SelectionDAG.cpp revision 1e559443a17d1b335f697551c6263ba60d5dd827
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57  SDVTList Res = {VTs, NumVTs};
58  return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  default: llvm_unreachable("Unknown FP format");
64  case MVT::f32:     return &APFloat::IEEEsingle;
65  case MVT::f64:     return &APFloat::IEEEdouble;
66  case MVT::f80:     return &APFloat::x87DoubleExtended;
67  case MVT::f128:    return &APFloat::IEEEquad;
68  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69  }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75//                              ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83  return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87                                           const APFloat& Val) {
88  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90  // PPC long double cannot be converted to any other type.
91  if (VT == MVT::ppcf128 ||
92      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93    return false;
94
95  // convert modifies in place, so make a copy.
96  APFloat Val2 = APFloat(Val);
97  bool losesInfo;
98  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99                      &losesInfo);
100  return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104//                              ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).getNode();
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDValue NotZero = N->getOperand(i);
128  if (isa<ConstantSDNode>(NotZero)) {
129    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(NotZero)) {
132    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133                bitcastToAPInt().isAllOnesValue())
134      return false;
135  } else
136    return false;
137
138  // Okay, we have at least one ~0 value, check to see if the rest match or are
139  // undefs.
140  for (++i; i != e; ++i)
141    if (N->getOperand(i) != NotZero &&
142        N->getOperand(i).getOpcode() != ISD::UNDEF)
143      return false;
144  return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151  // Look through a bit convert.
152  if (N->getOpcode() == ISD::BIT_CONVERT)
153    N = N->getOperand(0).getNode();
154
155  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157  unsigned i = 0, e = N->getNumOperands();
158
159  // Skip over all of the undef values.
160  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161    ++i;
162
163  // Do not accept an all-undef vector.
164  if (i == e) return false;
165
166  // Do not accept build_vectors that aren't all constants or which have non-0
167  // elements.
168  SDValue Zero = N->getOperand(i);
169  if (isa<ConstantSDNode>(Zero)) {
170    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171      return false;
172  } else if (isa<ConstantFPSDNode>(Zero)) {
173    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174      return false;
175  } else
176    return false;
177
178  // Okay, we have at least one 0 value, check to see if the rest match or are
179  // undefs.
180  for (++i; i != e; ++i)
181    if (N->getOperand(i) != Zero &&
182        N->getOperand(i).getOpcode() != ISD::UNDEF)
183      return false;
184  return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192    return true;
193
194  if (N->getOpcode() != ISD::BUILD_VECTOR)
195    return false;
196  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197    return false;
198  unsigned NumElems = N->getNumOperands();
199  for (unsigned i = 1; i < NumElems; ++i) {
200    SDValue V = N->getOperand(i);
201    if (V.getOpcode() != ISD::UNDEF)
202      return false;
203  }
204  return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));       // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;  // Don't let N and U bits get set.
230
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: llvm_unreachable("Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::EH_LABEL:
498    return true;   // Never CSE these nodes.
499  }
500
501  // Check that remaining values produced are not flags.
502  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503    if (N->getValueType(i) == MVT::Flag)
504      return true; // Never CSE anything that produces a flag.
505
506  return false;
507}
508
509/// RemoveDeadNodes - This method deletes all unreachable nodes in the
510/// SelectionDAG.
511void SelectionDAG::RemoveDeadNodes() {
512  // Create a dummy node (which is not added to allnodes), that adds a reference
513  // to the root node, preventing it from being deleted.
514  HandleSDNode Dummy(getRoot());
515
516  SmallVector<SDNode*, 128> DeadNodes;
517
518  // Add all obviously-dead nodes to the DeadNodes worklist.
519  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520    if (I->use_empty())
521      DeadNodes.push_back(I);
522
523  RemoveDeadNodes(DeadNodes);
524
525  // If the root changed (e.g. it was a dead load, update the root).
526  setRoot(Dummy.getValue());
527}
528
529/// RemoveDeadNodes - This method deletes the unreachable nodes in the
530/// given list, and any nodes that become unreachable as a result.
531void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532                                   DAGUpdateListener *UpdateListener) {
533
534  // Process the worklist, deleting the nodes and adding their uses to the
535  // worklist.
536  while (!DeadNodes.empty()) {
537    SDNode *N = DeadNodes.pop_back_val();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548      SDUse &Use = *I++;
549      SDNode *Operand = Use.getNode();
550      Use.set(SDValue());
551
552      // Now that we removed this operand, see if there are no uses of it left.
553      if (Operand->use_empty())
554        DeadNodes.push_back(Operand);
555    }
556
557    DeallocateNode(N);
558  }
559}
560
561void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562  SmallVector<SDNode*, 16> DeadNodes(1, N);
563  RemoveDeadNodes(DeadNodes, UpdateListener);
564}
565
566void SelectionDAG::DeleteNode(SDNode *N) {
567  // First take this out of the appropriate CSE map.
568  RemoveNodeFromCSEMaps(N);
569
570  // Finally, remove uses due to operands of this node, remove from the
571  // AllNodes list, and delete the node.
572  DeleteNodeNotInCSEMaps(N);
573}
574
575void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // Drop all of the operands and decrement used node's use counts.
580  N->DropOperands();
581
582  DeallocateNode(N);
583}
584
585void SelectionDAG::DeallocateNode(SDNode *N) {
586  if (N->OperandsNeedDelete)
587    delete[] N->OperandList;
588
589  // Set the opcode to DELETED_NODE to help catch bugs when node
590  // memory is reallocated.
591  N->NodeType = ISD::DELETED_NODE;
592
593  NodeAllocator.Deallocate(AllNodes.remove(N));
594
595  // Remove the ordering of this node.
596  Ordering->remove(N);
597}
598
599/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
600/// correspond to it.  This is useful when we're about to delete or repurpose
601/// the node.  We don't want future request for structurally identical nodes
602/// to return N anymore.
603bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
604  bool Erased = false;
605  switch (N->getOpcode()) {
606  case ISD::EntryToken:
607    llvm_unreachable("EntryToken should not be in CSEMaps!");
608    return false;
609  case ISD::HANDLENODE: return false;  // noop.
610  case ISD::CONDCODE:
611    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
612           "Cond code doesn't exist!");
613    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
614    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
615    break;
616  case ISD::ExternalSymbol:
617    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
618    break;
619  case ISD::TargetExternalSymbol: {
620    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
621    Erased = TargetExternalSymbols.erase(
622               std::pair<std::string,unsigned char>(ESN->getSymbol(),
623                                                    ESN->getTargetFlags()));
624    break;
625  }
626  case ISD::VALUETYPE: {
627    EVT VT = cast<VTSDNode>(N)->getVT();
628    if (VT.isExtended()) {
629      Erased = ExtendedValueTypeNodes.erase(VT);
630    } else {
631      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
632      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
633    }
634    break;
635  }
636  default:
637    // Remove it from the CSE Map.
638    Erased = CSEMap.RemoveNode(N);
639    break;
640  }
641#ifndef NDEBUG
642  // Verify that the node was actually in one of the CSE maps, unless it has a
643  // flag result (which cannot be CSE'd) or is one of the special cases that are
644  // not subject to CSE.
645  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646      !N->isMachineOpcode() && !doNotCSE(N)) {
647    N->dump(this);
648    dbgs() << "\n";
649    llvm_unreachable("Node is not in map!");
650  }
651#endif
652  return Erased;
653}
654
655/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
656/// maps and modified in place. Add it back to the CSE maps, unless an identical
657/// node already exists, in which case transfer all its users to the existing
658/// node. This transfer can potentially trigger recursive merging.
659///
660void
661SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
662                                       DAGUpdateListener *UpdateListener) {
663  // For node types that aren't CSE'd, just act as if no identical node
664  // already exists.
665  if (!doNotCSE(N)) {
666    SDNode *Existing = CSEMap.GetOrInsertNode(N);
667    if (Existing != N) {
668      // If there was already an existing matching node, use ReplaceAllUsesWith
669      // to replace the dead one with the existing one.  This can cause
670      // recursive merging of other unrelated nodes down the line.
671      ReplaceAllUsesWith(N, Existing, UpdateListener);
672
673      // N is now dead.  Inform the listener if it exists and delete it.
674      if (UpdateListener)
675        UpdateListener->NodeDeleted(N, Existing);
676      DeleteNodeNotInCSEMaps(N);
677      return;
678    }
679  }
680
681  // If the node doesn't already exist, we updated it.  Inform a listener if
682  // it exists.
683  if (UpdateListener)
684    UpdateListener->NodeUpdated(N);
685}
686
687/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688/// were replaced with those specified.  If this node is never memoized,
689/// return null, otherwise return a pointer to the slot it would take.  If a
690/// node already exists with these operands, the slot will be non-null.
691SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
699  AddNodeIDCustom(ID, N);
700  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701  return Node;
702}
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           SDValue Op1, SDValue Op2,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  SDValue Ops[] = { Op1, Op2 };
715  FoldingSetNodeID ID;
716  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
717  AddNodeIDCustom(ID, N);
718  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719  return Node;
720}
721
722
723/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724/// were replaced with those specified.  If this node is never memoized,
725/// return null, otherwise return a pointer to the slot it would take.  If a
726/// node already exists with these operands, the slot will be non-null.
727SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728                                           const SDValue *Ops,unsigned NumOps,
729                                           void *&InsertPos) {
730  if (doNotCSE(N))
731    return 0;
732
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
735  AddNodeIDCustom(ID, N);
736  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737  return Node;
738}
739
740/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
741void SelectionDAG::VerifyNode(SDNode *N) {
742  switch (N->getOpcode()) {
743  default:
744    break;
745  case ISD::BUILD_PAIR: {
746    EVT VT = N->getValueType(0);
747    assert(N->getNumValues() == 1 && "Too many results!");
748    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
749           "Wrong return type!");
750    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
751    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
752           "Mismatched operand types!");
753    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
754           "Wrong operand type!");
755    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
756           "Wrong return type size");
757    break;
758  }
759  case ISD::BUILD_VECTOR: {
760    assert(N->getNumValues() == 1 && "Too many results!");
761    assert(N->getValueType(0).isVector() && "Wrong return type!");
762    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
763           "Wrong number of operands!");
764    EVT EltVT = N->getValueType(0).getVectorElementType();
765    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
766      assert((I->getValueType() == EltVT ||
767             (EltVT.isInteger() && I->getValueType().isInteger() &&
768              EltVT.bitsLE(I->getValueType()))) &&
769            "Wrong operand type!");
770    break;
771  }
772  }
773}
774
775/// getEVTAlignment - Compute the default alignment value for the
776/// given type.
777///
778unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
779  const Type *Ty = VT == MVT::iPTR ?
780                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
781                   VT.getTypeForEVT(*getContext());
782
783  return TLI.getTargetData()->getABITypeAlignment(Ty);
784}
785
786// EntryNode could meaningfully have debug info if we can find it...
787SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
788  : TLI(tli), FLI(fli), DW(0),
789    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
790              getVTList(MVT::Other)),
791    Root(getEntryNode()), Ordering(0) {
792  AllNodes.push_back(&EntryNode);
793  Ordering = new SDNodeOrdering();
794}
795
796void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
797                        DwarfWriter *dw) {
798  MF = &mf;
799  MMI = mmi;
800  DW = dw;
801  Context = &mf.getFunction()->getContext();
802}
803
804SelectionDAG::~SelectionDAG() {
805  allnodes_clear();
806  delete Ordering;
807}
808
809void SelectionDAG::allnodes_clear() {
810  assert(&*AllNodes.begin() == &EntryNode);
811  AllNodes.remove(AllNodes.begin());
812  while (!AllNodes.empty())
813    DeallocateNode(AllNodes.begin());
814}
815
816void SelectionDAG::clear() {
817  allnodes_clear();
818  OperandAllocator.Reset();
819  CSEMap.clear();
820
821  ExtendedValueTypeNodes.clear();
822  ExternalSymbols.clear();
823  TargetExternalSymbols.clear();
824  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
825            static_cast<CondCodeSDNode*>(0));
826  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
827            static_cast<SDNode*>(0));
828
829  EntryNode.UseList = 0;
830  AllNodes.push_back(&EntryNode);
831  Root = getEntryNode();
832  Ordering = new SDNodeOrdering();
833}
834
835SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
836  return VT.bitsGT(Op.getValueType()) ?
837    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
838    getNode(ISD::TRUNCATE, DL, VT, Op);
839}
840
841SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
842  return VT.bitsGT(Op.getValueType()) ?
843    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
844    getNode(ISD::TRUNCATE, DL, VT, Op);
845}
846
847SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
848  assert(!VT.isVector() &&
849         "getZeroExtendInReg should use the vector element type instead of "
850         "the vector type!");
851  if (Op.getValueType() == VT) return Op;
852  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
853  APInt Imm = APInt::getLowBitsSet(BitWidth,
854                                   VT.getSizeInBits());
855  return getNode(ISD::AND, DL, Op.getValueType(), Op,
856                 getConstant(Imm, Op.getValueType()));
857}
858
859/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
860///
861SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
862  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
863  SDValue NegOne =
864    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
865  return getNode(ISD::XOR, DL, VT, Val, NegOne);
866}
867
868SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
869  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
870  assert((EltVT.getSizeInBits() >= 64 ||
871         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
872         "getConstant with a uint64_t value that doesn't fit in the type!");
873  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
877  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
878}
879
880SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
881  assert(VT.isInteger() && "Cannot create FP integer constant!");
882
883  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
885         "APInt size does not match type size!");
886
887  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
890  ID.AddPointer(&Val);
891  void *IP = 0;
892  SDNode *N = NULL;
893  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
894    if (!VT.isVector())
895      return SDValue(N, 0);
896
897  if (!N) {
898    N = NodeAllocator.Allocate<ConstantSDNode>();
899    new (N) ConstantSDNode(isT, &Val, EltVT);
900    CSEMap.InsertNode(N, IP);
901    AllNodes.push_back(N);
902  }
903
904  SDValue Result(N, 0);
905  if (VT.isVector()) {
906    SmallVector<SDValue, 8> Ops;
907    Ops.assign(VT.getVectorNumElements(), Result);
908    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
909                     VT, &Ops[0], Ops.size());
910  }
911  return Result;
912}
913
914SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
915  return getConstant(Val, TLI.getPointerTy(), isTarget);
916}
917
918
919SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
920  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
921}
922
923SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
924  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
925
926  EVT EltVT =
927    VT.isVector() ? VT.getVectorElementType() : VT;
928
929  // Do the map lookup using the actual bit pattern for the floating point
930  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
931  // we don't have issues with SNANs.
932  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
933  FoldingSetNodeID ID;
934  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
935  ID.AddPointer(&V);
936  void *IP = 0;
937  SDNode *N = NULL;
938  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
939    if (!VT.isVector())
940      return SDValue(N, 0);
941
942  if (!N) {
943    N = NodeAllocator.Allocate<ConstantFPSDNode>();
944    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
945    CSEMap.InsertNode(N, IP);
946    AllNodes.push_back(N);
947  }
948
949  SDValue Result(N, 0);
950  if (VT.isVector()) {
951    SmallVector<SDValue, 8> Ops;
952    Ops.assign(VT.getVectorNumElements(), Result);
953    // FIXME DebugLoc info might be appropriate here
954    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
955                     VT, &Ops[0], Ops.size());
956  }
957  return Result;
958}
959
960SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961  EVT EltVT =
962    VT.isVector() ? VT.getVectorElementType() : VT;
963  if (EltVT==MVT::f32)
964    return getConstantFP(APFloat((float)Val), VT, isTarget);
965  else
966    return getConstantFP(APFloat(Val), VT, isTarget);
967}
968
969SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
970                                       EVT VT, int64_t Offset,
971                                       bool isTargetGA,
972                                       unsigned char TargetFlags) {
973  assert((TargetFlags == 0 || isTargetGA) &&
974         "Cannot set target flags on target-independent globals");
975
976  // Truncate (with sign-extension) the offset value to the pointer size.
977  EVT PTy = TLI.getPointerTy();
978  unsigned BitWidth = PTy.getSizeInBits();
979  if (BitWidth < 64)
980    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
981
982  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
983  if (!GVar) {
984    // If GV is an alias then use the aliasee for determining thread-localness.
985    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
986      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
987  }
988
989  unsigned Opc;
990  if (GVar && GVar->isThreadLocal())
991    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
992  else
993    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
994
995  FoldingSetNodeID ID;
996  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
997  ID.AddPointer(GV);
998  ID.AddInteger(Offset);
999  ID.AddInteger(TargetFlags);
1000  void *IP = 0;
1001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1002    return SDValue(E, 0);
1003
1004  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1005  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1012  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1013  FoldingSetNodeID ID;
1014  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1015  ID.AddInteger(FI);
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDValue(E, 0);
1019
1020  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1021  new (N) FrameIndexSDNode(FI, VT, isTarget);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1028                                   unsigned char TargetFlags) {
1029  assert((TargetFlags == 0 || isTarget) &&
1030         "Cannot set target flags on target-independent jump tables");
1031  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1034  ID.AddInteger(JTI);
1035  ID.AddInteger(TargetFlags);
1036  void *IP = 0;
1037  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1038    return SDValue(E, 0);
1039
1040  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1041  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1042  CSEMap.InsertNode(N, IP);
1043  AllNodes.push_back(N);
1044  return SDValue(N, 0);
1045}
1046
1047SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1048                                      unsigned Alignment, int Offset,
1049                                      bool isTarget,
1050                                      unsigned char TargetFlags) {
1051  assert((TargetFlags == 0 || isTarget) &&
1052         "Cannot set target flags on target-independent globals");
1053  if (Alignment == 0)
1054    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1055  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1056  FoldingSetNodeID ID;
1057  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1058  ID.AddInteger(Alignment);
1059  ID.AddInteger(Offset);
1060  ID.AddPointer(C);
1061  ID.AddInteger(TargetFlags);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065
1066  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1067  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1068  CSEMap.InsertNode(N, IP);
1069  AllNodes.push_back(N);
1070  return SDValue(N, 0);
1071}
1072
1073
1074SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1075                                      unsigned Alignment, int Offset,
1076                                      bool isTarget,
1077                                      unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTarget) &&
1079         "Cannot set target flags on target-independent globals");
1080  if (Alignment == 0)
1081    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1082  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1083  FoldingSetNodeID ID;
1084  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1085  ID.AddInteger(Alignment);
1086  ID.AddInteger(Offset);
1087  C->AddSelectionDAGCSEId(ID);
1088  ID.AddInteger(TargetFlags);
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092
1093  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1094  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1095  CSEMap.InsertNode(N, IP);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1101  FoldingSetNodeID ID;
1102  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1103  ID.AddPointer(MBB);
1104  void *IP = 0;
1105  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1106    return SDValue(E, 0);
1107
1108  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1109  new (N) BasicBlockSDNode(MBB);
1110  CSEMap.InsertNode(N, IP);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getValueType(EVT VT) {
1116  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1117      ValueTypeNodes.size())
1118    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1119
1120  SDNode *&N = VT.isExtended() ?
1121    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1122
1123  if (N) return SDValue(N, 0);
1124  N = NodeAllocator.Allocate<VTSDNode>();
1125  new (N) VTSDNode(VT);
1126  AllNodes.push_back(N);
1127  return SDValue(N, 0);
1128}
1129
1130SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1131  SDNode *&N = ExternalSymbols[Sym];
1132  if (N) return SDValue(N, 0);
1133  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1134  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1140                                              unsigned char TargetFlags) {
1141  SDNode *&N =
1142    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1143                                                               TargetFlags)];
1144  if (N) return SDValue(N, 0);
1145  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1146  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1157    new (N) CondCodeSDNode(Cond);
1158    CondCodeNodes[Cond] = N;
1159    AllNodes.push_back(N);
1160  }
1161
1162  return SDValue(CondCodeNodes[Cond], 0);
1163}
1164
1165// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1166// the shuffle mask M that point at N1 to point at N2, and indices that point
1167// N2 to point at N1.
1168static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1169  std::swap(N1, N2);
1170  int NElts = M.size();
1171  for (int i = 0; i != NElts; ++i) {
1172    if (M[i] >= NElts)
1173      M[i] -= NElts;
1174    else if (M[i] >= 0)
1175      M[i] += NElts;
1176  }
1177}
1178
1179SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1180                                       SDValue N2, const int *Mask) {
1181  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1182  assert(VT.isVector() && N1.getValueType().isVector() &&
1183         "Vector Shuffle VTs must be a vectors");
1184  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1185         && "Vector Shuffle VTs must have same element type");
1186
1187  // Canonicalize shuffle undef, undef -> undef
1188  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1189    return getUNDEF(VT);
1190
1191  // Validate that all indices in Mask are within the range of the elements
1192  // input to the shuffle.
1193  unsigned NElts = VT.getVectorNumElements();
1194  SmallVector<int, 8> MaskVec;
1195  for (unsigned i = 0; i != NElts; ++i) {
1196    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1197    MaskVec.push_back(Mask[i]);
1198  }
1199
1200  // Canonicalize shuffle v, v -> v, undef
1201  if (N1 == N2) {
1202    N2 = getUNDEF(VT);
1203    for (unsigned i = 0; i != NElts; ++i)
1204      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1205  }
1206
1207  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1208  if (N1.getOpcode() == ISD::UNDEF)
1209    commuteShuffle(N1, N2, MaskVec);
1210
1211  // Canonicalize all index into lhs, -> shuffle lhs, undef
1212  // Canonicalize all index into rhs, -> shuffle rhs, undef
1213  bool AllLHS = true, AllRHS = true;
1214  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1215  for (unsigned i = 0; i != NElts; ++i) {
1216    if (MaskVec[i] >= (int)NElts) {
1217      if (N2Undef)
1218        MaskVec[i] = -1;
1219      else
1220        AllLHS = false;
1221    } else if (MaskVec[i] >= 0) {
1222      AllRHS = false;
1223    }
1224  }
1225  if (AllLHS && AllRHS)
1226    return getUNDEF(VT);
1227  if (AllLHS && !N2Undef)
1228    N2 = getUNDEF(VT);
1229  if (AllRHS) {
1230    N1 = getUNDEF(VT);
1231    commuteShuffle(N1, N2, MaskVec);
1232  }
1233
1234  // If Identity shuffle, or all shuffle in to undef, return that node.
1235  bool AllUndef = true;
1236  bool Identity = true;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1239    if (MaskVec[i] >= 0) AllUndef = false;
1240  }
1241  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1242    return N1;
1243  if (AllUndef)
1244    return getUNDEF(VT);
1245
1246  FoldingSetNodeID ID;
1247  SDValue Ops[2] = { N1, N2 };
1248  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1249  for (unsigned i = 0; i != NElts; ++i)
1250    ID.AddInteger(MaskVec[i]);
1251
1252  void* IP = 0;
1253  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1254    return SDValue(E, 0);
1255
1256  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1257  // SDNode doesn't have access to it.  This memory will be "leaked" when
1258  // the node is deallocated, but recovered when the NodeAllocator is released.
1259  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1260  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1261
1262  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1263  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1264  CSEMap.InsertNode(N, IP);
1265  AllNodes.push_back(N);
1266  return SDValue(N, 0);
1267}
1268
1269SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1270                                       SDValue Val, SDValue DTy,
1271                                       SDValue STy, SDValue Rnd, SDValue Sat,
1272                                       ISD::CvtCode Code) {
1273  // If the src and dest types are the same and the conversion is between
1274  // integer types of the same sign or two floats, no conversion is necessary.
1275  if (DTy == STy &&
1276      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1277    return Val;
1278
1279  FoldingSetNodeID ID;
1280  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1281  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1282  void* IP = 0;
1283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1284    return SDValue(E, 0);
1285
1286  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1287  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1288  CSEMap.InsertNode(N, IP);
1289  AllNodes.push_back(N);
1290  return SDValue(N, 0);
1291}
1292
1293SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1294  FoldingSetNodeID ID;
1295  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1296  ID.AddInteger(RegNo);
1297  void *IP = 0;
1298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1299    return SDValue(E, 0);
1300
1301  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1302  new (N) RegisterSDNode(RegNo, VT);
1303  CSEMap.InsertNode(N, IP);
1304  AllNodes.push_back(N);
1305  return SDValue(N, 0);
1306}
1307
1308SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1309                               SDValue Root,
1310                               unsigned LabelID) {
1311  FoldingSetNodeID ID;
1312  SDValue Ops[] = { Root };
1313  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1314  ID.AddInteger(LabelID);
1315  void *IP = 0;
1316  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317    return SDValue(E, 0);
1318
1319  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1320  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1321  CSEMap.InsertNode(N, IP);
1322  AllNodes.push_back(N);
1323  return SDValue(N, 0);
1324}
1325
1326SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1327                                      bool isTarget,
1328                                      unsigned char TargetFlags) {
1329  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1330
1331  FoldingSetNodeID ID;
1332  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1333  ID.AddPointer(BA);
1334  ID.AddInteger(TargetFlags);
1335  void *IP = 0;
1336  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337    return SDValue(E, 0);
1338
1339  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1340  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1341  CSEMap.InsertNode(N, IP);
1342  AllNodes.push_back(N);
1343  return SDValue(N, 0);
1344}
1345
1346SDValue SelectionDAG::getSrcValue(const Value *V) {
1347  assert((!V || isa<PointerType>(V->getType())) &&
1348         "SrcValue is not a pointer?");
1349
1350  FoldingSetNodeID ID;
1351  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1352  ID.AddPointer(V);
1353
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1359  new (N) SrcValueSDNode(V);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365/// getShiftAmountOperand - Return the specified value casted to
1366/// the target's desired shift amount type.
1367SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1368  EVT OpTy = Op.getValueType();
1369  MVT ShTy = TLI.getShiftAmountTy();
1370  if (OpTy == ShTy || OpTy.isVector()) return Op;
1371
1372  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1373  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1374}
1375
1376/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1377/// specified value type.
1378SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1379  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1380  unsigned ByteSize = VT.getStoreSize();
1381  const Type *Ty = VT.getTypeForEVT(*getContext());
1382  unsigned StackAlign =
1383  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1384
1385  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1386  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1387}
1388
1389/// CreateStackTemporary - Create a stack temporary suitable for holding
1390/// either of the specified value types.
1391SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1392  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1393                            VT2.getStoreSizeInBits())/8;
1394  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1395  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1396  const TargetData *TD = TLI.getTargetData();
1397  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1398                            TD->getPrefTypeAlignment(Ty2));
1399
1400  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1401  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1402  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1403}
1404
1405SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1406                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1407  // These setcc operations always fold.
1408  switch (Cond) {
1409  default: break;
1410  case ISD::SETFALSE:
1411  case ISD::SETFALSE2: return getConstant(0, VT);
1412  case ISD::SETTRUE:
1413  case ISD::SETTRUE2:  return getConstant(1, VT);
1414
1415  case ISD::SETOEQ:
1416  case ISD::SETOGT:
1417  case ISD::SETOGE:
1418  case ISD::SETOLT:
1419  case ISD::SETOLE:
1420  case ISD::SETONE:
1421  case ISD::SETO:
1422  case ISD::SETUO:
1423  case ISD::SETUEQ:
1424  case ISD::SETUNE:
1425    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1426    break;
1427  }
1428
1429  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1430    const APInt &C2 = N2C->getAPIntValue();
1431    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1432      const APInt &C1 = N1C->getAPIntValue();
1433
1434      switch (Cond) {
1435      default: llvm_unreachable("Unknown integer setcc!");
1436      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1437      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1438      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1439      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1440      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1441      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1442      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1443      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1444      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1445      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1446      }
1447    }
1448  }
1449  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1450    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1451      // No compile time operations on this type yet.
1452      if (N1C->getValueType(0) == MVT::ppcf128)
1453        return SDValue();
1454
1455      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1456      switch (Cond) {
1457      default: break;
1458      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1462      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1466                                           R==APFloat::cmpLessThan, VT);
1467      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1471      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1475      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpEqual, VT);
1485      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1486      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1487      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1490      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpLessThan, VT);
1492      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpUnordered, VT);
1494      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1495      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1496      }
1497    } else {
1498      // Ensure that the constant occurs on the RHS.
1499      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1500    }
1501  }
1502
1503  // Could not fold it.
1504  return SDValue();
1505}
1506
1507/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1508/// use this predicate to simplify operations downstream.
1509bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1510  // This predicate is not safe for vector operations.
1511  if (Op.getValueType().isVector())
1512    return false;
1513
1514  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1515  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1516}
1517
1518/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1519/// this predicate to simplify operations downstream.  Mask is known to be zero
1520/// for bits that V cannot have.
1521bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1522                                     unsigned Depth) const {
1523  APInt KnownZero, KnownOne;
1524  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1525  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526  return (KnownZero & Mask) == Mask;
1527}
1528
1529/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1530/// known to be either zero or one and return them in the KnownZero/KnownOne
1531/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1532/// processing.
1533void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1534                                     APInt &KnownZero, APInt &KnownOne,
1535                                     unsigned Depth) const {
1536  unsigned BitWidth = Mask.getBitWidth();
1537  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1538         "Mask size mismatches value type size!");
1539
1540  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1541  if (Depth == 6 || Mask == 0)
1542    return;  // Limit search depth.
1543
1544  APInt KnownZero2, KnownOne2;
1545
1546  switch (Op.getOpcode()) {
1547  case ISD::Constant:
1548    // We know all of the bits for a constant!
1549    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1550    KnownZero = ~KnownOne & Mask;
1551    return;
1552  case ISD::AND:
1553    // If either the LHS or the RHS are Zero, the result is zero.
1554    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1555    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1556                      KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-1 bits are only known if set in both the LHS & RHS.
1561    KnownOne &= KnownOne2;
1562    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1563    KnownZero |= KnownZero2;
1564    return;
1565  case ISD::OR:
1566    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1568                      KnownZero2, KnownOne2, Depth+1);
1569    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1571
1572    // Output known-0 bits are only known if clear in both the LHS & RHS.
1573    KnownZero &= KnownZero2;
1574    // Output known-1 are known to be set if set in either the LHS | RHS.
1575    KnownOne |= KnownOne2;
1576    return;
1577  case ISD::XOR: {
1578    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1579    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1584    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1585    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1586    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1587    KnownZero = KnownZeroOut;
1588    return;
1589  }
1590  case ISD::MUL: {
1591    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1592    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1593    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1594    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1595    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1596
1597    // If low bits are zero in either operand, output low known-0 bits.
1598    // Also compute a conserative estimate for high known-0 bits.
1599    // More trickiness is possible, but this is sufficient for the
1600    // interesting case of alignment computation.
1601    KnownOne.clear();
1602    unsigned TrailZ = KnownZero.countTrailingOnes() +
1603                      KnownZero2.countTrailingOnes();
1604    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1605                               KnownZero2.countLeadingOnes(),
1606                               BitWidth) - BitWidth;
1607
1608    TrailZ = std::min(TrailZ, BitWidth);
1609    LeadZ = std::min(LeadZ, BitWidth);
1610    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1611                APInt::getHighBitsSet(BitWidth, LeadZ);
1612    KnownZero &= Mask;
1613    return;
1614  }
1615  case ISD::UDIV: {
1616    // For the purposes of computing leading zeros we can conservatively
1617    // treat a udiv as a logical right shift by the power of 2 known to
1618    // be less than the denominator.
1619    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1620    ComputeMaskedBits(Op.getOperand(0),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned LeadZ = KnownZero2.countLeadingOnes();
1623
1624    KnownOne2.clear();
1625    KnownZero2.clear();
1626    ComputeMaskedBits(Op.getOperand(1),
1627                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1628    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1629    if (RHSUnknownLeadingOnes != BitWidth)
1630      LeadZ = std::min(BitWidth,
1631                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1632
1633    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1634    return;
1635  }
1636  case ISD::SELECT:
1637    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SELECT_CC:
1647    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651
1652    // Only known if known in both the LHS and RHS.
1653    KnownOne &= KnownOne2;
1654    KnownZero &= KnownZero2;
1655    return;
1656  case ISD::SADDO:
1657  case ISD::UADDO:
1658  case ISD::SSUBO:
1659  case ISD::USUBO:
1660  case ISD::SMULO:
1661  case ISD::UMULO:
1662    if (Op.getResNo() != 1)
1663      return;
1664    // The boolean result conforms to getBooleanContents.  Fall through.
1665  case ISD::SETCC:
1666    // If we know the result of a setcc has the top bits zero, use this info.
1667    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1668        BitWidth > 1)
1669      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1670    return;
1671  case ISD::SHL:
1672    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1673    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      unsigned ShAmt = SA->getZExtValue();
1675
1676      // If the shift count is an invalid immediate, don't do anything.
1677      if (ShAmt >= BitWidth)
1678        return;
1679
1680      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1681                        KnownZero, KnownOne, Depth+1);
1682      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683      KnownZero <<= ShAmt;
1684      KnownOne  <<= ShAmt;
1685      // low bits known zero.
1686      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1687    }
1688    return;
1689  case ISD::SRL:
1690    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1691    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1692      unsigned ShAmt = SA->getZExtValue();
1693
1694      // If the shift count is an invalid immediate, don't do anything.
1695      if (ShAmt >= BitWidth)
1696        return;
1697
1698      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1699                        KnownZero, KnownOne, Depth+1);
1700      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701      KnownZero = KnownZero.lshr(ShAmt);
1702      KnownOne  = KnownOne.lshr(ShAmt);
1703
1704      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1705      KnownZero |= HighBits;  // High bits known zero.
1706    }
1707    return;
1708  case ISD::SRA:
1709    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1710      unsigned ShAmt = SA->getZExtValue();
1711
1712      // If the shift count is an invalid immediate, don't do anything.
1713      if (ShAmt >= BitWidth)
1714        return;
1715
1716      APInt InDemandedMask = (Mask << ShAmt);
1717      // If any of the demanded bits are produced by the sign extension, we also
1718      // demand the input sign bit.
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      if (HighBits.getBoolValue())
1721        InDemandedMask |= APInt::getSignBit(BitWidth);
1722
1723      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1724                        Depth+1);
1725      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1726      KnownZero = KnownZero.lshr(ShAmt);
1727      KnownOne  = KnownOne.lshr(ShAmt);
1728
1729      // Handle the sign bits.
1730      APInt SignBit = APInt::getSignBit(BitWidth);
1731      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1732
1733      if (KnownZero.intersects(SignBit)) {
1734        KnownZero |= HighBits;  // New bits are known zero.
1735      } else if (KnownOne.intersects(SignBit)) {
1736        KnownOne  |= HighBits;  // New bits are known one.
1737      }
1738    }
1739    return;
1740  case ISD::SIGN_EXTEND_INREG: {
1741    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1742    unsigned EBits = EVT.getScalarType().getSizeInBits();
1743
1744    // Sign extension.  Compute the demanded bits in the result that are not
1745    // present in the input.
1746    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1747
1748    APInt InSignBit = APInt::getSignBit(EBits);
1749    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1750
1751    // If the sign extended bits are demanded, we know that the sign
1752    // bit is demanded.
1753    InSignBit.zext(BitWidth);
1754    if (NewBits.getBoolValue())
1755      InputDemandedBits |= InSignBit;
1756
1757    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1758                      KnownZero, KnownOne, Depth+1);
1759    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760
1761    // If the sign bit of the input is known set or clear, then we know the
1762    // top bits of the result.
1763    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1764      KnownZero |= NewBits;
1765      KnownOne  &= ~NewBits;
1766    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1767      KnownOne  |= NewBits;
1768      KnownZero &= ~NewBits;
1769    } else {                              // Input sign bit unknown
1770      KnownZero &= ~NewBits;
1771      KnownOne  &= ~NewBits;
1772    }
1773    return;
1774  }
1775  case ISD::CTTZ:
1776  case ISD::CTLZ:
1777  case ISD::CTPOP: {
1778    unsigned LowBits = Log2_32(BitWidth)+1;
1779    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1780    KnownOne.clear();
1781    return;
1782  }
1783  case ISD::LOAD: {
1784    if (ISD::isZEXTLoad(Op.getNode())) {
1785      LoadSDNode *LD = cast<LoadSDNode>(Op);
1786      EVT VT = LD->getMemoryVT();
1787      unsigned MemBits = VT.getScalarType().getSizeInBits();
1788      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1789    }
1790    return;
1791  }
1792  case ISD::ZERO_EXTEND: {
1793    EVT InVT = Op.getOperand(0).getValueType();
1794    unsigned InBits = InVT.getScalarType().getSizeInBits();
1795    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1796    APInt InMask    = Mask;
1797    InMask.trunc(InBits);
1798    KnownZero.trunc(InBits);
1799    KnownOne.trunc(InBits);
1800    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1801    KnownZero.zext(BitWidth);
1802    KnownOne.zext(BitWidth);
1803    KnownZero |= NewBits;
1804    return;
1805  }
1806  case ISD::SIGN_EXTEND: {
1807    EVT InVT = Op.getOperand(0).getValueType();
1808    unsigned InBits = InVT.getScalarType().getSizeInBits();
1809    APInt InSignBit = APInt::getSignBit(InBits);
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask = Mask;
1812    InMask.trunc(InBits);
1813
1814    // If any of the sign extended bits are demanded, we know that the sign
1815    // bit is demanded. Temporarily set this bit in the mask for our callee.
1816    if (NewBits.getBoolValue())
1817      InMask |= InSignBit;
1818
1819    KnownZero.trunc(InBits);
1820    KnownOne.trunc(InBits);
1821    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1822
1823    // Note if the sign bit is known to be zero or one.
1824    bool SignBitKnownZero = KnownZero.isNegative();
1825    bool SignBitKnownOne  = KnownOne.isNegative();
1826    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1827           "Sign bit can't be known to be both zero and one!");
1828
1829    // If the sign bit wasn't actually demanded by our caller, we don't
1830    // want it set in the KnownZero and KnownOne result values. Reset the
1831    // mask and reapply it to the result values.
1832    InMask = Mask;
1833    InMask.trunc(InBits);
1834    KnownZero &= InMask;
1835    KnownOne  &= InMask;
1836
1837    KnownZero.zext(BitWidth);
1838    KnownOne.zext(BitWidth);
1839
1840    // If the sign bit is known zero or one, the top bits match.
1841    if (SignBitKnownZero)
1842      KnownZero |= NewBits;
1843    else if (SignBitKnownOne)
1844      KnownOne  |= NewBits;
1845    return;
1846  }
1847  case ISD::ANY_EXTEND: {
1848    EVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getScalarType().getSizeInBits();
1850    APInt InMask = Mask;
1851    InMask.trunc(InBits);
1852    KnownZero.trunc(InBits);
1853    KnownOne.trunc(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    KnownZero.zext(BitWidth);
1856    KnownOne.zext(BitWidth);
1857    return;
1858  }
1859  case ISD::TRUNCATE: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InMask = Mask;
1863    InMask.zext(InBits);
1864    KnownZero.zext(InBits);
1865    KnownOne.zext(InBits);
1866    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1868    KnownZero.trunc(BitWidth);
1869    KnownOne.trunc(BitWidth);
1870    break;
1871  }
1872  case ISD::AssertZext: {
1873    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1875    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1876                      KnownOne, Depth+1);
1877    KnownZero |= (~InMask) & Mask;
1878    return;
1879  }
1880  case ISD::FGETSIGN:
1881    // All bits are zero except the low bit.
1882    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1883    return;
1884
1885  case ISD::SUB: {
1886    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1887      // We know that the top bits of C-X are clear if X contains less bits
1888      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1889      // positive if we can prove that X is >= 0 and < 16.
1890      if (CLHS->getAPIntValue().isNonNegative()) {
1891        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1892        // NLZ can't be BitWidth with no sign bit
1893        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1894        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1895                          Depth+1);
1896
1897        // If all of the MaskV bits are known to be zero, then we know the
1898        // output top bits are zero, because we now know that the output is
1899        // from [0-C].
1900        if ((KnownZero2 & MaskV) == MaskV) {
1901          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1902          // Top bits known zero.
1903          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1904        }
1905      }
1906    }
1907  }
1908  // fall through
1909  case ISD::ADD: {
1910    // Output known-0 bits are known if clear or set in both the low clear bits
1911    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1912    // low 3 bits clear.
1913    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1914    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1915    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1916    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1917
1918    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1919    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1920    KnownZeroOut = std::min(KnownZeroOut,
1921                            KnownZero2.countTrailingOnes());
1922
1923    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1924    return;
1925  }
1926  case ISD::SREM:
1927    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1928      const APInt &RA = Rem->getAPIntValue().abs();
1929      if (RA.isPowerOf2()) {
1930        APInt LowBits = RA - 1;
1931        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1932        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1933
1934        // The low bits of the first operand are unchanged by the srem.
1935        KnownZero = KnownZero2 & LowBits;
1936        KnownOne = KnownOne2 & LowBits;
1937
1938        // If the first operand is non-negative or has all low bits zero, then
1939        // the upper bits are all zero.
1940        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1941          KnownZero |= ~LowBits;
1942
1943        // If the first operand is negative and not all low bits are zero, then
1944        // the upper bits are all one.
1945        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1946          KnownOne |= ~LowBits;
1947
1948        KnownZero &= Mask;
1949        KnownOne &= Mask;
1950
1951        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1952      }
1953    }
1954    return;
1955  case ISD::UREM: {
1956    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1957      const APInt &RA = Rem->getAPIntValue();
1958      if (RA.isPowerOf2()) {
1959        APInt LowBits = (RA - 1);
1960        APInt Mask2 = LowBits & Mask;
1961        KnownZero |= ~LowBits & Mask;
1962        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1963        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1964        break;
1965      }
1966    }
1967
1968    // Since the result is less than or equal to either operand, any leading
1969    // zero bits in either operand must also exist in the result.
1970    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1971    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1972                      Depth+1);
1973    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1974                      Depth+1);
1975
1976    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1977                                KnownZero2.countLeadingOnes());
1978    KnownOne.clear();
1979    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1980    return;
1981  }
1982  default:
1983    // Allow the target to implement this method for its nodes.
1984    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1985  case ISD::INTRINSIC_WO_CHAIN:
1986  case ISD::INTRINSIC_W_CHAIN:
1987  case ISD::INTRINSIC_VOID:
1988      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1989                                         Depth);
1990    }
1991    return;
1992  }
1993}
1994
1995/// ComputeNumSignBits - Return the number of times the sign bit of the
1996/// register is replicated into the other bits.  We know that at least 1 bit
1997/// is always equal to the sign bit (itself), but other cases can give us
1998/// information.  For example, immediately after an "SRA X, 2", we know that
1999/// the top 3 bits are all equal to each other, so we return 3.
2000unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2001  EVT VT = Op.getValueType();
2002  assert(VT.isInteger() && "Invalid VT!");
2003  unsigned VTBits = VT.getScalarType().getSizeInBits();
2004  unsigned Tmp, Tmp2;
2005  unsigned FirstAnswer = 1;
2006
2007  if (Depth == 6)
2008    return 1;  // Limit search depth.
2009
2010  switch (Op.getOpcode()) {
2011  default: break;
2012  case ISD::AssertSext:
2013    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2014    return VTBits-Tmp+1;
2015  case ISD::AssertZext:
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    return VTBits-Tmp;
2018
2019  case ISD::Constant: {
2020    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2021    // If negative, return # leading ones.
2022    if (Val.isNegative())
2023      return Val.countLeadingOnes();
2024
2025    // Return # leading zeros.
2026    return Val.countLeadingZeros();
2027  }
2028
2029  case ISD::SIGN_EXTEND:
2030    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2031    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2032
2033  case ISD::SIGN_EXTEND_INREG:
2034    // Max of the input and what this extends.
2035    Tmp =
2036      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2037    Tmp = VTBits-Tmp+1;
2038
2039    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2040    return std::max(Tmp, Tmp2);
2041
2042  case ISD::SRA:
2043    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044    // SRA X, C   -> adds C sign bits.
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      Tmp += C->getZExtValue();
2047      if (Tmp > VTBits) Tmp = VTBits;
2048    }
2049    return Tmp;
2050  case ISD::SHL:
2051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2052      // shl destroys sign bits.
2053      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2054      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2055          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2056      return Tmp - C->getZExtValue();
2057    }
2058    break;
2059  case ISD::AND:
2060  case ISD::OR:
2061  case ISD::XOR:    // NOT is handled here.
2062    // Logical binary ops preserve the number of sign bits at the worst.
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    if (Tmp != 1) {
2065      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2066      FirstAnswer = std::min(Tmp, Tmp2);
2067      // We computed what we know about the sign bits as our first
2068      // answer. Now proceed to the generic code that uses
2069      // ComputeMaskedBits, and pick whichever answer is better.
2070    }
2071    break;
2072
2073  case ISD::SELECT:
2074    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2075    if (Tmp == 1) return 1;  // Early out.
2076    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2077    return std::min(Tmp, Tmp2);
2078
2079  case ISD::SADDO:
2080  case ISD::UADDO:
2081  case ISD::SSUBO:
2082  case ISD::USUBO:
2083  case ISD::SMULO:
2084  case ISD::UMULO:
2085    if (Op.getResNo() != 1)
2086      break;
2087    // The boolean result conforms to getBooleanContents.  Fall through.
2088  case ISD::SETCC:
2089    // If setcc returns 0/-1, all bits are sign bits.
2090    if (TLI.getBooleanContents() ==
2091        TargetLowering::ZeroOrNegativeOneBooleanContent)
2092      return VTBits;
2093    break;
2094  case ISD::ROTL:
2095  case ISD::ROTR:
2096    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2097      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2098
2099      // Handle rotate right by N like a rotate left by 32-N.
2100      if (Op.getOpcode() == ISD::ROTR)
2101        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2102
2103      // If we aren't rotating out all of the known-in sign bits, return the
2104      // number that are left.  This handles rotl(sext(x), 1) for example.
2105      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2107    }
2108    break;
2109  case ISD::ADD:
2110    // Add can have at most one carry bit.  Thus we know that the output
2111    // is, at worst, one more bit than the inputs.
2112    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2113    if (Tmp == 1) return 1;  // Early out.
2114
2115    // Special case decrementing a value (ADD X, -1):
2116    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2117      if (CRHS->isAllOnesValue()) {
2118        APInt KnownZero, KnownOne;
2119        APInt Mask = APInt::getAllOnesValue(VTBits);
2120        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2121
2122        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2123        // sign bits set.
2124        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2125          return VTBits;
2126
2127        // If we are subtracting one from a positive number, there is no carry
2128        // out of the result.
2129        if (KnownZero.isNegative())
2130          return Tmp;
2131      }
2132
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135      return std::min(Tmp, Tmp2)-1;
2136    break;
2137
2138  case ISD::SUB:
2139    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2140    if (Tmp2 == 1) return 1;
2141
2142    // Handle NEG.
2143    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2144      if (CLHS->isNullValue()) {
2145        APInt KnownZero, KnownOne;
2146        APInt Mask = APInt::getAllOnesValue(VTBits);
2147        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2148        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2149        // sign bits set.
2150        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2151          return VTBits;
2152
2153        // If the input is known to be positive (the sign bit is known clear),
2154        // the output of the NEG has the same number of sign bits as the input.
2155        if (KnownZero.isNegative())
2156          return Tmp2;
2157
2158        // Otherwise, we treat this like a SUB.
2159      }
2160
2161    // Sub can have at most one carry bit.  Thus we know that the output
2162    // is, at worst, one more bit than the inputs.
2163    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2164    if (Tmp == 1) return 1;  // Early out.
2165      return std::min(Tmp, Tmp2)-1;
2166    break;
2167  case ISD::TRUNCATE:
2168    // FIXME: it's tricky to do anything useful for this, but it is an important
2169    // case for targets like X86.
2170    break;
2171  }
2172
2173  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2174  if (Op.getOpcode() == ISD::LOAD) {
2175    LoadSDNode *LD = cast<LoadSDNode>(Op);
2176    unsigned ExtType = LD->getExtensionType();
2177    switch (ExtType) {
2178    default: break;
2179    case ISD::SEXTLOAD:    // '17' bits known
2180      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2181      return VTBits-Tmp+1;
2182    case ISD::ZEXTLOAD:    // '16' bits known
2183      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2184      return VTBits-Tmp;
2185    }
2186  }
2187
2188  // Allow the target to implement this method for its nodes.
2189  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2190      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2191      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2192      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2193    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2194    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2195  }
2196
2197  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2198  // use this information.
2199  APInt KnownZero, KnownOne;
2200  APInt Mask = APInt::getAllOnesValue(VTBits);
2201  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2202
2203  if (KnownZero.isNegative()) {        // sign bit is 0
2204    Mask = KnownZero;
2205  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2206    Mask = KnownOne;
2207  } else {
2208    // Nothing known.
2209    return FirstAnswer;
2210  }
2211
2212  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2213  // the number of identical bits in the top of the input value.
2214  Mask = ~Mask;
2215  Mask <<= Mask.getBitWidth()-VTBits;
2216  // Return # leading zeros.  We use 'min' here in case Val was zero before
2217  // shifting.  We don't want to return '64' as for an i32 "0".
2218  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2219}
2220
2221bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2222  // If we're told that NaNs won't happen, assume they won't.
2223  if (FiniteOnlyFPMath())
2224    return true;
2225
2226  // If the value is a constant, we can obviously see if it is a NaN or not.
2227  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2228    return !C->getValueAPF().isNaN();
2229
2230  // TODO: Recognize more cases here.
2231
2232  return false;
2233}
2234
2235bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2236  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2237  if (!GA) return false;
2238  if (GA->getOffset() != 0) return false;
2239  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2240  if (!GV) return false;
2241  MachineModuleInfo *MMI = getMachineModuleInfo();
2242  return MMI && MMI->hasDebugInfo();
2243}
2244
2245
2246/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2247/// element of the result of the vector shuffle.
2248SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2249                                          unsigned i) {
2250  EVT VT = N->getValueType(0);
2251  DebugLoc dl = N->getDebugLoc();
2252  if (N->getMaskElt(i) < 0)
2253    return getUNDEF(VT.getVectorElementType());
2254  unsigned Index = N->getMaskElt(i);
2255  unsigned NumElems = VT.getVectorNumElements();
2256  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2257  Index %= NumElems;
2258
2259  if (V.getOpcode() == ISD::BIT_CONVERT) {
2260    V = V.getOperand(0);
2261    EVT VVT = V.getValueType();
2262    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2263      return SDValue();
2264  }
2265  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2266    return (Index == 0) ? V.getOperand(0)
2267                      : getUNDEF(VT.getVectorElementType());
2268  if (V.getOpcode() == ISD::BUILD_VECTOR)
2269    return V.getOperand(Index);
2270  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2271    return getShuffleScalarElt(SVN, Index);
2272  return SDValue();
2273}
2274
2275
2276/// getNode - Gets or creates the specified node.
2277///
2278SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2279  FoldingSetNodeID ID;
2280  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2281  void *IP = 0;
2282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2283    return SDValue(E, 0);
2284
2285  SDNode *N = NodeAllocator.Allocate<SDNode>();
2286  new (N) SDNode(Opcode, DL, getVTList(VT));
2287  CSEMap.InsertNode(N, IP);
2288
2289  AllNodes.push_back(N);
2290#ifndef NDEBUG
2291  VerifyNode(N);
2292#endif
2293  return SDValue(N, 0);
2294}
2295
2296SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2297                              EVT VT, SDValue Operand) {
2298  // Constant fold unary operations with an integer constant operand.
2299  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2300    const APInt &Val = C->getAPIntValue();
2301    unsigned BitWidth = VT.getSizeInBits();
2302    switch (Opcode) {
2303    default: break;
2304    case ISD::SIGN_EXTEND:
2305      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2306    case ISD::ANY_EXTEND:
2307    case ISD::ZERO_EXTEND:
2308    case ISD::TRUNCATE:
2309      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2310    case ISD::UINT_TO_FP:
2311    case ISD::SINT_TO_FP: {
2312      const uint64_t zero[] = {0, 0};
2313      // No compile time operations on this type.
2314      if (VT==MVT::ppcf128)
2315        break;
2316      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2317      (void)apf.convertFromAPInt(Val,
2318                                 Opcode==ISD::SINT_TO_FP,
2319                                 APFloat::rmNearestTiesToEven);
2320      return getConstantFP(apf, VT);
2321    }
2322    case ISD::BIT_CONVERT:
2323      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2324        return getConstantFP(Val.bitsToFloat(), VT);
2325      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2326        return getConstantFP(Val.bitsToDouble(), VT);
2327      break;
2328    case ISD::BSWAP:
2329      return getConstant(Val.byteSwap(), VT);
2330    case ISD::CTPOP:
2331      return getConstant(Val.countPopulation(), VT);
2332    case ISD::CTLZ:
2333      return getConstant(Val.countLeadingZeros(), VT);
2334    case ISD::CTTZ:
2335      return getConstant(Val.countTrailingZeros(), VT);
2336    }
2337  }
2338
2339  // Constant fold unary operations with a floating point constant operand.
2340  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2341    APFloat V = C->getValueAPF();    // make copy
2342    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2343      switch (Opcode) {
2344      case ISD::FNEG:
2345        V.changeSign();
2346        return getConstantFP(V, VT);
2347      case ISD::FABS:
2348        V.clearSign();
2349        return getConstantFP(V, VT);
2350      case ISD::FP_ROUND:
2351      case ISD::FP_EXTEND: {
2352        bool ignored;
2353        // This can return overflow, underflow, or inexact; we don't care.
2354        // FIXME need to be more flexible about rounding mode.
2355        (void)V.convert(*EVTToAPFloatSemantics(VT),
2356                        APFloat::rmNearestTiesToEven, &ignored);
2357        return getConstantFP(V, VT);
2358      }
2359      case ISD::FP_TO_SINT:
2360      case ISD::FP_TO_UINT: {
2361        integerPart x[2];
2362        bool ignored;
2363        assert(integerPartWidth >= 64);
2364        // FIXME need to be more flexible about rounding mode.
2365        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2366                              Opcode==ISD::FP_TO_SINT,
2367                              APFloat::rmTowardZero, &ignored);
2368        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2369          break;
2370        APInt api(VT.getSizeInBits(), 2, x);
2371        return getConstant(api, VT);
2372      }
2373      case ISD::BIT_CONVERT:
2374        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2375          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2376        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2377          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2378        break;
2379      }
2380    }
2381  }
2382
2383  unsigned OpOpcode = Operand.getNode()->getOpcode();
2384  switch (Opcode) {
2385  case ISD::TokenFactor:
2386  case ISD::MERGE_VALUES:
2387  case ISD::CONCAT_VECTORS:
2388    return Operand;         // Factor, merge or concat of one node?  No need.
2389  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2390  case ISD::FP_EXTEND:
2391    assert(VT.isFloatingPoint() &&
2392           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2393    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2394    assert((!VT.isVector() ||
2395            VT.getVectorNumElements() ==
2396            Operand.getValueType().getVectorNumElements()) &&
2397           "Vector element count mismatch!");
2398    if (Operand.getOpcode() == ISD::UNDEF)
2399      return getUNDEF(VT);
2400    break;
2401  case ISD::SIGN_EXTEND:
2402    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2403           "Invalid SIGN_EXTEND!");
2404    if (Operand.getValueType() == VT) return Operand;   // noop extension
2405    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2406           "Invalid sext node, dst < src!");
2407    assert((!VT.isVector() ||
2408            VT.getVectorNumElements() ==
2409            Operand.getValueType().getVectorNumElements()) &&
2410           "Vector element count mismatch!");
2411    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2412      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2413    break;
2414  case ISD::ZERO_EXTEND:
2415    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2416           "Invalid ZERO_EXTEND!");
2417    if (Operand.getValueType() == VT) return Operand;   // noop extension
2418    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2419           "Invalid zext node, dst < src!");
2420    assert((!VT.isVector() ||
2421            VT.getVectorNumElements() ==
2422            Operand.getValueType().getVectorNumElements()) &&
2423           "Vector element count mismatch!");
2424    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2425      return getNode(ISD::ZERO_EXTEND, DL, VT,
2426                     Operand.getNode()->getOperand(0));
2427    break;
2428  case ISD::ANY_EXTEND:
2429    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2430           "Invalid ANY_EXTEND!");
2431    if (Operand.getValueType() == VT) return Operand;   // noop extension
2432    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2433           "Invalid anyext node, dst < src!");
2434    assert((!VT.isVector() ||
2435            VT.getVectorNumElements() ==
2436            Operand.getValueType().getVectorNumElements()) &&
2437           "Vector element count mismatch!");
2438    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2439      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2440      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2441    break;
2442  case ISD::TRUNCATE:
2443    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2444           "Invalid TRUNCATE!");
2445    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2446    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2447           "Invalid truncate node, src < dst!");
2448    assert((!VT.isVector() ||
2449            VT.getVectorNumElements() ==
2450            Operand.getValueType().getVectorNumElements()) &&
2451           "Vector element count mismatch!");
2452    if (OpOpcode == ISD::TRUNCATE)
2453      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2454    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2455             OpOpcode == ISD::ANY_EXTEND) {
2456      // If the source is smaller than the dest, we still need an extend.
2457      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2458            .bitsLT(VT.getScalarType()))
2459        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2460      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2461        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2462      else
2463        return Operand.getNode()->getOperand(0);
2464    }
2465    break;
2466  case ISD::BIT_CONVERT:
2467    // Basic sanity checking.
2468    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2469           && "Cannot BIT_CONVERT between types of different sizes!");
2470    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2471    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2472      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2473    if (OpOpcode == ISD::UNDEF)
2474      return getUNDEF(VT);
2475    break;
2476  case ISD::SCALAR_TO_VECTOR:
2477    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2478           (VT.getVectorElementType() == Operand.getValueType() ||
2479            (VT.getVectorElementType().isInteger() &&
2480             Operand.getValueType().isInteger() &&
2481             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2482           "Illegal SCALAR_TO_VECTOR node!");
2483    if (OpOpcode == ISD::UNDEF)
2484      return getUNDEF(VT);
2485    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2486    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2487        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2488        Operand.getConstantOperandVal(1) == 0 &&
2489        Operand.getOperand(0).getValueType() == VT)
2490      return Operand.getOperand(0);
2491    break;
2492  case ISD::FNEG:
2493    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2494    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2495      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2496                     Operand.getNode()->getOperand(0));
2497    if (OpOpcode == ISD::FNEG)  // --X -> X
2498      return Operand.getNode()->getOperand(0);
2499    break;
2500  case ISD::FABS:
2501    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2502      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2503    break;
2504  }
2505
2506  SDNode *N;
2507  SDVTList VTs = getVTList(VT);
2508  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2509    FoldingSetNodeID ID;
2510    SDValue Ops[1] = { Operand };
2511    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2512    void *IP = 0;
2513    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2514      return SDValue(E, 0);
2515
2516    N = NodeAllocator.Allocate<UnarySDNode>();
2517    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2518    CSEMap.InsertNode(N, IP);
2519  } else {
2520    N = NodeAllocator.Allocate<UnarySDNode>();
2521    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2522  }
2523
2524  AllNodes.push_back(N);
2525#ifndef NDEBUG
2526  VerifyNode(N);
2527#endif
2528  return SDValue(N, 0);
2529}
2530
2531SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2532                                             EVT VT,
2533                                             ConstantSDNode *Cst1,
2534                                             ConstantSDNode *Cst2) {
2535  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2536
2537  switch (Opcode) {
2538  case ISD::ADD:  return getConstant(C1 + C2, VT);
2539  case ISD::SUB:  return getConstant(C1 - C2, VT);
2540  case ISD::MUL:  return getConstant(C1 * C2, VT);
2541  case ISD::UDIV:
2542    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2543    break;
2544  case ISD::UREM:
2545    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2546    break;
2547  case ISD::SDIV:
2548    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2549    break;
2550  case ISD::SREM:
2551    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2552    break;
2553  case ISD::AND:  return getConstant(C1 & C2, VT);
2554  case ISD::OR:   return getConstant(C1 | C2, VT);
2555  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2556  case ISD::SHL:  return getConstant(C1 << C2, VT);
2557  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2558  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2559  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2560  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2561  default: break;
2562  }
2563
2564  return SDValue();
2565}
2566
2567SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2568                              SDValue N1, SDValue N2) {
2569  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2570  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2571  switch (Opcode) {
2572  default: break;
2573  case ISD::TokenFactor:
2574    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2575           N2.getValueType() == MVT::Other && "Invalid token factor!");
2576    // Fold trivial token factors.
2577    if (N1.getOpcode() == ISD::EntryToken) return N2;
2578    if (N2.getOpcode() == ISD::EntryToken) return N1;
2579    if (N1 == N2) return N1;
2580    break;
2581  case ISD::CONCAT_VECTORS:
2582    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2583    // one big BUILD_VECTOR.
2584    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2585        N2.getOpcode() == ISD::BUILD_VECTOR) {
2586      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2587      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2588      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2589    }
2590    break;
2591  case ISD::AND:
2592    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2593           N1.getValueType() == VT && "Binary operator types must match!");
2594    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2595    // worth handling here.
2596    if (N2C && N2C->isNullValue())
2597      return N2;
2598    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2599      return N1;
2600    break;
2601  case ISD::OR:
2602  case ISD::XOR:
2603  case ISD::ADD:
2604  case ISD::SUB:
2605    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2606           N1.getValueType() == VT && "Binary operator types must match!");
2607    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2608    // it's worth handling here.
2609    if (N2C && N2C->isNullValue())
2610      return N1;
2611    break;
2612  case ISD::UDIV:
2613  case ISD::UREM:
2614  case ISD::MULHU:
2615  case ISD::MULHS:
2616  case ISD::MUL:
2617  case ISD::SDIV:
2618  case ISD::SREM:
2619    assert(VT.isInteger() && "This operator does not apply to FP types!");
2620    // fall through
2621  case ISD::FADD:
2622  case ISD::FSUB:
2623  case ISD::FMUL:
2624  case ISD::FDIV:
2625  case ISD::FREM:
2626    if (UnsafeFPMath) {
2627      if (Opcode == ISD::FADD) {
2628        // 0+x --> x
2629        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2630          if (CFP->getValueAPF().isZero())
2631            return N2;
2632        // x+0 --> x
2633        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2634          if (CFP->getValueAPF().isZero())
2635            return N1;
2636      } else if (Opcode == ISD::FSUB) {
2637        // x-0 --> x
2638        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2639          if (CFP->getValueAPF().isZero())
2640            return N1;
2641      }
2642    }
2643    assert(N1.getValueType() == N2.getValueType() &&
2644           N1.getValueType() == VT && "Binary operator types must match!");
2645    break;
2646  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2647    assert(N1.getValueType() == VT &&
2648           N1.getValueType().isFloatingPoint() &&
2649           N2.getValueType().isFloatingPoint() &&
2650           "Invalid FCOPYSIGN!");
2651    break;
2652  case ISD::SHL:
2653  case ISD::SRA:
2654  case ISD::SRL:
2655  case ISD::ROTL:
2656  case ISD::ROTR:
2657    assert(VT == N1.getValueType() &&
2658           "Shift operators return type must be the same as their first arg");
2659    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2660           "Shifts only work on integers");
2661
2662    // Always fold shifts of i1 values so the code generator doesn't need to
2663    // handle them.  Since we know the size of the shift has to be less than the
2664    // size of the value, the shift/rotate count is guaranteed to be zero.
2665    if (VT == MVT::i1)
2666      return N1;
2667    if (N2C && N2C->isNullValue())
2668      return N1;
2669    break;
2670  case ISD::FP_ROUND_INREG: {
2671    EVT EVT = cast<VTSDNode>(N2)->getVT();
2672    assert(VT == N1.getValueType() && "Not an inreg round!");
2673    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2674           "Cannot FP_ROUND_INREG integer types");
2675    assert(EVT.isVector() == VT.isVector() &&
2676           "FP_ROUND_INREG type should be vector iff the operand "
2677           "type is vector!");
2678    assert((!EVT.isVector() ||
2679            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2680           "Vector element counts must match in FP_ROUND_INREG");
2681    assert(EVT.bitsLE(VT) && "Not rounding down!");
2682    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2683    break;
2684  }
2685  case ISD::FP_ROUND:
2686    assert(VT.isFloatingPoint() &&
2687           N1.getValueType().isFloatingPoint() &&
2688           VT.bitsLE(N1.getValueType()) &&
2689           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2690    if (N1.getValueType() == VT) return N1;  // noop conversion.
2691    break;
2692  case ISD::AssertSext:
2693  case ISD::AssertZext: {
2694    EVT EVT = cast<VTSDNode>(N2)->getVT();
2695    assert(VT == N1.getValueType() && "Not an inreg extend!");
2696    assert(VT.isInteger() && EVT.isInteger() &&
2697           "Cannot *_EXTEND_INREG FP types");
2698    assert(!EVT.isVector() &&
2699           "AssertSExt/AssertZExt type should be the vector element type "
2700           "rather than the vector type!");
2701    assert(EVT.bitsLE(VT) && "Not extending!");
2702    if (VT == EVT) return N1; // noop assertion.
2703    break;
2704  }
2705  case ISD::SIGN_EXTEND_INREG: {
2706    EVT EVT = cast<VTSDNode>(N2)->getVT();
2707    assert(VT == N1.getValueType() && "Not an inreg extend!");
2708    assert(VT.isInteger() && EVT.isInteger() &&
2709           "Cannot *_EXTEND_INREG FP types");
2710    assert(EVT.isVector() == VT.isVector() &&
2711           "SIGN_EXTEND_INREG type should be vector iff the operand "
2712           "type is vector!");
2713    assert((!EVT.isVector() ||
2714            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2715           "Vector element counts must match in SIGN_EXTEND_INREG");
2716    assert(EVT.bitsLE(VT) && "Not extending!");
2717    if (EVT == VT) return N1;  // Not actually extending
2718
2719    if (N1C) {
2720      APInt Val = N1C->getAPIntValue();
2721      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2722      Val <<= Val.getBitWidth()-FromBits;
2723      Val = Val.ashr(Val.getBitWidth()-FromBits);
2724      return getConstant(Val, VT);
2725    }
2726    break;
2727  }
2728  case ISD::EXTRACT_VECTOR_ELT:
2729    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2730    if (N1.getOpcode() == ISD::UNDEF)
2731      return getUNDEF(VT);
2732
2733    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2734    // expanding copies of large vectors from registers.
2735    if (N2C &&
2736        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2737        N1.getNumOperands() > 0) {
2738      unsigned Factor =
2739        N1.getOperand(0).getValueType().getVectorNumElements();
2740      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2741                     N1.getOperand(N2C->getZExtValue() / Factor),
2742                     getConstant(N2C->getZExtValue() % Factor,
2743                                 N2.getValueType()));
2744    }
2745
2746    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2747    // expanding large vector constants.
2748    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2749      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2750      EVT VEltTy = N1.getValueType().getVectorElementType();
2751      if (Elt.getValueType() != VEltTy) {
2752        // If the vector element type is not legal, the BUILD_VECTOR operands
2753        // are promoted and implicitly truncated.  Make that explicit here.
2754        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2755      }
2756      if (VT != VEltTy) {
2757        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2758        // result is implicitly extended.
2759        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2760      }
2761      return Elt;
2762    }
2763
2764    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2765    // operations are lowered to scalars.
2766    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2767      // If the indices are the same, return the inserted element else
2768      // if the indices are known different, extract the element from
2769      // the original vector.
2770      if (N1.getOperand(2) == N2) {
2771        if (VT == N1.getOperand(1).getValueType())
2772          return N1.getOperand(1);
2773        else
2774          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2775      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2776                 isa<ConstantSDNode>(N2))
2777        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2778    }
2779    break;
2780  case ISD::EXTRACT_ELEMENT:
2781    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2782    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2783           (N1.getValueType().isInteger() == VT.isInteger()) &&
2784           "Wrong types for EXTRACT_ELEMENT!");
2785
2786    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2787    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2788    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2789    if (N1.getOpcode() == ISD::BUILD_PAIR)
2790      return N1.getOperand(N2C->getZExtValue());
2791
2792    // EXTRACT_ELEMENT of a constant int is also very common.
2793    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2794      unsigned ElementSize = VT.getSizeInBits();
2795      unsigned Shift = ElementSize * N2C->getZExtValue();
2796      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2797      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2798    }
2799    break;
2800  case ISD::EXTRACT_SUBVECTOR:
2801    if (N1.getValueType() == VT) // Trivial extraction.
2802      return N1;
2803    break;
2804  }
2805
2806  if (N1C) {
2807    if (N2C) {
2808      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2809      if (SV.getNode()) return SV;
2810    } else {      // Cannonicalize constant to RHS if commutative
2811      if (isCommutativeBinOp(Opcode)) {
2812        std::swap(N1C, N2C);
2813        std::swap(N1, N2);
2814      }
2815    }
2816  }
2817
2818  // Constant fold FP operations.
2819  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2820  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2821  if (N1CFP) {
2822    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2823      // Cannonicalize constant to RHS if commutative
2824      std::swap(N1CFP, N2CFP);
2825      std::swap(N1, N2);
2826    } else if (N2CFP && VT != MVT::ppcf128) {
2827      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2828      APFloat::opStatus s;
2829      switch (Opcode) {
2830      case ISD::FADD:
2831        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2832        if (s != APFloat::opInvalidOp)
2833          return getConstantFP(V1, VT);
2834        break;
2835      case ISD::FSUB:
2836        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2837        if (s!=APFloat::opInvalidOp)
2838          return getConstantFP(V1, VT);
2839        break;
2840      case ISD::FMUL:
2841        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2842        if (s!=APFloat::opInvalidOp)
2843          return getConstantFP(V1, VT);
2844        break;
2845      case ISD::FDIV:
2846        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2847        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2848          return getConstantFP(V1, VT);
2849        break;
2850      case ISD::FREM :
2851        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2852        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2853          return getConstantFP(V1, VT);
2854        break;
2855      case ISD::FCOPYSIGN:
2856        V1.copySign(V2);
2857        return getConstantFP(V1, VT);
2858      default: break;
2859      }
2860    }
2861  }
2862
2863  // Canonicalize an UNDEF to the RHS, even over a constant.
2864  if (N1.getOpcode() == ISD::UNDEF) {
2865    if (isCommutativeBinOp(Opcode)) {
2866      std::swap(N1, N2);
2867    } else {
2868      switch (Opcode) {
2869      case ISD::FP_ROUND_INREG:
2870      case ISD::SIGN_EXTEND_INREG:
2871      case ISD::SUB:
2872      case ISD::FSUB:
2873      case ISD::FDIV:
2874      case ISD::FREM:
2875      case ISD::SRA:
2876        return N1;     // fold op(undef, arg2) -> undef
2877      case ISD::UDIV:
2878      case ISD::SDIV:
2879      case ISD::UREM:
2880      case ISD::SREM:
2881      case ISD::SRL:
2882      case ISD::SHL:
2883        if (!VT.isVector())
2884          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2885        // For vectors, we can't easily build an all zero vector, just return
2886        // the LHS.
2887        return N2;
2888      }
2889    }
2890  }
2891
2892  // Fold a bunch of operators when the RHS is undef.
2893  if (N2.getOpcode() == ISD::UNDEF) {
2894    switch (Opcode) {
2895    case ISD::XOR:
2896      if (N1.getOpcode() == ISD::UNDEF)
2897        // Handle undef ^ undef -> 0 special case. This is a common
2898        // idiom (misuse).
2899        return getConstant(0, VT);
2900      // fallthrough
2901    case ISD::ADD:
2902    case ISD::ADDC:
2903    case ISD::ADDE:
2904    case ISD::SUB:
2905    case ISD::UDIV:
2906    case ISD::SDIV:
2907    case ISD::UREM:
2908    case ISD::SREM:
2909      return N2;       // fold op(arg1, undef) -> undef
2910    case ISD::FADD:
2911    case ISD::FSUB:
2912    case ISD::FMUL:
2913    case ISD::FDIV:
2914    case ISD::FREM:
2915      if (UnsafeFPMath)
2916        return N2;
2917      break;
2918    case ISD::MUL:
2919    case ISD::AND:
2920    case ISD::SRL:
2921    case ISD::SHL:
2922      if (!VT.isVector())
2923        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2924      // For vectors, we can't easily build an all zero vector, just return
2925      // the LHS.
2926      return N1;
2927    case ISD::OR:
2928      if (!VT.isVector())
2929        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2930      // For vectors, we can't easily build an all one vector, just return
2931      // the LHS.
2932      return N1;
2933    case ISD::SRA:
2934      return N1;
2935    }
2936  }
2937
2938  // Memoize this node if possible.
2939  SDNode *N;
2940  SDVTList VTs = getVTList(VT);
2941  if (VT != MVT::Flag) {
2942    SDValue Ops[] = { N1, N2 };
2943    FoldingSetNodeID ID;
2944    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2945    void *IP = 0;
2946    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2947      return SDValue(E, 0);
2948
2949    N = NodeAllocator.Allocate<BinarySDNode>();
2950    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2951    CSEMap.InsertNode(N, IP);
2952  } else {
2953    N = NodeAllocator.Allocate<BinarySDNode>();
2954    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2955  }
2956
2957  AllNodes.push_back(N);
2958#ifndef NDEBUG
2959  VerifyNode(N);
2960#endif
2961  return SDValue(N, 0);
2962}
2963
2964SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2965                              SDValue N1, SDValue N2, SDValue N3) {
2966  // Perform various simplifications.
2967  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2968  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2969  switch (Opcode) {
2970  case ISD::CONCAT_VECTORS:
2971    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2972    // one big BUILD_VECTOR.
2973    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2974        N2.getOpcode() == ISD::BUILD_VECTOR &&
2975        N3.getOpcode() == ISD::BUILD_VECTOR) {
2976      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2977      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2978      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2979      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2980    }
2981    break;
2982  case ISD::SETCC: {
2983    // Use FoldSetCC to simplify SETCC's.
2984    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2985    if (Simp.getNode()) return Simp;
2986    break;
2987  }
2988  case ISD::SELECT:
2989    if (N1C) {
2990     if (N1C->getZExtValue())
2991        return N2;             // select true, X, Y -> X
2992      else
2993        return N3;             // select false, X, Y -> Y
2994    }
2995
2996    if (N2 == N3) return N2;   // select C, X, X -> X
2997    break;
2998  case ISD::BRCOND:
2999    if (N2C) {
3000      if (N2C->getZExtValue()) // Unconditional branch
3001        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3002      else
3003        return N1;         // Never-taken branch
3004    }
3005    break;
3006  case ISD::VECTOR_SHUFFLE:
3007    llvm_unreachable("should use getVectorShuffle constructor!");
3008    break;
3009  case ISD::BIT_CONVERT:
3010    // Fold bit_convert nodes from a type to themselves.
3011    if (N1.getValueType() == VT)
3012      return N1;
3013    break;
3014  }
3015
3016  // Memoize node if it doesn't produce a flag.
3017  SDNode *N;
3018  SDVTList VTs = getVTList(VT);
3019  if (VT != MVT::Flag) {
3020    SDValue Ops[] = { N1, N2, N3 };
3021    FoldingSetNodeID ID;
3022    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3023    void *IP = 0;
3024    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3025      return SDValue(E, 0);
3026
3027    N = NodeAllocator.Allocate<TernarySDNode>();
3028    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3029    CSEMap.InsertNode(N, IP);
3030  } else {
3031    N = NodeAllocator.Allocate<TernarySDNode>();
3032    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3033  }
3034
3035  AllNodes.push_back(N);
3036#ifndef NDEBUG
3037  VerifyNode(N);
3038#endif
3039  return SDValue(N, 0);
3040}
3041
3042SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3043                              SDValue N1, SDValue N2, SDValue N3,
3044                              SDValue N4) {
3045  SDValue Ops[] = { N1, N2, N3, N4 };
3046  return getNode(Opcode, DL, VT, Ops, 4);
3047}
3048
3049SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3050                              SDValue N1, SDValue N2, SDValue N3,
3051                              SDValue N4, SDValue N5) {
3052  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3053  return getNode(Opcode, DL, VT, Ops, 5);
3054}
3055
3056/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3057/// the incoming stack arguments to be loaded from the stack.
3058SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3059  SmallVector<SDValue, 8> ArgChains;
3060
3061  // Include the original chain at the beginning of the list. When this is
3062  // used by target LowerCall hooks, this helps legalize find the
3063  // CALLSEQ_BEGIN node.
3064  ArgChains.push_back(Chain);
3065
3066  // Add a chain value for each stack argument.
3067  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3068       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3069    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3070      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3071        if (FI->getIndex() < 0)
3072          ArgChains.push_back(SDValue(L, 1));
3073
3074  // Build a tokenfactor for all the chains.
3075  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3076                 &ArgChains[0], ArgChains.size());
3077}
3078
3079/// getMemsetValue - Vectorized representation of the memset value
3080/// operand.
3081static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3082                              DebugLoc dl) {
3083  unsigned NumBits = VT.isVector() ?
3084    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3085  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3086    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3087    unsigned Shift = 8;
3088    for (unsigned i = NumBits; i > 8; i >>= 1) {
3089      Val = (Val << Shift) | Val;
3090      Shift <<= 1;
3091    }
3092    if (VT.isInteger())
3093      return DAG.getConstant(Val, VT);
3094    return DAG.getConstantFP(APFloat(Val), VT);
3095  }
3096
3097  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3098  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3099  unsigned Shift = 8;
3100  for (unsigned i = NumBits; i > 8; i >>= 1) {
3101    Value = DAG.getNode(ISD::OR, dl, VT,
3102                        DAG.getNode(ISD::SHL, dl, VT, Value,
3103                                    DAG.getConstant(Shift,
3104                                                    TLI.getShiftAmountTy())),
3105                        Value);
3106    Shift <<= 1;
3107  }
3108
3109  return Value;
3110}
3111
3112/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3113/// used when a memcpy is turned into a memset when the source is a constant
3114/// string ptr.
3115static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3116                                  const TargetLowering &TLI,
3117                                  std::string &Str, unsigned Offset) {
3118  // Handle vector with all elements zero.
3119  if (Str.empty()) {
3120    if (VT.isInteger())
3121      return DAG.getConstant(0, VT);
3122    unsigned NumElts = VT.getVectorNumElements();
3123    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3124    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3125                       DAG.getConstant(0,
3126                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3127  }
3128
3129  assert(!VT.isVector() && "Can't handle vector type here!");
3130  unsigned NumBits = VT.getSizeInBits();
3131  unsigned MSB = NumBits / 8;
3132  uint64_t Val = 0;
3133  if (TLI.isLittleEndian())
3134    Offset = Offset + MSB - 1;
3135  for (unsigned i = 0; i != MSB; ++i) {
3136    Val = (Val << 8) | (unsigned char)Str[Offset];
3137    Offset += TLI.isLittleEndian() ? -1 : 1;
3138  }
3139  return DAG.getConstant(Val, VT);
3140}
3141
3142/// getMemBasePlusOffset - Returns base and offset node for the
3143///
3144static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3145                                      SelectionDAG &DAG) {
3146  EVT VT = Base.getValueType();
3147  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3148                     VT, Base, DAG.getConstant(Offset, VT));
3149}
3150
3151/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3152///
3153static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3154  unsigned SrcDelta = 0;
3155  GlobalAddressSDNode *G = NULL;
3156  if (Src.getOpcode() == ISD::GlobalAddress)
3157    G = cast<GlobalAddressSDNode>(Src);
3158  else if (Src.getOpcode() == ISD::ADD &&
3159           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3160           Src.getOperand(1).getOpcode() == ISD::Constant) {
3161    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3162    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3163  }
3164  if (!G)
3165    return false;
3166
3167  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3168  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3169    return true;
3170
3171  return false;
3172}
3173
3174/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3175/// to replace the memset / memcpy is below the threshold. It also returns the
3176/// types of the sequence of memory ops to perform memset / memcpy.
3177static
3178bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3179                              SDValue Dst, SDValue Src,
3180                              unsigned Limit, uint64_t Size, unsigned &Align,
3181                              std::string &Str, bool &isSrcStr,
3182                              SelectionDAG &DAG,
3183                              const TargetLowering &TLI) {
3184  isSrcStr = isMemSrcFromString(Src, Str);
3185  bool isSrcConst = isa<ConstantSDNode>(Src);
3186  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3187  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3188  if (VT != MVT::iAny) {
3189    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3190    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3191    // If source is a string constant, this will require an unaligned load.
3192    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3193      if (Dst.getOpcode() != ISD::FrameIndex) {
3194        // Can't change destination alignment. It requires a unaligned store.
3195        if (AllowUnalign)
3196          VT = MVT::iAny;
3197      } else {
3198        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3199        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3200        if (MFI->isFixedObjectIndex(FI)) {
3201          // Can't change destination alignment. It requires a unaligned store.
3202          if (AllowUnalign)
3203            VT = MVT::iAny;
3204        } else {
3205          // Give the stack frame object a larger alignment if needed.
3206          if (MFI->getObjectAlignment(FI) < NewAlign)
3207            MFI->setObjectAlignment(FI, NewAlign);
3208          Align = NewAlign;
3209        }
3210      }
3211    }
3212  }
3213
3214  if (VT == MVT::iAny) {
3215    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3216      VT = MVT::i64;
3217    } else {
3218      switch (Align & 7) {
3219      case 0:  VT = MVT::i64; break;
3220      case 4:  VT = MVT::i32; break;
3221      case 2:  VT = MVT::i16; break;
3222      default: VT = MVT::i8;  break;
3223      }
3224    }
3225
3226    MVT LVT = MVT::i64;
3227    while (!TLI.isTypeLegal(LVT))
3228      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3229    assert(LVT.isInteger());
3230
3231    if (VT.bitsGT(LVT))
3232      VT = LVT;
3233  }
3234
3235  unsigned NumMemOps = 0;
3236  while (Size != 0) {
3237    unsigned VTSize = VT.getSizeInBits() / 8;
3238    while (VTSize > Size) {
3239      // For now, only use non-vector load / store's for the left-over pieces.
3240      if (VT.isVector()) {
3241        VT = MVT::i64;
3242        while (!TLI.isTypeLegal(VT))
3243          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3244        VTSize = VT.getSizeInBits() / 8;
3245      } else {
3246        // This can result in a type that is not legal on the target, e.g.
3247        // 1 or 2 bytes on PPC.
3248        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3249        VTSize >>= 1;
3250      }
3251    }
3252
3253    if (++NumMemOps > Limit)
3254      return false;
3255    MemOps.push_back(VT);
3256    Size -= VTSize;
3257  }
3258
3259  return true;
3260}
3261
3262static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3263                                         SDValue Chain, SDValue Dst,
3264                                         SDValue Src, uint64_t Size,
3265                                         unsigned Align, bool AlwaysInline,
3266                                         const Value *DstSV, uint64_t DstSVOff,
3267                                         const Value *SrcSV, uint64_t SrcSVOff){
3268  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3269
3270  // Expand memcpy to a series of load and store ops if the size operand falls
3271  // below a certain threshold.
3272  std::vector<EVT> MemOps;
3273  uint64_t Limit = -1ULL;
3274  if (!AlwaysInline)
3275    Limit = TLI.getMaxStoresPerMemcpy();
3276  unsigned DstAlign = Align;  // Destination alignment can change.
3277  std::string Str;
3278  bool CopyFromStr;
3279  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3280                                Str, CopyFromStr, DAG, TLI))
3281    return SDValue();
3282
3283
3284  bool isZeroStr = CopyFromStr && Str.empty();
3285  SmallVector<SDValue, 8> OutChains;
3286  unsigned NumMemOps = MemOps.size();
3287  uint64_t SrcOff = 0, DstOff = 0;
3288  for (unsigned i = 0; i != NumMemOps; ++i) {
3289    EVT VT = MemOps[i];
3290    unsigned VTSize = VT.getSizeInBits() / 8;
3291    SDValue Value, Store;
3292
3293    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3294      // It's unlikely a store of a vector immediate can be done in a single
3295      // instruction. It would require a load from a constantpool first.
3296      // We also handle store a vector with all zero's.
3297      // FIXME: Handle other cases where store of vector immediate is done in
3298      // a single instruction.
3299      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3300      Store = DAG.getStore(Chain, dl, Value,
3301                           getMemBasePlusOffset(Dst, DstOff, DAG),
3302                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3303    } else {
3304      // The type might not be legal for the target.  This should only happen
3305      // if the type is smaller than a legal type, as on PPC, so the right
3306      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3307      // to Load/Store if NVT==VT.
3308      // FIXME does the case above also need this?
3309      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3310      assert(NVT.bitsGE(VT));
3311      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3312                             getMemBasePlusOffset(Src, SrcOff, DAG),
3313                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3314      Store = DAG.getTruncStore(Chain, dl, Value,
3315                                getMemBasePlusOffset(Dst, DstOff, DAG),
3316                                DstSV, DstSVOff + DstOff, VT, false, false,
3317                                DstAlign);
3318    }
3319    OutChains.push_back(Store);
3320    SrcOff += VTSize;
3321    DstOff += VTSize;
3322  }
3323
3324  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3325                     &OutChains[0], OutChains.size());
3326}
3327
3328static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3329                                          SDValue Chain, SDValue Dst,
3330                                          SDValue Src, uint64_t Size,
3331                                          unsigned Align, bool AlwaysInline,
3332                                          const Value *DstSV, uint64_t DstSVOff,
3333                                          const Value *SrcSV, uint64_t SrcSVOff){
3334  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3335
3336  // Expand memmove to a series of load and store ops if the size operand falls
3337  // below a certain threshold.
3338  std::vector<EVT> MemOps;
3339  uint64_t Limit = -1ULL;
3340  if (!AlwaysInline)
3341    Limit = TLI.getMaxStoresPerMemmove();
3342  unsigned DstAlign = Align;  // Destination alignment can change.
3343  std::string Str;
3344  bool CopyFromStr;
3345  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3346                                Str, CopyFromStr, DAG, TLI))
3347    return SDValue();
3348
3349  uint64_t SrcOff = 0, DstOff = 0;
3350
3351  SmallVector<SDValue, 8> LoadValues;
3352  SmallVector<SDValue, 8> LoadChains;
3353  SmallVector<SDValue, 8> OutChains;
3354  unsigned NumMemOps = MemOps.size();
3355  for (unsigned i = 0; i < NumMemOps; i++) {
3356    EVT VT = MemOps[i];
3357    unsigned VTSize = VT.getSizeInBits() / 8;
3358    SDValue Value, Store;
3359
3360    Value = DAG.getLoad(VT, dl, Chain,
3361                        getMemBasePlusOffset(Src, SrcOff, DAG),
3362                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3363    LoadValues.push_back(Value);
3364    LoadChains.push_back(Value.getValue(1));
3365    SrcOff += VTSize;
3366  }
3367  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3368                      &LoadChains[0], LoadChains.size());
3369  OutChains.clear();
3370  for (unsigned i = 0; i < NumMemOps; i++) {
3371    EVT VT = MemOps[i];
3372    unsigned VTSize = VT.getSizeInBits() / 8;
3373    SDValue Value, Store;
3374
3375    Store = DAG.getStore(Chain, dl, LoadValues[i],
3376                         getMemBasePlusOffset(Dst, DstOff, DAG),
3377                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3378    OutChains.push_back(Store);
3379    DstOff += VTSize;
3380  }
3381
3382  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3383                     &OutChains[0], OutChains.size());
3384}
3385
3386static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3387                                 SDValue Chain, SDValue Dst,
3388                                 SDValue Src, uint64_t Size,
3389                                 unsigned Align,
3390                                 const Value *DstSV, uint64_t DstSVOff) {
3391  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3392
3393  // Expand memset to a series of load/store ops if the size operand
3394  // falls below a certain threshold.
3395  std::vector<EVT> MemOps;
3396  std::string Str;
3397  bool CopyFromStr;
3398  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3399                                Size, Align, Str, CopyFromStr, DAG, TLI))
3400    return SDValue();
3401
3402  SmallVector<SDValue, 8> OutChains;
3403  uint64_t DstOff = 0;
3404
3405  unsigned NumMemOps = MemOps.size();
3406  for (unsigned i = 0; i < NumMemOps; i++) {
3407    EVT VT = MemOps[i];
3408    unsigned VTSize = VT.getSizeInBits() / 8;
3409    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3410    SDValue Store = DAG.getStore(Chain, dl, Value,
3411                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3412                                 DstSV, DstSVOff + DstOff, false, false, 0);
3413    OutChains.push_back(Store);
3414    DstOff += VTSize;
3415  }
3416
3417  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3418                     &OutChains[0], OutChains.size());
3419}
3420
3421SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3422                                SDValue Src, SDValue Size,
3423                                unsigned Align, bool AlwaysInline,
3424                                const Value *DstSV, uint64_t DstSVOff,
3425                                const Value *SrcSV, uint64_t SrcSVOff) {
3426
3427  // Check to see if we should lower the memcpy to loads and stores first.
3428  // For cases within the target-specified limits, this is the best choice.
3429  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3430  if (ConstantSize) {
3431    // Memcpy with size zero? Just return the original chain.
3432    if (ConstantSize->isNullValue())
3433      return Chain;
3434
3435    SDValue Result =
3436      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3437                              ConstantSize->getZExtValue(),
3438                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3439    if (Result.getNode())
3440      return Result;
3441  }
3442
3443  // Then check to see if we should lower the memcpy with target-specific
3444  // code. If the target chooses to do this, this is the next best.
3445  SDValue Result =
3446    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3447                                AlwaysInline,
3448                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3449  if (Result.getNode())
3450    return Result;
3451
3452  // If we really need inline code and the target declined to provide it,
3453  // use a (potentially long) sequence of loads and stores.
3454  if (AlwaysInline) {
3455    assert(ConstantSize && "AlwaysInline requires a constant size!");
3456    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3457                                   ConstantSize->getZExtValue(), Align, true,
3458                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3459  }
3460
3461  // Emit a library call.
3462  TargetLowering::ArgListTy Args;
3463  TargetLowering::ArgListEntry Entry;
3464  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3465  Entry.Node = Dst; Args.push_back(Entry);
3466  Entry.Node = Src; Args.push_back(Entry);
3467  Entry.Node = Size; Args.push_back(Entry);
3468  // FIXME: pass in DebugLoc
3469  std::pair<SDValue,SDValue> CallResult =
3470    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3471                    false, false, false, false, 0,
3472                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3473                    /*isReturnValueUsed=*/false,
3474                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3475                                      TLI.getPointerTy()),
3476                    Args, *this, dl, GetOrdering(Chain.getNode()));
3477  return CallResult.second;
3478}
3479
3480SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3481                                 SDValue Src, SDValue Size,
3482                                 unsigned Align,
3483                                 const Value *DstSV, uint64_t DstSVOff,
3484                                 const Value *SrcSV, uint64_t SrcSVOff) {
3485
3486  // Check to see if we should lower the memmove to loads and stores first.
3487  // For cases within the target-specified limits, this is the best choice.
3488  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3489  if (ConstantSize) {
3490    // Memmove with size zero? Just return the original chain.
3491    if (ConstantSize->isNullValue())
3492      return Chain;
3493
3494    SDValue Result =
3495      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3496                               ConstantSize->getZExtValue(),
3497                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3498    if (Result.getNode())
3499      return Result;
3500  }
3501
3502  // Then check to see if we should lower the memmove with target-specific
3503  // code. If the target chooses to do this, this is the next best.
3504  SDValue Result =
3505    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3506                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3507  if (Result.getNode())
3508    return Result;
3509
3510  // Emit a library call.
3511  TargetLowering::ArgListTy Args;
3512  TargetLowering::ArgListEntry Entry;
3513  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3514  Entry.Node = Dst; Args.push_back(Entry);
3515  Entry.Node = Src; Args.push_back(Entry);
3516  Entry.Node = Size; Args.push_back(Entry);
3517  // FIXME:  pass in DebugLoc
3518  std::pair<SDValue,SDValue> CallResult =
3519    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3520                    false, false, false, false, 0,
3521                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3522                    /*isReturnValueUsed=*/false,
3523                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3524                                      TLI.getPointerTy()),
3525                    Args, *this, dl, GetOrdering(Chain.getNode()));
3526  return CallResult.second;
3527}
3528
3529SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3530                                SDValue Src, SDValue Size,
3531                                unsigned Align,
3532                                const Value *DstSV, uint64_t DstSVOff) {
3533
3534  // Check to see if we should lower the memset to stores first.
3535  // For cases within the target-specified limits, this is the best choice.
3536  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3537  if (ConstantSize) {
3538    // Memset with size zero? Just return the original chain.
3539    if (ConstantSize->isNullValue())
3540      return Chain;
3541
3542    SDValue Result =
3543      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3544                      Align, DstSV, DstSVOff);
3545    if (Result.getNode())
3546      return Result;
3547  }
3548
3549  // Then check to see if we should lower the memset with target-specific
3550  // code. If the target chooses to do this, this is the next best.
3551  SDValue Result =
3552    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3553                                DstSV, DstSVOff);
3554  if (Result.getNode())
3555    return Result;
3556
3557  // Emit a library call.
3558  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3559  TargetLowering::ArgListTy Args;
3560  TargetLowering::ArgListEntry Entry;
3561  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3562  Args.push_back(Entry);
3563  // Extend or truncate the argument to be an i32 value for the call.
3564  if (Src.getValueType().bitsGT(MVT::i32))
3565    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3566  else
3567    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3568  Entry.Node = Src;
3569  Entry.Ty = Type::getInt32Ty(*getContext());
3570  Entry.isSExt = true;
3571  Args.push_back(Entry);
3572  Entry.Node = Size;
3573  Entry.Ty = IntPtrTy;
3574  Entry.isSExt = false;
3575  Args.push_back(Entry);
3576  // FIXME: pass in DebugLoc
3577  std::pair<SDValue,SDValue> CallResult =
3578    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3579                    false, false, false, false, 0,
3580                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3581                    /*isReturnValueUsed=*/false,
3582                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3583                                      TLI.getPointerTy()),
3584                    Args, *this, dl, GetOrdering(Chain.getNode()));
3585  return CallResult.second;
3586}
3587
3588SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3589                                SDValue Chain,
3590                                SDValue Ptr, SDValue Cmp,
3591                                SDValue Swp, const Value* PtrVal,
3592                                unsigned Alignment) {
3593  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3594    Alignment = getEVTAlignment(MemVT);
3595
3596  // Check if the memory reference references a frame index
3597  if (!PtrVal)
3598    if (const FrameIndexSDNode *FI =
3599          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3600      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3601
3602  MachineFunction &MF = getMachineFunction();
3603  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3604
3605  // For now, atomics are considered to be volatile always.
3606  Flags |= MachineMemOperand::MOVolatile;
3607
3608  MachineMemOperand *MMO =
3609    MF.getMachineMemOperand(PtrVal, Flags, 0,
3610                            MemVT.getStoreSize(), Alignment);
3611
3612  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3613}
3614
3615SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3616                                SDValue Chain,
3617                                SDValue Ptr, SDValue Cmp,
3618                                SDValue Swp, MachineMemOperand *MMO) {
3619  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3620  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3621
3622  EVT VT = Cmp.getValueType();
3623
3624  SDVTList VTs = getVTList(VT, MVT::Other);
3625  FoldingSetNodeID ID;
3626  ID.AddInteger(MemVT.getRawBits());
3627  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3628  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3629  void* IP = 0;
3630  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3631    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3632    return SDValue(E, 0);
3633  }
3634  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3635  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3636  CSEMap.InsertNode(N, IP);
3637  AllNodes.push_back(N);
3638  return SDValue(N, 0);
3639}
3640
3641SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3642                                SDValue Chain,
3643                                SDValue Ptr, SDValue Val,
3644                                const Value* PtrVal,
3645                                unsigned Alignment) {
3646  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3647    Alignment = getEVTAlignment(MemVT);
3648
3649  // Check if the memory reference references a frame index
3650  if (!PtrVal)
3651    if (const FrameIndexSDNode *FI =
3652          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3653      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3654
3655  MachineFunction &MF = getMachineFunction();
3656  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3657
3658  // For now, atomics are considered to be volatile always.
3659  Flags |= MachineMemOperand::MOVolatile;
3660
3661  MachineMemOperand *MMO =
3662    MF.getMachineMemOperand(PtrVal, Flags, 0,
3663                            MemVT.getStoreSize(), Alignment);
3664
3665  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3666}
3667
3668SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3669                                SDValue Chain,
3670                                SDValue Ptr, SDValue Val,
3671                                MachineMemOperand *MMO) {
3672  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3673          Opcode == ISD::ATOMIC_LOAD_SUB ||
3674          Opcode == ISD::ATOMIC_LOAD_AND ||
3675          Opcode == ISD::ATOMIC_LOAD_OR ||
3676          Opcode == ISD::ATOMIC_LOAD_XOR ||
3677          Opcode == ISD::ATOMIC_LOAD_NAND ||
3678          Opcode == ISD::ATOMIC_LOAD_MIN ||
3679          Opcode == ISD::ATOMIC_LOAD_MAX ||
3680          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3681          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3682          Opcode == ISD::ATOMIC_SWAP) &&
3683         "Invalid Atomic Op");
3684
3685  EVT VT = Val.getValueType();
3686
3687  SDVTList VTs = getVTList(VT, MVT::Other);
3688  FoldingSetNodeID ID;
3689  ID.AddInteger(MemVT.getRawBits());
3690  SDValue Ops[] = {Chain, Ptr, Val};
3691  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3692  void* IP = 0;
3693  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3694    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3695    return SDValue(E, 0);
3696  }
3697  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3698  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3699  CSEMap.InsertNode(N, IP);
3700  AllNodes.push_back(N);
3701  return SDValue(N, 0);
3702}
3703
3704/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3705/// Allowed to return something different (and simpler) if Simplify is true.
3706SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3707                                     DebugLoc dl) {
3708  if (NumOps == 1)
3709    return Ops[0];
3710
3711  SmallVector<EVT, 4> VTs;
3712  VTs.reserve(NumOps);
3713  for (unsigned i = 0; i < NumOps; ++i)
3714    VTs.push_back(Ops[i].getValueType());
3715  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3716                 Ops, NumOps);
3717}
3718
3719SDValue
3720SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3721                                  const EVT *VTs, unsigned NumVTs,
3722                                  const SDValue *Ops, unsigned NumOps,
3723                                  EVT MemVT, const Value *srcValue, int SVOff,
3724                                  unsigned Align, bool Vol,
3725                                  bool ReadMem, bool WriteMem) {
3726  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3727                             MemVT, srcValue, SVOff, Align, Vol,
3728                             ReadMem, WriteMem);
3729}
3730
3731SDValue
3732SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3733                                  const SDValue *Ops, unsigned NumOps,
3734                                  EVT MemVT, const Value *srcValue, int SVOff,
3735                                  unsigned Align, bool Vol,
3736                                  bool ReadMem, bool WriteMem) {
3737  if (Align == 0)  // Ensure that codegen never sees alignment 0
3738    Align = getEVTAlignment(MemVT);
3739
3740  MachineFunction &MF = getMachineFunction();
3741  unsigned Flags = 0;
3742  if (WriteMem)
3743    Flags |= MachineMemOperand::MOStore;
3744  if (ReadMem)
3745    Flags |= MachineMemOperand::MOLoad;
3746  if (Vol)
3747    Flags |= MachineMemOperand::MOVolatile;
3748  MachineMemOperand *MMO =
3749    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3750                            MemVT.getStoreSize(), Align);
3751
3752  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3753}
3754
3755SDValue
3756SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3757                                  const SDValue *Ops, unsigned NumOps,
3758                                  EVT MemVT, MachineMemOperand *MMO) {
3759  assert((Opcode == ISD::INTRINSIC_VOID ||
3760          Opcode == ISD::INTRINSIC_W_CHAIN ||
3761          (Opcode <= INT_MAX &&
3762           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3763         "Opcode is not a memory-accessing opcode!");
3764
3765  // Memoize the node unless it returns a flag.
3766  MemIntrinsicSDNode *N;
3767  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3768    FoldingSetNodeID ID;
3769    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3770    void *IP = 0;
3771    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3772      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3773      return SDValue(E, 0);
3774    }
3775
3776    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3777    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3778    CSEMap.InsertNode(N, IP);
3779  } else {
3780    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3781    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3782  }
3783  AllNodes.push_back(N);
3784  return SDValue(N, 0);
3785}
3786
3787SDValue
3788SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3789                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3790                      SDValue Ptr, SDValue Offset,
3791                      const Value *SV, int SVOffset, EVT MemVT,
3792                      bool isVolatile, bool isNonTemporal,
3793                      unsigned Alignment) {
3794  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3795    Alignment = getEVTAlignment(VT);
3796
3797  // Check if the memory reference references a frame index
3798  if (!SV)
3799    if (const FrameIndexSDNode *FI =
3800          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3801      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3802
3803  MachineFunction &MF = getMachineFunction();
3804  unsigned Flags = MachineMemOperand::MOLoad;
3805  if (isVolatile)
3806    Flags |= MachineMemOperand::MOVolatile;
3807  if (isNonTemporal)
3808    Flags |= MachineMemOperand::MONonTemporal;
3809  MachineMemOperand *MMO =
3810    MF.getMachineMemOperand(SV, Flags, SVOffset,
3811                            MemVT.getStoreSize(), Alignment);
3812  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3813}
3814
3815SDValue
3816SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3817                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3818                      SDValue Ptr, SDValue Offset, EVT MemVT,
3819                      MachineMemOperand *MMO) {
3820  if (VT == MemVT) {
3821    ExtType = ISD::NON_EXTLOAD;
3822  } else if (ExtType == ISD::NON_EXTLOAD) {
3823    assert(VT == MemVT && "Non-extending load from different memory type!");
3824  } else {
3825    // Extending load.
3826    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3827           "Should only be an extending load, not truncating!");
3828    assert(VT.isInteger() == MemVT.isInteger() &&
3829           "Cannot convert from FP to Int or Int -> FP!");
3830    assert(VT.isVector() == MemVT.isVector() &&
3831           "Cannot use trunc store to convert to or from a vector!");
3832    assert((!VT.isVector() ||
3833            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3834           "Cannot use trunc store to change the number of vector elements!");
3835  }
3836
3837  bool Indexed = AM != ISD::UNINDEXED;
3838  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3839         "Unindexed load with an offset!");
3840
3841  SDVTList VTs = Indexed ?
3842    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3843  SDValue Ops[] = { Chain, Ptr, Offset };
3844  FoldingSetNodeID ID;
3845  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3846  ID.AddInteger(MemVT.getRawBits());
3847  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3848  void *IP = 0;
3849  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3850    cast<LoadSDNode>(E)->refineAlignment(MMO);
3851    return SDValue(E, 0);
3852  }
3853  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3854  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3855  CSEMap.InsertNode(N, IP);
3856  AllNodes.push_back(N);
3857  return SDValue(N, 0);
3858}
3859
3860SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3861                              SDValue Chain, SDValue Ptr,
3862                              const Value *SV, int SVOffset,
3863                              bool isVolatile, bool isNonTemporal,
3864                              unsigned Alignment) {
3865  SDValue Undef = getUNDEF(Ptr.getValueType());
3866  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3867                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3868}
3869
3870SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3871                                 SDValue Chain, SDValue Ptr,
3872                                 const Value *SV,
3873                                 int SVOffset, EVT MemVT,
3874                                 bool isVolatile, bool isNonTemporal,
3875                                 unsigned Alignment) {
3876  SDValue Undef = getUNDEF(Ptr.getValueType());
3877  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3878                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3879}
3880
3881SDValue
3882SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3883                             SDValue Offset, ISD::MemIndexedMode AM) {
3884  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3885  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3886         "Load is already a indexed load!");
3887  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3888                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3889                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3890                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3891}
3892
3893SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3894                               SDValue Ptr, const Value *SV, int SVOffset,
3895                               bool isVolatile, bool isNonTemporal,
3896                               unsigned Alignment) {
3897  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3898    Alignment = getEVTAlignment(Val.getValueType());
3899
3900  // Check if the memory reference references a frame index
3901  if (!SV)
3902    if (const FrameIndexSDNode *FI =
3903          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3904      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3905
3906  MachineFunction &MF = getMachineFunction();
3907  unsigned Flags = MachineMemOperand::MOStore;
3908  if (isVolatile)
3909    Flags |= MachineMemOperand::MOVolatile;
3910  if (isNonTemporal)
3911    Flags |= MachineMemOperand::MONonTemporal;
3912  MachineMemOperand *MMO =
3913    MF.getMachineMemOperand(SV, Flags, SVOffset,
3914                            Val.getValueType().getStoreSize(), Alignment);
3915
3916  return getStore(Chain, dl, Val, Ptr, MMO);
3917}
3918
3919SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3920                               SDValue Ptr, MachineMemOperand *MMO) {
3921  EVT VT = Val.getValueType();
3922  SDVTList VTs = getVTList(MVT::Other);
3923  SDValue Undef = getUNDEF(Ptr.getValueType());
3924  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3925  FoldingSetNodeID ID;
3926  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3927  ID.AddInteger(VT.getRawBits());
3928  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3929  void *IP = 0;
3930  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3931    cast<StoreSDNode>(E)->refineAlignment(MMO);
3932    return SDValue(E, 0);
3933  }
3934  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3935  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3936  CSEMap.InsertNode(N, IP);
3937  AllNodes.push_back(N);
3938  return SDValue(N, 0);
3939}
3940
3941SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3942                                    SDValue Ptr, const Value *SV,
3943                                    int SVOffset, EVT SVT,
3944                                    bool isVolatile, bool isNonTemporal,
3945                                    unsigned Alignment) {
3946  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3947    Alignment = getEVTAlignment(SVT);
3948
3949  // Check if the memory reference references a frame index
3950  if (!SV)
3951    if (const FrameIndexSDNode *FI =
3952          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3953      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3954
3955  MachineFunction &MF = getMachineFunction();
3956  unsigned Flags = MachineMemOperand::MOStore;
3957  if (isVolatile)
3958    Flags |= MachineMemOperand::MOVolatile;
3959  if (isNonTemporal)
3960    Flags |= MachineMemOperand::MONonTemporal;
3961  MachineMemOperand *MMO =
3962    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3963
3964  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3965}
3966
3967SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3968                                    SDValue Ptr, EVT SVT,
3969                                    MachineMemOperand *MMO) {
3970  EVT VT = Val.getValueType();
3971
3972  if (VT == SVT)
3973    return getStore(Chain, dl, Val, Ptr, MMO);
3974
3975  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3976         "Should only be a truncating store, not extending!");
3977  assert(VT.isInteger() == SVT.isInteger() &&
3978         "Can't do FP-INT conversion!");
3979  assert(VT.isVector() == SVT.isVector() &&
3980         "Cannot use trunc store to convert to or from a vector!");
3981  assert((!VT.isVector() ||
3982          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3983         "Cannot use trunc store to change the number of vector elements!");
3984
3985  SDVTList VTs = getVTList(MVT::Other);
3986  SDValue Undef = getUNDEF(Ptr.getValueType());
3987  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3988  FoldingSetNodeID ID;
3989  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3990  ID.AddInteger(SVT.getRawBits());
3991  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3992  void *IP = 0;
3993  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3994    cast<StoreSDNode>(E)->refineAlignment(MMO);
3995    return SDValue(E, 0);
3996  }
3997  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3998  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3999  CSEMap.InsertNode(N, IP);
4000  AllNodes.push_back(N);
4001  return SDValue(N, 0);
4002}
4003
4004SDValue
4005SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4006                              SDValue Offset, ISD::MemIndexedMode AM) {
4007  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4008  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4009         "Store is already a indexed store!");
4010  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4011  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4012  FoldingSetNodeID ID;
4013  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4014  ID.AddInteger(ST->getMemoryVT().getRawBits());
4015  ID.AddInteger(ST->getRawSubclassData());
4016  void *IP = 0;
4017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4018    return SDValue(E, 0);
4019
4020  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4021  new (N) StoreSDNode(Ops, dl, VTs, AM,
4022                      ST->isTruncatingStore(), ST->getMemoryVT(),
4023                      ST->getMemOperand());
4024  CSEMap.InsertNode(N, IP);
4025  AllNodes.push_back(N);
4026  return SDValue(N, 0);
4027}
4028
4029SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4030                               SDValue Chain, SDValue Ptr,
4031                               SDValue SV) {
4032  SDValue Ops[] = { Chain, Ptr, SV };
4033  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4034}
4035
4036SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4037                              const SDUse *Ops, unsigned NumOps) {
4038  switch (NumOps) {
4039  case 0: return getNode(Opcode, DL, VT);
4040  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4041  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4042  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4043  default: break;
4044  }
4045
4046  // Copy from an SDUse array into an SDValue array for use with
4047  // the regular getNode logic.
4048  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4049  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4050}
4051
4052SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4053                              const SDValue *Ops, unsigned NumOps) {
4054  switch (NumOps) {
4055  case 0: return getNode(Opcode, DL, VT);
4056  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4057  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4058  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4059  default: break;
4060  }
4061
4062  switch (Opcode) {
4063  default: break;
4064  case ISD::SELECT_CC: {
4065    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4066    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4067           "LHS and RHS of condition must have same type!");
4068    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4069           "True and False arms of SelectCC must have same type!");
4070    assert(Ops[2].getValueType() == VT &&
4071           "select_cc node must be of same type as true and false value!");
4072    break;
4073  }
4074  case ISD::BR_CC: {
4075    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4076    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4077           "LHS/RHS of comparison should match types!");
4078    break;
4079  }
4080  }
4081
4082  // Memoize nodes.
4083  SDNode *N;
4084  SDVTList VTs = getVTList(VT);
4085
4086  if (VT != MVT::Flag) {
4087    FoldingSetNodeID ID;
4088    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4089    void *IP = 0;
4090
4091    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4092      return SDValue(E, 0);
4093
4094    N = NodeAllocator.Allocate<SDNode>();
4095    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4096    CSEMap.InsertNode(N, IP);
4097  } else {
4098    N = NodeAllocator.Allocate<SDNode>();
4099    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4100  }
4101
4102  AllNodes.push_back(N);
4103#ifndef NDEBUG
4104  VerifyNode(N);
4105#endif
4106  return SDValue(N, 0);
4107}
4108
4109SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4110                              const std::vector<EVT> &ResultTys,
4111                              const SDValue *Ops, unsigned NumOps) {
4112  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4113                 Ops, NumOps);
4114}
4115
4116SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4117                              const EVT *VTs, unsigned NumVTs,
4118                              const SDValue *Ops, unsigned NumOps) {
4119  if (NumVTs == 1)
4120    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4121  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4122}
4123
4124SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4125                              const SDValue *Ops, unsigned NumOps) {
4126  if (VTList.NumVTs == 1)
4127    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4128
4129#if 0
4130  switch (Opcode) {
4131  // FIXME: figure out how to safely handle things like
4132  // int foo(int x) { return 1 << (x & 255); }
4133  // int bar() { return foo(256); }
4134  case ISD::SRA_PARTS:
4135  case ISD::SRL_PARTS:
4136  case ISD::SHL_PARTS:
4137    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4138        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4139      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4140    else if (N3.getOpcode() == ISD::AND)
4141      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4142        // If the and is only masking out bits that cannot effect the shift,
4143        // eliminate the and.
4144        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4145        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4146          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4147      }
4148    break;
4149  }
4150#endif
4151
4152  // Memoize the node unless it returns a flag.
4153  SDNode *N;
4154  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4155    FoldingSetNodeID ID;
4156    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4157    void *IP = 0;
4158    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4159      return SDValue(E, 0);
4160
4161    if (NumOps == 1) {
4162      N = NodeAllocator.Allocate<UnarySDNode>();
4163      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4164    } else if (NumOps == 2) {
4165      N = NodeAllocator.Allocate<BinarySDNode>();
4166      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4167    } else if (NumOps == 3) {
4168      N = NodeAllocator.Allocate<TernarySDNode>();
4169      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4170    } else {
4171      N = NodeAllocator.Allocate<SDNode>();
4172      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4173    }
4174    CSEMap.InsertNode(N, IP);
4175  } else {
4176    if (NumOps == 1) {
4177      N = NodeAllocator.Allocate<UnarySDNode>();
4178      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4179    } else if (NumOps == 2) {
4180      N = NodeAllocator.Allocate<BinarySDNode>();
4181      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4182    } else if (NumOps == 3) {
4183      N = NodeAllocator.Allocate<TernarySDNode>();
4184      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4185    } else {
4186      N = NodeAllocator.Allocate<SDNode>();
4187      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4188    }
4189  }
4190  AllNodes.push_back(N);
4191#ifndef NDEBUG
4192  VerifyNode(N);
4193#endif
4194  return SDValue(N, 0);
4195}
4196
4197SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4198  return getNode(Opcode, DL, VTList, 0, 0);
4199}
4200
4201SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4202                              SDValue N1) {
4203  SDValue Ops[] = { N1 };
4204  return getNode(Opcode, DL, VTList, Ops, 1);
4205}
4206
4207SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4208                              SDValue N1, SDValue N2) {
4209  SDValue Ops[] = { N1, N2 };
4210  return getNode(Opcode, DL, VTList, Ops, 2);
4211}
4212
4213SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4214                              SDValue N1, SDValue N2, SDValue N3) {
4215  SDValue Ops[] = { N1, N2, N3 };
4216  return getNode(Opcode, DL, VTList, Ops, 3);
4217}
4218
4219SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4220                              SDValue N1, SDValue N2, SDValue N3,
4221                              SDValue N4) {
4222  SDValue Ops[] = { N1, N2, N3, N4 };
4223  return getNode(Opcode, DL, VTList, Ops, 4);
4224}
4225
4226SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4227                              SDValue N1, SDValue N2, SDValue N3,
4228                              SDValue N4, SDValue N5) {
4229  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4230  return getNode(Opcode, DL, VTList, Ops, 5);
4231}
4232
4233SDVTList SelectionDAG::getVTList(EVT VT) {
4234  return makeVTList(SDNode::getValueTypeList(VT), 1);
4235}
4236
4237SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4238  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4239       E = VTList.rend(); I != E; ++I)
4240    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4241      return *I;
4242
4243  EVT *Array = Allocator.Allocate<EVT>(2);
4244  Array[0] = VT1;
4245  Array[1] = VT2;
4246  SDVTList Result = makeVTList(Array, 2);
4247  VTList.push_back(Result);
4248  return Result;
4249}
4250
4251SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4252  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4253       E = VTList.rend(); I != E; ++I)
4254    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4255                          I->VTs[2] == VT3)
4256      return *I;
4257
4258  EVT *Array = Allocator.Allocate<EVT>(3);
4259  Array[0] = VT1;
4260  Array[1] = VT2;
4261  Array[2] = VT3;
4262  SDVTList Result = makeVTList(Array, 3);
4263  VTList.push_back(Result);
4264  return Result;
4265}
4266
4267SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4268  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4269       E = VTList.rend(); I != E; ++I)
4270    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4271                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4272      return *I;
4273
4274  EVT *Array = Allocator.Allocate<EVT>(4);
4275  Array[0] = VT1;
4276  Array[1] = VT2;
4277  Array[2] = VT3;
4278  Array[3] = VT4;
4279  SDVTList Result = makeVTList(Array, 4);
4280  VTList.push_back(Result);
4281  return Result;
4282}
4283
4284SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4285  switch (NumVTs) {
4286    case 0: llvm_unreachable("Cannot have nodes without results!");
4287    case 1: return getVTList(VTs[0]);
4288    case 2: return getVTList(VTs[0], VTs[1]);
4289    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4290    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4291    default: break;
4292  }
4293
4294  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4295       E = VTList.rend(); I != E; ++I) {
4296    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4297      continue;
4298
4299    bool NoMatch = false;
4300    for (unsigned i = 2; i != NumVTs; ++i)
4301      if (VTs[i] != I->VTs[i]) {
4302        NoMatch = true;
4303        break;
4304      }
4305    if (!NoMatch)
4306      return *I;
4307  }
4308
4309  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4310  std::copy(VTs, VTs+NumVTs, Array);
4311  SDVTList Result = makeVTList(Array, NumVTs);
4312  VTList.push_back(Result);
4313  return Result;
4314}
4315
4316
4317/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4318/// specified operands.  If the resultant node already exists in the DAG,
4319/// this does not modify the specified node, instead it returns the node that
4320/// already exists.  If the resultant node does not exist in the DAG, the
4321/// input node is returned.  As a degenerate case, if you specify the same
4322/// input operands as the node already has, the input node is returned.
4323SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4324  SDNode *N = InN.getNode();
4325  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4326
4327  // Check to see if there is no change.
4328  if (Op == N->getOperand(0)) return InN;
4329
4330  // See if the modified node already exists.
4331  void *InsertPos = 0;
4332  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4333    return SDValue(Existing, InN.getResNo());
4334
4335  // Nope it doesn't.  Remove the node from its current place in the maps.
4336  if (InsertPos)
4337    if (!RemoveNodeFromCSEMaps(N))
4338      InsertPos = 0;
4339
4340  // Now we update the operands.
4341  N->OperandList[0].set(Op);
4342
4343  // If this gets put into a CSE map, add it.
4344  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4345  return InN;
4346}
4347
4348SDValue SelectionDAG::
4349UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4350  SDNode *N = InN.getNode();
4351  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4352
4353  // Check to see if there is no change.
4354  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4355    return InN;   // No operands changed, just return the input node.
4356
4357  // See if the modified node already exists.
4358  void *InsertPos = 0;
4359  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4360    return SDValue(Existing, InN.getResNo());
4361
4362  // Nope it doesn't.  Remove the node from its current place in the maps.
4363  if (InsertPos)
4364    if (!RemoveNodeFromCSEMaps(N))
4365      InsertPos = 0;
4366
4367  // Now we update the operands.
4368  if (N->OperandList[0] != Op1)
4369    N->OperandList[0].set(Op1);
4370  if (N->OperandList[1] != Op2)
4371    N->OperandList[1].set(Op2);
4372
4373  // If this gets put into a CSE map, add it.
4374  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4375  return InN;
4376}
4377
4378SDValue SelectionDAG::
4379UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4380  SDValue Ops[] = { Op1, Op2, Op3 };
4381  return UpdateNodeOperands(N, Ops, 3);
4382}
4383
4384SDValue SelectionDAG::
4385UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4386                   SDValue Op3, SDValue Op4) {
4387  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4388  return UpdateNodeOperands(N, Ops, 4);
4389}
4390
4391SDValue SelectionDAG::
4392UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4393                   SDValue Op3, SDValue Op4, SDValue Op5) {
4394  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4395  return UpdateNodeOperands(N, Ops, 5);
4396}
4397
4398SDValue SelectionDAG::
4399UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4400  SDNode *N = InN.getNode();
4401  assert(N->getNumOperands() == NumOps &&
4402         "Update with wrong number of operands");
4403
4404  // Check to see if there is no change.
4405  bool AnyChange = false;
4406  for (unsigned i = 0; i != NumOps; ++i) {
4407    if (Ops[i] != N->getOperand(i)) {
4408      AnyChange = true;
4409      break;
4410    }
4411  }
4412
4413  // No operands changed, just return the input node.
4414  if (!AnyChange) return InN;
4415
4416  // See if the modified node already exists.
4417  void *InsertPos = 0;
4418  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4419    return SDValue(Existing, InN.getResNo());
4420
4421  // Nope it doesn't.  Remove the node from its current place in the maps.
4422  if (InsertPos)
4423    if (!RemoveNodeFromCSEMaps(N))
4424      InsertPos = 0;
4425
4426  // Now we update the operands.
4427  for (unsigned i = 0; i != NumOps; ++i)
4428    if (N->OperandList[i] != Ops[i])
4429      N->OperandList[i].set(Ops[i]);
4430
4431  // If this gets put into a CSE map, add it.
4432  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4433  return InN;
4434}
4435
4436/// DropOperands - Release the operands and set this node to have
4437/// zero operands.
4438void SDNode::DropOperands() {
4439  // Unlike the code in MorphNodeTo that does this, we don't need to
4440  // watch for dead nodes here.
4441  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4442    SDUse &Use = *I++;
4443    Use.set(SDValue());
4444  }
4445}
4446
4447/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4448/// machine opcode.
4449///
4450SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4451                                   EVT VT) {
4452  SDVTList VTs = getVTList(VT);
4453  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4454}
4455
4456SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4457                                   EVT VT, SDValue Op1) {
4458  SDVTList VTs = getVTList(VT);
4459  SDValue Ops[] = { Op1 };
4460  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4461}
4462
4463SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4464                                   EVT VT, SDValue Op1,
4465                                   SDValue Op2) {
4466  SDVTList VTs = getVTList(VT);
4467  SDValue Ops[] = { Op1, Op2 };
4468  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4469}
4470
4471SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4472                                   EVT VT, SDValue Op1,
4473                                   SDValue Op2, SDValue Op3) {
4474  SDVTList VTs = getVTList(VT);
4475  SDValue Ops[] = { Op1, Op2, Op3 };
4476  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4477}
4478
4479SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4480                                   EVT VT, const SDValue *Ops,
4481                                   unsigned NumOps) {
4482  SDVTList VTs = getVTList(VT);
4483  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4484}
4485
4486SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4487                                   EVT VT1, EVT VT2, const SDValue *Ops,
4488                                   unsigned NumOps) {
4489  SDVTList VTs = getVTList(VT1, VT2);
4490  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4491}
4492
4493SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4494                                   EVT VT1, EVT VT2) {
4495  SDVTList VTs = getVTList(VT1, VT2);
4496  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4497}
4498
4499SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4500                                   EVT VT1, EVT VT2, EVT VT3,
4501                                   const SDValue *Ops, unsigned NumOps) {
4502  SDVTList VTs = getVTList(VT1, VT2, VT3);
4503  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4504}
4505
4506SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4507                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4508                                   const SDValue *Ops, unsigned NumOps) {
4509  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4510  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4511}
4512
4513SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4514                                   EVT VT1, EVT VT2,
4515                                   SDValue Op1) {
4516  SDVTList VTs = getVTList(VT1, VT2);
4517  SDValue Ops[] = { Op1 };
4518  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4519}
4520
4521SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4522                                   EVT VT1, EVT VT2,
4523                                   SDValue Op1, SDValue Op2) {
4524  SDVTList VTs = getVTList(VT1, VT2);
4525  SDValue Ops[] = { Op1, Op2 };
4526  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4527}
4528
4529SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4530                                   EVT VT1, EVT VT2,
4531                                   SDValue Op1, SDValue Op2,
4532                                   SDValue Op3) {
4533  SDVTList VTs = getVTList(VT1, VT2);
4534  SDValue Ops[] = { Op1, Op2, Op3 };
4535  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4536}
4537
4538SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4539                                   EVT VT1, EVT VT2, EVT VT3,
4540                                   SDValue Op1, SDValue Op2,
4541                                   SDValue Op3) {
4542  SDVTList VTs = getVTList(VT1, VT2, VT3);
4543  SDValue Ops[] = { Op1, Op2, Op3 };
4544  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4545}
4546
4547SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4548                                   SDVTList VTs, const SDValue *Ops,
4549                                   unsigned NumOps) {
4550  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4551}
4552
4553SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4554                                  EVT VT) {
4555  SDVTList VTs = getVTList(VT);
4556  return MorphNodeTo(N, Opc, VTs, 0, 0);
4557}
4558
4559SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4560                                  EVT VT, SDValue Op1) {
4561  SDVTList VTs = getVTList(VT);
4562  SDValue Ops[] = { Op1 };
4563  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4564}
4565
4566SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4567                                  EVT VT, SDValue Op1,
4568                                  SDValue Op2) {
4569  SDVTList VTs = getVTList(VT);
4570  SDValue Ops[] = { Op1, Op2 };
4571  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4572}
4573
4574SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4575                                  EVT VT, SDValue Op1,
4576                                  SDValue Op2, SDValue Op3) {
4577  SDVTList VTs = getVTList(VT);
4578  SDValue Ops[] = { Op1, Op2, Op3 };
4579  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4580}
4581
4582SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4583                                  EVT VT, const SDValue *Ops,
4584                                  unsigned NumOps) {
4585  SDVTList VTs = getVTList(VT);
4586  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4587}
4588
4589SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4590                                  EVT VT1, EVT VT2, const SDValue *Ops,
4591                                  unsigned NumOps) {
4592  SDVTList VTs = getVTList(VT1, VT2);
4593  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4594}
4595
4596SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4597                                  EVT VT1, EVT VT2) {
4598  SDVTList VTs = getVTList(VT1, VT2);
4599  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4600}
4601
4602SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4603                                  EVT VT1, EVT VT2, EVT VT3,
4604                                  const SDValue *Ops, unsigned NumOps) {
4605  SDVTList VTs = getVTList(VT1, VT2, VT3);
4606  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4607}
4608
4609SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4610                                  EVT VT1, EVT VT2,
4611                                  SDValue Op1) {
4612  SDVTList VTs = getVTList(VT1, VT2);
4613  SDValue Ops[] = { Op1 };
4614  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4615}
4616
4617SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4618                                  EVT VT1, EVT VT2,
4619                                  SDValue Op1, SDValue Op2) {
4620  SDVTList VTs = getVTList(VT1, VT2);
4621  SDValue Ops[] = { Op1, Op2 };
4622  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4623}
4624
4625SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4626                                  EVT VT1, EVT VT2,
4627                                  SDValue Op1, SDValue Op2,
4628                                  SDValue Op3) {
4629  SDVTList VTs = getVTList(VT1, VT2);
4630  SDValue Ops[] = { Op1, Op2, Op3 };
4631  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4632}
4633
4634/// MorphNodeTo - These *mutate* the specified node to have the specified
4635/// return type, opcode, and operands.
4636///
4637/// Note that MorphNodeTo returns the resultant node.  If there is already a
4638/// node of the specified opcode and operands, it returns that node instead of
4639/// the current one.  Note that the DebugLoc need not be the same.
4640///
4641/// Using MorphNodeTo is faster than creating a new node and swapping it in
4642/// with ReplaceAllUsesWith both because it often avoids allocating a new
4643/// node, and because it doesn't require CSE recalculation for any of
4644/// the node's users.
4645///
4646SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4647                                  SDVTList VTs, const SDValue *Ops,
4648                                  unsigned NumOps) {
4649  // If an identical node already exists, use it.
4650  void *IP = 0;
4651  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4652    FoldingSetNodeID ID;
4653    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4654    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4655      return ON;
4656  }
4657
4658  if (!RemoveNodeFromCSEMaps(N))
4659    IP = 0;
4660
4661  // Start the morphing.
4662  N->NodeType = Opc;
4663  N->ValueList = VTs.VTs;
4664  N->NumValues = VTs.NumVTs;
4665
4666  // Clear the operands list, updating used nodes to remove this from their
4667  // use list.  Keep track of any operands that become dead as a result.
4668  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4669  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4670    SDUse &Use = *I++;
4671    SDNode *Used = Use.getNode();
4672    Use.set(SDValue());
4673    if (Used->use_empty())
4674      DeadNodeSet.insert(Used);
4675  }
4676
4677  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4678    // Initialize the memory references information.
4679    MN->setMemRefs(0, 0);
4680    // If NumOps is larger than the # of operands we can have in a
4681    // MachineSDNode, reallocate the operand list.
4682    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4683      if (MN->OperandsNeedDelete)
4684        delete[] MN->OperandList;
4685      if (NumOps > array_lengthof(MN->LocalOperands))
4686        // We're creating a final node that will live unmorphed for the
4687        // remainder of the current SelectionDAG iteration, so we can allocate
4688        // the operands directly out of a pool with no recycling metadata.
4689        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4690                        Ops, NumOps);
4691      else
4692        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4693      MN->OperandsNeedDelete = false;
4694    } else
4695      MN->InitOperands(MN->OperandList, Ops, NumOps);
4696  } else {
4697    // If NumOps is larger than the # of operands we currently have, reallocate
4698    // the operand list.
4699    if (NumOps > N->NumOperands) {
4700      if (N->OperandsNeedDelete)
4701        delete[] N->OperandList;
4702      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4703      N->OperandsNeedDelete = true;
4704    } else
4705      N->InitOperands(N->OperandList, Ops, NumOps);
4706  }
4707
4708  // Delete any nodes that are still dead after adding the uses for the
4709  // new operands.
4710  SmallVector<SDNode *, 16> DeadNodes;
4711  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4712       E = DeadNodeSet.end(); I != E; ++I)
4713    if ((*I)->use_empty())
4714      DeadNodes.push_back(*I);
4715  RemoveDeadNodes(DeadNodes);
4716
4717  if (IP)
4718    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4719  return N;
4720}
4721
4722
4723/// getMachineNode - These are used for target selectors to create a new node
4724/// with specified return type(s), MachineInstr opcode, and operands.
4725///
4726/// Note that getMachineNode returns the resultant node.  If there is already a
4727/// node of the specified opcode and operands, it returns that node instead of
4728/// the current one.
4729MachineSDNode *
4730SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4731  SDVTList VTs = getVTList(VT);
4732  return getMachineNode(Opcode, dl, VTs, 0, 0);
4733}
4734
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4737  SDVTList VTs = getVTList(VT);
4738  SDValue Ops[] = { Op1 };
4739  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4740}
4741
4742MachineSDNode *
4743SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4744                             SDValue Op1, SDValue Op2) {
4745  SDVTList VTs = getVTList(VT);
4746  SDValue Ops[] = { Op1, Op2 };
4747  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4748}
4749
4750MachineSDNode *
4751SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4752                             SDValue Op1, SDValue Op2, SDValue Op3) {
4753  SDVTList VTs = getVTList(VT);
4754  SDValue Ops[] = { Op1, Op2, Op3 };
4755  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4756}
4757
4758MachineSDNode *
4759SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4760                             const SDValue *Ops, unsigned NumOps) {
4761  SDVTList VTs = getVTList(VT);
4762  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4763}
4764
4765MachineSDNode *
4766SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4767  SDVTList VTs = getVTList(VT1, VT2);
4768  return getMachineNode(Opcode, dl, VTs, 0, 0);
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4773                             EVT VT1, EVT VT2, SDValue Op1) {
4774  SDVTList VTs = getVTList(VT1, VT2);
4775  SDValue Ops[] = { Op1 };
4776  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4777}
4778
4779MachineSDNode *
4780SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4781                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4782  SDVTList VTs = getVTList(VT1, VT2);
4783  SDValue Ops[] = { Op1, Op2 };
4784  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4785}
4786
4787MachineSDNode *
4788SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4789                             EVT VT1, EVT VT2, SDValue Op1,
4790                             SDValue Op2, SDValue Op3) {
4791  SDVTList VTs = getVTList(VT1, VT2);
4792  SDValue Ops[] = { Op1, Op2, Op3 };
4793  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4794}
4795
4796MachineSDNode *
4797SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4798                             EVT VT1, EVT VT2,
4799                             const SDValue *Ops, unsigned NumOps) {
4800  SDVTList VTs = getVTList(VT1, VT2);
4801  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4802}
4803
4804MachineSDNode *
4805SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4806                             EVT VT1, EVT VT2, EVT VT3,
4807                             SDValue Op1, SDValue Op2) {
4808  SDVTList VTs = getVTList(VT1, VT2, VT3);
4809  SDValue Ops[] = { Op1, Op2 };
4810  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4811}
4812
4813MachineSDNode *
4814SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4815                             EVT VT1, EVT VT2, EVT VT3,
4816                             SDValue Op1, SDValue Op2, SDValue Op3) {
4817  SDVTList VTs = getVTList(VT1, VT2, VT3);
4818  SDValue Ops[] = { Op1, Op2, Op3 };
4819  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4820}
4821
4822MachineSDNode *
4823SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4824                             EVT VT1, EVT VT2, EVT VT3,
4825                             const SDValue *Ops, unsigned NumOps) {
4826  SDVTList VTs = getVTList(VT1, VT2, VT3);
4827  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4828}
4829
4830MachineSDNode *
4831SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4832                             EVT VT2, EVT VT3, EVT VT4,
4833                             const SDValue *Ops, unsigned NumOps) {
4834  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4835  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4836}
4837
4838MachineSDNode *
4839SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4840                             const std::vector<EVT> &ResultTys,
4841                             const SDValue *Ops, unsigned NumOps) {
4842  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4843  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4844}
4845
4846MachineSDNode *
4847SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4848                             const SDValue *Ops, unsigned NumOps) {
4849  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4850  MachineSDNode *N;
4851  void *IP;
4852
4853  if (DoCSE) {
4854    FoldingSetNodeID ID;
4855    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4856    IP = 0;
4857    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4858      return cast<MachineSDNode>(E);
4859  }
4860
4861  // Allocate a new MachineSDNode.
4862  N = NodeAllocator.Allocate<MachineSDNode>();
4863  new (N) MachineSDNode(~Opcode, DL, VTs);
4864
4865  // Initialize the operands list.
4866  if (NumOps > array_lengthof(N->LocalOperands))
4867    // We're creating a final node that will live unmorphed for the
4868    // remainder of the current SelectionDAG iteration, so we can allocate
4869    // the operands directly out of a pool with no recycling metadata.
4870    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4871                    Ops, NumOps);
4872  else
4873    N->InitOperands(N->LocalOperands, Ops, NumOps);
4874  N->OperandsNeedDelete = false;
4875
4876  if (DoCSE)
4877    CSEMap.InsertNode(N, IP);
4878
4879  AllNodes.push_back(N);
4880#ifndef NDEBUG
4881  VerifyNode(N);
4882#endif
4883  return N;
4884}
4885
4886/// getTargetExtractSubreg - A convenience function for creating
4887/// TargetOpcode::EXTRACT_SUBREG nodes.
4888SDValue
4889SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4890                                     SDValue Operand) {
4891  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4892  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4893                                  VT, Operand, SRIdxVal);
4894  return SDValue(Subreg, 0);
4895}
4896
4897/// getTargetInsertSubreg - A convenience function for creating
4898/// TargetOpcode::INSERT_SUBREG nodes.
4899SDValue
4900SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4901                                    SDValue Operand, SDValue Subreg) {
4902  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4903  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4904                                  VT, Operand, Subreg, SRIdxVal);
4905  return SDValue(Result, 0);
4906}
4907
4908/// getNodeIfExists - Get the specified node if it's already available, or
4909/// else return NULL.
4910SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4911                                      const SDValue *Ops, unsigned NumOps) {
4912  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4913    FoldingSetNodeID ID;
4914    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4915    void *IP = 0;
4916    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4917      return E;
4918  }
4919  return NULL;
4920}
4921
4922/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4923/// This can cause recursive merging of nodes in the DAG.
4924///
4925/// This version assumes From has a single result value.
4926///
4927void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4928                                      DAGUpdateListener *UpdateListener) {
4929  SDNode *From = FromN.getNode();
4930  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4931         "Cannot replace with this method!");
4932  assert(From != To.getNode() && "Cannot replace uses of with self");
4933
4934  // Iterate over all the existing uses of From. New uses will be added
4935  // to the beginning of the use list, which we avoid visiting.
4936  // This specifically avoids visiting uses of From that arise while the
4937  // replacement is happening, because any such uses would be the result
4938  // of CSE: If an existing node looks like From after one of its operands
4939  // is replaced by To, we don't want to replace of all its users with To
4940  // too. See PR3018 for more info.
4941  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4942  while (UI != UE) {
4943    SDNode *User = *UI;
4944
4945    // This node is about to morph, remove its old self from the CSE maps.
4946    RemoveNodeFromCSEMaps(User);
4947
4948    // A user can appear in a use list multiple times, and when this
4949    // happens the uses are usually next to each other in the list.
4950    // To help reduce the number of CSE recomputations, process all
4951    // the uses of this user that we can find this way.
4952    do {
4953      SDUse &Use = UI.getUse();
4954      ++UI;
4955      Use.set(To);
4956    } while (UI != UE && *UI == User);
4957
4958    // Now that we have modified User, add it back to the CSE maps.  If it
4959    // already exists there, recursively merge the results together.
4960    AddModifiedNodeToCSEMaps(User, UpdateListener);
4961  }
4962}
4963
4964/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4965/// This can cause recursive merging of nodes in the DAG.
4966///
4967/// This version assumes that for each value of From, there is a
4968/// corresponding value in To in the same position with the same type.
4969///
4970void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4971                                      DAGUpdateListener *UpdateListener) {
4972#ifndef NDEBUG
4973  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4974    assert((!From->hasAnyUseOfValue(i) ||
4975            From->getValueType(i) == To->getValueType(i)) &&
4976           "Cannot use this version of ReplaceAllUsesWith!");
4977#endif
4978
4979  // Handle the trivial case.
4980  if (From == To)
4981    return;
4982
4983  // Iterate over just the existing users of From. See the comments in
4984  // the ReplaceAllUsesWith above.
4985  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4986  while (UI != UE) {
4987    SDNode *User = *UI;
4988
4989    // This node is about to morph, remove its old self from the CSE maps.
4990    RemoveNodeFromCSEMaps(User);
4991
4992    // A user can appear in a use list multiple times, and when this
4993    // happens the uses are usually next to each other in the list.
4994    // To help reduce the number of CSE recomputations, process all
4995    // the uses of this user that we can find this way.
4996    do {
4997      SDUse &Use = UI.getUse();
4998      ++UI;
4999      Use.setNode(To);
5000    } while (UI != UE && *UI == User);
5001
5002    // Now that we have modified User, add it back to the CSE maps.  If it
5003    // already exists there, recursively merge the results together.
5004    AddModifiedNodeToCSEMaps(User, UpdateListener);
5005  }
5006}
5007
5008/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5009/// This can cause recursive merging of nodes in the DAG.
5010///
5011/// This version can replace From with any result values.  To must match the
5012/// number and types of values returned by From.
5013void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5014                                      const SDValue *To,
5015                                      DAGUpdateListener *UpdateListener) {
5016  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5017    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5018
5019  // Iterate over just the existing users of From. See the comments in
5020  // the ReplaceAllUsesWith above.
5021  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5022  while (UI != UE) {
5023    SDNode *User = *UI;
5024
5025    // This node is about to morph, remove its old self from the CSE maps.
5026    RemoveNodeFromCSEMaps(User);
5027
5028    // A user can appear in a use list multiple times, and when this
5029    // happens the uses are usually next to each other in the list.
5030    // To help reduce the number of CSE recomputations, process all
5031    // the uses of this user that we can find this way.
5032    do {
5033      SDUse &Use = UI.getUse();
5034      const SDValue &ToOp = To[Use.getResNo()];
5035      ++UI;
5036      Use.set(ToOp);
5037    } while (UI != UE && *UI == User);
5038
5039    // Now that we have modified User, add it back to the CSE maps.  If it
5040    // already exists there, recursively merge the results together.
5041    AddModifiedNodeToCSEMaps(User, UpdateListener);
5042  }
5043}
5044
5045/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5046/// uses of other values produced by From.getNode() alone.  The Deleted
5047/// vector is handled the same way as for ReplaceAllUsesWith.
5048void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5049                                             DAGUpdateListener *UpdateListener){
5050  // Handle the really simple, really trivial case efficiently.
5051  if (From == To) return;
5052
5053  // Handle the simple, trivial, case efficiently.
5054  if (From.getNode()->getNumValues() == 1) {
5055    ReplaceAllUsesWith(From, To, UpdateListener);
5056    return;
5057  }
5058
5059  // Iterate over just the existing users of From. See the comments in
5060  // the ReplaceAllUsesWith above.
5061  SDNode::use_iterator UI = From.getNode()->use_begin(),
5062                       UE = From.getNode()->use_end();
5063  while (UI != UE) {
5064    SDNode *User = *UI;
5065    bool UserRemovedFromCSEMaps = false;
5066
5067    // A user can appear in a use list multiple times, and when this
5068    // happens the uses are usually next to each other in the list.
5069    // To help reduce the number of CSE recomputations, process all
5070    // the uses of this user that we can find this way.
5071    do {
5072      SDUse &Use = UI.getUse();
5073
5074      // Skip uses of different values from the same node.
5075      if (Use.getResNo() != From.getResNo()) {
5076        ++UI;
5077        continue;
5078      }
5079
5080      // If this node hasn't been modified yet, it's still in the CSE maps,
5081      // so remove its old self from the CSE maps.
5082      if (!UserRemovedFromCSEMaps) {
5083        RemoveNodeFromCSEMaps(User);
5084        UserRemovedFromCSEMaps = true;
5085      }
5086
5087      ++UI;
5088      Use.set(To);
5089    } while (UI != UE && *UI == User);
5090
5091    // We are iterating over all uses of the From node, so if a use
5092    // doesn't use the specific value, no changes are made.
5093    if (!UserRemovedFromCSEMaps)
5094      continue;
5095
5096    // Now that we have modified User, add it back to the CSE maps.  If it
5097    // already exists there, recursively merge the results together.
5098    AddModifiedNodeToCSEMaps(User, UpdateListener);
5099  }
5100}
5101
5102namespace {
5103  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5104  /// to record information about a use.
5105  struct UseMemo {
5106    SDNode *User;
5107    unsigned Index;
5108    SDUse *Use;
5109  };
5110
5111  /// operator< - Sort Memos by User.
5112  bool operator<(const UseMemo &L, const UseMemo &R) {
5113    return (intptr_t)L.User < (intptr_t)R.User;
5114  }
5115}
5116
5117/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5118/// uses of other values produced by From.getNode() alone.  The same value
5119/// may appear in both the From and To list.  The Deleted vector is
5120/// handled the same way as for ReplaceAllUsesWith.
5121void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5122                                              const SDValue *To,
5123                                              unsigned Num,
5124                                              DAGUpdateListener *UpdateListener){
5125  // Handle the simple, trivial case efficiently.
5126  if (Num == 1)
5127    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5128
5129  // Read up all the uses and make records of them. This helps
5130  // processing new uses that are introduced during the
5131  // replacement process.
5132  SmallVector<UseMemo, 4> Uses;
5133  for (unsigned i = 0; i != Num; ++i) {
5134    unsigned FromResNo = From[i].getResNo();
5135    SDNode *FromNode = From[i].getNode();
5136    for (SDNode::use_iterator UI = FromNode->use_begin(),
5137         E = FromNode->use_end(); UI != E; ++UI) {
5138      SDUse &Use = UI.getUse();
5139      if (Use.getResNo() == FromResNo) {
5140        UseMemo Memo = { *UI, i, &Use };
5141        Uses.push_back(Memo);
5142      }
5143    }
5144  }
5145
5146  // Sort the uses, so that all the uses from a given User are together.
5147  std::sort(Uses.begin(), Uses.end());
5148
5149  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5150       UseIndex != UseIndexEnd; ) {
5151    // We know that this user uses some value of From.  If it is the right
5152    // value, update it.
5153    SDNode *User = Uses[UseIndex].User;
5154
5155    // This node is about to morph, remove its old self from the CSE maps.
5156    RemoveNodeFromCSEMaps(User);
5157
5158    // The Uses array is sorted, so all the uses for a given User
5159    // are next to each other in the list.
5160    // To help reduce the number of CSE recomputations, process all
5161    // the uses of this user that we can find this way.
5162    do {
5163      unsigned i = Uses[UseIndex].Index;
5164      SDUse &Use = *Uses[UseIndex].Use;
5165      ++UseIndex;
5166
5167      Use.set(To[i]);
5168    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5169
5170    // Now that we have modified User, add it back to the CSE maps.  If it
5171    // already exists there, recursively merge the results together.
5172    AddModifiedNodeToCSEMaps(User, UpdateListener);
5173  }
5174}
5175
5176/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5177/// based on their topological order. It returns the maximum id and a vector
5178/// of the SDNodes* in assigned order by reference.
5179unsigned SelectionDAG::AssignTopologicalOrder() {
5180
5181  unsigned DAGSize = 0;
5182
5183  // SortedPos tracks the progress of the algorithm. Nodes before it are
5184  // sorted, nodes after it are unsorted. When the algorithm completes
5185  // it is at the end of the list.
5186  allnodes_iterator SortedPos = allnodes_begin();
5187
5188  // Visit all the nodes. Move nodes with no operands to the front of
5189  // the list immediately. Annotate nodes that do have operands with their
5190  // operand count. Before we do this, the Node Id fields of the nodes
5191  // may contain arbitrary values. After, the Node Id fields for nodes
5192  // before SortedPos will contain the topological sort index, and the
5193  // Node Id fields for nodes At SortedPos and after will contain the
5194  // count of outstanding operands.
5195  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5196    SDNode *N = I++;
5197    checkForCycles(N);
5198    unsigned Degree = N->getNumOperands();
5199    if (Degree == 0) {
5200      // A node with no uses, add it to the result array immediately.
5201      N->setNodeId(DAGSize++);
5202      allnodes_iterator Q = N;
5203      if (Q != SortedPos)
5204        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5205      assert(SortedPos != AllNodes.end() && "Overran node list");
5206      ++SortedPos;
5207    } else {
5208      // Temporarily use the Node Id as scratch space for the degree count.
5209      N->setNodeId(Degree);
5210    }
5211  }
5212
5213  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5214  // such that by the time the end is reached all nodes will be sorted.
5215  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5216    SDNode *N = I;
5217    checkForCycles(N);
5218    // N is in sorted position, so all its uses have one less operand
5219    // that needs to be sorted.
5220    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5221         UI != UE; ++UI) {
5222      SDNode *P = *UI;
5223      unsigned Degree = P->getNodeId();
5224      assert(Degree != 0 && "Invalid node degree");
5225      --Degree;
5226      if (Degree == 0) {
5227        // All of P's operands are sorted, so P may sorted now.
5228        P->setNodeId(DAGSize++);
5229        if (P != SortedPos)
5230          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5231        assert(SortedPos != AllNodes.end() && "Overran node list");
5232        ++SortedPos;
5233      } else {
5234        // Update P's outstanding operand count.
5235        P->setNodeId(Degree);
5236      }
5237    }
5238    if (I == SortedPos) {
5239#ifndef NDEBUG
5240      SDNode *S = ++I;
5241      dbgs() << "Overran sorted position:\n";
5242      S->dumprFull();
5243#endif
5244      llvm_unreachable(0);
5245    }
5246  }
5247
5248  assert(SortedPos == AllNodes.end() &&
5249         "Topological sort incomplete!");
5250  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5251         "First node in topological sort is not the entry token!");
5252  assert(AllNodes.front().getNodeId() == 0 &&
5253         "First node in topological sort has non-zero id!");
5254  assert(AllNodes.front().getNumOperands() == 0 &&
5255         "First node in topological sort has operands!");
5256  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5257         "Last node in topologic sort has unexpected id!");
5258  assert(AllNodes.back().use_empty() &&
5259         "Last node in topologic sort has users!");
5260  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5261  return DAGSize;
5262}
5263
5264/// AssignOrdering - Assign an order to the SDNode.
5265void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5266  assert(SD && "Trying to assign an order to a null node!");
5267  Ordering->add(SD, Order);
5268}
5269
5270/// GetOrdering - Get the order for the SDNode.
5271unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5272  assert(SD && "Trying to get the order of a null node!");
5273  return Ordering->getOrder(SD);
5274}
5275
5276
5277//===----------------------------------------------------------------------===//
5278//                              SDNode Class
5279//===----------------------------------------------------------------------===//
5280
5281HandleSDNode::~HandleSDNode() {
5282  DropOperands();
5283}
5284
5285GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5286                                         EVT VT, int64_t o, unsigned char TF)
5287  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5288    Offset(o), TargetFlags(TF) {
5289  TheGlobal = const_cast<GlobalValue*>(GA);
5290}
5291
5292MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5293                     MachineMemOperand *mmo)
5294 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5295  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5296  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5297  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5298}
5299
5300MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5301                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5302                     MachineMemOperand *mmo)
5303   : SDNode(Opc, dl, VTs, Ops, NumOps),
5304     MemoryVT(memvt), MMO(mmo) {
5305  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5306  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5307  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5308}
5309
5310/// Profile - Gather unique data for the node.
5311///
5312void SDNode::Profile(FoldingSetNodeID &ID) const {
5313  AddNodeIDNode(ID, this);
5314}
5315
5316namespace {
5317  struct EVTArray {
5318    std::vector<EVT> VTs;
5319
5320    EVTArray() {
5321      VTs.reserve(MVT::LAST_VALUETYPE);
5322      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5323        VTs.push_back(MVT((MVT::SimpleValueType)i));
5324    }
5325  };
5326}
5327
5328static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5329static ManagedStatic<EVTArray> SimpleVTArray;
5330static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5331
5332/// getValueTypeList - Return a pointer to the specified value type.
5333///
5334const EVT *SDNode::getValueTypeList(EVT VT) {
5335  if (VT.isExtended()) {
5336    sys::SmartScopedLock<true> Lock(*VTMutex);
5337    return &(*EVTs->insert(VT).first);
5338  } else {
5339    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5340  }
5341}
5342
5343/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5344/// indicated value.  This method ignores uses of other values defined by this
5345/// operation.
5346bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5347  assert(Value < getNumValues() && "Bad value!");
5348
5349  // TODO: Only iterate over uses of a given value of the node
5350  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5351    if (UI.getUse().getResNo() == Value) {
5352      if (NUses == 0)
5353        return false;
5354      --NUses;
5355    }
5356  }
5357
5358  // Found exactly the right number of uses?
5359  return NUses == 0;
5360}
5361
5362
5363/// hasAnyUseOfValue - Return true if there are any use of the indicated
5364/// value. This method ignores uses of other values defined by this operation.
5365bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5366  assert(Value < getNumValues() && "Bad value!");
5367
5368  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5369    if (UI.getUse().getResNo() == Value)
5370      return true;
5371
5372  return false;
5373}
5374
5375
5376/// isOnlyUserOf - Return true if this node is the only use of N.
5377///
5378bool SDNode::isOnlyUserOf(SDNode *N) const {
5379  bool Seen = false;
5380  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5381    SDNode *User = *I;
5382    if (User == this)
5383      Seen = true;
5384    else
5385      return false;
5386  }
5387
5388  return Seen;
5389}
5390
5391/// isOperand - Return true if this node is an operand of N.
5392///
5393bool SDValue::isOperandOf(SDNode *N) const {
5394  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5395    if (*this == N->getOperand(i))
5396      return true;
5397  return false;
5398}
5399
5400bool SDNode::isOperandOf(SDNode *N) const {
5401  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5402    if (this == N->OperandList[i].getNode())
5403      return true;
5404  return false;
5405}
5406
5407/// reachesChainWithoutSideEffects - Return true if this operand (which must
5408/// be a chain) reaches the specified operand without crossing any
5409/// side-effecting instructions.  In practice, this looks through token
5410/// factors and non-volatile loads.  In order to remain efficient, this only
5411/// looks a couple of nodes in, it does not do an exhaustive search.
5412bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5413                                               unsigned Depth) const {
5414  if (*this == Dest) return true;
5415
5416  // Don't search too deeply, we just want to be able to see through
5417  // TokenFactor's etc.
5418  if (Depth == 0) return false;
5419
5420  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5421  // of the operands of the TF reach dest, then we can do the xform.
5422  if (getOpcode() == ISD::TokenFactor) {
5423    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5424      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5425        return true;
5426    return false;
5427  }
5428
5429  // Loads don't have side effects, look through them.
5430  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5431    if (!Ld->isVolatile())
5432      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5433  }
5434  return false;
5435}
5436
5437/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5438/// is either an operand of N or it can be reached by traversing up the operands.
5439/// NOTE: this is an expensive method. Use it carefully.
5440bool SDNode::isPredecessorOf(SDNode *N) const {
5441  SmallPtrSet<SDNode *, 32> Visited;
5442  SmallVector<SDNode *, 16> Worklist;
5443  Worklist.push_back(N);
5444
5445  do {
5446    N = Worklist.pop_back_val();
5447    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5448      SDNode *Op = N->getOperand(i).getNode();
5449      if (Op == this)
5450        return true;
5451      if (Visited.insert(Op))
5452        Worklist.push_back(Op);
5453    }
5454  } while (!Worklist.empty());
5455
5456  return false;
5457}
5458
5459uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5460  assert(Num < NumOperands && "Invalid child # of SDNode!");
5461  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5462}
5463
5464std::string SDNode::getOperationName(const SelectionDAG *G) const {
5465  switch (getOpcode()) {
5466  default:
5467    if (getOpcode() < ISD::BUILTIN_OP_END)
5468      return "<<Unknown DAG Node>>";
5469    if (isMachineOpcode()) {
5470      if (G)
5471        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5472          if (getMachineOpcode() < TII->getNumOpcodes())
5473            return TII->get(getMachineOpcode()).getName();
5474      return "<<Unknown Machine Node>>";
5475    }
5476    if (G) {
5477      const TargetLowering &TLI = G->getTargetLoweringInfo();
5478      const char *Name = TLI.getTargetNodeName(getOpcode());
5479      if (Name) return Name;
5480      return "<<Unknown Target Node>>";
5481    }
5482    return "<<Unknown Node>>";
5483
5484#ifndef NDEBUG
5485  case ISD::DELETED_NODE:
5486    return "<<Deleted Node!>>";
5487#endif
5488  case ISD::PREFETCH:      return "Prefetch";
5489  case ISD::MEMBARRIER:    return "MemBarrier";
5490  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5491  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5492  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5493  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5494  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5495  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5496  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5497  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5498  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5499  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5500  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5501  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5502  case ISD::PCMARKER:      return "PCMarker";
5503  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5504  case ISD::SRCVALUE:      return "SrcValue";
5505  case ISD::EntryToken:    return "EntryToken";
5506  case ISD::TokenFactor:   return "TokenFactor";
5507  case ISD::AssertSext:    return "AssertSext";
5508  case ISD::AssertZext:    return "AssertZext";
5509
5510  case ISD::BasicBlock:    return "BasicBlock";
5511  case ISD::VALUETYPE:     return "ValueType";
5512  case ISD::Register:      return "Register";
5513
5514  case ISD::Constant:      return "Constant";
5515  case ISD::ConstantFP:    return "ConstantFP";
5516  case ISD::GlobalAddress: return "GlobalAddress";
5517  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5518  case ISD::FrameIndex:    return "FrameIndex";
5519  case ISD::JumpTable:     return "JumpTable";
5520  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5521  case ISD::RETURNADDR: return "RETURNADDR";
5522  case ISD::FRAMEADDR: return "FRAMEADDR";
5523  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5524  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5525  case ISD::LSDAADDR: return "LSDAADDR";
5526  case ISD::EHSELECTION: return "EHSELECTION";
5527  case ISD::EH_RETURN: return "EH_RETURN";
5528  case ISD::ConstantPool:  return "ConstantPool";
5529  case ISD::ExternalSymbol: return "ExternalSymbol";
5530  case ISD::BlockAddress:  return "BlockAddress";
5531  case ISD::INTRINSIC_WO_CHAIN:
5532  case ISD::INTRINSIC_VOID:
5533  case ISD::INTRINSIC_W_CHAIN: {
5534    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5535    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5536    if (IID < Intrinsic::num_intrinsics)
5537      return Intrinsic::getName((Intrinsic::ID)IID);
5538    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5539      return TII->getName(IID);
5540    llvm_unreachable("Invalid intrinsic ID");
5541  }
5542
5543  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5544  case ISD::TargetConstant: return "TargetConstant";
5545  case ISD::TargetConstantFP:return "TargetConstantFP";
5546  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5547  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5548  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5549  case ISD::TargetJumpTable:  return "TargetJumpTable";
5550  case ISD::TargetConstantPool:  return "TargetConstantPool";
5551  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5552  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5553
5554  case ISD::CopyToReg:     return "CopyToReg";
5555  case ISD::CopyFromReg:   return "CopyFromReg";
5556  case ISD::UNDEF:         return "undef";
5557  case ISD::MERGE_VALUES:  return "merge_values";
5558  case ISD::INLINEASM:     return "inlineasm";
5559  case ISD::EH_LABEL:      return "eh_label";
5560  case ISD::HANDLENODE:    return "handlenode";
5561
5562  // Unary operators
5563  case ISD::FABS:   return "fabs";
5564  case ISD::FNEG:   return "fneg";
5565  case ISD::FSQRT:  return "fsqrt";
5566  case ISD::FSIN:   return "fsin";
5567  case ISD::FCOS:   return "fcos";
5568  case ISD::FPOWI:  return "fpowi";
5569  case ISD::FPOW:   return "fpow";
5570  case ISD::FTRUNC: return "ftrunc";
5571  case ISD::FFLOOR: return "ffloor";
5572  case ISD::FCEIL:  return "fceil";
5573  case ISD::FRINT:  return "frint";
5574  case ISD::FNEARBYINT: return "fnearbyint";
5575
5576  // Binary operators
5577  case ISD::ADD:    return "add";
5578  case ISD::SUB:    return "sub";
5579  case ISD::MUL:    return "mul";
5580  case ISD::MULHU:  return "mulhu";
5581  case ISD::MULHS:  return "mulhs";
5582  case ISD::SDIV:   return "sdiv";
5583  case ISD::UDIV:   return "udiv";
5584  case ISD::SREM:   return "srem";
5585  case ISD::UREM:   return "urem";
5586  case ISD::SMUL_LOHI:  return "smul_lohi";
5587  case ISD::UMUL_LOHI:  return "umul_lohi";
5588  case ISD::SDIVREM:    return "sdivrem";
5589  case ISD::UDIVREM:    return "udivrem";
5590  case ISD::AND:    return "and";
5591  case ISD::OR:     return "or";
5592  case ISD::XOR:    return "xor";
5593  case ISD::SHL:    return "shl";
5594  case ISD::SRA:    return "sra";
5595  case ISD::SRL:    return "srl";
5596  case ISD::ROTL:   return "rotl";
5597  case ISD::ROTR:   return "rotr";
5598  case ISD::FADD:   return "fadd";
5599  case ISD::FSUB:   return "fsub";
5600  case ISD::FMUL:   return "fmul";
5601  case ISD::FDIV:   return "fdiv";
5602  case ISD::FREM:   return "frem";
5603  case ISD::FCOPYSIGN: return "fcopysign";
5604  case ISD::FGETSIGN:  return "fgetsign";
5605
5606  case ISD::SETCC:       return "setcc";
5607  case ISD::VSETCC:      return "vsetcc";
5608  case ISD::SELECT:      return "select";
5609  case ISD::SELECT_CC:   return "select_cc";
5610  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5611  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5612  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5613  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5614  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5615  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5616  case ISD::CARRY_FALSE:         return "carry_false";
5617  case ISD::ADDC:        return "addc";
5618  case ISD::ADDE:        return "adde";
5619  case ISD::SADDO:       return "saddo";
5620  case ISD::UADDO:       return "uaddo";
5621  case ISD::SSUBO:       return "ssubo";
5622  case ISD::USUBO:       return "usubo";
5623  case ISD::SMULO:       return "smulo";
5624  case ISD::UMULO:       return "umulo";
5625  case ISD::SUBC:        return "subc";
5626  case ISD::SUBE:        return "sube";
5627  case ISD::SHL_PARTS:   return "shl_parts";
5628  case ISD::SRA_PARTS:   return "sra_parts";
5629  case ISD::SRL_PARTS:   return "srl_parts";
5630
5631  // Conversion operators.
5632  case ISD::SIGN_EXTEND: return "sign_extend";
5633  case ISD::ZERO_EXTEND: return "zero_extend";
5634  case ISD::ANY_EXTEND:  return "any_extend";
5635  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5636  case ISD::TRUNCATE:    return "truncate";
5637  case ISD::FP_ROUND:    return "fp_round";
5638  case ISD::FLT_ROUNDS_: return "flt_rounds";
5639  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5640  case ISD::FP_EXTEND:   return "fp_extend";
5641
5642  case ISD::SINT_TO_FP:  return "sint_to_fp";
5643  case ISD::UINT_TO_FP:  return "uint_to_fp";
5644  case ISD::FP_TO_SINT:  return "fp_to_sint";
5645  case ISD::FP_TO_UINT:  return "fp_to_uint";
5646  case ISD::BIT_CONVERT: return "bit_convert";
5647
5648  case ISD::CONVERT_RNDSAT: {
5649    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5650    default: llvm_unreachable("Unknown cvt code!");
5651    case ISD::CVT_FF:  return "cvt_ff";
5652    case ISD::CVT_FS:  return "cvt_fs";
5653    case ISD::CVT_FU:  return "cvt_fu";
5654    case ISD::CVT_SF:  return "cvt_sf";
5655    case ISD::CVT_UF:  return "cvt_uf";
5656    case ISD::CVT_SS:  return "cvt_ss";
5657    case ISD::CVT_SU:  return "cvt_su";
5658    case ISD::CVT_US:  return "cvt_us";
5659    case ISD::CVT_UU:  return "cvt_uu";
5660    }
5661  }
5662
5663    // Control flow instructions
5664  case ISD::BR:      return "br";
5665  case ISD::BRIND:   return "brind";
5666  case ISD::BR_JT:   return "br_jt";
5667  case ISD::BRCOND:  return "brcond";
5668  case ISD::BR_CC:   return "br_cc";
5669  case ISD::CALLSEQ_START:  return "callseq_start";
5670  case ISD::CALLSEQ_END:    return "callseq_end";
5671
5672    // Other operators
5673  case ISD::LOAD:               return "load";
5674  case ISD::STORE:              return "store";
5675  case ISD::VAARG:              return "vaarg";
5676  case ISD::VACOPY:             return "vacopy";
5677  case ISD::VAEND:              return "vaend";
5678  case ISD::VASTART:            return "vastart";
5679  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5680  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5681  case ISD::BUILD_PAIR:         return "build_pair";
5682  case ISD::STACKSAVE:          return "stacksave";
5683  case ISD::STACKRESTORE:       return "stackrestore";
5684  case ISD::TRAP:               return "trap";
5685
5686  // Bit manipulation
5687  case ISD::BSWAP:   return "bswap";
5688  case ISD::CTPOP:   return "ctpop";
5689  case ISD::CTTZ:    return "cttz";
5690  case ISD::CTLZ:    return "ctlz";
5691
5692  // Trampolines
5693  case ISD::TRAMPOLINE: return "trampoline";
5694
5695  case ISD::CONDCODE:
5696    switch (cast<CondCodeSDNode>(this)->get()) {
5697    default: llvm_unreachable("Unknown setcc condition!");
5698    case ISD::SETOEQ:  return "setoeq";
5699    case ISD::SETOGT:  return "setogt";
5700    case ISD::SETOGE:  return "setoge";
5701    case ISD::SETOLT:  return "setolt";
5702    case ISD::SETOLE:  return "setole";
5703    case ISD::SETONE:  return "setone";
5704
5705    case ISD::SETO:    return "seto";
5706    case ISD::SETUO:   return "setuo";
5707    case ISD::SETUEQ:  return "setue";
5708    case ISD::SETUGT:  return "setugt";
5709    case ISD::SETUGE:  return "setuge";
5710    case ISD::SETULT:  return "setult";
5711    case ISD::SETULE:  return "setule";
5712    case ISD::SETUNE:  return "setune";
5713
5714    case ISD::SETEQ:   return "seteq";
5715    case ISD::SETGT:   return "setgt";
5716    case ISD::SETGE:   return "setge";
5717    case ISD::SETLT:   return "setlt";
5718    case ISD::SETLE:   return "setle";
5719    case ISD::SETNE:   return "setne";
5720    }
5721  }
5722}
5723
5724const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5725  switch (AM) {
5726  default:
5727    return "";
5728  case ISD::PRE_INC:
5729    return "<pre-inc>";
5730  case ISD::PRE_DEC:
5731    return "<pre-dec>";
5732  case ISD::POST_INC:
5733    return "<post-inc>";
5734  case ISD::POST_DEC:
5735    return "<post-dec>";
5736  }
5737}
5738
5739std::string ISD::ArgFlagsTy::getArgFlagsString() {
5740  std::string S = "< ";
5741
5742  if (isZExt())
5743    S += "zext ";
5744  if (isSExt())
5745    S += "sext ";
5746  if (isInReg())
5747    S += "inreg ";
5748  if (isSRet())
5749    S += "sret ";
5750  if (isByVal())
5751    S += "byval ";
5752  if (isNest())
5753    S += "nest ";
5754  if (getByValAlign())
5755    S += "byval-align:" + utostr(getByValAlign()) + " ";
5756  if (getOrigAlign())
5757    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5758  if (getByValSize())
5759    S += "byval-size:" + utostr(getByValSize()) + " ";
5760  return S + ">";
5761}
5762
5763void SDNode::dump() const { dump(0); }
5764void SDNode::dump(const SelectionDAG *G) const {
5765  print(dbgs(), G);
5766}
5767
5768void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5769  OS << (void*)this << ": ";
5770
5771  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5772    if (i) OS << ",";
5773    if (getValueType(i) == MVT::Other)
5774      OS << "ch";
5775    else
5776      OS << getValueType(i).getEVTString();
5777  }
5778  OS << " = " << getOperationName(G);
5779}
5780
5781void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5782  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5783    if (!MN->memoperands_empty()) {
5784      OS << "<";
5785      OS << "Mem:";
5786      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5787           e = MN->memoperands_end(); i != e; ++i) {
5788        OS << **i;
5789        if (next(i) != e)
5790          OS << " ";
5791      }
5792      OS << ">";
5793    }
5794  } else if (const ShuffleVectorSDNode *SVN =
5795               dyn_cast<ShuffleVectorSDNode>(this)) {
5796    OS << "<";
5797    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5798      int Idx = SVN->getMaskElt(i);
5799      if (i) OS << ",";
5800      if (Idx < 0)
5801        OS << "u";
5802      else
5803        OS << Idx;
5804    }
5805    OS << ">";
5806  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5807    OS << '<' << CSDN->getAPIntValue() << '>';
5808  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5809    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5810      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5811    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5812      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5813    else {
5814      OS << "<APFloat(";
5815      CSDN->getValueAPF().bitcastToAPInt().dump();
5816      OS << ")>";
5817    }
5818  } else if (const GlobalAddressSDNode *GADN =
5819             dyn_cast<GlobalAddressSDNode>(this)) {
5820    int64_t offset = GADN->getOffset();
5821    OS << '<';
5822    WriteAsOperand(OS, GADN->getGlobal());
5823    OS << '>';
5824    if (offset > 0)
5825      OS << " + " << offset;
5826    else
5827      OS << " " << offset;
5828    if (unsigned int TF = GADN->getTargetFlags())
5829      OS << " [TF=" << TF << ']';
5830  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5831    OS << "<" << FIDN->getIndex() << ">";
5832  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5833    OS << "<" << JTDN->getIndex() << ">";
5834    if (unsigned int TF = JTDN->getTargetFlags())
5835      OS << " [TF=" << TF << ']';
5836  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5837    int offset = CP->getOffset();
5838    if (CP->isMachineConstantPoolEntry())
5839      OS << "<" << *CP->getMachineCPVal() << ">";
5840    else
5841      OS << "<" << *CP->getConstVal() << ">";
5842    if (offset > 0)
5843      OS << " + " << offset;
5844    else
5845      OS << " " << offset;
5846    if (unsigned int TF = CP->getTargetFlags())
5847      OS << " [TF=" << TF << ']';
5848  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5849    OS << "<";
5850    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5851    if (LBB)
5852      OS << LBB->getName() << " ";
5853    OS << (const void*)BBDN->getBasicBlock() << ">";
5854  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5855    if (G && R->getReg() &&
5856        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5857      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5858    } else {
5859      OS << " %reg" << R->getReg();
5860    }
5861  } else if (const ExternalSymbolSDNode *ES =
5862             dyn_cast<ExternalSymbolSDNode>(this)) {
5863    OS << "'" << ES->getSymbol() << "'";
5864    if (unsigned int TF = ES->getTargetFlags())
5865      OS << " [TF=" << TF << ']';
5866  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5867    if (M->getValue())
5868      OS << "<" << M->getValue() << ">";
5869    else
5870      OS << "<null>";
5871  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5872    OS << ":" << N->getVT().getEVTString();
5873  }
5874  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5875    OS << "<" << *LD->getMemOperand();
5876
5877    bool doExt = true;
5878    switch (LD->getExtensionType()) {
5879    default: doExt = false; break;
5880    case ISD::EXTLOAD: OS << ", anyext"; break;
5881    case ISD::SEXTLOAD: OS << ", sext"; break;
5882    case ISD::ZEXTLOAD: OS << ", zext"; break;
5883    }
5884    if (doExt)
5885      OS << " from " << LD->getMemoryVT().getEVTString();
5886
5887    const char *AM = getIndexedModeName(LD->getAddressingMode());
5888    if (*AM)
5889      OS << ", " << AM;
5890
5891    OS << ">";
5892  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5893    OS << "<" << *ST->getMemOperand();
5894
5895    if (ST->isTruncatingStore())
5896      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5897
5898    const char *AM = getIndexedModeName(ST->getAddressingMode());
5899    if (*AM)
5900      OS << ", " << AM;
5901
5902    OS << ">";
5903  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5904    OS << "<" << *M->getMemOperand() << ">";
5905  } else if (const BlockAddressSDNode *BA =
5906               dyn_cast<BlockAddressSDNode>(this)) {
5907    OS << "<";
5908    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5909    OS << ", ";
5910    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5911    OS << ">";
5912    if (unsigned int TF = BA->getTargetFlags())
5913      OS << " [TF=" << TF << ']';
5914  }
5915
5916  if (G)
5917    if (unsigned Order = G->GetOrdering(this))
5918      OS << " [ORD=" << Order << ']';
5919}
5920
5921void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5922  print_types(OS, G);
5923  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5924    if (i) OS << ", "; else OS << " ";
5925    OS << (void*)getOperand(i).getNode();
5926    if (unsigned RN = getOperand(i).getResNo())
5927      OS << ":" << RN;
5928  }
5929  print_details(OS, G);
5930}
5931
5932static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5933                                  const SelectionDAG *G, unsigned depth,
5934                                  unsigned indent)
5935{
5936  if (depth == 0)
5937    return;
5938
5939  OS.indent(indent);
5940
5941  N->print(OS, G);
5942
5943  if (depth < 1)
5944    return;
5945
5946  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5947    OS << '\n';
5948    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5949  }
5950}
5951
5952void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5953                            unsigned depth) const {
5954  printrWithDepthHelper(OS, this, G, depth, 0);
5955}
5956
5957void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5958  // Don't print impossibly deep things.
5959  printrWithDepth(OS, G, 100);
5960}
5961
5962void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5963  printrWithDepth(dbgs(), G, depth);
5964}
5965
5966void SDNode::dumprFull(const SelectionDAG *G) const {
5967  // Don't print impossibly deep things.
5968  dumprWithDepth(G, 100);
5969}
5970
5971static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5972  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5973    if (N->getOperand(i).getNode()->hasOneUse())
5974      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5975    else
5976      dbgs() << "\n" << std::string(indent+2, ' ')
5977           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5978
5979
5980  dbgs() << "\n";
5981  dbgs().indent(indent);
5982  N->dump(G);
5983}
5984
5985SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5986  assert(N->getNumValues() == 1 &&
5987         "Can't unroll a vector with multiple results!");
5988
5989  EVT VT = N->getValueType(0);
5990  unsigned NE = VT.getVectorNumElements();
5991  EVT EltVT = VT.getVectorElementType();
5992  DebugLoc dl = N->getDebugLoc();
5993
5994  SmallVector<SDValue, 8> Scalars;
5995  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5996
5997  // If ResNE is 0, fully unroll the vector op.
5998  if (ResNE == 0)
5999    ResNE = NE;
6000  else if (NE > ResNE)
6001    NE = ResNE;
6002
6003  unsigned i;
6004  for (i= 0; i != NE; ++i) {
6005    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6006      SDValue Operand = N->getOperand(j);
6007      EVT OperandVT = Operand.getValueType();
6008      if (OperandVT.isVector()) {
6009        // A vector operand; extract a single element.
6010        EVT OperandEltVT = OperandVT.getVectorElementType();
6011        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6012                              OperandEltVT,
6013                              Operand,
6014                              getConstant(i, MVT::i32));
6015      } else {
6016        // A scalar operand; just use it as is.
6017        Operands[j] = Operand;
6018      }
6019    }
6020
6021    switch (N->getOpcode()) {
6022    default:
6023      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6024                                &Operands[0], Operands.size()));
6025      break;
6026    case ISD::SHL:
6027    case ISD::SRA:
6028    case ISD::SRL:
6029    case ISD::ROTL:
6030    case ISD::ROTR:
6031      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6032                                getShiftAmountOperand(Operands[1])));
6033      break;
6034    case ISD::SIGN_EXTEND_INREG:
6035    case ISD::FP_ROUND_INREG: {
6036      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6037      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6038                                Operands[0],
6039                                getValueType(ExtVT)));
6040    }
6041    }
6042  }
6043
6044  for (; i < ResNE; ++i)
6045    Scalars.push_back(getUNDEF(EltVT));
6046
6047  return getNode(ISD::BUILD_VECTOR, dl,
6048                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6049                 &Scalars[0], Scalars.size());
6050}
6051
6052
6053/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6054/// location that is 'Dist' units away from the location that the 'Base' load
6055/// is loading from.
6056bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6057                                     unsigned Bytes, int Dist) const {
6058  if (LD->getChain() != Base->getChain())
6059    return false;
6060  EVT VT = LD->getValueType(0);
6061  if (VT.getSizeInBits() / 8 != Bytes)
6062    return false;
6063
6064  SDValue Loc = LD->getOperand(1);
6065  SDValue BaseLoc = Base->getOperand(1);
6066  if (Loc.getOpcode() == ISD::FrameIndex) {
6067    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6068      return false;
6069    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6070    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6071    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6072    int FS  = MFI->getObjectSize(FI);
6073    int BFS = MFI->getObjectSize(BFI);
6074    if (FS != BFS || FS != (int)Bytes) return false;
6075    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6076  }
6077  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6078    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6079    if (V && (V->getSExtValue() == Dist*Bytes))
6080      return true;
6081  }
6082
6083  GlobalValue *GV1 = NULL;
6084  GlobalValue *GV2 = NULL;
6085  int64_t Offset1 = 0;
6086  int64_t Offset2 = 0;
6087  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6088  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6089  if (isGA1 && isGA2 && GV1 == GV2)
6090    return Offset1 == (Offset2 + Dist*Bytes);
6091  return false;
6092}
6093
6094
6095/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6096/// it cannot be inferred.
6097unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6098  // If this is a GlobalAddress + cst, return the alignment.
6099  GlobalValue *GV;
6100  int64_t GVOffset = 0;
6101  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6102    return MinAlign(GV->getAlignment(), GVOffset);
6103
6104  // If this is a direct reference to a stack slot, use information about the
6105  // stack slot's alignment.
6106  int FrameIdx = 1 << 31;
6107  int64_t FrameOffset = 0;
6108  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6109    FrameIdx = FI->getIndex();
6110  } else if (Ptr.getOpcode() == ISD::ADD &&
6111             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6112             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6113    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6114    FrameOffset = Ptr.getConstantOperandVal(1);
6115  }
6116
6117  if (FrameIdx != (1 << 31)) {
6118    // FIXME: Handle FI+CST.
6119    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6120    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6121                                    FrameOffset);
6122    if (MFI.isFixedObjectIndex(FrameIdx)) {
6123      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6124
6125      // The alignment of the frame index can be determined from its offset from
6126      // the incoming frame position.  If the frame object is at offset 32 and
6127      // the stack is guaranteed to be 16-byte aligned, then we know that the
6128      // object is 16-byte aligned.
6129      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6130      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6131
6132      // Finally, the frame object itself may have a known alignment.  Factor
6133      // the alignment + offset into a new alignment.  For example, if we know
6134      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6135      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6136      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6137      return std::max(Align, FIInfoAlign);
6138    }
6139    return FIInfoAlign;
6140  }
6141
6142  return 0;
6143}
6144
6145void SelectionDAG::dump() const {
6146  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6147
6148  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6149       I != E; ++I) {
6150    const SDNode *N = I;
6151    if (!N->hasOneUse() && N != getRoot().getNode())
6152      DumpNodes(N, 2, this);
6153  }
6154
6155  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6156
6157  dbgs() << "\n\n";
6158}
6159
6160void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6161  print_types(OS, G);
6162  print_details(OS, G);
6163}
6164
6165typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6166static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6167                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6168  if (!once.insert(N))          // If we've been here before, return now.
6169    return;
6170
6171  // Dump the current SDNode, but don't end the line yet.
6172  OS << std::string(indent, ' ');
6173  N->printr(OS, G);
6174
6175  // Having printed this SDNode, walk the children:
6176  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6177    const SDNode *child = N->getOperand(i).getNode();
6178
6179    if (i) OS << ",";
6180    OS << " ";
6181
6182    if (child->getNumOperands() == 0) {
6183      // This child has no grandchildren; print it inline right here.
6184      child->printr(OS, G);
6185      once.insert(child);
6186    } else {         // Just the address. FIXME: also print the child's opcode.
6187      OS << (void*)child;
6188      if (unsigned RN = N->getOperand(i).getResNo())
6189        OS << ":" << RN;
6190    }
6191  }
6192
6193  OS << "\n";
6194
6195  // Dump children that have grandchildren on their own line(s).
6196  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6197    const SDNode *child = N->getOperand(i).getNode();
6198    DumpNodesr(OS, child, indent+2, G, once);
6199  }
6200}
6201
6202void SDNode::dumpr() const {
6203  VisitedSDNodeSet once;
6204  DumpNodesr(dbgs(), this, 0, 0, once);
6205}
6206
6207void SDNode::dumpr(const SelectionDAG *G) const {
6208  VisitedSDNodeSet once;
6209  DumpNodesr(dbgs(), this, 0, G, once);
6210}
6211
6212
6213// getAddressSpace - Return the address space this GlobalAddress belongs to.
6214unsigned GlobalAddressSDNode::getAddressSpace() const {
6215  return getGlobal()->getType()->getAddressSpace();
6216}
6217
6218
6219const Type *ConstantPoolSDNode::getType() const {
6220  if (isMachineConstantPoolEntry())
6221    return Val.MachineCPVal->getType();
6222  return Val.ConstVal->getType();
6223}
6224
6225bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6226                                        APInt &SplatUndef,
6227                                        unsigned &SplatBitSize,
6228                                        bool &HasAnyUndefs,
6229                                        unsigned MinSplatBits,
6230                                        bool isBigEndian) {
6231  EVT VT = getValueType(0);
6232  assert(VT.isVector() && "Expected a vector type");
6233  unsigned sz = VT.getSizeInBits();
6234  if (MinSplatBits > sz)
6235    return false;
6236
6237  SplatValue = APInt(sz, 0);
6238  SplatUndef = APInt(sz, 0);
6239
6240  // Get the bits.  Bits with undefined values (when the corresponding element
6241  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6242  // in SplatValue.  If any of the values are not constant, give up and return
6243  // false.
6244  unsigned int nOps = getNumOperands();
6245  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6246  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6247
6248  for (unsigned j = 0; j < nOps; ++j) {
6249    unsigned i = isBigEndian ? nOps-1-j : j;
6250    SDValue OpVal = getOperand(i);
6251    unsigned BitPos = j * EltBitSize;
6252
6253    if (OpVal.getOpcode() == ISD::UNDEF)
6254      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6255    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6256      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6257                     zextOrTrunc(sz) << BitPos);
6258    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6259      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6260     else
6261      return false;
6262  }
6263
6264  // The build_vector is all constants or undefs.  Find the smallest element
6265  // size that splats the vector.
6266
6267  HasAnyUndefs = (SplatUndef != 0);
6268  while (sz > 8) {
6269
6270    unsigned HalfSize = sz / 2;
6271    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6272    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6273    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6274    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6275
6276    // If the two halves do not match (ignoring undef bits), stop here.
6277    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6278        MinSplatBits > HalfSize)
6279      break;
6280
6281    SplatValue = HighValue | LowValue;
6282    SplatUndef = HighUndef & LowUndef;
6283
6284    sz = HalfSize;
6285  }
6286
6287  SplatBitSize = sz;
6288  return true;
6289}
6290
6291bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6292  // Find the first non-undef value in the shuffle mask.
6293  unsigned i, e;
6294  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6295    /* search */;
6296
6297  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6298
6299  // Make sure all remaining elements are either undef or the same as the first
6300  // non-undef value.
6301  for (int Idx = Mask[i]; i != e; ++i)
6302    if (Mask[i] >= 0 && Mask[i] != Idx)
6303      return false;
6304  return true;
6305}
6306
6307static void checkForCyclesHelper(const SDNode *N,
6308                                 std::set<const SDNode *> &visited) {
6309  if (visited.find(N) != visited.end()) {
6310    dbgs() << "Offending node:\n";
6311    N->dumprFull();
6312    assert(0 && "Detected cycle in SelectionDAG");
6313  }
6314
6315  std::set<const SDNode*>::iterator i;
6316  bool inserted;
6317
6318  tie(i, inserted) = visited.insert(N);
6319  assert(inserted && "Missed cycle");
6320
6321  for(unsigned i = 0; i < N->getNumOperands(); ++i) {
6322    checkForCyclesHelper(N->getOperand(i).getNode(), visited);
6323  }
6324  visited.erase(i);
6325}
6326
6327void llvm::checkForCycles(const llvm::SDNode *N) {
6328#ifdef XDEBUG
6329  assert(N && "Checking nonexistant SDNode");
6330  std::set<const SDNode *> visited;
6331  checkForCyclesHelper(N, visited);
6332#endif
6333}
6334
6335void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6336  checkForCycles(DAG->getRoot().getNode());
6337}
6338