SelectionDAG.cpp revision 1e450d4efe652b56a781e7f72dc6ac644e75eee6
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_VECTOR: {
762    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
763    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
764    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
765           "Wrong number of BUILD_VECTOR operands!");
766    // FIXME: Change vector_shuffle to a variadic node with mask elements being
767    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
768    // operand, and it is not always possible to legalize it.  Turning off the
769    // following checks at least makes it possible to legalize most of the time.
770//    MVT EltVT = N->getValueType(0).getVectorElementType();
771//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772//      assert(I->getSDValue().getValueType() == EltVT &&
773//             "Wrong BUILD_VECTOR operand type!");
774    break;
775  }
776  }
777}
778
779/// getMVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
783  const Type *Ty = VT == MVT::iPTR ?
784                   PointerType::get(Type::Int8Ty, 0) :
785                   VT.getTypeForMVT();
786
787  return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
791  : TLI(tli), FLI(fli),
792    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
793    Root(getEntryNode()) {
794  AllNodes.push_back(&EntryNode);
795}
796
797void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
798  MF = &mf;
799  MMI = mmi;
800}
801
802SelectionDAG::~SelectionDAG() {
803  allnodes_clear();
804}
805
806void SelectionDAG::allnodes_clear() {
807  assert(&*AllNodes.begin() == &EntryNode);
808  AllNodes.remove(AllNodes.begin());
809  while (!AllNodes.empty()) {
810    SDNode *N = AllNodes.remove(AllNodes.begin());
811    N->SetNextInBucket(0);
812
813    if (N->OperandsNeedDelete) {
814      delete [] N->OperandList;
815      N->OperandList = 0;
816    }
817
818    NodeAllocator.Deallocate(N);
819  }
820}
821
822void SelectionDAG::clear() {
823  allnodes_clear();
824  OperandAllocator.Reset();
825  CSEMap.clear();
826
827  ExtendedValueTypeNodes.clear();
828  ExternalSymbols.clear();
829  TargetExternalSymbols.clear();
830  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
831            static_cast<CondCodeSDNode*>(0));
832  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
833            static_cast<SDNode*>(0));
834
835  EntryNode.Uses = 0;
836  AllNodes.push_back(&EntryNode);
837  Root = getEntryNode();
838}
839
840SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
841  if (Op.getValueType() == VT) return Op;
842  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
843                                   VT.getSizeInBits());
844  return getNode(ISD::AND, Op.getValueType(), Op,
845                 getConstant(Imm, Op.getValueType()));
846}
847
848SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
849  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
851}
852
853SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
854  return getConstant(*ConstantInt::get(Val), VT, isT);
855}
856
857SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
858  assert(VT.isInteger() && "Cannot create FP integer constant!");
859
860  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
861  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
862         "APInt size does not match type size!");
863
864  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
865  FoldingSetNodeID ID;
866  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
867  ID.AddPointer(&Val);
868  void *IP = 0;
869  SDNode *N = NULL;
870  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
871    if (!VT.isVector())
872      return SDValue(N, 0);
873  if (!N) {
874    N = NodeAllocator.Allocate<ConstantSDNode>();
875    new (N) ConstantSDNode(isT, &Val, EltVT);
876    CSEMap.InsertNode(N, IP);
877    AllNodes.push_back(N);
878  }
879
880  SDValue Result(N, 0);
881  if (VT.isVector()) {
882    SmallVector<SDValue, 8> Ops;
883    Ops.assign(VT.getVectorNumElements(), Result);
884    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
885  }
886  return Result;
887}
888
889SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
890  return getConstant(Val, TLI.getPointerTy(), isTarget);
891}
892
893
894SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
895  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
896}
897
898SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
899  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
900
901  MVT EltVT =
902    VT.isVector() ? VT.getVectorElementType() : VT;
903
904  // Do the map lookup using the actual bit pattern for the floating point
905  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
906  // we don't have issues with SNANs.
907  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
908  FoldingSetNodeID ID;
909  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
910  ID.AddPointer(&V);
911  void *IP = 0;
912  SDNode *N = NULL;
913  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
914    if (!VT.isVector())
915      return SDValue(N, 0);
916  if (!N) {
917    N = NodeAllocator.Allocate<ConstantFPSDNode>();
918    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
919    CSEMap.InsertNode(N, IP);
920    AllNodes.push_back(N);
921  }
922
923  SDValue Result(N, 0);
924  if (VT.isVector()) {
925    SmallVector<SDValue, 8> Ops;
926    Ops.assign(VT.getVectorNumElements(), Result);
927    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
928  }
929  return Result;
930}
931
932SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
933  MVT EltVT =
934    VT.isVector() ? VT.getVectorElementType() : VT;
935  if (EltVT==MVT::f32)
936    return getConstantFP(APFloat((float)Val), VT, isTarget);
937  else
938    return getConstantFP(APFloat(Val), VT, isTarget);
939}
940
941SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
942                                       MVT VT, int64_t Offset,
943                                       bool isTargetGA) {
944  unsigned Opc;
945
946  // Truncate (with sign-extension) the offset value to the pointer size.
947  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
948  if (BitWidth < 64)
949    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
950
951  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
952  if (!GVar) {
953    // If GV is an alias then use the aliasee for determining thread-localness.
954    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
955      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
956  }
957
958  if (GVar && GVar->isThreadLocal())
959    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
960  else
961    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
962
963  FoldingSetNodeID ID;
964  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
965  ID.AddPointer(GV);
966  ID.AddInteger(Offset);
967  void *IP = 0;
968  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
969   return SDValue(E, 0);
970  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
971  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
972  CSEMap.InsertNode(N, IP);
973  AllNodes.push_back(N);
974  return SDValue(N, 0);
975}
976
977SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
978  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
979  FoldingSetNodeID ID;
980  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
981  ID.AddInteger(FI);
982  void *IP = 0;
983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984    return SDValue(E, 0);
985  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
986  new (N) FrameIndexSDNode(FI, VT, isTarget);
987  CSEMap.InsertNode(N, IP);
988  AllNodes.push_back(N);
989  return SDValue(N, 0);
990}
991
992SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
993  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(JTI);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1001  new (N) JumpTableSDNode(JTI, VT, isTarget);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1008                                      unsigned Alignment, int Offset,
1009                                      bool isTarget) {
1010  if (Alignment == 0)
1011    Alignment =
1012      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1013  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016  ID.AddInteger(Alignment);
1017  ID.AddInteger(Offset);
1018  ID.AddPointer(C);
1019  void *IP = 0;
1020  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1021    return SDValue(E, 0);
1022  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1023  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1024  CSEMap.InsertNode(N, IP);
1025  AllNodes.push_back(N);
1026  return SDValue(N, 0);
1027}
1028
1029
1030SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1031                                      unsigned Alignment, int Offset,
1032                                      bool isTarget) {
1033  if (Alignment == 0)
1034    Alignment =
1035      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1036  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1037  FoldingSetNodeID ID;
1038  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1039  ID.AddInteger(Alignment);
1040  ID.AddInteger(Offset);
1041  C->AddSelectionDAGCSEId(ID);
1042  void *IP = 0;
1043  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1044    return SDValue(E, 0);
1045  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1046  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1047  CSEMap.InsertNode(N, IP);
1048  AllNodes.push_back(N);
1049  return SDValue(N, 0);
1050}
1051
1052
1053SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1054  FoldingSetNodeID ID;
1055  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1056  ID.AddPointer(MBB);
1057  void *IP = 0;
1058  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1059    return SDValue(E, 0);
1060  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1061  new (N) BasicBlockSDNode(MBB);
1062  CSEMap.InsertNode(N, IP);
1063  AllNodes.push_back(N);
1064  return SDValue(N, 0);
1065}
1066
1067SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1070  ID.AddInteger(Flags.getRawBits());
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1075  new (N) ARG_FLAGSSDNode(Flags);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getValueType(MVT VT) {
1082  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1083    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1084
1085  SDNode *&N = VT.isExtended() ?
1086    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1087
1088  if (N) return SDValue(N, 0);
1089  N = NodeAllocator.Allocate<VTSDNode>();
1090  new (N) VTSDNode(VT);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1096  SDNode *&N = ExternalSymbols[Sym];
1097  if (N) return SDValue(N, 0);
1098  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1099  new (N) ExternalSymbolSDNode(false, Sym, VT);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1105  SDNode *&N = TargetExternalSymbols[Sym];
1106  if (N) return SDValue(N, 0);
1107  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1108  new (N) ExternalSymbolSDNode(true, Sym, VT);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1114  if ((unsigned)Cond >= CondCodeNodes.size())
1115    CondCodeNodes.resize(Cond+1);
1116
1117  if (CondCodeNodes[Cond] == 0) {
1118    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1119    new (N) CondCodeSDNode(Cond);
1120    CondCodeNodes[Cond] = N;
1121    AllNodes.push_back(N);
1122  }
1123  return SDValue(CondCodeNodes[Cond], 0);
1124}
1125
1126SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1127  FoldingSetNodeID ID;
1128  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1129  ID.AddInteger(RegNo);
1130  void *IP = 0;
1131  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1132    return SDValue(E, 0);
1133  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1134  new (N) RegisterSDNode(RegNo, VT);
1135  CSEMap.InsertNode(N, IP);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1141                                        unsigned Line, unsigned Col,
1142                                        const CompileUnitDesc *CU) {
1143  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1144  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getLabel(unsigned Opcode,
1150                               SDValue Root,
1151                               unsigned LabelID) {
1152  FoldingSetNodeID ID;
1153  SDValue Ops[] = { Root };
1154  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1155  ID.AddInteger(LabelID);
1156  void *IP = 0;
1157  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1158    return SDValue(E, 0);
1159  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1160  new (N) LabelSDNode(Opcode, Root, LabelID);
1161  CSEMap.InsertNode(N, IP);
1162  AllNodes.push_back(N);
1163  return SDValue(N, 0);
1164}
1165
1166SDValue SelectionDAG::getSrcValue(const Value *V) {
1167  assert((!V || isa<PointerType>(V->getType())) &&
1168         "SrcValue is not a pointer?");
1169
1170  FoldingSetNodeID ID;
1171  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1172  ID.AddPointer(V);
1173
1174  void *IP = 0;
1175  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1176    return SDValue(E, 0);
1177
1178  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1179  new (N) SrcValueSDNode(V);
1180  CSEMap.InsertNode(N, IP);
1181  AllNodes.push_back(N);
1182  return SDValue(N, 0);
1183}
1184
1185SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1186  const Value *v = MO.getValue();
1187  assert((!v || isa<PointerType>(v->getType())) &&
1188         "SrcValue is not a pointer?");
1189
1190  FoldingSetNodeID ID;
1191  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1192  MO.Profile(ID);
1193
1194  void *IP = 0;
1195  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1196    return SDValue(E, 0);
1197
1198  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1199  new (N) MemOperandSDNode(MO);
1200  CSEMap.InsertNode(N, IP);
1201  AllNodes.push_back(N);
1202  return SDValue(N, 0);
1203}
1204
1205/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1206/// specified value type.
1207SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1208  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1209  unsigned ByteSize = VT.getSizeInBits()/8;
1210  const Type *Ty = VT.getTypeForMVT();
1211  unsigned StackAlign =
1212  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1213
1214  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1215  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1216}
1217
1218SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1219                                SDValue N2, ISD::CondCode Cond) {
1220  // These setcc operations always fold.
1221  switch (Cond) {
1222  default: break;
1223  case ISD::SETFALSE:
1224  case ISD::SETFALSE2: return getConstant(0, VT);
1225  case ISD::SETTRUE:
1226  case ISD::SETTRUE2:  return getConstant(1, VT);
1227
1228  case ISD::SETOEQ:
1229  case ISD::SETOGT:
1230  case ISD::SETOGE:
1231  case ISD::SETOLT:
1232  case ISD::SETOLE:
1233  case ISD::SETONE:
1234  case ISD::SETO:
1235  case ISD::SETUO:
1236  case ISD::SETUEQ:
1237  case ISD::SETUNE:
1238    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1239    break;
1240  }
1241
1242  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1243    const APInt &C2 = N2C->getAPIntValue();
1244    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1245      const APInt &C1 = N1C->getAPIntValue();
1246
1247      switch (Cond) {
1248      default: assert(0 && "Unknown integer setcc!");
1249      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1250      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1251      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1252      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1253      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1254      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1255      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1256      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1257      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1258      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1259      }
1260    }
1261  }
1262  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1263    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1264      // No compile time operations on this type yet.
1265      if (N1C->getValueType(0) == MVT::ppcf128)
1266        return SDValue();
1267
1268      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1269      switch (Cond) {
1270      default: break;
1271      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1272                          return getNode(ISD::UNDEF, VT);
1273                        // fall through
1274      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1275      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1276                          return getNode(ISD::UNDEF, VT);
1277                        // fall through
1278      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1279                                           R==APFloat::cmpLessThan, VT);
1280      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1281                          return getNode(ISD::UNDEF, VT);
1282                        // fall through
1283      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1284      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1285                          return getNode(ISD::UNDEF, VT);
1286                        // fall through
1287      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1288      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1289                          return getNode(ISD::UNDEF, VT);
1290                        // fall through
1291      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1292                                           R==APFloat::cmpEqual, VT);
1293      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1294                          return getNode(ISD::UNDEF, VT);
1295                        // fall through
1296      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1297                                           R==APFloat::cmpEqual, VT);
1298      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1299      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1300      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1301                                           R==APFloat::cmpEqual, VT);
1302      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1303      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1304                                           R==APFloat::cmpLessThan, VT);
1305      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1306                                           R==APFloat::cmpUnordered, VT);
1307      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1308      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1309      }
1310    } else {
1311      // Ensure that the constant occurs on the RHS.
1312      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1313    }
1314  }
1315
1316  // Could not fold it.
1317  return SDValue();
1318}
1319
1320/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1321/// use this predicate to simplify operations downstream.
1322bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1323  unsigned BitWidth = Op.getValueSizeInBits();
1324  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1325}
1326
1327/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1328/// this predicate to simplify operations downstream.  Mask is known to be zero
1329/// for bits that V cannot have.
1330bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1331                                     unsigned Depth) const {
1332  APInt KnownZero, KnownOne;
1333  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1334  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1335  return (KnownZero & Mask) == Mask;
1336}
1337
1338/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1339/// known to be either zero or one and return them in the KnownZero/KnownOne
1340/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1341/// processing.
1342void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1343                                     APInt &KnownZero, APInt &KnownOne,
1344                                     unsigned Depth) const {
1345  unsigned BitWidth = Mask.getBitWidth();
1346  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1347         "Mask size mismatches value type size!");
1348
1349  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1350  if (Depth == 6 || Mask == 0)
1351    return;  // Limit search depth.
1352
1353  APInt KnownZero2, KnownOne2;
1354
1355  switch (Op.getOpcode()) {
1356  case ISD::Constant:
1357    // We know all of the bits for a constant!
1358    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1359    KnownZero = ~KnownOne & Mask;
1360    return;
1361  case ISD::AND:
1362    // If either the LHS or the RHS are Zero, the result is zero.
1363    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1364    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1365                      KnownZero2, KnownOne2, Depth+1);
1366    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1367    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1368
1369    // Output known-1 bits are only known if set in both the LHS & RHS.
1370    KnownOne &= KnownOne2;
1371    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1372    KnownZero |= KnownZero2;
1373    return;
1374  case ISD::OR:
1375    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1376    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1377                      KnownZero2, KnownOne2, Depth+1);
1378    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1379    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1380
1381    // Output known-0 bits are only known if clear in both the LHS & RHS.
1382    KnownZero &= KnownZero2;
1383    // Output known-1 are known to be set if set in either the LHS | RHS.
1384    KnownOne |= KnownOne2;
1385    return;
1386  case ISD::XOR: {
1387    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1388    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1389    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1390    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1391
1392    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1393    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1394    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1395    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1396    KnownZero = KnownZeroOut;
1397    return;
1398  }
1399  case ISD::MUL: {
1400    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1401    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1402    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1403    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1404    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1405
1406    // If low bits are zero in either operand, output low known-0 bits.
1407    // Also compute a conserative estimate for high known-0 bits.
1408    // More trickiness is possible, but this is sufficient for the
1409    // interesting case of alignment computation.
1410    KnownOne.clear();
1411    unsigned TrailZ = KnownZero.countTrailingOnes() +
1412                      KnownZero2.countTrailingOnes();
1413    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1414                               KnownZero2.countLeadingOnes(),
1415                               BitWidth) - BitWidth;
1416
1417    TrailZ = std::min(TrailZ, BitWidth);
1418    LeadZ = std::min(LeadZ, BitWidth);
1419    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1420                APInt::getHighBitsSet(BitWidth, LeadZ);
1421    KnownZero &= Mask;
1422    return;
1423  }
1424  case ISD::UDIV: {
1425    // For the purposes of computing leading zeros we can conservatively
1426    // treat a udiv as a logical right shift by the power of 2 known to
1427    // be less than the denominator.
1428    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1429    ComputeMaskedBits(Op.getOperand(0),
1430                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1431    unsigned LeadZ = KnownZero2.countLeadingOnes();
1432
1433    KnownOne2.clear();
1434    KnownZero2.clear();
1435    ComputeMaskedBits(Op.getOperand(1),
1436                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1437    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1438    if (RHSUnknownLeadingOnes != BitWidth)
1439      LeadZ = std::min(BitWidth,
1440                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1441
1442    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1443    return;
1444  }
1445  case ISD::SELECT:
1446    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1447    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1448    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1449    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1450
1451    // Only known if known in both the LHS and RHS.
1452    KnownOne &= KnownOne2;
1453    KnownZero &= KnownZero2;
1454    return;
1455  case ISD::SELECT_CC:
1456    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1457    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1458    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1459    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1460
1461    // Only known if known in both the LHS and RHS.
1462    KnownOne &= KnownOne2;
1463    KnownZero &= KnownZero2;
1464    return;
1465  case ISD::SETCC:
1466    // If we know the result of a setcc has the top bits zero, use this info.
1467    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1468        BitWidth > 1)
1469      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1470    return;
1471  case ISD::SHL:
1472    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1473    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1474      unsigned ShAmt = SA->getZExtValue();
1475
1476      // If the shift count is an invalid immediate, don't do anything.
1477      if (ShAmt >= BitWidth)
1478        return;
1479
1480      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1481                        KnownZero, KnownOne, Depth+1);
1482      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1483      KnownZero <<= ShAmt;
1484      KnownOne  <<= ShAmt;
1485      // low bits known zero.
1486      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1487    }
1488    return;
1489  case ISD::SRL:
1490    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1491    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1492      unsigned ShAmt = SA->getZExtValue();
1493
1494      // If the shift count is an invalid immediate, don't do anything.
1495      if (ShAmt >= BitWidth)
1496        return;
1497
1498      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1499                        KnownZero, KnownOne, Depth+1);
1500      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1501      KnownZero = KnownZero.lshr(ShAmt);
1502      KnownOne  = KnownOne.lshr(ShAmt);
1503
1504      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1505      KnownZero |= HighBits;  // High bits known zero.
1506    }
1507    return;
1508  case ISD::SRA:
1509    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1510      unsigned ShAmt = SA->getZExtValue();
1511
1512      // If the shift count is an invalid immediate, don't do anything.
1513      if (ShAmt >= BitWidth)
1514        return;
1515
1516      APInt InDemandedMask = (Mask << ShAmt);
1517      // If any of the demanded bits are produced by the sign extension, we also
1518      // demand the input sign bit.
1519      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1520      if (HighBits.getBoolValue())
1521        InDemandedMask |= APInt::getSignBit(BitWidth);
1522
1523      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1524                        Depth+1);
1525      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526      KnownZero = KnownZero.lshr(ShAmt);
1527      KnownOne  = KnownOne.lshr(ShAmt);
1528
1529      // Handle the sign bits.
1530      APInt SignBit = APInt::getSignBit(BitWidth);
1531      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1532
1533      if (KnownZero.intersects(SignBit)) {
1534        KnownZero |= HighBits;  // New bits are known zero.
1535      } else if (KnownOne.intersects(SignBit)) {
1536        KnownOne  |= HighBits;  // New bits are known one.
1537      }
1538    }
1539    return;
1540  case ISD::SIGN_EXTEND_INREG: {
1541    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1542    unsigned EBits = EVT.getSizeInBits();
1543
1544    // Sign extension.  Compute the demanded bits in the result that are not
1545    // present in the input.
1546    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1547
1548    APInt InSignBit = APInt::getSignBit(EBits);
1549    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1550
1551    // If the sign extended bits are demanded, we know that the sign
1552    // bit is demanded.
1553    InSignBit.zext(BitWidth);
1554    if (NewBits.getBoolValue())
1555      InputDemandedBits |= InSignBit;
1556
1557    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1558                      KnownZero, KnownOne, Depth+1);
1559    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560
1561    // If the sign bit of the input is known set or clear, then we know the
1562    // top bits of the result.
1563    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1564      KnownZero |= NewBits;
1565      KnownOne  &= ~NewBits;
1566    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1567      KnownOne  |= NewBits;
1568      KnownZero &= ~NewBits;
1569    } else {                              // Input sign bit unknown
1570      KnownZero &= ~NewBits;
1571      KnownOne  &= ~NewBits;
1572    }
1573    return;
1574  }
1575  case ISD::CTTZ:
1576  case ISD::CTLZ:
1577  case ISD::CTPOP: {
1578    unsigned LowBits = Log2_32(BitWidth)+1;
1579    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1580    KnownOne.clear();
1581    return;
1582  }
1583  case ISD::LOAD: {
1584    if (ISD::isZEXTLoad(Op.getNode())) {
1585      LoadSDNode *LD = cast<LoadSDNode>(Op);
1586      MVT VT = LD->getMemoryVT();
1587      unsigned MemBits = VT.getSizeInBits();
1588      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1589    }
1590    return;
1591  }
1592  case ISD::ZERO_EXTEND: {
1593    MVT InVT = Op.getOperand(0).getValueType();
1594    unsigned InBits = InVT.getSizeInBits();
1595    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1596    APInt InMask    = Mask;
1597    InMask.trunc(InBits);
1598    KnownZero.trunc(InBits);
1599    KnownOne.trunc(InBits);
1600    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1601    KnownZero.zext(BitWidth);
1602    KnownOne.zext(BitWidth);
1603    KnownZero |= NewBits;
1604    return;
1605  }
1606  case ISD::SIGN_EXTEND: {
1607    MVT InVT = Op.getOperand(0).getValueType();
1608    unsigned InBits = InVT.getSizeInBits();
1609    APInt InSignBit = APInt::getSignBit(InBits);
1610    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1611    APInt InMask = Mask;
1612    InMask.trunc(InBits);
1613
1614    // If any of the sign extended bits are demanded, we know that the sign
1615    // bit is demanded. Temporarily set this bit in the mask for our callee.
1616    if (NewBits.getBoolValue())
1617      InMask |= InSignBit;
1618
1619    KnownZero.trunc(InBits);
1620    KnownOne.trunc(InBits);
1621    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1622
1623    // Note if the sign bit is known to be zero or one.
1624    bool SignBitKnownZero = KnownZero.isNegative();
1625    bool SignBitKnownOne  = KnownOne.isNegative();
1626    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1627           "Sign bit can't be known to be both zero and one!");
1628
1629    // If the sign bit wasn't actually demanded by our caller, we don't
1630    // want it set in the KnownZero and KnownOne result values. Reset the
1631    // mask and reapply it to the result values.
1632    InMask = Mask;
1633    InMask.trunc(InBits);
1634    KnownZero &= InMask;
1635    KnownOne  &= InMask;
1636
1637    KnownZero.zext(BitWidth);
1638    KnownOne.zext(BitWidth);
1639
1640    // If the sign bit is known zero or one, the top bits match.
1641    if (SignBitKnownZero)
1642      KnownZero |= NewBits;
1643    else if (SignBitKnownOne)
1644      KnownOne  |= NewBits;
1645    return;
1646  }
1647  case ISD::ANY_EXTEND: {
1648    MVT InVT = Op.getOperand(0).getValueType();
1649    unsigned InBits = InVT.getSizeInBits();
1650    APInt InMask = Mask;
1651    InMask.trunc(InBits);
1652    KnownZero.trunc(InBits);
1653    KnownOne.trunc(InBits);
1654    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1655    KnownZero.zext(BitWidth);
1656    KnownOne.zext(BitWidth);
1657    return;
1658  }
1659  case ISD::TRUNCATE: {
1660    MVT InVT = Op.getOperand(0).getValueType();
1661    unsigned InBits = InVT.getSizeInBits();
1662    APInt InMask = Mask;
1663    InMask.zext(InBits);
1664    KnownZero.zext(InBits);
1665    KnownOne.zext(InBits);
1666    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1667    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1668    KnownZero.trunc(BitWidth);
1669    KnownOne.trunc(BitWidth);
1670    break;
1671  }
1672  case ISD::AssertZext: {
1673    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1674    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1675    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1676                      KnownOne, Depth+1);
1677    KnownZero |= (~InMask) & Mask;
1678    return;
1679  }
1680  case ISD::FGETSIGN:
1681    // All bits are zero except the low bit.
1682    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1683    return;
1684
1685  case ISD::SUB: {
1686    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1687      // We know that the top bits of C-X are clear if X contains less bits
1688      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1689      // positive if we can prove that X is >= 0 and < 16.
1690      if (CLHS->getAPIntValue().isNonNegative()) {
1691        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1692        // NLZ can't be BitWidth with no sign bit
1693        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1694        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1695                          Depth+1);
1696
1697        // If all of the MaskV bits are known to be zero, then we know the
1698        // output top bits are zero, because we now know that the output is
1699        // from [0-C].
1700        if ((KnownZero2 & MaskV) == MaskV) {
1701          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1702          // Top bits known zero.
1703          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1704        }
1705      }
1706    }
1707  }
1708  // fall through
1709  case ISD::ADD: {
1710    // Output known-0 bits are known if clear or set in both the low clear bits
1711    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1712    // low 3 bits clear.
1713    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1714    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1715    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1716    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1717
1718    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1719    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1720    KnownZeroOut = std::min(KnownZeroOut,
1721                            KnownZero2.countTrailingOnes());
1722
1723    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1724    return;
1725  }
1726  case ISD::SREM:
1727    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      const APInt &RA = Rem->getAPIntValue();
1729      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1730        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1731        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1732        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1733
1734        // If the sign bit of the first operand is zero, the sign bit of
1735        // the result is zero. If the first operand has no one bits below
1736        // the second operand's single 1 bit, its sign will be zero.
1737        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1738          KnownZero2 |= ~LowBits;
1739
1740        KnownZero |= KnownZero2 & Mask;
1741
1742        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1743      }
1744    }
1745    return;
1746  case ISD::UREM: {
1747    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1748      const APInt &RA = Rem->getAPIntValue();
1749      if (RA.isPowerOf2()) {
1750        APInt LowBits = (RA - 1);
1751        APInt Mask2 = LowBits & Mask;
1752        KnownZero |= ~LowBits & Mask;
1753        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1754        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1755        break;
1756      }
1757    }
1758
1759    // Since the result is less than or equal to either operand, any leading
1760    // zero bits in either operand must also exist in the result.
1761    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1762    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1763                      Depth+1);
1764    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1765                      Depth+1);
1766
1767    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1768                                KnownZero2.countLeadingOnes());
1769    KnownOne.clear();
1770    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1771    return;
1772  }
1773  default:
1774    // Allow the target to implement this method for its nodes.
1775    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1776  case ISD::INTRINSIC_WO_CHAIN:
1777  case ISD::INTRINSIC_W_CHAIN:
1778  case ISD::INTRINSIC_VOID:
1779      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1780    }
1781    return;
1782  }
1783}
1784
1785/// ComputeNumSignBits - Return the number of times the sign bit of the
1786/// register is replicated into the other bits.  We know that at least 1 bit
1787/// is always equal to the sign bit (itself), but other cases can give us
1788/// information.  For example, immediately after an "SRA X, 2", we know that
1789/// the top 3 bits are all equal to each other, so we return 3.
1790unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1791  MVT VT = Op.getValueType();
1792  assert(VT.isInteger() && "Invalid VT!");
1793  unsigned VTBits = VT.getSizeInBits();
1794  unsigned Tmp, Tmp2;
1795  unsigned FirstAnswer = 1;
1796
1797  if (Depth == 6)
1798    return 1;  // Limit search depth.
1799
1800  switch (Op.getOpcode()) {
1801  default: break;
1802  case ISD::AssertSext:
1803    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1804    return VTBits-Tmp+1;
1805  case ISD::AssertZext:
1806    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1807    return VTBits-Tmp;
1808
1809  case ISD::Constant: {
1810    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1811    // If negative, return # leading ones.
1812    if (Val.isNegative())
1813      return Val.countLeadingOnes();
1814
1815    // Return # leading zeros.
1816    return Val.countLeadingZeros();
1817  }
1818
1819  case ISD::SIGN_EXTEND:
1820    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1821    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1822
1823  case ISD::SIGN_EXTEND_INREG:
1824    // Max of the input and what this extends.
1825    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1826    Tmp = VTBits-Tmp+1;
1827
1828    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1829    return std::max(Tmp, Tmp2);
1830
1831  case ISD::SRA:
1832    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1833    // SRA X, C   -> adds C sign bits.
1834    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1835      Tmp += C->getZExtValue();
1836      if (Tmp > VTBits) Tmp = VTBits;
1837    }
1838    return Tmp;
1839  case ISD::SHL:
1840    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1841      // shl destroys sign bits.
1842      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1843      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1844          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1845      return Tmp - C->getZExtValue();
1846    }
1847    break;
1848  case ISD::AND:
1849  case ISD::OR:
1850  case ISD::XOR:    // NOT is handled here.
1851    // Logical binary ops preserve the number of sign bits at the worst.
1852    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1853    if (Tmp != 1) {
1854      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1855      FirstAnswer = std::min(Tmp, Tmp2);
1856      // We computed what we know about the sign bits as our first
1857      // answer. Now proceed to the generic code that uses
1858      // ComputeMaskedBits, and pick whichever answer is better.
1859    }
1860    break;
1861
1862  case ISD::SELECT:
1863    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1864    if (Tmp == 1) return 1;  // Early out.
1865    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1866    return std::min(Tmp, Tmp2);
1867
1868  case ISD::SETCC:
1869    // If setcc returns 0/-1, all bits are sign bits.
1870    if (TLI.getSetCCResultContents() ==
1871        TargetLowering::ZeroOrNegativeOneSetCCResult)
1872      return VTBits;
1873    break;
1874  case ISD::ROTL:
1875  case ISD::ROTR:
1876    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1877      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1878
1879      // Handle rotate right by N like a rotate left by 32-N.
1880      if (Op.getOpcode() == ISD::ROTR)
1881        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1882
1883      // If we aren't rotating out all of the known-in sign bits, return the
1884      // number that are left.  This handles rotl(sext(x), 1) for example.
1885      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1886      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1887    }
1888    break;
1889  case ISD::ADD:
1890    // Add can have at most one carry bit.  Thus we know that the output
1891    // is, at worst, one more bit than the inputs.
1892    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1893    if (Tmp == 1) return 1;  // Early out.
1894
1895    // Special case decrementing a value (ADD X, -1):
1896    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1897      if (CRHS->isAllOnesValue()) {
1898        APInt KnownZero, KnownOne;
1899        APInt Mask = APInt::getAllOnesValue(VTBits);
1900        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1901
1902        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1903        // sign bits set.
1904        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1905          return VTBits;
1906
1907        // If we are subtracting one from a positive number, there is no carry
1908        // out of the result.
1909        if (KnownZero.isNegative())
1910          return Tmp;
1911      }
1912
1913    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1914    if (Tmp2 == 1) return 1;
1915      return std::min(Tmp, Tmp2)-1;
1916    break;
1917
1918  case ISD::SUB:
1919    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1920    if (Tmp2 == 1) return 1;
1921
1922    // Handle NEG.
1923    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1924      if (CLHS->isNullValue()) {
1925        APInt KnownZero, KnownOne;
1926        APInt Mask = APInt::getAllOnesValue(VTBits);
1927        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1928        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1929        // sign bits set.
1930        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1931          return VTBits;
1932
1933        // If the input is known to be positive (the sign bit is known clear),
1934        // the output of the NEG has the same number of sign bits as the input.
1935        if (KnownZero.isNegative())
1936          return Tmp2;
1937
1938        // Otherwise, we treat this like a SUB.
1939      }
1940
1941    // Sub can have at most one carry bit.  Thus we know that the output
1942    // is, at worst, one more bit than the inputs.
1943    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1944    if (Tmp == 1) return 1;  // Early out.
1945      return std::min(Tmp, Tmp2)-1;
1946    break;
1947  case ISD::TRUNCATE:
1948    // FIXME: it's tricky to do anything useful for this, but it is an important
1949    // case for targets like X86.
1950    break;
1951  }
1952
1953  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1954  if (Op.getOpcode() == ISD::LOAD) {
1955    LoadSDNode *LD = cast<LoadSDNode>(Op);
1956    unsigned ExtType = LD->getExtensionType();
1957    switch (ExtType) {
1958    default: break;
1959    case ISD::SEXTLOAD:    // '17' bits known
1960      Tmp = LD->getMemoryVT().getSizeInBits();
1961      return VTBits-Tmp+1;
1962    case ISD::ZEXTLOAD:    // '16' bits known
1963      Tmp = LD->getMemoryVT().getSizeInBits();
1964      return VTBits-Tmp;
1965    }
1966  }
1967
1968  // Allow the target to implement this method for its nodes.
1969  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1970      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1971      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1972      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1973    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1974    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1975  }
1976
1977  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1978  // use this information.
1979  APInt KnownZero, KnownOne;
1980  APInt Mask = APInt::getAllOnesValue(VTBits);
1981  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1982
1983  if (KnownZero.isNegative()) {        // sign bit is 0
1984    Mask = KnownZero;
1985  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1986    Mask = KnownOne;
1987  } else {
1988    // Nothing known.
1989    return FirstAnswer;
1990  }
1991
1992  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1993  // the number of identical bits in the top of the input value.
1994  Mask = ~Mask;
1995  Mask <<= Mask.getBitWidth()-VTBits;
1996  // Return # leading zeros.  We use 'min' here in case Val was zero before
1997  // shifting.  We don't want to return '64' as for an i32 "0".
1998  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1999}
2000
2001
2002bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2003  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2004  if (!GA) return false;
2005  if (GA->getOffset() != 0) return false;
2006  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2007  if (!GV) return false;
2008  MachineModuleInfo *MMI = getMachineModuleInfo();
2009  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2010}
2011
2012
2013/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2014/// element of the result of the vector shuffle.
2015SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2016  MVT VT = N->getValueType(0);
2017  SDValue PermMask = N->getOperand(2);
2018  SDValue Idx = PermMask.getOperand(i);
2019  if (Idx.getOpcode() == ISD::UNDEF)
2020    return getNode(ISD::UNDEF, VT.getVectorElementType());
2021  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2022  unsigned NumElems = PermMask.getNumOperands();
2023  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2024  Index %= NumElems;
2025
2026  if (V.getOpcode() == ISD::BIT_CONVERT) {
2027    V = V.getOperand(0);
2028    if (V.getValueType().getVectorNumElements() != NumElems)
2029      return SDValue();
2030  }
2031  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2032    return (Index == 0) ? V.getOperand(0)
2033                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2034  if (V.getOpcode() == ISD::BUILD_VECTOR)
2035    return V.getOperand(Index);
2036  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2037    return getShuffleScalarElt(V.getNode(), Index);
2038  return SDValue();
2039}
2040
2041
2042/// getNode - Gets or creates the specified node.
2043///
2044SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2045  FoldingSetNodeID ID;
2046  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2047  void *IP = 0;
2048  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2049    return SDValue(E, 0);
2050  SDNode *N = NodeAllocator.Allocate<SDNode>();
2051  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2052  CSEMap.InsertNode(N, IP);
2053
2054  AllNodes.push_back(N);
2055#ifndef NDEBUG
2056  VerifyNode(N);
2057#endif
2058  return SDValue(N, 0);
2059}
2060
2061SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2062  // Constant fold unary operations with an integer constant operand.
2063  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2064    const APInt &Val = C->getAPIntValue();
2065    unsigned BitWidth = VT.getSizeInBits();
2066    switch (Opcode) {
2067    default: break;
2068    case ISD::SIGN_EXTEND:
2069      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2070    case ISD::ANY_EXTEND:
2071    case ISD::ZERO_EXTEND:
2072    case ISD::TRUNCATE:
2073      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2074    case ISD::UINT_TO_FP:
2075    case ISD::SINT_TO_FP: {
2076      const uint64_t zero[] = {0, 0};
2077      // No compile time operations on this type.
2078      if (VT==MVT::ppcf128)
2079        break;
2080      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2081      (void)apf.convertFromAPInt(Val,
2082                                 Opcode==ISD::SINT_TO_FP,
2083                                 APFloat::rmNearestTiesToEven);
2084      return getConstantFP(apf, VT);
2085    }
2086    case ISD::BIT_CONVERT:
2087      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2088        return getConstantFP(Val.bitsToFloat(), VT);
2089      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2090        return getConstantFP(Val.bitsToDouble(), VT);
2091      break;
2092    case ISD::BSWAP:
2093      return getConstant(Val.byteSwap(), VT);
2094    case ISD::CTPOP:
2095      return getConstant(Val.countPopulation(), VT);
2096    case ISD::CTLZ:
2097      return getConstant(Val.countLeadingZeros(), VT);
2098    case ISD::CTTZ:
2099      return getConstant(Val.countTrailingZeros(), VT);
2100    }
2101  }
2102
2103  // Constant fold unary operations with a floating point constant operand.
2104  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2105    APFloat V = C->getValueAPF();    // make copy
2106    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2107      switch (Opcode) {
2108      case ISD::FNEG:
2109        V.changeSign();
2110        return getConstantFP(V, VT);
2111      case ISD::FABS:
2112        V.clearSign();
2113        return getConstantFP(V, VT);
2114      case ISD::FP_ROUND:
2115      case ISD::FP_EXTEND: {
2116        bool ignored;
2117        // This can return overflow, underflow, or inexact; we don't care.
2118        // FIXME need to be more flexible about rounding mode.
2119        (void)V.convert(*MVTToAPFloatSemantics(VT),
2120                        APFloat::rmNearestTiesToEven, &ignored);
2121        return getConstantFP(V, VT);
2122      }
2123      case ISD::FP_TO_SINT:
2124      case ISD::FP_TO_UINT: {
2125        integerPart x;
2126        bool ignored;
2127        assert(integerPartWidth >= 64);
2128        // FIXME need to be more flexible about rounding mode.
2129        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2130                              Opcode==ISD::FP_TO_SINT,
2131                              APFloat::rmTowardZero, &ignored);
2132        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2133          break;
2134        return getConstant(x, VT);
2135      }
2136      case ISD::BIT_CONVERT:
2137        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2138          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2139        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2140          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2141        break;
2142      }
2143    }
2144  }
2145
2146  unsigned OpOpcode = Operand.getNode()->getOpcode();
2147  switch (Opcode) {
2148  case ISD::TokenFactor:
2149  case ISD::CONCAT_VECTORS:
2150    return Operand;         // Factor or concat of one node?  No need.
2151  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2152  case ISD::FP_EXTEND:
2153    assert(VT.isFloatingPoint() &&
2154           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2155    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2156    if (Operand.getOpcode() == ISD::UNDEF)
2157      return getNode(ISD::UNDEF, VT);
2158    break;
2159  case ISD::SIGN_EXTEND:
2160    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2161           "Invalid SIGN_EXTEND!");
2162    if (Operand.getValueType() == VT) return Operand;   // noop extension
2163    assert(Operand.getValueType().bitsLT(VT)
2164           && "Invalid sext node, dst < src!");
2165    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2166      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2167    break;
2168  case ISD::ZERO_EXTEND:
2169    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2170           "Invalid ZERO_EXTEND!");
2171    if (Operand.getValueType() == VT) return Operand;   // noop extension
2172    assert(Operand.getValueType().bitsLT(VT)
2173           && "Invalid zext node, dst < src!");
2174    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2175      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2176    break;
2177  case ISD::ANY_EXTEND:
2178    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2179           "Invalid ANY_EXTEND!");
2180    if (Operand.getValueType() == VT) return Operand;   // noop extension
2181    assert(Operand.getValueType().bitsLT(VT)
2182           && "Invalid anyext node, dst < src!");
2183    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2184      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2185      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2186    break;
2187  case ISD::TRUNCATE:
2188    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2189           "Invalid TRUNCATE!");
2190    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2191    assert(Operand.getValueType().bitsGT(VT)
2192           && "Invalid truncate node, src < dst!");
2193    if (OpOpcode == ISD::TRUNCATE)
2194      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2195    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2196             OpOpcode == ISD::ANY_EXTEND) {
2197      // If the source is smaller than the dest, we still need an extend.
2198      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2199        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2200      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2201        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2202      else
2203        return Operand.getNode()->getOperand(0);
2204    }
2205    break;
2206  case ISD::BIT_CONVERT:
2207    // Basic sanity checking.
2208    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2209           && "Cannot BIT_CONVERT between types of different sizes!");
2210    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2211    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2212      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2213    if (OpOpcode == ISD::UNDEF)
2214      return getNode(ISD::UNDEF, VT);
2215    break;
2216  case ISD::SCALAR_TO_VECTOR:
2217    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2218           VT.getVectorElementType() == Operand.getValueType() &&
2219           "Illegal SCALAR_TO_VECTOR node!");
2220    if (OpOpcode == ISD::UNDEF)
2221      return getNode(ISD::UNDEF, VT);
2222    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2223    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2224        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2225        Operand.getConstantOperandVal(1) == 0 &&
2226        Operand.getOperand(0).getValueType() == VT)
2227      return Operand.getOperand(0);
2228    break;
2229  case ISD::FNEG:
2230    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2231      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2232                     Operand.getNode()->getOperand(0));
2233    if (OpOpcode == ISD::FNEG)  // --X -> X
2234      return Operand.getNode()->getOperand(0);
2235    break;
2236  case ISD::FABS:
2237    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2238      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2239    break;
2240  }
2241
2242  SDNode *N;
2243  SDVTList VTs = getVTList(VT);
2244  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2245    FoldingSetNodeID ID;
2246    SDValue Ops[1] = { Operand };
2247    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2248    void *IP = 0;
2249    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2250      return SDValue(E, 0);
2251    N = NodeAllocator.Allocate<UnarySDNode>();
2252    new (N) UnarySDNode(Opcode, VTs, Operand);
2253    CSEMap.InsertNode(N, IP);
2254  } else {
2255    N = NodeAllocator.Allocate<UnarySDNode>();
2256    new (N) UnarySDNode(Opcode, VTs, Operand);
2257  }
2258
2259  AllNodes.push_back(N);
2260#ifndef NDEBUG
2261  VerifyNode(N);
2262#endif
2263  return SDValue(N, 0);
2264}
2265
2266SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2267                                             MVT VT,
2268                                             ConstantSDNode *Cst1,
2269                                             ConstantSDNode *Cst2) {
2270  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2271
2272  switch (Opcode) {
2273  case ISD::ADD:  return getConstant(C1 + C2, VT);
2274  case ISD::SUB:  return getConstant(C1 - C2, VT);
2275  case ISD::MUL:  return getConstant(C1 * C2, VT);
2276  case ISD::UDIV:
2277    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2278    break;
2279  case ISD::UREM:
2280    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2281    break;
2282  case ISD::SDIV:
2283    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2284    break;
2285  case ISD::SREM:
2286    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2287    break;
2288  case ISD::AND:  return getConstant(C1 & C2, VT);
2289  case ISD::OR:   return getConstant(C1 | C2, VT);
2290  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2291  case ISD::SHL:  return getConstant(C1 << C2, VT);
2292  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2293  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2294  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2295  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2296  default: break;
2297  }
2298
2299  return SDValue();
2300}
2301
2302SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2303                              SDValue N1, SDValue N2) {
2304  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2305  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2306  switch (Opcode) {
2307  default: break;
2308  case ISD::TokenFactor:
2309    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2310           N2.getValueType() == MVT::Other && "Invalid token factor!");
2311    // Fold trivial token factors.
2312    if (N1.getOpcode() == ISD::EntryToken) return N2;
2313    if (N2.getOpcode() == ISD::EntryToken) return N1;
2314    if (N1 == N2) return N1;
2315    break;
2316  case ISD::CONCAT_VECTORS:
2317    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2318    // one big BUILD_VECTOR.
2319    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2320        N2.getOpcode() == ISD::BUILD_VECTOR) {
2321      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2322      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2323      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2324    }
2325    break;
2326  case ISD::AND:
2327    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2328           N1.getValueType() == VT && "Binary operator types must match!");
2329    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2330    // worth handling here.
2331    if (N2C && N2C->isNullValue())
2332      return N2;
2333    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2334      return N1;
2335    break;
2336  case ISD::OR:
2337  case ISD::XOR:
2338  case ISD::ADD:
2339  case ISD::SUB:
2340    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2341           N1.getValueType() == VT && "Binary operator types must match!");
2342    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2343    // it's worth handling here.
2344    if (N2C && N2C->isNullValue())
2345      return N1;
2346    break;
2347  case ISD::UDIV:
2348  case ISD::UREM:
2349  case ISD::MULHU:
2350  case ISD::MULHS:
2351    assert(VT.isInteger() && "This operator does not apply to FP types!");
2352    // fall through
2353  case ISD::MUL:
2354  case ISD::SDIV:
2355  case ISD::SREM:
2356  case ISD::FADD:
2357  case ISD::FSUB:
2358  case ISD::FMUL:
2359  case ISD::FDIV:
2360  case ISD::FREM:
2361    assert(N1.getValueType() == N2.getValueType() &&
2362           N1.getValueType() == VT && "Binary operator types must match!");
2363    break;
2364  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2365    assert(N1.getValueType() == VT &&
2366           N1.getValueType().isFloatingPoint() &&
2367           N2.getValueType().isFloatingPoint() &&
2368           "Invalid FCOPYSIGN!");
2369    break;
2370  case ISD::SHL:
2371  case ISD::SRA:
2372  case ISD::SRL:
2373  case ISD::ROTL:
2374  case ISD::ROTR:
2375    assert(VT == N1.getValueType() &&
2376           "Shift operators return type must be the same as their first arg");
2377    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2378           "Shifts only work on integers");
2379
2380    // Always fold shifts of i1 values so the code generator doesn't need to
2381    // handle them.  Since we know the size of the shift has to be less than the
2382    // size of the value, the shift/rotate count is guaranteed to be zero.
2383    if (VT == MVT::i1)
2384      return N1;
2385    break;
2386  case ISD::FP_ROUND_INREG: {
2387    MVT EVT = cast<VTSDNode>(N2)->getVT();
2388    assert(VT == N1.getValueType() && "Not an inreg round!");
2389    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2390           "Cannot FP_ROUND_INREG integer types");
2391    assert(EVT.bitsLE(VT) && "Not rounding down!");
2392    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2393    break;
2394  }
2395  case ISD::FP_ROUND:
2396    assert(VT.isFloatingPoint() &&
2397           N1.getValueType().isFloatingPoint() &&
2398           VT.bitsLE(N1.getValueType()) &&
2399           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2400    if (N1.getValueType() == VT) return N1;  // noop conversion.
2401    break;
2402  case ISD::AssertSext:
2403  case ISD::AssertZext: {
2404    MVT EVT = cast<VTSDNode>(N2)->getVT();
2405    assert(VT == N1.getValueType() && "Not an inreg extend!");
2406    assert(VT.isInteger() && EVT.isInteger() &&
2407           "Cannot *_EXTEND_INREG FP types");
2408    assert(EVT.bitsLE(VT) && "Not extending!");
2409    if (VT == EVT) return N1; // noop assertion.
2410    break;
2411  }
2412  case ISD::SIGN_EXTEND_INREG: {
2413    MVT EVT = cast<VTSDNode>(N2)->getVT();
2414    assert(VT == N1.getValueType() && "Not an inreg extend!");
2415    assert(VT.isInteger() && EVT.isInteger() &&
2416           "Cannot *_EXTEND_INREG FP types");
2417    assert(EVT.bitsLE(VT) && "Not extending!");
2418    if (EVT == VT) return N1;  // Not actually extending
2419
2420    if (N1C) {
2421      APInt Val = N1C->getAPIntValue();
2422      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2423      Val <<= Val.getBitWidth()-FromBits;
2424      Val = Val.ashr(Val.getBitWidth()-FromBits);
2425      return getConstant(Val, VT);
2426    }
2427    break;
2428  }
2429  case ISD::EXTRACT_VECTOR_ELT:
2430    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2431    if (N1.getOpcode() == ISD::UNDEF)
2432      return getNode(ISD::UNDEF, VT);
2433
2434    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2435    // expanding copies of large vectors from registers.
2436    if (N2C &&
2437        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2438        N1.getNumOperands() > 0) {
2439      unsigned Factor =
2440        N1.getOperand(0).getValueType().getVectorNumElements();
2441      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2442                     N1.getOperand(N2C->getZExtValue() / Factor),
2443                     getConstant(N2C->getZExtValue() % Factor,
2444                                 N2.getValueType()));
2445    }
2446
2447    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2448    // expanding large vector constants.
2449    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2450      return N1.getOperand(N2C->getZExtValue());
2451
2452    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2453    // operations are lowered to scalars.
2454    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2455      if (N1.getOperand(2) == N2)
2456        return N1.getOperand(1);
2457      else
2458        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2459    }
2460    break;
2461  case ISD::EXTRACT_ELEMENT:
2462    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2463    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2464           (N1.getValueType().isInteger() == VT.isInteger()) &&
2465           "Wrong types for EXTRACT_ELEMENT!");
2466
2467    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2468    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2469    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2470    if (N1.getOpcode() == ISD::BUILD_PAIR)
2471      return N1.getOperand(N2C->getZExtValue());
2472
2473    // EXTRACT_ELEMENT of a constant int is also very common.
2474    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2475      unsigned ElementSize = VT.getSizeInBits();
2476      unsigned Shift = ElementSize * N2C->getZExtValue();
2477      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2478      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2479    }
2480    break;
2481  case ISD::EXTRACT_SUBVECTOR:
2482    if (N1.getValueType() == VT) // Trivial extraction.
2483      return N1;
2484    break;
2485  }
2486
2487  if (N1C) {
2488    if (N2C) {
2489      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2490      if (SV.getNode()) return SV;
2491    } else {      // Cannonicalize constant to RHS if commutative
2492      if (isCommutativeBinOp(Opcode)) {
2493        std::swap(N1C, N2C);
2494        std::swap(N1, N2);
2495      }
2496    }
2497  }
2498
2499  // Constant fold FP operations.
2500  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2501  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2502  if (N1CFP) {
2503    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2504      // Cannonicalize constant to RHS if commutative
2505      std::swap(N1CFP, N2CFP);
2506      std::swap(N1, N2);
2507    } else if (N2CFP && VT != MVT::ppcf128) {
2508      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2509      APFloat::opStatus s;
2510      switch (Opcode) {
2511      case ISD::FADD:
2512        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2513        if (s != APFloat::opInvalidOp)
2514          return getConstantFP(V1, VT);
2515        break;
2516      case ISD::FSUB:
2517        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2518        if (s!=APFloat::opInvalidOp)
2519          return getConstantFP(V1, VT);
2520        break;
2521      case ISD::FMUL:
2522        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2523        if (s!=APFloat::opInvalidOp)
2524          return getConstantFP(V1, VT);
2525        break;
2526      case ISD::FDIV:
2527        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2528        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2529          return getConstantFP(V1, VT);
2530        break;
2531      case ISD::FREM :
2532        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2533        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2534          return getConstantFP(V1, VT);
2535        break;
2536      case ISD::FCOPYSIGN:
2537        V1.copySign(V2);
2538        return getConstantFP(V1, VT);
2539      default: break;
2540      }
2541    }
2542  }
2543
2544  // Canonicalize an UNDEF to the RHS, even over a constant.
2545  if (N1.getOpcode() == ISD::UNDEF) {
2546    if (isCommutativeBinOp(Opcode)) {
2547      std::swap(N1, N2);
2548    } else {
2549      switch (Opcode) {
2550      case ISD::FP_ROUND_INREG:
2551      case ISD::SIGN_EXTEND_INREG:
2552      case ISD::SUB:
2553      case ISD::FSUB:
2554      case ISD::FDIV:
2555      case ISD::FREM:
2556      case ISD::SRA:
2557        return N1;     // fold op(undef, arg2) -> undef
2558      case ISD::UDIV:
2559      case ISD::SDIV:
2560      case ISD::UREM:
2561      case ISD::SREM:
2562      case ISD::SRL:
2563      case ISD::SHL:
2564        if (!VT.isVector())
2565          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2566        // For vectors, we can't easily build an all zero vector, just return
2567        // the LHS.
2568        return N2;
2569      }
2570    }
2571  }
2572
2573  // Fold a bunch of operators when the RHS is undef.
2574  if (N2.getOpcode() == ISD::UNDEF) {
2575    switch (Opcode) {
2576    case ISD::XOR:
2577      if (N1.getOpcode() == ISD::UNDEF)
2578        // Handle undef ^ undef -> 0 special case. This is a common
2579        // idiom (misuse).
2580        return getConstant(0, VT);
2581      // fallthrough
2582    case ISD::ADD:
2583    case ISD::ADDC:
2584    case ISD::ADDE:
2585    case ISD::SUB:
2586    case ISD::FADD:
2587    case ISD::FSUB:
2588    case ISD::FMUL:
2589    case ISD::FDIV:
2590    case ISD::FREM:
2591    case ISD::UDIV:
2592    case ISD::SDIV:
2593    case ISD::UREM:
2594    case ISD::SREM:
2595      return N2;       // fold op(arg1, undef) -> undef
2596    case ISD::MUL:
2597    case ISD::AND:
2598    case ISD::SRL:
2599    case ISD::SHL:
2600      if (!VT.isVector())
2601        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2602      // For vectors, we can't easily build an all zero vector, just return
2603      // the LHS.
2604      return N1;
2605    case ISD::OR:
2606      if (!VT.isVector())
2607        return getConstant(VT.getIntegerVTBitMask(), VT);
2608      // For vectors, we can't easily build an all one vector, just return
2609      // the LHS.
2610      return N1;
2611    case ISD::SRA:
2612      return N1;
2613    }
2614  }
2615
2616  // Memoize this node if possible.
2617  SDNode *N;
2618  SDVTList VTs = getVTList(VT);
2619  if (VT != MVT::Flag) {
2620    SDValue Ops[] = { N1, N2 };
2621    FoldingSetNodeID ID;
2622    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2623    void *IP = 0;
2624    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2625      return SDValue(E, 0);
2626    N = NodeAllocator.Allocate<BinarySDNode>();
2627    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2628    CSEMap.InsertNode(N, IP);
2629  } else {
2630    N = NodeAllocator.Allocate<BinarySDNode>();
2631    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2632  }
2633
2634  AllNodes.push_back(N);
2635#ifndef NDEBUG
2636  VerifyNode(N);
2637#endif
2638  return SDValue(N, 0);
2639}
2640
2641SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2642                              SDValue N1, SDValue N2, SDValue N3) {
2643  // Perform various simplifications.
2644  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2645  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2646  switch (Opcode) {
2647  case ISD::CONCAT_VECTORS:
2648    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2649    // one big BUILD_VECTOR.
2650    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2651        N2.getOpcode() == ISD::BUILD_VECTOR &&
2652        N3.getOpcode() == ISD::BUILD_VECTOR) {
2653      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2654      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2655      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2656      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2657    }
2658    break;
2659  case ISD::SETCC: {
2660    // Use FoldSetCC to simplify SETCC's.
2661    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2662    if (Simp.getNode()) return Simp;
2663    break;
2664  }
2665  case ISD::SELECT:
2666    if (N1C) {
2667     if (N1C->getZExtValue())
2668        return N2;             // select true, X, Y -> X
2669      else
2670        return N3;             // select false, X, Y -> Y
2671    }
2672
2673    if (N2 == N3) return N2;   // select C, X, X -> X
2674    break;
2675  case ISD::BRCOND:
2676    if (N2C) {
2677      if (N2C->getZExtValue()) // Unconditional branch
2678        return getNode(ISD::BR, MVT::Other, N1, N3);
2679      else
2680        return N1;         // Never-taken branch
2681    }
2682    break;
2683  case ISD::VECTOR_SHUFFLE:
2684    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2685           VT.isVector() && N3.getValueType().isVector() &&
2686           N3.getOpcode() == ISD::BUILD_VECTOR &&
2687           VT.getVectorNumElements() == N3.getNumOperands() &&
2688           "Illegal VECTOR_SHUFFLE node!");
2689    break;
2690  case ISD::BIT_CONVERT:
2691    // Fold bit_convert nodes from a type to themselves.
2692    if (N1.getValueType() == VT)
2693      return N1;
2694    break;
2695  }
2696
2697  // Memoize node if it doesn't produce a flag.
2698  SDNode *N;
2699  SDVTList VTs = getVTList(VT);
2700  if (VT != MVT::Flag) {
2701    SDValue Ops[] = { N1, N2, N3 };
2702    FoldingSetNodeID ID;
2703    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2704    void *IP = 0;
2705    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2706      return SDValue(E, 0);
2707    N = NodeAllocator.Allocate<TernarySDNode>();
2708    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2709    CSEMap.InsertNode(N, IP);
2710  } else {
2711    N = NodeAllocator.Allocate<TernarySDNode>();
2712    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2713  }
2714  AllNodes.push_back(N);
2715#ifndef NDEBUG
2716  VerifyNode(N);
2717#endif
2718  return SDValue(N, 0);
2719}
2720
2721SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2722                              SDValue N1, SDValue N2, SDValue N3,
2723                              SDValue N4) {
2724  SDValue Ops[] = { N1, N2, N3, N4 };
2725  return getNode(Opcode, VT, Ops, 4);
2726}
2727
2728SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2729                              SDValue N1, SDValue N2, SDValue N3,
2730                              SDValue N4, SDValue N5) {
2731  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2732  return getNode(Opcode, VT, Ops, 5);
2733}
2734
2735/// getMemsetValue - Vectorized representation of the memset value
2736/// operand.
2737static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2738  unsigned NumBits = VT.isVector() ?
2739    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2740  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2741    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2742    unsigned Shift = 8;
2743    for (unsigned i = NumBits; i > 8; i >>= 1) {
2744      Val = (Val << Shift) | Val;
2745      Shift <<= 1;
2746    }
2747    if (VT.isInteger())
2748      return DAG.getConstant(Val, VT);
2749    return DAG.getConstantFP(APFloat(Val), VT);
2750  }
2751
2752  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2753  unsigned Shift = 8;
2754  for (unsigned i = NumBits; i > 8; i >>= 1) {
2755    Value = DAG.getNode(ISD::OR, VT,
2756                        DAG.getNode(ISD::SHL, VT, Value,
2757                                    DAG.getConstant(Shift, MVT::i8)), Value);
2758    Shift <<= 1;
2759  }
2760
2761  return Value;
2762}
2763
2764/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2765/// used when a memcpy is turned into a memset when the source is a constant
2766/// string ptr.
2767static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2768                                    const TargetLowering &TLI,
2769                                    std::string &Str, unsigned Offset) {
2770  // Handle vector with all elements zero.
2771  if (Str.empty()) {
2772    if (VT.isInteger())
2773      return DAG.getConstant(0, VT);
2774    unsigned NumElts = VT.getVectorNumElements();
2775    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2776    return DAG.getNode(ISD::BIT_CONVERT, VT,
2777                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2778  }
2779
2780  assert(!VT.isVector() && "Can't handle vector type here!");
2781  unsigned NumBits = VT.getSizeInBits();
2782  unsigned MSB = NumBits / 8;
2783  uint64_t Val = 0;
2784  if (TLI.isLittleEndian())
2785    Offset = Offset + MSB - 1;
2786  for (unsigned i = 0; i != MSB; ++i) {
2787    Val = (Val << 8) | (unsigned char)Str[Offset];
2788    Offset += TLI.isLittleEndian() ? -1 : 1;
2789  }
2790  return DAG.getConstant(Val, VT);
2791}
2792
2793/// getMemBasePlusOffset - Returns base and offset node for the
2794///
2795static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2796                                      SelectionDAG &DAG) {
2797  MVT VT = Base.getValueType();
2798  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2799}
2800
2801/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2802///
2803static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2804  unsigned SrcDelta = 0;
2805  GlobalAddressSDNode *G = NULL;
2806  if (Src.getOpcode() == ISD::GlobalAddress)
2807    G = cast<GlobalAddressSDNode>(Src);
2808  else if (Src.getOpcode() == ISD::ADD &&
2809           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2810           Src.getOperand(1).getOpcode() == ISD::Constant) {
2811    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2812    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2813  }
2814  if (!G)
2815    return false;
2816
2817  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2818  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2819    return true;
2820
2821  return false;
2822}
2823
2824/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2825/// to replace the memset / memcpy is below the threshold. It also returns the
2826/// types of the sequence of memory ops to perform memset / memcpy.
2827static
2828bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2829                              SDValue Dst, SDValue Src,
2830                              unsigned Limit, uint64_t Size, unsigned &Align,
2831                              std::string &Str, bool &isSrcStr,
2832                              SelectionDAG &DAG,
2833                              const TargetLowering &TLI) {
2834  isSrcStr = isMemSrcFromString(Src, Str);
2835  bool isSrcConst = isa<ConstantSDNode>(Src);
2836  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2837  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2838  if (VT != MVT::iAny) {
2839    unsigned NewAlign = (unsigned)
2840      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2841    // If source is a string constant, this will require an unaligned load.
2842    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2843      if (Dst.getOpcode() != ISD::FrameIndex) {
2844        // Can't change destination alignment. It requires a unaligned store.
2845        if (AllowUnalign)
2846          VT = MVT::iAny;
2847      } else {
2848        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2849        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2850        if (MFI->isFixedObjectIndex(FI)) {
2851          // Can't change destination alignment. It requires a unaligned store.
2852          if (AllowUnalign)
2853            VT = MVT::iAny;
2854        } else {
2855          // Give the stack frame object a larger alignment if needed.
2856          if (MFI->getObjectAlignment(FI) < NewAlign)
2857            MFI->setObjectAlignment(FI, NewAlign);
2858          Align = NewAlign;
2859        }
2860      }
2861    }
2862  }
2863
2864  if (VT == MVT::iAny) {
2865    if (AllowUnalign) {
2866      VT = MVT::i64;
2867    } else {
2868      switch (Align & 7) {
2869      case 0:  VT = MVT::i64; break;
2870      case 4:  VT = MVT::i32; break;
2871      case 2:  VT = MVT::i16; break;
2872      default: VT = MVT::i8;  break;
2873      }
2874    }
2875
2876    MVT LVT = MVT::i64;
2877    while (!TLI.isTypeLegal(LVT))
2878      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2879    assert(LVT.isInteger());
2880
2881    if (VT.bitsGT(LVT))
2882      VT = LVT;
2883  }
2884
2885  unsigned NumMemOps = 0;
2886  while (Size != 0) {
2887    unsigned VTSize = VT.getSizeInBits() / 8;
2888    while (VTSize > Size) {
2889      // For now, only use non-vector load / store's for the left-over pieces.
2890      if (VT.isVector()) {
2891        VT = MVT::i64;
2892        while (!TLI.isTypeLegal(VT))
2893          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2894        VTSize = VT.getSizeInBits() / 8;
2895      } else {
2896        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2897        VTSize >>= 1;
2898      }
2899    }
2900
2901    if (++NumMemOps > Limit)
2902      return false;
2903    MemOps.push_back(VT);
2904    Size -= VTSize;
2905  }
2906
2907  return true;
2908}
2909
2910static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2911                                         SDValue Chain, SDValue Dst,
2912                                         SDValue Src, uint64_t Size,
2913                                         unsigned Align, bool AlwaysInline,
2914                                         const Value *DstSV, uint64_t DstSVOff,
2915                                         const Value *SrcSV, uint64_t SrcSVOff){
2916  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2917
2918  // Expand memcpy to a series of load and store ops if the size operand falls
2919  // below a certain threshold.
2920  std::vector<MVT> MemOps;
2921  uint64_t Limit = -1ULL;
2922  if (!AlwaysInline)
2923    Limit = TLI.getMaxStoresPerMemcpy();
2924  unsigned DstAlign = Align;  // Destination alignment can change.
2925  std::string Str;
2926  bool CopyFromStr;
2927  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2928                                Str, CopyFromStr, DAG, TLI))
2929    return SDValue();
2930
2931
2932  bool isZeroStr = CopyFromStr && Str.empty();
2933  SmallVector<SDValue, 8> OutChains;
2934  unsigned NumMemOps = MemOps.size();
2935  uint64_t SrcOff = 0, DstOff = 0;
2936  for (unsigned i = 0; i < NumMemOps; i++) {
2937    MVT VT = MemOps[i];
2938    unsigned VTSize = VT.getSizeInBits() / 8;
2939    SDValue Value, Store;
2940
2941    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2942      // It's unlikely a store of a vector immediate can be done in a single
2943      // instruction. It would require a load from a constantpool first.
2944      // We also handle store a vector with all zero's.
2945      // FIXME: Handle other cases where store of vector immediate is done in
2946      // a single instruction.
2947      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2948      Store = DAG.getStore(Chain, Value,
2949                           getMemBasePlusOffset(Dst, DstOff, DAG),
2950                           DstSV, DstSVOff + DstOff, false, DstAlign);
2951    } else {
2952      Value = DAG.getLoad(VT, Chain,
2953                          getMemBasePlusOffset(Src, SrcOff, DAG),
2954                          SrcSV, SrcSVOff + SrcOff, false, Align);
2955      Store = DAG.getStore(Chain, Value,
2956                           getMemBasePlusOffset(Dst, DstOff, DAG),
2957                           DstSV, DstSVOff + DstOff, false, DstAlign);
2958    }
2959    OutChains.push_back(Store);
2960    SrcOff += VTSize;
2961    DstOff += VTSize;
2962  }
2963
2964  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2965                     &OutChains[0], OutChains.size());
2966}
2967
2968static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2969                                          SDValue Chain, SDValue Dst,
2970                                          SDValue Src, uint64_t Size,
2971                                          unsigned Align, bool AlwaysInline,
2972                                          const Value *DstSV, uint64_t DstSVOff,
2973                                          const Value *SrcSV, uint64_t SrcSVOff){
2974  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2975
2976  // Expand memmove to a series of load and store ops if the size operand falls
2977  // below a certain threshold.
2978  std::vector<MVT> MemOps;
2979  uint64_t Limit = -1ULL;
2980  if (!AlwaysInline)
2981    Limit = TLI.getMaxStoresPerMemmove();
2982  unsigned DstAlign = Align;  // Destination alignment can change.
2983  std::string Str;
2984  bool CopyFromStr;
2985  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2986                                Str, CopyFromStr, DAG, TLI))
2987    return SDValue();
2988
2989  uint64_t SrcOff = 0, DstOff = 0;
2990
2991  SmallVector<SDValue, 8> LoadValues;
2992  SmallVector<SDValue, 8> LoadChains;
2993  SmallVector<SDValue, 8> OutChains;
2994  unsigned NumMemOps = MemOps.size();
2995  for (unsigned i = 0; i < NumMemOps; i++) {
2996    MVT VT = MemOps[i];
2997    unsigned VTSize = VT.getSizeInBits() / 8;
2998    SDValue Value, Store;
2999
3000    Value = DAG.getLoad(VT, Chain,
3001                        getMemBasePlusOffset(Src, SrcOff, DAG),
3002                        SrcSV, SrcSVOff + SrcOff, false, Align);
3003    LoadValues.push_back(Value);
3004    LoadChains.push_back(Value.getValue(1));
3005    SrcOff += VTSize;
3006  }
3007  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3008                      &LoadChains[0], LoadChains.size());
3009  OutChains.clear();
3010  for (unsigned i = 0; i < NumMemOps; i++) {
3011    MVT VT = MemOps[i];
3012    unsigned VTSize = VT.getSizeInBits() / 8;
3013    SDValue Value, Store;
3014
3015    Store = DAG.getStore(Chain, LoadValues[i],
3016                         getMemBasePlusOffset(Dst, DstOff, DAG),
3017                         DstSV, DstSVOff + DstOff, false, DstAlign);
3018    OutChains.push_back(Store);
3019    DstOff += VTSize;
3020  }
3021
3022  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3023                     &OutChains[0], OutChains.size());
3024}
3025
3026static SDValue getMemsetStores(SelectionDAG &DAG,
3027                                 SDValue Chain, SDValue Dst,
3028                                 SDValue Src, uint64_t Size,
3029                                 unsigned Align,
3030                                 const Value *DstSV, uint64_t DstSVOff) {
3031  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3032
3033  // Expand memset to a series of load/store ops if the size operand
3034  // falls below a certain threshold.
3035  std::vector<MVT> MemOps;
3036  std::string Str;
3037  bool CopyFromStr;
3038  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3039                                Size, Align, Str, CopyFromStr, DAG, TLI))
3040    return SDValue();
3041
3042  SmallVector<SDValue, 8> OutChains;
3043  uint64_t DstOff = 0;
3044
3045  unsigned NumMemOps = MemOps.size();
3046  for (unsigned i = 0; i < NumMemOps; i++) {
3047    MVT VT = MemOps[i];
3048    unsigned VTSize = VT.getSizeInBits() / 8;
3049    SDValue Value = getMemsetValue(Src, VT, DAG);
3050    SDValue Store = DAG.getStore(Chain, Value,
3051                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3052                                   DstSV, DstSVOff + DstOff);
3053    OutChains.push_back(Store);
3054    DstOff += VTSize;
3055  }
3056
3057  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3058                     &OutChains[0], OutChains.size());
3059}
3060
3061SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3062                                SDValue Src, SDValue Size,
3063                                unsigned Align, bool AlwaysInline,
3064                                const Value *DstSV, uint64_t DstSVOff,
3065                                const Value *SrcSV, uint64_t SrcSVOff) {
3066
3067  // Check to see if we should lower the memcpy to loads and stores first.
3068  // For cases within the target-specified limits, this is the best choice.
3069  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3070  if (ConstantSize) {
3071    // Memcpy with size zero? Just return the original chain.
3072    if (ConstantSize->isNullValue())
3073      return Chain;
3074
3075    SDValue Result =
3076      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3077                              ConstantSize->getZExtValue(),
3078                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3079    if (Result.getNode())
3080      return Result;
3081  }
3082
3083  // Then check to see if we should lower the memcpy with target-specific
3084  // code. If the target chooses to do this, this is the next best.
3085  SDValue Result =
3086    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3087                                AlwaysInline,
3088                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3089  if (Result.getNode())
3090    return Result;
3091
3092  // If we really need inline code and the target declined to provide it,
3093  // use a (potentially long) sequence of loads and stores.
3094  if (AlwaysInline) {
3095    assert(ConstantSize && "AlwaysInline requires a constant size!");
3096    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3097                                   ConstantSize->getZExtValue(), Align, true,
3098                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3099  }
3100
3101  // Emit a library call.
3102  TargetLowering::ArgListTy Args;
3103  TargetLowering::ArgListEntry Entry;
3104  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3105  Entry.Node = Dst; Args.push_back(Entry);
3106  Entry.Node = Src; Args.push_back(Entry);
3107  Entry.Node = Size; Args.push_back(Entry);
3108  std::pair<SDValue,SDValue> CallResult =
3109    TLI.LowerCallTo(Chain, Type::VoidTy,
3110                    false, false, false, false, CallingConv::C, false,
3111                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3112                    Args, *this);
3113  return CallResult.second;
3114}
3115
3116SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3117                                 SDValue Src, SDValue Size,
3118                                 unsigned Align,
3119                                 const Value *DstSV, uint64_t DstSVOff,
3120                                 const Value *SrcSV, uint64_t SrcSVOff) {
3121
3122  // Check to see if we should lower the memmove to loads and stores first.
3123  // For cases within the target-specified limits, this is the best choice.
3124  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3125  if (ConstantSize) {
3126    // Memmove with size zero? Just return the original chain.
3127    if (ConstantSize->isNullValue())
3128      return Chain;
3129
3130    SDValue Result =
3131      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3132                               ConstantSize->getZExtValue(),
3133                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3134    if (Result.getNode())
3135      return Result;
3136  }
3137
3138  // Then check to see if we should lower the memmove with target-specific
3139  // code. If the target chooses to do this, this is the next best.
3140  SDValue Result =
3141    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3142                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3143  if (Result.getNode())
3144    return Result;
3145
3146  // Emit a library call.
3147  TargetLowering::ArgListTy Args;
3148  TargetLowering::ArgListEntry Entry;
3149  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3150  Entry.Node = Dst; Args.push_back(Entry);
3151  Entry.Node = Src; Args.push_back(Entry);
3152  Entry.Node = Size; Args.push_back(Entry);
3153  std::pair<SDValue,SDValue> CallResult =
3154    TLI.LowerCallTo(Chain, Type::VoidTy,
3155                    false, false, false, false, CallingConv::C, false,
3156                    getExternalSymbol("memmove", TLI.getPointerTy()),
3157                    Args, *this);
3158  return CallResult.second;
3159}
3160
3161SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3162                                SDValue Src, SDValue Size,
3163                                unsigned Align,
3164                                const Value *DstSV, uint64_t DstSVOff) {
3165
3166  // Check to see if we should lower the memset to stores first.
3167  // For cases within the target-specified limits, this is the best choice.
3168  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3169  if (ConstantSize) {
3170    // Memset with size zero? Just return the original chain.
3171    if (ConstantSize->isNullValue())
3172      return Chain;
3173
3174    SDValue Result =
3175      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3176                      Align, DstSV, DstSVOff);
3177    if (Result.getNode())
3178      return Result;
3179  }
3180
3181  // Then check to see if we should lower the memset with target-specific
3182  // code. If the target chooses to do this, this is the next best.
3183  SDValue Result =
3184    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3185                                DstSV, DstSVOff);
3186  if (Result.getNode())
3187    return Result;
3188
3189  // Emit a library call.
3190  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3191  TargetLowering::ArgListTy Args;
3192  TargetLowering::ArgListEntry Entry;
3193  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3194  Args.push_back(Entry);
3195  // Extend or truncate the argument to be an i32 value for the call.
3196  if (Src.getValueType().bitsGT(MVT::i32))
3197    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3198  else
3199    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3200  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3201  Args.push_back(Entry);
3202  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3203  Args.push_back(Entry);
3204  std::pair<SDValue,SDValue> CallResult =
3205    TLI.LowerCallTo(Chain, Type::VoidTy,
3206                    false, false, false, false, CallingConv::C, false,
3207                    getExternalSymbol("memset", TLI.getPointerTy()),
3208                    Args, *this);
3209  return CallResult.second;
3210}
3211
3212SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3213                                SDValue Ptr, SDValue Cmp,
3214                                SDValue Swp, const Value* PtrVal,
3215                                unsigned Alignment) {
3216  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3217          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3218          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3219          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3220  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3221
3222  MVT VT = Cmp.getValueType();
3223
3224  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3225    Alignment = getMVTAlignment(VT);
3226
3227  SDVTList VTs = getVTList(VT, MVT::Other);
3228  FoldingSetNodeID ID;
3229  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3230  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3231  void* IP = 0;
3232  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3233    return SDValue(E, 0);
3234  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3235  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3236  CSEMap.InsertNode(N, IP);
3237  AllNodes.push_back(N);
3238  return SDValue(N, 0);
3239}
3240
3241SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3242                                SDValue Ptr, SDValue Val,
3243                                const Value* PtrVal,
3244                                unsigned Alignment) {
3245  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3246          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3247          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3248          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3249          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3250          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3251          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3252          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3253          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3254          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3255          Opcode == ISD::ATOMIC_SWAP_8 ||
3256          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3257          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3258          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3259          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3260          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3261          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3262          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3263          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3264          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3265          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3266          Opcode == ISD::ATOMIC_SWAP_16 ||
3267          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3268          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3269          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3270          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3271          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3272          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3273          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3274          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3275          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3276          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3277          Opcode == ISD::ATOMIC_SWAP_32 ||
3278          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3279          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3280          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3281          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3282          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3283          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3284          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3285          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3286          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3287          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3288          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3289
3290  MVT VT = Val.getValueType();
3291
3292  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3293    Alignment = getMVTAlignment(VT);
3294
3295  SDVTList VTs = getVTList(VT, MVT::Other);
3296  FoldingSetNodeID ID;
3297  SDValue Ops[] = {Chain, Ptr, Val};
3298  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3299  void* IP = 0;
3300  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3301    return SDValue(E, 0);
3302  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3303  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3304  CSEMap.InsertNode(N, IP);
3305  AllNodes.push_back(N);
3306  return SDValue(N, 0);
3307}
3308
3309/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3310/// Allowed to return something different (and simpler) if Simplify is true.
3311SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3312                                     bool Simplify) {
3313  if (Simplify && NumOps == 1)
3314    return Ops[0];
3315
3316  SmallVector<MVT, 4> VTs;
3317  VTs.reserve(NumOps);
3318  for (unsigned i = 0; i < NumOps; ++i)
3319    VTs.push_back(Ops[i].getValueType());
3320  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3321}
3322
3323SDValue
3324SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3325                                  const MVT *VTs, unsigned NumVTs,
3326                                  const SDValue *Ops, unsigned NumOps,
3327                                  MVT MemVT, const Value *srcValue, int SVOff,
3328                                  unsigned Align, bool Vol,
3329                                  bool ReadMem, bool WriteMem) {
3330  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3331                             MemVT, srcValue, SVOff, Align, Vol,
3332                             ReadMem, WriteMem);
3333}
3334
3335SDValue
3336SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3337                                  const SDValue *Ops, unsigned NumOps,
3338                                  MVT MemVT, const Value *srcValue, int SVOff,
3339                                  unsigned Align, bool Vol,
3340                                  bool ReadMem, bool WriteMem) {
3341  // Memoize the node unless it returns a flag.
3342  MemIntrinsicSDNode *N;
3343  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3344    FoldingSetNodeID ID;
3345    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3346    void *IP = 0;
3347    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3348      return SDValue(E, 0);
3349
3350    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3351    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3352                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3353    CSEMap.InsertNode(N, IP);
3354  } else {
3355    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3356    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3357                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3358  }
3359  AllNodes.push_back(N);
3360  return SDValue(N, 0);
3361}
3362
3363SDValue
3364SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3365                      bool IsInreg, SDVTList VTs,
3366                      const SDValue *Operands, unsigned NumOperands) {
3367  // Do not include isTailCall in the folding set profile.
3368  FoldingSetNodeID ID;
3369  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3370  ID.AddInteger(CallingConv);
3371  ID.AddInteger(IsVarArgs);
3372  void *IP = 0;
3373  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3374    // Instead of including isTailCall in the folding set, we just
3375    // set the flag of the existing node.
3376    if (!IsTailCall)
3377      cast<CallSDNode>(E)->setNotTailCall();
3378    return SDValue(E, 0);
3379  }
3380  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3381  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3382                     VTs, Operands, NumOperands);
3383  CSEMap.InsertNode(N, IP);
3384  AllNodes.push_back(N);
3385  return SDValue(N, 0);
3386}
3387
3388SDValue
3389SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3390                      MVT VT, SDValue Chain,
3391                      SDValue Ptr, SDValue Offset,
3392                      const Value *SV, int SVOffset, MVT EVT,
3393                      bool isVolatile, unsigned Alignment) {
3394  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3395    Alignment = getMVTAlignment(VT);
3396
3397  if (VT == EVT) {
3398    ExtType = ISD::NON_EXTLOAD;
3399  } else if (ExtType == ISD::NON_EXTLOAD) {
3400    assert(VT == EVT && "Non-extending load from different memory type!");
3401  } else {
3402    // Extending load.
3403    if (VT.isVector())
3404      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3405             "Invalid vector extload!");
3406    else
3407      assert(EVT.bitsLT(VT) &&
3408             "Should only be an extending load, not truncating!");
3409    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3410           "Cannot sign/zero extend a FP/Vector load!");
3411    assert(VT.isInteger() == EVT.isInteger() &&
3412           "Cannot convert from FP to Int or Int -> FP!");
3413  }
3414
3415  bool Indexed = AM != ISD::UNINDEXED;
3416  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3417         "Unindexed load with an offset!");
3418
3419  SDVTList VTs = Indexed ?
3420    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3421  SDValue Ops[] = { Chain, Ptr, Offset };
3422  FoldingSetNodeID ID;
3423  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3424  ID.AddInteger(AM);
3425  ID.AddInteger(ExtType);
3426  ID.AddInteger(EVT.getRawBits());
3427  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3428  void *IP = 0;
3429  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3430    return SDValue(E, 0);
3431  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3432  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3433                     Alignment, isVolatile);
3434  CSEMap.InsertNode(N, IP);
3435  AllNodes.push_back(N);
3436  return SDValue(N, 0);
3437}
3438
3439SDValue SelectionDAG::getLoad(MVT VT,
3440                              SDValue Chain, SDValue Ptr,
3441                              const Value *SV, int SVOffset,
3442                              bool isVolatile, unsigned Alignment) {
3443  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3444  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3445                 SV, SVOffset, VT, isVolatile, Alignment);
3446}
3447
3448SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3449                                 SDValue Chain, SDValue Ptr,
3450                                 const Value *SV,
3451                                 int SVOffset, MVT EVT,
3452                                 bool isVolatile, unsigned Alignment) {
3453  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3454  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3455                 SV, SVOffset, EVT, isVolatile, Alignment);
3456}
3457
3458SDValue
3459SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3460                             SDValue Offset, ISD::MemIndexedMode AM) {
3461  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3462  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3463         "Load is already a indexed load!");
3464  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3465                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3466                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3467                 LD->isVolatile(), LD->getAlignment());
3468}
3469
3470SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3471                               SDValue Ptr, const Value *SV, int SVOffset,
3472                               bool isVolatile, unsigned Alignment) {
3473  MVT VT = Val.getValueType();
3474
3475  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3476    Alignment = getMVTAlignment(VT);
3477
3478  SDVTList VTs = getVTList(MVT::Other);
3479  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3480  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3481  FoldingSetNodeID ID;
3482  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3483  ID.AddInteger(ISD::UNINDEXED);
3484  ID.AddInteger(false);
3485  ID.AddInteger(VT.getRawBits());
3486  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3487  void *IP = 0;
3488  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3489    return SDValue(E, 0);
3490  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3491  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3492                      VT, SV, SVOffset, Alignment, isVolatile);
3493  CSEMap.InsertNode(N, IP);
3494  AllNodes.push_back(N);
3495  return SDValue(N, 0);
3496}
3497
3498SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3499                                    SDValue Ptr, const Value *SV,
3500                                    int SVOffset, MVT SVT,
3501                                    bool isVolatile, unsigned Alignment) {
3502  MVT VT = Val.getValueType();
3503
3504  if (VT == SVT)
3505    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3506
3507  assert(VT.bitsGT(SVT) && "Not a truncation?");
3508  assert(VT.isInteger() == SVT.isInteger() &&
3509         "Can't do FP-INT conversion!");
3510
3511  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3512    Alignment = getMVTAlignment(VT);
3513
3514  SDVTList VTs = getVTList(MVT::Other);
3515  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3516  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3517  FoldingSetNodeID ID;
3518  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3519  ID.AddInteger(ISD::UNINDEXED);
3520  ID.AddInteger(1);
3521  ID.AddInteger(SVT.getRawBits());
3522  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3523  void *IP = 0;
3524  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3525    return SDValue(E, 0);
3526  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3527  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3528                      SVT, SV, SVOffset, Alignment, isVolatile);
3529  CSEMap.InsertNode(N, IP);
3530  AllNodes.push_back(N);
3531  return SDValue(N, 0);
3532}
3533
3534SDValue
3535SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3536                              SDValue Offset, ISD::MemIndexedMode AM) {
3537  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3538  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3539         "Store is already a indexed store!");
3540  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3541  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3542  FoldingSetNodeID ID;
3543  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3544  ID.AddInteger(AM);
3545  ID.AddInteger(ST->isTruncatingStore());
3546  ID.AddInteger(ST->getMemoryVT().getRawBits());
3547  ID.AddInteger(ST->getRawFlags());
3548  void *IP = 0;
3549  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3550    return SDValue(E, 0);
3551  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3552  new (N) StoreSDNode(Ops, VTs, AM,
3553                      ST->isTruncatingStore(), ST->getMemoryVT(),
3554                      ST->getSrcValue(), ST->getSrcValueOffset(),
3555                      ST->getAlignment(), ST->isVolatile());
3556  CSEMap.InsertNode(N, IP);
3557  AllNodes.push_back(N);
3558  return SDValue(N, 0);
3559}
3560
3561SDValue SelectionDAG::getVAArg(MVT VT,
3562                               SDValue Chain, SDValue Ptr,
3563                               SDValue SV) {
3564  SDValue Ops[] = { Chain, Ptr, SV };
3565  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3566}
3567
3568SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3569                              const SDUse *Ops, unsigned NumOps) {
3570  switch (NumOps) {
3571  case 0: return getNode(Opcode, VT);
3572  case 1: return getNode(Opcode, VT, Ops[0]);
3573  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3574  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3575  default: break;
3576  }
3577
3578  // Copy from an SDUse array into an SDValue array for use with
3579  // the regular getNode logic.
3580  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3581  return getNode(Opcode, VT, &NewOps[0], NumOps);
3582}
3583
3584SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3585                              const SDValue *Ops, unsigned NumOps) {
3586  switch (NumOps) {
3587  case 0: return getNode(Opcode, VT);
3588  case 1: return getNode(Opcode, VT, Ops[0]);
3589  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3590  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3591  default: break;
3592  }
3593
3594  switch (Opcode) {
3595  default: break;
3596  case ISD::SELECT_CC: {
3597    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3598    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3599           "LHS and RHS of condition must have same type!");
3600    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3601           "True and False arms of SelectCC must have same type!");
3602    assert(Ops[2].getValueType() == VT &&
3603           "select_cc node must be of same type as true and false value!");
3604    break;
3605  }
3606  case ISD::BR_CC: {
3607    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3608    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3609           "LHS/RHS of comparison should match types!");
3610    break;
3611  }
3612  }
3613
3614  // Memoize nodes.
3615  SDNode *N;
3616  SDVTList VTs = getVTList(VT);
3617  if (VT != MVT::Flag) {
3618    FoldingSetNodeID ID;
3619    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3620    void *IP = 0;
3621    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3622      return SDValue(E, 0);
3623    N = NodeAllocator.Allocate<SDNode>();
3624    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3625    CSEMap.InsertNode(N, IP);
3626  } else {
3627    N = NodeAllocator.Allocate<SDNode>();
3628    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3629  }
3630  AllNodes.push_back(N);
3631#ifndef NDEBUG
3632  VerifyNode(N);
3633#endif
3634  return SDValue(N, 0);
3635}
3636
3637SDValue SelectionDAG::getNode(unsigned Opcode,
3638                              const std::vector<MVT> &ResultTys,
3639                              const SDValue *Ops, unsigned NumOps) {
3640  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3641                 Ops, NumOps);
3642}
3643
3644SDValue SelectionDAG::getNode(unsigned Opcode,
3645                              const MVT *VTs, unsigned NumVTs,
3646                              const SDValue *Ops, unsigned NumOps) {
3647  if (NumVTs == 1)
3648    return getNode(Opcode, VTs[0], Ops, NumOps);
3649  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3650}
3651
3652SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3653                              const SDValue *Ops, unsigned NumOps) {
3654  if (VTList.NumVTs == 1)
3655    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3656
3657  switch (Opcode) {
3658  // FIXME: figure out how to safely handle things like
3659  // int foo(int x) { return 1 << (x & 255); }
3660  // int bar() { return foo(256); }
3661#if 0
3662  case ISD::SRA_PARTS:
3663  case ISD::SRL_PARTS:
3664  case ISD::SHL_PARTS:
3665    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3666        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3667      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3668    else if (N3.getOpcode() == ISD::AND)
3669      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3670        // If the and is only masking out bits that cannot effect the shift,
3671        // eliminate the and.
3672        unsigned NumBits = VT.getSizeInBits()*2;
3673        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3674          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3675      }
3676    break;
3677#endif
3678  }
3679
3680  // Memoize the node unless it returns a flag.
3681  SDNode *N;
3682  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3683    FoldingSetNodeID ID;
3684    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3685    void *IP = 0;
3686    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3687      return SDValue(E, 0);
3688    if (NumOps == 1) {
3689      N = NodeAllocator.Allocate<UnarySDNode>();
3690      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3691    } else if (NumOps == 2) {
3692      N = NodeAllocator.Allocate<BinarySDNode>();
3693      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3694    } else if (NumOps == 3) {
3695      N = NodeAllocator.Allocate<TernarySDNode>();
3696      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3697    } else {
3698      N = NodeAllocator.Allocate<SDNode>();
3699      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3700    }
3701    CSEMap.InsertNode(N, IP);
3702  } else {
3703    if (NumOps == 1) {
3704      N = NodeAllocator.Allocate<UnarySDNode>();
3705      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3706    } else if (NumOps == 2) {
3707      N = NodeAllocator.Allocate<BinarySDNode>();
3708      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3709    } else if (NumOps == 3) {
3710      N = NodeAllocator.Allocate<TernarySDNode>();
3711      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3712    } else {
3713      N = NodeAllocator.Allocate<SDNode>();
3714      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3715    }
3716  }
3717  AllNodes.push_back(N);
3718#ifndef NDEBUG
3719  VerifyNode(N);
3720#endif
3721  return SDValue(N, 0);
3722}
3723
3724SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3725  return getNode(Opcode, VTList, 0, 0);
3726}
3727
3728SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3729                                SDValue N1) {
3730  SDValue Ops[] = { N1 };
3731  return getNode(Opcode, VTList, Ops, 1);
3732}
3733
3734SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3735                              SDValue N1, SDValue N2) {
3736  SDValue Ops[] = { N1, N2 };
3737  return getNode(Opcode, VTList, Ops, 2);
3738}
3739
3740SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3741                              SDValue N1, SDValue N2, SDValue N3) {
3742  SDValue Ops[] = { N1, N2, N3 };
3743  return getNode(Opcode, VTList, Ops, 3);
3744}
3745
3746SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3747                              SDValue N1, SDValue N2, SDValue N3,
3748                              SDValue N4) {
3749  SDValue Ops[] = { N1, N2, N3, N4 };
3750  return getNode(Opcode, VTList, Ops, 4);
3751}
3752
3753SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3754                              SDValue N1, SDValue N2, SDValue N3,
3755                              SDValue N4, SDValue N5) {
3756  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3757  return getNode(Opcode, VTList, Ops, 5);
3758}
3759
3760SDVTList SelectionDAG::getVTList(MVT VT) {
3761  return makeVTList(SDNode::getValueTypeList(VT), 1);
3762}
3763
3764SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3765  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3766       E = VTList.rend(); I != E; ++I)
3767    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3768      return *I;
3769
3770  MVT *Array = Allocator.Allocate<MVT>(2);
3771  Array[0] = VT1;
3772  Array[1] = VT2;
3773  SDVTList Result = makeVTList(Array, 2);
3774  VTList.push_back(Result);
3775  return Result;
3776}
3777
3778SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3779  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3780       E = VTList.rend(); I != E; ++I)
3781    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3782                          I->VTs[2] == VT3)
3783      return *I;
3784
3785  MVT *Array = Allocator.Allocate<MVT>(3);
3786  Array[0] = VT1;
3787  Array[1] = VT2;
3788  Array[2] = VT3;
3789  SDVTList Result = makeVTList(Array, 3);
3790  VTList.push_back(Result);
3791  return Result;
3792}
3793
3794SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3795  switch (NumVTs) {
3796    case 0: assert(0 && "Cannot have nodes without results!");
3797    case 1: return getVTList(VTs[0]);
3798    case 2: return getVTList(VTs[0], VTs[1]);
3799    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3800    default: break;
3801  }
3802
3803  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3804       E = VTList.rend(); I != E; ++I) {
3805    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3806      continue;
3807
3808    bool NoMatch = false;
3809    for (unsigned i = 2; i != NumVTs; ++i)
3810      if (VTs[i] != I->VTs[i]) {
3811        NoMatch = true;
3812        break;
3813      }
3814    if (!NoMatch)
3815      return *I;
3816  }
3817
3818  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3819  std::copy(VTs, VTs+NumVTs, Array);
3820  SDVTList Result = makeVTList(Array, NumVTs);
3821  VTList.push_back(Result);
3822  return Result;
3823}
3824
3825
3826/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3827/// specified operands.  If the resultant node already exists in the DAG,
3828/// this does not modify the specified node, instead it returns the node that
3829/// already exists.  If the resultant node does not exist in the DAG, the
3830/// input node is returned.  As a degenerate case, if you specify the same
3831/// input operands as the node already has, the input node is returned.
3832SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3833  SDNode *N = InN.getNode();
3834  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3835
3836  // Check to see if there is no change.
3837  if (Op == N->getOperand(0)) return InN;
3838
3839  // See if the modified node already exists.
3840  void *InsertPos = 0;
3841  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3842    return SDValue(Existing, InN.getResNo());
3843
3844  // Nope it doesn't.  Remove the node from its current place in the maps.
3845  if (InsertPos)
3846    if (!RemoveNodeFromCSEMaps(N))
3847      InsertPos = 0;
3848
3849  // Now we update the operands.
3850  N->OperandList[0].getVal()->removeUser(0, N);
3851  N->OperandList[0] = Op;
3852  N->OperandList[0].setUser(N);
3853  Op.getNode()->addUser(0, N);
3854
3855  // If this gets put into a CSE map, add it.
3856  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3857  return InN;
3858}
3859
3860SDValue SelectionDAG::
3861UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3862  SDNode *N = InN.getNode();
3863  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3864
3865  // Check to see if there is no change.
3866  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3867    return InN;   // No operands changed, just return the input node.
3868
3869  // See if the modified node already exists.
3870  void *InsertPos = 0;
3871  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3872    return SDValue(Existing, InN.getResNo());
3873
3874  // Nope it doesn't.  Remove the node from its current place in the maps.
3875  if (InsertPos)
3876    if (!RemoveNodeFromCSEMaps(N))
3877      InsertPos = 0;
3878
3879  // Now we update the operands.
3880  if (N->OperandList[0] != Op1) {
3881    N->OperandList[0].getVal()->removeUser(0, N);
3882    N->OperandList[0] = Op1;
3883    N->OperandList[0].setUser(N);
3884    Op1.getNode()->addUser(0, N);
3885  }
3886  if (N->OperandList[1] != Op2) {
3887    N->OperandList[1].getVal()->removeUser(1, N);
3888    N->OperandList[1] = Op2;
3889    N->OperandList[1].setUser(N);
3890    Op2.getNode()->addUser(1, N);
3891  }
3892
3893  // If this gets put into a CSE map, add it.
3894  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3895  return InN;
3896}
3897
3898SDValue SelectionDAG::
3899UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3900  SDValue Ops[] = { Op1, Op2, Op3 };
3901  return UpdateNodeOperands(N, Ops, 3);
3902}
3903
3904SDValue SelectionDAG::
3905UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3906                   SDValue Op3, SDValue Op4) {
3907  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3908  return UpdateNodeOperands(N, Ops, 4);
3909}
3910
3911SDValue SelectionDAG::
3912UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3913                   SDValue Op3, SDValue Op4, SDValue Op5) {
3914  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3915  return UpdateNodeOperands(N, Ops, 5);
3916}
3917
3918SDValue SelectionDAG::
3919UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3920  SDNode *N = InN.getNode();
3921  assert(N->getNumOperands() == NumOps &&
3922         "Update with wrong number of operands");
3923
3924  // Check to see if there is no change.
3925  bool AnyChange = false;
3926  for (unsigned i = 0; i != NumOps; ++i) {
3927    if (Ops[i] != N->getOperand(i)) {
3928      AnyChange = true;
3929      break;
3930    }
3931  }
3932
3933  // No operands changed, just return the input node.
3934  if (!AnyChange) return InN;
3935
3936  // See if the modified node already exists.
3937  void *InsertPos = 0;
3938  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3939    return SDValue(Existing, InN.getResNo());
3940
3941  // Nope it doesn't.  Remove the node from its current place in the maps.
3942  if (InsertPos)
3943    if (!RemoveNodeFromCSEMaps(N))
3944      InsertPos = 0;
3945
3946  // Now we update the operands.
3947  for (unsigned i = 0; i != NumOps; ++i) {
3948    if (N->OperandList[i] != Ops[i]) {
3949      N->OperandList[i].getVal()->removeUser(i, N);
3950      N->OperandList[i] = Ops[i];
3951      N->OperandList[i].setUser(N);
3952      Ops[i].getNode()->addUser(i, N);
3953    }
3954  }
3955
3956  // If this gets put into a CSE map, add it.
3957  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3958  return InN;
3959}
3960
3961/// DropOperands - Release the operands and set this node to have
3962/// zero operands.
3963void SDNode::DropOperands() {
3964  // Unlike the code in MorphNodeTo that does this, we don't need to
3965  // watch for dead nodes here.
3966  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3967    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3968
3969  NumOperands = 0;
3970}
3971
3972/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3973/// machine opcode.
3974///
3975SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3976                                   MVT VT) {
3977  SDVTList VTs = getVTList(VT);
3978  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3979}
3980
3981SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3982                                   MVT VT, SDValue Op1) {
3983  SDVTList VTs = getVTList(VT);
3984  SDValue Ops[] = { Op1 };
3985  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3986}
3987
3988SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3989                                   MVT VT, SDValue Op1,
3990                                   SDValue Op2) {
3991  SDVTList VTs = getVTList(VT);
3992  SDValue Ops[] = { Op1, Op2 };
3993  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3994}
3995
3996SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3997                                   MVT VT, SDValue Op1,
3998                                   SDValue Op2, SDValue Op3) {
3999  SDVTList VTs = getVTList(VT);
4000  SDValue Ops[] = { Op1, Op2, Op3 };
4001  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4002}
4003
4004SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4005                                   MVT VT, const SDValue *Ops,
4006                                   unsigned NumOps) {
4007  SDVTList VTs = getVTList(VT);
4008  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4009}
4010
4011SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4012                                   MVT VT1, MVT VT2, const SDValue *Ops,
4013                                   unsigned NumOps) {
4014  SDVTList VTs = getVTList(VT1, VT2);
4015  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4016}
4017
4018SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4019                                   MVT VT1, MVT VT2) {
4020  SDVTList VTs = getVTList(VT1, VT2);
4021  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4022}
4023
4024SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4025                                   MVT VT1, MVT VT2, MVT VT3,
4026                                   const SDValue *Ops, unsigned NumOps) {
4027  SDVTList VTs = getVTList(VT1, VT2, VT3);
4028  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4029}
4030
4031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4032                                   MVT VT1, MVT VT2,
4033                                   SDValue Op1) {
4034  SDVTList VTs = getVTList(VT1, VT2);
4035  SDValue Ops[] = { Op1 };
4036  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4037}
4038
4039SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4040                                   MVT VT1, MVT VT2,
4041                                   SDValue Op1, SDValue Op2) {
4042  SDVTList VTs = getVTList(VT1, VT2);
4043  SDValue Ops[] = { Op1, Op2 };
4044  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4045}
4046
4047SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4048                                   MVT VT1, MVT VT2,
4049                                   SDValue Op1, SDValue Op2,
4050                                   SDValue Op3) {
4051  SDVTList VTs = getVTList(VT1, VT2);
4052  SDValue Ops[] = { Op1, Op2, Op3 };
4053  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4054}
4055
4056SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4057                                   SDVTList VTs, const SDValue *Ops,
4058                                   unsigned NumOps) {
4059  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4060}
4061
4062SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4063                                  MVT VT) {
4064  SDVTList VTs = getVTList(VT);
4065  return MorphNodeTo(N, Opc, VTs, 0, 0);
4066}
4067
4068SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4069                                  MVT VT, SDValue Op1) {
4070  SDVTList VTs = getVTList(VT);
4071  SDValue Ops[] = { Op1 };
4072  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4073}
4074
4075SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4076                                  MVT VT, SDValue Op1,
4077                                  SDValue Op2) {
4078  SDVTList VTs = getVTList(VT);
4079  SDValue Ops[] = { Op1, Op2 };
4080  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4081}
4082
4083SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4084                                  MVT VT, SDValue Op1,
4085                                  SDValue Op2, SDValue Op3) {
4086  SDVTList VTs = getVTList(VT);
4087  SDValue Ops[] = { Op1, Op2, Op3 };
4088  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4089}
4090
4091SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4092                                  MVT VT, const SDValue *Ops,
4093                                  unsigned NumOps) {
4094  SDVTList VTs = getVTList(VT);
4095  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4096}
4097
4098SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4099                                  MVT VT1, MVT VT2, const SDValue *Ops,
4100                                  unsigned NumOps) {
4101  SDVTList VTs = getVTList(VT1, VT2);
4102  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4103}
4104
4105SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4106                                  MVT VT1, MVT VT2) {
4107  SDVTList VTs = getVTList(VT1, VT2);
4108  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4109}
4110
4111SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4112                                  MVT VT1, MVT VT2, MVT VT3,
4113                                  const SDValue *Ops, unsigned NumOps) {
4114  SDVTList VTs = getVTList(VT1, VT2, VT3);
4115  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4116}
4117
4118SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4119                                  MVT VT1, MVT VT2,
4120                                  SDValue Op1) {
4121  SDVTList VTs = getVTList(VT1, VT2);
4122  SDValue Ops[] = { Op1 };
4123  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4124}
4125
4126SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4127                                  MVT VT1, MVT VT2,
4128                                  SDValue Op1, SDValue Op2) {
4129  SDVTList VTs = getVTList(VT1, VT2);
4130  SDValue Ops[] = { Op1, Op2 };
4131  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4132}
4133
4134SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4135                                  MVT VT1, MVT VT2,
4136                                  SDValue Op1, SDValue Op2,
4137                                  SDValue Op3) {
4138  SDVTList VTs = getVTList(VT1, VT2);
4139  SDValue Ops[] = { Op1, Op2, Op3 };
4140  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4141}
4142
4143/// MorphNodeTo - These *mutate* the specified node to have the specified
4144/// return type, opcode, and operands.
4145///
4146/// Note that MorphNodeTo returns the resultant node.  If there is already a
4147/// node of the specified opcode and operands, it returns that node instead of
4148/// the current one.
4149///
4150/// Using MorphNodeTo is faster than creating a new node and swapping it in
4151/// with ReplaceAllUsesWith both because it often avoids allocating a new
4152/// node, and because it doesn't require CSE recalculation for any of
4153/// the node's users.
4154///
4155SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4156                                  SDVTList VTs, const SDValue *Ops,
4157                                  unsigned NumOps) {
4158  // If an identical node already exists, use it.
4159  void *IP = 0;
4160  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4161    FoldingSetNodeID ID;
4162    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4163    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4164      return ON;
4165  }
4166
4167  if (!RemoveNodeFromCSEMaps(N))
4168    IP = 0;
4169
4170  // Start the morphing.
4171  N->NodeType = Opc;
4172  N->ValueList = VTs.VTs;
4173  N->NumValues = VTs.NumVTs;
4174
4175  // Clear the operands list, updating used nodes to remove this from their
4176  // use list.  Keep track of any operands that become dead as a result.
4177  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4178  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4179       I != E; ++I) {
4180    SDNode *Used = I->getVal();
4181    Used->removeUser(std::distance(B, I), N);
4182    if (Used->use_empty())
4183      DeadNodeSet.insert(Used);
4184  }
4185
4186  // If NumOps is larger than the # of operands we currently have, reallocate
4187  // the operand list.
4188  if (NumOps > N->NumOperands) {
4189    if (N->OperandsNeedDelete)
4190      delete[] N->OperandList;
4191
4192    if (N->isMachineOpcode()) {
4193      // We're creating a final node that will live unmorphed for the
4194      // remainder of the current SelectionDAG iteration, so we can allocate
4195      // the operands directly out of a pool with no recycling metadata.
4196      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4197      N->OperandsNeedDelete = false;
4198    } else {
4199      N->OperandList = new SDUse[NumOps];
4200      N->OperandsNeedDelete = true;
4201    }
4202  }
4203
4204  // Assign the new operands.
4205  N->NumOperands = NumOps;
4206  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4207    N->OperandList[i] = Ops[i];
4208    N->OperandList[i].setUser(N);
4209    SDNode *ToUse = N->OperandList[i].getVal();
4210    ToUse->addUser(i, N);
4211  }
4212
4213  // Delete any nodes that are still dead after adding the uses for the
4214  // new operands.
4215  SmallVector<SDNode *, 16> DeadNodes;
4216  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4217       E = DeadNodeSet.end(); I != E; ++I)
4218    if ((*I)->use_empty())
4219      DeadNodes.push_back(*I);
4220  RemoveDeadNodes(DeadNodes);
4221
4222  if (IP)
4223    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4224  return N;
4225}
4226
4227
4228/// getTargetNode - These are used for target selectors to create a new node
4229/// with specified return type(s), target opcode, and operands.
4230///
4231/// Note that getTargetNode returns the resultant node.  If there is already a
4232/// node of the specified opcode and operands, it returns that node instead of
4233/// the current one.
4234SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4235  return getNode(~Opcode, VT).getNode();
4236}
4237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4238  return getNode(~Opcode, VT, Op1).getNode();
4239}
4240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4241                                    SDValue Op1, SDValue Op2) {
4242  return getNode(~Opcode, VT, Op1, Op2).getNode();
4243}
4244SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4245                                    SDValue Op1, SDValue Op2,
4246                                    SDValue Op3) {
4247  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4248}
4249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4250                                    const SDValue *Ops, unsigned NumOps) {
4251  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4252}
4253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4254  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4255  SDValue Op;
4256  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4257}
4258SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4259                                    MVT VT2, SDValue Op1) {
4260  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4261  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4262}
4263SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4264                                    MVT VT2, SDValue Op1,
4265                                    SDValue Op2) {
4266  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4267  SDValue Ops[] = { Op1, Op2 };
4268  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4269}
4270SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4271                                    MVT VT2, SDValue Op1,
4272                                    SDValue Op2, SDValue Op3) {
4273  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4274  SDValue Ops[] = { Op1, Op2, Op3 };
4275  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4276}
4277SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4278                                    const SDValue *Ops, unsigned NumOps) {
4279  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4280  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4281}
4282SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4283                                    SDValue Op1, SDValue Op2) {
4284  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4285  SDValue Ops[] = { Op1, Op2 };
4286  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4287}
4288SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4289                                    SDValue Op1, SDValue Op2,
4290                                    SDValue Op3) {
4291  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4292  SDValue Ops[] = { Op1, Op2, Op3 };
4293  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4294}
4295SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4296                                    const SDValue *Ops, unsigned NumOps) {
4297  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4298  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4299}
4300SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4301                                    MVT VT2, MVT VT3, MVT VT4,
4302                                    const SDValue *Ops, unsigned NumOps) {
4303  std::vector<MVT> VTList;
4304  VTList.push_back(VT1);
4305  VTList.push_back(VT2);
4306  VTList.push_back(VT3);
4307  VTList.push_back(VT4);
4308  const MVT *VTs = getNodeValueTypes(VTList);
4309  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4310}
4311SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4312                                    const std::vector<MVT> &ResultTys,
4313                                    const SDValue *Ops, unsigned NumOps) {
4314  const MVT *VTs = getNodeValueTypes(ResultTys);
4315  return getNode(~Opcode, VTs, ResultTys.size(),
4316                 Ops, NumOps).getNode();
4317}
4318
4319/// getNodeIfExists - Get the specified node if it's already available, or
4320/// else return NULL.
4321SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4322                                      const SDValue *Ops, unsigned NumOps) {
4323  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4324    FoldingSetNodeID ID;
4325    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4326    void *IP = 0;
4327    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4328      return E;
4329  }
4330  return NULL;
4331}
4332
4333
4334/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4335/// This can cause recursive merging of nodes in the DAG.
4336///
4337/// This version assumes From has a single result value.
4338///
4339void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4340                                      DAGUpdateListener *UpdateListener) {
4341  SDNode *From = FromN.getNode();
4342  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4343         "Cannot replace with this method!");
4344  assert(From != To.getNode() && "Cannot replace uses of with self");
4345
4346  while (!From->use_empty()) {
4347    SDNode::use_iterator UI = From->use_begin();
4348    SDNode *U = *UI;
4349
4350    // This node is about to morph, remove its old self from the CSE maps.
4351    RemoveNodeFromCSEMaps(U);
4352    int operandNum = 0;
4353    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4354         I != E; ++I, ++operandNum)
4355      if (I->getVal() == From) {
4356        From->removeUser(operandNum, U);
4357        *I = To;
4358        I->setUser(U);
4359        To.getNode()->addUser(operandNum, U);
4360      }
4361
4362    // Now that we have modified U, add it back to the CSE maps.  If it already
4363    // exists there, recursively merge the results together.
4364    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4365      ReplaceAllUsesWith(U, Existing, UpdateListener);
4366      // U is now dead.  Inform the listener if it exists and delete it.
4367      if (UpdateListener)
4368        UpdateListener->NodeDeleted(U, Existing);
4369      DeleteNodeNotInCSEMaps(U);
4370    } else {
4371      // If the node doesn't already exist, we updated it.  Inform a listener if
4372      // it exists.
4373      if (UpdateListener)
4374        UpdateListener->NodeUpdated(U);
4375    }
4376  }
4377}
4378
4379/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4380/// This can cause recursive merging of nodes in the DAG.
4381///
4382/// This version assumes From/To have matching types and numbers of result
4383/// values.
4384///
4385void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4386                                      DAGUpdateListener *UpdateListener) {
4387  assert(From->getVTList().VTs == To->getVTList().VTs &&
4388         From->getNumValues() == To->getNumValues() &&
4389         "Cannot use this version of ReplaceAllUsesWith!");
4390
4391  // Handle the trivial case.
4392  if (From == To)
4393    return;
4394
4395  while (!From->use_empty()) {
4396    SDNode::use_iterator UI = From->use_begin();
4397    SDNode *U = *UI;
4398
4399    // This node is about to morph, remove its old self from the CSE maps.
4400    RemoveNodeFromCSEMaps(U);
4401    int operandNum = 0;
4402    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4403         I != E; ++I, ++operandNum)
4404      if (I->getVal() == From) {
4405        From->removeUser(operandNum, U);
4406        I->getSDValue().setNode(To);
4407        To->addUser(operandNum, U);
4408      }
4409
4410    // Now that we have modified U, add it back to the CSE maps.  If it already
4411    // exists there, recursively merge the results together.
4412    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4413      ReplaceAllUsesWith(U, Existing, UpdateListener);
4414      // U is now dead.  Inform the listener if it exists and delete it.
4415      if (UpdateListener)
4416        UpdateListener->NodeDeleted(U, Existing);
4417      DeleteNodeNotInCSEMaps(U);
4418    } else {
4419      // If the node doesn't already exist, we updated it.  Inform a listener if
4420      // it exists.
4421      if (UpdateListener)
4422        UpdateListener->NodeUpdated(U);
4423    }
4424  }
4425}
4426
4427/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4428/// This can cause recursive merging of nodes in the DAG.
4429///
4430/// This version can replace From with any result values.  To must match the
4431/// number and types of values returned by From.
4432void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4433                                      const SDValue *To,
4434                                      DAGUpdateListener *UpdateListener) {
4435  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4436    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4437
4438  while (!From->use_empty()) {
4439    SDNode::use_iterator UI = From->use_begin();
4440    SDNode *U = *UI;
4441
4442    // This node is about to morph, remove its old self from the CSE maps.
4443    RemoveNodeFromCSEMaps(U);
4444    int operandNum = 0;
4445    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4446         I != E; ++I, ++operandNum)
4447      if (I->getVal() == From) {
4448        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4449        From->removeUser(operandNum, U);
4450        *I = ToOp;
4451        I->setUser(U);
4452        ToOp.getNode()->addUser(operandNum, U);
4453      }
4454
4455    // Now that we have modified U, add it back to the CSE maps.  If it already
4456    // exists there, recursively merge the results together.
4457    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4458      ReplaceAllUsesWith(U, Existing, UpdateListener);
4459      // U is now dead.  Inform the listener if it exists and delete it.
4460      if (UpdateListener)
4461        UpdateListener->NodeDeleted(U, Existing);
4462      DeleteNodeNotInCSEMaps(U);
4463    } else {
4464      // If the node doesn't already exist, we updated it.  Inform a listener if
4465      // it exists.
4466      if (UpdateListener)
4467        UpdateListener->NodeUpdated(U);
4468    }
4469  }
4470}
4471
4472/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4473/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4474/// handled the same way as for ReplaceAllUsesWith.
4475void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4476                                             DAGUpdateListener *UpdateListener){
4477  // Handle the really simple, really trivial case efficiently.
4478  if (From == To) return;
4479
4480  // Handle the simple, trivial, case efficiently.
4481  if (From.getNode()->getNumValues() == 1) {
4482    ReplaceAllUsesWith(From, To, UpdateListener);
4483    return;
4484  }
4485
4486  // Get all of the users of From.getNode().  We want these in a nice,
4487  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4488  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4489
4490  while (!Users.empty()) {
4491    // We know that this user uses some value of From.  If it is the right
4492    // value, update it.
4493    SDNode *User = Users.back();
4494    Users.pop_back();
4495
4496    // Scan for an operand that matches From.
4497    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4498    for (; Op != E; ++Op)
4499      if (*Op == From) break;
4500
4501    // If there are no matches, the user must use some other result of From.
4502    if (Op == E) continue;
4503
4504    // Okay, we know this user needs to be updated.  Remove its old self
4505    // from the CSE maps.
4506    RemoveNodeFromCSEMaps(User);
4507
4508    // Update all operands that match "From" in case there are multiple uses.
4509    for (; Op != E; ++Op) {
4510      if (*Op == From) {
4511        From.getNode()->removeUser(Op-User->op_begin(), User);
4512        *Op = To;
4513        Op->setUser(User);
4514        To.getNode()->addUser(Op-User->op_begin(), User);
4515      }
4516    }
4517
4518    // Now that we have modified User, add it back to the CSE maps.  If it
4519    // already exists there, recursively merge the results together.
4520    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4521    if (!Existing) {
4522      if (UpdateListener) UpdateListener->NodeUpdated(User);
4523      continue;  // Continue on to next user.
4524    }
4525
4526    // If there was already an existing matching node, use ReplaceAllUsesWith
4527    // to replace the dead one with the existing one.  This can cause
4528    // recursive merging of other unrelated nodes down the line.
4529    ReplaceAllUsesWith(User, Existing, UpdateListener);
4530
4531    // User is now dead.  Notify a listener if present.
4532    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4533    DeleteNodeNotInCSEMaps(User);
4534  }
4535}
4536
4537/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4538/// uses of other values produced by From.getVal() alone.  The same value may
4539/// appear in both the From and To list.  The Deleted vector is
4540/// handled the same way as for ReplaceAllUsesWith.
4541void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4542                                              const SDValue *To,
4543                                              unsigned Num,
4544                                              DAGUpdateListener *UpdateListener){
4545  // Handle the simple, trivial case efficiently.
4546  if (Num == 1)
4547    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4548
4549  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4550  for (unsigned i = 0; i != Num; ++i)
4551    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4552         E = From[i].getNode()->use_end(); UI != E; ++UI)
4553      Users.push_back(std::make_pair(*UI, i));
4554
4555  while (!Users.empty()) {
4556    // We know that this user uses some value of From.  If it is the right
4557    // value, update it.
4558    SDNode *User = Users.back().first;
4559    unsigned i = Users.back().second;
4560    Users.pop_back();
4561
4562    // Scan for an operand that matches From.
4563    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4564    for (; Op != E; ++Op)
4565      if (*Op == From[i]) break;
4566
4567    // If there are no matches, the user must use some other result of From.
4568    if (Op == E) continue;
4569
4570    // Okay, we know this user needs to be updated.  Remove its old self
4571    // from the CSE maps.
4572    RemoveNodeFromCSEMaps(User);
4573
4574    // Update all operands that match "From" in case there are multiple uses.
4575    for (; Op != E; ++Op) {
4576      if (*Op == From[i]) {
4577        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4578        *Op = To[i];
4579        Op->setUser(User);
4580        To[i].getNode()->addUser(Op-User->op_begin(), User);
4581      }
4582    }
4583
4584    // Now that we have modified User, add it back to the CSE maps.  If it
4585    // already exists there, recursively merge the results together.
4586    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4587    if (!Existing) {
4588      if (UpdateListener) UpdateListener->NodeUpdated(User);
4589      continue;  // Continue on to next user.
4590    }
4591
4592    // If there was already an existing matching node, use ReplaceAllUsesWith
4593    // to replace the dead one with the existing one.  This can cause
4594    // recursive merging of other unrelated nodes down the line.
4595    ReplaceAllUsesWith(User, Existing, UpdateListener);
4596
4597    // User is now dead.  Notify a listener if present.
4598    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4599    DeleteNodeNotInCSEMaps(User);
4600  }
4601}
4602
4603/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4604/// based on their topological order. It returns the maximum id and a vector
4605/// of the SDNodes* in assigned order by reference.
4606unsigned SelectionDAG::AssignTopologicalOrder() {
4607
4608  unsigned DAGSize = 0;
4609
4610  // SortedPos tracks the progress of the algorithm. Nodes before it are
4611  // sorted, nodes after it are unsorted. When the algorithm completes
4612  // it is at the end of the list.
4613  allnodes_iterator SortedPos = allnodes_begin();
4614
4615  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4616  // array immediately. Annotate nodes that do have operands with their
4617  // operand count. Before we do this, the Node Id fields of the nodes
4618  // may contain arbitrary values. After, the Node Id fields for nodes
4619  // before SortedPos will contain the topological sort index, and the
4620  // Node Id fields for nodes At SortedPos and after will contain the
4621  // count of outstanding operands.
4622  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4623    SDNode *N = I++;
4624    unsigned Degree = N->getNumOperands();
4625    if (Degree == 0) {
4626      // A node with no uses, add it to the result array immediately.
4627      N->setNodeId(DAGSize++);
4628      allnodes_iterator Q = N;
4629      if (Q != SortedPos)
4630        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4631      ++SortedPos;
4632    } else {
4633      // Temporarily use the Node Id as scratch space for the degree count.
4634      N->setNodeId(Degree);
4635    }
4636  }
4637
4638  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4639  // such that by the time the end is reached all nodes will be sorted.
4640  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4641    SDNode *N = I;
4642    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4643         UI != UE; ++UI) {
4644      SDNode *P = *UI;
4645      unsigned Degree = P->getNodeId();
4646      --Degree;
4647      if (Degree == 0) {
4648        // All of P's operands are sorted, so P may sorted now.
4649        P->setNodeId(DAGSize++);
4650        if (P != SortedPos)
4651          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4652        ++SortedPos;
4653      } else {
4654        // Update P's outstanding operand count.
4655        P->setNodeId(Degree);
4656      }
4657    }
4658  }
4659
4660  assert(SortedPos == AllNodes.end() &&
4661         "Topological sort incomplete!");
4662  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4663         "First node in topological sort is not the entry token!");
4664  assert(AllNodes.front().getNodeId() == 0 &&
4665         "First node in topological sort has non-zero id!");
4666  assert(AllNodes.front().getNumOperands() == 0 &&
4667         "First node in topological sort has operands!");
4668  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4669         "Last node in topologic sort has unexpected id!");
4670  assert(AllNodes.back().use_empty() &&
4671         "Last node in topologic sort has users!");
4672  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4673  return DAGSize;
4674}
4675
4676
4677
4678//===----------------------------------------------------------------------===//
4679//                              SDNode Class
4680//===----------------------------------------------------------------------===//
4681
4682// Out-of-line virtual method to give class a home.
4683void SDNode::ANCHOR() {}
4684void UnarySDNode::ANCHOR() {}
4685void BinarySDNode::ANCHOR() {}
4686void TernarySDNode::ANCHOR() {}
4687void HandleSDNode::ANCHOR() {}
4688void ConstantSDNode::ANCHOR() {}
4689void ConstantFPSDNode::ANCHOR() {}
4690void GlobalAddressSDNode::ANCHOR() {}
4691void FrameIndexSDNode::ANCHOR() {}
4692void JumpTableSDNode::ANCHOR() {}
4693void ConstantPoolSDNode::ANCHOR() {}
4694void BasicBlockSDNode::ANCHOR() {}
4695void SrcValueSDNode::ANCHOR() {}
4696void MemOperandSDNode::ANCHOR() {}
4697void RegisterSDNode::ANCHOR() {}
4698void DbgStopPointSDNode::ANCHOR() {}
4699void LabelSDNode::ANCHOR() {}
4700void ExternalSymbolSDNode::ANCHOR() {}
4701void CondCodeSDNode::ANCHOR() {}
4702void ARG_FLAGSSDNode::ANCHOR() {}
4703void VTSDNode::ANCHOR() {}
4704void MemSDNode::ANCHOR() {}
4705void LoadSDNode::ANCHOR() {}
4706void StoreSDNode::ANCHOR() {}
4707void AtomicSDNode::ANCHOR() {}
4708void MemIntrinsicSDNode::ANCHOR() {}
4709void CallSDNode::ANCHOR() {}
4710
4711HandleSDNode::~HandleSDNode() {
4712  DropOperands();
4713}
4714
4715GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4716                                         MVT VT, int64_t o)
4717  : SDNode(isa<GlobalVariable>(GA) &&
4718           cast<GlobalVariable>(GA)->isThreadLocal() ?
4719           // Thread Local
4720           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4721           // Non Thread Local
4722           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4723           getSDVTList(VT)), Offset(o) {
4724  TheGlobal = const_cast<GlobalValue*>(GA);
4725}
4726
4727MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4728                     const Value *srcValue, int SVO,
4729                     unsigned alignment, bool vol)
4730 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4731   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4732
4733  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4734  assert(getAlignment() == alignment && "Alignment representation error!");
4735  assert(isVolatile() == vol && "Volatile representation error!");
4736}
4737
4738MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4739                     unsigned NumOps, MVT memvt, const Value *srcValue,
4740                     int SVO, unsigned alignment, bool vol)
4741   : SDNode(Opc, VTs, Ops, NumOps),
4742     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4743     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4744  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4745  assert(getAlignment() == alignment && "Alignment representation error!");
4746  assert(isVolatile() == vol && "Volatile representation error!");
4747}
4748
4749/// getMemOperand - Return a MachineMemOperand object describing the memory
4750/// reference performed by this memory reference.
4751MachineMemOperand MemSDNode::getMemOperand() const {
4752  int Flags = 0;
4753  if (isa<LoadSDNode>(this))
4754    Flags = MachineMemOperand::MOLoad;
4755  else if (isa<StoreSDNode>(this))
4756    Flags = MachineMemOperand::MOStore;
4757  else if (isa<AtomicSDNode>(this)) {
4758    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4759  }
4760  else {
4761    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4762    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4763    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4764    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4765  }
4766
4767  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4768  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4769
4770  // Check if the memory reference references a frame index
4771  const FrameIndexSDNode *FI =
4772  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4773  if (!getSrcValue() && FI)
4774    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4775                             Flags, 0, Size, getAlignment());
4776  else
4777    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4778                             Size, getAlignment());
4779}
4780
4781/// Profile - Gather unique data for the node.
4782///
4783void SDNode::Profile(FoldingSetNodeID &ID) const {
4784  AddNodeIDNode(ID, this);
4785}
4786
4787/// getValueTypeList - Return a pointer to the specified value type.
4788///
4789const MVT *SDNode::getValueTypeList(MVT VT) {
4790  if (VT.isExtended()) {
4791    static std::set<MVT, MVT::compareRawBits> EVTs;
4792    return &(*EVTs.insert(VT).first);
4793  } else {
4794    static MVT VTs[MVT::LAST_VALUETYPE];
4795    VTs[VT.getSimpleVT()] = VT;
4796    return &VTs[VT.getSimpleVT()];
4797  }
4798}
4799
4800/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4801/// indicated value.  This method ignores uses of other values defined by this
4802/// operation.
4803bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4804  assert(Value < getNumValues() && "Bad value!");
4805
4806  // TODO: Only iterate over uses of a given value of the node
4807  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4808    if (UI.getUse().getSDValue().getResNo() == Value) {
4809      if (NUses == 0)
4810        return false;
4811      --NUses;
4812    }
4813  }
4814
4815  // Found exactly the right number of uses?
4816  return NUses == 0;
4817}
4818
4819
4820/// hasAnyUseOfValue - Return true if there are any use of the indicated
4821/// value. This method ignores uses of other values defined by this operation.
4822bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4823  assert(Value < getNumValues() && "Bad value!");
4824
4825  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4826    if (UI.getUse().getSDValue().getResNo() == Value)
4827      return true;
4828
4829  return false;
4830}
4831
4832
4833/// isOnlyUserOf - Return true if this node is the only use of N.
4834///
4835bool SDNode::isOnlyUserOf(SDNode *N) const {
4836  bool Seen = false;
4837  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4838    SDNode *User = *I;
4839    if (User == this)
4840      Seen = true;
4841    else
4842      return false;
4843  }
4844
4845  return Seen;
4846}
4847
4848/// isOperand - Return true if this node is an operand of N.
4849///
4850bool SDValue::isOperandOf(SDNode *N) const {
4851  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4852    if (*this == N->getOperand(i))
4853      return true;
4854  return false;
4855}
4856
4857bool SDNode::isOperandOf(SDNode *N) const {
4858  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4859    if (this == N->OperandList[i].getVal())
4860      return true;
4861  return false;
4862}
4863
4864/// reachesChainWithoutSideEffects - Return true if this operand (which must
4865/// be a chain) reaches the specified operand without crossing any
4866/// side-effecting instructions.  In practice, this looks through token
4867/// factors and non-volatile loads.  In order to remain efficient, this only
4868/// looks a couple of nodes in, it does not do an exhaustive search.
4869bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4870                                               unsigned Depth) const {
4871  if (*this == Dest) return true;
4872
4873  // Don't search too deeply, we just want to be able to see through
4874  // TokenFactor's etc.
4875  if (Depth == 0) return false;
4876
4877  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4878  // of the operands of the TF reach dest, then we can do the xform.
4879  if (getOpcode() == ISD::TokenFactor) {
4880    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4881      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4882        return true;
4883    return false;
4884  }
4885
4886  // Loads don't have side effects, look through them.
4887  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4888    if (!Ld->isVolatile())
4889      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4890  }
4891  return false;
4892}
4893
4894
4895static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4896                            SmallPtrSet<SDNode *, 32> &Visited) {
4897  if (found || !Visited.insert(N))
4898    return;
4899
4900  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4901    SDNode *Op = N->getOperand(i).getNode();
4902    if (Op == P) {
4903      found = true;
4904      return;
4905    }
4906    findPredecessor(Op, P, found, Visited);
4907  }
4908}
4909
4910/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4911/// is either an operand of N or it can be reached by recursively traversing
4912/// up the operands.
4913/// NOTE: this is an expensive method. Use it carefully.
4914bool SDNode::isPredecessorOf(SDNode *N) const {
4915  SmallPtrSet<SDNode *, 32> Visited;
4916  bool found = false;
4917  findPredecessor(N, this, found, Visited);
4918  return found;
4919}
4920
4921uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4922  assert(Num < NumOperands && "Invalid child # of SDNode!");
4923  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4924}
4925
4926std::string SDNode::getOperationName(const SelectionDAG *G) const {
4927  switch (getOpcode()) {
4928  default:
4929    if (getOpcode() < ISD::BUILTIN_OP_END)
4930      return "<<Unknown DAG Node>>";
4931    if (isMachineOpcode()) {
4932      if (G)
4933        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4934          if (getMachineOpcode() < TII->getNumOpcodes())
4935            return TII->get(getMachineOpcode()).getName();
4936      return "<<Unknown Machine Node>>";
4937    }
4938    if (G) {
4939      TargetLowering &TLI = G->getTargetLoweringInfo();
4940      const char *Name = TLI.getTargetNodeName(getOpcode());
4941      if (Name) return Name;
4942      return "<<Unknown Target Node>>";
4943    }
4944    return "<<Unknown Node>>";
4945
4946#ifndef NDEBUG
4947  case ISD::DELETED_NODE:
4948    return "<<Deleted Node!>>";
4949#endif
4950  case ISD::PREFETCH:      return "Prefetch";
4951  case ISD::MEMBARRIER:    return "MemBarrier";
4952  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4953  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4954  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4955  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4956  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4957  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4958  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4959  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4960  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4961  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4962  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4963  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4964  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4965  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4966  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4967  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4968  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4969  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4970  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4971  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4972  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4973  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4974  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4975  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4976  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4977  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4978  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4979  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4980  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4981  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4982  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4983  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4984  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4985  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4986  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4987  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4988  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4989  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4990  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4991  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4992  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4993  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4994  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4995  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4996  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4997  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4998  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4999  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5000  case ISD::PCMARKER:      return "PCMarker";
5001  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5002  case ISD::SRCVALUE:      return "SrcValue";
5003  case ISD::MEMOPERAND:    return "MemOperand";
5004  case ISD::EntryToken:    return "EntryToken";
5005  case ISD::TokenFactor:   return "TokenFactor";
5006  case ISD::AssertSext:    return "AssertSext";
5007  case ISD::AssertZext:    return "AssertZext";
5008
5009  case ISD::BasicBlock:    return "BasicBlock";
5010  case ISD::ARG_FLAGS:     return "ArgFlags";
5011  case ISD::VALUETYPE:     return "ValueType";
5012  case ISD::Register:      return "Register";
5013
5014  case ISD::Constant:      return "Constant";
5015  case ISD::ConstantFP:    return "ConstantFP";
5016  case ISD::GlobalAddress: return "GlobalAddress";
5017  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5018  case ISD::FrameIndex:    return "FrameIndex";
5019  case ISD::JumpTable:     return "JumpTable";
5020  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5021  case ISD::RETURNADDR: return "RETURNADDR";
5022  case ISD::FRAMEADDR: return "FRAMEADDR";
5023  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5024  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5025  case ISD::EHSELECTION: return "EHSELECTION";
5026  case ISD::EH_RETURN: return "EH_RETURN";
5027  case ISD::ConstantPool:  return "ConstantPool";
5028  case ISD::ExternalSymbol: return "ExternalSymbol";
5029  case ISD::INTRINSIC_WO_CHAIN: {
5030    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5031    return Intrinsic::getName((Intrinsic::ID)IID);
5032  }
5033  case ISD::INTRINSIC_VOID:
5034  case ISD::INTRINSIC_W_CHAIN: {
5035    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5036    return Intrinsic::getName((Intrinsic::ID)IID);
5037  }
5038
5039  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5040  case ISD::TargetConstant: return "TargetConstant";
5041  case ISD::TargetConstantFP:return "TargetConstantFP";
5042  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5043  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5044  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5045  case ISD::TargetJumpTable:  return "TargetJumpTable";
5046  case ISD::TargetConstantPool:  return "TargetConstantPool";
5047  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5048
5049  case ISD::CopyToReg:     return "CopyToReg";
5050  case ISD::CopyFromReg:   return "CopyFromReg";
5051  case ISD::UNDEF:         return "undef";
5052  case ISD::MERGE_VALUES:  return "merge_values";
5053  case ISD::INLINEASM:     return "inlineasm";
5054  case ISD::DBG_LABEL:     return "dbg_label";
5055  case ISD::EH_LABEL:      return "eh_label";
5056  case ISD::DECLARE:       return "declare";
5057  case ISD::HANDLENODE:    return "handlenode";
5058  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5059  case ISD::CALL:          return "call";
5060
5061  // Unary operators
5062  case ISD::FABS:   return "fabs";
5063  case ISD::FNEG:   return "fneg";
5064  case ISD::FSQRT:  return "fsqrt";
5065  case ISD::FSIN:   return "fsin";
5066  case ISD::FCOS:   return "fcos";
5067  case ISD::FPOWI:  return "fpowi";
5068  case ISD::FPOW:   return "fpow";
5069  case ISD::FTRUNC: return "ftrunc";
5070  case ISD::FFLOOR: return "ffloor";
5071  case ISD::FCEIL:  return "fceil";
5072  case ISD::FRINT:  return "frint";
5073  case ISD::FNEARBYINT: return "fnearbyint";
5074
5075  // Binary operators
5076  case ISD::ADD:    return "add";
5077  case ISD::SUB:    return "sub";
5078  case ISD::MUL:    return "mul";
5079  case ISD::MULHU:  return "mulhu";
5080  case ISD::MULHS:  return "mulhs";
5081  case ISD::SDIV:   return "sdiv";
5082  case ISD::UDIV:   return "udiv";
5083  case ISD::SREM:   return "srem";
5084  case ISD::UREM:   return "urem";
5085  case ISD::SMUL_LOHI:  return "smul_lohi";
5086  case ISD::UMUL_LOHI:  return "umul_lohi";
5087  case ISD::SDIVREM:    return "sdivrem";
5088  case ISD::UDIVREM:    return "udivrem";
5089  case ISD::AND:    return "and";
5090  case ISD::OR:     return "or";
5091  case ISD::XOR:    return "xor";
5092  case ISD::SHL:    return "shl";
5093  case ISD::SRA:    return "sra";
5094  case ISD::SRL:    return "srl";
5095  case ISD::ROTL:   return "rotl";
5096  case ISD::ROTR:   return "rotr";
5097  case ISD::FADD:   return "fadd";
5098  case ISD::FSUB:   return "fsub";
5099  case ISD::FMUL:   return "fmul";
5100  case ISD::FDIV:   return "fdiv";
5101  case ISD::FREM:   return "frem";
5102  case ISD::FCOPYSIGN: return "fcopysign";
5103  case ISD::FGETSIGN:  return "fgetsign";
5104
5105  case ISD::SETCC:       return "setcc";
5106  case ISD::VSETCC:      return "vsetcc";
5107  case ISD::SELECT:      return "select";
5108  case ISD::SELECT_CC:   return "select_cc";
5109  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5110  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5111  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5112  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5113  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5114  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5115  case ISD::CARRY_FALSE:         return "carry_false";
5116  case ISD::ADDC:        return "addc";
5117  case ISD::ADDE:        return "adde";
5118  case ISD::SUBC:        return "subc";
5119  case ISD::SUBE:        return "sube";
5120  case ISD::SHL_PARTS:   return "shl_parts";
5121  case ISD::SRA_PARTS:   return "sra_parts";
5122  case ISD::SRL_PARTS:   return "srl_parts";
5123
5124  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5125  case ISD::INSERT_SUBREG:      return "insert_subreg";
5126
5127  // Conversion operators.
5128  case ISD::SIGN_EXTEND: return "sign_extend";
5129  case ISD::ZERO_EXTEND: return "zero_extend";
5130  case ISD::ANY_EXTEND:  return "any_extend";
5131  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5132  case ISD::TRUNCATE:    return "truncate";
5133  case ISD::FP_ROUND:    return "fp_round";
5134  case ISD::FLT_ROUNDS_: return "flt_rounds";
5135  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5136  case ISD::FP_EXTEND:   return "fp_extend";
5137
5138  case ISD::SINT_TO_FP:  return "sint_to_fp";
5139  case ISD::UINT_TO_FP:  return "uint_to_fp";
5140  case ISD::FP_TO_SINT:  return "fp_to_sint";
5141  case ISD::FP_TO_UINT:  return "fp_to_uint";
5142  case ISD::BIT_CONVERT: return "bit_convert";
5143
5144    // Control flow instructions
5145  case ISD::BR:      return "br";
5146  case ISD::BRIND:   return "brind";
5147  case ISD::BR_JT:   return "br_jt";
5148  case ISD::BRCOND:  return "brcond";
5149  case ISD::BR_CC:   return "br_cc";
5150  case ISD::RET:     return "ret";
5151  case ISD::CALLSEQ_START:  return "callseq_start";
5152  case ISD::CALLSEQ_END:    return "callseq_end";
5153
5154    // Other operators
5155  case ISD::LOAD:               return "load";
5156  case ISD::STORE:              return "store";
5157  case ISD::VAARG:              return "vaarg";
5158  case ISD::VACOPY:             return "vacopy";
5159  case ISD::VAEND:              return "vaend";
5160  case ISD::VASTART:            return "vastart";
5161  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5162  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5163  case ISD::BUILD_PAIR:         return "build_pair";
5164  case ISD::STACKSAVE:          return "stacksave";
5165  case ISD::STACKRESTORE:       return "stackrestore";
5166  case ISD::TRAP:               return "trap";
5167
5168  // Bit manipulation
5169  case ISD::BSWAP:   return "bswap";
5170  case ISD::CTPOP:   return "ctpop";
5171  case ISD::CTTZ:    return "cttz";
5172  case ISD::CTLZ:    return "ctlz";
5173
5174  // Debug info
5175  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5176  case ISD::DEBUG_LOC: return "debug_loc";
5177
5178  // Trampolines
5179  case ISD::TRAMPOLINE: return "trampoline";
5180
5181  case ISD::CONDCODE:
5182    switch (cast<CondCodeSDNode>(this)->get()) {
5183    default: assert(0 && "Unknown setcc condition!");
5184    case ISD::SETOEQ:  return "setoeq";
5185    case ISD::SETOGT:  return "setogt";
5186    case ISD::SETOGE:  return "setoge";
5187    case ISD::SETOLT:  return "setolt";
5188    case ISD::SETOLE:  return "setole";
5189    case ISD::SETONE:  return "setone";
5190
5191    case ISD::SETO:    return "seto";
5192    case ISD::SETUO:   return "setuo";
5193    case ISD::SETUEQ:  return "setue";
5194    case ISD::SETUGT:  return "setugt";
5195    case ISD::SETUGE:  return "setuge";
5196    case ISD::SETULT:  return "setult";
5197    case ISD::SETULE:  return "setule";
5198    case ISD::SETUNE:  return "setune";
5199
5200    case ISD::SETEQ:   return "seteq";
5201    case ISD::SETGT:   return "setgt";
5202    case ISD::SETGE:   return "setge";
5203    case ISD::SETLT:   return "setlt";
5204    case ISD::SETLE:   return "setle";
5205    case ISD::SETNE:   return "setne";
5206    }
5207  }
5208}
5209
5210const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5211  switch (AM) {
5212  default:
5213    return "";
5214  case ISD::PRE_INC:
5215    return "<pre-inc>";
5216  case ISD::PRE_DEC:
5217    return "<pre-dec>";
5218  case ISD::POST_INC:
5219    return "<post-inc>";
5220  case ISD::POST_DEC:
5221    return "<post-dec>";
5222  }
5223}
5224
5225std::string ISD::ArgFlagsTy::getArgFlagsString() {
5226  std::string S = "< ";
5227
5228  if (isZExt())
5229    S += "zext ";
5230  if (isSExt())
5231    S += "sext ";
5232  if (isInReg())
5233    S += "inreg ";
5234  if (isSRet())
5235    S += "sret ";
5236  if (isByVal())
5237    S += "byval ";
5238  if (isNest())
5239    S += "nest ";
5240  if (getByValAlign())
5241    S += "byval-align:" + utostr(getByValAlign()) + " ";
5242  if (getOrigAlign())
5243    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5244  if (getByValSize())
5245    S += "byval-size:" + utostr(getByValSize()) + " ";
5246  return S + ">";
5247}
5248
5249void SDNode::dump() const { dump(0); }
5250void SDNode::dump(const SelectionDAG *G) const {
5251  print(errs(), G);
5252  errs().flush();
5253}
5254
5255void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5256  OS << (void*)this << ": ";
5257
5258  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5259    if (i) OS << ",";
5260    if (getValueType(i) == MVT::Other)
5261      OS << "ch";
5262    else
5263      OS << getValueType(i).getMVTString();
5264  }
5265  OS << " = " << getOperationName(G);
5266
5267  OS << " ";
5268  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5269    if (i) OS << ", ";
5270    OS << (void*)getOperand(i).getNode();
5271    if (unsigned RN = getOperand(i).getResNo())
5272      OS << ":" << RN;
5273  }
5274
5275  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5276    SDNode *Mask = getOperand(2).getNode();
5277    OS << "<";
5278    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5279      if (i) OS << ",";
5280      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5281        OS << "u";
5282      else
5283        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5284    }
5285    OS << ">";
5286  }
5287
5288  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5289    OS << '<' << CSDN->getAPIntValue() << '>';
5290  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5291    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5292      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5293    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5294      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5295    else {
5296      OS << "<APFloat(";
5297      CSDN->getValueAPF().bitcastToAPInt().dump();
5298      OS << ")>";
5299    }
5300  } else if (const GlobalAddressSDNode *GADN =
5301             dyn_cast<GlobalAddressSDNode>(this)) {
5302    int64_t offset = GADN->getOffset();
5303    OS << '<';
5304    WriteAsOperand(OS, GADN->getGlobal());
5305    OS << '>';
5306    if (offset > 0)
5307      OS << " + " << offset;
5308    else
5309      OS << " " << offset;
5310  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5311    OS << "<" << FIDN->getIndex() << ">";
5312  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5313    OS << "<" << JTDN->getIndex() << ">";
5314  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5315    int offset = CP->getOffset();
5316    if (CP->isMachineConstantPoolEntry())
5317      OS << "<" << *CP->getMachineCPVal() << ">";
5318    else
5319      OS << "<" << *CP->getConstVal() << ">";
5320    if (offset > 0)
5321      OS << " + " << offset;
5322    else
5323      OS << " " << offset;
5324  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5325    OS << "<";
5326    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5327    if (LBB)
5328      OS << LBB->getName() << " ";
5329    OS << (const void*)BBDN->getBasicBlock() << ">";
5330  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5331    if (G && R->getReg() &&
5332        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5333      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5334    } else {
5335      OS << " #" << R->getReg();
5336    }
5337  } else if (const ExternalSymbolSDNode *ES =
5338             dyn_cast<ExternalSymbolSDNode>(this)) {
5339    OS << "'" << ES->getSymbol() << "'";
5340  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5341    if (M->getValue())
5342      OS << "<" << M->getValue() << ">";
5343    else
5344      OS << "<null>";
5345  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5346    if (M->MO.getValue())
5347      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5348    else
5349      OS << "<null:" << M->MO.getOffset() << ">";
5350  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5351    OS << N->getArgFlags().getArgFlagsString();
5352  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5353    OS << ":" << N->getVT().getMVTString();
5354  }
5355  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5356    const Value *SrcValue = LD->getSrcValue();
5357    int SrcOffset = LD->getSrcValueOffset();
5358    OS << " <";
5359    if (SrcValue)
5360      OS << SrcValue;
5361    else
5362      OS << "null";
5363    OS << ":" << SrcOffset << ">";
5364
5365    bool doExt = true;
5366    switch (LD->getExtensionType()) {
5367    default: doExt = false; break;
5368    case ISD::EXTLOAD: OS << " <anyext "; break;
5369    case ISD::SEXTLOAD: OS << " <sext "; break;
5370    case ISD::ZEXTLOAD: OS << " <zext "; break;
5371    }
5372    if (doExt)
5373      OS << LD->getMemoryVT().getMVTString() << ">";
5374
5375    const char *AM = getIndexedModeName(LD->getAddressingMode());
5376    if (*AM)
5377      OS << " " << AM;
5378    if (LD->isVolatile())
5379      OS << " <volatile>";
5380    OS << " alignment=" << LD->getAlignment();
5381  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5382    const Value *SrcValue = ST->getSrcValue();
5383    int SrcOffset = ST->getSrcValueOffset();
5384    OS << " <";
5385    if (SrcValue)
5386      OS << SrcValue;
5387    else
5388      OS << "null";
5389    OS << ":" << SrcOffset << ">";
5390
5391    if (ST->isTruncatingStore())
5392      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5393
5394    const char *AM = getIndexedModeName(ST->getAddressingMode());
5395    if (*AM)
5396      OS << " " << AM;
5397    if (ST->isVolatile())
5398      OS << " <volatile>";
5399    OS << " alignment=" << ST->getAlignment();
5400  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5401    const Value *SrcValue = AT->getSrcValue();
5402    int SrcOffset = AT->getSrcValueOffset();
5403    OS << " <";
5404    if (SrcValue)
5405      OS << SrcValue;
5406    else
5407      OS << "null";
5408    OS << ":" << SrcOffset << ">";
5409    if (AT->isVolatile())
5410      OS << " <volatile>";
5411    OS << " alignment=" << AT->getAlignment();
5412  }
5413}
5414
5415static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5416  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5417    if (N->getOperand(i).getNode()->hasOneUse())
5418      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5419    else
5420      cerr << "\n" << std::string(indent+2, ' ')
5421           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5422
5423
5424  cerr << "\n" << std::string(indent, ' ');
5425  N->dump(G);
5426}
5427
5428void SelectionDAG::dump() const {
5429  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5430
5431  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5432       I != E; ++I) {
5433    const SDNode *N = I;
5434    if (!N->hasOneUse() && N != getRoot().getNode())
5435      DumpNodes(N, 2, this);
5436  }
5437
5438  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5439
5440  cerr << "\n\n";
5441}
5442
5443const Type *ConstantPoolSDNode::getType() const {
5444  if (isMachineConstantPoolEntry())
5445    return Val.MachineCPVal->getType();
5446  return Val.ConstVal->getType();
5447}
5448