SelectionDAG.cpp revision 1606e8e4cd937e6de6681f686c266cf61722d972
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert(I->getValueType() == EltVT &&
772//             "Wrong operand type!");
773    break;
774  }
775  }
776}
777
778/// getMVTAlignment - Compute the default alignment value for the
779/// given type.
780///
781unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782  const Type *Ty = VT == MVT::iPTR ?
783                   PointerType::get(Type::Int8Ty, 0) :
784                   VT.getTypeForMVT();
785
786  return TLI.getTargetData()->getABITypeAlignment(Ty);
787}
788
789// EntryNode could meaningfully have debug info if we can find it...
790SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
791  : TLI(tli), FLI(fli), DW(0),
792    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
793    getVTList(MVT::Other)), Root(getEntryNode()) {
794  AllNodes.push_back(&EntryNode);
795}
796
797void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
798                        DwarfWriter *dw) {
799  MF = &mf;
800  MMI = mmi;
801  DW = dw;
802}
803
804SelectionDAG::~SelectionDAG() {
805  allnodes_clear();
806}
807
808void SelectionDAG::allnodes_clear() {
809  assert(&*AllNodes.begin() == &EntryNode);
810  AllNodes.remove(AllNodes.begin());
811  while (!AllNodes.empty())
812    DeallocateNode(AllNodes.begin());
813}
814
815void SelectionDAG::clear() {
816  allnodes_clear();
817  OperandAllocator.Reset();
818  CSEMap.clear();
819
820  ExtendedValueTypeNodes.clear();
821  ExternalSymbols.clear();
822  TargetExternalSymbols.clear();
823  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
824            static_cast<CondCodeSDNode*>(0));
825  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
826            static_cast<SDNode*>(0));
827
828  EntryNode.UseList = 0;
829  AllNodes.push_back(&EntryNode);
830  Root = getEntryNode();
831}
832
833SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
834  if (Op.getValueType() == VT) return Op;
835  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
836                                   VT.getSizeInBits());
837  return getNode(ISD::AND, DL, Op.getValueType(), Op,
838                 getConstant(Imm, Op.getValueType()));
839}
840
841/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
842///
843SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
844  SDValue NegOne;
845  if (VT.isVector()) {
846    MVT EltVT = VT.getVectorElementType();
847    SDValue NegOneElt =
848      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
849    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
850    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
851  } else {
852    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
853  }
854  return getNode(ISD::XOR, DL, VT, Val, NegOne);
855}
856
857SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
858  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
859  assert((EltVT.getSizeInBits() >= 64 ||
860         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
861         "getConstant with a uint64_t value that doesn't fit in the type!");
862  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
863}
864
865SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
866  return getConstant(*ConstantInt::get(Val), VT, isT);
867}
868
869SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
870  assert(VT.isInteger() && "Cannot create FP integer constant!");
871
872  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
874         "APInt size does not match type size!");
875
876  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
877  FoldingSetNodeID ID;
878  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
879  ID.AddPointer(&Val);
880  void *IP = 0;
881  SDNode *N = NULL;
882  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
883    if (!VT.isVector())
884      return SDValue(N, 0);
885  if (!N) {
886    N = NodeAllocator.Allocate<ConstantSDNode>();
887    new (N) ConstantSDNode(isT, &Val, EltVT);
888    CSEMap.InsertNode(N, IP);
889    AllNodes.push_back(N);
890  }
891
892  SDValue Result(N, 0);
893  if (VT.isVector()) {
894    SmallVector<SDValue, 8> Ops;
895    Ops.assign(VT.getVectorNumElements(), Result);
896    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
897                     VT, &Ops[0], Ops.size());
898  }
899  return Result;
900}
901
902SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
903  return getConstant(Val, TLI.getPointerTy(), isTarget);
904}
905
906
907SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
908  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
909}
910
911SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
912  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
913
914  MVT EltVT =
915    VT.isVector() ? VT.getVectorElementType() : VT;
916
917  // Do the map lookup using the actual bit pattern for the floating point
918  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
919  // we don't have issues with SNANs.
920  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
921  FoldingSetNodeID ID;
922  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
923  ID.AddPointer(&V);
924  void *IP = 0;
925  SDNode *N = NULL;
926  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
927    if (!VT.isVector())
928      return SDValue(N, 0);
929  if (!N) {
930    N = NodeAllocator.Allocate<ConstantFPSDNode>();
931    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
932    CSEMap.InsertNode(N, IP);
933    AllNodes.push_back(N);
934  }
935
936  SDValue Result(N, 0);
937  if (VT.isVector()) {
938    SmallVector<SDValue, 8> Ops;
939    Ops.assign(VT.getVectorNumElements(), Result);
940    // FIXME DebugLoc info might be appropriate here
941    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
942                     VT, &Ops[0], Ops.size());
943  }
944  return Result;
945}
946
947SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
948  MVT EltVT =
949    VT.isVector() ? VT.getVectorElementType() : VT;
950  if (EltVT==MVT::f32)
951    return getConstantFP(APFloat((float)Val), VT, isTarget);
952  else
953    return getConstantFP(APFloat(Val), VT, isTarget);
954}
955
956SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
957                                       MVT VT, int64_t Offset,
958                                       bool isTargetGA) {
959  unsigned Opc;
960
961  // Truncate (with sign-extension) the offset value to the pointer size.
962  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
963  if (BitWidth < 64)
964    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
965
966  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
967  if (!GVar) {
968    // If GV is an alias then use the aliasee for determining thread-localness.
969    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
970      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
971  }
972
973  if (GVar && GVar->isThreadLocal())
974    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
975  else
976    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
977
978  FoldingSetNodeID ID;
979  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
980  ID.AddPointer(GV);
981  ID.AddInteger(Offset);
982  void *IP = 0;
983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984    return SDValue(E, 0);
985  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
986  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
987  CSEMap.InsertNode(N, IP);
988  AllNodes.push_back(N);
989  return SDValue(N, 0);
990}
991
992SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
993  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(FI);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1001  new (N) FrameIndexSDNode(FI, VT, isTarget);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1008  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(JTI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1016  new (N) JumpTableSDNode(JTI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1023                                      unsigned Alignment, int Offset,
1024                                      bool isTarget) {
1025  if (Alignment == 0)
1026    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1049  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1050  FoldingSetNodeID ID;
1051  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1052  ID.AddInteger(Alignment);
1053  ID.AddInteger(Offset);
1054  C->AddSelectionDAGCSEId(ID);
1055  void *IP = 0;
1056  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1057    return SDValue(E, 0);
1058  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1059  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1060  CSEMap.InsertNode(N, IP);
1061  AllNodes.push_back(N);
1062  return SDValue(N, 0);
1063}
1064
1065SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1068  ID.AddPointer(MBB);
1069  void *IP = 0;
1070  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1071    return SDValue(E, 0);
1072  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1073  new (N) BasicBlockSDNode(MBB);
1074  CSEMap.InsertNode(N, IP);
1075  AllNodes.push_back(N);
1076  return SDValue(N, 0);
1077}
1078
1079SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1080  FoldingSetNodeID ID;
1081  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1082  ID.AddInteger(Flags.getRawBits());
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1087  new (N) ARG_FLAGSSDNode(Flags);
1088  CSEMap.InsertNode(N, IP);
1089  AllNodes.push_back(N);
1090  return SDValue(N, 0);
1091}
1092
1093SDValue SelectionDAG::getValueType(MVT VT) {
1094  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1095    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1096
1097  SDNode *&N = VT.isExtended() ?
1098    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1099
1100  if (N) return SDValue(N, 0);
1101  N = NodeAllocator.Allocate<VTSDNode>();
1102  new (N) VTSDNode(VT);
1103  AllNodes.push_back(N);
1104  return SDValue(N, 0);
1105}
1106
1107SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1108  SDNode *&N = ExternalSymbols[Sym];
1109  if (N) return SDValue(N, 0);
1110  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1111  new (N) ExternalSymbolSDNode(false, Sym, VT);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1117  SDNode *&N = TargetExternalSymbols[Sym];
1118  if (N) return SDValue(N, 0);
1119  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1120  new (N) ExternalSymbolSDNode(true, Sym, VT);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1126  if ((unsigned)Cond >= CondCodeNodes.size())
1127    CondCodeNodes.resize(Cond+1);
1128
1129  if (CondCodeNodes[Cond] == 0) {
1130    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1131    new (N) CondCodeSDNode(Cond);
1132    CondCodeNodes[Cond] = N;
1133    AllNodes.push_back(N);
1134  }
1135  return SDValue(CondCodeNodes[Cond], 0);
1136}
1137
1138SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1139                                       SDValue Val, SDValue DTy,
1140                                       SDValue STy, SDValue Rnd, SDValue Sat,
1141                                       ISD::CvtCode Code) {
1142  // If the src and dest types are the same and the conversion is between
1143  // integer types of the same sign or two floats, no conversion is necessary.
1144  if (DTy == STy &&
1145      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1146    return Val;
1147
1148  FoldingSetNodeID ID;
1149  void* IP = 0;
1150  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1151    return SDValue(E, 0);
1152  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1153  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1154  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1155  CSEMap.InsertNode(N, IP);
1156  AllNodes.push_back(N);
1157  return SDValue(N, 0);
1158}
1159
1160SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1161  FoldingSetNodeID ID;
1162  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1163  ID.AddInteger(RegNo);
1164  void *IP = 0;
1165  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1166    return SDValue(E, 0);
1167  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1168  new (N) RegisterSDNode(RegNo, VT);
1169  CSEMap.InsertNode(N, IP);
1170  AllNodes.push_back(N);
1171  return SDValue(N, 0);
1172}
1173
1174SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1175                                      unsigned Line, unsigned Col,
1176                                      Value *CU) {
1177  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1178  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1184                               SDValue Root,
1185                               unsigned LabelID) {
1186  FoldingSetNodeID ID;
1187  SDValue Ops[] = { Root };
1188  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1189  ID.AddInteger(LabelID);
1190  void *IP = 0;
1191  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1192    return SDValue(E, 0);
1193  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1194  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1195  CSEMap.InsertNode(N, IP);
1196  AllNodes.push_back(N);
1197  return SDValue(N, 0);
1198}
1199
1200SDValue SelectionDAG::getSrcValue(const Value *V) {
1201  assert((!V || isa<PointerType>(V->getType())) &&
1202         "SrcValue is not a pointer?");
1203
1204  FoldingSetNodeID ID;
1205  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1206  ID.AddPointer(V);
1207
1208  void *IP = 0;
1209  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1210    return SDValue(E, 0);
1211
1212  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1213  new (N) SrcValueSDNode(V);
1214  CSEMap.InsertNode(N, IP);
1215  AllNodes.push_back(N);
1216  return SDValue(N, 0);
1217}
1218
1219SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1220#ifndef NDEBUG
1221  const Value *v = MO.getValue();
1222  assert((!v || isa<PointerType>(v->getType())) &&
1223         "SrcValue is not a pointer?");
1224#endif
1225
1226  FoldingSetNodeID ID;
1227  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1228  MO.Profile(ID);
1229
1230  void *IP = 0;
1231  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1232    return SDValue(E, 0);
1233
1234  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1235  new (N) MemOperandSDNode(MO);
1236  CSEMap.InsertNode(N, IP);
1237  AllNodes.push_back(N);
1238  return SDValue(N, 0);
1239}
1240
1241/// getShiftAmountOperand - Return the specified value casted to
1242/// the target's desired shift amount type.
1243SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1244  MVT OpTy = Op.getValueType();
1245  MVT ShTy = TLI.getShiftAmountTy();
1246  if (OpTy == ShTy || OpTy.isVector()) return Op;
1247
1248  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1249  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1250}
1251
1252/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1253/// specified value type.
1254SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1255  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1256  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1257  const Type *Ty = VT.getTypeForMVT();
1258  unsigned StackAlign =
1259  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1260
1261  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1262  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1263}
1264
1265/// CreateStackTemporary - Create a stack temporary suitable for holding
1266/// either of the specified value types.
1267SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1268  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1269                            VT2.getStoreSizeInBits())/8;
1270  const Type *Ty1 = VT1.getTypeForMVT();
1271  const Type *Ty2 = VT2.getTypeForMVT();
1272  const TargetData *TD = TLI.getTargetData();
1273  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1274                            TD->getPrefTypeAlignment(Ty2));
1275
1276  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1277  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1278  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1279}
1280
1281SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1282                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1283  // These setcc operations always fold.
1284  switch (Cond) {
1285  default: break;
1286  case ISD::SETFALSE:
1287  case ISD::SETFALSE2: return getConstant(0, VT);
1288  case ISD::SETTRUE:
1289  case ISD::SETTRUE2:  return getConstant(1, VT);
1290
1291  case ISD::SETOEQ:
1292  case ISD::SETOGT:
1293  case ISD::SETOGE:
1294  case ISD::SETOLT:
1295  case ISD::SETOLE:
1296  case ISD::SETONE:
1297  case ISD::SETO:
1298  case ISD::SETUO:
1299  case ISD::SETUEQ:
1300  case ISD::SETUNE:
1301    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1302    break;
1303  }
1304
1305  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1306    const APInt &C2 = N2C->getAPIntValue();
1307    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1308      const APInt &C1 = N1C->getAPIntValue();
1309
1310      switch (Cond) {
1311      default: assert(0 && "Unknown integer setcc!");
1312      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1313      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1314      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1315      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1316      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1317      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1318      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1319      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1320      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1321      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1322      }
1323    }
1324  }
1325  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1326    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1327      // No compile time operations on this type yet.
1328      if (N1C->getValueType(0) == MVT::ppcf128)
1329        return SDValue();
1330
1331      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1332      switch (Cond) {
1333      default: break;
1334      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1335                          return getUNDEF(VT);
1336                        // fall through
1337      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1338      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1339                          return getUNDEF(VT);
1340                        // fall through
1341      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1342                                           R==APFloat::cmpLessThan, VT);
1343      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1344                          return getUNDEF(VT);
1345                        // fall through
1346      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1347      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1348                          return getUNDEF(VT);
1349                        // fall through
1350      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1351      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1352                          return getUNDEF(VT);
1353                        // fall through
1354      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1355                                           R==APFloat::cmpEqual, VT);
1356      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1357                          return getUNDEF(VT);
1358                        // fall through
1359      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1360                                           R==APFloat::cmpEqual, VT);
1361      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1362      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1363      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1364                                           R==APFloat::cmpEqual, VT);
1365      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1366      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1367                                           R==APFloat::cmpLessThan, VT);
1368      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1369                                           R==APFloat::cmpUnordered, VT);
1370      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1371      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1372      }
1373    } else {
1374      // Ensure that the constant occurs on the RHS.
1375      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1376    }
1377  }
1378
1379  // Could not fold it.
1380  return SDValue();
1381}
1382
1383/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1384/// use this predicate to simplify operations downstream.
1385bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1386  unsigned BitWidth = Op.getValueSizeInBits();
1387  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1388}
1389
1390/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1391/// this predicate to simplify operations downstream.  Mask is known to be zero
1392/// for bits that V cannot have.
1393bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1394                                     unsigned Depth) const {
1395  APInt KnownZero, KnownOne;
1396  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1397  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1398  return (KnownZero & Mask) == Mask;
1399}
1400
1401/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1402/// known to be either zero or one and return them in the KnownZero/KnownOne
1403/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1404/// processing.
1405void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1406                                     APInt &KnownZero, APInt &KnownOne,
1407                                     unsigned Depth) const {
1408  unsigned BitWidth = Mask.getBitWidth();
1409  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1410         "Mask size mismatches value type size!");
1411
1412  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1413  if (Depth == 6 || Mask == 0)
1414    return;  // Limit search depth.
1415
1416  APInt KnownZero2, KnownOne2;
1417
1418  switch (Op.getOpcode()) {
1419  case ISD::Constant:
1420    // We know all of the bits for a constant!
1421    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1422    KnownZero = ~KnownOne & Mask;
1423    return;
1424  case ISD::AND:
1425    // If either the LHS or the RHS are Zero, the result is zero.
1426    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1427    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1428                      KnownZero2, KnownOne2, Depth+1);
1429    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1430    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1431
1432    // Output known-1 bits are only known if set in both the LHS & RHS.
1433    KnownOne &= KnownOne2;
1434    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1435    KnownZero |= KnownZero2;
1436    return;
1437  case ISD::OR:
1438    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1439    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1440                      KnownZero2, KnownOne2, Depth+1);
1441    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1442    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1443
1444    // Output known-0 bits are only known if clear in both the LHS & RHS.
1445    KnownZero &= KnownZero2;
1446    // Output known-1 are known to be set if set in either the LHS | RHS.
1447    KnownOne |= KnownOne2;
1448    return;
1449  case ISD::XOR: {
1450    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1451    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1452    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1453    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1454
1455    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1456    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1457    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1458    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1459    KnownZero = KnownZeroOut;
1460    return;
1461  }
1462  case ISD::MUL: {
1463    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1464    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1465    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1466    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1467    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1468
1469    // If low bits are zero in either operand, output low known-0 bits.
1470    // Also compute a conserative estimate for high known-0 bits.
1471    // More trickiness is possible, but this is sufficient for the
1472    // interesting case of alignment computation.
1473    KnownOne.clear();
1474    unsigned TrailZ = KnownZero.countTrailingOnes() +
1475                      KnownZero2.countTrailingOnes();
1476    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1477                               KnownZero2.countLeadingOnes(),
1478                               BitWidth) - BitWidth;
1479
1480    TrailZ = std::min(TrailZ, BitWidth);
1481    LeadZ = std::min(LeadZ, BitWidth);
1482    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1483                APInt::getHighBitsSet(BitWidth, LeadZ);
1484    KnownZero &= Mask;
1485    return;
1486  }
1487  case ISD::UDIV: {
1488    // For the purposes of computing leading zeros we can conservatively
1489    // treat a udiv as a logical right shift by the power of 2 known to
1490    // be less than the denominator.
1491    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1492    ComputeMaskedBits(Op.getOperand(0),
1493                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1494    unsigned LeadZ = KnownZero2.countLeadingOnes();
1495
1496    KnownOne2.clear();
1497    KnownZero2.clear();
1498    ComputeMaskedBits(Op.getOperand(1),
1499                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1500    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1501    if (RHSUnknownLeadingOnes != BitWidth)
1502      LeadZ = std::min(BitWidth,
1503                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1504
1505    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1506    return;
1507  }
1508  case ISD::SELECT:
1509    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1510    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1511    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1512    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1513
1514    // Only known if known in both the LHS and RHS.
1515    KnownOne &= KnownOne2;
1516    KnownZero &= KnownZero2;
1517    return;
1518  case ISD::SELECT_CC:
1519    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1520    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1521    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1522    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1523
1524    // Only known if known in both the LHS and RHS.
1525    KnownOne &= KnownOne2;
1526    KnownZero &= KnownZero2;
1527    return;
1528  case ISD::SADDO:
1529  case ISD::UADDO:
1530  case ISD::SSUBO:
1531  case ISD::USUBO:
1532  case ISD::SMULO:
1533  case ISD::UMULO:
1534    if (Op.getResNo() != 1)
1535      return;
1536    // The boolean result conforms to getBooleanContents.  Fall through.
1537  case ISD::SETCC:
1538    // If we know the result of a setcc has the top bits zero, use this info.
1539    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1540        BitWidth > 1)
1541      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1542    return;
1543  case ISD::SHL:
1544    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1545    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1546      unsigned ShAmt = SA->getZExtValue();
1547
1548      // If the shift count is an invalid immediate, don't do anything.
1549      if (ShAmt >= BitWidth)
1550        return;
1551
1552      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1553                        KnownZero, KnownOne, Depth+1);
1554      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555      KnownZero <<= ShAmt;
1556      KnownOne  <<= ShAmt;
1557      // low bits known zero.
1558      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1559    }
1560    return;
1561  case ISD::SRL:
1562    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1563    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1564      unsigned ShAmt = SA->getZExtValue();
1565
1566      // If the shift count is an invalid immediate, don't do anything.
1567      if (ShAmt >= BitWidth)
1568        return;
1569
1570      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1571                        KnownZero, KnownOne, Depth+1);
1572      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573      KnownZero = KnownZero.lshr(ShAmt);
1574      KnownOne  = KnownOne.lshr(ShAmt);
1575
1576      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1577      KnownZero |= HighBits;  // High bits known zero.
1578    }
1579    return;
1580  case ISD::SRA:
1581    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1582      unsigned ShAmt = SA->getZExtValue();
1583
1584      // If the shift count is an invalid immediate, don't do anything.
1585      if (ShAmt >= BitWidth)
1586        return;
1587
1588      APInt InDemandedMask = (Mask << ShAmt);
1589      // If any of the demanded bits are produced by the sign extension, we also
1590      // demand the input sign bit.
1591      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1592      if (HighBits.getBoolValue())
1593        InDemandedMask |= APInt::getSignBit(BitWidth);
1594
1595      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1596                        Depth+1);
1597      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1598      KnownZero = KnownZero.lshr(ShAmt);
1599      KnownOne  = KnownOne.lshr(ShAmt);
1600
1601      // Handle the sign bits.
1602      APInt SignBit = APInt::getSignBit(BitWidth);
1603      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1604
1605      if (KnownZero.intersects(SignBit)) {
1606        KnownZero |= HighBits;  // New bits are known zero.
1607      } else if (KnownOne.intersects(SignBit)) {
1608        KnownOne  |= HighBits;  // New bits are known one.
1609      }
1610    }
1611    return;
1612  case ISD::SIGN_EXTEND_INREG: {
1613    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1614    unsigned EBits = EVT.getSizeInBits();
1615
1616    // Sign extension.  Compute the demanded bits in the result that are not
1617    // present in the input.
1618    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1619
1620    APInt InSignBit = APInt::getSignBit(EBits);
1621    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1622
1623    // If the sign extended bits are demanded, we know that the sign
1624    // bit is demanded.
1625    InSignBit.zext(BitWidth);
1626    if (NewBits.getBoolValue())
1627      InputDemandedBits |= InSignBit;
1628
1629    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1630                      KnownZero, KnownOne, Depth+1);
1631    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1632
1633    // If the sign bit of the input is known set or clear, then we know the
1634    // top bits of the result.
1635    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1636      KnownZero |= NewBits;
1637      KnownOne  &= ~NewBits;
1638    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1639      KnownOne  |= NewBits;
1640      KnownZero &= ~NewBits;
1641    } else {                              // Input sign bit unknown
1642      KnownZero &= ~NewBits;
1643      KnownOne  &= ~NewBits;
1644    }
1645    return;
1646  }
1647  case ISD::CTTZ:
1648  case ISD::CTLZ:
1649  case ISD::CTPOP: {
1650    unsigned LowBits = Log2_32(BitWidth)+1;
1651    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1652    KnownOne.clear();
1653    return;
1654  }
1655  case ISD::LOAD: {
1656    if (ISD::isZEXTLoad(Op.getNode())) {
1657      LoadSDNode *LD = cast<LoadSDNode>(Op);
1658      MVT VT = LD->getMemoryVT();
1659      unsigned MemBits = VT.getSizeInBits();
1660      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1661    }
1662    return;
1663  }
1664  case ISD::ZERO_EXTEND: {
1665    MVT InVT = Op.getOperand(0).getValueType();
1666    unsigned InBits = InVT.getSizeInBits();
1667    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1668    APInt InMask    = Mask;
1669    InMask.trunc(InBits);
1670    KnownZero.trunc(InBits);
1671    KnownOne.trunc(InBits);
1672    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1673    KnownZero.zext(BitWidth);
1674    KnownOne.zext(BitWidth);
1675    KnownZero |= NewBits;
1676    return;
1677  }
1678  case ISD::SIGN_EXTEND: {
1679    MVT InVT = Op.getOperand(0).getValueType();
1680    unsigned InBits = InVT.getSizeInBits();
1681    APInt InSignBit = APInt::getSignBit(InBits);
1682    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1683    APInt InMask = Mask;
1684    InMask.trunc(InBits);
1685
1686    // If any of the sign extended bits are demanded, we know that the sign
1687    // bit is demanded. Temporarily set this bit in the mask for our callee.
1688    if (NewBits.getBoolValue())
1689      InMask |= InSignBit;
1690
1691    KnownZero.trunc(InBits);
1692    KnownOne.trunc(InBits);
1693    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1694
1695    // Note if the sign bit is known to be zero or one.
1696    bool SignBitKnownZero = KnownZero.isNegative();
1697    bool SignBitKnownOne  = KnownOne.isNegative();
1698    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1699           "Sign bit can't be known to be both zero and one!");
1700
1701    // If the sign bit wasn't actually demanded by our caller, we don't
1702    // want it set in the KnownZero and KnownOne result values. Reset the
1703    // mask and reapply it to the result values.
1704    InMask = Mask;
1705    InMask.trunc(InBits);
1706    KnownZero &= InMask;
1707    KnownOne  &= InMask;
1708
1709    KnownZero.zext(BitWidth);
1710    KnownOne.zext(BitWidth);
1711
1712    // If the sign bit is known zero or one, the top bits match.
1713    if (SignBitKnownZero)
1714      KnownZero |= NewBits;
1715    else if (SignBitKnownOne)
1716      KnownOne  |= NewBits;
1717    return;
1718  }
1719  case ISD::ANY_EXTEND: {
1720    MVT InVT = Op.getOperand(0).getValueType();
1721    unsigned InBits = InVT.getSizeInBits();
1722    APInt InMask = Mask;
1723    InMask.trunc(InBits);
1724    KnownZero.trunc(InBits);
1725    KnownOne.trunc(InBits);
1726    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1727    KnownZero.zext(BitWidth);
1728    KnownOne.zext(BitWidth);
1729    return;
1730  }
1731  case ISD::TRUNCATE: {
1732    MVT InVT = Op.getOperand(0).getValueType();
1733    unsigned InBits = InVT.getSizeInBits();
1734    APInt InMask = Mask;
1735    InMask.zext(InBits);
1736    KnownZero.zext(InBits);
1737    KnownOne.zext(InBits);
1738    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1739    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1740    KnownZero.trunc(BitWidth);
1741    KnownOne.trunc(BitWidth);
1742    break;
1743  }
1744  case ISD::AssertZext: {
1745    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1746    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1747    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1748                      KnownOne, Depth+1);
1749    KnownZero |= (~InMask) & Mask;
1750    return;
1751  }
1752  case ISD::FGETSIGN:
1753    // All bits are zero except the low bit.
1754    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1755    return;
1756
1757  case ISD::SUB: {
1758    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1759      // We know that the top bits of C-X are clear if X contains less bits
1760      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1761      // positive if we can prove that X is >= 0 and < 16.
1762      if (CLHS->getAPIntValue().isNonNegative()) {
1763        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1764        // NLZ can't be BitWidth with no sign bit
1765        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1766        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1767                          Depth+1);
1768
1769        // If all of the MaskV bits are known to be zero, then we know the
1770        // output top bits are zero, because we now know that the output is
1771        // from [0-C].
1772        if ((KnownZero2 & MaskV) == MaskV) {
1773          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1774          // Top bits known zero.
1775          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1776        }
1777      }
1778    }
1779  }
1780  // fall through
1781  case ISD::ADD: {
1782    // Output known-0 bits are known if clear or set in both the low clear bits
1783    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1784    // low 3 bits clear.
1785    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1786    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1787    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1788    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1789
1790    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1791    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1792    KnownZeroOut = std::min(KnownZeroOut,
1793                            KnownZero2.countTrailingOnes());
1794
1795    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1796    return;
1797  }
1798  case ISD::SREM:
1799    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1800      const APInt &RA = Rem->getAPIntValue();
1801      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1802        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1803        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1804        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1805
1806        // If the sign bit of the first operand is zero, the sign bit of
1807        // the result is zero. If the first operand has no one bits below
1808        // the second operand's single 1 bit, its sign will be zero.
1809        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1810          KnownZero2 |= ~LowBits;
1811
1812        KnownZero |= KnownZero2 & Mask;
1813
1814        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1815      }
1816    }
1817    return;
1818  case ISD::UREM: {
1819    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1820      const APInt &RA = Rem->getAPIntValue();
1821      if (RA.isPowerOf2()) {
1822        APInt LowBits = (RA - 1);
1823        APInt Mask2 = LowBits & Mask;
1824        KnownZero |= ~LowBits & Mask;
1825        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1826        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1827        break;
1828      }
1829    }
1830
1831    // Since the result is less than or equal to either operand, any leading
1832    // zero bits in either operand must also exist in the result.
1833    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1834    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1835                      Depth+1);
1836    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1837                      Depth+1);
1838
1839    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1840                                KnownZero2.countLeadingOnes());
1841    KnownOne.clear();
1842    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1843    return;
1844  }
1845  default:
1846    // Allow the target to implement this method for its nodes.
1847    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1848  case ISD::INTRINSIC_WO_CHAIN:
1849  case ISD::INTRINSIC_W_CHAIN:
1850  case ISD::INTRINSIC_VOID:
1851      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1852    }
1853    return;
1854  }
1855}
1856
1857/// ComputeNumSignBits - Return the number of times the sign bit of the
1858/// register is replicated into the other bits.  We know that at least 1 bit
1859/// is always equal to the sign bit (itself), but other cases can give us
1860/// information.  For example, immediately after an "SRA X, 2", we know that
1861/// the top 3 bits are all equal to each other, so we return 3.
1862unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1863  MVT VT = Op.getValueType();
1864  assert(VT.isInteger() && "Invalid VT!");
1865  unsigned VTBits = VT.getSizeInBits();
1866  unsigned Tmp, Tmp2;
1867  unsigned FirstAnswer = 1;
1868
1869  if (Depth == 6)
1870    return 1;  // Limit search depth.
1871
1872  switch (Op.getOpcode()) {
1873  default: break;
1874  case ISD::AssertSext:
1875    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1876    return VTBits-Tmp+1;
1877  case ISD::AssertZext:
1878    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1879    return VTBits-Tmp;
1880
1881  case ISD::Constant: {
1882    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1883    // If negative, return # leading ones.
1884    if (Val.isNegative())
1885      return Val.countLeadingOnes();
1886
1887    // Return # leading zeros.
1888    return Val.countLeadingZeros();
1889  }
1890
1891  case ISD::SIGN_EXTEND:
1892    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1893    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1894
1895  case ISD::SIGN_EXTEND_INREG:
1896    // Max of the input and what this extends.
1897    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1898    Tmp = VTBits-Tmp+1;
1899
1900    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1901    return std::max(Tmp, Tmp2);
1902
1903  case ISD::SRA:
1904    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1905    // SRA X, C   -> adds C sign bits.
1906    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1907      Tmp += C->getZExtValue();
1908      if (Tmp > VTBits) Tmp = VTBits;
1909    }
1910    return Tmp;
1911  case ISD::SHL:
1912    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1913      // shl destroys sign bits.
1914      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1915      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1916          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1917      return Tmp - C->getZExtValue();
1918    }
1919    break;
1920  case ISD::AND:
1921  case ISD::OR:
1922  case ISD::XOR:    // NOT is handled here.
1923    // Logical binary ops preserve the number of sign bits at the worst.
1924    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1925    if (Tmp != 1) {
1926      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1927      FirstAnswer = std::min(Tmp, Tmp2);
1928      // We computed what we know about the sign bits as our first
1929      // answer. Now proceed to the generic code that uses
1930      // ComputeMaskedBits, and pick whichever answer is better.
1931    }
1932    break;
1933
1934  case ISD::SELECT:
1935    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1936    if (Tmp == 1) return 1;  // Early out.
1937    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1938    return std::min(Tmp, Tmp2);
1939
1940  case ISD::SADDO:
1941  case ISD::UADDO:
1942  case ISD::SSUBO:
1943  case ISD::USUBO:
1944  case ISD::SMULO:
1945  case ISD::UMULO:
1946    if (Op.getResNo() != 1)
1947      break;
1948    // The boolean result conforms to getBooleanContents.  Fall through.
1949  case ISD::SETCC:
1950    // If setcc returns 0/-1, all bits are sign bits.
1951    if (TLI.getBooleanContents() ==
1952        TargetLowering::ZeroOrNegativeOneBooleanContent)
1953      return VTBits;
1954    break;
1955  case ISD::ROTL:
1956  case ISD::ROTR:
1957    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1958      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1959
1960      // Handle rotate right by N like a rotate left by 32-N.
1961      if (Op.getOpcode() == ISD::ROTR)
1962        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1963
1964      // If we aren't rotating out all of the known-in sign bits, return the
1965      // number that are left.  This handles rotl(sext(x), 1) for example.
1966      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1967      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1968    }
1969    break;
1970  case ISD::ADD:
1971    // Add can have at most one carry bit.  Thus we know that the output
1972    // is, at worst, one more bit than the inputs.
1973    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1974    if (Tmp == 1) return 1;  // Early out.
1975
1976    // Special case decrementing a value (ADD X, -1):
1977    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1978      if (CRHS->isAllOnesValue()) {
1979        APInt KnownZero, KnownOne;
1980        APInt Mask = APInt::getAllOnesValue(VTBits);
1981        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1982
1983        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1984        // sign bits set.
1985        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1986          return VTBits;
1987
1988        // If we are subtracting one from a positive number, there is no carry
1989        // out of the result.
1990        if (KnownZero.isNegative())
1991          return Tmp;
1992      }
1993
1994    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1995    if (Tmp2 == 1) return 1;
1996      return std::min(Tmp, Tmp2)-1;
1997    break;
1998
1999  case ISD::SUB:
2000    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2001    if (Tmp2 == 1) return 1;
2002
2003    // Handle NEG.
2004    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2005      if (CLHS->isNullValue()) {
2006        APInt KnownZero, KnownOne;
2007        APInt Mask = APInt::getAllOnesValue(VTBits);
2008        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2009        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2010        // sign bits set.
2011        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2012          return VTBits;
2013
2014        // If the input is known to be positive (the sign bit is known clear),
2015        // the output of the NEG has the same number of sign bits as the input.
2016        if (KnownZero.isNegative())
2017          return Tmp2;
2018
2019        // Otherwise, we treat this like a SUB.
2020      }
2021
2022    // Sub can have at most one carry bit.  Thus we know that the output
2023    // is, at worst, one more bit than the inputs.
2024    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2025    if (Tmp == 1) return 1;  // Early out.
2026      return std::min(Tmp, Tmp2)-1;
2027    break;
2028  case ISD::TRUNCATE:
2029    // FIXME: it's tricky to do anything useful for this, but it is an important
2030    // case for targets like X86.
2031    break;
2032  }
2033
2034  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2035  if (Op.getOpcode() == ISD::LOAD) {
2036    LoadSDNode *LD = cast<LoadSDNode>(Op);
2037    unsigned ExtType = LD->getExtensionType();
2038    switch (ExtType) {
2039    default: break;
2040    case ISD::SEXTLOAD:    // '17' bits known
2041      Tmp = LD->getMemoryVT().getSizeInBits();
2042      return VTBits-Tmp+1;
2043    case ISD::ZEXTLOAD:    // '16' bits known
2044      Tmp = LD->getMemoryVT().getSizeInBits();
2045      return VTBits-Tmp;
2046    }
2047  }
2048
2049  // Allow the target to implement this method for its nodes.
2050  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2051      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2052      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2053      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2054    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2055    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2056  }
2057
2058  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2059  // use this information.
2060  APInt KnownZero, KnownOne;
2061  APInt Mask = APInt::getAllOnesValue(VTBits);
2062  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2063
2064  if (KnownZero.isNegative()) {        // sign bit is 0
2065    Mask = KnownZero;
2066  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2067    Mask = KnownOne;
2068  } else {
2069    // Nothing known.
2070    return FirstAnswer;
2071  }
2072
2073  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2074  // the number of identical bits in the top of the input value.
2075  Mask = ~Mask;
2076  Mask <<= Mask.getBitWidth()-VTBits;
2077  // Return # leading zeros.  We use 'min' here in case Val was zero before
2078  // shifting.  We don't want to return '64' as for an i32 "0".
2079  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2080}
2081
2082
2083bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2084  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2085  if (!GA) return false;
2086  if (GA->getOffset() != 0) return false;
2087  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2088  if (!GV) return false;
2089  MachineModuleInfo *MMI = getMachineModuleInfo();
2090  return MMI && MMI->hasDebugInfo();
2091}
2092
2093
2094/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2095/// element of the result of the vector shuffle.
2096SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2097  MVT VT = N->getValueType(0);
2098  DebugLoc dl = N->getDebugLoc();
2099  SDValue PermMask = N->getOperand(2);
2100  SDValue Idx = PermMask.getOperand(i);
2101  if (Idx.getOpcode() == ISD::UNDEF)
2102    return getUNDEF(VT.getVectorElementType());
2103  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2104  unsigned NumElems = PermMask.getNumOperands();
2105  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2106  Index %= NumElems;
2107
2108  if (V.getOpcode() == ISD::BIT_CONVERT) {
2109    V = V.getOperand(0);
2110    MVT VVT = V.getValueType();
2111    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2112      return SDValue();
2113  }
2114  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2115    return (Index == 0) ? V.getOperand(0)
2116                      : getUNDEF(VT.getVectorElementType());
2117  if (V.getOpcode() == ISD::BUILD_VECTOR)
2118    return V.getOperand(Index);
2119  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2120    return getShuffleScalarElt(V.getNode(), Index);
2121  return SDValue();
2122}
2123
2124
2125/// getNode - Gets or creates the specified node.
2126///
2127SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2128  FoldingSetNodeID ID;
2129  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2130  void *IP = 0;
2131  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2132    return SDValue(E, 0);
2133  SDNode *N = NodeAllocator.Allocate<SDNode>();
2134  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2135  CSEMap.InsertNode(N, IP);
2136
2137  AllNodes.push_back(N);
2138#ifndef NDEBUG
2139  VerifyNode(N);
2140#endif
2141  return SDValue(N, 0);
2142}
2143
2144SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2145                              MVT VT, SDValue Operand) {
2146  // Constant fold unary operations with an integer constant operand.
2147  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2148    const APInt &Val = C->getAPIntValue();
2149    unsigned BitWidth = VT.getSizeInBits();
2150    switch (Opcode) {
2151    default: break;
2152    case ISD::SIGN_EXTEND:
2153      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2154    case ISD::ANY_EXTEND:
2155    case ISD::ZERO_EXTEND:
2156    case ISD::TRUNCATE:
2157      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2158    case ISD::UINT_TO_FP:
2159    case ISD::SINT_TO_FP: {
2160      const uint64_t zero[] = {0, 0};
2161      // No compile time operations on this type.
2162      if (VT==MVT::ppcf128)
2163        break;
2164      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2165      (void)apf.convertFromAPInt(Val,
2166                                 Opcode==ISD::SINT_TO_FP,
2167                                 APFloat::rmNearestTiesToEven);
2168      return getConstantFP(apf, VT);
2169    }
2170    case ISD::BIT_CONVERT:
2171      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2172        return getConstantFP(Val.bitsToFloat(), VT);
2173      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2174        return getConstantFP(Val.bitsToDouble(), VT);
2175      break;
2176    case ISD::BSWAP:
2177      return getConstant(Val.byteSwap(), VT);
2178    case ISD::CTPOP:
2179      return getConstant(Val.countPopulation(), VT);
2180    case ISD::CTLZ:
2181      return getConstant(Val.countLeadingZeros(), VT);
2182    case ISD::CTTZ:
2183      return getConstant(Val.countTrailingZeros(), VT);
2184    }
2185  }
2186
2187  // Constant fold unary operations with a floating point constant operand.
2188  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2189    APFloat V = C->getValueAPF();    // make copy
2190    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2191      switch (Opcode) {
2192      case ISD::FNEG:
2193        V.changeSign();
2194        return getConstantFP(V, VT);
2195      case ISD::FABS:
2196        V.clearSign();
2197        return getConstantFP(V, VT);
2198      case ISD::FP_ROUND:
2199      case ISD::FP_EXTEND: {
2200        bool ignored;
2201        // This can return overflow, underflow, or inexact; we don't care.
2202        // FIXME need to be more flexible about rounding mode.
2203        (void)V.convert(*MVTToAPFloatSemantics(VT),
2204                        APFloat::rmNearestTiesToEven, &ignored);
2205        return getConstantFP(V, VT);
2206      }
2207      case ISD::FP_TO_SINT:
2208      case ISD::FP_TO_UINT: {
2209        integerPart x;
2210        bool ignored;
2211        assert(integerPartWidth >= 64);
2212        // FIXME need to be more flexible about rounding mode.
2213        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2214                              Opcode==ISD::FP_TO_SINT,
2215                              APFloat::rmTowardZero, &ignored);
2216        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2217          break;
2218        return getConstant(x, VT);
2219      }
2220      case ISD::BIT_CONVERT:
2221        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2222          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2223        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2224          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2225        break;
2226      }
2227    }
2228  }
2229
2230  unsigned OpOpcode = Operand.getNode()->getOpcode();
2231  switch (Opcode) {
2232  case ISD::TokenFactor:
2233  case ISD::MERGE_VALUES:
2234  case ISD::CONCAT_VECTORS:
2235    return Operand;         // Factor, merge or concat of one node?  No need.
2236  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2237  case ISD::FP_EXTEND:
2238    assert(VT.isFloatingPoint() &&
2239           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2240    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2241    if (Operand.getOpcode() == ISD::UNDEF)
2242      return getUNDEF(VT);
2243    break;
2244  case ISD::SIGN_EXTEND:
2245    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2246           "Invalid SIGN_EXTEND!");
2247    if (Operand.getValueType() == VT) return Operand;   // noop extension
2248    assert(Operand.getValueType().bitsLT(VT)
2249           && "Invalid sext node, dst < src!");
2250    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2251      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2252    break;
2253  case ISD::ZERO_EXTEND:
2254    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2255           "Invalid ZERO_EXTEND!");
2256    if (Operand.getValueType() == VT) return Operand;   // noop extension
2257    assert(Operand.getValueType().bitsLT(VT)
2258           && "Invalid zext node, dst < src!");
2259    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2260      return getNode(ISD::ZERO_EXTEND, DL, VT,
2261                     Operand.getNode()->getOperand(0));
2262    break;
2263  case ISD::ANY_EXTEND:
2264    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2265           "Invalid ANY_EXTEND!");
2266    if (Operand.getValueType() == VT) return Operand;   // noop extension
2267    assert(Operand.getValueType().bitsLT(VT)
2268           && "Invalid anyext node, dst < src!");
2269    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2270      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2271      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2272    break;
2273  case ISD::TRUNCATE:
2274    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2275           "Invalid TRUNCATE!");
2276    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2277    assert(Operand.getValueType().bitsGT(VT)
2278           && "Invalid truncate node, src < dst!");
2279    if (OpOpcode == ISD::TRUNCATE)
2280      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2281    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2282             OpOpcode == ISD::ANY_EXTEND) {
2283      // If the source is smaller than the dest, we still need an extend.
2284      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2285        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2286      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2287        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2288      else
2289        return Operand.getNode()->getOperand(0);
2290    }
2291    break;
2292  case ISD::BIT_CONVERT:
2293    // Basic sanity checking.
2294    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2295           && "Cannot BIT_CONVERT between types of different sizes!");
2296    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2297    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2298      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2299    if (OpOpcode == ISD::UNDEF)
2300      return getUNDEF(VT);
2301    break;
2302  case ISD::SCALAR_TO_VECTOR:
2303    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2304           VT.getVectorElementType() == Operand.getValueType() &&
2305           "Illegal SCALAR_TO_VECTOR node!");
2306    if (OpOpcode == ISD::UNDEF)
2307      return getUNDEF(VT);
2308    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2309    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2310        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2311        Operand.getConstantOperandVal(1) == 0 &&
2312        Operand.getOperand(0).getValueType() == VT)
2313      return Operand.getOperand(0);
2314    break;
2315  case ISD::FNEG:
2316    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2317    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2318      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2319                     Operand.getNode()->getOperand(0));
2320    if (OpOpcode == ISD::FNEG)  // --X -> X
2321      return Operand.getNode()->getOperand(0);
2322    break;
2323  case ISD::FABS:
2324    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2325      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2326    break;
2327  }
2328
2329  SDNode *N;
2330  SDVTList VTs = getVTList(VT);
2331  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2332    FoldingSetNodeID ID;
2333    SDValue Ops[1] = { Operand };
2334    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2335    void *IP = 0;
2336    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2337      return SDValue(E, 0);
2338    N = NodeAllocator.Allocate<UnarySDNode>();
2339    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2340    CSEMap.InsertNode(N, IP);
2341  } else {
2342    N = NodeAllocator.Allocate<UnarySDNode>();
2343    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2344  }
2345
2346  AllNodes.push_back(N);
2347#ifndef NDEBUG
2348  VerifyNode(N);
2349#endif
2350  return SDValue(N, 0);
2351}
2352
2353SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2354                                             MVT VT,
2355                                             ConstantSDNode *Cst1,
2356                                             ConstantSDNode *Cst2) {
2357  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2358
2359  switch (Opcode) {
2360  case ISD::ADD:  return getConstant(C1 + C2, VT);
2361  case ISD::SUB:  return getConstant(C1 - C2, VT);
2362  case ISD::MUL:  return getConstant(C1 * C2, VT);
2363  case ISD::UDIV:
2364    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2365    break;
2366  case ISD::UREM:
2367    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2368    break;
2369  case ISD::SDIV:
2370    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2371    break;
2372  case ISD::SREM:
2373    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2374    break;
2375  case ISD::AND:  return getConstant(C1 & C2, VT);
2376  case ISD::OR:   return getConstant(C1 | C2, VT);
2377  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2378  case ISD::SHL:  return getConstant(C1 << C2, VT);
2379  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2380  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2381  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2382  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2383  default: break;
2384  }
2385
2386  return SDValue();
2387}
2388
2389SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2390                              SDValue N1, SDValue N2) {
2391  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2392  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2393  switch (Opcode) {
2394  default: break;
2395  case ISD::TokenFactor:
2396    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2397           N2.getValueType() == MVT::Other && "Invalid token factor!");
2398    // Fold trivial token factors.
2399    if (N1.getOpcode() == ISD::EntryToken) return N2;
2400    if (N2.getOpcode() == ISD::EntryToken) return N1;
2401    if (N1 == N2) return N1;
2402    break;
2403  case ISD::CONCAT_VECTORS:
2404    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2405    // one big BUILD_VECTOR.
2406    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2407        N2.getOpcode() == ISD::BUILD_VECTOR) {
2408      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2409      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2410      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2411    }
2412    break;
2413  case ISD::AND:
2414    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2415           N1.getValueType() == VT && "Binary operator types must match!");
2416    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2417    // worth handling here.
2418    if (N2C && N2C->isNullValue())
2419      return N2;
2420    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2421      return N1;
2422    break;
2423  case ISD::OR:
2424  case ISD::XOR:
2425  case ISD::ADD:
2426  case ISD::SUB:
2427    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2428           N1.getValueType() == VT && "Binary operator types must match!");
2429    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2430    // it's worth handling here.
2431    if (N2C && N2C->isNullValue())
2432      return N1;
2433    break;
2434  case ISD::UDIV:
2435  case ISD::UREM:
2436  case ISD::MULHU:
2437  case ISD::MULHS:
2438  case ISD::MUL:
2439  case ISD::SDIV:
2440  case ISD::SREM:
2441    assert(VT.isInteger() && "This operator does not apply to FP types!");
2442    // fall through
2443  case ISD::FADD:
2444  case ISD::FSUB:
2445  case ISD::FMUL:
2446  case ISD::FDIV:
2447  case ISD::FREM:
2448    if (UnsafeFPMath) {
2449      if (Opcode == ISD::FADD) {
2450        // 0+x --> x
2451        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2452          if (CFP->getValueAPF().isZero())
2453            return N2;
2454        // x+0 --> x
2455        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2456          if (CFP->getValueAPF().isZero())
2457            return N1;
2458      } else if (Opcode == ISD::FSUB) {
2459        // x-0 --> x
2460        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2461          if (CFP->getValueAPF().isZero())
2462            return N1;
2463      }
2464    }
2465    assert(N1.getValueType() == N2.getValueType() &&
2466           N1.getValueType() == VT && "Binary operator types must match!");
2467    break;
2468  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2469    assert(N1.getValueType() == VT &&
2470           N1.getValueType().isFloatingPoint() &&
2471           N2.getValueType().isFloatingPoint() &&
2472           "Invalid FCOPYSIGN!");
2473    break;
2474  case ISD::SHL:
2475  case ISD::SRA:
2476  case ISD::SRL:
2477  case ISD::ROTL:
2478  case ISD::ROTR:
2479    assert(VT == N1.getValueType() &&
2480           "Shift operators return type must be the same as their first arg");
2481    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2482           "Shifts only work on integers");
2483
2484    // Always fold shifts of i1 values so the code generator doesn't need to
2485    // handle them.  Since we know the size of the shift has to be less than the
2486    // size of the value, the shift/rotate count is guaranteed to be zero.
2487    if (VT == MVT::i1)
2488      return N1;
2489    break;
2490  case ISD::FP_ROUND_INREG: {
2491    MVT EVT = cast<VTSDNode>(N2)->getVT();
2492    assert(VT == N1.getValueType() && "Not an inreg round!");
2493    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2494           "Cannot FP_ROUND_INREG integer types");
2495    assert(EVT.bitsLE(VT) && "Not rounding down!");
2496    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2497    break;
2498  }
2499  case ISD::FP_ROUND:
2500    assert(VT.isFloatingPoint() &&
2501           N1.getValueType().isFloatingPoint() &&
2502           VT.bitsLE(N1.getValueType()) &&
2503           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2504    if (N1.getValueType() == VT) return N1;  // noop conversion.
2505    break;
2506  case ISD::AssertSext:
2507  case ISD::AssertZext: {
2508    MVT EVT = cast<VTSDNode>(N2)->getVT();
2509    assert(VT == N1.getValueType() && "Not an inreg extend!");
2510    assert(VT.isInteger() && EVT.isInteger() &&
2511           "Cannot *_EXTEND_INREG FP types");
2512    assert(EVT.bitsLE(VT) && "Not extending!");
2513    if (VT == EVT) return N1; // noop assertion.
2514    break;
2515  }
2516  case ISD::SIGN_EXTEND_INREG: {
2517    MVT EVT = cast<VTSDNode>(N2)->getVT();
2518    assert(VT == N1.getValueType() && "Not an inreg extend!");
2519    assert(VT.isInteger() && EVT.isInteger() &&
2520           "Cannot *_EXTEND_INREG FP types");
2521    assert(EVT.bitsLE(VT) && "Not extending!");
2522    if (EVT == VT) return N1;  // Not actually extending
2523
2524    if (N1C) {
2525      APInt Val = N1C->getAPIntValue();
2526      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2527      Val <<= Val.getBitWidth()-FromBits;
2528      Val = Val.ashr(Val.getBitWidth()-FromBits);
2529      return getConstant(Val, VT);
2530    }
2531    break;
2532  }
2533  case ISD::EXTRACT_VECTOR_ELT:
2534    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2535    if (N1.getOpcode() == ISD::UNDEF)
2536      return getUNDEF(VT);
2537
2538    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2539    // expanding copies of large vectors from registers.
2540    if (N2C &&
2541        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2542        N1.getNumOperands() > 0) {
2543      unsigned Factor =
2544        N1.getOperand(0).getValueType().getVectorNumElements();
2545      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2546                     N1.getOperand(N2C->getZExtValue() / Factor),
2547                     getConstant(N2C->getZExtValue() % Factor,
2548                                 N2.getValueType()));
2549    }
2550
2551    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2552    // expanding large vector constants.
2553    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2554      return N1.getOperand(N2C->getZExtValue());
2555
2556    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2557    // operations are lowered to scalars.
2558    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2559      // If the indices are the same, return the inserted element.
2560      if (N1.getOperand(2) == N2)
2561        return N1.getOperand(1);
2562      // If the indices are known different, extract the element from
2563      // the original vector.
2564      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2565               isa<ConstantSDNode>(N2))
2566        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2567    }
2568    break;
2569  case ISD::EXTRACT_ELEMENT:
2570    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2571    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2572           (N1.getValueType().isInteger() == VT.isInteger()) &&
2573           "Wrong types for EXTRACT_ELEMENT!");
2574
2575    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2576    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2577    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2578    if (N1.getOpcode() == ISD::BUILD_PAIR)
2579      return N1.getOperand(N2C->getZExtValue());
2580
2581    // EXTRACT_ELEMENT of a constant int is also very common.
2582    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2583      unsigned ElementSize = VT.getSizeInBits();
2584      unsigned Shift = ElementSize * N2C->getZExtValue();
2585      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2586      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2587    }
2588    break;
2589  case ISD::EXTRACT_SUBVECTOR:
2590    if (N1.getValueType() == VT) // Trivial extraction.
2591      return N1;
2592    break;
2593  }
2594
2595  if (N1C) {
2596    if (N2C) {
2597      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2598      if (SV.getNode()) return SV;
2599    } else {      // Cannonicalize constant to RHS if commutative
2600      if (isCommutativeBinOp(Opcode)) {
2601        std::swap(N1C, N2C);
2602        std::swap(N1, N2);
2603      }
2604    }
2605  }
2606
2607  // Constant fold FP operations.
2608  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2609  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2610  if (N1CFP) {
2611    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2612      // Cannonicalize constant to RHS if commutative
2613      std::swap(N1CFP, N2CFP);
2614      std::swap(N1, N2);
2615    } else if (N2CFP && VT != MVT::ppcf128) {
2616      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2617      APFloat::opStatus s;
2618      switch (Opcode) {
2619      case ISD::FADD:
2620        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2621        if (s != APFloat::opInvalidOp)
2622          return getConstantFP(V1, VT);
2623        break;
2624      case ISD::FSUB:
2625        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2626        if (s!=APFloat::opInvalidOp)
2627          return getConstantFP(V1, VT);
2628        break;
2629      case ISD::FMUL:
2630        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2631        if (s!=APFloat::opInvalidOp)
2632          return getConstantFP(V1, VT);
2633        break;
2634      case ISD::FDIV:
2635        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2636        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2637          return getConstantFP(V1, VT);
2638        break;
2639      case ISD::FREM :
2640        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2641        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2642          return getConstantFP(V1, VT);
2643        break;
2644      case ISD::FCOPYSIGN:
2645        V1.copySign(V2);
2646        return getConstantFP(V1, VT);
2647      default: break;
2648      }
2649    }
2650  }
2651
2652  // Canonicalize an UNDEF to the RHS, even over a constant.
2653  if (N1.getOpcode() == ISD::UNDEF) {
2654    if (isCommutativeBinOp(Opcode)) {
2655      std::swap(N1, N2);
2656    } else {
2657      switch (Opcode) {
2658      case ISD::FP_ROUND_INREG:
2659      case ISD::SIGN_EXTEND_INREG:
2660      case ISD::SUB:
2661      case ISD::FSUB:
2662      case ISD::FDIV:
2663      case ISD::FREM:
2664      case ISD::SRA:
2665        return N1;     // fold op(undef, arg2) -> undef
2666      case ISD::UDIV:
2667      case ISD::SDIV:
2668      case ISD::UREM:
2669      case ISD::SREM:
2670      case ISD::SRL:
2671      case ISD::SHL:
2672        if (!VT.isVector())
2673          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2674        // For vectors, we can't easily build an all zero vector, just return
2675        // the LHS.
2676        return N2;
2677      }
2678    }
2679  }
2680
2681  // Fold a bunch of operators when the RHS is undef.
2682  if (N2.getOpcode() == ISD::UNDEF) {
2683    switch (Opcode) {
2684    case ISD::XOR:
2685      if (N1.getOpcode() == ISD::UNDEF)
2686        // Handle undef ^ undef -> 0 special case. This is a common
2687        // idiom (misuse).
2688        return getConstant(0, VT);
2689      // fallthrough
2690    case ISD::ADD:
2691    case ISD::ADDC:
2692    case ISD::ADDE:
2693    case ISD::SUB:
2694    case ISD::FADD:
2695    case ISD::FSUB:
2696    case ISD::FMUL:
2697    case ISD::FDIV:
2698    case ISD::FREM:
2699    case ISD::UDIV:
2700    case ISD::SDIV:
2701    case ISD::UREM:
2702    case ISD::SREM:
2703      return N2;       // fold op(arg1, undef) -> undef
2704    case ISD::MUL:
2705    case ISD::AND:
2706    case ISD::SRL:
2707    case ISD::SHL:
2708      if (!VT.isVector())
2709        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2710      // For vectors, we can't easily build an all zero vector, just return
2711      // the LHS.
2712      return N1;
2713    case ISD::OR:
2714      if (!VT.isVector())
2715        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2716      // For vectors, we can't easily build an all one vector, just return
2717      // the LHS.
2718      return N1;
2719    case ISD::SRA:
2720      return N1;
2721    }
2722  }
2723
2724  // Memoize this node if possible.
2725  SDNode *N;
2726  SDVTList VTs = getVTList(VT);
2727  if (VT != MVT::Flag) {
2728    SDValue Ops[] = { N1, N2 };
2729    FoldingSetNodeID ID;
2730    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2731    void *IP = 0;
2732    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2733      return SDValue(E, 0);
2734    N = NodeAllocator.Allocate<BinarySDNode>();
2735    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2736    CSEMap.InsertNode(N, IP);
2737  } else {
2738    N = NodeAllocator.Allocate<BinarySDNode>();
2739    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2740  }
2741
2742  AllNodes.push_back(N);
2743#ifndef NDEBUG
2744  VerifyNode(N);
2745#endif
2746  return SDValue(N, 0);
2747}
2748
2749SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2750                              SDValue N1, SDValue N2, SDValue N3) {
2751  // Perform various simplifications.
2752  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2753  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2754  switch (Opcode) {
2755  case ISD::CONCAT_VECTORS:
2756    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2757    // one big BUILD_VECTOR.
2758    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2759        N2.getOpcode() == ISD::BUILD_VECTOR &&
2760        N3.getOpcode() == ISD::BUILD_VECTOR) {
2761      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2762      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2763      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2764      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2765    }
2766    break;
2767  case ISD::SETCC: {
2768    // Use FoldSetCC to simplify SETCC's.
2769    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2770    if (Simp.getNode()) return Simp;
2771    break;
2772  }
2773  case ISD::SELECT:
2774    if (N1C) {
2775     if (N1C->getZExtValue())
2776        return N2;             // select true, X, Y -> X
2777      else
2778        return N3;             // select false, X, Y -> Y
2779    }
2780
2781    if (N2 == N3) return N2;   // select C, X, X -> X
2782    break;
2783  case ISD::BRCOND:
2784    if (N2C) {
2785      if (N2C->getZExtValue()) // Unconditional branch
2786        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2787      else
2788        return N1;         // Never-taken branch
2789    }
2790    break;
2791  case ISD::VECTOR_SHUFFLE:
2792    assert(N1.getValueType() == N2.getValueType() &&
2793           N1.getValueType().isVector() &&
2794           VT.isVector() && N3.getValueType().isVector() &&
2795           N3.getOpcode() == ISD::BUILD_VECTOR &&
2796           VT.getVectorNumElements() == N3.getNumOperands() &&
2797           "Illegal VECTOR_SHUFFLE node!");
2798    break;
2799  case ISD::BIT_CONVERT:
2800    // Fold bit_convert nodes from a type to themselves.
2801    if (N1.getValueType() == VT)
2802      return N1;
2803    break;
2804  }
2805
2806  // Memoize node if it doesn't produce a flag.
2807  SDNode *N;
2808  SDVTList VTs = getVTList(VT);
2809  if (VT != MVT::Flag) {
2810    SDValue Ops[] = { N1, N2, N3 };
2811    FoldingSetNodeID ID;
2812    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2813    void *IP = 0;
2814    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2815      return SDValue(E, 0);
2816    N = NodeAllocator.Allocate<TernarySDNode>();
2817    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2818    CSEMap.InsertNode(N, IP);
2819  } else {
2820    N = NodeAllocator.Allocate<TernarySDNode>();
2821    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2822  }
2823  AllNodes.push_back(N);
2824#ifndef NDEBUG
2825  VerifyNode(N);
2826#endif
2827  return SDValue(N, 0);
2828}
2829
2830SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2831                              SDValue N1, SDValue N2, SDValue N3,
2832                              SDValue N4) {
2833  SDValue Ops[] = { N1, N2, N3, N4 };
2834  return getNode(Opcode, DL, VT, Ops, 4);
2835}
2836
2837SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2838                              SDValue N1, SDValue N2, SDValue N3,
2839                              SDValue N4, SDValue N5) {
2840  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2841  return getNode(Opcode, DL, VT, Ops, 5);
2842}
2843
2844/// getMemsetValue - Vectorized representation of the memset value
2845/// operand.
2846static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2847                              DebugLoc dl) {
2848  unsigned NumBits = VT.isVector() ?
2849    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2850  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2851    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2852    unsigned Shift = 8;
2853    for (unsigned i = NumBits; i > 8; i >>= 1) {
2854      Val = (Val << Shift) | Val;
2855      Shift <<= 1;
2856    }
2857    if (VT.isInteger())
2858      return DAG.getConstant(Val, VT);
2859    return DAG.getConstantFP(APFloat(Val), VT);
2860  }
2861
2862  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2863  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2864  unsigned Shift = 8;
2865  for (unsigned i = NumBits; i > 8; i >>= 1) {
2866    Value = DAG.getNode(ISD::OR, dl, VT,
2867                        DAG.getNode(ISD::SHL, dl, VT, Value,
2868                                    DAG.getConstant(Shift,
2869                                                    TLI.getShiftAmountTy())),
2870                        Value);
2871    Shift <<= 1;
2872  }
2873
2874  return Value;
2875}
2876
2877/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2878/// used when a memcpy is turned into a memset when the source is a constant
2879/// string ptr.
2880static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2881                                    const TargetLowering &TLI,
2882                                    std::string &Str, unsigned Offset) {
2883  // Handle vector with all elements zero.
2884  if (Str.empty()) {
2885    if (VT.isInteger())
2886      return DAG.getConstant(0, VT);
2887    unsigned NumElts = VT.getVectorNumElements();
2888    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2889    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2890                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2891  }
2892
2893  assert(!VT.isVector() && "Can't handle vector type here!");
2894  unsigned NumBits = VT.getSizeInBits();
2895  unsigned MSB = NumBits / 8;
2896  uint64_t Val = 0;
2897  if (TLI.isLittleEndian())
2898    Offset = Offset + MSB - 1;
2899  for (unsigned i = 0; i != MSB; ++i) {
2900    Val = (Val << 8) | (unsigned char)Str[Offset];
2901    Offset += TLI.isLittleEndian() ? -1 : 1;
2902  }
2903  return DAG.getConstant(Val, VT);
2904}
2905
2906/// getMemBasePlusOffset - Returns base and offset node for the
2907///
2908static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2909                                      SelectionDAG &DAG) {
2910  MVT VT = Base.getValueType();
2911  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2912                     VT, Base, DAG.getConstant(Offset, VT));
2913}
2914
2915/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2916///
2917static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2918  unsigned SrcDelta = 0;
2919  GlobalAddressSDNode *G = NULL;
2920  if (Src.getOpcode() == ISD::GlobalAddress)
2921    G = cast<GlobalAddressSDNode>(Src);
2922  else if (Src.getOpcode() == ISD::ADD &&
2923           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2924           Src.getOperand(1).getOpcode() == ISD::Constant) {
2925    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2926    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2927  }
2928  if (!G)
2929    return false;
2930
2931  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2932  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2933    return true;
2934
2935  return false;
2936}
2937
2938/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2939/// to replace the memset / memcpy is below the threshold. It also returns the
2940/// types of the sequence of memory ops to perform memset / memcpy.
2941static
2942bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2943                              SDValue Dst, SDValue Src,
2944                              unsigned Limit, uint64_t Size, unsigned &Align,
2945                              std::string &Str, bool &isSrcStr,
2946                              SelectionDAG &DAG,
2947                              const TargetLowering &TLI) {
2948  isSrcStr = isMemSrcFromString(Src, Str);
2949  bool isSrcConst = isa<ConstantSDNode>(Src);
2950  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2951  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2952  if (VT != MVT::iAny) {
2953    unsigned NewAlign = (unsigned)
2954      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2955    // If source is a string constant, this will require an unaligned load.
2956    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2957      if (Dst.getOpcode() != ISD::FrameIndex) {
2958        // Can't change destination alignment. It requires a unaligned store.
2959        if (AllowUnalign)
2960          VT = MVT::iAny;
2961      } else {
2962        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2963        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2964        if (MFI->isFixedObjectIndex(FI)) {
2965          // Can't change destination alignment. It requires a unaligned store.
2966          if (AllowUnalign)
2967            VT = MVT::iAny;
2968        } else {
2969          // Give the stack frame object a larger alignment if needed.
2970          if (MFI->getObjectAlignment(FI) < NewAlign)
2971            MFI->setObjectAlignment(FI, NewAlign);
2972          Align = NewAlign;
2973        }
2974      }
2975    }
2976  }
2977
2978  if (VT == MVT::iAny) {
2979    if (AllowUnalign) {
2980      VT = MVT::i64;
2981    } else {
2982      switch (Align & 7) {
2983      case 0:  VT = MVT::i64; break;
2984      case 4:  VT = MVT::i32; break;
2985      case 2:  VT = MVT::i16; break;
2986      default: VT = MVT::i8;  break;
2987      }
2988    }
2989
2990    MVT LVT = MVT::i64;
2991    while (!TLI.isTypeLegal(LVT))
2992      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2993    assert(LVT.isInteger());
2994
2995    if (VT.bitsGT(LVT))
2996      VT = LVT;
2997  }
2998
2999  unsigned NumMemOps = 0;
3000  while (Size != 0) {
3001    unsigned VTSize = VT.getSizeInBits() / 8;
3002    while (VTSize > Size) {
3003      // For now, only use non-vector load / store's for the left-over pieces.
3004      if (VT.isVector()) {
3005        VT = MVT::i64;
3006        while (!TLI.isTypeLegal(VT))
3007          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3008        VTSize = VT.getSizeInBits() / 8;
3009      } else {
3010        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3011        VTSize >>= 1;
3012      }
3013    }
3014
3015    if (++NumMemOps > Limit)
3016      return false;
3017    MemOps.push_back(VT);
3018    Size -= VTSize;
3019  }
3020
3021  return true;
3022}
3023
3024static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3025                                         SDValue Chain, SDValue Dst,
3026                                         SDValue Src, uint64_t Size,
3027                                         unsigned Align, bool AlwaysInline,
3028                                         const Value *DstSV, uint64_t DstSVOff,
3029                                         const Value *SrcSV, uint64_t SrcSVOff){
3030  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3031
3032  // Expand memcpy to a series of load and store ops if the size operand falls
3033  // below a certain threshold.
3034  std::vector<MVT> MemOps;
3035  uint64_t Limit = -1ULL;
3036  if (!AlwaysInline)
3037    Limit = TLI.getMaxStoresPerMemcpy();
3038  unsigned DstAlign = Align;  // Destination alignment can change.
3039  std::string Str;
3040  bool CopyFromStr;
3041  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3042                                Str, CopyFromStr, DAG, TLI))
3043    return SDValue();
3044
3045
3046  bool isZeroStr = CopyFromStr && Str.empty();
3047  SmallVector<SDValue, 8> OutChains;
3048  unsigned NumMemOps = MemOps.size();
3049  uint64_t SrcOff = 0, DstOff = 0;
3050  for (unsigned i = 0; i < NumMemOps; i++) {
3051    MVT VT = MemOps[i];
3052    unsigned VTSize = VT.getSizeInBits() / 8;
3053    SDValue Value, Store;
3054
3055    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3056      // It's unlikely a store of a vector immediate can be done in a single
3057      // instruction. It would require a load from a constantpool first.
3058      // We also handle store a vector with all zero's.
3059      // FIXME: Handle other cases where store of vector immediate is done in
3060      // a single instruction.
3061      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3062      Store = DAG.getStore(Chain, dl, Value,
3063                           getMemBasePlusOffset(Dst, DstOff, DAG),
3064                           DstSV, DstSVOff + DstOff, false, DstAlign);
3065    } else {
3066      Value = DAG.getLoad(VT, dl, Chain,
3067                          getMemBasePlusOffset(Src, SrcOff, DAG),
3068                          SrcSV, SrcSVOff + SrcOff, false, Align);
3069      Store = DAG.getStore(Chain, dl, Value,
3070                           getMemBasePlusOffset(Dst, DstOff, DAG),
3071                           DstSV, DstSVOff + DstOff, false, DstAlign);
3072    }
3073    OutChains.push_back(Store);
3074    SrcOff += VTSize;
3075    DstOff += VTSize;
3076  }
3077
3078  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3079                     &OutChains[0], OutChains.size());
3080}
3081
3082static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3083                                          SDValue Chain, SDValue Dst,
3084                                          SDValue Src, uint64_t Size,
3085                                          unsigned Align, bool AlwaysInline,
3086                                          const Value *DstSV, uint64_t DstSVOff,
3087                                          const Value *SrcSV, uint64_t SrcSVOff){
3088  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3089
3090  // Expand memmove to a series of load and store ops if the size operand falls
3091  // below a certain threshold.
3092  std::vector<MVT> MemOps;
3093  uint64_t Limit = -1ULL;
3094  if (!AlwaysInline)
3095    Limit = TLI.getMaxStoresPerMemmove();
3096  unsigned DstAlign = Align;  // Destination alignment can change.
3097  std::string Str;
3098  bool CopyFromStr;
3099  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3100                                Str, CopyFromStr, DAG, TLI))
3101    return SDValue();
3102
3103  uint64_t SrcOff = 0, DstOff = 0;
3104
3105  SmallVector<SDValue, 8> LoadValues;
3106  SmallVector<SDValue, 8> LoadChains;
3107  SmallVector<SDValue, 8> OutChains;
3108  unsigned NumMemOps = MemOps.size();
3109  for (unsigned i = 0; i < NumMemOps; i++) {
3110    MVT VT = MemOps[i];
3111    unsigned VTSize = VT.getSizeInBits() / 8;
3112    SDValue Value, Store;
3113
3114    Value = DAG.getLoad(VT, dl, Chain,
3115                        getMemBasePlusOffset(Src, SrcOff, DAG),
3116                        SrcSV, SrcSVOff + SrcOff, false, Align);
3117    LoadValues.push_back(Value);
3118    LoadChains.push_back(Value.getValue(1));
3119    SrcOff += VTSize;
3120  }
3121  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3122                      &LoadChains[0], LoadChains.size());
3123  OutChains.clear();
3124  for (unsigned i = 0; i < NumMemOps; i++) {
3125    MVT VT = MemOps[i];
3126    unsigned VTSize = VT.getSizeInBits() / 8;
3127    SDValue Value, Store;
3128
3129    Store = DAG.getStore(Chain, dl, LoadValues[i],
3130                         getMemBasePlusOffset(Dst, DstOff, DAG),
3131                         DstSV, DstSVOff + DstOff, false, DstAlign);
3132    OutChains.push_back(Store);
3133    DstOff += VTSize;
3134  }
3135
3136  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3137                     &OutChains[0], OutChains.size());
3138}
3139
3140static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3141                                 SDValue Chain, SDValue Dst,
3142                                 SDValue Src, uint64_t Size,
3143                                 unsigned Align,
3144                                 const Value *DstSV, uint64_t DstSVOff) {
3145  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3146
3147  // Expand memset to a series of load/store ops if the size operand
3148  // falls below a certain threshold.
3149  std::vector<MVT> MemOps;
3150  std::string Str;
3151  bool CopyFromStr;
3152  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3153                                Size, Align, Str, CopyFromStr, DAG, TLI))
3154    return SDValue();
3155
3156  SmallVector<SDValue, 8> OutChains;
3157  uint64_t DstOff = 0;
3158
3159  unsigned NumMemOps = MemOps.size();
3160  for (unsigned i = 0; i < NumMemOps; i++) {
3161    MVT VT = MemOps[i];
3162    unsigned VTSize = VT.getSizeInBits() / 8;
3163    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3164    SDValue Store = DAG.getStore(Chain, dl, Value,
3165                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3166                                 DstSV, DstSVOff + DstOff);
3167    OutChains.push_back(Store);
3168    DstOff += VTSize;
3169  }
3170
3171  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3172                     &OutChains[0], OutChains.size());
3173}
3174
3175SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3176                                SDValue Src, SDValue Size,
3177                                unsigned Align, bool AlwaysInline,
3178                                const Value *DstSV, uint64_t DstSVOff,
3179                                const Value *SrcSV, uint64_t SrcSVOff) {
3180
3181  // Check to see if we should lower the memcpy to loads and stores first.
3182  // For cases within the target-specified limits, this is the best choice.
3183  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3184  if (ConstantSize) {
3185    // Memcpy with size zero? Just return the original chain.
3186    if (ConstantSize->isNullValue())
3187      return Chain;
3188
3189    SDValue Result =
3190      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3191                              ConstantSize->getZExtValue(),
3192                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3193    if (Result.getNode())
3194      return Result;
3195  }
3196
3197  // Then check to see if we should lower the memcpy with target-specific
3198  // code. If the target chooses to do this, this is the next best.
3199  SDValue Result =
3200    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3201                                AlwaysInline,
3202                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3203  if (Result.getNode())
3204    return Result;
3205
3206  // If we really need inline code and the target declined to provide it,
3207  // use a (potentially long) sequence of loads and stores.
3208  if (AlwaysInline) {
3209    assert(ConstantSize && "AlwaysInline requires a constant size!");
3210    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3211                                   ConstantSize->getZExtValue(), Align, true,
3212                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3213  }
3214
3215  // Emit a library call.
3216  TargetLowering::ArgListTy Args;
3217  TargetLowering::ArgListEntry Entry;
3218  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3219  Entry.Node = Dst; Args.push_back(Entry);
3220  Entry.Node = Src; Args.push_back(Entry);
3221  Entry.Node = Size; Args.push_back(Entry);
3222  // FIXME: pass in DebugLoc
3223  std::pair<SDValue,SDValue> CallResult =
3224    TLI.LowerCallTo(Chain, Type::VoidTy,
3225                    false, false, false, false, CallingConv::C, false,
3226                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3227                    Args, *this, dl);
3228  return CallResult.second;
3229}
3230
3231SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3232                                 SDValue Src, SDValue Size,
3233                                 unsigned Align,
3234                                 const Value *DstSV, uint64_t DstSVOff,
3235                                 const Value *SrcSV, uint64_t SrcSVOff) {
3236
3237  // Check to see if we should lower the memmove to loads and stores first.
3238  // For cases within the target-specified limits, this is the best choice.
3239  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3240  if (ConstantSize) {
3241    // Memmove with size zero? Just return the original chain.
3242    if (ConstantSize->isNullValue())
3243      return Chain;
3244
3245    SDValue Result =
3246      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3247                               ConstantSize->getZExtValue(),
3248                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3249    if (Result.getNode())
3250      return Result;
3251  }
3252
3253  // Then check to see if we should lower the memmove with target-specific
3254  // code. If the target chooses to do this, this is the next best.
3255  SDValue Result =
3256    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3257                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3258  if (Result.getNode())
3259    return Result;
3260
3261  // Emit a library call.
3262  TargetLowering::ArgListTy Args;
3263  TargetLowering::ArgListEntry Entry;
3264  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3265  Entry.Node = Dst; Args.push_back(Entry);
3266  Entry.Node = Src; Args.push_back(Entry);
3267  Entry.Node = Size; Args.push_back(Entry);
3268  // FIXME:  pass in DebugLoc
3269  std::pair<SDValue,SDValue> CallResult =
3270    TLI.LowerCallTo(Chain, Type::VoidTy,
3271                    false, false, false, false, CallingConv::C, false,
3272                    getExternalSymbol("memmove", TLI.getPointerTy()),
3273                    Args, *this, dl);
3274  return CallResult.second;
3275}
3276
3277SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3278                                SDValue Src, SDValue Size,
3279                                unsigned Align,
3280                                const Value *DstSV, uint64_t DstSVOff) {
3281
3282  // Check to see if we should lower the memset to stores first.
3283  // For cases within the target-specified limits, this is the best choice.
3284  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3285  if (ConstantSize) {
3286    // Memset with size zero? Just return the original chain.
3287    if (ConstantSize->isNullValue())
3288      return Chain;
3289
3290    SDValue Result =
3291      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3292                      Align, DstSV, DstSVOff);
3293    if (Result.getNode())
3294      return Result;
3295  }
3296
3297  // Then check to see if we should lower the memset with target-specific
3298  // code. If the target chooses to do this, this is the next best.
3299  SDValue Result =
3300    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3301                                DstSV, DstSVOff);
3302  if (Result.getNode())
3303    return Result;
3304
3305  // Emit a library call.
3306  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3307  TargetLowering::ArgListTy Args;
3308  TargetLowering::ArgListEntry Entry;
3309  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3310  Args.push_back(Entry);
3311  // Extend or truncate the argument to be an i32 value for the call.
3312  if (Src.getValueType().bitsGT(MVT::i32))
3313    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3314  else
3315    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3316  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3317  Args.push_back(Entry);
3318  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3319  Args.push_back(Entry);
3320  // FIXME: pass in DebugLoc
3321  std::pair<SDValue,SDValue> CallResult =
3322    TLI.LowerCallTo(Chain, Type::VoidTy,
3323                    false, false, false, false, CallingConv::C, false,
3324                    getExternalSymbol("memset", TLI.getPointerTy()),
3325                    Args, *this, dl);
3326  return CallResult.second;
3327}
3328
3329SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3330                                SDValue Chain,
3331                                SDValue Ptr, SDValue Cmp,
3332                                SDValue Swp, const Value* PtrVal,
3333                                unsigned Alignment) {
3334  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3335  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3336
3337  MVT VT = Cmp.getValueType();
3338
3339  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3340    Alignment = getMVTAlignment(MemVT);
3341
3342  SDVTList VTs = getVTList(VT, MVT::Other);
3343  FoldingSetNodeID ID;
3344  ID.AddInteger(MemVT.getRawBits());
3345  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3346  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3347  void* IP = 0;
3348  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3349    return SDValue(E, 0);
3350  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3351  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3352                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3353  CSEMap.InsertNode(N, IP);
3354  AllNodes.push_back(N);
3355  return SDValue(N, 0);
3356}
3357
3358SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3359                                SDValue Chain,
3360                                SDValue Ptr, SDValue Val,
3361                                const Value* PtrVal,
3362                                unsigned Alignment) {
3363  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3364          Opcode == ISD::ATOMIC_LOAD_SUB ||
3365          Opcode == ISD::ATOMIC_LOAD_AND ||
3366          Opcode == ISD::ATOMIC_LOAD_OR ||
3367          Opcode == ISD::ATOMIC_LOAD_XOR ||
3368          Opcode == ISD::ATOMIC_LOAD_NAND ||
3369          Opcode == ISD::ATOMIC_LOAD_MIN ||
3370          Opcode == ISD::ATOMIC_LOAD_MAX ||
3371          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3372          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3373          Opcode == ISD::ATOMIC_SWAP) &&
3374         "Invalid Atomic Op");
3375
3376  MVT VT = Val.getValueType();
3377
3378  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3379    Alignment = getMVTAlignment(MemVT);
3380
3381  SDVTList VTs = getVTList(VT, MVT::Other);
3382  FoldingSetNodeID ID;
3383  ID.AddInteger(MemVT.getRawBits());
3384  SDValue Ops[] = {Chain, Ptr, Val};
3385  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3386  void* IP = 0;
3387  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3388    return SDValue(E, 0);
3389  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3390  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3391                       Chain, Ptr, Val, PtrVal, Alignment);
3392  CSEMap.InsertNode(N, IP);
3393  AllNodes.push_back(N);
3394  return SDValue(N, 0);
3395}
3396
3397/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3398/// Allowed to return something different (and simpler) if Simplify is true.
3399SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3400                                     DebugLoc dl) {
3401  if (NumOps == 1)
3402    return Ops[0];
3403
3404  SmallVector<MVT, 4> VTs;
3405  VTs.reserve(NumOps);
3406  for (unsigned i = 0; i < NumOps; ++i)
3407    VTs.push_back(Ops[i].getValueType());
3408  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3409                 Ops, NumOps);
3410}
3411
3412SDValue
3413SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3414                                  const MVT *VTs, unsigned NumVTs,
3415                                  const SDValue *Ops, unsigned NumOps,
3416                                  MVT MemVT, const Value *srcValue, int SVOff,
3417                                  unsigned Align, bool Vol,
3418                                  bool ReadMem, bool WriteMem) {
3419  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3420                             MemVT, srcValue, SVOff, Align, Vol,
3421                             ReadMem, WriteMem);
3422}
3423
3424SDValue
3425SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3426                                  const SDValue *Ops, unsigned NumOps,
3427                                  MVT MemVT, const Value *srcValue, int SVOff,
3428                                  unsigned Align, bool Vol,
3429                                  bool ReadMem, bool WriteMem) {
3430  // Memoize the node unless it returns a flag.
3431  MemIntrinsicSDNode *N;
3432  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3433    FoldingSetNodeID ID;
3434    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3435    void *IP = 0;
3436    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3437      return SDValue(E, 0);
3438
3439    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3440    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3441                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3442    CSEMap.InsertNode(N, IP);
3443  } else {
3444    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3445    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3446                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3447  }
3448  AllNodes.push_back(N);
3449  return SDValue(N, 0);
3450}
3451
3452SDValue
3453SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3454                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3455                      const SDValue *Operands, unsigned NumOperands) {
3456  // Do not include isTailCall in the folding set profile.
3457  FoldingSetNodeID ID;
3458  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3459  ID.AddInteger(CallingConv);
3460  ID.AddInteger(IsVarArgs);
3461  void *IP = 0;
3462  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3463    // Instead of including isTailCall in the folding set, we just
3464    // set the flag of the existing node.
3465    if (!IsTailCall)
3466      cast<CallSDNode>(E)->setNotTailCall();
3467    return SDValue(E, 0);
3468  }
3469  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3470  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3471                     VTs, Operands, NumOperands);
3472  CSEMap.InsertNode(N, IP);
3473  AllNodes.push_back(N);
3474  return SDValue(N, 0);
3475}
3476
3477SDValue
3478SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3479                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3480                      SDValue Ptr, SDValue Offset,
3481                      const Value *SV, int SVOffset, MVT EVT,
3482                      bool isVolatile, unsigned Alignment) {
3483  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3484    Alignment = getMVTAlignment(VT);
3485
3486  if (VT == EVT) {
3487    ExtType = ISD::NON_EXTLOAD;
3488  } else if (ExtType == ISD::NON_EXTLOAD) {
3489    assert(VT == EVT && "Non-extending load from different memory type!");
3490  } else {
3491    // Extending load.
3492    if (VT.isVector())
3493      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3494             "Invalid vector extload!");
3495    else
3496      assert(EVT.bitsLT(VT) &&
3497             "Should only be an extending load, not truncating!");
3498    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3499           "Cannot sign/zero extend a FP/Vector load!");
3500    assert(VT.isInteger() == EVT.isInteger() &&
3501           "Cannot convert from FP to Int or Int -> FP!");
3502  }
3503
3504  bool Indexed = AM != ISD::UNINDEXED;
3505  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3506         "Unindexed load with an offset!");
3507
3508  SDVTList VTs = Indexed ?
3509    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3510  SDValue Ops[] = { Chain, Ptr, Offset };
3511  FoldingSetNodeID ID;
3512  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3513  ID.AddInteger(EVT.getRawBits());
3514  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3515  void *IP = 0;
3516  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3517    return SDValue(E, 0);
3518  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3519  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3520                     Alignment, isVolatile);
3521  CSEMap.InsertNode(N, IP);
3522  AllNodes.push_back(N);
3523  return SDValue(N, 0);
3524}
3525
3526SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3527                              SDValue Chain, SDValue Ptr,
3528                              const Value *SV, int SVOffset,
3529                              bool isVolatile, unsigned Alignment) {
3530  SDValue Undef = getUNDEF(Ptr.getValueType());
3531  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3532                 SV, SVOffset, VT, isVolatile, Alignment);
3533}
3534
3535SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3536                                 SDValue Chain, SDValue Ptr,
3537                                 const Value *SV,
3538                                 int SVOffset, MVT EVT,
3539                                 bool isVolatile, unsigned Alignment) {
3540  SDValue Undef = getUNDEF(Ptr.getValueType());
3541  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3542                 SV, SVOffset, EVT, isVolatile, Alignment);
3543}
3544
3545SDValue
3546SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3547                             SDValue Offset, ISD::MemIndexedMode AM) {
3548  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3549  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3550         "Load is already a indexed load!");
3551  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3552                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3553                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3554                 LD->isVolatile(), LD->getAlignment());
3555}
3556
3557SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3558                               SDValue Ptr, const Value *SV, int SVOffset,
3559                               bool isVolatile, unsigned Alignment) {
3560  MVT VT = Val.getValueType();
3561
3562  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3563    Alignment = getMVTAlignment(VT);
3564
3565  SDVTList VTs = getVTList(MVT::Other);
3566  SDValue Undef = getUNDEF(Ptr.getValueType());
3567  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3568  FoldingSetNodeID ID;
3569  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3570  ID.AddInteger(VT.getRawBits());
3571  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3572                                     isVolatile, Alignment));
3573  void *IP = 0;
3574  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3575    return SDValue(E, 0);
3576  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3577  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3578                      VT, SV, SVOffset, Alignment, isVolatile);
3579  CSEMap.InsertNode(N, IP);
3580  AllNodes.push_back(N);
3581  return SDValue(N, 0);
3582}
3583
3584SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3585                                    SDValue Ptr, const Value *SV,
3586                                    int SVOffset, MVT SVT,
3587                                    bool isVolatile, unsigned Alignment) {
3588  MVT VT = Val.getValueType();
3589
3590  if (VT == SVT)
3591    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3592
3593  assert(VT.bitsGT(SVT) && "Not a truncation?");
3594  assert(VT.isInteger() == SVT.isInteger() &&
3595         "Can't do FP-INT conversion!");
3596
3597  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3598    Alignment = getMVTAlignment(VT);
3599
3600  SDVTList VTs = getVTList(MVT::Other);
3601  SDValue Undef = getUNDEF(Ptr.getValueType());
3602  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3603  FoldingSetNodeID ID;
3604  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3605  ID.AddInteger(SVT.getRawBits());
3606  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3607                                     isVolatile, Alignment));
3608  void *IP = 0;
3609  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3610    return SDValue(E, 0);
3611  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3612  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3613                      SVT, SV, SVOffset, Alignment, isVolatile);
3614  CSEMap.InsertNode(N, IP);
3615  AllNodes.push_back(N);
3616  return SDValue(N, 0);
3617}
3618
3619SDValue
3620SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3621                              SDValue Offset, ISD::MemIndexedMode AM) {
3622  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3623  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3624         "Store is already a indexed store!");
3625  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3626  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3627  FoldingSetNodeID ID;
3628  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3629  ID.AddInteger(ST->getMemoryVT().getRawBits());
3630  ID.AddInteger(ST->getRawSubclassData());
3631  void *IP = 0;
3632  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3633    return SDValue(E, 0);
3634  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3635  new (N) StoreSDNode(Ops, dl, VTs, AM,
3636                      ST->isTruncatingStore(), ST->getMemoryVT(),
3637                      ST->getSrcValue(), ST->getSrcValueOffset(),
3638                      ST->getAlignment(), ST->isVolatile());
3639  CSEMap.InsertNode(N, IP);
3640  AllNodes.push_back(N);
3641  return SDValue(N, 0);
3642}
3643
3644SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3645                               SDValue Chain, SDValue Ptr,
3646                               SDValue SV) {
3647  SDValue Ops[] = { Chain, Ptr, SV };
3648  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3649}
3650
3651SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3652                              const SDUse *Ops, unsigned NumOps) {
3653  switch (NumOps) {
3654  case 0: return getNode(Opcode, DL, VT);
3655  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3656  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3657  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3658  default: break;
3659  }
3660
3661  // Copy from an SDUse array into an SDValue array for use with
3662  // the regular getNode logic.
3663  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3664  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3665}
3666
3667SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3668                              const SDValue *Ops, unsigned NumOps) {
3669  switch (NumOps) {
3670  case 0: return getNode(Opcode, DL, VT);
3671  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3672  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3673  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3674  default: break;
3675  }
3676
3677  switch (Opcode) {
3678  default: break;
3679  case ISD::SELECT_CC: {
3680    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3681    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3682           "LHS and RHS of condition must have same type!");
3683    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3684           "True and False arms of SelectCC must have same type!");
3685    assert(Ops[2].getValueType() == VT &&
3686           "select_cc node must be of same type as true and false value!");
3687    break;
3688  }
3689  case ISD::BR_CC: {
3690    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3691    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3692           "LHS/RHS of comparison should match types!");
3693    break;
3694  }
3695  }
3696
3697  // Memoize nodes.
3698  SDNode *N;
3699  SDVTList VTs = getVTList(VT);
3700
3701  if (VT != MVT::Flag) {
3702    FoldingSetNodeID ID;
3703    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3704    void *IP = 0;
3705
3706    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3707      return SDValue(E, 0);
3708
3709    N = NodeAllocator.Allocate<SDNode>();
3710    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3711    CSEMap.InsertNode(N, IP);
3712  } else {
3713    N = NodeAllocator.Allocate<SDNode>();
3714    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3715  }
3716
3717  AllNodes.push_back(N);
3718#ifndef NDEBUG
3719  VerifyNode(N);
3720#endif
3721  return SDValue(N, 0);
3722}
3723
3724SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3725                              const std::vector<MVT> &ResultTys,
3726                              const SDValue *Ops, unsigned NumOps) {
3727  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
3728                 Ops, NumOps);
3729}
3730
3731SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3732                              const MVT *VTs, unsigned NumVTs,
3733                              const SDValue *Ops, unsigned NumOps) {
3734  if (NumVTs == 1)
3735    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3736  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3737}
3738
3739SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3740                              const SDValue *Ops, unsigned NumOps) {
3741  if (VTList.NumVTs == 1)
3742    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3743
3744  switch (Opcode) {
3745  // FIXME: figure out how to safely handle things like
3746  // int foo(int x) { return 1 << (x & 255); }
3747  // int bar() { return foo(256); }
3748#if 0
3749  case ISD::SRA_PARTS:
3750  case ISD::SRL_PARTS:
3751  case ISD::SHL_PARTS:
3752    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3753        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3754      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3755    else if (N3.getOpcode() == ISD::AND)
3756      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3757        // If the and is only masking out bits that cannot effect the shift,
3758        // eliminate the and.
3759        unsigned NumBits = VT.getSizeInBits()*2;
3760        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3761          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3762      }
3763    break;
3764#endif
3765  }
3766
3767  // Memoize the node unless it returns a flag.
3768  SDNode *N;
3769  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3770    FoldingSetNodeID ID;
3771    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3772    void *IP = 0;
3773    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3774      return SDValue(E, 0);
3775    if (NumOps == 1) {
3776      N = NodeAllocator.Allocate<UnarySDNode>();
3777      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3778    } else if (NumOps == 2) {
3779      N = NodeAllocator.Allocate<BinarySDNode>();
3780      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3781    } else if (NumOps == 3) {
3782      N = NodeAllocator.Allocate<TernarySDNode>();
3783      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3784    } else {
3785      N = NodeAllocator.Allocate<SDNode>();
3786      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3787    }
3788    CSEMap.InsertNode(N, IP);
3789  } else {
3790    if (NumOps == 1) {
3791      N = NodeAllocator.Allocate<UnarySDNode>();
3792      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3793    } else if (NumOps == 2) {
3794      N = NodeAllocator.Allocate<BinarySDNode>();
3795      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3796    } else if (NumOps == 3) {
3797      N = NodeAllocator.Allocate<TernarySDNode>();
3798      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3799    } else {
3800      N = NodeAllocator.Allocate<SDNode>();
3801      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3802    }
3803  }
3804  AllNodes.push_back(N);
3805#ifndef NDEBUG
3806  VerifyNode(N);
3807#endif
3808  return SDValue(N, 0);
3809}
3810
3811SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3812  return getNode(Opcode, DL, VTList, 0, 0);
3813}
3814
3815SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3816                              SDValue N1) {
3817  SDValue Ops[] = { N1 };
3818  return getNode(Opcode, DL, VTList, Ops, 1);
3819}
3820
3821SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3822                              SDValue N1, SDValue N2) {
3823  SDValue Ops[] = { N1, N2 };
3824  return getNode(Opcode, DL, VTList, Ops, 2);
3825}
3826
3827SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3828                              SDValue N1, SDValue N2, SDValue N3) {
3829  SDValue Ops[] = { N1, N2, N3 };
3830  return getNode(Opcode, DL, VTList, Ops, 3);
3831}
3832
3833SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3834                              SDValue N1, SDValue N2, SDValue N3,
3835                              SDValue N4) {
3836  SDValue Ops[] = { N1, N2, N3, N4 };
3837  return getNode(Opcode, DL, VTList, Ops, 4);
3838}
3839
3840SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3841                              SDValue N1, SDValue N2, SDValue N3,
3842                              SDValue N4, SDValue N5) {
3843  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3844  return getNode(Opcode, DL, VTList, Ops, 5);
3845}
3846
3847SDVTList SelectionDAG::getVTList(MVT VT) {
3848  return makeVTList(SDNode::getValueTypeList(VT), 1);
3849}
3850
3851SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3852  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3853       E = VTList.rend(); I != E; ++I)
3854    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3855      return *I;
3856
3857  MVT *Array = Allocator.Allocate<MVT>(2);
3858  Array[0] = VT1;
3859  Array[1] = VT2;
3860  SDVTList Result = makeVTList(Array, 2);
3861  VTList.push_back(Result);
3862  return Result;
3863}
3864
3865SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3866  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3867       E = VTList.rend(); I != E; ++I)
3868    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3869                          I->VTs[2] == VT3)
3870      return *I;
3871
3872  MVT *Array = Allocator.Allocate<MVT>(3);
3873  Array[0] = VT1;
3874  Array[1] = VT2;
3875  Array[2] = VT3;
3876  SDVTList Result = makeVTList(Array, 3);
3877  VTList.push_back(Result);
3878  return Result;
3879}
3880
3881SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3882  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3883       E = VTList.rend(); I != E; ++I)
3884    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3885                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3886      return *I;
3887
3888  MVT *Array = Allocator.Allocate<MVT>(3);
3889  Array[0] = VT1;
3890  Array[1] = VT2;
3891  Array[2] = VT3;
3892  Array[3] = VT4;
3893  SDVTList Result = makeVTList(Array, 4);
3894  VTList.push_back(Result);
3895  return Result;
3896}
3897
3898SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3899  switch (NumVTs) {
3900    case 0: assert(0 && "Cannot have nodes without results!");
3901    case 1: return getVTList(VTs[0]);
3902    case 2: return getVTList(VTs[0], VTs[1]);
3903    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3904    default: break;
3905  }
3906
3907  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3908       E = VTList.rend(); I != E; ++I) {
3909    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3910      continue;
3911
3912    bool NoMatch = false;
3913    for (unsigned i = 2; i != NumVTs; ++i)
3914      if (VTs[i] != I->VTs[i]) {
3915        NoMatch = true;
3916        break;
3917      }
3918    if (!NoMatch)
3919      return *I;
3920  }
3921
3922  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3923  std::copy(VTs, VTs+NumVTs, Array);
3924  SDVTList Result = makeVTList(Array, NumVTs);
3925  VTList.push_back(Result);
3926  return Result;
3927}
3928
3929
3930/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3931/// specified operands.  If the resultant node already exists in the DAG,
3932/// this does not modify the specified node, instead it returns the node that
3933/// already exists.  If the resultant node does not exist in the DAG, the
3934/// input node is returned.  As a degenerate case, if you specify the same
3935/// input operands as the node already has, the input node is returned.
3936SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3937  SDNode *N = InN.getNode();
3938  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3939
3940  // Check to see if there is no change.
3941  if (Op == N->getOperand(0)) return InN;
3942
3943  // See if the modified node already exists.
3944  void *InsertPos = 0;
3945  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3946    return SDValue(Existing, InN.getResNo());
3947
3948  // Nope it doesn't.  Remove the node from its current place in the maps.
3949  if (InsertPos)
3950    if (!RemoveNodeFromCSEMaps(N))
3951      InsertPos = 0;
3952
3953  // Now we update the operands.
3954  N->OperandList[0].set(Op);
3955
3956  // If this gets put into a CSE map, add it.
3957  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3958  return InN;
3959}
3960
3961SDValue SelectionDAG::
3962UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3963  SDNode *N = InN.getNode();
3964  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3965
3966  // Check to see if there is no change.
3967  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3968    return InN;   // No operands changed, just return the input node.
3969
3970  // See if the modified node already exists.
3971  void *InsertPos = 0;
3972  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3973    return SDValue(Existing, InN.getResNo());
3974
3975  // Nope it doesn't.  Remove the node from its current place in the maps.
3976  if (InsertPos)
3977    if (!RemoveNodeFromCSEMaps(N))
3978      InsertPos = 0;
3979
3980  // Now we update the operands.
3981  if (N->OperandList[0] != Op1)
3982    N->OperandList[0].set(Op1);
3983  if (N->OperandList[1] != Op2)
3984    N->OperandList[1].set(Op2);
3985
3986  // If this gets put into a CSE map, add it.
3987  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3988  return InN;
3989}
3990
3991SDValue SelectionDAG::
3992UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3993  SDValue Ops[] = { Op1, Op2, Op3 };
3994  return UpdateNodeOperands(N, Ops, 3);
3995}
3996
3997SDValue SelectionDAG::
3998UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3999                   SDValue Op3, SDValue Op4) {
4000  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4001  return UpdateNodeOperands(N, Ops, 4);
4002}
4003
4004SDValue SelectionDAG::
4005UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4006                   SDValue Op3, SDValue Op4, SDValue Op5) {
4007  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4008  return UpdateNodeOperands(N, Ops, 5);
4009}
4010
4011SDValue SelectionDAG::
4012UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4013  SDNode *N = InN.getNode();
4014  assert(N->getNumOperands() == NumOps &&
4015         "Update with wrong number of operands");
4016
4017  // Check to see if there is no change.
4018  bool AnyChange = false;
4019  for (unsigned i = 0; i != NumOps; ++i) {
4020    if (Ops[i] != N->getOperand(i)) {
4021      AnyChange = true;
4022      break;
4023    }
4024  }
4025
4026  // No operands changed, just return the input node.
4027  if (!AnyChange) return InN;
4028
4029  // See if the modified node already exists.
4030  void *InsertPos = 0;
4031  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4032    return SDValue(Existing, InN.getResNo());
4033
4034  // Nope it doesn't.  Remove the node from its current place in the maps.
4035  if (InsertPos)
4036    if (!RemoveNodeFromCSEMaps(N))
4037      InsertPos = 0;
4038
4039  // Now we update the operands.
4040  for (unsigned i = 0; i != NumOps; ++i)
4041    if (N->OperandList[i] != Ops[i])
4042      N->OperandList[i].set(Ops[i]);
4043
4044  // If this gets put into a CSE map, add it.
4045  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4046  return InN;
4047}
4048
4049/// DropOperands - Release the operands and set this node to have
4050/// zero operands.
4051void SDNode::DropOperands() {
4052  // Unlike the code in MorphNodeTo that does this, we don't need to
4053  // watch for dead nodes here.
4054  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4055    SDUse &Use = *I++;
4056    Use.set(SDValue());
4057  }
4058}
4059
4060/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4061/// machine opcode.
4062///
4063SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4064                                   MVT VT) {
4065  SDVTList VTs = getVTList(VT);
4066  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4067}
4068
4069SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4070                                   MVT VT, SDValue Op1) {
4071  SDVTList VTs = getVTList(VT);
4072  SDValue Ops[] = { Op1 };
4073  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4074}
4075
4076SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4077                                   MVT VT, SDValue Op1,
4078                                   SDValue Op2) {
4079  SDVTList VTs = getVTList(VT);
4080  SDValue Ops[] = { Op1, Op2 };
4081  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4082}
4083
4084SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4085                                   MVT VT, SDValue Op1,
4086                                   SDValue Op2, SDValue Op3) {
4087  SDVTList VTs = getVTList(VT);
4088  SDValue Ops[] = { Op1, Op2, Op3 };
4089  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4090}
4091
4092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4093                                   MVT VT, const SDValue *Ops,
4094                                   unsigned NumOps) {
4095  SDVTList VTs = getVTList(VT);
4096  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4097}
4098
4099SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4100                                   MVT VT1, MVT VT2, const SDValue *Ops,
4101                                   unsigned NumOps) {
4102  SDVTList VTs = getVTList(VT1, VT2);
4103  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4104}
4105
4106SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4107                                   MVT VT1, MVT VT2) {
4108  SDVTList VTs = getVTList(VT1, VT2);
4109  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4110}
4111
4112SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4113                                   MVT VT1, MVT VT2, MVT VT3,
4114                                   const SDValue *Ops, unsigned NumOps) {
4115  SDVTList VTs = getVTList(VT1, VT2, VT3);
4116  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4117}
4118
4119SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4120                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4121                                   const SDValue *Ops, unsigned NumOps) {
4122  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4123  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4124}
4125
4126SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4127                                   MVT VT1, MVT VT2,
4128                                   SDValue Op1) {
4129  SDVTList VTs = getVTList(VT1, VT2);
4130  SDValue Ops[] = { Op1 };
4131  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4132}
4133
4134SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4135                                   MVT VT1, MVT VT2,
4136                                   SDValue Op1, SDValue Op2) {
4137  SDVTList VTs = getVTList(VT1, VT2);
4138  SDValue Ops[] = { Op1, Op2 };
4139  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4140}
4141
4142SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4143                                   MVT VT1, MVT VT2,
4144                                   SDValue Op1, SDValue Op2,
4145                                   SDValue Op3) {
4146  SDVTList VTs = getVTList(VT1, VT2);
4147  SDValue Ops[] = { Op1, Op2, Op3 };
4148  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4149}
4150
4151SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4152                                   MVT VT1, MVT VT2, MVT VT3,
4153                                   SDValue Op1, SDValue Op2,
4154                                   SDValue Op3) {
4155  SDVTList VTs = getVTList(VT1, VT2, VT3);
4156  SDValue Ops[] = { Op1, Op2, Op3 };
4157  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4158}
4159
4160SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4161                                   SDVTList VTs, const SDValue *Ops,
4162                                   unsigned NumOps) {
4163  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4164}
4165
4166SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4167                                  MVT VT) {
4168  SDVTList VTs = getVTList(VT);
4169  return MorphNodeTo(N, Opc, VTs, 0, 0);
4170}
4171
4172SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4173                                  MVT VT, SDValue Op1) {
4174  SDVTList VTs = getVTList(VT);
4175  SDValue Ops[] = { Op1 };
4176  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4177}
4178
4179SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4180                                  MVT VT, SDValue Op1,
4181                                  SDValue Op2) {
4182  SDVTList VTs = getVTList(VT);
4183  SDValue Ops[] = { Op1, Op2 };
4184  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4185}
4186
4187SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4188                                  MVT VT, SDValue Op1,
4189                                  SDValue Op2, SDValue Op3) {
4190  SDVTList VTs = getVTList(VT);
4191  SDValue Ops[] = { Op1, Op2, Op3 };
4192  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4193}
4194
4195SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4196                                  MVT VT, const SDValue *Ops,
4197                                  unsigned NumOps) {
4198  SDVTList VTs = getVTList(VT);
4199  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4200}
4201
4202SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4203                                  MVT VT1, MVT VT2, const SDValue *Ops,
4204                                  unsigned NumOps) {
4205  SDVTList VTs = getVTList(VT1, VT2);
4206  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4207}
4208
4209SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4210                                  MVT VT1, MVT VT2) {
4211  SDVTList VTs = getVTList(VT1, VT2);
4212  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4213}
4214
4215SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4216                                  MVT VT1, MVT VT2, MVT VT3,
4217                                  const SDValue *Ops, unsigned NumOps) {
4218  SDVTList VTs = getVTList(VT1, VT2, VT3);
4219  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4220}
4221
4222SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4223                                  MVT VT1, MVT VT2,
4224                                  SDValue Op1) {
4225  SDVTList VTs = getVTList(VT1, VT2);
4226  SDValue Ops[] = { Op1 };
4227  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4228}
4229
4230SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4231                                  MVT VT1, MVT VT2,
4232                                  SDValue Op1, SDValue Op2) {
4233  SDVTList VTs = getVTList(VT1, VT2);
4234  SDValue Ops[] = { Op1, Op2 };
4235  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4236}
4237
4238SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4239                                  MVT VT1, MVT VT2,
4240                                  SDValue Op1, SDValue Op2,
4241                                  SDValue Op3) {
4242  SDVTList VTs = getVTList(VT1, VT2);
4243  SDValue Ops[] = { Op1, Op2, Op3 };
4244  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4245}
4246
4247/// MorphNodeTo - These *mutate* the specified node to have the specified
4248/// return type, opcode, and operands.
4249///
4250/// Note that MorphNodeTo returns the resultant node.  If there is already a
4251/// node of the specified opcode and operands, it returns that node instead of
4252/// the current one.  Note that the DebugLoc need not be the same.
4253///
4254/// Using MorphNodeTo is faster than creating a new node and swapping it in
4255/// with ReplaceAllUsesWith both because it often avoids allocating a new
4256/// node, and because it doesn't require CSE recalculation for any of
4257/// the node's users.
4258///
4259SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4260                                  SDVTList VTs, const SDValue *Ops,
4261                                  unsigned NumOps) {
4262  // If an identical node already exists, use it.
4263  void *IP = 0;
4264  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4265    FoldingSetNodeID ID;
4266    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4267    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4268      return ON;
4269  }
4270
4271  if (!RemoveNodeFromCSEMaps(N))
4272    IP = 0;
4273
4274  // Start the morphing.
4275  N->NodeType = Opc;
4276  N->ValueList = VTs.VTs;
4277  N->NumValues = VTs.NumVTs;
4278
4279  // Clear the operands list, updating used nodes to remove this from their
4280  // use list.  Keep track of any operands that become dead as a result.
4281  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4282  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4283    SDUse &Use = *I++;
4284    SDNode *Used = Use.getNode();
4285    Use.set(SDValue());
4286    if (Used->use_empty())
4287      DeadNodeSet.insert(Used);
4288  }
4289
4290  // If NumOps is larger than the # of operands we currently have, reallocate
4291  // the operand list.
4292  if (NumOps > N->NumOperands) {
4293    if (N->OperandsNeedDelete)
4294      delete[] N->OperandList;
4295
4296    if (N->isMachineOpcode()) {
4297      // We're creating a final node that will live unmorphed for the
4298      // remainder of the current SelectionDAG iteration, so we can allocate
4299      // the operands directly out of a pool with no recycling metadata.
4300      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4301      N->OperandsNeedDelete = false;
4302    } else {
4303      N->OperandList = new SDUse[NumOps];
4304      N->OperandsNeedDelete = true;
4305    }
4306  }
4307
4308  // Assign the new operands.
4309  N->NumOperands = NumOps;
4310  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4311    N->OperandList[i].setUser(N);
4312    N->OperandList[i].setInitial(Ops[i]);
4313  }
4314
4315  // Delete any nodes that are still dead after adding the uses for the
4316  // new operands.
4317  SmallVector<SDNode *, 16> DeadNodes;
4318  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4319       E = DeadNodeSet.end(); I != E; ++I)
4320    if ((*I)->use_empty())
4321      DeadNodes.push_back(*I);
4322  RemoveDeadNodes(DeadNodes);
4323
4324  if (IP)
4325    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4326  return N;
4327}
4328
4329
4330/// getTargetNode - These are used for target selectors to create a new node
4331/// with specified return type(s), target opcode, and operands.
4332///
4333/// Note that getTargetNode returns the resultant node.  If there is already a
4334/// node of the specified opcode and operands, it returns that node instead of
4335/// the current one.
4336SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4337  return getNode(~Opcode, dl, VT).getNode();
4338}
4339
4340SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4341                                    SDValue Op1) {
4342  return getNode(~Opcode, dl, VT, Op1).getNode();
4343}
4344
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4346                                    SDValue Op1, SDValue Op2) {
4347  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4348}
4349
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4351                                    SDValue Op1, SDValue Op2,
4352                                    SDValue Op3) {
4353  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4354}
4355
4356SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4357                                    const SDValue *Ops, unsigned NumOps) {
4358  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4359}
4360
4361SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4362                                    MVT VT1, MVT VT2) {
4363  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4364  SDValue Op;
4365  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4366}
4367
4368SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4369                                    MVT VT2, SDValue Op1) {
4370  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4371  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4372}
4373
4374SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4375                                    MVT VT2, SDValue Op1,
4376                                    SDValue Op2) {
4377  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4378  SDValue Ops[] = { Op1, Op2 };
4379  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4380}
4381
4382SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4383                                    MVT VT2, SDValue Op1,
4384                                    SDValue Op2, SDValue Op3) {
4385  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4386  SDValue Ops[] = { Op1, Op2, Op3 };
4387  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4388}
4389
4390SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4391                                    MVT VT1, MVT VT2,
4392                                    const SDValue *Ops, unsigned NumOps) {
4393  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4394  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4395}
4396
4397SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4398                                    MVT VT1, MVT VT2, MVT VT3,
4399                                    SDValue Op1, SDValue Op2) {
4400  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4401  SDValue Ops[] = { Op1, Op2 };
4402  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4403}
4404
4405SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4406                                    MVT VT1, MVT VT2, MVT VT3,
4407                                    SDValue Op1, SDValue Op2,
4408                                    SDValue Op3) {
4409  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4410  SDValue Ops[] = { Op1, Op2, Op3 };
4411  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4412}
4413
4414SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4415                                    MVT VT1, MVT VT2, MVT VT3,
4416                                    const SDValue *Ops, unsigned NumOps) {
4417  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4418  return getNode(~Opcode, dl, VTs, 3, Ops, NumOps).getNode();
4419}
4420
4421SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4422                                    MVT VT2, MVT VT3, MVT VT4,
4423                                    const SDValue *Ops, unsigned NumOps) {
4424  std::vector<MVT> VTList;
4425  VTList.push_back(VT1);
4426  VTList.push_back(VT2);
4427  VTList.push_back(VT3);
4428  VTList.push_back(VT4);
4429  const MVT *VTs = getNodeValueTypes(VTList);
4430  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4431}
4432
4433SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4434                                    const std::vector<MVT> &ResultTys,
4435                                    const SDValue *Ops, unsigned NumOps) {
4436  const MVT *VTs = getNodeValueTypes(ResultTys);
4437  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4438                 Ops, NumOps).getNode();
4439}
4440
4441/// getNodeIfExists - Get the specified node if it's already available, or
4442/// else return NULL.
4443SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4444                                      const SDValue *Ops, unsigned NumOps) {
4445  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4446    FoldingSetNodeID ID;
4447    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4448    void *IP = 0;
4449    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4450      return E;
4451  }
4452  return NULL;
4453}
4454
4455/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4456/// This can cause recursive merging of nodes in the DAG.
4457///
4458/// This version assumes From has a single result value.
4459///
4460void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4461                                      DAGUpdateListener *UpdateListener) {
4462  SDNode *From = FromN.getNode();
4463  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4464         "Cannot replace with this method!");
4465  assert(From != To.getNode() && "Cannot replace uses of with self");
4466
4467  // Iterate over all the existing uses of From. New uses will be added
4468  // to the beginning of the use list, which we avoid visiting.
4469  // This specifically avoids visiting uses of From that arise while the
4470  // replacement is happening, because any such uses would be the result
4471  // of CSE: If an existing node looks like From after one of its operands
4472  // is replaced by To, we don't want to replace of all its users with To
4473  // too. See PR3018 for more info.
4474  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4475  while (UI != UE) {
4476    SDNode *User = *UI;
4477
4478    // This node is about to morph, remove its old self from the CSE maps.
4479    RemoveNodeFromCSEMaps(User);
4480
4481    // A user can appear in a use list multiple times, and when this
4482    // happens the uses are usually next to each other in the list.
4483    // To help reduce the number of CSE recomputations, process all
4484    // the uses of this user that we can find this way.
4485    do {
4486      SDUse &Use = UI.getUse();
4487      ++UI;
4488      Use.set(To);
4489    } while (UI != UE && *UI == User);
4490
4491    // Now that we have modified User, add it back to the CSE maps.  If it
4492    // already exists there, recursively merge the results together.
4493    AddModifiedNodeToCSEMaps(User, UpdateListener);
4494  }
4495}
4496
4497/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4498/// This can cause recursive merging of nodes in the DAG.
4499///
4500/// This version assumes From/To have matching types and numbers of result
4501/// values.
4502///
4503void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4504                                      DAGUpdateListener *UpdateListener) {
4505  assert(From->getVTList().VTs == To->getVTList().VTs &&
4506         From->getNumValues() == To->getNumValues() &&
4507         "Cannot use this version of ReplaceAllUsesWith!");
4508
4509  // Handle the trivial case.
4510  if (From == To)
4511    return;
4512
4513  // Iterate over just the existing users of From. See the comments in
4514  // the ReplaceAllUsesWith above.
4515  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4516  while (UI != UE) {
4517    SDNode *User = *UI;
4518
4519    // This node is about to morph, remove its old self from the CSE maps.
4520    RemoveNodeFromCSEMaps(User);
4521
4522    // A user can appear in a use list multiple times, and when this
4523    // happens the uses are usually next to each other in the list.
4524    // To help reduce the number of CSE recomputations, process all
4525    // the uses of this user that we can find this way.
4526    do {
4527      SDUse &Use = UI.getUse();
4528      ++UI;
4529      Use.setNode(To);
4530    } while (UI != UE && *UI == User);
4531
4532    // Now that we have modified User, add it back to the CSE maps.  If it
4533    // already exists there, recursively merge the results together.
4534    AddModifiedNodeToCSEMaps(User, UpdateListener);
4535  }
4536}
4537
4538/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4539/// This can cause recursive merging of nodes in the DAG.
4540///
4541/// This version can replace From with any result values.  To must match the
4542/// number and types of values returned by From.
4543void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4544                                      const SDValue *To,
4545                                      DAGUpdateListener *UpdateListener) {
4546  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4547    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4548
4549  // Iterate over just the existing users of From. See the comments in
4550  // the ReplaceAllUsesWith above.
4551  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4552  while (UI != UE) {
4553    SDNode *User = *UI;
4554
4555    // This node is about to morph, remove its old self from the CSE maps.
4556    RemoveNodeFromCSEMaps(User);
4557
4558    // A user can appear in a use list multiple times, and when this
4559    // happens the uses are usually next to each other in the list.
4560    // To help reduce the number of CSE recomputations, process all
4561    // the uses of this user that we can find this way.
4562    do {
4563      SDUse &Use = UI.getUse();
4564      const SDValue &ToOp = To[Use.getResNo()];
4565      ++UI;
4566      Use.set(ToOp);
4567    } while (UI != UE && *UI == User);
4568
4569    // Now that we have modified User, add it back to the CSE maps.  If it
4570    // already exists there, recursively merge the results together.
4571    AddModifiedNodeToCSEMaps(User, UpdateListener);
4572  }
4573}
4574
4575/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4576/// uses of other values produced by From.getNode() alone.  The Deleted
4577/// vector is handled the same way as for ReplaceAllUsesWith.
4578void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4579                                             DAGUpdateListener *UpdateListener){
4580  // Handle the really simple, really trivial case efficiently.
4581  if (From == To) return;
4582
4583  // Handle the simple, trivial, case efficiently.
4584  if (From.getNode()->getNumValues() == 1) {
4585    ReplaceAllUsesWith(From, To, UpdateListener);
4586    return;
4587  }
4588
4589  // Iterate over just the existing users of From. See the comments in
4590  // the ReplaceAllUsesWith above.
4591  SDNode::use_iterator UI = From.getNode()->use_begin(),
4592                       UE = From.getNode()->use_end();
4593  while (UI != UE) {
4594    SDNode *User = *UI;
4595    bool UserRemovedFromCSEMaps = false;
4596
4597    // A user can appear in a use list multiple times, and when this
4598    // happens the uses are usually next to each other in the list.
4599    // To help reduce the number of CSE recomputations, process all
4600    // the uses of this user that we can find this way.
4601    do {
4602      SDUse &Use = UI.getUse();
4603
4604      // Skip uses of different values from the same node.
4605      if (Use.getResNo() != From.getResNo()) {
4606        ++UI;
4607        continue;
4608      }
4609
4610      // If this node hasn't been modified yet, it's still in the CSE maps,
4611      // so remove its old self from the CSE maps.
4612      if (!UserRemovedFromCSEMaps) {
4613        RemoveNodeFromCSEMaps(User);
4614        UserRemovedFromCSEMaps = true;
4615      }
4616
4617      ++UI;
4618      Use.set(To);
4619    } while (UI != UE && *UI == User);
4620
4621    // We are iterating over all uses of the From node, so if a use
4622    // doesn't use the specific value, no changes are made.
4623    if (!UserRemovedFromCSEMaps)
4624      continue;
4625
4626    // Now that we have modified User, add it back to the CSE maps.  If it
4627    // already exists there, recursively merge the results together.
4628    AddModifiedNodeToCSEMaps(User, UpdateListener);
4629  }
4630}
4631
4632namespace {
4633  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4634  /// to record information about a use.
4635  struct UseMemo {
4636    SDNode *User;
4637    unsigned Index;
4638    SDUse *Use;
4639  };
4640
4641  /// operator< - Sort Memos by User.
4642  bool operator<(const UseMemo &L, const UseMemo &R) {
4643    return (intptr_t)L.User < (intptr_t)R.User;
4644  }
4645}
4646
4647/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4648/// uses of other values produced by From.getNode() alone.  The same value
4649/// may appear in both the From and To list.  The Deleted vector is
4650/// handled the same way as for ReplaceAllUsesWith.
4651void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4652                                              const SDValue *To,
4653                                              unsigned Num,
4654                                              DAGUpdateListener *UpdateListener){
4655  // Handle the simple, trivial case efficiently.
4656  if (Num == 1)
4657    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4658
4659  // Read up all the uses and make records of them. This helps
4660  // processing new uses that are introduced during the
4661  // replacement process.
4662  SmallVector<UseMemo, 4> Uses;
4663  for (unsigned i = 0; i != Num; ++i) {
4664    unsigned FromResNo = From[i].getResNo();
4665    SDNode *FromNode = From[i].getNode();
4666    for (SDNode::use_iterator UI = FromNode->use_begin(),
4667         E = FromNode->use_end(); UI != E; ++UI) {
4668      SDUse &Use = UI.getUse();
4669      if (Use.getResNo() == FromResNo) {
4670        UseMemo Memo = { *UI, i, &Use };
4671        Uses.push_back(Memo);
4672      }
4673    }
4674  }
4675
4676  // Sort the uses, so that all the uses from a given User are together.
4677  std::sort(Uses.begin(), Uses.end());
4678
4679  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4680       UseIndex != UseIndexEnd; ) {
4681    // We know that this user uses some value of From.  If it is the right
4682    // value, update it.
4683    SDNode *User = Uses[UseIndex].User;
4684
4685    // This node is about to morph, remove its old self from the CSE maps.
4686    RemoveNodeFromCSEMaps(User);
4687
4688    // The Uses array is sorted, so all the uses for a given User
4689    // are next to each other in the list.
4690    // To help reduce the number of CSE recomputations, process all
4691    // the uses of this user that we can find this way.
4692    do {
4693      unsigned i = Uses[UseIndex].Index;
4694      SDUse &Use = *Uses[UseIndex].Use;
4695      ++UseIndex;
4696
4697      Use.set(To[i]);
4698    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4699
4700    // Now that we have modified User, add it back to the CSE maps.  If it
4701    // already exists there, recursively merge the results together.
4702    AddModifiedNodeToCSEMaps(User, UpdateListener);
4703  }
4704}
4705
4706/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4707/// based on their topological order. It returns the maximum id and a vector
4708/// of the SDNodes* in assigned order by reference.
4709unsigned SelectionDAG::AssignTopologicalOrder() {
4710
4711  unsigned DAGSize = 0;
4712
4713  // SortedPos tracks the progress of the algorithm. Nodes before it are
4714  // sorted, nodes after it are unsorted. When the algorithm completes
4715  // it is at the end of the list.
4716  allnodes_iterator SortedPos = allnodes_begin();
4717
4718  // Visit all the nodes. Move nodes with no operands to the front of
4719  // the list immediately. Annotate nodes that do have operands with their
4720  // operand count. Before we do this, the Node Id fields of the nodes
4721  // may contain arbitrary values. After, the Node Id fields for nodes
4722  // before SortedPos will contain the topological sort index, and the
4723  // Node Id fields for nodes At SortedPos and after will contain the
4724  // count of outstanding operands.
4725  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4726    SDNode *N = I++;
4727    unsigned Degree = N->getNumOperands();
4728    if (Degree == 0) {
4729      // A node with no uses, add it to the result array immediately.
4730      N->setNodeId(DAGSize++);
4731      allnodes_iterator Q = N;
4732      if (Q != SortedPos)
4733        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4734      ++SortedPos;
4735    } else {
4736      // Temporarily use the Node Id as scratch space for the degree count.
4737      N->setNodeId(Degree);
4738    }
4739  }
4740
4741  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4742  // such that by the time the end is reached all nodes will be sorted.
4743  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4744    SDNode *N = I;
4745    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4746         UI != UE; ++UI) {
4747      SDNode *P = *UI;
4748      unsigned Degree = P->getNodeId();
4749      --Degree;
4750      if (Degree == 0) {
4751        // All of P's operands are sorted, so P may sorted now.
4752        P->setNodeId(DAGSize++);
4753        if (P != SortedPos)
4754          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4755        ++SortedPos;
4756      } else {
4757        // Update P's outstanding operand count.
4758        P->setNodeId(Degree);
4759      }
4760    }
4761  }
4762
4763  assert(SortedPos == AllNodes.end() &&
4764         "Topological sort incomplete!");
4765  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4766         "First node in topological sort is not the entry token!");
4767  assert(AllNodes.front().getNodeId() == 0 &&
4768         "First node in topological sort has non-zero id!");
4769  assert(AllNodes.front().getNumOperands() == 0 &&
4770         "First node in topological sort has operands!");
4771  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4772         "Last node in topologic sort has unexpected id!");
4773  assert(AllNodes.back().use_empty() &&
4774         "Last node in topologic sort has users!");
4775  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4776  return DAGSize;
4777}
4778
4779
4780
4781//===----------------------------------------------------------------------===//
4782//                              SDNode Class
4783//===----------------------------------------------------------------------===//
4784
4785HandleSDNode::~HandleSDNode() {
4786  DropOperands();
4787}
4788
4789GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4790                                         MVT VT, int64_t o)
4791  : SDNode(isa<GlobalVariable>(GA) &&
4792           cast<GlobalVariable>(GA)->isThreadLocal() ?
4793           // Thread Local
4794           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4795           // Non Thread Local
4796           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4797           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4798  TheGlobal = const_cast<GlobalValue*>(GA);
4799}
4800
4801MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4802                     const Value *srcValue, int SVO,
4803                     unsigned alignment, bool vol)
4804 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4805  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4806  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4807  assert(getAlignment() == alignment && "Alignment representation error!");
4808  assert(isVolatile() == vol && "Volatile representation error!");
4809}
4810
4811MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4812                     const SDValue *Ops,
4813                     unsigned NumOps, MVT memvt, const Value *srcValue,
4814                     int SVO, unsigned alignment, bool vol)
4815   : SDNode(Opc, dl, VTs, Ops, NumOps),
4816     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4817  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4818  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4819  assert(getAlignment() == alignment && "Alignment representation error!");
4820  assert(isVolatile() == vol && "Volatile representation error!");
4821}
4822
4823/// getMemOperand - Return a MachineMemOperand object describing the memory
4824/// reference performed by this memory reference.
4825MachineMemOperand MemSDNode::getMemOperand() const {
4826  int Flags = 0;
4827  if (isa<LoadSDNode>(this))
4828    Flags = MachineMemOperand::MOLoad;
4829  else if (isa<StoreSDNode>(this))
4830    Flags = MachineMemOperand::MOStore;
4831  else if (isa<AtomicSDNode>(this)) {
4832    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4833  }
4834  else {
4835    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4836    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4837    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4838    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4839  }
4840
4841  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4842  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4843
4844  // Check if the memory reference references a frame index
4845  const FrameIndexSDNode *FI =
4846  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4847  if (!getSrcValue() && FI)
4848    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4849                             Flags, 0, Size, getAlignment());
4850  else
4851    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4852                             Size, getAlignment());
4853}
4854
4855/// Profile - Gather unique data for the node.
4856///
4857void SDNode::Profile(FoldingSetNodeID &ID) const {
4858  AddNodeIDNode(ID, this);
4859}
4860
4861/// getValueTypeList - Return a pointer to the specified value type.
4862///
4863const MVT *SDNode::getValueTypeList(MVT VT) {
4864  if (VT.isExtended()) {
4865    static std::set<MVT, MVT::compareRawBits> EVTs;
4866    return &(*EVTs.insert(VT).first);
4867  } else {
4868    static MVT VTs[MVT::LAST_VALUETYPE];
4869    VTs[VT.getSimpleVT()] = VT;
4870    return &VTs[VT.getSimpleVT()];
4871  }
4872}
4873
4874/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4875/// indicated value.  This method ignores uses of other values defined by this
4876/// operation.
4877bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4878  assert(Value < getNumValues() && "Bad value!");
4879
4880  // TODO: Only iterate over uses of a given value of the node
4881  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4882    if (UI.getUse().getResNo() == Value) {
4883      if (NUses == 0)
4884        return false;
4885      --NUses;
4886    }
4887  }
4888
4889  // Found exactly the right number of uses?
4890  return NUses == 0;
4891}
4892
4893
4894/// hasAnyUseOfValue - Return true if there are any use of the indicated
4895/// value. This method ignores uses of other values defined by this operation.
4896bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4897  assert(Value < getNumValues() && "Bad value!");
4898
4899  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4900    if (UI.getUse().getResNo() == Value)
4901      return true;
4902
4903  return false;
4904}
4905
4906
4907/// isOnlyUserOf - Return true if this node is the only use of N.
4908///
4909bool SDNode::isOnlyUserOf(SDNode *N) const {
4910  bool Seen = false;
4911  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4912    SDNode *User = *I;
4913    if (User == this)
4914      Seen = true;
4915    else
4916      return false;
4917  }
4918
4919  return Seen;
4920}
4921
4922/// isOperand - Return true if this node is an operand of N.
4923///
4924bool SDValue::isOperandOf(SDNode *N) const {
4925  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4926    if (*this == N->getOperand(i))
4927      return true;
4928  return false;
4929}
4930
4931bool SDNode::isOperandOf(SDNode *N) const {
4932  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4933    if (this == N->OperandList[i].getNode())
4934      return true;
4935  return false;
4936}
4937
4938/// reachesChainWithoutSideEffects - Return true if this operand (which must
4939/// be a chain) reaches the specified operand without crossing any
4940/// side-effecting instructions.  In practice, this looks through token
4941/// factors and non-volatile loads.  In order to remain efficient, this only
4942/// looks a couple of nodes in, it does not do an exhaustive search.
4943bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4944                                               unsigned Depth) const {
4945  if (*this == Dest) return true;
4946
4947  // Don't search too deeply, we just want to be able to see through
4948  // TokenFactor's etc.
4949  if (Depth == 0) return false;
4950
4951  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4952  // of the operands of the TF reach dest, then we can do the xform.
4953  if (getOpcode() == ISD::TokenFactor) {
4954    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4955      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4956        return true;
4957    return false;
4958  }
4959
4960  // Loads don't have side effects, look through them.
4961  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4962    if (!Ld->isVolatile())
4963      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4964  }
4965  return false;
4966}
4967
4968
4969static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4970                            SmallPtrSet<SDNode *, 32> &Visited) {
4971  if (found || !Visited.insert(N))
4972    return;
4973
4974  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4975    SDNode *Op = N->getOperand(i).getNode();
4976    if (Op == P) {
4977      found = true;
4978      return;
4979    }
4980    findPredecessor(Op, P, found, Visited);
4981  }
4982}
4983
4984/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4985/// is either an operand of N or it can be reached by recursively traversing
4986/// up the operands.
4987/// NOTE: this is an expensive method. Use it carefully.
4988bool SDNode::isPredecessorOf(SDNode *N) const {
4989  SmallPtrSet<SDNode *, 32> Visited;
4990  bool found = false;
4991  findPredecessor(N, this, found, Visited);
4992  return found;
4993}
4994
4995uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4996  assert(Num < NumOperands && "Invalid child # of SDNode!");
4997  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4998}
4999
5000std::string SDNode::getOperationName(const SelectionDAG *G) const {
5001  switch (getOpcode()) {
5002  default:
5003    if (getOpcode() < ISD::BUILTIN_OP_END)
5004      return "<<Unknown DAG Node>>";
5005    if (isMachineOpcode()) {
5006      if (G)
5007        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5008          if (getMachineOpcode() < TII->getNumOpcodes())
5009            return TII->get(getMachineOpcode()).getName();
5010      return "<<Unknown Machine Node>>";
5011    }
5012    if (G) {
5013      const TargetLowering &TLI = G->getTargetLoweringInfo();
5014      const char *Name = TLI.getTargetNodeName(getOpcode());
5015      if (Name) return Name;
5016      return "<<Unknown Target Node>>";
5017    }
5018    return "<<Unknown Node>>";
5019
5020#ifndef NDEBUG
5021  case ISD::DELETED_NODE:
5022    return "<<Deleted Node!>>";
5023#endif
5024  case ISD::PREFETCH:      return "Prefetch";
5025  case ISD::MEMBARRIER:    return "MemBarrier";
5026  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5027  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5028  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5029  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5030  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5031  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5032  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5033  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5034  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5035  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5036  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5037  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5038  case ISD::PCMARKER:      return "PCMarker";
5039  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5040  case ISD::SRCVALUE:      return "SrcValue";
5041  case ISD::MEMOPERAND:    return "MemOperand";
5042  case ISD::EntryToken:    return "EntryToken";
5043  case ISD::TokenFactor:   return "TokenFactor";
5044  case ISD::AssertSext:    return "AssertSext";
5045  case ISD::AssertZext:    return "AssertZext";
5046
5047  case ISD::BasicBlock:    return "BasicBlock";
5048  case ISD::ARG_FLAGS:     return "ArgFlags";
5049  case ISD::VALUETYPE:     return "ValueType";
5050  case ISD::Register:      return "Register";
5051
5052  case ISD::Constant:      return "Constant";
5053  case ISD::ConstantFP:    return "ConstantFP";
5054  case ISD::GlobalAddress: return "GlobalAddress";
5055  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5056  case ISD::FrameIndex:    return "FrameIndex";
5057  case ISD::JumpTable:     return "JumpTable";
5058  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5059  case ISD::RETURNADDR: return "RETURNADDR";
5060  case ISD::FRAMEADDR: return "FRAMEADDR";
5061  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5062  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5063  case ISD::EHSELECTION: return "EHSELECTION";
5064  case ISD::EH_RETURN: return "EH_RETURN";
5065  case ISD::ConstantPool:  return "ConstantPool";
5066  case ISD::ExternalSymbol: return "ExternalSymbol";
5067  case ISD::INTRINSIC_WO_CHAIN: {
5068    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5069    return Intrinsic::getName((Intrinsic::ID)IID);
5070  }
5071  case ISD::INTRINSIC_VOID:
5072  case ISD::INTRINSIC_W_CHAIN: {
5073    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5074    return Intrinsic::getName((Intrinsic::ID)IID);
5075  }
5076
5077  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5078  case ISD::TargetConstant: return "TargetConstant";
5079  case ISD::TargetConstantFP:return "TargetConstantFP";
5080  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5081  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5082  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5083  case ISD::TargetJumpTable:  return "TargetJumpTable";
5084  case ISD::TargetConstantPool:  return "TargetConstantPool";
5085  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5086
5087  case ISD::CopyToReg:     return "CopyToReg";
5088  case ISD::CopyFromReg:   return "CopyFromReg";
5089  case ISD::UNDEF:         return "undef";
5090  case ISD::MERGE_VALUES:  return "merge_values";
5091  case ISD::INLINEASM:     return "inlineasm";
5092  case ISD::DBG_LABEL:     return "dbg_label";
5093  case ISD::EH_LABEL:      return "eh_label";
5094  case ISD::DECLARE:       return "declare";
5095  case ISD::HANDLENODE:    return "handlenode";
5096  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5097  case ISD::CALL:          return "call";
5098
5099  // Unary operators
5100  case ISD::FABS:   return "fabs";
5101  case ISD::FNEG:   return "fneg";
5102  case ISD::FSQRT:  return "fsqrt";
5103  case ISD::FSIN:   return "fsin";
5104  case ISD::FCOS:   return "fcos";
5105  case ISD::FPOWI:  return "fpowi";
5106  case ISD::FPOW:   return "fpow";
5107  case ISD::FTRUNC: return "ftrunc";
5108  case ISD::FFLOOR: return "ffloor";
5109  case ISD::FCEIL:  return "fceil";
5110  case ISD::FRINT:  return "frint";
5111  case ISD::FNEARBYINT: return "fnearbyint";
5112
5113  // Binary operators
5114  case ISD::ADD:    return "add";
5115  case ISD::SUB:    return "sub";
5116  case ISD::MUL:    return "mul";
5117  case ISD::MULHU:  return "mulhu";
5118  case ISD::MULHS:  return "mulhs";
5119  case ISD::SDIV:   return "sdiv";
5120  case ISD::UDIV:   return "udiv";
5121  case ISD::SREM:   return "srem";
5122  case ISD::UREM:   return "urem";
5123  case ISD::SMUL_LOHI:  return "smul_lohi";
5124  case ISD::UMUL_LOHI:  return "umul_lohi";
5125  case ISD::SDIVREM:    return "sdivrem";
5126  case ISD::UDIVREM:    return "udivrem";
5127  case ISD::AND:    return "and";
5128  case ISD::OR:     return "or";
5129  case ISD::XOR:    return "xor";
5130  case ISD::SHL:    return "shl";
5131  case ISD::SRA:    return "sra";
5132  case ISD::SRL:    return "srl";
5133  case ISD::ROTL:   return "rotl";
5134  case ISD::ROTR:   return "rotr";
5135  case ISD::FADD:   return "fadd";
5136  case ISD::FSUB:   return "fsub";
5137  case ISD::FMUL:   return "fmul";
5138  case ISD::FDIV:   return "fdiv";
5139  case ISD::FREM:   return "frem";
5140  case ISD::FCOPYSIGN: return "fcopysign";
5141  case ISD::FGETSIGN:  return "fgetsign";
5142
5143  case ISD::SETCC:       return "setcc";
5144  case ISD::VSETCC:      return "vsetcc";
5145  case ISD::SELECT:      return "select";
5146  case ISD::SELECT_CC:   return "select_cc";
5147  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5148  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5149  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5150  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5151  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5152  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5153  case ISD::CARRY_FALSE:         return "carry_false";
5154  case ISD::ADDC:        return "addc";
5155  case ISD::ADDE:        return "adde";
5156  case ISD::SADDO:       return "saddo";
5157  case ISD::UADDO:       return "uaddo";
5158  case ISD::SSUBO:       return "ssubo";
5159  case ISD::USUBO:       return "usubo";
5160  case ISD::SMULO:       return "smulo";
5161  case ISD::UMULO:       return "umulo";
5162  case ISD::SUBC:        return "subc";
5163  case ISD::SUBE:        return "sube";
5164  case ISD::SHL_PARTS:   return "shl_parts";
5165  case ISD::SRA_PARTS:   return "sra_parts";
5166  case ISD::SRL_PARTS:   return "srl_parts";
5167
5168  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5169  case ISD::INSERT_SUBREG:      return "insert_subreg";
5170
5171  // Conversion operators.
5172  case ISD::SIGN_EXTEND: return "sign_extend";
5173  case ISD::ZERO_EXTEND: return "zero_extend";
5174  case ISD::ANY_EXTEND:  return "any_extend";
5175  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5176  case ISD::TRUNCATE:    return "truncate";
5177  case ISD::FP_ROUND:    return "fp_round";
5178  case ISD::FLT_ROUNDS_: return "flt_rounds";
5179  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5180  case ISD::FP_EXTEND:   return "fp_extend";
5181
5182  case ISD::SINT_TO_FP:  return "sint_to_fp";
5183  case ISD::UINT_TO_FP:  return "uint_to_fp";
5184  case ISD::FP_TO_SINT:  return "fp_to_sint";
5185  case ISD::FP_TO_UINT:  return "fp_to_uint";
5186  case ISD::BIT_CONVERT: return "bit_convert";
5187
5188  case ISD::CONVERT_RNDSAT: {
5189    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5190    default: assert(0 && "Unknown cvt code!");
5191    case ISD::CVT_FF:  return "cvt_ff";
5192    case ISD::CVT_FS:  return "cvt_fs";
5193    case ISD::CVT_FU:  return "cvt_fu";
5194    case ISD::CVT_SF:  return "cvt_sf";
5195    case ISD::CVT_UF:  return "cvt_uf";
5196    case ISD::CVT_SS:  return "cvt_ss";
5197    case ISD::CVT_SU:  return "cvt_su";
5198    case ISD::CVT_US:  return "cvt_us";
5199    case ISD::CVT_UU:  return "cvt_uu";
5200    }
5201  }
5202
5203    // Control flow instructions
5204  case ISD::BR:      return "br";
5205  case ISD::BRIND:   return "brind";
5206  case ISD::BR_JT:   return "br_jt";
5207  case ISD::BRCOND:  return "brcond";
5208  case ISD::BR_CC:   return "br_cc";
5209  case ISD::RET:     return "ret";
5210  case ISD::CALLSEQ_START:  return "callseq_start";
5211  case ISD::CALLSEQ_END:    return "callseq_end";
5212
5213    // Other operators
5214  case ISD::LOAD:               return "load";
5215  case ISD::STORE:              return "store";
5216  case ISD::VAARG:              return "vaarg";
5217  case ISD::VACOPY:             return "vacopy";
5218  case ISD::VAEND:              return "vaend";
5219  case ISD::VASTART:            return "vastart";
5220  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5221  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5222  case ISD::BUILD_PAIR:         return "build_pair";
5223  case ISD::STACKSAVE:          return "stacksave";
5224  case ISD::STACKRESTORE:       return "stackrestore";
5225  case ISD::TRAP:               return "trap";
5226
5227  // Bit manipulation
5228  case ISD::BSWAP:   return "bswap";
5229  case ISD::CTPOP:   return "ctpop";
5230  case ISD::CTTZ:    return "cttz";
5231  case ISD::CTLZ:    return "ctlz";
5232
5233  // Debug info
5234  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5235  case ISD::DEBUG_LOC: return "debug_loc";
5236
5237  // Trampolines
5238  case ISD::TRAMPOLINE: return "trampoline";
5239
5240  case ISD::CONDCODE:
5241    switch (cast<CondCodeSDNode>(this)->get()) {
5242    default: assert(0 && "Unknown setcc condition!");
5243    case ISD::SETOEQ:  return "setoeq";
5244    case ISD::SETOGT:  return "setogt";
5245    case ISD::SETOGE:  return "setoge";
5246    case ISD::SETOLT:  return "setolt";
5247    case ISD::SETOLE:  return "setole";
5248    case ISD::SETONE:  return "setone";
5249
5250    case ISD::SETO:    return "seto";
5251    case ISD::SETUO:   return "setuo";
5252    case ISD::SETUEQ:  return "setue";
5253    case ISD::SETUGT:  return "setugt";
5254    case ISD::SETUGE:  return "setuge";
5255    case ISD::SETULT:  return "setult";
5256    case ISD::SETULE:  return "setule";
5257    case ISD::SETUNE:  return "setune";
5258
5259    case ISD::SETEQ:   return "seteq";
5260    case ISD::SETGT:   return "setgt";
5261    case ISD::SETGE:   return "setge";
5262    case ISD::SETLT:   return "setlt";
5263    case ISD::SETLE:   return "setle";
5264    case ISD::SETNE:   return "setne";
5265    }
5266  }
5267}
5268
5269const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5270  switch (AM) {
5271  default:
5272    return "";
5273  case ISD::PRE_INC:
5274    return "<pre-inc>";
5275  case ISD::PRE_DEC:
5276    return "<pre-dec>";
5277  case ISD::POST_INC:
5278    return "<post-inc>";
5279  case ISD::POST_DEC:
5280    return "<post-dec>";
5281  }
5282}
5283
5284std::string ISD::ArgFlagsTy::getArgFlagsString() {
5285  std::string S = "< ";
5286
5287  if (isZExt())
5288    S += "zext ";
5289  if (isSExt())
5290    S += "sext ";
5291  if (isInReg())
5292    S += "inreg ";
5293  if (isSRet())
5294    S += "sret ";
5295  if (isByVal())
5296    S += "byval ";
5297  if (isNest())
5298    S += "nest ";
5299  if (getByValAlign())
5300    S += "byval-align:" + utostr(getByValAlign()) + " ";
5301  if (getOrigAlign())
5302    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5303  if (getByValSize())
5304    S += "byval-size:" + utostr(getByValSize()) + " ";
5305  return S + ">";
5306}
5307
5308void SDNode::dump() const { dump(0); }
5309void SDNode::dump(const SelectionDAG *G) const {
5310  print(errs(), G);
5311  errs().flush();
5312}
5313
5314void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5315  OS << (void*)this << ": ";
5316
5317  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5318    if (i) OS << ",";
5319    if (getValueType(i) == MVT::Other)
5320      OS << "ch";
5321    else
5322      OS << getValueType(i).getMVTString();
5323  }
5324  OS << " = " << getOperationName(G);
5325}
5326
5327void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5328  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5329    SDNode *Mask = getOperand(2).getNode();
5330    OS << "<";
5331    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5332      if (i) OS << ",";
5333      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5334        OS << "u";
5335      else
5336        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5337    }
5338    OS << ">";
5339  }
5340
5341  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5342    OS << '<' << CSDN->getAPIntValue() << '>';
5343  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5344    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5345      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5346    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5347      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5348    else {
5349      OS << "<APFloat(";
5350      CSDN->getValueAPF().bitcastToAPInt().dump();
5351      OS << ")>";
5352    }
5353  } else if (const GlobalAddressSDNode *GADN =
5354             dyn_cast<GlobalAddressSDNode>(this)) {
5355    int64_t offset = GADN->getOffset();
5356    OS << '<';
5357    WriteAsOperand(OS, GADN->getGlobal());
5358    OS << '>';
5359    if (offset > 0)
5360      OS << " + " << offset;
5361    else
5362      OS << " " << offset;
5363  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5364    OS << "<" << FIDN->getIndex() << ">";
5365  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5366    OS << "<" << JTDN->getIndex() << ">";
5367  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5368    int offset = CP->getOffset();
5369    if (CP->isMachineConstantPoolEntry())
5370      OS << "<" << *CP->getMachineCPVal() << ">";
5371    else
5372      OS << "<" << *CP->getConstVal() << ">";
5373    if (offset > 0)
5374      OS << " + " << offset;
5375    else
5376      OS << " " << offset;
5377  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5378    OS << "<";
5379    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5380    if (LBB)
5381      OS << LBB->getName() << " ";
5382    OS << (const void*)BBDN->getBasicBlock() << ">";
5383  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5384    if (G && R->getReg() &&
5385        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5386      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5387    } else {
5388      OS << " #" << R->getReg();
5389    }
5390  } else if (const ExternalSymbolSDNode *ES =
5391             dyn_cast<ExternalSymbolSDNode>(this)) {
5392    OS << "'" << ES->getSymbol() << "'";
5393  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5394    if (M->getValue())
5395      OS << "<" << M->getValue() << ">";
5396    else
5397      OS << "<null>";
5398  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5399    if (M->MO.getValue())
5400      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5401    else
5402      OS << "<null:" << M->MO.getOffset() << ">";
5403  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5404    OS << N->getArgFlags().getArgFlagsString();
5405  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5406    OS << ":" << N->getVT().getMVTString();
5407  }
5408  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5409    const Value *SrcValue = LD->getSrcValue();
5410    int SrcOffset = LD->getSrcValueOffset();
5411    OS << " <";
5412    if (SrcValue)
5413      OS << SrcValue;
5414    else
5415      OS << "null";
5416    OS << ":" << SrcOffset << ">";
5417
5418    bool doExt = true;
5419    switch (LD->getExtensionType()) {
5420    default: doExt = false; break;
5421    case ISD::EXTLOAD: OS << " <anyext "; break;
5422    case ISD::SEXTLOAD: OS << " <sext "; break;
5423    case ISD::ZEXTLOAD: OS << " <zext "; break;
5424    }
5425    if (doExt)
5426      OS << LD->getMemoryVT().getMVTString() << ">";
5427
5428    const char *AM = getIndexedModeName(LD->getAddressingMode());
5429    if (*AM)
5430      OS << " " << AM;
5431    if (LD->isVolatile())
5432      OS << " <volatile>";
5433    OS << " alignment=" << LD->getAlignment();
5434  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5435    const Value *SrcValue = ST->getSrcValue();
5436    int SrcOffset = ST->getSrcValueOffset();
5437    OS << " <";
5438    if (SrcValue)
5439      OS << SrcValue;
5440    else
5441      OS << "null";
5442    OS << ":" << SrcOffset << ">";
5443
5444    if (ST->isTruncatingStore())
5445      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5446
5447    const char *AM = getIndexedModeName(ST->getAddressingMode());
5448    if (*AM)
5449      OS << " " << AM;
5450    if (ST->isVolatile())
5451      OS << " <volatile>";
5452    OS << " alignment=" << ST->getAlignment();
5453  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5454    const Value *SrcValue = AT->getSrcValue();
5455    int SrcOffset = AT->getSrcValueOffset();
5456    OS << " <";
5457    if (SrcValue)
5458      OS << SrcValue;
5459    else
5460      OS << "null";
5461    OS << ":" << SrcOffset << ">";
5462    if (AT->isVolatile())
5463      OS << " <volatile>";
5464    OS << " alignment=" << AT->getAlignment();
5465  }
5466}
5467
5468void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5469  print_types(OS, G);
5470  OS << " ";
5471  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5472    if (i) OS << ", ";
5473    OS << (void*)getOperand(i).getNode();
5474    if (unsigned RN = getOperand(i).getResNo())
5475      OS << ":" << RN;
5476  }
5477  print_details(OS, G);
5478}
5479
5480static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5481  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5482    if (N->getOperand(i).getNode()->hasOneUse())
5483      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5484    else
5485      cerr << "\n" << std::string(indent+2, ' ')
5486           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5487
5488
5489  cerr << "\n" << std::string(indent, ' ');
5490  N->dump(G);
5491}
5492
5493void SelectionDAG::dump() const {
5494  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5495
5496  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5497       I != E; ++I) {
5498    const SDNode *N = I;
5499    if (!N->hasOneUse() && N != getRoot().getNode())
5500      DumpNodes(N, 2, this);
5501  }
5502
5503  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5504
5505  cerr << "\n\n";
5506}
5507
5508void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5509  print_types(OS, G);
5510  print_details(OS, G);
5511}
5512
5513typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5514static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5515		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5516  if (!once.insert(N))	// If we've been here before, return now.
5517    return;
5518  // Dump the current SDNode, but don't end the line yet.
5519  OS << std::string(indent, ' ');
5520  N->printr(OS, G);
5521  // Having printed this SDNode, walk the children:
5522  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5523    const SDNode *child = N->getOperand(i).getNode();
5524    if (i) OS << ",";
5525    OS << " ";
5526    if (child->getNumOperands() == 0) {
5527      // This child has no grandchildren; print it inline right here.
5528      child->printr(OS, G);
5529      once.insert(child);
5530    } else {	// Just the address.  FIXME: also print the child's opcode
5531      OS << (void*)child;
5532      if (unsigned RN = N->getOperand(i).getResNo())
5533	OS << ":" << RN;
5534    }
5535  }
5536  OS << "\n";
5537  // Dump children that have grandchildren on their own line(s).
5538  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5539    const SDNode *child = N->getOperand(i).getNode();
5540    DumpNodesr(OS, child, indent+2, G, once);
5541  }
5542}
5543
5544void SDNode::dumpr() const {
5545  VisitedSDNodeSet once;
5546  DumpNodesr(errs(), this, 0, 0, once);
5547  errs().flush();
5548}
5549
5550const Type *ConstantPoolSDNode::getType() const {
5551  if (isMachineConstantPoolEntry())
5552    return Val.MachineCPVal->getType();
5553  return Val.ConstVal->getType();
5554}
5555
5556bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5557                                        APInt &SplatUndef,
5558                                        unsigned &SplatBitSize,
5559                                        bool &HasAnyUndefs,
5560                                        unsigned MinSplatBits) {
5561  MVT VT = getValueType(0);
5562  assert(VT.isVector() && "Expected a vector type");
5563  unsigned sz = VT.getSizeInBits();
5564  if (MinSplatBits > sz)
5565    return false;
5566
5567  SplatValue = APInt(sz, 0);
5568  SplatUndef = APInt(sz, 0);
5569
5570  // Get the bits.  Bits with undefined values (when the corresponding element
5571  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5572  // in SplatValue.  If any of the values are not constant, give up and return
5573  // false.
5574  unsigned int nOps = getNumOperands();
5575  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5576  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5577  for (unsigned i = 0; i < nOps; ++i) {
5578    SDValue OpVal = getOperand(i);
5579    unsigned BitPos = i * EltBitSize;
5580
5581    if (OpVal.getOpcode() == ISD::UNDEF)
5582      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5583    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5584      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(sz) << BitPos;
5585    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5586      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5587     else
5588      return false;
5589  }
5590
5591  // The build_vector is all constants or undefs.  Find the smallest element
5592  // size that splats the vector.
5593
5594  HasAnyUndefs = (SplatUndef != 0);
5595  while (sz > 8) {
5596
5597    unsigned HalfSize = sz / 2;
5598    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5599    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5600    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5601    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5602
5603    // If the two halves do not match (ignoring undef bits), stop here.
5604    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5605        MinSplatBits > HalfSize)
5606      break;
5607
5608    SplatValue = HighValue | LowValue;
5609    SplatUndef = HighUndef & LowUndef;
5610
5611    sz = HalfSize;
5612  }
5613
5614  SplatBitSize = sz;
5615  return true;
5616}
5617