0], OutChains.size());
2953}
2954
2955static SDValue getMemsetStores(SelectionDAG &DAG,
2956                                 SDValue Chain, SDValue Dst,
2957                                 SDValue Src, uint64_t Size,
2958                                 unsigned Align,
2959                                 const Value *DstSV, uint64_t DstSVOff) {
2960  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2961
2962  // Expand memset to a series of load/store ops if the size operand
2963  // falls below a certain threshold.
2964  std::vector<MVT> MemOps;
2965  std::string Str;
2966  bool CopyFromStr;
2967  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2968                                Size, Align, Str, CopyFromStr, DAG, TLI))
2969    return SDValue();
2970
2971  SmallVector<SDValue, 8> OutChains;
2972  uint64_t DstOff = 0;
2973
2974  unsigned NumMemOps = MemOps.size();
2975  for (unsigned i = 0; i < NumMemOps; i++) {
2976    MVT VT = MemOps[i];
2977    unsigned VTSize = VT.getSizeInBits() / 8;
2978    SDValue Value = getMemsetValue(Src, VT, DAG);
2979    SDValue Store = DAG.getStore(Chain, Value,
2980                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2981                                   DstSV, DstSVOff + DstOff);
2982    OutChains.push_back(Store);
2983    DstOff += VTSize;
2984  }
2985
2986  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2987                     &OutChains[0], OutChains.size());
2988}
2989
2990SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
2991                                SDValue Src, SDValue Size,
2992                                unsigned Align, bool AlwaysInline,
2993                                const Value *DstSV, uint64_t DstSVOff,
2994                                const Value *SrcSV, uint64_t SrcSVOff) {
2995
2996  // Check to see if we should lower the memcpy to loads and stores first.
2997  // For cases within the target-specified limits, this is the best choice.
2998  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2999  if (ConstantSize) {
3000    // Memcpy with size zero? Just return the original chain.
3001    if (ConstantSize->isNullValue())
3002      return Chain;
3003
3004    SDValue Result =
3005      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
3006                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3007    if (Result.Val)
3008      return Result;
3009  }
3010
3011  // Then check to see if we should lower the memcpy with target-specific
3012  // code. If the target chooses to do this, this is the next best.
3013  SDValue Result =
3014    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3015                                AlwaysInline,
3016                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3017  if (Result.Val)
3018    return Result;
3019
3020  // If we really need inline code and the target declined to provide it,
3021  // use a (potentially long) sequence of loads and stores.
3022  if (AlwaysInline) {
3023    assert(ConstantSize && "AlwaysInline requires a constant size!");
3024    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3025                                   ConstantSize->getValue(), Align, true,
3026                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3027  }
3028
3029  // Emit a library call.
3030  TargetLowering::ArgListTy Args;
3031  TargetLowering::ArgListEntry Entry;
3032  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3033  Entry.Node = Dst; Args.push_back(Entry);
3034  Entry.Node = Src; Args.push_back(Entry);
3035  Entry.Node = Size; Args.push_back(Entry);
3036  std::pair<SDValue,SDValue> CallResult =
3037    TLI.LowerCallTo(Chain, Type::VoidTy,
3038                    false, false, false, CallingConv::C, false,
3039                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3040                    Args, *this);
3041  return CallResult.second;
3042}
3043
3044SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3045                                 SDValue Src, SDValue Size,
3046                                 unsigned Align,
3047                                 const Value *DstSV, uint64_t DstSVOff,
3048                                 const Value *SrcSV, uint64_t SrcSVOff) {
3049
3050  // Check to see if we should lower the memmove to loads and stores first.
3051  // For cases within the target-specified limits, this is the best choice.
3052  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3053  if (ConstantSize) {
3054    // Memmove with size zero? Just return the original chain.
3055    if (ConstantSize->isNullValue())
3056      return Chain;
3057
3058    SDValue Result =
3059      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
3060                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3061    if (Result.Val)
3062      return Result;
3063  }
3064
3065  // Then check to see if we should lower the memmove with target-specific
3066  // code. If the target chooses to do this, this is the next best.
3067  SDValue Result =
3068    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3069                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3070  if (Result.Val)
3071    return Result;
3072
3073  // Emit a library call.
3074  TargetLowering::ArgListTy Args;
3075  TargetLowering::ArgListEntry Entry;
3076  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3077  Entry.Node = Dst; Args.push_back(Entry);
3078  Entry.Node = Src; Args.push_back(Entry);
3079  Entry.Node = Size; Args.push_back(Entry);
3080  std::pair<SDValue,SDValue> CallResult =
3081    TLI.LowerCallTo(Chain, Type::VoidTy,
3082                    false, false, false, CallingConv::C, false,
3083                    getExternalSymbol("memmove", TLI.getPointerTy()),
3084                    Args, *this);
3085  return CallResult.second;
3086}
3087
3088SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3089                                SDValue Src, SDValue Size,
3090                                unsigned Align,
3091                                const Value *DstSV, uint64_t DstSVOff) {
3092
3093  // Check to see if we should lower the memset to stores first.
3094  // For cases within the target-specified limits, this is the best choice.
3095  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3096  if (ConstantSize) {
3097    // Memset with size zero? Just return the original chain.
3098    if (ConstantSize->isNullValue())
3099      return Chain;
3100
3101    SDValue Result =
3102      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
3103                      DstSV, DstSVOff);
3104    if (Result.Val)
3105      return Result;
3106  }
3107
3108  // Then check to see if we should lower the memset with target-specific
3109  // code. If the target chooses to do this, this is the next best.
3110  SDValue Result =
3111    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3112                                DstSV, DstSVOff);
3113  if (Result.Val)
3114    return Result;
3115
3116  // Emit a library call.
3117  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3118  TargetLowering::ArgListTy Args;
3119  TargetLowering::ArgListEntry Entry;
3120  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3121  Args.push_back(Entry);
3122  // Extend or truncate the argument to be an i32 value for the call.
3123  if (Src.getValueType().bitsGT(MVT::i32))
3124    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3125  else
3126    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3127  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3128  Args.push_back(Entry);
3129  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3130  Args.push_back(Entry);
3131  std::pair<SDValue,SDValue> CallResult =
3132    TLI.LowerCallTo(Chain, Type::VoidTy,
3133                    false, false, false, CallingConv::C, false,
3134                    getExternalSymbol("memset", TLI.getPointerTy()),
3135                    Args, *this);
3136  return CallResult.second;
3137}
3138
3139SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3140                                SDValue Ptr, SDValue Cmp,
3141                                SDValue Swp, const Value* PtrVal,
3142                                unsigned Alignment) {
3143  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3144  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3145
3146  MVT VT = Cmp.getValueType();
3147
3148  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3149    Alignment = getMVTAlignment(VT);
3150
3151  SDVTList VTs = getVTList(VT, MVT::Other);
3152  FoldingSetNodeID ID;
3153  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3154  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3155  void* IP = 0;
3156  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3157    return SDValue(E, 0);
3158  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3159  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3160  CSEMap.InsertNode(N, IP);
3161  AllNodes.push_back(N);
3162  return SDValue(N, 0);
3163}
3164
3165SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3166                                SDValue Ptr, SDValue Val,
3167                                const Value* PtrVal,
3168                                unsigned Alignment) {
3169  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3170          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3171          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3172          || Opcode == ISD::ATOMIC_LOAD_NAND
3173          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3174          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3175         && "Invalid Atomic Op");
3176
3177  MVT VT = Val.getValueType();
3178
3179  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3180    Alignment = getMVTAlignment(VT);
3181
3182  SDVTList VTs = getVTList(VT, MVT::Other);
3183  FoldingSetNodeID ID;
3184  SDValue Ops[] = {Chain, Ptr, Val};
3185  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3186  void* IP = 0;
3187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3188    return SDValue(E, 0);
3189  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3190  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3191  CSEMap.InsertNode(N, IP);
3192  AllNodes.push_back(N);
3193  return SDValue(N, 0);
3194}
3195
3196/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3197/// Allowed to return something different (and simpler) if Simplify is true.
3198SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3199                                     bool Simplify) {
3200  if (Simplify && NumOps == 1)
3201    return Ops[0];
3202
3203  SmallVector<MVT, 4> VTs;
3204  VTs.reserve(NumOps);
3205  for (unsigned i = 0; i < NumOps; ++i)
3206    VTs.push_back(Ops[i].getValueType());
3207  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3208}
3209
3210SDValue
3211SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3212                      MVT VT, SDValue Chain,
3213                      SDValue Ptr, SDValue Offset,
3214                      const Value *SV, int SVOffset, MVT EVT,
3215                      bool isVolatile, unsigned Alignment) {
3216  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3217    Alignment = getMVTAlignment(VT);
3218
3219  if (VT == EVT) {
3220    ExtType = ISD::NON_EXTLOAD;
3221  } else if (ExtType == ISD::NON_EXTLOAD) {
3222    assert(VT == EVT && "Non-extending load from different memory type!");
3223  } else {
3224    // Extending load.
3225    if (VT.isVector())
3226      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3227             "Invalid vector extload!");
3228    else
3229      assert(EVT.bitsLT(VT) &&
3230             "Should only be an extending load, not truncating!");
3231    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3232           "Cannot sign/zero extend a FP/Vector load!");
3233    assert(VT.isInteger() == EVT.isInteger() &&
3234           "Cannot convert from FP to Int or Int -> FP!");
3235  }
3236
3237  bool Indexed = AM != ISD::UNINDEXED;
3238  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3239         "Unindexed load with an offset!");
3240
3241  SDVTList VTs = Indexed ?
3242    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3243  SDValue Ops[] = { Chain, Ptr, Offset };
3244  FoldingSetNodeID ID;
3245  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3246  ID.AddInteger(AM);
3247  ID.AddInteger(ExtType);
3248  ID.AddInteger(EVT.getRawBits());
3249  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3250  void *IP = 0;
3251  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3252    return SDValue(E, 0);
3253  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3254  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3255                     Alignment, isVolatile);
3256  CSEMap.InsertNode(N, IP);
3257  AllNodes.push_back(N);
3258  return SDValue(N, 0);
3259}
3260
3261SDValue SelectionDAG::getLoad(MVT VT,
3262                              SDValue Chain, SDValue Ptr,
3263                              const Value *SV, int SVOffset,
3264                              bool isVolatile, unsigned Alignment) {
3265  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3266  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3267                 SV, SVOffset, VT, isVolatile, Alignment);
3268}
3269
3270SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3271                                 SDValue Chain, SDValue Ptr,
3272                                 const Value *SV,
3273                                 int SVOffset, MVT EVT,
3274                                 bool isVolatile, unsigned Alignment) {
3275  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3276  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3277                 SV, SVOffset, EVT, isVolatile, Alignment);
3278}
3279
3280SDValue
3281SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3282                             SDValue Offset, ISD::MemIndexedMode AM) {
3283  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3284  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3285         "Load is already a indexed load!");
3286  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3287                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3288                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3289                 LD->isVolatile(), LD->getAlignment());
3290}
3291
3292SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3293                               SDValue Ptr, const Value *SV, int SVOffset,
3294                               bool isVolatile, unsigned Alignment) {
3295  MVT VT = Val.getValueType();
3296
3297  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3298    Alignment = getMVTAlignment(VT);
3299
3300  SDVTList VTs = getVTList(MVT::Other);
3301  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3302  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3303  FoldingSetNodeID ID;
3304  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3305  ID.AddInteger(ISD::UNINDEXED);
3306  ID.AddInteger(false);
3307  ID.AddInteger(VT.getRawBits());
3308  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3309  void *IP = 0;
3310  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3311    return SDValue(E, 0);
3312  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3313  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3314                      VT, SV, SVOffset, Alignment, isVolatile);
3315  CSEMap.InsertNode(N, IP);
3316  AllNodes.push_back(N);
3317  return SDValue(N, 0);
3318}
3319
3320SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3321                                    SDValue Ptr, const Value *SV,
3322                                    int SVOffset, MVT SVT,
3323                                    bool isVolatile, unsigned Alignment) {
3324  MVT VT = Val.getValueType();
3325
3326  if (VT == SVT)
3327    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3328
3329  assert(VT.bitsGT(SVT) && "Not a truncation?");
3330  assert(VT.isInteger() == SVT.isInteger() &&
3331         "Can't do FP-INT conversion!");
3332
3333  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3334    Alignment = getMVTAlignment(VT);
3335
3336  SDVTList VTs = getVTList(MVT::Other);
3337  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3338  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3339  FoldingSetNodeID ID;
3340  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3341  ID.AddInteger(ISD::UNINDEXED);
3342  ID.AddInteger(1);
3343  ID.AddInteger(SVT.getRawBits());
3344  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3345  void *IP = 0;
3346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3347    return SDValue(E, 0);
3348  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3349  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3350                      SVT, SV, SVOffset, Alignment, isVolatile);
3351  CSEMap.InsertNode(N, IP);
3352  AllNodes.push_back(N);
3353  return SDValue(N, 0);
3354}
3355
3356SDValue
3357SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3358                              SDValue Offset, ISD::MemIndexedMode AM) {
3359  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3360  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3361         "Store is already a indexed store!");
3362  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3363  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3364  FoldingSetNodeID ID;
3365  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3366  ID.AddInteger(AM);
3367  ID.AddInteger(ST->isTruncatingStore());
3368  ID.AddInteger(ST->getMemoryVT().getRawBits());
3369  ID.AddInteger(ST->getRawFlags());
3370  void *IP = 0;
3371  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3372    return SDValue(E, 0);
3373  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3374  new (N) StoreSDNode(Ops, VTs, AM,
3375                      ST->isTruncatingStore(), ST->getMemoryVT(),
3376                      ST->getSrcValue(), ST->getSrcValueOffset(),
3377                      ST->getAlignment(), ST->isVolatile());
3378  CSEMap.InsertNode(N, IP);
3379  AllNodes.push_back(N);
3380  return SDValue(N, 0);
3381}
3382
3383SDValue SelectionDAG::getVAArg(MVT VT,
3384                               SDValue Chain, SDValue Ptr,
3385                               SDValue SV) {
3386  SDValue Ops[] = { Chain, Ptr, SV };
3387  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3388}
3389
3390SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3391                              const SDUse *Ops, unsigned NumOps) {
3392  switch (NumOps) {
3393  case 0: return getNode(Opcode, VT);
3394  case 1: return getNode(Opcode, VT, Ops[0]);
3395  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3396  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3397  default: break;
3398  }
3399
3400  // Copy from an SDUse array into an SDValue array for use with
3401  // the regular getNode logic.
3402  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3403  return getNode(Opcode, VT, &NewOps[0], NumOps);
3404}
3405
3406SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3407                              const SDValue *Ops, unsigned NumOps) {
3408  switch (NumOps) {
3409  case 0: return getNode(Opcode, VT);
3410  case 1: return getNode(Opcode, VT, Ops[0]);
3411  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3412  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3413  default: break;
3414  }
3415
3416  switch (Opcode) {
3417  default: break;
3418  case ISD::SELECT_CC: {
3419    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3420    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3421           "LHS and RHS of condition must have same type!");
3422    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3423           "True and False arms of SelectCC must have same type!");
3424    assert(Ops[2].getValueType() == VT &&
3425           "select_cc node must be of same type as true and false value!");
3426    break;
3427  }
3428  case ISD::BR_CC: {
3429    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3430    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3431           "LHS/RHS of comparison should match types!");
3432    break;
3433  }
3434  }
3435
3436  // Memoize nodes.
3437  SDNode *N;
3438  SDVTList VTs = getVTList(VT);
3439  if (VT != MVT::Flag) {
3440    FoldingSetNodeID ID;
3441    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3442    void *IP = 0;
3443    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3444      return SDValue(E, 0);
3445    N = NodeAllocator.Allocate<SDNode>();
3446    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3447    CSEMap.InsertNode(N, IP);
3448  } else {
3449    N = NodeAllocator.Allocate<SDNode>();
3450    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3451  }
3452  AllNodes.push_back(N);
3453#ifndef NDEBUG
3454  VerifyNode(N);
3455#endif
3456  return SDValue(N, 0);
3457}
3458
3459SDValue SelectionDAG::getNode(unsigned Opcode,
3460                              const std::vector<MVT> &ResultTys,
3461                              const SDValue *Ops, unsigned NumOps) {
3462  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3463                 Ops, NumOps);
3464}
3465
3466SDValue SelectionDAG::getNode(unsigned Opcode,
3467                              const MVT *VTs, unsigned NumVTs,
3468                              const SDValue *Ops, unsigned NumOps) {
3469  if (NumVTs == 1)
3470    return getNode(Opcode, VTs[0], Ops, NumOps);
3471  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3472}
3473
3474SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3475                              const SDValue *Ops, unsigned NumOps) {
3476  if (VTList.NumVTs == 1)
3477    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3478
3479  switch (Opcode) {
3480  // FIXME: figure out how to safely handle things like
3481  // int foo(int x) { return 1 << (x & 255); }
3482  // int bar() { return foo(256); }
3483#if 0
3484  case ISD::SRA_PARTS:
3485  case ISD::SRL_PARTS:
3486  case ISD::SHL_PARTS:
3487    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3488        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3489      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3490    else if (N3.getOpcode() == ISD::AND)
3491      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3492        // If the and is only masking out bits that cannot effect the shift,
3493        // eliminate the and.
3494        unsigned NumBits = VT.getSizeInBits()*2;
3495        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3496          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3497      }
3498    break;
3499#endif
3500  }
3501
3502  // Memoize the node unless it returns a flag.
3503  SDNode *N;
3504  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3505    FoldingSetNodeID ID;
3506    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3507    void *IP = 0;
3508    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3509      return SDValue(E, 0);
3510    if (NumOps == 1) {
3511      N = NodeAllocator.Allocate<UnarySDNode>();
3512      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3513    } else if (NumOps == 2) {
3514      N = NodeAllocator.Allocate<BinarySDNode>();
3515      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3516    } else if (NumOps == 3) {
3517      N = NodeAllocator.Allocate<TernarySDNode>();
3518      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3519    } else {
3520      N = NodeAllocator.Allocate<SDNode>();
3521      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3522    }
3523    CSEMap.InsertNode(N, IP);
3524  } else {
3525    if (NumOps == 1) {
3526      N = NodeAllocator.Allocate<UnarySDNode>();
3527      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3528    } else if (NumOps == 2) {
3529      N = NodeAllocator.Allocate<BinarySDNode>();
3530      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3531    } else if (NumOps == 3) {
3532      N = NodeAllocator.Allocate<TernarySDNode>();
3533      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3534    } else {
3535      N = NodeAllocator.Allocate<SDNode>();
3536      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3537    }
3538  }
3539  AllNodes.push_back(N);
3540#ifndef NDEBUG
3541  VerifyNode(N);
3542#endif
3543  return SDValue(N, 0);
3544}
3545
3546SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3547  return getNode(Opcode, VTList, 0, 0);
3548}
3549
3550SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3551                                SDValue N1) {
3552  SDValue Ops[] = { N1 };
3553  return getNode(Opcode, VTList, Ops, 1);
3554}
3555
3556SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3557                              SDValue N1, SDValue N2) {
3558  SDValue Ops[] = { N1, N2 };
3559  return getNode(Opcode, VTList, Ops, 2);
3560}
3561
3562SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3563                              SDValue N1, SDValue N2, SDValue N3) {
3564  SDValue Ops[] = { N1, N2, N3 };
3565  return getNode(Opcode, VTList, Ops, 3);
3566}
3567
3568SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3569                              SDValue N1, SDValue N2, SDValue N3,
3570                              SDValue N4) {
3571  SDValue Ops[] = { N1, N2, N3, N4 };
3572  return getNode(Opcode, VTList, Ops, 4);
3573}
3574
3575SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3576                              SDValue N1, SDValue N2, SDValue N3,
3577                              SDValue N4, SDValue N5) {
3578  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3579  return getNode(Opcode, VTList, Ops, 5);
3580}
3581
3582SDVTList SelectionDAG::getVTList(MVT VT) {
3583  return makeVTList(SDNode::getValueTypeList(VT), 1);
3584}
3585
3586SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3587  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3588       E = VTList.rend(); I != E; ++I)
3589    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3590      return *I;
3591
3592  MVT *Array = Allocator.Allocate<MVT>(2);
3593  Array[0] = VT1;
3594  Array[1] = VT2;
3595  SDVTList Result = makeVTList(Array, 2);
3596  VTList.push_back(Result);
3597  return Result;
3598}
3599
3600SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3601  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3602       E = VTList.rend(); I != E; ++I)
3603    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3604                          I->VTs[2] == VT3)
3605      return *I;
3606
3607  MVT *Array = Allocator.Allocate<MVT>(3);
3608  Array[0] = VT1;
3609  Array[1] = VT2;
3610  Array[2] = VT3;
3611  SDVTList Result = makeVTList(Array, 3);
3612  VTList.push_back(Result);
3613  return Result;
3614}
3615
3616SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3617  switch (NumVTs) {
3618    case 0: assert(0 && "Cannot have nodes without results!");
3619    case 1: return getVTList(VTs[0]);
3620    case 2: return getVTList(VTs[0], VTs[1]);
3621    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3622    default: break;
3623  }
3624
3625  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3626       E = VTList.rend(); I != E; ++I) {
3627    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3628      continue;
3629
3630    bool NoMatch = false;
3631    for (unsigned i = 2; i != NumVTs; ++i)
3632      if (VTs[i] != I->VTs[i]) {
3633        NoMatch = true;
3634        break;
3635      }
3636    if (!NoMatch)
3637      return *I;
3638  }
3639
3640  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3641  std::copy(VTs, VTs+NumVTs, Array);
3642  SDVTList Result = makeVTList(Array, NumVTs);
3643  VTList.push_back(Result);
3644  return Result;
3645}
3646
3647
3648/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3649/// specified operands.  If the resultant node already exists in the DAG,
3650/// this does not modify the specified node, instead it returns the node that
3651/// already exists.  If the resultant node does not exist in the DAG, the
3652/// input node is returned.  As a degenerate case, if you specify the same
3653/// input operands as the node already has, the input node is returned.
3654SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3655  SDNode *N = InN.Val;
3656  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3657
3658  // Check to see if there is no change.
3659  if (Op == N->getOperand(0)) return InN;
3660
3661  // See if the modified node already exists.
3662  void *InsertPos = 0;
3663  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3664    return SDValue(Existing, InN.ResNo);
3665
3666  // Nope it doesn't.  Remove the node from its current place in the maps.
3667  if (InsertPos)
3668    RemoveNodeFromCSEMaps(N);
3669
3670  // Now we update the operands.
3671  N->OperandList[0].getVal()->removeUser(0, N);
3672  N->OperandList[0] = Op;
3673  N->OperandList[0].setUser(N);
3674  Op.Val->addUser(0, N);
3675
3676  // If this gets put into a CSE map, add it.
3677  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3678  return InN;
3679}
3680
3681SDValue SelectionDAG::
3682UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3683  SDNode *N = InN.Val;
3684  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3685
3686  // Check to see if there is no change.
3687  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3688    return InN;   // No operands changed, just return the input node.
3689
3690  // See if the modified node already exists.
3691  void *InsertPos = 0;
3692  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3693    return SDValue(Existing, InN.ResNo);
3694
3695  // Nope it doesn't.  Remove the node from its current place in the maps.
3696  if (InsertPos)
3697    RemoveNodeFromCSEMaps(N);
3698
3699  // Now we update the operands.
3700  if (N->OperandList[0] != Op1) {
3701    N->OperandList[0].getVal()->removeUser(0, N);
3702    N->OperandList[0] = Op1;
3703    N->OperandList[0].setUser(N);
3704    Op1.Val->addUser(0, N);
3705  }
3706  if (N->OperandList[1] != Op2) {
3707    N->OperandList[1].getVal()->removeUser(1, N);
3708    N->OperandList[1] = Op2;
3709    N->OperandList[1].setUser(N);
3710    Op2.Val->addUser(1, N);
3711  }
3712
3713  // If this gets put into a CSE map, add it.
3714  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3715  return InN;
3716}
3717
3718SDValue SelectionDAG::
3719UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3720  SDValue Ops[] = { Op1, Op2, Op3 };
3721  return UpdateNodeOperands(N, Ops, 3);
3722}
3723
3724SDValue SelectionDAG::
3725UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3726                   SDValue Op3, SDValue Op4) {
3727  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3728  return UpdateNodeOperands(N, Ops, 4);
3729}
3730
3731SDValue SelectionDAG::
3732UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3733                   SDValue Op3, SDValue Op4, SDValue Op5) {
3734  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3735  return UpdateNodeOperands(N, Ops, 5);
3736}
3737
3738SDValue SelectionDAG::
3739UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3740  SDNode *N = InN.Val;
3741  assert(N->getNumOperands() == NumOps &&
3742         "Update with wrong number of operands");
3743
3744  // Check to see if there is no change.
3745  bool AnyChange = false;
3746  for (unsigned i = 0; i != NumOps; ++i) {
3747    if (Ops[i] != N->getOperand(i)) {
3748      AnyChange = true;
3749      break;
3750    }
3751  }
3752
3753  // No operands changed, just return the input node.
3754  if (!AnyChange) return InN;
3755
3756  // See if the modified node already exists.
3757  void *InsertPos = 0;
3758  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3759    return SDValue(Existing, InN.ResNo);
3760
3761  // Nope it doesn't.  Remove the node from its current place in the maps.
3762  if (InsertPos)
3763    RemoveNodeFromCSEMaps(N);
3764
3765  // Now we update the operands.
3766  for (unsigned i = 0; i != NumOps; ++i) {
3767    if (N->OperandList[i] != Ops[i]) {
3768      N->OperandList[i].getVal()->removeUser(i, N);
3769      N->OperandList[i] = Ops[i];
3770      N->OperandList[i].setUser(N);
3771      Ops[i].Val->addUser(i, N);
3772    }
3773  }
3774
3775  // If this gets put into a CSE map, add it.
3776  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3777  return InN;
3778}
3779
3780/// DropOperands - Release the operands and set this node to have
3781/// zero operands.
3782void SDNode::DropOperands() {
3783  // Unlike the code in MorphNodeTo that does this, we don't need to
3784  // watch for dead nodes here.
3785  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3786    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3787
3788  NumOperands = 0;
3789}
3790
3791/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3792/// machine opcode.
3793///
3794SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3795                                   MVT VT) {
3796  SDVTList VTs = getVTList(VT);
3797  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3798}
3799
3800SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3801                                   MVT VT, SDValue Op1) {
3802  SDVTList VTs = getVTList(VT);
3803  SDValue Ops[] = { Op1 };
3804  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3805}
3806
3807SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3808                                   MVT VT, SDValue Op1,
3809                                   SDValue Op2) {
3810  SDVTList VTs = getVTList(VT);
3811  SDValue Ops[] = { Op1, Op2 };
3812  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3813}
3814
3815SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3816                                   MVT VT, SDValue Op1,
3817                                   SDValue Op2, SDValue Op3) {
3818  SDVTList VTs = getVTList(VT);
3819  SDValue Ops[] = { Op1, Op2, Op3 };
3820  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3821}
3822
3823SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3824                                   MVT VT, const SDValue *Ops,
3825                                   unsigned NumOps) {
3826  SDVTList VTs = getVTList(VT);
3827  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3828}
3829
3830SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3831                                   MVT VT1, MVT VT2, const SDValue *Ops,
3832                                   unsigned NumOps) {
3833  SDVTList VTs = getVTList(VT1, VT2);
3834  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3835}
3836
3837SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3838                                   MVT VT1, MVT VT2) {
3839  SDVTList VTs = getVTList(VT1, VT2);
3840  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3841}
3842
3843SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3844                                   MVT VT1, MVT VT2, MVT VT3,
3845                                   const SDValue *Ops, unsigned NumOps) {
3846  SDVTList VTs = getVTList(VT1, VT2, VT3);
3847  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3848}
3849
3850SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3851                                   MVT VT1, MVT VT2,
3852                                   SDValue Op1) {
3853  SDVTList VTs = getVTList(VT1, VT2);
3854  SDValue Ops[] = { Op1 };
3855  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3856}
3857
3858SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3859                                   MVT VT1, MVT VT2,
3860                                   SDValue Op1, SDValue Op2) {
3861  SDVTList VTs = getVTList(VT1, VT2);
3862  SDValue Ops[] = { Op1, Op2 };
3863  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3864}
3865
3866SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3867                                   MVT VT1, MVT VT2,
3868                                   SDValue Op1, SDValue Op2,
3869                                   SDValue Op3) {
3870  SDVTList VTs = getVTList(VT1, VT2);
3871  SDValue Ops[] = { Op1, Op2, Op3 };
3872  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3873}
3874
3875SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3876                                   SDVTList VTs, const SDValue *Ops,
3877                                   unsigned NumOps) {
3878  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
3879}
3880
3881SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3882                                  MVT VT) {
3883  SDVTList VTs = getVTList(VT);
3884  return MorphNodeTo(N, Opc, VTs, 0, 0);
3885}
3886
3887SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3888                                  MVT VT, SDValue Op1) {
3889  SDVTList VTs = getVTList(VT);
3890  SDValue Ops[] = { Op1 };
3891  return MorphNodeTo(N, Opc, VTs, Ops, 1);
3892}
3893
3894SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3895                                  MVT VT, SDValue Op1,
3896                                  SDValue Op2) {
3897  SDVTList VTs = getVTList(VT);
3898  SDValue Ops[] = { Op1, Op2 };
3899  return MorphNodeTo(N, Opc, VTs, Ops, 2);
3900}
3901
3902SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3903                                  MVT VT, SDValue Op1,
3904                                  SDValue Op2, SDValue Op3) {
3905  SDVTList VTs = getVTList(VT);
3906  SDValue Ops[] = { Op1, Op2, Op3 };
3907  return MorphNodeTo(N, Opc, VTs, Ops, 3);
3908}
3909
3910SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3911                                  MVT VT, const SDValue *Ops,
3912                                  unsigned NumOps) {
3913  SDVTList VTs = getVTList(VT);
3914  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
3915}
3916
3917SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3918                                  MVT VT1, MVT VT2, const SDValue *Ops,
3919                                  unsigned NumOps) {
3920  SDVTList VTs = getVTList(VT1, VT2);
3921  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
3922}
3923
3924SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3925                                  MVT VT1, MVT VT2) {
3926  SDVTList VTs = getVTList(VT1, VT2);
3927  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
3928}
3929
3930SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3931                                  MVT VT1, MVT VT2, MVT VT3,
3932                                  const SDValue *Ops, unsigned NumOps) {
3933  SDVTList VTs = getVTList(VT1, VT2, VT3);
3934  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
3935}
3936
3937SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3938                                  MVT VT1, MVT VT2,
3939                                  SDValue Op1) {
3940  SDVTList VTs = getVTList(VT1, VT2);
3941  SDValue Ops[] = { Op1 };
3942  return MorphNodeTo(N, Opc, VTs, Ops, 1);
3943}
3944
3945SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3946                                  MVT VT1, MVT VT2,
3947                                  SDValue Op1, SDValue Op2) {
3948  SDVTList VTs = getVTList(VT1, VT2);
3949  SDValue Ops[] = { Op1, Op2 };
3950  return MorphNodeTo(N, Opc, VTs, Ops, 2);
3951}
3952
3953SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3954                                  MVT VT1, MVT VT2,
3955                                  SDValue Op1, SDValue Op2,
3956                                  SDValue Op3) {
3957  SDVTList VTs = getVTList(VT1, VT2);
3958  SDValue Ops[] = { Op1, Op2, Op3 };
3959  return MorphNodeTo(N, Opc, VTs, Ops, 3);
3960}
3961
3962/// MorphNodeTo - These *mutate* the specified node to have the specified
3963/// return type, opcode, and operands.
3964///
3965/// Note that MorphNodeTo returns the resultant node.  If there is already a
3966/// node of the specified opcode and operands, it returns that node instead of
3967/// the current one.
3968///
3969/// Using MorphNodeTo is faster than creating a new node and swapping it in
3970/// with ReplaceAllUsesWith both because it often avoids allocating a new
3971/// node, and because it doesn't require CSE recalulation for any of
3972/// the node's users.
3973///
3974SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3975                                  SDVTList VTs, const SDValue *Ops,
3976                                  unsigned NumOps) {
3977  // If an identical node already exists, use it.
3978  void *IP = 0;
3979  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
3980    FoldingSetNodeID ID;
3981    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
3982    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3983      return ON;
3984  }
3985
3986  RemoveNodeFromCSEMaps(N);
3987
3988  // Start the morphing.
3989  N->NodeType = Opc;
3990  N->ValueList = VTs.VTs;
3991  N->NumValues = VTs.NumVTs;
3992
3993  // Clear the operands list, updating used nodes to remove this from their
3994  // use list.  Keep track of any operands that become dead as a result.
3995  SmallPtrSet<SDNode*, 16> DeadNodeSet;
3996  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
3997       I != E; ++I) {
3998    SDNode *Used = I->getVal();
3999    Used->removeUser(std::distance(B, I), N);
4000    if (Used->use_empty())
4001      DeadNodeSet.insert(Used);
4002  }
4003
4004  // If NumOps is larger than the # of operands we currently have, reallocate
4005  // the operand list.
4006  if (NumOps > N->NumOperands) {
4007    if (N->OperandsNeedDelete)
4008      delete[] N->OperandList;
4009    if (N->isMachineOpcode()) {
4010      // We're creating a final node that will live unmorphed for the
4011      // remainder of the current SelectionDAG iteration, so we can allocate
4012      // the operands directly out of a pool with no recycling metadata.
4013      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4014      N->OperandsNeedDelete = false;
4015    } else {
4016      N->OperandList = new SDUse[NumOps];
4017      N->OperandsNeedDelete = true;
4018    }
4019  }
4020
4021  // Assign the new operands.
4022  N->NumOperands = NumOps;
4023  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4024    N->OperandList[i] = Ops[i];
4025    N->OperandList[i].setUser(N);
4026    SDNode *ToUse = N->OperandList[i].getVal();
4027    ToUse->addUser(i, N);
4028  }
4029
4030  // Delete any nodes that are still dead after adding the uses for the
4031  // new operands.
4032  SmallVector<SDNode *, 16> DeadNodes;
4033  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4034       E = DeadNodeSet.end(); I != E; ++I)
4035    if ((*I)->use_empty())
4036      DeadNodes.push_back(*I);
4037  RemoveDeadNodes(DeadNodes);
4038
4039  if (IP)
4040    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4041  return N;
4042}
4043
4044
4045/// getTargetNode - These are used for target selectors to create a new node
4046/// with specified return type(s), target opcode, and operands.
4047///
4048/// Note that getTargetNode returns the resultant node.  If there is already a
4049/// node of the specified opcode and operands, it returns that node instead of
4050/// the current one.
4051SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4052  return getNode(~Opcode, VT).Val;
4053}
4054SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4055  return getNode(~Opcode, VT, Op1).Val;
4056}
4057SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4058                                    SDValue Op1, SDValue Op2) {
4059  return getNode(~Opcode, VT, Op1, Op2).Val;
4060}
4061SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4062                                    SDValue Op1, SDValue Op2,
4063                                    SDValue Op3) {
4064  return getNode(~Opcode, VT, Op1, Op2, Op3).Val;
4065}
4066SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4067                                    const SDValue *Ops, unsigned NumOps) {
4068  return getNode(~Opcode, VT, Ops, NumOps).Val;
4069}
4070SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4071  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4072  SDValue Op;
4073  return getNode(~Opcode, VTs, 2, &Op, 0).Val;
4074}
4075SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4076                                    MVT VT2, SDValue Op1) {
4077  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4078  return getNode(~Opcode, VTs, 2, &Op1, 1).Val;
4079}
4080SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4081                                    MVT VT2, SDValue Op1,
4082                                    SDValue Op2) {
4083  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4084  SDValue Ops[] = { Op1, Op2 };
4085  return getNode(~Opcode, VTs, 2, Ops, 2).Val;
4086}
4087SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4088                                    MVT VT2, SDValue Op1,
4089                                    SDValue Op2, SDValue Op3) {
4090  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4091  SDValue Ops[] = { Op1, Op2, Op3 };
4092  return getNode(~Opcode, VTs, 2, Ops, 3).Val;
4093}
4094SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4095                                    const SDValue *Ops, unsigned NumOps) {
4096  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4097  return getNode(~Opcode, VTs, 2, Ops, NumOps).Val;
4098}
4099SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4100                                    SDValue Op1, SDValue Op2) {
4101  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4102  SDValue Ops[] = { Op1, Op2 };
4103  return getNode(~Opcode, VTs, 3, Ops, 2).Val;
4104}
4105SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4106                                    SDValue Op1, SDValue Op2,
4107                                    SDValue Op3) {
4108  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4109  SDValue Ops[] = { Op1, Op2, Op3 };
4110  return getNode(~Opcode, VTs, 3, Ops, 3).Val;
4111}
4112SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4113                                    const SDValue *Ops, unsigned NumOps) {
4114  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4115  return getNode(~Opcode, VTs, 3, Ops, NumOps).Val;
4116}
4117SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4118                                    MVT VT2, MVT VT3, MVT VT4,
4119                                    const SDValue *Ops, unsigned NumOps) {
4120  std::vector<MVT> VTList;
4121  VTList.push_back(VT1);
4122  VTList.push_back(VT2);
4123  VTList.push_back(VT3);
4124  VTList.push_back(VT4);
4125  const MVT *VTs = getNodeValueTypes(VTList);
4126  return getNode(~Opcode, VTs, 4, Ops, NumOps).Val;
4127}
4128SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4129                                    const std::vector<MVT> &ResultTys,
4130                                    const SDValue *Ops, unsigned NumOps) {
4131  const MVT *VTs = getNodeValueTypes(ResultTys);
4132  return getNode(~Opcode, VTs, ResultTys.size(),
4133                 Ops, NumOps).Val;
4134}
4135
4136/// getNodeIfExists - Get the specified node if it's already available, or
4137/// else return NULL.
4138SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4139                                      const SDValue *Ops, unsigned NumOps) {
4140  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4141    FoldingSetNodeID ID;
4142    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4143    void *IP = 0;
4144    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4145      return E;
4146  }
4147  return NULL;
4148}
4149
4150
4151/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4152/// This can cause recursive merging of nodes in the DAG.
4153///
4154/// This version assumes From has a single result value.
4155///
4156void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4157                                      DAGUpdateListener *UpdateListener) {
4158  SDNode *From = FromN.Val;
4159  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
4160         "Cannot replace with this method!");
4161  assert(From != To.Val && "Cannot replace uses of with self");
4162
4163  while (!From->use_empty()) {
4164    SDNode::use_iterator UI = From->use_begin();
4165    SDNode *U = *UI;
4166
4167    // This node is about to morph, remove its old self from the CSE maps.
4168    RemoveNodeFromCSEMaps(U);
4169    int operandNum = 0;
4170    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4171         I != E; ++I, ++operandNum)
4172      if (I->getVal() == From) {
4173        From->removeUser(operandNum, U);
4174        *I = To;
4175        I->setUser(U);
4176        To.Val->addUser(operandNum, U);
4177      }
4178
4179    // Now that we have modified U, add it back to the CSE maps.  If it already
4180    // exists there, recursively merge the results together.
4181    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4182      ReplaceAllUsesWith(U, Existing, UpdateListener);
4183      // U is now dead.  Inform the listener if it exists and delete it.
4184      if (UpdateListener)
4185        UpdateListener->NodeDeleted(U, Existing);
4186      DeleteNodeNotInCSEMaps(U);
4187    } else {
4188      // If the node doesn't already exist, we updated it.  Inform a listener if
4189      // it exists.
4190      if (UpdateListener)
4191        UpdateListener->NodeUpdated(U);
4192    }
4193  }
4194}
4195
4196/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4197/// This can cause recursive merging of nodes in the DAG.
4198///
4199/// This version assumes From/To have matching types and numbers of result
4200/// values.
4201///
4202void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4203                                      DAGUpdateListener *UpdateListener) {
4204  assert(From->getVTList().VTs == To->getVTList().VTs &&
4205         From->getNumValues() == To->getNumValues() &&
4206         "Cannot use this version of ReplaceAllUsesWith!");
4207
4208  // Handle the trivial case.
4209  if (From == To)
4210    return;
4211
4212  while (!From->use_empty()) {
4213    SDNode::use_iterator UI = From->use_begin();
4214    SDNode *U = *UI;
4215
4216    // This node is about to morph, remove its old self from the CSE maps.
4217    RemoveNodeFromCSEMaps(U);
4218    int operandNum = 0;
4219    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4220         I != E; ++I, ++operandNum)
4221      if (I->getVal() == From) {
4222        From->removeUser(operandNum, U);
4223        I->getVal() = To;
4224        To->addUser(operandNum, U);
4225      }
4226
4227    // Now that we have modified U, add it back to the CSE maps.  If it already
4228    // exists there, recursively merge the results together.
4229    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4230      ReplaceAllUsesWith(U, Existing, UpdateListener);
4231      // U is now dead.  Inform the listener if it exists and delete it.
4232      if (UpdateListener)
4233        UpdateListener->NodeDeleted(U, Existing);
4234      DeleteNodeNotInCSEMaps(U);
4235    } else {
4236      // If the node doesn't already exist, we updated it.  Inform a listener if
4237      // it exists.
4238      if (UpdateListener)
4239        UpdateListener->NodeUpdated(U);
4240    }
4241  }
4242}
4243
4244/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4245/// This can cause recursive merging of nodes in the DAG.
4246///
4247/// This version can replace From with any result values.  To must match the
4248/// number and types of values returned by From.
4249void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4250                                      const SDValue *To,
4251                                      DAGUpdateListener *UpdateListener) {
4252  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4253    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4254
4255  while (!From->use_empty()) {
4256    SDNode::use_iterator UI = From->use_begin();
4257    SDNode *U = *UI;
4258
4259    // This node is about to morph, remove its old self from the CSE maps.
4260    RemoveNodeFromCSEMaps(U);
4261    int operandNum = 0;
4262    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4263         I != E; ++I, ++operandNum)
4264      if (I->getVal() == From) {
4265        const SDValue &ToOp = To[I->getSDValue().ResNo];
4266        From->removeUser(operandNum, U);
4267        *I = ToOp;
4268        I->setUser(U);
4269        ToOp.Val->addUser(operandNum, U);
4270      }
4271
4272    // Now that we have modified U, add it back to the CSE maps.  If it already
4273    // exists there, recursively merge the results together.
4274    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4275      ReplaceAllUsesWith(U, Existing, UpdateListener);
4276      // U is now dead.  Inform the listener if it exists and delete it.
4277      if (UpdateListener)
4278        UpdateListener->NodeDeleted(U, Existing);
4279      DeleteNodeNotInCSEMaps(U);
4280    } else {
4281      // If the node doesn't already exist, we updated it.  Inform a listener if
4282      // it exists.
4283      if (UpdateListener)
4284        UpdateListener->NodeUpdated(U);
4285    }
4286  }
4287}
4288
4289/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4290/// uses of other values produced by From.Val alone.  The Deleted vector is
4291/// handled the same way as for ReplaceAllUsesWith.
4292void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4293                                             DAGUpdateListener *UpdateListener){
4294  // Handle the really simple, really trivial case efficiently.
4295  if (From == To) return;
4296
4297  // Handle the simple, trivial, case efficiently.
4298  if (From.Val->getNumValues() == 1) {
4299    ReplaceAllUsesWith(From, To, UpdateListener);
4300    return;
4301  }
4302
4303  // Get all of the users of From.Val.  We want these in a nice,
4304  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4305  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
4306
4307  while (!Users.empty()) {
4308    // We know that this user uses some value of From.  If it is the right
4309    // value, update it.
4310    SDNode *User = Users.back();
4311    Users.pop_back();
4312
4313    // Scan for an operand that matches From.
4314    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4315    for (; Op != E; ++Op)
4316      if (*Op == From) break;
4317
4318    // If there are no matches, the user must use some other result of From.
4319    if (Op == E) continue;
4320
4321    // Okay, we know this user needs to be updated.  Remove its old self
4322    // from the CSE maps.
4323    RemoveNodeFromCSEMaps(User);
4324
4325    // Update all operands that match "From" in case there are multiple uses.
4326    for (; Op != E; ++Op) {
4327      if (*Op == From) {
4328        From.Val->removeUser(Op-User->op_begin(), User);
4329        *Op = To;
4330        Op->setUser(User);
4331        To.Val->addUser(Op-User->op_begin(), User);
4332      }
4333    }
4334
4335    // Now that we have modified User, add it back to the CSE maps.  If it
4336    // already exists there, recursively merge the results together.
4337    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4338    if (!Existing) {
4339      if (UpdateListener) UpdateListener->NodeUpdated(User);
4340      continue;  // Continue on to next user.
4341    }
4342
4343    // If there was already an existing matching node, use ReplaceAllUsesWith
4344    // to replace the dead one with the existing one.  This can cause
4345    // recursive merging of other unrelated nodes down the line.
4346    ReplaceAllUsesWith(User, Existing, UpdateListener);
4347
4348    // User is now dead.  Notify a listener if present.
4349    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4350    DeleteNodeNotInCSEMaps(User);
4351  }
4352}
4353
4354/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4355/// uses of other values produced by From.Val alone.  The same value may
4356/// appear in both the From and To list.  The Deleted vector is
4357/// handled the same way as for ReplaceAllUsesWith.
4358void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4359                                              const SDValue *To,
4360                                              unsigned Num,
4361                                              DAGUpdateListener *UpdateListener){
4362  // Handle the simple, trivial case efficiently.
4363  if (Num == 1)
4364    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4365
4366  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4367  for (unsigned i = 0; i != Num; ++i)
4368    for (SDNode::use_iterator UI = From[i].Val->use_begin(),
4369         E = From[i].Val->use_end(); UI != E; ++UI)
4370      Users.push_back(std::make_pair(*UI, i));
4371
4372  while (!Users.empty()) {
4373    // We know that this user uses some value of From.  If it is the right
4374    // value, update it.
4375    SDNode *User = Users.back().first;
4376    unsigned i = Users.back().second;
4377    Users.pop_back();
4378
4379    // Scan for an operand that matches From.
4380    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4381    for (; Op != E; ++Op)
4382      if (*Op == From[i]) break;
4383
4384    // If there are no matches, the user must use some other result of From.
4385    if (Op == E) continue;
4386
4387    // Okay, we know this user needs to be updated.  Remove its old self
4388    // from the CSE maps.
4389    RemoveNodeFromCSEMaps(User);
4390
4391    // Update all operands that match "From" in case there are multiple uses.
4392    for (; Op != E; ++Op) {
4393      if (*Op == From[i]) {
4394        From[i].Val->removeUser(Op-User->op_begin(), User);
4395        *Op = To[i];
4396        Op->setUser(User);
4397        To[i].Val->addUser(Op-User->op_begin(), User);
4398      }
4399    }
4400
4401    // Now that we have modified User, add it back to the CSE maps.  If it
4402    // already exists there, recursively merge the results together.
4403    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4404    if (!Existing) {
4405      if (UpdateListener) UpdateListener->NodeUpdated(User);
4406      continue;  // Continue on to next user.
4407    }
4408
4409    // If there was already an existing matching node, use ReplaceAllUsesWith
4410    // to replace the dead one with the existing one.  This can cause
4411    // recursive merging of other unrelated nodes down the line.
4412    ReplaceAllUsesWith(User, Existing, UpdateListener);
4413
4414    // User is now dead.  Notify a listener if present.
4415    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4416    DeleteNodeNotInCSEMaps(User);
4417  }
4418}
4419
4420/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4421/// based on their topological order. It returns the maximum id and a vector
4422/// of the SDNodes* in assigned order by reference.
4423unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4424  unsigned DAGSize = AllNodes.size();
4425  std::vector<unsigned> InDegree(DAGSize);
4426  std::vector<SDNode*> Sources;
4427
4428  // Use a two pass approach to avoid using a std::map which is slow.
4429  unsigned Id = 0;
4430  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4431    SDNode *N = I;
4432    N->setNodeId(Id++);
4433    unsigned Degree = N->use_size();
4434    InDegree[N->getNodeId()] = Degree;
4435    if (Degree == 0)
4436      Sources.push_back(N);
4437  }
4438
4439  TopOrder.clear();
4440  TopOrder.reserve(DAGSize);
4441  while (!Sources.empty()) {
4442    SDNode *N = Sources.back();
4443    Sources.pop_back();
4444    TopOrder.push_back(N);
4445    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4446      SDNode *P = I->getVal();
4447      unsigned Degree = --InDegree[P->getNodeId()];
4448      if (Degree == 0)
4449        Sources.push_back(P);
4450    }
4451  }
4452
4453  // Second pass, assign the actual topological order as node ids.
4454  Id = 0;
4455  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4456       TI != TE; ++TI)
4457    (*TI)->setNodeId(Id++);
4458
4459  return Id;
4460}
4461
4462
4463
4464//===----------------------------------------------------------------------===//
4465//                              SDNode Class
4466//===----------------------------------------------------------------------===//
4467
4468// Out-of-line virtual method to give class a home.
4469void SDNode::ANCHOR() {}
4470void UnarySDNode::ANCHOR() {}
4471void BinarySDNode::ANCHOR() {}
4472void TernarySDNode::ANCHOR() {}
4473void HandleSDNode::ANCHOR() {}
4474void ConstantSDNode::ANCHOR() {}
4475void ConstantFPSDNode::ANCHOR() {}
4476void GlobalAddressSDNode::ANCHOR() {}
4477void FrameIndexSDNode::ANCHOR() {}
4478void JumpTableSDNode::ANCHOR() {}
4479void ConstantPoolSDNode::ANCHOR() {}
4480void BasicBlockSDNode::ANCHOR() {}
4481void SrcValueSDNode::ANCHOR() {}
4482void MemOperandSDNode::ANCHOR() {}
4483void RegisterSDNode::ANCHOR() {}
4484void DbgStopPointSDNode::ANCHOR() {}
4485void LabelSDNode::ANCHOR() {}
4486void ExternalSymbolSDNode::ANCHOR() {}
4487void CondCodeSDNode::ANCHOR() {}
4488void ARG_FLAGSSDNode::ANCHOR() {}
4489void VTSDNode::ANCHOR() {}
4490void MemSDNode::ANCHOR() {}
4491void LoadSDNode::ANCHOR() {}
4492void StoreSDNode::ANCHOR() {}
4493void AtomicSDNode::ANCHOR() {}
4494
4495HandleSDNode::~HandleSDNode() {
4496  DropOperands();
4497}
4498
4499GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4500                                         MVT VT, int o)
4501  : SDNode(isa<GlobalVariable>(GA) &&
4502           cast<GlobalVariable>(GA)->isThreadLocal() ?
4503           // Thread Local
4504           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4505           // Non Thread Local
4506           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4507           getSDVTList(VT)), Offset(o) {
4508  TheGlobal = const_cast<GlobalValue*>(GA);
4509}
4510
4511MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4512                     const Value *srcValue, int SVO,
4513                     unsigned alignment, bool vol)
4514 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4515   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4516
4517  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4518  assert(getAlignment() == alignment && "Alignment representation error!");
4519  assert(isVolatile() == vol && "Volatile representation error!");
4520}
4521
4522/// getMemOperand - Return a MachineMemOperand object describing the memory
4523/// reference performed by this memory reference.
4524MachineMemOperand MemSDNode::getMemOperand() const {
4525  int Flags;
4526  if (isa<LoadSDNode>(this))
4527    Flags = MachineMemOperand::MOLoad;
4528  else if (isa<StoreSDNode>(this))
4529    Flags = MachineMemOperand::MOStore;
4530  else {
4531    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4532    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4533  }
4534
4535  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4536  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4537
4538  // Check if the memory reference references a frame index
4539  const FrameIndexSDNode *FI =
4540  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4541  if (!getSrcValue() && FI)
4542    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4543                             Flags, 0, Size, getAlignment());
4544  else
4545    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4546                             Size, getAlignment());
4547}
4548
4549/// Profile - Gather unique data for the node.
4550///
4551void SDNode::Profile(FoldingSetNodeID &ID) const {
4552  AddNodeIDNode(ID, this);
4553}
4554
4555/// getValueTypeList - Return a pointer to the specified value type.
4556///
4557const MVT *SDNode::getValueTypeList(MVT VT) {
4558  if (VT.isExtended()) {
4559    static std::set<MVT, MVT::compareRawBits> EVTs;
4560    return &(*EVTs.insert(VT).first);
4561  } else {
4562    static MVT VTs[MVT::LAST_VALUETYPE];
4563    VTs[VT.getSimpleVT()] = VT;
4564    return &VTs[VT.getSimpleVT()];
4565  }
4566}
4567
4568/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4569/// indicated value.  This method ignores uses of other values defined by this
4570/// operation.
4571bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4572  assert(Value < getNumValues() && "Bad value!");
4573
4574  // TODO: Only iterate over uses of a given value of the node
4575  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4576    if (UI.getUse().getSDValue().ResNo == Value) {
4577      if (NUses == 0)
4578        return false;
4579      --NUses;
4580    }
4581  }
4582
4583  // Found exactly the right number of uses?
4584  return NUses == 0;
4585}
4586
4587
4588/// hasAnyUseOfValue - Return true if there are any use of the indicated
4589/// value. This method ignores uses of other values defined by this operation.
4590bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4591  assert(Value < getNumValues() && "Bad value!");
4592
4593  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4594    if (UI.getUse().getSDValue().ResNo == Value)
4595      return true;
4596
4597  return false;
4598}
4599
4600
4601/// isOnlyUserOf - Return true if this node is the only use of N.
4602///
4603bool SDNode::isOnlyUserOf(SDNode *N) const {
4604  bool Seen = false;
4605  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4606    SDNode *User = *I;
4607    if (User == this)
4608      Seen = true;
4609    else
4610      return false;
4611  }
4612
4613  return Seen;
4614}
4615
4616/// isOperand - Return true if this node is an operand of N.
4617///
4618bool SDValue::isOperandOf(SDNode *N) const {
4619  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4620    if (*this == N->getOperand(i))
4621      return true;
4622  return false;
4623}
4624
4625bool SDNode::isOperandOf(SDNode *N) const {
4626  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4627    if (this == N->OperandList[i].getVal())
4628      return true;
4629  return false;
4630}
4631
4632/// reachesChainWithoutSideEffects - Return true if this operand (which must
4633/// be a chain) reaches the specified operand without crossing any
4634/// side-effecting instructions.  In practice, this looks through token
4635/// factors and non-volatile loads.  In order to remain efficient, this only
4636/// looks a couple of nodes in, it does not do an exhaustive search.
4637bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4638                                               unsigned Depth) const {
4639  if (*this == Dest) return true;
4640
4641  // Don't search too deeply, we just want to be able to see through
4642  // TokenFactor's etc.
4643  if (Depth == 0) return false;
4644
4645  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4646  // of the operands of the TF reach dest, then we can do the xform.
4647  if (getOpcode() == ISD::TokenFactor) {
4648    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4649      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4650        return true;
4651    return false;
4652  }
4653
4654  // Loads don't have side effects, look through them.
4655  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4656    if (!Ld->isVolatile())
4657      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4658  }
4659  return false;
4660}
4661
4662
4663static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4664                            SmallPtrSet<SDNode *, 32> &Visited) {
4665  if (found || !Visited.insert(N))
4666    return;
4667
4668  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4669    SDNode *Op = N->getOperand(i).Val;
4670    if (Op == P) {
4671      found = true;
4672      return;
4673    }
4674    findPredecessor(Op, P, found, Visited);
4675  }
4676}
4677
4678/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4679/// is either an operand of N or it can be reached by recursively traversing
4680/// up the operands.
4681/// NOTE: this is an expensive method. Use it carefully.
4682bool SDNode::isPredecessorOf(SDNode *N) const {
4683  SmallPtrSet<SDNode *, 32> Visited;
4684  bool found = false;
4685  findPredecessor(N, this, found, Visited);
4686  return found;
4687}
4688
4689uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4690  assert(Num < NumOperands && "Invalid child # of SDNode!");
4691  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4692}
4693
4694std::string SDNode::getOperationName(const SelectionDAG *G) const {
4695  switch (getOpcode()) {
4696  default:
4697    if (getOpcode() < ISD::BUILTIN_OP_END)
4698      return "<<Unknown DAG Node>>";
4699    if (isMachineOpcode()) {
4700      if (G)
4701        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4702          if (getMachineOpcode() < TII->getNumOpcodes())
4703            return TII->get(getMachineOpcode()).getName();
4704      return "<<Unknown Machine Node>>";
4705    }
4706    if (G) {
4707      TargetLowering &TLI = G->getTargetLoweringInfo();
4708      const char *Name = TLI.getTargetNodeName(getOpcode());
4709      if (Name) return Name;
4710      return "<<Unknown Target Node>>";
4711    }
4712    return "<<Unknown Node>>";
4713
4714#ifndef NDEBUG
4715  case ISD::DELETED_NODE:
4716    return "<<Deleted Node!>>";
4717#endif
4718  case ISD::PREFETCH:      return "Prefetch";
4719  case ISD::MEMBARRIER:    return "MemBarrier";
4720  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4721  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4722  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4723  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4724  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4725  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4726  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4727  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4728  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4729  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4730  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4731  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4732  case ISD::PCMARKER:      return "PCMarker";
4733  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4734  case ISD::SRCVALUE:      return "SrcValue";
4735  case ISD::MEMOPERAND:    return "MemOperand";
4736  case ISD::EntryToken:    return "EntryToken";
4737  case ISD::TokenFactor:   return "TokenFactor";
4738  case ISD::AssertSext:    return "AssertSext";
4739  case ISD::AssertZext:    return "AssertZext";
4740
4741  case ISD::BasicBlock:    return "BasicBlock";
4742  case ISD::ARG_FLAGS:     return "ArgFlags";
4743  case ISD::VALUETYPE:     return "ValueType";
4744  case ISD::Register:      return "Register";
4745
4746  case ISD::Constant:      return "Constant";
4747  case ISD::ConstantFP:    return "ConstantFP";
4748  case ISD::GlobalAddress: return "GlobalAddress";
4749  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4750  case ISD::FrameIndex:    return "FrameIndex";
4751  case ISD::JumpTable:     return "JumpTable";
4752  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4753  case ISD::RETURNADDR: return "RETURNADDR";
4754  case ISD::FRAMEADDR: return "FRAMEADDR";
4755  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4756  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4757  case ISD::EHSELECTION: return "EHSELECTION";
4758  case ISD::EH_RETURN: return "EH_RETURN";
4759  case ISD::ConstantPool:  return "ConstantPool";
4760  case ISD::ExternalSymbol: return "ExternalSymbol";
4761  case ISD::INTRINSIC_WO_CHAIN: {
4762    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4763    return Intrinsic::getName((Intrinsic::ID)IID);
4764  }
4765  case ISD::INTRINSIC_VOID:
4766  case ISD::INTRINSIC_W_CHAIN: {
4767    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4768    return Intrinsic::getName((Intrinsic::ID)IID);
4769  }
4770
4771  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4772  case ISD::TargetConstant: return "TargetConstant";
4773  case ISD::TargetConstantFP:return "TargetConstantFP";
4774  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4775  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4776  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4777  case ISD::TargetJumpTable:  return "TargetJumpTable";
4778  case ISD::TargetConstantPool:  return "TargetConstantPool";
4779  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4780
4781  case ISD::CopyToReg:     return "CopyToReg";
4782  case ISD::CopyFromReg:   return "CopyFromReg";
4783  case ISD::UNDEF:         return "undef";
4784  case ISD::MERGE_VALUES:  return "merge_values";
4785  case ISD::INLINEASM:     return "inlineasm";
4786  case ISD::DBG_LABEL:     return "dbg_label";
4787  case ISD::EH_LABEL:      return "eh_label";
4788  case ISD::DECLARE:       return "declare";
4789  case ISD::HANDLENODE:    return "handlenode";
4790  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4791  case ISD::CALL:          return "call";
4792
4793  // Unary operators
4794  case ISD::FABS:   return "fabs";
4795  case ISD::FNEG:   return "fneg";
4796  case ISD::FSQRT:  return "fsqrt";
4797  case ISD::FSIN:   return "fsin";
4798  case ISD::FCOS:   return "fcos";
4799  case ISD::FPOWI:  return "fpowi";
4800  case ISD::FPOW:   return "fpow";
4801  case ISD::FTRUNC: return "ftrunc";
4802  case ISD::FFLOOR: return "ffloor";
4803  case ISD::FCEIL:  return "fceil";
4804  case ISD::FRINT:  return "frint";
4805  case ISD::FNEARBYINT: return "fnearbyint";
4806
4807  // Binary operators
4808  case ISD::ADD:    return "add";
4809  case ISD::SUB:    return "sub";
4810  case ISD::MUL:    return "mul";
4811  case ISD::MULHU:  return "mulhu";
4812  case ISD::MULHS:  return "mulhs";
4813  case ISD::SDIV:   return "sdiv";
4814  case ISD::UDIV:   return "udiv";
4815  case ISD::SREM:   return "srem";
4816  case ISD::UREM:   return "urem";
4817  case ISD::SMUL_LOHI:  return "smul_lohi";
4818  case ISD::UMUL_LOHI:  return "umul_lohi";
4819  case ISD::SDIVREM:    return "sdivrem";
4820  case ISD::UDIVREM:    return "divrem";
4821  case ISD::AND:    return "and";
4822  case ISD::OR:     return "or";
4823  case ISD::XOR:    return "xor";
4824  case ISD::SHL:    return "shl";
4825  case ISD::SRA:    return "sra";
4826  case ISD::SRL:    return "srl";
4827  case ISD::ROTL:   return "rotl";
4828  case ISD::ROTR:   return "rotr";
4829  case ISD::FADD:   return "fadd";
4830  case ISD::FSUB:   return "fsub";
4831  case ISD::FMUL:   return "fmul";
4832  case ISD::FDIV:   return "fdiv";
4833  case ISD::FREM:   return "frem";
4834  case ISD::FCOPYSIGN: return "fcopysign";
4835  case ISD::FGETSIGN:  return "fgetsign";
4836
4837  case ISD::SETCC:       return "setcc";
4838  case ISD::VSETCC:      return "vsetcc";
4839  case ISD::SELECT:      return "select";
4840  case ISD::SELECT_CC:   return "select_cc";
4841  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4842  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4843  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4844  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4845  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4846  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4847  case ISD::CARRY_FALSE:         return "carry_false";
4848  case ISD::ADDC:        return "addc";
4849  case ISD::ADDE:        return "adde";
4850  case ISD::SUBC:        return "subc";
4851  case ISD::SUBE:        return "sube";
4852  case ISD::SHL_PARTS:   return "shl_parts";
4853  case ISD::SRA_PARTS:   return "sra_parts";
4854  case ISD::SRL_PARTS:   return "srl_parts";
4855
4856  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4857  case ISD::INSERT_SUBREG:      return "insert_subreg";
4858
4859  // Conversion operators.
4860  case ISD::SIGN_EXTEND: return "sign_extend";
4861  case ISD::ZERO_EXTEND: return "zero_extend";
4862  case ISD::ANY_EXTEND:  return "any_extend";
4863  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4864  case ISD::TRUNCATE:    return "truncate";
4865  case ISD::FP_ROUND:    return "fp_round";
4866  case ISD::FLT_ROUNDS_: return "flt_rounds";
4867  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4868  case ISD::FP_EXTEND:   return "fp_extend";
4869
4870  case ISD::SINT_TO_FP:  return "sint_to_fp";
4871  case ISD::UINT_TO_FP:  return "uint_to_fp";
4872  case ISD::FP_TO_SINT:  return "fp_to_sint";
4873  case ISD::FP_TO_UINT:  return "fp_to_uint";
4874  case ISD::BIT_CONVERT: return "bit_convert";
4875
4876    // Control flow instructions
4877  case ISD::BR:      return "br";
4878  case ISD::BRIND:   return "brind";
4879  case ISD::BR_JT:   return "br_jt";
4880  case ISD::BRCOND:  return "brcond";
4881  case ISD::BR_CC:   return "br_cc";
4882  case ISD::RET:     return "ret";
4883  case ISD::CALLSEQ_START:  return "callseq_start";
4884  case ISD::CALLSEQ_END:    return "callseq_end";
4885
4886    // Other operators
4887  case ISD::LOAD:               return "load";
4888  case ISD::STORE:              return "store";
4889  case ISD::VAARG:              return "vaarg";
4890  case ISD::VACOPY:             return "vacopy";
4891  case ISD::VAEND:              return "vaend";
4892  case ISD::VASTART:            return "vastart";
4893  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4894  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4895  case ISD::BUILD_PAIR:         return "build_pair";
4896  case ISD::STACKSAVE:          return "stacksave";
4897  case ISD::STACKRESTORE:       return "stackrestore";
4898  case ISD::TRAP:               return "trap";
4899
4900  // Bit manipulation
4901  case ISD::BSWAP:   return "bswap";
4902  case ISD::CTPOP:   return "ctpop";
4903  case ISD::CTTZ:    return "cttz";
4904  case ISD::CTLZ:    return "ctlz";
4905
4906  // Debug info
4907  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
4908  case ISD::DEBUG_LOC: return "debug_loc";
4909
4910  // Trampolines
4911  case ISD::TRAMPOLINE: return "trampoline";
4912
4913  case ISD::CONDCODE:
4914    switch (cast<CondCodeSDNode>(this)->get()) {
4915    default: assert(0 && "Unknown setcc condition!");
4916    case ISD::SETOEQ:  return "setoeq";
4917    case ISD::SETOGT:  return "setogt";
4918    case ISD::SETOGE:  return "setoge";
4919    case ISD::SETOLT:  return "setolt";
4920    case ISD::SETOLE:  return "setole";
4921    case ISD::SETONE:  return "setone";
4922
4923    case ISD::SETO:    return "seto";
4924    case ISD::SETUO:   return "setuo";
4925    case ISD::SETUEQ:  return "setue";
4926    case ISD::SETUGT:  return "setugt";
4927    case ISD::SETUGE:  return "setuge";
4928    case ISD::SETULT:  return "setult";
4929    case ISD::SETULE:  return "setule";
4930    case ISD::SETUNE:  return "setune";
4931
4932    case ISD::SETEQ:   return "seteq";
4933    case ISD::SETGT:   return "setgt";
4934    case ISD::SETGE:   return "setge";
4935    case ISD::SETLT:   return "setlt";
4936    case ISD::SETLE:   return "setle";
4937    case ISD::SETNE:   return "setne";
4938    }
4939  }
4940}
4941
4942const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4943  switch (AM) {
4944  default:
4945    return "";
4946  case ISD::PRE_INC:
4947    return "<pre-inc>";
4948  case ISD::PRE_DEC:
4949    return "<pre-dec>";
4950  case ISD::POST_INC:
4951    return "<post-inc>";
4952  case ISD::POST_DEC:
4953    return "<post-dec>";
4954  }
4955}
4956
4957std::string ISD::ArgFlagsTy::getArgFlagsString() {
4958  std::string S = "< ";
4959
4960  if (isZExt())
4961    S += "zext ";
4962  if (isSExt())
4963    S += "sext ";
4964  if (isInReg())
4965    S += "inreg ";
4966  if (isSRet())
4967    S += "sret ";
4968  if (isByVal())
4969    S += "byval ";
4970  if (isNest())
4971    S += "nest ";
4972  if (getByValAlign())
4973    S += "byval-align:" + utostr(getByValAlign()) + " ";
4974  if (getOrigAlign())
4975    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4976  if (getByValSize())
4977    S += "byval-size:" + utostr(getByValSize()) + " ";
4978  return S + ">";
4979}
4980
4981void SDNode::dump() const { dump(0); }
4982void SDNode::dump(const SelectionDAG *G) const {
4983  cerr << (void*)this << ": ";
4984
4985  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4986    if (i) cerr << ",";
4987    if (getValueType(i) == MVT::Other)
4988      cerr << "ch";
4989    else
4990      cerr << getValueType(i).getMVTString();
4991  }
4992  cerr << " = " << getOperationName(G);
4993
4994  cerr << " ";
4995  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4996    if (i) cerr << ", ";
4997    cerr << (void*)getOperand(i).Val;
4998    if (unsigned RN = getOperand(i).ResNo)
4999      cerr << ":" << RN;
5000  }
5001
5002  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5003    SDNode *Mask = getOperand(2).Val;
5004    cerr << "<";
5005    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5006      if (i) cerr << ",";
5007      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5008        cerr << "u";
5009      else
5010        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
5011    }
5012    cerr << ">";
5013  }
5014
5015  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5016    cerr << '<' << CSDN->getAPIntValue() << '>';
5017  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5018    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5019      cerr << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5020    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5021      cerr << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5022    else {
5023      cerr << "<APFloat(";
5024      CSDN->getValueAPF().convertToAPInt().dump();
5025      cerr << ")>";
5026    }
5027  } else if (const GlobalAddressSDNode *GADN =
5028             dyn_cast<GlobalAddressSDNode>(this)) {
5029    int offset = GADN->getOffset();
5030    cerr << '<';
5031    WriteAsOperand(*cerr.stream(), GADN->getGlobal());
5032    cerr << '>';
5033    if (offset > 0)
5034      cerr << " + " << offset;
5035    else
5036      cerr << " " << offset;
5037  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5038    cerr << "<" << FIDN->getIndex() << ">";
5039  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5040    cerr << "<" << JTDN->getIndex() << ">";
5041  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5042    int offset = CP->getOffset();
5043    if (CP->isMachineConstantPoolEntry())
5044      cerr << "<" << *CP->getMachineCPVal() << ">";
5045    else
5046      cerr << "<" << *CP->getConstVal() << ">";
5047    if (offset > 0)
5048      cerr << " + " << offset;
5049    else
5050      cerr << " " << offset;
5051  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5052    cerr << "<";
5053    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5054    if (LBB)
5055      cerr << LBB->getName() << " ";
5056    cerr << (const void*)BBDN->getBasicBlock() << ">";
5057  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5058    if (G && R->getReg() &&
5059        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5060      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5061    } else {
5062      cerr << " #" << R->getReg();
5063    }
5064  } else if (const ExternalSymbolSDNode *ES =
5065             dyn_cast<ExternalSymbolSDNode>(this)) {
5066    cerr << "'" << ES->getSymbol() << "'";
5067  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5068    if (M->getValue())
5069      cerr << "<" << M->getValue() << ">";
5070    else
5071      cerr << "<null>";
5072  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5073    if (M->MO.getValue())
5074      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5075    else
5076      cerr << "<null:" << M->MO.getOffset() << ">";
5077  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5078    cerr << N->getArgFlags().getArgFlagsString();
5079  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5080    cerr << ":" << N->getVT().getMVTString();
5081  }
5082  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5083    const Value *SrcValue = LD->getSrcValue();
5084    int SrcOffset = LD->getSrcValueOffset();
5085    cerr << " <";
5086    if (SrcValue)
5087      cerr << SrcValue;
5088    else
5089      cerr << "null";
5090    cerr << ":" << SrcOffset << ">";
5091
5092    bool doExt = true;
5093    switch (LD->getExtensionType()) {
5094    default: doExt = false; break;
5095    case ISD::EXTLOAD:
5096      cerr << " <anyext ";
5097      break;
5098    case ISD::SEXTLOAD:
5099      cerr << " <sext ";
5100      break;
5101    case ISD::ZEXTLOAD:
5102      cerr << " <zext ";
5103      break;
5104    }
5105    if (doExt)
5106      cerr << LD->getMemoryVT().getMVTString() << ">";
5107
5108    const char *AM = getIndexedModeName(LD->getAddressingMode());
5109    if (*AM)
5110      cerr << " " << AM;
5111    if (LD->isVolatile())
5112      cerr << " <volatile>";
5113    cerr << " alignment=" << LD->getAlignment();
5114  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5115    const Value *SrcValue = ST->getSrcValue();
5116    int SrcOffset = ST->getSrcValueOffset();
5117    cerr << " <";
5118    if (SrcValue)
5119      cerr << SrcValue;
5120    else
5121      cerr << "null";
5122    cerr << ":" << SrcOffset << ">";
5123
5124    if (ST->isTruncatingStore())
5125      cerr << " <trunc "
5126           << ST->getMemoryVT().getMVTString() << ">";
5127
5128    const char *AM = getIndexedModeName(ST->getAddressingMode());
5129    if (*AM)
5130      cerr << " " << AM;
5131    if (ST->isVolatile())
5132      cerr << " <volatile>";
5133    cerr << " alignment=" << ST->getAlignment();
5134  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5135    const Value *SrcValue = AT->getSrcValue();
5136    int SrcOffset = AT->getSrcValueOffset();
5137    cerr << " <";
5138    if (SrcValue)
5139      cerr << SrcValue;
5140    else
5141      cerr << "null";
5142    cerr << ":" << SrcOffset << ">";
5143    if (AT->isVolatile())
5144      cerr << " <volatile>";
5145    cerr << " alignment=" << AT->getAlignment();
5146  }
5147}
5148
5149static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5150  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5151    if (N->getOperand(i).Val->hasOneUse())
5152      DumpNodes(N->getOperand(i).Val, indent+2, G);
5153    else
5154      cerr << "\n" << std::string(indent+2, ' ')
5155           << (void*)N->getOperand(i).Val << ": <multiple use>";
5156
5157
5158  cerr << "\n" << std::string(indent, ' ');
5159  N->dump(G);
5160}
5161
5162void SelectionDAG::dump() const {
5163  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5164
5165  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5166       I != E; ++I) {
5167    const SDNode *N = I;
5168    if (!N->hasOneUse() && N != getRoot().Val)
5169      DumpNodes(N, 2, this);
5170  }
5171
5172  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
5173
5174  cerr << "\n\n";
5175}
5176
5177const Type *ConstantPoolSDNode::getType() const {
5178  if (isMachineConstantPoolEntry())
5179    return Val.MachineCPVal->getType();
5180  return Val.ConstVal->getType();
5181}
5182