SelectionDAG.cpp revision 1e608819aa26c06b1552521469f2211339e3bfe0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetIntrinsicInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/ManagedStatic.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/System/Mutex.h"
41#include "llvm/ADT/SetVector.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/StringExtras.h"
46#include <algorithm>
47#include <cmath>
48using namespace llvm;
49
50/// makeVTList - Return an instance of the SDVTList struct initialized with the
51/// specified members.
52static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
53  SDVTList Res = {VTs, NumVTs};
54  return Res;
55}
56
57static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
58  switch (VT.getSimpleVT().SimpleTy) {
59  default: llvm_unreachable("Unknown FP format");
60  case MVT::f32:     return &APFloat::IEEEsingle;
61  case MVT::f64:     return &APFloat::IEEEdouble;
62  case MVT::f80:     return &APFloat::x87DoubleExtended;
63  case MVT::f128:    return &APFloat::IEEEquad;
64  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
65  }
66}
67
68SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
69
70//===----------------------------------------------------------------------===//
71//                              ConstantFPSDNode Class
72//===----------------------------------------------------------------------===//
73
74/// isExactlyValue - We don't rely on operator== working on double values, as
75/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
76/// As such, this method can be used to do an exact bit-for-bit comparison of
77/// two floating point values.
78bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
79  return getValueAPF().bitwiseIsEqual(V);
80}
81
82bool ConstantFPSDNode::isValueValidForType(EVT VT,
83                                           const APFloat& Val) {
84  assert(VT.isFloatingPoint() && "Can only convert between FP types");
85
86  // PPC long double cannot be converted to any other type.
87  if (VT == MVT::ppcf128 ||
88      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
89    return false;
90
91  // convert modifies in place, so make a copy.
92  APFloat Val2 = APFloat(Val);
93  bool losesInfo;
94  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
95                      &losesInfo);
96  return !losesInfo;
97}
98
99//===----------------------------------------------------------------------===//
100//                              ISD Namespace
101//===----------------------------------------------------------------------===//
102
103/// isBuildVectorAllOnes - Return true if the specified node is a
104/// BUILD_VECTOR where all of the elements are ~0 or undef.
105bool ISD::isBuildVectorAllOnes(const SDNode *N) {
106  // Look through a bit convert.
107  if (N->getOpcode() == ISD::BIT_CONVERT)
108    N = N->getOperand(0).getNode();
109
110  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
111
112  unsigned i = 0, e = N->getNumOperands();
113
114  // Skip over all of the undef values.
115  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
116    ++i;
117
118  // Do not accept an all-undef vector.
119  if (i == e) return false;
120
121  // Do not accept build_vectors that aren't all constants or which have non-~0
122  // elements.
123  SDValue NotZero = N->getOperand(i);
124  if (isa<ConstantSDNode>(NotZero)) {
125    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
126      return false;
127  } else if (isa<ConstantFPSDNode>(NotZero)) {
128    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
129                bitcastToAPInt().isAllOnesValue())
130      return false;
131  } else
132    return false;
133
134  // Okay, we have at least one ~0 value, check to see if the rest match or are
135  // undefs.
136  for (++i; i != e; ++i)
137    if (N->getOperand(i) != NotZero &&
138        N->getOperand(i).getOpcode() != ISD::UNDEF)
139      return false;
140  return true;
141}
142
143
144/// isBuildVectorAllZeros - Return true if the specified node is a
145/// BUILD_VECTOR where all of the elements are 0 or undef.
146bool ISD::isBuildVectorAllZeros(const SDNode *N) {
147  // Look through a bit convert.
148  if (N->getOpcode() == ISD::BIT_CONVERT)
149    N = N->getOperand(0).getNode();
150
151  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
152
153  unsigned i = 0, e = N->getNumOperands();
154
155  // Skip over all of the undef values.
156  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
157    ++i;
158
159  // Do not accept an all-undef vector.
160  if (i == e) return false;
161
162  // Do not accept build_vectors that aren't all constants or which have non-0
163  // elements.
164  SDValue Zero = N->getOperand(i);
165  if (isa<ConstantSDNode>(Zero)) {
166    if (!cast<ConstantSDNode>(Zero)->isNullValue())
167      return false;
168  } else if (isa<ConstantFPSDNode>(Zero)) {
169    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
170      return false;
171  } else
172    return false;
173
174  // Okay, we have at least one 0 value, check to see if the rest match or are
175  // undefs.
176  for (++i; i != e; ++i)
177    if (N->getOperand(i) != Zero &&
178        N->getOperand(i).getOpcode() != ISD::UNDEF)
179      return false;
180  return true;
181}
182
183/// isScalarToVector - Return true if the specified node is a
184/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
185/// element is not an undef.
186bool ISD::isScalarToVector(const SDNode *N) {
187  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
188    return true;
189
190  if (N->getOpcode() != ISD::BUILD_VECTOR)
191    return false;
192  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
193    return false;
194  unsigned NumElems = N->getNumOperands();
195  for (unsigned i = 1; i < NumElems; ++i) {
196    SDValue V = N->getOperand(i);
197    if (V.getOpcode() != ISD::UNDEF)
198      return false;
199  }
200  return true;
201}
202
203
204/// isDebugLabel - Return true if the specified node represents a debug
205/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
206bool ISD::isDebugLabel(const SDNode *N) {
207  SDValue Zero;
208  if (N->getOpcode() == ISD::DBG_LABEL)
209    return true;
210  if (N->isMachineOpcode() &&
211      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
212    return true;
213  return false;
214}
215
216/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
217/// when given the operation for (X op Y).
218ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
219  // To perform this operation, we just need to swap the L and G bits of the
220  // operation.
221  unsigned OldL = (Operation >> 2) & 1;
222  unsigned OldG = (Operation >> 1) & 1;
223  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
224                       (OldL << 1) |       // New G bit
225                       (OldG << 2));       // New L bit.
226}
227
228/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
229/// 'op' is a valid SetCC operation.
230ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
231  unsigned Operation = Op;
232  if (isInteger)
233    Operation ^= 7;   // Flip L, G, E bits, but not U.
234  else
235    Operation ^= 15;  // Flip all of the condition bits.
236
237  if (Operation > ISD::SETTRUE2)
238    Operation &= ~8;  // Don't let N and U bits get set.
239
240  return ISD::CondCode(Operation);
241}
242
243
244/// isSignedOp - For an integer comparison, return 1 if the comparison is a
245/// signed operation and 2 if the result is an unsigned comparison.  Return zero
246/// if the operation does not depend on the sign of the input (setne and seteq).
247static int isSignedOp(ISD::CondCode Opcode) {
248  switch (Opcode) {
249  default: llvm_unreachable("Illegal integer setcc operation!");
250  case ISD::SETEQ:
251  case ISD::SETNE: return 0;
252  case ISD::SETLT:
253  case ISD::SETLE:
254  case ISD::SETGT:
255  case ISD::SETGE: return 1;
256  case ISD::SETULT:
257  case ISD::SETULE:
258  case ISD::SETUGT:
259  case ISD::SETUGE: return 2;
260  }
261}
262
263/// getSetCCOrOperation - Return the result of a logical OR between different
264/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
265/// returns SETCC_INVALID if it is not possible to represent the resultant
266/// comparison.
267ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
268                                       bool isInteger) {
269  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
270    // Cannot fold a signed integer setcc with an unsigned integer setcc.
271    return ISD::SETCC_INVALID;
272
273  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
274
275  // If the N and U bits get set then the resultant comparison DOES suddenly
276  // care about orderedness, and is true when ordered.
277  if (Op > ISD::SETTRUE2)
278    Op &= ~16;     // Clear the U bit if the N bit is set.
279
280  // Canonicalize illegal integer setcc's.
281  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
282    Op = ISD::SETNE;
283
284  return ISD::CondCode(Op);
285}
286
287/// getSetCCAndOperation - Return the result of a logical AND between different
288/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
289/// function returns zero if it is not possible to represent the resultant
290/// comparison.
291ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294    // Cannot fold a signed setcc with an unsigned setcc.
295    return ISD::SETCC_INVALID;
296
297  // Combine all of the condition bits.
298  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
299
300  // Canonicalize illegal integer setcc's.
301  if (isInteger) {
302    switch (Result) {
303    default: break;
304    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
305    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
306    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
307    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
308    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
309    }
310  }
311
312  return Result;
313}
314
315const TargetMachine &SelectionDAG::getTarget() const {
316  return MF->getTarget();
317}
318
319//===----------------------------------------------------------------------===//
320//                           SDNode Profile Support
321//===----------------------------------------------------------------------===//
322
323/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
324///
325static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
326  ID.AddInteger(OpC);
327}
328
329/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
330/// solely with their pointer.
331static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
332  ID.AddPointer(VTList.VTs);
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDValue *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
346///
347static void AddNodeIDOperands(FoldingSetNodeID &ID,
348                              const SDUse *Ops, unsigned NumOps) {
349  for (; NumOps; --NumOps, ++Ops) {
350    ID.AddPointer(Ops->getNode());
351    ID.AddInteger(Ops->getResNo());
352  }
353}
354
355static void AddNodeIDNode(FoldingSetNodeID &ID,
356                          unsigned short OpC, SDVTList VTList,
357                          const SDValue *OpList, unsigned N) {
358  AddNodeIDOpcode(ID, OpC);
359  AddNodeIDValueTypes(ID, VTList);
360  AddNodeIDOperands(ID, OpList, N);
361}
362
363/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
364/// the NodeID data.
365static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
366  switch (N->getOpcode()) {
367  case ISD::TargetExternalSymbol:
368  case ISD::ExternalSymbol:
369    llvm_unreachable("Should only be used on nodes with operands");
370  default: break;  // Normal nodes don't need extra info.
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    ID.AddInteger(GA->getTargetFlags());
388    break;
389  }
390  case ISD::BasicBlock:
391    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
392    break;
393  case ISD::Register:
394    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
395    break;
396  case ISD::DBG_STOPPOINT: {
397    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
398    ID.AddInteger(DSP->getLine());
399    ID.AddInteger(DSP->getColumn());
400    ID.AddPointer(DSP->getCompileUnit());
401    break;
402  }
403  case ISD::SRCVALUE:
404    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
405    break;
406  case ISD::FrameIndex:
407  case ISD::TargetFrameIndex:
408    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
409    break;
410  case ISD::JumpTable:
411  case ISD::TargetJumpTable:
412    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    ID.AddInteger(CP->getTargetFlags());
425    break;
426  }
427  case ISD::LOAD: {
428    const LoadSDNode *LD = cast<LoadSDNode>(N);
429    ID.AddInteger(LD->getMemoryVT().getRawBits());
430    ID.AddInteger(LD->getRawSubclassData());
431    break;
432  }
433  case ISD::STORE: {
434    const StoreSDNode *ST = cast<StoreSDNode>(N);
435    ID.AddInteger(ST->getMemoryVT().getRawBits());
436    ID.AddInteger(ST->getRawSubclassData());
437    break;
438  }
439  case ISD::ATOMIC_CMP_SWAP:
440  case ISD::ATOMIC_SWAP:
441  case ISD::ATOMIC_LOAD_ADD:
442  case ISD::ATOMIC_LOAD_SUB:
443  case ISD::ATOMIC_LOAD_AND:
444  case ISD::ATOMIC_LOAD_OR:
445  case ISD::ATOMIC_LOAD_XOR:
446  case ISD::ATOMIC_LOAD_NAND:
447  case ISD::ATOMIC_LOAD_MIN:
448  case ISD::ATOMIC_LOAD_MAX:
449  case ISD::ATOMIC_LOAD_UMIN:
450  case ISD::ATOMIC_LOAD_UMAX: {
451    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
452    ID.AddInteger(AT->getMemoryVT().getRawBits());
453    ID.AddInteger(AT->getRawSubclassData());
454    break;
455  }
456  case ISD::VECTOR_SHUFFLE: {
457    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
458    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
459         i != e; ++i)
460      ID.AddInteger(SVN->getMaskElt(i));
461    break;
462  }
463  case ISD::TargetBlockAddress:
464  case ISD::BlockAddress: {
465    ID.AddPointer(cast<BlockAddressSDNode>(N));
466    break;
467  }
468  } // end switch (N->getOpcode())
469}
470
471/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
472/// data.
473static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
474  AddNodeIDOpcode(ID, N->getOpcode());
475  // Add the return value info.
476  AddNodeIDValueTypes(ID, N->getVTList());
477  // Add the operand info.
478  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
479
480  // Handle SDNode leafs with special info.
481  AddNodeIDCustom(ID, N);
482}
483
484/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
485/// the CSE map that carries volatility, indexing mode, and
486/// extension/truncation information.
487///
488static inline unsigned
489encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
490  assert((ConvType & 3) == ConvType &&
491         "ConvType may not require more than 2 bits!");
492  assert((AM & 7) == AM &&
493         "AM may not require more than 3 bits!");
494  return ConvType |
495         (AM << 2) |
496         (isVolatile << 5);
497}
498
499//===----------------------------------------------------------------------===//
500//                              SelectionDAG Class
501//===----------------------------------------------------------------------===//
502
503/// doNotCSE - Return true if CSE should not be performed for this node.
504static bool doNotCSE(SDNode *N) {
505  if (N->getValueType(0) == MVT::Flag)
506    return true; // Never CSE anything that produces a flag.
507
508  switch (N->getOpcode()) {
509  default: break;
510  case ISD::HANDLENODE:
511  case ISD::DBG_LABEL:
512  case ISD::DBG_STOPPOINT:
513  case ISD::EH_LABEL:
514    return true;   // Never CSE these nodes.
515  }
516
517  // Check that remaining values produced are not flags.
518  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
519    if (N->getValueType(i) == MVT::Flag)
520      return true; // Never CSE anything that produces a flag.
521
522  return false;
523}
524
525/// RemoveDeadNodes - This method deletes all unreachable nodes in the
526/// SelectionDAG.
527void SelectionDAG::RemoveDeadNodes() {
528  // Create a dummy node (which is not added to allnodes), that adds a reference
529  // to the root node, preventing it from being deleted.
530  HandleSDNode Dummy(getRoot());
531
532  SmallVector<SDNode*, 128> DeadNodes;
533
534  // Add all obviously-dead nodes to the DeadNodes worklist.
535  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
536    if (I->use_empty())
537      DeadNodes.push_back(I);
538
539  RemoveDeadNodes(DeadNodes);
540
541  // If the root changed (e.g. it was a dead load, update the root).
542  setRoot(Dummy.getValue());
543}
544
545/// RemoveDeadNodes - This method deletes the unreachable nodes in the
546/// given list, and any nodes that become unreachable as a result.
547void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
548                                   DAGUpdateListener *UpdateListener) {
549
550  // Process the worklist, deleting the nodes and adding their uses to the
551  // worklist.
552  while (!DeadNodes.empty()) {
553    SDNode *N = DeadNodes.pop_back_val();
554
555    if (UpdateListener)
556      UpdateListener->NodeDeleted(N, 0);
557
558    // Take the node out of the appropriate CSE map.
559    RemoveNodeFromCSEMaps(N);
560
561    // Next, brutally remove the operand list.  This is safe to do, as there are
562    // no cycles in the graph.
563    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
564      SDUse &Use = *I++;
565      SDNode *Operand = Use.getNode();
566      Use.set(SDValue());
567
568      // Now that we removed this operand, see if there are no uses of it left.
569      if (Operand->use_empty())
570        DeadNodes.push_back(Operand);
571    }
572
573    DeallocateNode(N);
574  }
575}
576
577void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
578  SmallVector<SDNode*, 16> DeadNodes(1, N);
579  RemoveDeadNodes(DeadNodes, UpdateListener);
580}
581
582void SelectionDAG::DeleteNode(SDNode *N) {
583  // First take this out of the appropriate CSE map.
584  RemoveNodeFromCSEMaps(N);
585
586  // Finally, remove uses due to operands of this node, remove from the
587  // AllNodes list, and delete the node.
588  DeleteNodeNotInCSEMaps(N);
589}
590
591void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
592  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
593  assert(N->use_empty() && "Cannot delete a node that is not dead!");
594
595  // Drop all of the operands and decrement used node's use counts.
596  N->DropOperands();
597
598  DeallocateNode(N);
599}
600
601void SelectionDAG::DeallocateNode(SDNode *N) {
602  if (N->OperandsNeedDelete)
603    delete[] N->OperandList;
604
605  // Set the opcode to DELETED_NODE to help catch bugs when node
606  // memory is reallocated.
607  N->NodeType = ISD::DELETED_NODE;
608
609  NodeAllocator.Deallocate(AllNodes.remove(N));
610}
611
612/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
613/// correspond to it.  This is useful when we're about to delete or repurpose
614/// the node.  We don't want future request for structurally identical nodes
615/// to return N anymore.
616bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
617  bool Erased = false;
618  switch (N->getOpcode()) {
619  case ISD::EntryToken:
620    llvm_unreachable("EntryToken should not be in CSEMaps!");
621    return false;
622  case ISD::HANDLENODE: return false;  // noop.
623  case ISD::CONDCODE:
624    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
625           "Cond code doesn't exist!");
626    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
627    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
628    break;
629  case ISD::ExternalSymbol:
630    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
631    break;
632  case ISD::TargetExternalSymbol: {
633    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
634    Erased = TargetExternalSymbols.erase(
635               std::pair<std::string,unsigned char>(ESN->getSymbol(),
636                                                    ESN->getTargetFlags()));
637    break;
638  }
639  case ISD::VALUETYPE: {
640    EVT VT = cast<VTSDNode>(N)->getVT();
641    if (VT.isExtended()) {
642      Erased = ExtendedValueTypeNodes.erase(VT);
643    } else {
644      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
645      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
646    }
647    break;
648  }
649  default:
650    // Remove it from the CSE Map.
651    Erased = CSEMap.RemoveNode(N);
652    break;
653  }
654#ifndef NDEBUG
655  // Verify that the node was actually in one of the CSE maps, unless it has a
656  // flag result (which cannot be CSE'd) or is one of the special cases that are
657  // not subject to CSE.
658  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
659      !N->isMachineOpcode() && !doNotCSE(N)) {
660    N->dump(this);
661    errs() << "\n";
662    llvm_unreachable("Node is not in map!");
663  }
664#endif
665  return Erased;
666}
667
668/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
669/// maps and modified in place. Add it back to the CSE maps, unless an identical
670/// node already exists, in which case transfer all its users to the existing
671/// node. This transfer can potentially trigger recursive merging.
672///
673void
674SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
675                                       DAGUpdateListener *UpdateListener) {
676  // For node types that aren't CSE'd, just act as if no identical node
677  // already exists.
678  if (!doNotCSE(N)) {
679    SDNode *Existing = CSEMap.GetOrInsertNode(N);
680    if (Existing != N) {
681      // If there was already an existing matching node, use ReplaceAllUsesWith
682      // to replace the dead one with the existing one.  This can cause
683      // recursive merging of other unrelated nodes down the line.
684      ReplaceAllUsesWith(N, Existing, UpdateListener);
685
686      // N is now dead.  Inform the listener if it exists and delete it.
687      if (UpdateListener)
688        UpdateListener->NodeDeleted(N, Existing);
689      DeleteNodeNotInCSEMaps(N);
690      return;
691    }
692  }
693
694  // If the node doesn't already exist, we updated it.  Inform a listener if
695  // it exists.
696  if (UpdateListener)
697    UpdateListener->NodeUpdated(N);
698}
699
700/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
701/// were replaced with those specified.  If this node is never memoized,
702/// return null, otherwise return a pointer to the slot it would take.  If a
703/// node already exists with these operands, the slot will be non-null.
704SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
705                                           void *&InsertPos) {
706  if (doNotCSE(N))
707    return 0;
708
709  SDValue Ops[] = { Op };
710  FoldingSetNodeID ID;
711  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
712  AddNodeIDCustom(ID, N);
713  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
714}
715
716/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
717/// were replaced with those specified.  If this node is never memoized,
718/// return null, otherwise return a pointer to the slot it would take.  If a
719/// node already exists with these operands, the slot will be non-null.
720SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
721                                           SDValue Op1, SDValue Op2,
722                                           void *&InsertPos) {
723  if (doNotCSE(N))
724    return 0;
725
726  SDValue Ops[] = { Op1, Op2 };
727  FoldingSetNodeID ID;
728  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
729  AddNodeIDCustom(ID, N);
730  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
731}
732
733
734/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
735/// were replaced with those specified.  If this node is never memoized,
736/// return null, otherwise return a pointer to the slot it would take.  If a
737/// node already exists with these operands, the slot will be non-null.
738SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
739                                           const SDValue *Ops,unsigned NumOps,
740                                           void *&InsertPos) {
741  if (doNotCSE(N))
742    return 0;
743
744  FoldingSetNodeID ID;
745  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
746  AddNodeIDCustom(ID, N);
747  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
748}
749
750/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
751void SelectionDAG::VerifyNode(SDNode *N) {
752  switch (N->getOpcode()) {
753  default:
754    break;
755  case ISD::BUILD_PAIR: {
756    EVT VT = N->getValueType(0);
757    assert(N->getNumValues() == 1 && "Too many results!");
758    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
759           "Wrong return type!");
760    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
761    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
762           "Mismatched operand types!");
763    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
764           "Wrong operand type!");
765    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
766           "Wrong return type size");
767    break;
768  }
769  case ISD::BUILD_VECTOR: {
770    assert(N->getNumValues() == 1 && "Too many results!");
771    assert(N->getValueType(0).isVector() && "Wrong return type!");
772    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
773           "Wrong number of operands!");
774    EVT EltVT = N->getValueType(0).getVectorElementType();
775    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
776      assert((I->getValueType() == EltVT ||
777             (EltVT.isInteger() && I->getValueType().isInteger() &&
778              EltVT.bitsLE(I->getValueType()))) &&
779            "Wrong operand type!");
780    break;
781  }
782  }
783}
784
785/// getEVTAlignment - Compute the default alignment value for the
786/// given type.
787///
788unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
789  const Type *Ty = VT == MVT::iPTR ?
790                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
791                   VT.getTypeForEVT(*getContext());
792
793  return TLI.getTargetData()->getABITypeAlignment(Ty);
794}
795
796// EntryNode could meaningfully have debug info if we can find it...
797SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
798  : TLI(tli), FLI(fli), DW(0),
799    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
800    getVTList(MVT::Other)), Root(getEntryNode()) {
801  AllNodes.push_back(&EntryNode);
802}
803
804void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
805                        DwarfWriter *dw) {
806  MF = &mf;
807  MMI = mmi;
808  DW = dw;
809  Context = &mf.getFunction()->getContext();
810}
811
812SelectionDAG::~SelectionDAG() {
813  allnodes_clear();
814}
815
816void SelectionDAG::allnodes_clear() {
817  assert(&*AllNodes.begin() == &EntryNode);
818  AllNodes.remove(AllNodes.begin());
819  while (!AllNodes.empty())
820    DeallocateNode(AllNodes.begin());
821}
822
823void SelectionDAG::clear() {
824  allnodes_clear();
825  OperandAllocator.Reset();
826  CSEMap.clear();
827
828  ExtendedValueTypeNodes.clear();
829  ExternalSymbols.clear();
830  TargetExternalSymbols.clear();
831  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
832            static_cast<CondCodeSDNode*>(0));
833  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
834            static_cast<SDNode*>(0));
835
836  EntryNode.UseList = 0;
837  AllNodes.push_back(&EntryNode);
838  Root = getEntryNode();
839}
840
841SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
842  return VT.bitsGT(Op.getValueType()) ?
843    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
844    getNode(ISD::TRUNCATE, DL, VT, Op);
845}
846
847SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
848  return VT.bitsGT(Op.getValueType()) ?
849    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
850    getNode(ISD::TRUNCATE, DL, VT, Op);
851}
852
853SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
854  if (Op.getValueType() == VT) return Op;
855  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
856                                   VT.getSizeInBits());
857  return getNode(ISD::AND, DL, Op.getValueType(), Op,
858                 getConstant(Imm, Op.getValueType()));
859}
860
861/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
862///
863SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
864  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
865  SDValue NegOne =
866    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
867  return getNode(ISD::XOR, DL, VT, Val, NegOne);
868}
869
870SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
871  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
872  assert((EltVT.getSizeInBits() >= 64 ||
873         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
874         "getConstant with a uint64_t value that doesn't fit in the type!");
875  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
876}
877
878SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
879  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
880}
881
882SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
883  assert(VT.isInteger() && "Cannot create FP integer constant!");
884
885  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
886  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
887         "APInt size does not match type size!");
888
889  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
890  FoldingSetNodeID ID;
891  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
892  ID.AddPointer(&Val);
893  void *IP = 0;
894  SDNode *N = NULL;
895  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
896    if (!VT.isVector())
897      return SDValue(N, 0);
898  if (!N) {
899    N = NodeAllocator.Allocate<ConstantSDNode>();
900    new (N) ConstantSDNode(isT, &Val, EltVT);
901    CSEMap.InsertNode(N, IP);
902    AllNodes.push_back(N);
903  }
904
905  SDValue Result(N, 0);
906  if (VT.isVector()) {
907    SmallVector<SDValue, 8> Ops;
908    Ops.assign(VT.getVectorNumElements(), Result);
909    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
910                     VT, &Ops[0], Ops.size());
911  }
912  return Result;
913}
914
915SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
916  return getConstant(Val, TLI.getPointerTy(), isTarget);
917}
918
919
920SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
921  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
922}
923
924SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
925  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
926
927  EVT EltVT =
928    VT.isVector() ? VT.getVectorElementType() : VT;
929
930  // Do the map lookup using the actual bit pattern for the floating point
931  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
932  // we don't have issues with SNANs.
933  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
934  FoldingSetNodeID ID;
935  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
936  ID.AddPointer(&V);
937  void *IP = 0;
938  SDNode *N = NULL;
939  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
940    if (!VT.isVector())
941      return SDValue(N, 0);
942  if (!N) {
943    N = NodeAllocator.Allocate<ConstantFPSDNode>();
944    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
945    CSEMap.InsertNode(N, IP);
946    AllNodes.push_back(N);
947  }
948
949  SDValue Result(N, 0);
950  if (VT.isVector()) {
951    SmallVector<SDValue, 8> Ops;
952    Ops.assign(VT.getVectorNumElements(), Result);
953    // FIXME DebugLoc info might be appropriate here
954    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
955                     VT, &Ops[0], Ops.size());
956  }
957  return Result;
958}
959
960SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961  EVT EltVT =
962    VT.isVector() ? VT.getVectorElementType() : VT;
963  if (EltVT==MVT::f32)
964    return getConstantFP(APFloat((float)Val), VT, isTarget);
965  else
966    return getConstantFP(APFloat(Val), VT, isTarget);
967}
968
969SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
970                                       EVT VT, int64_t Offset,
971                                       bool isTargetGA,
972                                       unsigned char TargetFlags) {
973  assert((TargetFlags == 0 || isTargetGA) &&
974         "Cannot set target flags on target-independent globals");
975
976  // Truncate (with sign-extension) the offset value to the pointer size.
977  EVT PTy = TLI.getPointerTy();
978  unsigned BitWidth = PTy.getSizeInBits();
979  if (BitWidth < 64)
980    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
981
982  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
983  if (!GVar) {
984    // If GV is an alias then use the aliasee for determining thread-localness.
985    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
986      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
987  }
988
989  unsigned Opc;
990  if (GVar && GVar->isThreadLocal())
991    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
992  else
993    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
994
995  FoldingSetNodeID ID;
996  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
997  ID.AddPointer(GV);
998  ID.AddInteger(Offset);
999  ID.AddInteger(TargetFlags);
1000  void *IP = 0;
1001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1002    return SDValue(E, 0);
1003  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1004  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1005  CSEMap.InsertNode(N, IP);
1006  AllNodes.push_back(N);
1007  return SDValue(N, 0);
1008}
1009
1010SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1011  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1012  FoldingSetNodeID ID;
1013  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1014  ID.AddInteger(FI);
1015  void *IP = 0;
1016  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1017    return SDValue(E, 0);
1018  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1019  new (N) FrameIndexSDNode(FI, VT, isTarget);
1020  CSEMap.InsertNode(N, IP);
1021  AllNodes.push_back(N);
1022  return SDValue(N, 0);
1023}
1024
1025SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1026                                   unsigned char TargetFlags) {
1027  assert((TargetFlags == 0 || isTarget) &&
1028         "Cannot set target flags on target-independent jump tables");
1029  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1030  FoldingSetNodeID ID;
1031  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1032  ID.AddInteger(JTI);
1033  ID.AddInteger(TargetFlags);
1034  void *IP = 0;
1035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1036    return SDValue(E, 0);
1037  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1038  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1039  CSEMap.InsertNode(N, IP);
1040  AllNodes.push_back(N);
1041  return SDValue(N, 0);
1042}
1043
1044SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget,
1047                                      unsigned char TargetFlags) {
1048  assert((TargetFlags == 0 || isTarget) &&
1049         "Cannot set target flags on target-independent globals");
1050  if (Alignment == 0)
1051    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1052  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1053  FoldingSetNodeID ID;
1054  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1055  ID.AddInteger(Alignment);
1056  ID.AddInteger(Offset);
1057  ID.AddPointer(C);
1058  ID.AddInteger(TargetFlags);
1059  void *IP = 0;
1060  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1061    return SDValue(E, 0);
1062  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1063  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1064  CSEMap.InsertNode(N, IP);
1065  AllNodes.push_back(N);
1066  return SDValue(N, 0);
1067}
1068
1069
1070SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1071                                      unsigned Alignment, int Offset,
1072                                      bool isTarget,
1073                                      unsigned char TargetFlags) {
1074  assert((TargetFlags == 0 || isTarget) &&
1075         "Cannot set target flags on target-independent globals");
1076  if (Alignment == 0)
1077    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1078  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(Alignment);
1082  ID.AddInteger(Offset);
1083  C->AddSelectionDAGCSEId(ID);
1084  ID.AddInteger(TargetFlags);
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1089  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1096  FoldingSetNodeID ID;
1097  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1098  ID.AddPointer(MBB);
1099  void *IP = 0;
1100  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1101    return SDValue(E, 0);
1102  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1103  new (N) BasicBlockSDNode(MBB);
1104  CSEMap.InsertNode(N, IP);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getValueType(EVT VT) {
1110  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1111      ValueTypeNodes.size())
1112    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1113
1114  SDNode *&N = VT.isExtended() ?
1115    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1116
1117  if (N) return SDValue(N, 0);
1118  N = NodeAllocator.Allocate<VTSDNode>();
1119  new (N) VTSDNode(VT);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1125  SDNode *&N = ExternalSymbols[Sym];
1126  if (N) return SDValue(N, 0);
1127  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1128  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1129  AllNodes.push_back(N);
1130  return SDValue(N, 0);
1131}
1132
1133SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1134                                              unsigned char TargetFlags) {
1135  SDNode *&N =
1136    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1137                                                               TargetFlags)];
1138  if (N) return SDValue(N, 0);
1139  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1140  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1141  AllNodes.push_back(N);
1142  return SDValue(N, 0);
1143}
1144
1145SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1146  if ((unsigned)Cond >= CondCodeNodes.size())
1147    CondCodeNodes.resize(Cond+1);
1148
1149  if (CondCodeNodes[Cond] == 0) {
1150    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1151    new (N) CondCodeSDNode(Cond);
1152    CondCodeNodes[Cond] = N;
1153    AllNodes.push_back(N);
1154  }
1155  return SDValue(CondCodeNodes[Cond], 0);
1156}
1157
1158// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1159// the shuffle mask M that point at N1 to point at N2, and indices that point
1160// N2 to point at N1.
1161static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1162  std::swap(N1, N2);
1163  int NElts = M.size();
1164  for (int i = 0; i != NElts; ++i) {
1165    if (M[i] >= NElts)
1166      M[i] -= NElts;
1167    else if (M[i] >= 0)
1168      M[i] += NElts;
1169  }
1170}
1171
1172SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1173                                       SDValue N2, const int *Mask) {
1174  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1175  assert(VT.isVector() && N1.getValueType().isVector() &&
1176         "Vector Shuffle VTs must be a vectors");
1177  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1178         && "Vector Shuffle VTs must have same element type");
1179
1180  // Canonicalize shuffle undef, undef -> undef
1181  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1182    return getUNDEF(VT);
1183
1184  // Validate that all indices in Mask are within the range of the elements
1185  // input to the shuffle.
1186  unsigned NElts = VT.getVectorNumElements();
1187  SmallVector<int, 8> MaskVec;
1188  for (unsigned i = 0; i != NElts; ++i) {
1189    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1190    MaskVec.push_back(Mask[i]);
1191  }
1192
1193  // Canonicalize shuffle v, v -> v, undef
1194  if (N1 == N2) {
1195    N2 = getUNDEF(VT);
1196    for (unsigned i = 0; i != NElts; ++i)
1197      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1198  }
1199
1200  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1201  if (N1.getOpcode() == ISD::UNDEF)
1202    commuteShuffle(N1, N2, MaskVec);
1203
1204  // Canonicalize all index into lhs, -> shuffle lhs, undef
1205  // Canonicalize all index into rhs, -> shuffle rhs, undef
1206  bool AllLHS = true, AllRHS = true;
1207  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1208  for (unsigned i = 0; i != NElts; ++i) {
1209    if (MaskVec[i] >= (int)NElts) {
1210      if (N2Undef)
1211        MaskVec[i] = -1;
1212      else
1213        AllLHS = false;
1214    } else if (MaskVec[i] >= 0) {
1215      AllRHS = false;
1216    }
1217  }
1218  if (AllLHS && AllRHS)
1219    return getUNDEF(VT);
1220  if (AllLHS && !N2Undef)
1221    N2 = getUNDEF(VT);
1222  if (AllRHS) {
1223    N1 = getUNDEF(VT);
1224    commuteShuffle(N1, N2, MaskVec);
1225  }
1226
1227  // If Identity shuffle, or all shuffle in to undef, return that node.
1228  bool AllUndef = true;
1229  bool Identity = true;
1230  for (unsigned i = 0; i != NElts; ++i) {
1231    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1232    if (MaskVec[i] >= 0) AllUndef = false;
1233  }
1234  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1235    return N1;
1236  if (AllUndef)
1237    return getUNDEF(VT);
1238
1239  FoldingSetNodeID ID;
1240  SDValue Ops[2] = { N1, N2 };
1241  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1242  for (unsigned i = 0; i != NElts; ++i)
1243    ID.AddInteger(MaskVec[i]);
1244
1245  void* IP = 0;
1246  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1247    return SDValue(E, 0);
1248
1249  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1250  // SDNode doesn't have access to it.  This memory will be "leaked" when
1251  // the node is deallocated, but recovered when the NodeAllocator is released.
1252  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1253  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1254
1255  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1256  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1257  CSEMap.InsertNode(N, IP);
1258  AllNodes.push_back(N);
1259  return SDValue(N, 0);
1260}
1261
1262SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1263                                       SDValue Val, SDValue DTy,
1264                                       SDValue STy, SDValue Rnd, SDValue Sat,
1265                                       ISD::CvtCode Code) {
1266  // If the src and dest types are the same and the conversion is between
1267  // integer types of the same sign or two floats, no conversion is necessary.
1268  if (DTy == STy &&
1269      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1270    return Val;
1271
1272  FoldingSetNodeID ID;
1273  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1274  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1275  void* IP = 0;
1276  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1277    return SDValue(E, 0);
1278  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1279  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1280  CSEMap.InsertNode(N, IP);
1281  AllNodes.push_back(N);
1282  return SDValue(N, 0);
1283}
1284
1285SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1286  FoldingSetNodeID ID;
1287  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1288  ID.AddInteger(RegNo);
1289  void *IP = 0;
1290  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1291    return SDValue(E, 0);
1292  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1293  new (N) RegisterSDNode(RegNo, VT);
1294  CSEMap.InsertNode(N, IP);
1295  AllNodes.push_back(N);
1296  return SDValue(N, 0);
1297}
1298
1299SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1300                                      unsigned Line, unsigned Col,
1301                                      MDNode *CU) {
1302  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1303  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1304  N->setDebugLoc(DL);
1305  AllNodes.push_back(N);
1306  return SDValue(N, 0);
1307}
1308
1309SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1310                               SDValue Root,
1311                               unsigned LabelID) {
1312  FoldingSetNodeID ID;
1313  SDValue Ops[] = { Root };
1314  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1315  ID.AddInteger(LabelID);
1316  void *IP = 0;
1317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1318    return SDValue(E, 0);
1319  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1320  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1321  CSEMap.InsertNode(N, IP);
1322  AllNodes.push_back(N);
1323  return SDValue(N, 0);
1324}
1325
1326SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, DebugLoc DL,
1327                                      bool isTarget) {
1328  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1329
1330  FoldingSetNodeID ID;
1331  AddNodeIDNode(ID, Opc, getVTList(TLI.getPointerTy()), 0, 0);
1332  ID.AddPointer(BA);
1333  void *IP = 0;
1334  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1335    return SDValue(E, 0);
1336  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1337  new (N) BlockAddressSDNode(Opc, DL, TLI.getPointerTy(), BA);
1338  CSEMap.InsertNode(N, IP);
1339  AllNodes.push_back(N);
1340  return SDValue(N, 0);
1341}
1342
1343SDValue SelectionDAG::getSrcValue(const Value *V) {
1344  assert((!V || isa<PointerType>(V->getType())) &&
1345         "SrcValue is not a pointer?");
1346
1347  FoldingSetNodeID ID;
1348  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1349  ID.AddPointer(V);
1350
1351  void *IP = 0;
1352  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1353    return SDValue(E, 0);
1354
1355  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1356  new (N) SrcValueSDNode(V);
1357  CSEMap.InsertNode(N, IP);
1358  AllNodes.push_back(N);
1359  return SDValue(N, 0);
1360}
1361
1362/// getShiftAmountOperand - Return the specified value casted to
1363/// the target's desired shift amount type.
1364SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1365  EVT OpTy = Op.getValueType();
1366  MVT ShTy = TLI.getShiftAmountTy();
1367  if (OpTy == ShTy || OpTy.isVector()) return Op;
1368
1369  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1370  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1371}
1372
1373/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1374/// specified value type.
1375SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1376  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1377  unsigned ByteSize = VT.getStoreSize();
1378  const Type *Ty = VT.getTypeForEVT(*getContext());
1379  unsigned StackAlign =
1380  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1381
1382  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1383  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1384}
1385
1386/// CreateStackTemporary - Create a stack temporary suitable for holding
1387/// either of the specified value types.
1388SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1389  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1390                            VT2.getStoreSizeInBits())/8;
1391  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1392  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1393  const TargetData *TD = TLI.getTargetData();
1394  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1395                            TD->getPrefTypeAlignment(Ty2));
1396
1397  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1398  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1399  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1400}
1401
1402SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1403                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1404  // These setcc operations always fold.
1405  switch (Cond) {
1406  default: break;
1407  case ISD::SETFALSE:
1408  case ISD::SETFALSE2: return getConstant(0, VT);
1409  case ISD::SETTRUE:
1410  case ISD::SETTRUE2:  return getConstant(1, VT);
1411
1412  case ISD::SETOEQ:
1413  case ISD::SETOGT:
1414  case ISD::SETOGE:
1415  case ISD::SETOLT:
1416  case ISD::SETOLE:
1417  case ISD::SETONE:
1418  case ISD::SETO:
1419  case ISD::SETUO:
1420  case ISD::SETUEQ:
1421  case ISD::SETUNE:
1422    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1423    break;
1424  }
1425
1426  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1427    const APInt &C2 = N2C->getAPIntValue();
1428    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1429      const APInt &C1 = N1C->getAPIntValue();
1430
1431      switch (Cond) {
1432      default: llvm_unreachable("Unknown integer setcc!");
1433      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1434      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1435      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1436      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1437      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1438      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1439      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1440      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1441      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1442      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1443      }
1444    }
1445  }
1446  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1447    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1448      // No compile time operations on this type yet.
1449      if (N1C->getValueType(0) == MVT::ppcf128)
1450        return SDValue();
1451
1452      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1453      switch (Cond) {
1454      default: break;
1455      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1456                          return getUNDEF(VT);
1457                        // fall through
1458      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1459      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1460                          return getUNDEF(VT);
1461                        // fall through
1462      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1463                                           R==APFloat::cmpLessThan, VT);
1464      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1465                          return getUNDEF(VT);
1466                        // fall through
1467      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1468      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1469                          return getUNDEF(VT);
1470                        // fall through
1471      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1472      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1473                          return getUNDEF(VT);
1474                        // fall through
1475      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1476                                           R==APFloat::cmpEqual, VT);
1477      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1478                          return getUNDEF(VT);
1479                        // fall through
1480      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1481                                           R==APFloat::cmpEqual, VT);
1482      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1483      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1484      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1485                                           R==APFloat::cmpEqual, VT);
1486      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1487      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1488                                           R==APFloat::cmpLessThan, VT);
1489      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1490                                           R==APFloat::cmpUnordered, VT);
1491      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1492      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1493      }
1494    } else {
1495      // Ensure that the constant occurs on the RHS.
1496      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1497    }
1498  }
1499
1500  // Could not fold it.
1501  return SDValue();
1502}
1503
1504/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1505/// use this predicate to simplify operations downstream.
1506bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1507  // This predicate is not safe for vector operations.
1508  if (Op.getValueType().isVector())
1509    return false;
1510
1511  unsigned BitWidth = Op.getValueSizeInBits();
1512  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1513}
1514
1515/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1516/// this predicate to simplify operations downstream.  Mask is known to be zero
1517/// for bits that V cannot have.
1518bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1519                                     unsigned Depth) const {
1520  APInt KnownZero, KnownOne;
1521  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1522  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1523  return (KnownZero & Mask) == Mask;
1524}
1525
1526/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1527/// known to be either zero or one and return them in the KnownZero/KnownOne
1528/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1529/// processing.
1530void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1531                                     APInt &KnownZero, APInt &KnownOne,
1532                                     unsigned Depth) const {
1533  unsigned BitWidth = Mask.getBitWidth();
1534  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1535         "Mask size mismatches value type size!");
1536
1537  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1538  if (Depth == 6 || Mask == 0)
1539    return;  // Limit search depth.
1540
1541  APInt KnownZero2, KnownOne2;
1542
1543  switch (Op.getOpcode()) {
1544  case ISD::Constant:
1545    // We know all of the bits for a constant!
1546    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1547    KnownZero = ~KnownOne & Mask;
1548    return;
1549  case ISD::AND:
1550    // If either the LHS or the RHS are Zero, the result is zero.
1551    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1552    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1553                      KnownZero2, KnownOne2, Depth+1);
1554    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1556
1557    // Output known-1 bits are only known if set in both the LHS & RHS.
1558    KnownOne &= KnownOne2;
1559    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1560    KnownZero |= KnownZero2;
1561    return;
1562  case ISD::OR:
1563    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1564    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1565                      KnownZero2, KnownOne2, Depth+1);
1566    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1567    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1568
1569    // Output known-0 bits are only known if clear in both the LHS & RHS.
1570    KnownZero &= KnownZero2;
1571    // Output known-1 are known to be set if set in either the LHS | RHS.
1572    KnownOne |= KnownOne2;
1573    return;
1574  case ISD::XOR: {
1575    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1576    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1577    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579
1580    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1581    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1582    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1583    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1584    KnownZero = KnownZeroOut;
1585    return;
1586  }
1587  case ISD::MUL: {
1588    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1589    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1590    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1591    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1592    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1593
1594    // If low bits are zero in either operand, output low known-0 bits.
1595    // Also compute a conserative estimate for high known-0 bits.
1596    // More trickiness is possible, but this is sufficient for the
1597    // interesting case of alignment computation.
1598    KnownOne.clear();
1599    unsigned TrailZ = KnownZero.countTrailingOnes() +
1600                      KnownZero2.countTrailingOnes();
1601    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1602                               KnownZero2.countLeadingOnes(),
1603                               BitWidth) - BitWidth;
1604
1605    TrailZ = std::min(TrailZ, BitWidth);
1606    LeadZ = std::min(LeadZ, BitWidth);
1607    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1608                APInt::getHighBitsSet(BitWidth, LeadZ);
1609    KnownZero &= Mask;
1610    return;
1611  }
1612  case ISD::UDIV: {
1613    // For the purposes of computing leading zeros we can conservatively
1614    // treat a udiv as a logical right shift by the power of 2 known to
1615    // be less than the denominator.
1616    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1617    ComputeMaskedBits(Op.getOperand(0),
1618                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1619    unsigned LeadZ = KnownZero2.countLeadingOnes();
1620
1621    KnownOne2.clear();
1622    KnownZero2.clear();
1623    ComputeMaskedBits(Op.getOperand(1),
1624                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1625    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1626    if (RHSUnknownLeadingOnes != BitWidth)
1627      LeadZ = std::min(BitWidth,
1628                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1629
1630    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1631    return;
1632  }
1633  case ISD::SELECT:
1634    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1635    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1636    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1637    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1638
1639    // Only known if known in both the LHS and RHS.
1640    KnownOne &= KnownOne2;
1641    KnownZero &= KnownZero2;
1642    return;
1643  case ISD::SELECT_CC:
1644    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1645    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1646    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648
1649    // Only known if known in both the LHS and RHS.
1650    KnownOne &= KnownOne2;
1651    KnownZero &= KnownZero2;
1652    return;
1653  case ISD::SADDO:
1654  case ISD::UADDO:
1655  case ISD::SSUBO:
1656  case ISD::USUBO:
1657  case ISD::SMULO:
1658  case ISD::UMULO:
1659    if (Op.getResNo() != 1)
1660      return;
1661    // The boolean result conforms to getBooleanContents.  Fall through.
1662  case ISD::SETCC:
1663    // If we know the result of a setcc has the top bits zero, use this info.
1664    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1665        BitWidth > 1)
1666      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1667    return;
1668  case ISD::SHL:
1669    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1670    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1671      unsigned ShAmt = SA->getZExtValue();
1672
1673      // If the shift count is an invalid immediate, don't do anything.
1674      if (ShAmt >= BitWidth)
1675        return;
1676
1677      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1678                        KnownZero, KnownOne, Depth+1);
1679      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1680      KnownZero <<= ShAmt;
1681      KnownOne  <<= ShAmt;
1682      // low bits known zero.
1683      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1684    }
1685    return;
1686  case ISD::SRL:
1687    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1688    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1689      unsigned ShAmt = SA->getZExtValue();
1690
1691      // If the shift count is an invalid immediate, don't do anything.
1692      if (ShAmt >= BitWidth)
1693        return;
1694
1695      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1696                        KnownZero, KnownOne, Depth+1);
1697      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698      KnownZero = KnownZero.lshr(ShAmt);
1699      KnownOne  = KnownOne.lshr(ShAmt);
1700
1701      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1702      KnownZero |= HighBits;  // High bits known zero.
1703    }
1704    return;
1705  case ISD::SRA:
1706    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1707      unsigned ShAmt = SA->getZExtValue();
1708
1709      // If the shift count is an invalid immediate, don't do anything.
1710      if (ShAmt >= BitWidth)
1711        return;
1712
1713      APInt InDemandedMask = (Mask << ShAmt);
1714      // If any of the demanded bits are produced by the sign extension, we also
1715      // demand the input sign bit.
1716      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1717      if (HighBits.getBoolValue())
1718        InDemandedMask |= APInt::getSignBit(BitWidth);
1719
1720      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1721                        Depth+1);
1722      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1723      KnownZero = KnownZero.lshr(ShAmt);
1724      KnownOne  = KnownOne.lshr(ShAmt);
1725
1726      // Handle the sign bits.
1727      APInt SignBit = APInt::getSignBit(BitWidth);
1728      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1729
1730      if (KnownZero.intersects(SignBit)) {
1731        KnownZero |= HighBits;  // New bits are known zero.
1732      } else if (KnownOne.intersects(SignBit)) {
1733        KnownOne  |= HighBits;  // New bits are known one.
1734      }
1735    }
1736    return;
1737  case ISD::SIGN_EXTEND_INREG: {
1738    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1739    unsigned EBits = EVT.getSizeInBits();
1740
1741    // Sign extension.  Compute the demanded bits in the result that are not
1742    // present in the input.
1743    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1744
1745    APInt InSignBit = APInt::getSignBit(EBits);
1746    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1747
1748    // If the sign extended bits are demanded, we know that the sign
1749    // bit is demanded.
1750    InSignBit.zext(BitWidth);
1751    if (NewBits.getBoolValue())
1752      InputDemandedBits |= InSignBit;
1753
1754    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1755                      KnownZero, KnownOne, Depth+1);
1756    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1757
1758    // If the sign bit of the input is known set or clear, then we know the
1759    // top bits of the result.
1760    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1761      KnownZero |= NewBits;
1762      KnownOne  &= ~NewBits;
1763    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1764      KnownOne  |= NewBits;
1765      KnownZero &= ~NewBits;
1766    } else {                              // Input sign bit unknown
1767      KnownZero &= ~NewBits;
1768      KnownOne  &= ~NewBits;
1769    }
1770    return;
1771  }
1772  case ISD::CTTZ:
1773  case ISD::CTLZ:
1774  case ISD::CTPOP: {
1775    unsigned LowBits = Log2_32(BitWidth)+1;
1776    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1777    KnownOne.clear();
1778    return;
1779  }
1780  case ISD::LOAD: {
1781    if (ISD::isZEXTLoad(Op.getNode())) {
1782      LoadSDNode *LD = cast<LoadSDNode>(Op);
1783      EVT VT = LD->getMemoryVT();
1784      unsigned MemBits = VT.getSizeInBits();
1785      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1786    }
1787    return;
1788  }
1789  case ISD::ZERO_EXTEND: {
1790    EVT InVT = Op.getOperand(0).getValueType();
1791    unsigned InBits = InVT.getSizeInBits();
1792    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1793    APInt InMask    = Mask;
1794    InMask.trunc(InBits);
1795    KnownZero.trunc(InBits);
1796    KnownOne.trunc(InBits);
1797    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1798    KnownZero.zext(BitWidth);
1799    KnownOne.zext(BitWidth);
1800    KnownZero |= NewBits;
1801    return;
1802  }
1803  case ISD::SIGN_EXTEND: {
1804    EVT InVT = Op.getOperand(0).getValueType();
1805    unsigned InBits = InVT.getSizeInBits();
1806    APInt InSignBit = APInt::getSignBit(InBits);
1807    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1808    APInt InMask = Mask;
1809    InMask.trunc(InBits);
1810
1811    // If any of the sign extended bits are demanded, we know that the sign
1812    // bit is demanded. Temporarily set this bit in the mask for our callee.
1813    if (NewBits.getBoolValue())
1814      InMask |= InSignBit;
1815
1816    KnownZero.trunc(InBits);
1817    KnownOne.trunc(InBits);
1818    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1819
1820    // Note if the sign bit is known to be zero or one.
1821    bool SignBitKnownZero = KnownZero.isNegative();
1822    bool SignBitKnownOne  = KnownOne.isNegative();
1823    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1824           "Sign bit can't be known to be both zero and one!");
1825
1826    // If the sign bit wasn't actually demanded by our caller, we don't
1827    // want it set in the KnownZero and KnownOne result values. Reset the
1828    // mask and reapply it to the result values.
1829    InMask = Mask;
1830    InMask.trunc(InBits);
1831    KnownZero &= InMask;
1832    KnownOne  &= InMask;
1833
1834    KnownZero.zext(BitWidth);
1835    KnownOne.zext(BitWidth);
1836
1837    // If the sign bit is known zero or one, the top bits match.
1838    if (SignBitKnownZero)
1839      KnownZero |= NewBits;
1840    else if (SignBitKnownOne)
1841      KnownOne  |= NewBits;
1842    return;
1843  }
1844  case ISD::ANY_EXTEND: {
1845    EVT InVT = Op.getOperand(0).getValueType();
1846    unsigned InBits = InVT.getSizeInBits();
1847    APInt InMask = Mask;
1848    InMask.trunc(InBits);
1849    KnownZero.trunc(InBits);
1850    KnownOne.trunc(InBits);
1851    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1852    KnownZero.zext(BitWidth);
1853    KnownOne.zext(BitWidth);
1854    return;
1855  }
1856  case ISD::TRUNCATE: {
1857    EVT InVT = Op.getOperand(0).getValueType();
1858    unsigned InBits = InVT.getSizeInBits();
1859    APInt InMask = Mask;
1860    InMask.zext(InBits);
1861    KnownZero.zext(InBits);
1862    KnownOne.zext(InBits);
1863    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1864    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1865    KnownZero.trunc(BitWidth);
1866    KnownOne.trunc(BitWidth);
1867    break;
1868  }
1869  case ISD::AssertZext: {
1870    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1871    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1872    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1873                      KnownOne, Depth+1);
1874    KnownZero |= (~InMask) & Mask;
1875    return;
1876  }
1877  case ISD::FGETSIGN:
1878    // All bits are zero except the low bit.
1879    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1880    return;
1881
1882  case ISD::SUB: {
1883    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1884      // We know that the top bits of C-X are clear if X contains less bits
1885      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1886      // positive if we can prove that X is >= 0 and < 16.
1887      if (CLHS->getAPIntValue().isNonNegative()) {
1888        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1889        // NLZ can't be BitWidth with no sign bit
1890        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1891        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1892                          Depth+1);
1893
1894        // If all of the MaskV bits are known to be zero, then we know the
1895        // output top bits are zero, because we now know that the output is
1896        // from [0-C].
1897        if ((KnownZero2 & MaskV) == MaskV) {
1898          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1899          // Top bits known zero.
1900          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1901        }
1902      }
1903    }
1904  }
1905  // fall through
1906  case ISD::ADD: {
1907    // Output known-0 bits are known if clear or set in both the low clear bits
1908    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1909    // low 3 bits clear.
1910    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1911    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1912    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1913    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1914
1915    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1916    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1917    KnownZeroOut = std::min(KnownZeroOut,
1918                            KnownZero2.countTrailingOnes());
1919
1920    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1921    return;
1922  }
1923  case ISD::SREM:
1924    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1925      const APInt &RA = Rem->getAPIntValue();
1926      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1927        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1928        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1929        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1930
1931        // If the sign bit of the first operand is zero, the sign bit of
1932        // the result is zero. If the first operand has no one bits below
1933        // the second operand's single 1 bit, its sign will be zero.
1934        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1935          KnownZero2 |= ~LowBits;
1936
1937        KnownZero |= KnownZero2 & Mask;
1938
1939        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1940      }
1941    }
1942    return;
1943  case ISD::UREM: {
1944    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1945      const APInt &RA = Rem->getAPIntValue();
1946      if (RA.isPowerOf2()) {
1947        APInt LowBits = (RA - 1);
1948        APInt Mask2 = LowBits & Mask;
1949        KnownZero |= ~LowBits & Mask;
1950        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1951        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1952        break;
1953      }
1954    }
1955
1956    // Since the result is less than or equal to either operand, any leading
1957    // zero bits in either operand must also exist in the result.
1958    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1959    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1960                      Depth+1);
1961    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1962                      Depth+1);
1963
1964    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1965                                KnownZero2.countLeadingOnes());
1966    KnownOne.clear();
1967    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1968    return;
1969  }
1970  default:
1971    // Allow the target to implement this method for its nodes.
1972    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1973  case ISD::INTRINSIC_WO_CHAIN:
1974  case ISD::INTRINSIC_W_CHAIN:
1975  case ISD::INTRINSIC_VOID:
1976      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1977                                         Depth);
1978    }
1979    return;
1980  }
1981}
1982
1983/// ComputeNumSignBits - Return the number of times the sign bit of the
1984/// register is replicated into the other bits.  We know that at least 1 bit
1985/// is always equal to the sign bit (itself), but other cases can give us
1986/// information.  For example, immediately after an "SRA X, 2", we know that
1987/// the top 3 bits are all equal to each other, so we return 3.
1988unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1989  EVT VT = Op.getValueType();
1990  assert(VT.isInteger() && "Invalid VT!");
1991  unsigned VTBits = VT.getSizeInBits();
1992  unsigned Tmp, Tmp2;
1993  unsigned FirstAnswer = 1;
1994
1995  if (Depth == 6)
1996    return 1;  // Limit search depth.
1997
1998  switch (Op.getOpcode()) {
1999  default: break;
2000  case ISD::AssertSext:
2001    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2002    return VTBits-Tmp+1;
2003  case ISD::AssertZext:
2004    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2005    return VTBits-Tmp;
2006
2007  case ISD::Constant: {
2008    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2009    // If negative, return # leading ones.
2010    if (Val.isNegative())
2011      return Val.countLeadingOnes();
2012
2013    // Return # leading zeros.
2014    return Val.countLeadingZeros();
2015  }
2016
2017  case ISD::SIGN_EXTEND:
2018    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2019    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2020
2021  case ISD::SIGN_EXTEND_INREG:
2022    // Max of the input and what this extends.
2023    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2024    Tmp = VTBits-Tmp+1;
2025
2026    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027    return std::max(Tmp, Tmp2);
2028
2029  case ISD::SRA:
2030    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2031    // SRA X, C   -> adds C sign bits.
2032    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2033      Tmp += C->getZExtValue();
2034      if (Tmp > VTBits) Tmp = VTBits;
2035    }
2036    return Tmp;
2037  case ISD::SHL:
2038    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2039      // shl destroys sign bits.
2040      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2041      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2042          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2043      return Tmp - C->getZExtValue();
2044    }
2045    break;
2046  case ISD::AND:
2047  case ISD::OR:
2048  case ISD::XOR:    // NOT is handled here.
2049    // Logical binary ops preserve the number of sign bits at the worst.
2050    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2051    if (Tmp != 1) {
2052      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2053      FirstAnswer = std::min(Tmp, Tmp2);
2054      // We computed what we know about the sign bits as our first
2055      // answer. Now proceed to the generic code that uses
2056      // ComputeMaskedBits, and pick whichever answer is better.
2057    }
2058    break;
2059
2060  case ISD::SELECT:
2061    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2062    if (Tmp == 1) return 1;  // Early out.
2063    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2064    return std::min(Tmp, Tmp2);
2065
2066  case ISD::SADDO:
2067  case ISD::UADDO:
2068  case ISD::SSUBO:
2069  case ISD::USUBO:
2070  case ISD::SMULO:
2071  case ISD::UMULO:
2072    if (Op.getResNo() != 1)
2073      break;
2074    // The boolean result conforms to getBooleanContents.  Fall through.
2075  case ISD::SETCC:
2076    // If setcc returns 0/-1, all bits are sign bits.
2077    if (TLI.getBooleanContents() ==
2078        TargetLowering::ZeroOrNegativeOneBooleanContent)
2079      return VTBits;
2080    break;
2081  case ISD::ROTL:
2082  case ISD::ROTR:
2083    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2084      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2085
2086      // Handle rotate right by N like a rotate left by 32-N.
2087      if (Op.getOpcode() == ISD::ROTR)
2088        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2089
2090      // If we aren't rotating out all of the known-in sign bits, return the
2091      // number that are left.  This handles rotl(sext(x), 1) for example.
2092      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2093      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2094    }
2095    break;
2096  case ISD::ADD:
2097    // Add can have at most one carry bit.  Thus we know that the output
2098    // is, at worst, one more bit than the inputs.
2099    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2100    if (Tmp == 1) return 1;  // Early out.
2101
2102    // Special case decrementing a value (ADD X, -1):
2103    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2104      if (CRHS->isAllOnesValue()) {
2105        APInt KnownZero, KnownOne;
2106        APInt Mask = APInt::getAllOnesValue(VTBits);
2107        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2108
2109        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2110        // sign bits set.
2111        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2112          return VTBits;
2113
2114        // If we are subtracting one from a positive number, there is no carry
2115        // out of the result.
2116        if (KnownZero.isNegative())
2117          return Tmp;
2118      }
2119
2120    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2121    if (Tmp2 == 1) return 1;
2122      return std::min(Tmp, Tmp2)-1;
2123    break;
2124
2125  case ISD::SUB:
2126    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2127    if (Tmp2 == 1) return 1;
2128
2129    // Handle NEG.
2130    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2131      if (CLHS->isNullValue()) {
2132        APInt KnownZero, KnownOne;
2133        APInt Mask = APInt::getAllOnesValue(VTBits);
2134        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2135        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2136        // sign bits set.
2137        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2138          return VTBits;
2139
2140        // If the input is known to be positive (the sign bit is known clear),
2141        // the output of the NEG has the same number of sign bits as the input.
2142        if (KnownZero.isNegative())
2143          return Tmp2;
2144
2145        // Otherwise, we treat this like a SUB.
2146      }
2147
2148    // Sub can have at most one carry bit.  Thus we know that the output
2149    // is, at worst, one more bit than the inputs.
2150    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2151    if (Tmp == 1) return 1;  // Early out.
2152      return std::min(Tmp, Tmp2)-1;
2153    break;
2154  case ISD::TRUNCATE:
2155    // FIXME: it's tricky to do anything useful for this, but it is an important
2156    // case for targets like X86.
2157    break;
2158  }
2159
2160  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2161  if (Op.getOpcode() == ISD::LOAD) {
2162    LoadSDNode *LD = cast<LoadSDNode>(Op);
2163    unsigned ExtType = LD->getExtensionType();
2164    switch (ExtType) {
2165    default: break;
2166    case ISD::SEXTLOAD:    // '17' bits known
2167      Tmp = LD->getMemoryVT().getSizeInBits();
2168      return VTBits-Tmp+1;
2169    case ISD::ZEXTLOAD:    // '16' bits known
2170      Tmp = LD->getMemoryVT().getSizeInBits();
2171      return VTBits-Tmp;
2172    }
2173  }
2174
2175  // Allow the target to implement this method for its nodes.
2176  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2177      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2178      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2179      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2180    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2181    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2182  }
2183
2184  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2185  // use this information.
2186  APInt KnownZero, KnownOne;
2187  APInt Mask = APInt::getAllOnesValue(VTBits);
2188  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2189
2190  if (KnownZero.isNegative()) {        // sign bit is 0
2191    Mask = KnownZero;
2192  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2193    Mask = KnownOne;
2194  } else {
2195    // Nothing known.
2196    return FirstAnswer;
2197  }
2198
2199  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2200  // the number of identical bits in the top of the input value.
2201  Mask = ~Mask;
2202  Mask <<= Mask.getBitWidth()-VTBits;
2203  // Return # leading zeros.  We use 'min' here in case Val was zero before
2204  // shifting.  We don't want to return '64' as for an i32 "0".
2205  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2206}
2207
2208bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2209  // If we're told that NaNs won't happen, assume they won't.
2210  if (FiniteOnlyFPMath())
2211    return true;
2212
2213  // If the value is a constant, we can obviously see if it is a NaN or not.
2214  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2215    return !C->getValueAPF().isNaN();
2216
2217  // TODO: Recognize more cases here.
2218
2219  return false;
2220}
2221
2222bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2223  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2224  if (!GA) return false;
2225  if (GA->getOffset() != 0) return false;
2226  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2227  if (!GV) return false;
2228  MachineModuleInfo *MMI = getMachineModuleInfo();
2229  return MMI && MMI->hasDebugInfo();
2230}
2231
2232
2233/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2234/// element of the result of the vector shuffle.
2235SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2236                                          unsigned i) {
2237  EVT VT = N->getValueType(0);
2238  DebugLoc dl = N->getDebugLoc();
2239  if (N->getMaskElt(i) < 0)
2240    return getUNDEF(VT.getVectorElementType());
2241  unsigned Index = N->getMaskElt(i);
2242  unsigned NumElems = VT.getVectorNumElements();
2243  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2244  Index %= NumElems;
2245
2246  if (V.getOpcode() == ISD::BIT_CONVERT) {
2247    V = V.getOperand(0);
2248    EVT VVT = V.getValueType();
2249    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2250      return SDValue();
2251  }
2252  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2253    return (Index == 0) ? V.getOperand(0)
2254                      : getUNDEF(VT.getVectorElementType());
2255  if (V.getOpcode() == ISD::BUILD_VECTOR)
2256    return V.getOperand(Index);
2257  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2258    return getShuffleScalarElt(SVN, Index);
2259  return SDValue();
2260}
2261
2262
2263/// getNode - Gets or creates the specified node.
2264///
2265SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2266  FoldingSetNodeID ID;
2267  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2268  void *IP = 0;
2269  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2270    return SDValue(E, 0);
2271  SDNode *N = NodeAllocator.Allocate<SDNode>();
2272  new (N) SDNode(Opcode, DL, getVTList(VT));
2273  CSEMap.InsertNode(N, IP);
2274
2275  AllNodes.push_back(N);
2276#ifndef NDEBUG
2277  VerifyNode(N);
2278#endif
2279  return SDValue(N, 0);
2280}
2281
2282SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2283                              EVT VT, SDValue Operand) {
2284  // Constant fold unary operations with an integer constant operand.
2285  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2286    const APInt &Val = C->getAPIntValue();
2287    unsigned BitWidth = VT.getSizeInBits();
2288    switch (Opcode) {
2289    default: break;
2290    case ISD::SIGN_EXTEND:
2291      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2292    case ISD::ANY_EXTEND:
2293    case ISD::ZERO_EXTEND:
2294    case ISD::TRUNCATE:
2295      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2296    case ISD::UINT_TO_FP:
2297    case ISD::SINT_TO_FP: {
2298      const uint64_t zero[] = {0, 0};
2299      // No compile time operations on this type.
2300      if (VT==MVT::ppcf128)
2301        break;
2302      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2303      (void)apf.convertFromAPInt(Val,
2304                                 Opcode==ISD::SINT_TO_FP,
2305                                 APFloat::rmNearestTiesToEven);
2306      return getConstantFP(apf, VT);
2307    }
2308    case ISD::BIT_CONVERT:
2309      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2310        return getConstantFP(Val.bitsToFloat(), VT);
2311      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2312        return getConstantFP(Val.bitsToDouble(), VT);
2313      break;
2314    case ISD::BSWAP:
2315      return getConstant(Val.byteSwap(), VT);
2316    case ISD::CTPOP:
2317      return getConstant(Val.countPopulation(), VT);
2318    case ISD::CTLZ:
2319      return getConstant(Val.countLeadingZeros(), VT);
2320    case ISD::CTTZ:
2321      return getConstant(Val.countTrailingZeros(), VT);
2322    }
2323  }
2324
2325  // Constant fold unary operations with a floating point constant operand.
2326  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2327    APFloat V = C->getValueAPF();    // make copy
2328    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2329      switch (Opcode) {
2330      case ISD::FNEG:
2331        V.changeSign();
2332        return getConstantFP(V, VT);
2333      case ISD::FABS:
2334        V.clearSign();
2335        return getConstantFP(V, VT);
2336      case ISD::FP_ROUND:
2337      case ISD::FP_EXTEND: {
2338        bool ignored;
2339        // This can return overflow, underflow, or inexact; we don't care.
2340        // FIXME need to be more flexible about rounding mode.
2341        (void)V.convert(*EVTToAPFloatSemantics(VT),
2342                        APFloat::rmNearestTiesToEven, &ignored);
2343        return getConstantFP(V, VT);
2344      }
2345      case ISD::FP_TO_SINT:
2346      case ISD::FP_TO_UINT: {
2347        integerPart x[2];
2348        bool ignored;
2349        assert(integerPartWidth >= 64);
2350        // FIXME need to be more flexible about rounding mode.
2351        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2352                              Opcode==ISD::FP_TO_SINT,
2353                              APFloat::rmTowardZero, &ignored);
2354        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2355          break;
2356        APInt api(VT.getSizeInBits(), 2, x);
2357        return getConstant(api, VT);
2358      }
2359      case ISD::BIT_CONVERT:
2360        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2361          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2362        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2363          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2364        break;
2365      }
2366    }
2367  }
2368
2369  unsigned OpOpcode = Operand.getNode()->getOpcode();
2370  switch (Opcode) {
2371  case ISD::TokenFactor:
2372  case ISD::MERGE_VALUES:
2373  case ISD::CONCAT_VECTORS:
2374    return Operand;         // Factor, merge or concat of one node?  No need.
2375  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2376  case ISD::FP_EXTEND:
2377    assert(VT.isFloatingPoint() &&
2378           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2379    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2380    if (Operand.getOpcode() == ISD::UNDEF)
2381      return getUNDEF(VT);
2382    break;
2383  case ISD::SIGN_EXTEND:
2384    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2385           "Invalid SIGN_EXTEND!");
2386    if (Operand.getValueType() == VT) return Operand;   // noop extension
2387    assert(Operand.getValueType().bitsLT(VT)
2388           && "Invalid sext node, dst < src!");
2389    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2390      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2391    break;
2392  case ISD::ZERO_EXTEND:
2393    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2394           "Invalid ZERO_EXTEND!");
2395    if (Operand.getValueType() == VT) return Operand;   // noop extension
2396    assert(Operand.getValueType().bitsLT(VT)
2397           && "Invalid zext node, dst < src!");
2398    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2399      return getNode(ISD::ZERO_EXTEND, DL, VT,
2400                     Operand.getNode()->getOperand(0));
2401    break;
2402  case ISD::ANY_EXTEND:
2403    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2404           "Invalid ANY_EXTEND!");
2405    if (Operand.getValueType() == VT) return Operand;   // noop extension
2406    assert(Operand.getValueType().bitsLT(VT)
2407           && "Invalid anyext node, dst < src!");
2408    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2409      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2410      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2411    break;
2412  case ISD::TRUNCATE:
2413    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2414           "Invalid TRUNCATE!");
2415    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2416    assert(Operand.getValueType().bitsGT(VT)
2417           && "Invalid truncate node, src < dst!");
2418    if (OpOpcode == ISD::TRUNCATE)
2419      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2420    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2421             OpOpcode == ISD::ANY_EXTEND) {
2422      // If the source is smaller than the dest, we still need an extend.
2423      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2424        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2425      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2426        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2427      else
2428        return Operand.getNode()->getOperand(0);
2429    }
2430    break;
2431  case ISD::BIT_CONVERT:
2432    // Basic sanity checking.
2433    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2434           && "Cannot BIT_CONVERT between types of different sizes!");
2435    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2436    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2437      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2438    if (OpOpcode == ISD::UNDEF)
2439      return getUNDEF(VT);
2440    break;
2441  case ISD::SCALAR_TO_VECTOR:
2442    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2443           (VT.getVectorElementType() == Operand.getValueType() ||
2444            (VT.getVectorElementType().isInteger() &&
2445             Operand.getValueType().isInteger() &&
2446             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2447           "Illegal SCALAR_TO_VECTOR node!");
2448    if (OpOpcode == ISD::UNDEF)
2449      return getUNDEF(VT);
2450    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2451    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2452        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2453        Operand.getConstantOperandVal(1) == 0 &&
2454        Operand.getOperand(0).getValueType() == VT)
2455      return Operand.getOperand(0);
2456    break;
2457  case ISD::FNEG:
2458    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2459    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2460      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2461                     Operand.getNode()->getOperand(0));
2462    if (OpOpcode == ISD::FNEG)  // --X -> X
2463      return Operand.getNode()->getOperand(0);
2464    break;
2465  case ISD::FABS:
2466    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2467      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2468    break;
2469  }
2470
2471  SDNode *N;
2472  SDVTList VTs = getVTList(VT);
2473  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2474    FoldingSetNodeID ID;
2475    SDValue Ops[1] = { Operand };
2476    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2477    void *IP = 0;
2478    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2479      return SDValue(E, 0);
2480    N = NodeAllocator.Allocate<UnarySDNode>();
2481    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2482    CSEMap.InsertNode(N, IP);
2483  } else {
2484    N = NodeAllocator.Allocate<UnarySDNode>();
2485    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2486  }
2487
2488  AllNodes.push_back(N);
2489#ifndef NDEBUG
2490  VerifyNode(N);
2491#endif
2492  return SDValue(N, 0);
2493}
2494
2495SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2496                                             EVT VT,
2497                                             ConstantSDNode *Cst1,
2498                                             ConstantSDNode *Cst2) {
2499  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2500
2501  switch (Opcode) {
2502  case ISD::ADD:  return getConstant(C1 + C2, VT);
2503  case ISD::SUB:  return getConstant(C1 - C2, VT);
2504  case ISD::MUL:  return getConstant(C1 * C2, VT);
2505  case ISD::UDIV:
2506    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2507    break;
2508  case ISD::UREM:
2509    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2510    break;
2511  case ISD::SDIV:
2512    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2513    break;
2514  case ISD::SREM:
2515    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2516    break;
2517  case ISD::AND:  return getConstant(C1 & C2, VT);
2518  case ISD::OR:   return getConstant(C1 | C2, VT);
2519  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2520  case ISD::SHL:  return getConstant(C1 << C2, VT);
2521  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2522  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2523  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2524  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2525  default: break;
2526  }
2527
2528  return SDValue();
2529}
2530
2531SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2532                              SDValue N1, SDValue N2) {
2533  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2534  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2535  switch (Opcode) {
2536  default: break;
2537  case ISD::TokenFactor:
2538    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2539           N2.getValueType() == MVT::Other && "Invalid token factor!");
2540    // Fold trivial token factors.
2541    if (N1.getOpcode() == ISD::EntryToken) return N2;
2542    if (N2.getOpcode() == ISD::EntryToken) return N1;
2543    if (N1 == N2) return N1;
2544    break;
2545  case ISD::CONCAT_VECTORS:
2546    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2547    // one big BUILD_VECTOR.
2548    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2549        N2.getOpcode() == ISD::BUILD_VECTOR) {
2550      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2551      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2552      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2553    }
2554    break;
2555  case ISD::AND:
2556    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2557           N1.getValueType() == VT && "Binary operator types must match!");
2558    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2559    // worth handling here.
2560    if (N2C && N2C->isNullValue())
2561      return N2;
2562    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2563      return N1;
2564    break;
2565  case ISD::OR:
2566  case ISD::XOR:
2567  case ISD::ADD:
2568  case ISD::SUB:
2569    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2570           N1.getValueType() == VT && "Binary operator types must match!");
2571    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2572    // it's worth handling here.
2573    if (N2C && N2C->isNullValue())
2574      return N1;
2575    break;
2576  case ISD::UDIV:
2577  case ISD::UREM:
2578  case ISD::MULHU:
2579  case ISD::MULHS:
2580  case ISD::MUL:
2581  case ISD::SDIV:
2582  case ISD::SREM:
2583    assert(VT.isInteger() && "This operator does not apply to FP types!");
2584    // fall through
2585  case ISD::FADD:
2586  case ISD::FSUB:
2587  case ISD::FMUL:
2588  case ISD::FDIV:
2589  case ISD::FREM:
2590    if (UnsafeFPMath) {
2591      if (Opcode == ISD::FADD) {
2592        // 0+x --> x
2593        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2594          if (CFP->getValueAPF().isZero())
2595            return N2;
2596        // x+0 --> x
2597        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2598          if (CFP->getValueAPF().isZero())
2599            return N1;
2600      } else if (Opcode == ISD::FSUB) {
2601        // x-0 --> x
2602        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2603          if (CFP->getValueAPF().isZero())
2604            return N1;
2605      }
2606    }
2607    assert(N1.getValueType() == N2.getValueType() &&
2608           N1.getValueType() == VT && "Binary operator types must match!");
2609    break;
2610  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2611    assert(N1.getValueType() == VT &&
2612           N1.getValueType().isFloatingPoint() &&
2613           N2.getValueType().isFloatingPoint() &&
2614           "Invalid FCOPYSIGN!");
2615    break;
2616  case ISD::SHL:
2617  case ISD::SRA:
2618  case ISD::SRL:
2619  case ISD::ROTL:
2620  case ISD::ROTR:
2621    assert(VT == N1.getValueType() &&
2622           "Shift operators return type must be the same as their first arg");
2623    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2624           "Shifts only work on integers");
2625
2626    // Always fold shifts of i1 values so the code generator doesn't need to
2627    // handle them.  Since we know the size of the shift has to be less than the
2628    // size of the value, the shift/rotate count is guaranteed to be zero.
2629    if (VT == MVT::i1)
2630      return N1;
2631    break;
2632  case ISD::FP_ROUND_INREG: {
2633    EVT EVT = cast<VTSDNode>(N2)->getVT();
2634    assert(VT == N1.getValueType() && "Not an inreg round!");
2635    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2636           "Cannot FP_ROUND_INREG integer types");
2637    assert(EVT.bitsLE(VT) && "Not rounding down!");
2638    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2639    break;
2640  }
2641  case ISD::FP_ROUND:
2642    assert(VT.isFloatingPoint() &&
2643           N1.getValueType().isFloatingPoint() &&
2644           VT.bitsLE(N1.getValueType()) &&
2645           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2646    if (N1.getValueType() == VT) return N1;  // noop conversion.
2647    break;
2648  case ISD::AssertSext:
2649  case ISD::AssertZext: {
2650    EVT EVT = cast<VTSDNode>(N2)->getVT();
2651    assert(VT == N1.getValueType() && "Not an inreg extend!");
2652    assert(VT.isInteger() && EVT.isInteger() &&
2653           "Cannot *_EXTEND_INREG FP types");
2654    assert(EVT.bitsLE(VT) && "Not extending!");
2655    if (VT == EVT) return N1; // noop assertion.
2656    break;
2657  }
2658  case ISD::SIGN_EXTEND_INREG: {
2659    EVT EVT = cast<VTSDNode>(N2)->getVT();
2660    assert(VT == N1.getValueType() && "Not an inreg extend!");
2661    assert(VT.isInteger() && EVT.isInteger() &&
2662           "Cannot *_EXTEND_INREG FP types");
2663    assert(EVT.bitsLE(VT) && "Not extending!");
2664    if (EVT == VT) return N1;  // Not actually extending
2665
2666    if (N1C) {
2667      APInt Val = N1C->getAPIntValue();
2668      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2669      Val <<= Val.getBitWidth()-FromBits;
2670      Val = Val.ashr(Val.getBitWidth()-FromBits);
2671      return getConstant(Val, VT);
2672    }
2673    break;
2674  }
2675  case ISD::EXTRACT_VECTOR_ELT:
2676    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2677    if (N1.getOpcode() == ISD::UNDEF)
2678      return getUNDEF(VT);
2679
2680    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2681    // expanding copies of large vectors from registers.
2682    if (N2C &&
2683        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2684        N1.getNumOperands() > 0) {
2685      unsigned Factor =
2686        N1.getOperand(0).getValueType().getVectorNumElements();
2687      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2688                     N1.getOperand(N2C->getZExtValue() / Factor),
2689                     getConstant(N2C->getZExtValue() % Factor,
2690                                 N2.getValueType()));
2691    }
2692
2693    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2694    // expanding large vector constants.
2695    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2696      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2697      EVT VEltTy = N1.getValueType().getVectorElementType();
2698      if (Elt.getValueType() != VEltTy) {
2699        // If the vector element type is not legal, the BUILD_VECTOR operands
2700        // are promoted and implicitly truncated.  Make that explicit here.
2701        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2702      }
2703      if (VT != VEltTy) {
2704        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2705        // result is implicitly extended.
2706        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2707      }
2708      return Elt;
2709    }
2710
2711    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2712    // operations are lowered to scalars.
2713    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2714      // If the indices are the same, return the inserted element.
2715      if (N1.getOperand(2) == N2)
2716        return N1.getOperand(1);
2717      // If the indices are known different, extract the element from
2718      // the original vector.
2719      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2720               isa<ConstantSDNode>(N2))
2721        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2722    }
2723    break;
2724  case ISD::EXTRACT_ELEMENT:
2725    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2726    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2727           (N1.getValueType().isInteger() == VT.isInteger()) &&
2728           "Wrong types for EXTRACT_ELEMENT!");
2729
2730    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2731    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2732    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2733    if (N1.getOpcode() == ISD::BUILD_PAIR)
2734      return N1.getOperand(N2C->getZExtValue());
2735
2736    // EXTRACT_ELEMENT of a constant int is also very common.
2737    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2738      unsigned ElementSize = VT.getSizeInBits();
2739      unsigned Shift = ElementSize * N2C->getZExtValue();
2740      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2741      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2742    }
2743    break;
2744  case ISD::EXTRACT_SUBVECTOR:
2745    if (N1.getValueType() == VT) // Trivial extraction.
2746      return N1;
2747    break;
2748  }
2749
2750  if (N1C) {
2751    if (N2C) {
2752      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2753      if (SV.getNode()) return SV;
2754    } else {      // Cannonicalize constant to RHS if commutative
2755      if (isCommutativeBinOp(Opcode)) {
2756        std::swap(N1C, N2C);
2757        std::swap(N1, N2);
2758      }
2759    }
2760  }
2761
2762  // Constant fold FP operations.
2763  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2764  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2765  if (N1CFP) {
2766    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2767      // Cannonicalize constant to RHS if commutative
2768      std::swap(N1CFP, N2CFP);
2769      std::swap(N1, N2);
2770    } else if (N2CFP && VT != MVT::ppcf128) {
2771      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2772      APFloat::opStatus s;
2773      switch (Opcode) {
2774      case ISD::FADD:
2775        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2776        if (s != APFloat::opInvalidOp)
2777          return getConstantFP(V1, VT);
2778        break;
2779      case ISD::FSUB:
2780        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2781        if (s!=APFloat::opInvalidOp)
2782          return getConstantFP(V1, VT);
2783        break;
2784      case ISD::FMUL:
2785        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2786        if (s!=APFloat::opInvalidOp)
2787          return getConstantFP(V1, VT);
2788        break;
2789      case ISD::FDIV:
2790        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2791        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2792          return getConstantFP(V1, VT);
2793        break;
2794      case ISD::FREM :
2795        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2796        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2797          return getConstantFP(V1, VT);
2798        break;
2799      case ISD::FCOPYSIGN:
2800        V1.copySign(V2);
2801        return getConstantFP(V1, VT);
2802      default: break;
2803      }
2804    }
2805  }
2806
2807  // Canonicalize an UNDEF to the RHS, even over a constant.
2808  if (N1.getOpcode() == ISD::UNDEF) {
2809    if (isCommutativeBinOp(Opcode)) {
2810      std::swap(N1, N2);
2811    } else {
2812      switch (Opcode) {
2813      case ISD::FP_ROUND_INREG:
2814      case ISD::SIGN_EXTEND_INREG:
2815      case ISD::SUB:
2816      case ISD::FSUB:
2817      case ISD::FDIV:
2818      case ISD::FREM:
2819      case ISD::SRA:
2820        return N1;     // fold op(undef, arg2) -> undef
2821      case ISD::UDIV:
2822      case ISD::SDIV:
2823      case ISD::UREM:
2824      case ISD::SREM:
2825      case ISD::SRL:
2826      case ISD::SHL:
2827        if (!VT.isVector())
2828          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2829        // For vectors, we can't easily build an all zero vector, just return
2830        // the LHS.
2831        return N2;
2832      }
2833    }
2834  }
2835
2836  // Fold a bunch of operators when the RHS is undef.
2837  if (N2.getOpcode() == ISD::UNDEF) {
2838    switch (Opcode) {
2839    case ISD::XOR:
2840      if (N1.getOpcode() == ISD::UNDEF)
2841        // Handle undef ^ undef -> 0 special case. This is a common
2842        // idiom (misuse).
2843        return getConstant(0, VT);
2844      // fallthrough
2845    case ISD::ADD:
2846    case ISD::ADDC:
2847    case ISD::ADDE:
2848    case ISD::SUB:
2849    case ISD::UDIV:
2850    case ISD::SDIV:
2851    case ISD::UREM:
2852    case ISD::SREM:
2853      return N2;       // fold op(arg1, undef) -> undef
2854    case ISD::FADD:
2855    case ISD::FSUB:
2856    case ISD::FMUL:
2857    case ISD::FDIV:
2858    case ISD::FREM:
2859      if (UnsafeFPMath)
2860        return N2;
2861      break;
2862    case ISD::MUL:
2863    case ISD::AND:
2864    case ISD::SRL:
2865    case ISD::SHL:
2866      if (!VT.isVector())
2867        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2868      // For vectors, we can't easily build an all zero vector, just return
2869      // the LHS.
2870      return N1;
2871    case ISD::OR:
2872      if (!VT.isVector())
2873        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2874      // For vectors, we can't easily build an all one vector, just return
2875      // the LHS.
2876      return N1;
2877    case ISD::SRA:
2878      return N1;
2879    }
2880  }
2881
2882  // Memoize this node if possible.
2883  SDNode *N;
2884  SDVTList VTs = getVTList(VT);
2885  if (VT != MVT::Flag) {
2886    SDValue Ops[] = { N1, N2 };
2887    FoldingSetNodeID ID;
2888    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2889    void *IP = 0;
2890    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2891      return SDValue(E, 0);
2892    N = NodeAllocator.Allocate<BinarySDNode>();
2893    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2894    CSEMap.InsertNode(N, IP);
2895  } else {
2896    N = NodeAllocator.Allocate<BinarySDNode>();
2897    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2898  }
2899
2900  AllNodes.push_back(N);
2901#ifndef NDEBUG
2902  VerifyNode(N);
2903#endif
2904  return SDValue(N, 0);
2905}
2906
2907SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2908                              SDValue N1, SDValue N2, SDValue N3) {
2909  // Perform various simplifications.
2910  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2911  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2912  switch (Opcode) {
2913  case ISD::CONCAT_VECTORS:
2914    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2915    // one big BUILD_VECTOR.
2916    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2917        N2.getOpcode() == ISD::BUILD_VECTOR &&
2918        N3.getOpcode() == ISD::BUILD_VECTOR) {
2919      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2920      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2921      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2922      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2923    }
2924    break;
2925  case ISD::SETCC: {
2926    // Use FoldSetCC to simplify SETCC's.
2927    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2928    if (Simp.getNode()) return Simp;
2929    break;
2930  }
2931  case ISD::SELECT:
2932    if (N1C) {
2933     if (N1C->getZExtValue())
2934        return N2;             // select true, X, Y -> X
2935      else
2936        return N3;             // select false, X, Y -> Y
2937    }
2938
2939    if (N2 == N3) return N2;   // select C, X, X -> X
2940    break;
2941  case ISD::BRCOND:
2942    if (N2C) {
2943      if (N2C->getZExtValue()) // Unconditional branch
2944        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2945      else
2946        return N1;         // Never-taken branch
2947    }
2948    break;
2949  case ISD::VECTOR_SHUFFLE:
2950    llvm_unreachable("should use getVectorShuffle constructor!");
2951    break;
2952  case ISD::BIT_CONVERT:
2953    // Fold bit_convert nodes from a type to themselves.
2954    if (N1.getValueType() == VT)
2955      return N1;
2956    break;
2957  }
2958
2959  // Memoize node if it doesn't produce a flag.
2960  SDNode *N;
2961  SDVTList VTs = getVTList(VT);
2962  if (VT != MVT::Flag) {
2963    SDValue Ops[] = { N1, N2, N3 };
2964    FoldingSetNodeID ID;
2965    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2966    void *IP = 0;
2967    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2968      return SDValue(E, 0);
2969    N = NodeAllocator.Allocate<TernarySDNode>();
2970    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2971    CSEMap.InsertNode(N, IP);
2972  } else {
2973    N = NodeAllocator.Allocate<TernarySDNode>();
2974    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2975  }
2976  AllNodes.push_back(N);
2977#ifndef NDEBUG
2978  VerifyNode(N);
2979#endif
2980  return SDValue(N, 0);
2981}
2982
2983SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2984                              SDValue N1, SDValue N2, SDValue N3,
2985                              SDValue N4) {
2986  SDValue Ops[] = { N1, N2, N3, N4 };
2987  return getNode(Opcode, DL, VT, Ops, 4);
2988}
2989
2990SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2991                              SDValue N1, SDValue N2, SDValue N3,
2992                              SDValue N4, SDValue N5) {
2993  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2994  return getNode(Opcode, DL, VT, Ops, 5);
2995}
2996
2997/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2998/// the incoming stack arguments to be loaded from the stack.
2999SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3000  SmallVector<SDValue, 8> ArgChains;
3001
3002  // Include the original chain at the beginning of the list. When this is
3003  // used by target LowerCall hooks, this helps legalize find the
3004  // CALLSEQ_BEGIN node.
3005  ArgChains.push_back(Chain);
3006
3007  // Add a chain value for each stack argument.
3008  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3009       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3010    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3011      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3012        if (FI->getIndex() < 0)
3013          ArgChains.push_back(SDValue(L, 1));
3014
3015  // Build a tokenfactor for all the chains.
3016  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3017                 &ArgChains[0], ArgChains.size());
3018}
3019
3020/// getMemsetValue - Vectorized representation of the memset value
3021/// operand.
3022static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3023                              DebugLoc dl) {
3024  unsigned NumBits = VT.isVector() ?
3025    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3026  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3027    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3028    unsigned Shift = 8;
3029    for (unsigned i = NumBits; i > 8; i >>= 1) {
3030      Val = (Val << Shift) | Val;
3031      Shift <<= 1;
3032    }
3033    if (VT.isInteger())
3034      return DAG.getConstant(Val, VT);
3035    return DAG.getConstantFP(APFloat(Val), VT);
3036  }
3037
3038  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3039  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3040  unsigned Shift = 8;
3041  for (unsigned i = NumBits; i > 8; i >>= 1) {
3042    Value = DAG.getNode(ISD::OR, dl, VT,
3043                        DAG.getNode(ISD::SHL, dl, VT, Value,
3044                                    DAG.getConstant(Shift,
3045                                                    TLI.getShiftAmountTy())),
3046                        Value);
3047    Shift <<= 1;
3048  }
3049
3050  return Value;
3051}
3052
3053/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3054/// used when a memcpy is turned into a memset when the source is a constant
3055/// string ptr.
3056static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3057                                  const TargetLowering &TLI,
3058                                  std::string &Str, unsigned Offset) {
3059  // Handle vector with all elements zero.
3060  if (Str.empty()) {
3061    if (VT.isInteger())
3062      return DAG.getConstant(0, VT);
3063    unsigned NumElts = VT.getVectorNumElements();
3064    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3065    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3066                       DAG.getConstant(0,
3067                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3068  }
3069
3070  assert(!VT.isVector() && "Can't handle vector type here!");
3071  unsigned NumBits = VT.getSizeInBits();
3072  unsigned MSB = NumBits / 8;
3073  uint64_t Val = 0;
3074  if (TLI.isLittleEndian())
3075    Offset = Offset + MSB - 1;
3076  for (unsigned i = 0; i != MSB; ++i) {
3077    Val = (Val << 8) | (unsigned char)Str[Offset];
3078    Offset += TLI.isLittleEndian() ? -1 : 1;
3079  }
3080  return DAG.getConstant(Val, VT);
3081}
3082
3083/// getMemBasePlusOffset - Returns base and offset node for the
3084///
3085static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3086                                      SelectionDAG &DAG) {
3087  EVT VT = Base.getValueType();
3088  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3089                     VT, Base, DAG.getConstant(Offset, VT));
3090}
3091
3092/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3093///
3094static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3095  unsigned SrcDelta = 0;
3096  GlobalAddressSDNode *G = NULL;
3097  if (Src.getOpcode() == ISD::GlobalAddress)
3098    G = cast<GlobalAddressSDNode>(Src);
3099  else if (Src.getOpcode() == ISD::ADD &&
3100           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3101           Src.getOperand(1).getOpcode() == ISD::Constant) {
3102    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3103    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3104  }
3105  if (!G)
3106    return false;
3107
3108  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3109  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3110    return true;
3111
3112  return false;
3113}
3114
3115/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3116/// to replace the memset / memcpy is below the threshold. It also returns the
3117/// types of the sequence of memory ops to perform memset / memcpy.
3118static
3119bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3120                              SDValue Dst, SDValue Src,
3121                              unsigned Limit, uint64_t Size, unsigned &Align,
3122                              std::string &Str, bool &isSrcStr,
3123                              SelectionDAG &DAG,
3124                              const TargetLowering &TLI) {
3125  isSrcStr = isMemSrcFromString(Src, Str);
3126  bool isSrcConst = isa<ConstantSDNode>(Src);
3127  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3128  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3129  if (VT != MVT::iAny) {
3130    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3131    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3132    // If source is a string constant, this will require an unaligned load.
3133    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3134      if (Dst.getOpcode() != ISD::FrameIndex) {
3135        // Can't change destination alignment. It requires a unaligned store.
3136        if (AllowUnalign)
3137          VT = MVT::iAny;
3138      } else {
3139        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3140        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3141        if (MFI->isFixedObjectIndex(FI)) {
3142          // Can't change destination alignment. It requires a unaligned store.
3143          if (AllowUnalign)
3144            VT = MVT::iAny;
3145        } else {
3146          // Give the stack frame object a larger alignment if needed.
3147          if (MFI->getObjectAlignment(FI) < NewAlign)
3148            MFI->setObjectAlignment(FI, NewAlign);
3149          Align = NewAlign;
3150        }
3151      }
3152    }
3153  }
3154
3155  if (VT == MVT::iAny) {
3156    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3157      VT = MVT::i64;
3158    } else {
3159      switch (Align & 7) {
3160      case 0:  VT = MVT::i64; break;
3161      case 4:  VT = MVT::i32; break;
3162      case 2:  VT = MVT::i16; break;
3163      default: VT = MVT::i8;  break;
3164      }
3165    }
3166
3167    MVT LVT = MVT::i64;
3168    while (!TLI.isTypeLegal(LVT))
3169      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3170    assert(LVT.isInteger());
3171
3172    if (VT.bitsGT(LVT))
3173      VT = LVT;
3174  }
3175
3176  unsigned NumMemOps = 0;
3177  while (Size != 0) {
3178    unsigned VTSize = VT.getSizeInBits() / 8;
3179    while (VTSize > Size) {
3180      // For now, only use non-vector load / store's for the left-over pieces.
3181      if (VT.isVector()) {
3182        VT = MVT::i64;
3183        while (!TLI.isTypeLegal(VT))
3184          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3185        VTSize = VT.getSizeInBits() / 8;
3186      } else {
3187        // This can result in a type that is not legal on the target, e.g.
3188        // 1 or 2 bytes on PPC.
3189        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3190        VTSize >>= 1;
3191      }
3192    }
3193
3194    if (++NumMemOps > Limit)
3195      return false;
3196    MemOps.push_back(VT);
3197    Size -= VTSize;
3198  }
3199
3200  return true;
3201}
3202
3203static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3204                                         SDValue Chain, SDValue Dst,
3205                                         SDValue Src, uint64_t Size,
3206                                         unsigned Align, bool AlwaysInline,
3207                                         const Value *DstSV, uint64_t DstSVOff,
3208                                         const Value *SrcSV, uint64_t SrcSVOff){
3209  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3210
3211  // Expand memcpy to a series of load and store ops if the size operand falls
3212  // below a certain threshold.
3213  std::vector<EVT> MemOps;
3214  uint64_t Limit = -1ULL;
3215  if (!AlwaysInline)
3216    Limit = TLI.getMaxStoresPerMemcpy();
3217  unsigned DstAlign = Align;  // Destination alignment can change.
3218  std::string Str;
3219  bool CopyFromStr;
3220  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3221                                Str, CopyFromStr, DAG, TLI))
3222    return SDValue();
3223
3224
3225  bool isZeroStr = CopyFromStr && Str.empty();
3226  SmallVector<SDValue, 8> OutChains;
3227  unsigned NumMemOps = MemOps.size();
3228  uint64_t SrcOff = 0, DstOff = 0;
3229  for (unsigned i = 0; i != NumMemOps; ++i) {
3230    EVT VT = MemOps[i];
3231    unsigned VTSize = VT.getSizeInBits() / 8;
3232    SDValue Value, Store;
3233
3234    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3235      // It's unlikely a store of a vector immediate can be done in a single
3236      // instruction. It would require a load from a constantpool first.
3237      // We also handle store a vector with all zero's.
3238      // FIXME: Handle other cases where store of vector immediate is done in
3239      // a single instruction.
3240      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3241      Store = DAG.getStore(Chain, dl, Value,
3242                           getMemBasePlusOffset(Dst, DstOff, DAG),
3243                           DstSV, DstSVOff + DstOff, false, DstAlign);
3244    } else {
3245      // The type might not be legal for the target.  This should only happen
3246      // if the type is smaller than a legal type, as on PPC, so the right
3247      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3248      // to Load/Store if NVT==VT.
3249      // FIXME does the case above also need this?
3250      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3251      assert(NVT.bitsGE(VT));
3252      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3253                             getMemBasePlusOffset(Src, SrcOff, DAG),
3254                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3255      Store = DAG.getTruncStore(Chain, dl, Value,
3256                             getMemBasePlusOffset(Dst, DstOff, DAG),
3257                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3258    }
3259    OutChains.push_back(Store);
3260    SrcOff += VTSize;
3261    DstOff += VTSize;
3262  }
3263
3264  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3265                     &OutChains[0], OutChains.size());
3266}
3267
3268static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3269                                          SDValue Chain, SDValue Dst,
3270                                          SDValue Src, uint64_t Size,
3271                                          unsigned Align, bool AlwaysInline,
3272                                          const Value *DstSV, uint64_t DstSVOff,
3273                                          const Value *SrcSV, uint64_t SrcSVOff){
3274  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3275
3276  // Expand memmove to a series of load and store ops if the size operand falls
3277  // below a certain threshold.
3278  std::vector<EVT> MemOps;
3279  uint64_t Limit = -1ULL;
3280  if (!AlwaysInline)
3281    Limit = TLI.getMaxStoresPerMemmove();
3282  unsigned DstAlign = Align;  // Destination alignment can change.
3283  std::string Str;
3284  bool CopyFromStr;
3285  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3286                                Str, CopyFromStr, DAG, TLI))
3287    return SDValue();
3288
3289  uint64_t SrcOff = 0, DstOff = 0;
3290
3291  SmallVector<SDValue, 8> LoadValues;
3292  SmallVector<SDValue, 8> LoadChains;
3293  SmallVector<SDValue, 8> OutChains;
3294  unsigned NumMemOps = MemOps.size();
3295  for (unsigned i = 0; i < NumMemOps; i++) {
3296    EVT VT = MemOps[i];
3297    unsigned VTSize = VT.getSizeInBits() / 8;
3298    SDValue Value, Store;
3299
3300    Value = DAG.getLoad(VT, dl, Chain,
3301                        getMemBasePlusOffset(Src, SrcOff, DAG),
3302                        SrcSV, SrcSVOff + SrcOff, false, Align);
3303    LoadValues.push_back(Value);
3304    LoadChains.push_back(Value.getValue(1));
3305    SrcOff += VTSize;
3306  }
3307  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3308                      &LoadChains[0], LoadChains.size());
3309  OutChains.clear();
3310  for (unsigned i = 0; i < NumMemOps; i++) {
3311    EVT VT = MemOps[i];
3312    unsigned VTSize = VT.getSizeInBits() / 8;
3313    SDValue Value, Store;
3314
3315    Store = DAG.getStore(Chain, dl, LoadValues[i],
3316                         getMemBasePlusOffset(Dst, DstOff, DAG),
3317                         DstSV, DstSVOff + DstOff, false, DstAlign);
3318    OutChains.push_back(Store);
3319    DstOff += VTSize;
3320  }
3321
3322  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3323                     &OutChains[0], OutChains.size());
3324}
3325
3326static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3327                                 SDValue Chain, SDValue Dst,
3328                                 SDValue Src, uint64_t Size,
3329                                 unsigned Align,
3330                                 const Value *DstSV, uint64_t DstSVOff) {
3331  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3332
3333  // Expand memset to a series of load/store ops if the size operand
3334  // falls below a certain threshold.
3335  std::vector<EVT> MemOps;
3336  std::string Str;
3337  bool CopyFromStr;
3338  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3339                                Size, Align, Str, CopyFromStr, DAG, TLI))
3340    return SDValue();
3341
3342  SmallVector<SDValue, 8> OutChains;
3343  uint64_t DstOff = 0;
3344
3345  unsigned NumMemOps = MemOps.size();
3346  for (unsigned i = 0; i < NumMemOps; i++) {
3347    EVT VT = MemOps[i];
3348    unsigned VTSize = VT.getSizeInBits() / 8;
3349    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3350    SDValue Store = DAG.getStore(Chain, dl, Value,
3351                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3352                                 DstSV, DstSVOff + DstOff);
3353    OutChains.push_back(Store);
3354    DstOff += VTSize;
3355  }
3356
3357  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3358                     &OutChains[0], OutChains.size());
3359}
3360
3361SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3362                                SDValue Src, SDValue Size,
3363                                unsigned Align, bool AlwaysInline,
3364                                const Value *DstSV, uint64_t DstSVOff,
3365                                const Value *SrcSV, uint64_t SrcSVOff) {
3366
3367  // Check to see if we should lower the memcpy to loads and stores first.
3368  // For cases within the target-specified limits, this is the best choice.
3369  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3370  if (ConstantSize) {
3371    // Memcpy with size zero? Just return the original chain.
3372    if (ConstantSize->isNullValue())
3373      return Chain;
3374
3375    SDValue Result =
3376      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3377                              ConstantSize->getZExtValue(),
3378                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3379    if (Result.getNode())
3380      return Result;
3381  }
3382
3383  // Then check to see if we should lower the memcpy with target-specific
3384  // code. If the target chooses to do this, this is the next best.
3385  SDValue Result =
3386    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3387                                AlwaysInline,
3388                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3389  if (Result.getNode())
3390    return Result;
3391
3392  // If we really need inline code and the target declined to provide it,
3393  // use a (potentially long) sequence of loads and stores.
3394  if (AlwaysInline) {
3395    assert(ConstantSize && "AlwaysInline requires a constant size!");
3396    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3397                                   ConstantSize->getZExtValue(), Align, true,
3398                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3399  }
3400
3401  // Emit a library call.
3402  TargetLowering::ArgListTy Args;
3403  TargetLowering::ArgListEntry Entry;
3404  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3405  Entry.Node = Dst; Args.push_back(Entry);
3406  Entry.Node = Src; Args.push_back(Entry);
3407  Entry.Node = Size; Args.push_back(Entry);
3408  // FIXME: pass in DebugLoc
3409  std::pair<SDValue,SDValue> CallResult =
3410    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3411                    false, false, false, false, 0,
3412                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3413                    /*isReturnValueUsed=*/false,
3414                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3415                                      TLI.getPointerTy()),
3416                    Args, *this, dl);
3417  return CallResult.second;
3418}
3419
3420SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3421                                 SDValue Src, SDValue Size,
3422                                 unsigned Align,
3423                                 const Value *DstSV, uint64_t DstSVOff,
3424                                 const Value *SrcSV, uint64_t SrcSVOff) {
3425
3426  // Check to see if we should lower the memmove to loads and stores first.
3427  // For cases within the target-specified limits, this is the best choice.
3428  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3429  if (ConstantSize) {
3430    // Memmove with size zero? Just return the original chain.
3431    if (ConstantSize->isNullValue())
3432      return Chain;
3433
3434    SDValue Result =
3435      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3436                               ConstantSize->getZExtValue(),
3437                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3438    if (Result.getNode())
3439      return Result;
3440  }
3441
3442  // Then check to see if we should lower the memmove with target-specific
3443  // code. If the target chooses to do this, this is the next best.
3444  SDValue Result =
3445    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3446                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3447  if (Result.getNode())
3448    return Result;
3449
3450  // Emit a library call.
3451  TargetLowering::ArgListTy Args;
3452  TargetLowering::ArgListEntry Entry;
3453  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3454  Entry.Node = Dst; Args.push_back(Entry);
3455  Entry.Node = Src; Args.push_back(Entry);
3456  Entry.Node = Size; Args.push_back(Entry);
3457  // FIXME:  pass in DebugLoc
3458  std::pair<SDValue,SDValue> CallResult =
3459    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3460                    false, false, false, false, 0,
3461                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3462                    /*isReturnValueUsed=*/false,
3463                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3464                                      TLI.getPointerTy()),
3465                    Args, *this, dl);
3466  return CallResult.second;
3467}
3468
3469SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3470                                SDValue Src, SDValue Size,
3471                                unsigned Align,
3472                                const Value *DstSV, uint64_t DstSVOff) {
3473
3474  // Check to see if we should lower the memset to stores first.
3475  // For cases within the target-specified limits, this is the best choice.
3476  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3477  if (ConstantSize) {
3478    // Memset with size zero? Just return the original chain.
3479    if (ConstantSize->isNullValue())
3480      return Chain;
3481
3482    SDValue Result =
3483      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3484                      Align, DstSV, DstSVOff);
3485    if (Result.getNode())
3486      return Result;
3487  }
3488
3489  // Then check to see if we should lower the memset with target-specific
3490  // code. If the target chooses to do this, this is the next best.
3491  SDValue Result =
3492    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3493                                DstSV, DstSVOff);
3494  if (Result.getNode())
3495    return Result;
3496
3497  // Emit a library call.
3498  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3499  TargetLowering::ArgListTy Args;
3500  TargetLowering::ArgListEntry Entry;
3501  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3502  Args.push_back(Entry);
3503  // Extend or truncate the argument to be an i32 value for the call.
3504  if (Src.getValueType().bitsGT(MVT::i32))
3505    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3506  else
3507    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3508  Entry.Node = Src;
3509  Entry.Ty = Type::getInt32Ty(*getContext());
3510  Entry.isSExt = true;
3511  Args.push_back(Entry);
3512  Entry.Node = Size;
3513  Entry.Ty = IntPtrTy;
3514  Entry.isSExt = false;
3515  Args.push_back(Entry);
3516  // FIXME: pass in DebugLoc
3517  std::pair<SDValue,SDValue> CallResult =
3518    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3519                    false, false, false, false, 0,
3520                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3521                    /*isReturnValueUsed=*/false,
3522                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3523                                      TLI.getPointerTy()),
3524                    Args, *this, dl);
3525  return CallResult.second;
3526}
3527
3528SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3529                                SDValue Chain,
3530                                SDValue Ptr, SDValue Cmp,
3531                                SDValue Swp, const Value* PtrVal,
3532                                unsigned Alignment) {
3533  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3534    Alignment = getEVTAlignment(MemVT);
3535
3536  // Check if the memory reference references a frame index
3537  if (!PtrVal)
3538    if (const FrameIndexSDNode *FI =
3539          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3540      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3541
3542  MachineFunction &MF = getMachineFunction();
3543  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3544
3545  // For now, atomics are considered to be volatile always.
3546  Flags |= MachineMemOperand::MOVolatile;
3547
3548  MachineMemOperand *MMO =
3549    MF.getMachineMemOperand(PtrVal, Flags, 0,
3550                            MemVT.getStoreSize(), Alignment);
3551
3552  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3553}
3554
3555SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3556                                SDValue Chain,
3557                                SDValue Ptr, SDValue Cmp,
3558                                SDValue Swp, MachineMemOperand *MMO) {
3559  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3560  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3561
3562  EVT VT = Cmp.getValueType();
3563
3564  SDVTList VTs = getVTList(VT, MVT::Other);
3565  FoldingSetNodeID ID;
3566  ID.AddInteger(MemVT.getRawBits());
3567  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3568  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3569  void* IP = 0;
3570  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3571    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3572    return SDValue(E, 0);
3573  }
3574  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3575  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3576  CSEMap.InsertNode(N, IP);
3577  AllNodes.push_back(N);
3578  return SDValue(N, 0);
3579}
3580
3581SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3582                                SDValue Chain,
3583                                SDValue Ptr, SDValue Val,
3584                                const Value* PtrVal,
3585                                unsigned Alignment) {
3586  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3587    Alignment = getEVTAlignment(MemVT);
3588
3589  // Check if the memory reference references a frame index
3590  if (!PtrVal)
3591    if (const FrameIndexSDNode *FI =
3592          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3593      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3594
3595  MachineFunction &MF = getMachineFunction();
3596  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3597
3598  // For now, atomics are considered to be volatile always.
3599  Flags |= MachineMemOperand::MOVolatile;
3600
3601  MachineMemOperand *MMO =
3602    MF.getMachineMemOperand(PtrVal, Flags, 0,
3603                            MemVT.getStoreSize(), Alignment);
3604
3605  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3606}
3607
3608SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3609                                SDValue Chain,
3610                                SDValue Ptr, SDValue Val,
3611                                MachineMemOperand *MMO) {
3612  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3613          Opcode == ISD::ATOMIC_LOAD_SUB ||
3614          Opcode == ISD::ATOMIC_LOAD_AND ||
3615          Opcode == ISD::ATOMIC_LOAD_OR ||
3616          Opcode == ISD::ATOMIC_LOAD_XOR ||
3617          Opcode == ISD::ATOMIC_LOAD_NAND ||
3618          Opcode == ISD::ATOMIC_LOAD_MIN ||
3619          Opcode == ISD::ATOMIC_LOAD_MAX ||
3620          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3621          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3622          Opcode == ISD::ATOMIC_SWAP) &&
3623         "Invalid Atomic Op");
3624
3625  EVT VT = Val.getValueType();
3626
3627  SDVTList VTs = getVTList(VT, MVT::Other);
3628  FoldingSetNodeID ID;
3629  ID.AddInteger(MemVT.getRawBits());
3630  SDValue Ops[] = {Chain, Ptr, Val};
3631  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3632  void* IP = 0;
3633  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3634    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3635    return SDValue(E, 0);
3636  }
3637  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3638  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3639  CSEMap.InsertNode(N, IP);
3640  AllNodes.push_back(N);
3641  return SDValue(N, 0);
3642}
3643
3644/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3645/// Allowed to return something different (and simpler) if Simplify is true.
3646SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3647                                     DebugLoc dl) {
3648  if (NumOps == 1)
3649    return Ops[0];
3650
3651  SmallVector<EVT, 4> VTs;
3652  VTs.reserve(NumOps);
3653  for (unsigned i = 0; i < NumOps; ++i)
3654    VTs.push_back(Ops[i].getValueType());
3655  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3656                 Ops, NumOps);
3657}
3658
3659SDValue
3660SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3661                                  const EVT *VTs, unsigned NumVTs,
3662                                  const SDValue *Ops, unsigned NumOps,
3663                                  EVT MemVT, const Value *srcValue, int SVOff,
3664                                  unsigned Align, bool Vol,
3665                                  bool ReadMem, bool WriteMem) {
3666  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3667                             MemVT, srcValue, SVOff, Align, Vol,
3668                             ReadMem, WriteMem);
3669}
3670
3671SDValue
3672SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3673                                  const SDValue *Ops, unsigned NumOps,
3674                                  EVT MemVT, const Value *srcValue, int SVOff,
3675                                  unsigned Align, bool Vol,
3676                                  bool ReadMem, bool WriteMem) {
3677  if (Align == 0)  // Ensure that codegen never sees alignment 0
3678    Align = getEVTAlignment(MemVT);
3679
3680  MachineFunction &MF = getMachineFunction();
3681  unsigned Flags = 0;
3682  if (WriteMem)
3683    Flags |= MachineMemOperand::MOStore;
3684  if (ReadMem)
3685    Flags |= MachineMemOperand::MOLoad;
3686  if (Vol)
3687    Flags |= MachineMemOperand::MOVolatile;
3688  MachineMemOperand *MMO =
3689    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3690                            MemVT.getStoreSize(), Align);
3691
3692  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3693}
3694
3695SDValue
3696SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3697                                  const SDValue *Ops, unsigned NumOps,
3698                                  EVT MemVT, MachineMemOperand *MMO) {
3699  assert((Opcode == ISD::INTRINSIC_VOID ||
3700          Opcode == ISD::INTRINSIC_W_CHAIN ||
3701          (Opcode <= INT_MAX &&
3702           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3703         "Opcode is not a memory-accessing opcode!");
3704
3705  // Memoize the node unless it returns a flag.
3706  MemIntrinsicSDNode *N;
3707  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3708    FoldingSetNodeID ID;
3709    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3710    void *IP = 0;
3711    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3712      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3713      return SDValue(E, 0);
3714    }
3715
3716    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3717    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3718    CSEMap.InsertNode(N, IP);
3719  } else {
3720    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3721    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3722  }
3723  AllNodes.push_back(N);
3724  return SDValue(N, 0);
3725}
3726
3727SDValue
3728SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3729                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3730                      SDValue Ptr, SDValue Offset,
3731                      const Value *SV, int SVOffset, EVT MemVT,
3732                      bool isVolatile, unsigned Alignment) {
3733  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3734    Alignment = getEVTAlignment(VT);
3735
3736  // Check if the memory reference references a frame index
3737  if (!SV)
3738    if (const FrameIndexSDNode *FI =
3739          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3740      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3741
3742  MachineFunction &MF = getMachineFunction();
3743  unsigned Flags = MachineMemOperand::MOLoad;
3744  if (isVolatile)
3745    Flags |= MachineMemOperand::MOVolatile;
3746  MachineMemOperand *MMO =
3747    MF.getMachineMemOperand(SV, Flags, SVOffset,
3748                            MemVT.getStoreSize(), Alignment);
3749  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3750}
3751
3752SDValue
3753SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3754                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3755                      SDValue Ptr, SDValue Offset, EVT MemVT,
3756                      MachineMemOperand *MMO) {
3757  if (VT == MemVT) {
3758    ExtType = ISD::NON_EXTLOAD;
3759  } else if (ExtType == ISD::NON_EXTLOAD) {
3760    assert(VT == MemVT && "Non-extending load from different memory type!");
3761  } else {
3762    // Extending load.
3763    if (VT.isVector())
3764      assert(MemVT.getVectorNumElements() == VT.getVectorNumElements() &&
3765             "Invalid vector extload!");
3766    else
3767      assert(MemVT.bitsLT(VT) &&
3768             "Should only be an extending load, not truncating!");
3769    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3770           "Cannot sign/zero extend a FP/Vector load!");
3771    assert(VT.isInteger() == MemVT.isInteger() &&
3772           "Cannot convert from FP to Int or Int -> FP!");
3773  }
3774
3775  bool Indexed = AM != ISD::UNINDEXED;
3776  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3777         "Unindexed load with an offset!");
3778
3779  SDVTList VTs = Indexed ?
3780    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3781  SDValue Ops[] = { Chain, Ptr, Offset };
3782  FoldingSetNodeID ID;
3783  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3784  ID.AddInteger(MemVT.getRawBits());
3785  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3786  void *IP = 0;
3787  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3788    cast<LoadSDNode>(E)->refineAlignment(MMO);
3789    return SDValue(E, 0);
3790  }
3791  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3792  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3793  CSEMap.InsertNode(N, IP);
3794  AllNodes.push_back(N);
3795  return SDValue(N, 0);
3796}
3797
3798SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3799                              SDValue Chain, SDValue Ptr,
3800                              const Value *SV, int SVOffset,
3801                              bool isVolatile, unsigned Alignment) {
3802  SDValue Undef = getUNDEF(Ptr.getValueType());
3803  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3804                 SV, SVOffset, VT, isVolatile, Alignment);
3805}
3806
3807SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3808                                 SDValue Chain, SDValue Ptr,
3809                                 const Value *SV,
3810                                 int SVOffset, EVT MemVT,
3811                                 bool isVolatile, unsigned Alignment) {
3812  SDValue Undef = getUNDEF(Ptr.getValueType());
3813  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3814                 SV, SVOffset, MemVT, isVolatile, Alignment);
3815}
3816
3817SDValue
3818SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3819                             SDValue Offset, ISD::MemIndexedMode AM) {
3820  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3821  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3822         "Load is already a indexed load!");
3823  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3824                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3825                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3826                 LD->isVolatile(), LD->getAlignment());
3827}
3828
3829SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3830                               SDValue Ptr, const Value *SV, int SVOffset,
3831                               bool isVolatile, unsigned Alignment) {
3832  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3833    Alignment = getEVTAlignment(Val.getValueType());
3834
3835  // Check if the memory reference references a frame index
3836  if (!SV)
3837    if (const FrameIndexSDNode *FI =
3838          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3839      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3840
3841  MachineFunction &MF = getMachineFunction();
3842  unsigned Flags = MachineMemOperand::MOStore;
3843  if (isVolatile)
3844    Flags |= MachineMemOperand::MOVolatile;
3845  MachineMemOperand *MMO =
3846    MF.getMachineMemOperand(SV, Flags, SVOffset,
3847                            Val.getValueType().getStoreSize(), Alignment);
3848
3849  return getStore(Chain, dl, Val, Ptr, MMO);
3850}
3851
3852SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3853                               SDValue Ptr, MachineMemOperand *MMO) {
3854  EVT VT = Val.getValueType();
3855  SDVTList VTs = getVTList(MVT::Other);
3856  SDValue Undef = getUNDEF(Ptr.getValueType());
3857  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3858  FoldingSetNodeID ID;
3859  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3860  ID.AddInteger(VT.getRawBits());
3861  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3862  void *IP = 0;
3863  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3864    cast<StoreSDNode>(E)->refineAlignment(MMO);
3865    return SDValue(E, 0);
3866  }
3867  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3868  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3869  CSEMap.InsertNode(N, IP);
3870  AllNodes.push_back(N);
3871  return SDValue(N, 0);
3872}
3873
3874SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3875                                    SDValue Ptr, const Value *SV,
3876                                    int SVOffset, EVT SVT,
3877                                    bool isVolatile, unsigned Alignment) {
3878  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3879    Alignment = getEVTAlignment(SVT);
3880
3881  // Check if the memory reference references a frame index
3882  if (!SV)
3883    if (const FrameIndexSDNode *FI =
3884          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3885      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3886
3887  MachineFunction &MF = getMachineFunction();
3888  unsigned Flags = MachineMemOperand::MOStore;
3889  if (isVolatile)
3890    Flags |= MachineMemOperand::MOVolatile;
3891  MachineMemOperand *MMO =
3892    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3893
3894  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3895}
3896
3897SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3898                                    SDValue Ptr, EVT SVT,
3899                                    MachineMemOperand *MMO) {
3900  EVT VT = Val.getValueType();
3901
3902  if (VT == SVT)
3903    return getStore(Chain, dl, Val, Ptr, MMO);
3904
3905  assert(VT.bitsGT(SVT) && "Not a truncation?");
3906  assert(VT.isInteger() == SVT.isInteger() &&
3907         "Can't do FP-INT conversion!");
3908
3909
3910  SDVTList VTs = getVTList(MVT::Other);
3911  SDValue Undef = getUNDEF(Ptr.getValueType());
3912  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3913  FoldingSetNodeID ID;
3914  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3915  ID.AddInteger(SVT.getRawBits());
3916  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3917  void *IP = 0;
3918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3919    cast<StoreSDNode>(E)->refineAlignment(MMO);
3920    return SDValue(E, 0);
3921  }
3922  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3923  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3924  CSEMap.InsertNode(N, IP);
3925  AllNodes.push_back(N);
3926  return SDValue(N, 0);
3927}
3928
3929SDValue
3930SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3931                              SDValue Offset, ISD::MemIndexedMode AM) {
3932  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3933  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3934         "Store is already a indexed store!");
3935  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3936  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3937  FoldingSetNodeID ID;
3938  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3939  ID.AddInteger(ST->getMemoryVT().getRawBits());
3940  ID.AddInteger(ST->getRawSubclassData());
3941  void *IP = 0;
3942  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3943    return SDValue(E, 0);
3944  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3945  new (N) StoreSDNode(Ops, dl, VTs, AM,
3946                      ST->isTruncatingStore(), ST->getMemoryVT(),
3947                      ST->getMemOperand());
3948  CSEMap.InsertNode(N, IP);
3949  AllNodes.push_back(N);
3950  return SDValue(N, 0);
3951}
3952
3953SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3954                               SDValue Chain, SDValue Ptr,
3955                               SDValue SV) {
3956  SDValue Ops[] = { Chain, Ptr, SV };
3957  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3958}
3959
3960SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3961                              const SDUse *Ops, unsigned NumOps) {
3962  switch (NumOps) {
3963  case 0: return getNode(Opcode, DL, VT);
3964  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3965  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3966  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3967  default: break;
3968  }
3969
3970  // Copy from an SDUse array into an SDValue array for use with
3971  // the regular getNode logic.
3972  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3973  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3974}
3975
3976SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3977                              const SDValue *Ops, unsigned NumOps) {
3978  switch (NumOps) {
3979  case 0: return getNode(Opcode, DL, VT);
3980  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3981  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3982  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3983  default: break;
3984  }
3985
3986  switch (Opcode) {
3987  default: break;
3988  case ISD::SELECT_CC: {
3989    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3990    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3991           "LHS and RHS of condition must have same type!");
3992    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3993           "True and False arms of SelectCC must have same type!");
3994    assert(Ops[2].getValueType() == VT &&
3995           "select_cc node must be of same type as true and false value!");
3996    break;
3997  }
3998  case ISD::BR_CC: {
3999    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4000    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4001           "LHS/RHS of comparison should match types!");
4002    break;
4003  }
4004  }
4005
4006  // Memoize nodes.
4007  SDNode *N;
4008  SDVTList VTs = getVTList(VT);
4009
4010  if (VT != MVT::Flag) {
4011    FoldingSetNodeID ID;
4012    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4013    void *IP = 0;
4014
4015    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4016      return SDValue(E, 0);
4017
4018    N = NodeAllocator.Allocate<SDNode>();
4019    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4020    CSEMap.InsertNode(N, IP);
4021  } else {
4022    N = NodeAllocator.Allocate<SDNode>();
4023    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4024  }
4025
4026  AllNodes.push_back(N);
4027#ifndef NDEBUG
4028  VerifyNode(N);
4029#endif
4030  return SDValue(N, 0);
4031}
4032
4033SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4034                              const std::vector<EVT> &ResultTys,
4035                              const SDValue *Ops, unsigned NumOps) {
4036  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4037                 Ops, NumOps);
4038}
4039
4040SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4041                              const EVT *VTs, unsigned NumVTs,
4042                              const SDValue *Ops, unsigned NumOps) {
4043  if (NumVTs == 1)
4044    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4045  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4046}
4047
4048SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4049                              const SDValue *Ops, unsigned NumOps) {
4050  if (VTList.NumVTs == 1)
4051    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4052
4053#if 0
4054  switch (Opcode) {
4055  // FIXME: figure out how to safely handle things like
4056  // int foo(int x) { return 1 << (x & 255); }
4057  // int bar() { return foo(256); }
4058  case ISD::SRA_PARTS:
4059  case ISD::SRL_PARTS:
4060  case ISD::SHL_PARTS:
4061    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4062        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4063      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4064    else if (N3.getOpcode() == ISD::AND)
4065      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4066        // If the and is only masking out bits that cannot effect the shift,
4067        // eliminate the and.
4068        unsigned NumBits = VT.getSizeInBits()*2;
4069        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4070          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4071      }
4072    break;
4073  }
4074#endif
4075
4076  // Memoize the node unless it returns a flag.
4077  SDNode *N;
4078  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4079    FoldingSetNodeID ID;
4080    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4081    void *IP = 0;
4082    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4083      return SDValue(E, 0);
4084    if (NumOps == 1) {
4085      N = NodeAllocator.Allocate<UnarySDNode>();
4086      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4087    } else if (NumOps == 2) {
4088      N = NodeAllocator.Allocate<BinarySDNode>();
4089      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4090    } else if (NumOps == 3) {
4091      N = NodeAllocator.Allocate<TernarySDNode>();
4092      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4093    } else {
4094      N = NodeAllocator.Allocate<SDNode>();
4095      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4096    }
4097    CSEMap.InsertNode(N, IP);
4098  } else {
4099    if (NumOps == 1) {
4100      N = NodeAllocator.Allocate<UnarySDNode>();
4101      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4102    } else if (NumOps == 2) {
4103      N = NodeAllocator.Allocate<BinarySDNode>();
4104      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4105    } else if (NumOps == 3) {
4106      N = NodeAllocator.Allocate<TernarySDNode>();
4107      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4108    } else {
4109      N = NodeAllocator.Allocate<SDNode>();
4110      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4111    }
4112  }
4113  AllNodes.push_back(N);
4114#ifndef NDEBUG
4115  VerifyNode(N);
4116#endif
4117  return SDValue(N, 0);
4118}
4119
4120SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4121  return getNode(Opcode, DL, VTList, 0, 0);
4122}
4123
4124SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4125                              SDValue N1) {
4126  SDValue Ops[] = { N1 };
4127  return getNode(Opcode, DL, VTList, Ops, 1);
4128}
4129
4130SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4131                              SDValue N1, SDValue N2) {
4132  SDValue Ops[] = { N1, N2 };
4133  return getNode(Opcode, DL, VTList, Ops, 2);
4134}
4135
4136SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4137                              SDValue N1, SDValue N2, SDValue N3) {
4138  SDValue Ops[] = { N1, N2, N3 };
4139  return getNode(Opcode, DL, VTList, Ops, 3);
4140}
4141
4142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4143                              SDValue N1, SDValue N2, SDValue N3,
4144                              SDValue N4) {
4145  SDValue Ops[] = { N1, N2, N3, N4 };
4146  return getNode(Opcode, DL, VTList, Ops, 4);
4147}
4148
4149SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4150                              SDValue N1, SDValue N2, SDValue N3,
4151                              SDValue N4, SDValue N5) {
4152  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4153  return getNode(Opcode, DL, VTList, Ops, 5);
4154}
4155
4156SDVTList SelectionDAG::getVTList(EVT VT) {
4157  return makeVTList(SDNode::getValueTypeList(VT), 1);
4158}
4159
4160SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4161  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4162       E = VTList.rend(); I != E; ++I)
4163    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4164      return *I;
4165
4166  EVT *Array = Allocator.Allocate<EVT>(2);
4167  Array[0] = VT1;
4168  Array[1] = VT2;
4169  SDVTList Result = makeVTList(Array, 2);
4170  VTList.push_back(Result);
4171  return Result;
4172}
4173
4174SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4175  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4176       E = VTList.rend(); I != E; ++I)
4177    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4178                          I->VTs[2] == VT3)
4179      return *I;
4180
4181  EVT *Array = Allocator.Allocate<EVT>(3);
4182  Array[0] = VT1;
4183  Array[1] = VT2;
4184  Array[2] = VT3;
4185  SDVTList Result = makeVTList(Array, 3);
4186  VTList.push_back(Result);
4187  return Result;
4188}
4189
4190SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4191  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4192       E = VTList.rend(); I != E; ++I)
4193    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4194                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4195      return *I;
4196
4197  EVT *Array = Allocator.Allocate<EVT>(3);
4198  Array[0] = VT1;
4199  Array[1] = VT2;
4200  Array[2] = VT3;
4201  Array[3] = VT4;
4202  SDVTList Result = makeVTList(Array, 4);
4203  VTList.push_back(Result);
4204  return Result;
4205}
4206
4207SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4208  switch (NumVTs) {
4209    case 0: llvm_unreachable("Cannot have nodes without results!");
4210    case 1: return getVTList(VTs[0]);
4211    case 2: return getVTList(VTs[0], VTs[1]);
4212    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4213    default: break;
4214  }
4215
4216  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4217       E = VTList.rend(); I != E; ++I) {
4218    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4219      continue;
4220
4221    bool NoMatch = false;
4222    for (unsigned i = 2; i != NumVTs; ++i)
4223      if (VTs[i] != I->VTs[i]) {
4224        NoMatch = true;
4225        break;
4226      }
4227    if (!NoMatch)
4228      return *I;
4229  }
4230
4231  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4232  std::copy(VTs, VTs+NumVTs, Array);
4233  SDVTList Result = makeVTList(Array, NumVTs);
4234  VTList.push_back(Result);
4235  return Result;
4236}
4237
4238
4239/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4240/// specified operands.  If the resultant node already exists in the DAG,
4241/// this does not modify the specified node, instead it returns the node that
4242/// already exists.  If the resultant node does not exist in the DAG, the
4243/// input node is returned.  As a degenerate case, if you specify the same
4244/// input operands as the node already has, the input node is returned.
4245SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4246  SDNode *N = InN.getNode();
4247  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4248
4249  // Check to see if there is no change.
4250  if (Op == N->getOperand(0)) return InN;
4251
4252  // See if the modified node already exists.
4253  void *InsertPos = 0;
4254  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4255    return SDValue(Existing, InN.getResNo());
4256
4257  // Nope it doesn't.  Remove the node from its current place in the maps.
4258  if (InsertPos)
4259    if (!RemoveNodeFromCSEMaps(N))
4260      InsertPos = 0;
4261
4262  // Now we update the operands.
4263  N->OperandList[0].set(Op);
4264
4265  // If this gets put into a CSE map, add it.
4266  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4267  return InN;
4268}
4269
4270SDValue SelectionDAG::
4271UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4272  SDNode *N = InN.getNode();
4273  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4274
4275  // Check to see if there is no change.
4276  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4277    return InN;   // No operands changed, just return the input node.
4278
4279  // See if the modified node already exists.
4280  void *InsertPos = 0;
4281  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4282    return SDValue(Existing, InN.getResNo());
4283
4284  // Nope it doesn't.  Remove the node from its current place in the maps.
4285  if (InsertPos)
4286    if (!RemoveNodeFromCSEMaps(N))
4287      InsertPos = 0;
4288
4289  // Now we update the operands.
4290  if (N->OperandList[0] != Op1)
4291    N->OperandList[0].set(Op1);
4292  if (N->OperandList[1] != Op2)
4293    N->OperandList[1].set(Op2);
4294
4295  // If this gets put into a CSE map, add it.
4296  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4297  return InN;
4298}
4299
4300SDValue SelectionDAG::
4301UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4302  SDValue Ops[] = { Op1, Op2, Op3 };
4303  return UpdateNodeOperands(N, Ops, 3);
4304}
4305
4306SDValue SelectionDAG::
4307UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4308                   SDValue Op3, SDValue Op4) {
4309  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4310  return UpdateNodeOperands(N, Ops, 4);
4311}
4312
4313SDValue SelectionDAG::
4314UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4315                   SDValue Op3, SDValue Op4, SDValue Op5) {
4316  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4317  return UpdateNodeOperands(N, Ops, 5);
4318}
4319
4320SDValue SelectionDAG::
4321UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4322  SDNode *N = InN.getNode();
4323  assert(N->getNumOperands() == NumOps &&
4324         "Update with wrong number of operands");
4325
4326  // Check to see if there is no change.
4327  bool AnyChange = false;
4328  for (unsigned i = 0; i != NumOps; ++i) {
4329    if (Ops[i] != N->getOperand(i)) {
4330      AnyChange = true;
4331      break;
4332    }
4333  }
4334
4335  // No operands changed, just return the input node.
4336  if (!AnyChange) return InN;
4337
4338  // See if the modified node already exists.
4339  void *InsertPos = 0;
4340  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4341    return SDValue(Existing, InN.getResNo());
4342
4343  // Nope it doesn't.  Remove the node from its current place in the maps.
4344  if (InsertPos)
4345    if (!RemoveNodeFromCSEMaps(N))
4346      InsertPos = 0;
4347
4348  // Now we update the operands.
4349  for (unsigned i = 0; i != NumOps; ++i)
4350    if (N->OperandList[i] != Ops[i])
4351      N->OperandList[i].set(Ops[i]);
4352
4353  // If this gets put into a CSE map, add it.
4354  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4355  return InN;
4356}
4357
4358/// DropOperands - Release the operands and set this node to have
4359/// zero operands.
4360void SDNode::DropOperands() {
4361  // Unlike the code in MorphNodeTo that does this, we don't need to
4362  // watch for dead nodes here.
4363  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4364    SDUse &Use = *I++;
4365    Use.set(SDValue());
4366  }
4367}
4368
4369/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4370/// machine opcode.
4371///
4372SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4373                                   EVT VT) {
4374  SDVTList VTs = getVTList(VT);
4375  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4376}
4377
4378SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4379                                   EVT VT, SDValue Op1) {
4380  SDVTList VTs = getVTList(VT);
4381  SDValue Ops[] = { Op1 };
4382  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4383}
4384
4385SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4386                                   EVT VT, SDValue Op1,
4387                                   SDValue Op2) {
4388  SDVTList VTs = getVTList(VT);
4389  SDValue Ops[] = { Op1, Op2 };
4390  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4391}
4392
4393SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4394                                   EVT VT, SDValue Op1,
4395                                   SDValue Op2, SDValue Op3) {
4396  SDVTList VTs = getVTList(VT);
4397  SDValue Ops[] = { Op1, Op2, Op3 };
4398  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4399}
4400
4401SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4402                                   EVT VT, const SDValue *Ops,
4403                                   unsigned NumOps) {
4404  SDVTList VTs = getVTList(VT);
4405  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4406}
4407
4408SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4409                                   EVT VT1, EVT VT2, const SDValue *Ops,
4410                                   unsigned NumOps) {
4411  SDVTList VTs = getVTList(VT1, VT2);
4412  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4413}
4414
4415SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4416                                   EVT VT1, EVT VT2) {
4417  SDVTList VTs = getVTList(VT1, VT2);
4418  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4419}
4420
4421SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4422                                   EVT VT1, EVT VT2, EVT VT3,
4423                                   const SDValue *Ops, unsigned NumOps) {
4424  SDVTList VTs = getVTList(VT1, VT2, VT3);
4425  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4426}
4427
4428SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4429                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4430                                   const SDValue *Ops, unsigned NumOps) {
4431  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4432  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4433}
4434
4435SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4436                                   EVT VT1, EVT VT2,
4437                                   SDValue Op1) {
4438  SDVTList VTs = getVTList(VT1, VT2);
4439  SDValue Ops[] = { Op1 };
4440  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4441}
4442
4443SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4444                                   EVT VT1, EVT VT2,
4445                                   SDValue Op1, SDValue Op2) {
4446  SDVTList VTs = getVTList(VT1, VT2);
4447  SDValue Ops[] = { Op1, Op2 };
4448  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4449}
4450
4451SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4452                                   EVT VT1, EVT VT2,
4453                                   SDValue Op1, SDValue Op2,
4454                                   SDValue Op3) {
4455  SDVTList VTs = getVTList(VT1, VT2);
4456  SDValue Ops[] = { Op1, Op2, Op3 };
4457  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4458}
4459
4460SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4461                                   EVT VT1, EVT VT2, EVT VT3,
4462                                   SDValue Op1, SDValue Op2,
4463                                   SDValue Op3) {
4464  SDVTList VTs = getVTList(VT1, VT2, VT3);
4465  SDValue Ops[] = { Op1, Op2, Op3 };
4466  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4467}
4468
4469SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4470                                   SDVTList VTs, const SDValue *Ops,
4471                                   unsigned NumOps) {
4472  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4473}
4474
4475SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4476                                  EVT VT) {
4477  SDVTList VTs = getVTList(VT);
4478  return MorphNodeTo(N, Opc, VTs, 0, 0);
4479}
4480
4481SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4482                                  EVT VT, SDValue Op1) {
4483  SDVTList VTs = getVTList(VT);
4484  SDValue Ops[] = { Op1 };
4485  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4486}
4487
4488SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4489                                  EVT VT, SDValue Op1,
4490                                  SDValue Op2) {
4491  SDVTList VTs = getVTList(VT);
4492  SDValue Ops[] = { Op1, Op2 };
4493  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4494}
4495
4496SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4497                                  EVT VT, SDValue Op1,
4498                                  SDValue Op2, SDValue Op3) {
4499  SDVTList VTs = getVTList(VT);
4500  SDValue Ops[] = { Op1, Op2, Op3 };
4501  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4502}
4503
4504SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4505                                  EVT VT, const SDValue *Ops,
4506                                  unsigned NumOps) {
4507  SDVTList VTs = getVTList(VT);
4508  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4509}
4510
4511SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4512                                  EVT VT1, EVT VT2, const SDValue *Ops,
4513                                  unsigned NumOps) {
4514  SDVTList VTs = getVTList(VT1, VT2);
4515  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4516}
4517
4518SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4519                                  EVT VT1, EVT VT2) {
4520  SDVTList VTs = getVTList(VT1, VT2);
4521  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4522}
4523
4524SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4525                                  EVT VT1, EVT VT2, EVT VT3,
4526                                  const SDValue *Ops, unsigned NumOps) {
4527  SDVTList VTs = getVTList(VT1, VT2, VT3);
4528  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4529}
4530
4531SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4532                                  EVT VT1, EVT VT2,
4533                                  SDValue Op1) {
4534  SDVTList VTs = getVTList(VT1, VT2);
4535  SDValue Ops[] = { Op1 };
4536  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4537}
4538
4539SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4540                                  EVT VT1, EVT VT2,
4541                                  SDValue Op1, SDValue Op2) {
4542  SDVTList VTs = getVTList(VT1, VT2);
4543  SDValue Ops[] = { Op1, Op2 };
4544  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4545}
4546
4547SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4548                                  EVT VT1, EVT VT2,
4549                                  SDValue Op1, SDValue Op2,
4550                                  SDValue Op3) {
4551  SDVTList VTs = getVTList(VT1, VT2);
4552  SDValue Ops[] = { Op1, Op2, Op3 };
4553  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4554}
4555
4556/// MorphNodeTo - These *mutate* the specified node to have the specified
4557/// return type, opcode, and operands.
4558///
4559/// Note that MorphNodeTo returns the resultant node.  If there is already a
4560/// node of the specified opcode and operands, it returns that node instead of
4561/// the current one.  Note that the DebugLoc need not be the same.
4562///
4563/// Using MorphNodeTo is faster than creating a new node and swapping it in
4564/// with ReplaceAllUsesWith both because it often avoids allocating a new
4565/// node, and because it doesn't require CSE recalculation for any of
4566/// the node's users.
4567///
4568SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4569                                  SDVTList VTs, const SDValue *Ops,
4570                                  unsigned NumOps) {
4571  // If an identical node already exists, use it.
4572  void *IP = 0;
4573  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4574    FoldingSetNodeID ID;
4575    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4576    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4577      return ON;
4578  }
4579
4580  if (!RemoveNodeFromCSEMaps(N))
4581    IP = 0;
4582
4583  // Start the morphing.
4584  N->NodeType = Opc;
4585  N->ValueList = VTs.VTs;
4586  N->NumValues = VTs.NumVTs;
4587
4588  // Clear the operands list, updating used nodes to remove this from their
4589  // use list.  Keep track of any operands that become dead as a result.
4590  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4591  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4592    SDUse &Use = *I++;
4593    SDNode *Used = Use.getNode();
4594    Use.set(SDValue());
4595    if (Used->use_empty())
4596      DeadNodeSet.insert(Used);
4597  }
4598
4599  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4600    // Initialize the memory references information.
4601    MN->setMemRefs(0, 0);
4602    // If NumOps is larger than the # of operands we can have in a
4603    // MachineSDNode, reallocate the operand list.
4604    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4605      if (MN->OperandsNeedDelete)
4606        delete[] MN->OperandList;
4607      if (NumOps > array_lengthof(MN->LocalOperands))
4608        // We're creating a final node that will live unmorphed for the
4609        // remainder of the current SelectionDAG iteration, so we can allocate
4610        // the operands directly out of a pool with no recycling metadata.
4611        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4612                        Ops, NumOps);
4613      else
4614        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4615      MN->OperandsNeedDelete = false;
4616    } else
4617      MN->InitOperands(MN->OperandList, Ops, NumOps);
4618  } else {
4619    // If NumOps is larger than the # of operands we currently have, reallocate
4620    // the operand list.
4621    if (NumOps > N->NumOperands) {
4622      if (N->OperandsNeedDelete)
4623        delete[] N->OperandList;
4624      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4625      N->OperandsNeedDelete = true;
4626    } else
4627      N->InitOperands(N->OperandList, Ops, NumOps);
4628  }
4629
4630  // Delete any nodes that are still dead after adding the uses for the
4631  // new operands.
4632  SmallVector<SDNode *, 16> DeadNodes;
4633  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4634       E = DeadNodeSet.end(); I != E; ++I)
4635    if ((*I)->use_empty())
4636      DeadNodes.push_back(*I);
4637  RemoveDeadNodes(DeadNodes);
4638
4639  if (IP)
4640    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4641  return N;
4642}
4643
4644
4645/// getMachineNode - These are used for target selectors to create a new node
4646/// with specified return type(s), MachineInstr opcode, and operands.
4647///
4648/// Note that getMachineNode returns the resultant node.  If there is already a
4649/// node of the specified opcode and operands, it returns that node instead of
4650/// the current one.
4651MachineSDNode *
4652SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4653  SDVTList VTs = getVTList(VT);
4654  return getMachineNode(Opcode, dl, VTs, 0, 0);
4655}
4656
4657MachineSDNode *
4658SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4659  SDVTList VTs = getVTList(VT);
4660  SDValue Ops[] = { Op1 };
4661  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4662}
4663
4664MachineSDNode *
4665SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4666                             SDValue Op1, SDValue Op2) {
4667  SDVTList VTs = getVTList(VT);
4668  SDValue Ops[] = { Op1, Op2 };
4669  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4670}
4671
4672MachineSDNode *
4673SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4674                             SDValue Op1, SDValue Op2, SDValue Op3) {
4675  SDVTList VTs = getVTList(VT);
4676  SDValue Ops[] = { Op1, Op2, Op3 };
4677  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4678}
4679
4680MachineSDNode *
4681SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4682                             const SDValue *Ops, unsigned NumOps) {
4683  SDVTList VTs = getVTList(VT);
4684  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4685}
4686
4687MachineSDNode *
4688SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4689  SDVTList VTs = getVTList(VT1, VT2);
4690  return getMachineNode(Opcode, dl, VTs, 0, 0);
4691}
4692
4693MachineSDNode *
4694SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4695                             EVT VT1, EVT VT2, SDValue Op1) {
4696  SDVTList VTs = getVTList(VT1, VT2);
4697  SDValue Ops[] = { Op1 };
4698  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4699}
4700
4701MachineSDNode *
4702SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4703                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4704  SDVTList VTs = getVTList(VT1, VT2);
4705  SDValue Ops[] = { Op1, Op2 };
4706  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4707}
4708
4709MachineSDNode *
4710SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4711                             EVT VT1, EVT VT2, SDValue Op1,
4712                             SDValue Op2, SDValue Op3) {
4713  SDVTList VTs = getVTList(VT1, VT2);
4714  SDValue Ops[] = { Op1, Op2, Op3 };
4715  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4716}
4717
4718MachineSDNode *
4719SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4720                             EVT VT1, EVT VT2,
4721                             const SDValue *Ops, unsigned NumOps) {
4722  SDVTList VTs = getVTList(VT1, VT2);
4723  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4724}
4725
4726MachineSDNode *
4727SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4728                             EVT VT1, EVT VT2, EVT VT3,
4729                             SDValue Op1, SDValue Op2) {
4730  SDVTList VTs = getVTList(VT1, VT2, VT3);
4731  SDValue Ops[] = { Op1, Op2 };
4732  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4733}
4734
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4737                             EVT VT1, EVT VT2, EVT VT3,
4738                             SDValue Op1, SDValue Op2, SDValue Op3) {
4739  SDVTList VTs = getVTList(VT1, VT2, VT3);
4740  SDValue Ops[] = { Op1, Op2, Op3 };
4741  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4742}
4743
4744MachineSDNode *
4745SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4746                             EVT VT1, EVT VT2, EVT VT3,
4747                             const SDValue *Ops, unsigned NumOps) {
4748  SDVTList VTs = getVTList(VT1, VT2, VT3);
4749  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4750}
4751
4752MachineSDNode *
4753SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4754                             EVT VT2, EVT VT3, EVT VT4,
4755                             const SDValue *Ops, unsigned NumOps) {
4756  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4757  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4758}
4759
4760MachineSDNode *
4761SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4762                             const std::vector<EVT> &ResultTys,
4763                             const SDValue *Ops, unsigned NumOps) {
4764  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4765  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4766}
4767
4768MachineSDNode *
4769SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4770                             const SDValue *Ops, unsigned NumOps) {
4771  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4772  MachineSDNode *N;
4773  void *IP;
4774
4775  if (DoCSE) {
4776    FoldingSetNodeID ID;
4777    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4778    IP = 0;
4779    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4780      return cast<MachineSDNode>(E);
4781  }
4782
4783  // Allocate a new MachineSDNode.
4784  N = NodeAllocator.Allocate<MachineSDNode>();
4785  new (N) MachineSDNode(~Opcode, DL, VTs);
4786
4787  // Initialize the operands list.
4788  if (NumOps > array_lengthof(N->LocalOperands))
4789    // We're creating a final node that will live unmorphed for the
4790    // remainder of the current SelectionDAG iteration, so we can allocate
4791    // the operands directly out of a pool with no recycling metadata.
4792    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4793                    Ops, NumOps);
4794  else
4795    N->InitOperands(N->LocalOperands, Ops, NumOps);
4796  N->OperandsNeedDelete = false;
4797
4798  if (DoCSE)
4799    CSEMap.InsertNode(N, IP);
4800
4801  AllNodes.push_back(N);
4802#ifndef NDEBUG
4803  VerifyNode(N);
4804#endif
4805  return N;
4806}
4807
4808/// getTargetExtractSubreg - A convenience function for creating
4809/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4810SDValue
4811SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4812                                     SDValue Operand) {
4813  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4814  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4815                                  VT, Operand, SRIdxVal);
4816  return SDValue(Subreg, 0);
4817}
4818
4819/// getTargetInsertSubreg - A convenience function for creating
4820/// TargetInstrInfo::INSERT_SUBREG nodes.
4821SDValue
4822SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4823                                    SDValue Operand, SDValue Subreg) {
4824  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4825  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4826                                  VT, Operand, Subreg, SRIdxVal);
4827  return SDValue(Result, 0);
4828}
4829
4830/// getNodeIfExists - Get the specified node if it's already available, or
4831/// else return NULL.
4832SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4833                                      const SDValue *Ops, unsigned NumOps) {
4834  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4835    FoldingSetNodeID ID;
4836    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4837    void *IP = 0;
4838    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4839      return E;
4840  }
4841  return NULL;
4842}
4843
4844/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4845/// This can cause recursive merging of nodes in the DAG.
4846///
4847/// This version assumes From has a single result value.
4848///
4849void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4850                                      DAGUpdateListener *UpdateListener) {
4851  SDNode *From = FromN.getNode();
4852  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4853         "Cannot replace with this method!");
4854  assert(From != To.getNode() && "Cannot replace uses of with self");
4855
4856  // Iterate over all the existing uses of From. New uses will be added
4857  // to the beginning of the use list, which we avoid visiting.
4858  // This specifically avoids visiting uses of From that arise while the
4859  // replacement is happening, because any such uses would be the result
4860  // of CSE: If an existing node looks like From after one of its operands
4861  // is replaced by To, we don't want to replace of all its users with To
4862  // too. See PR3018 for more info.
4863  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4864  while (UI != UE) {
4865    SDNode *User = *UI;
4866
4867    // This node is about to morph, remove its old self from the CSE maps.
4868    RemoveNodeFromCSEMaps(User);
4869
4870    // A user can appear in a use list multiple times, and when this
4871    // happens the uses are usually next to each other in the list.
4872    // To help reduce the number of CSE recomputations, process all
4873    // the uses of this user that we can find this way.
4874    do {
4875      SDUse &Use = UI.getUse();
4876      ++UI;
4877      Use.set(To);
4878    } while (UI != UE && *UI == User);
4879
4880    // Now that we have modified User, add it back to the CSE maps.  If it
4881    // already exists there, recursively merge the results together.
4882    AddModifiedNodeToCSEMaps(User, UpdateListener);
4883  }
4884}
4885
4886/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4887/// This can cause recursive merging of nodes in the DAG.
4888///
4889/// This version assumes that for each value of From, there is a
4890/// corresponding value in To in the same position with the same type.
4891///
4892void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4893                                      DAGUpdateListener *UpdateListener) {
4894#ifndef NDEBUG
4895  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4896    assert((!From->hasAnyUseOfValue(i) ||
4897            From->getValueType(i) == To->getValueType(i)) &&
4898           "Cannot use this version of ReplaceAllUsesWith!");
4899#endif
4900
4901  // Handle the trivial case.
4902  if (From == To)
4903    return;
4904
4905  // Iterate over just the existing users of From. See the comments in
4906  // the ReplaceAllUsesWith above.
4907  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4908  while (UI != UE) {
4909    SDNode *User = *UI;
4910
4911    // This node is about to morph, remove its old self from the CSE maps.
4912    RemoveNodeFromCSEMaps(User);
4913
4914    // A user can appear in a use list multiple times, and when this
4915    // happens the uses are usually next to each other in the list.
4916    // To help reduce the number of CSE recomputations, process all
4917    // the uses of this user that we can find this way.
4918    do {
4919      SDUse &Use = UI.getUse();
4920      ++UI;
4921      Use.setNode(To);
4922    } while (UI != UE && *UI == User);
4923
4924    // Now that we have modified User, add it back to the CSE maps.  If it
4925    // already exists there, recursively merge the results together.
4926    AddModifiedNodeToCSEMaps(User, UpdateListener);
4927  }
4928}
4929
4930/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4931/// This can cause recursive merging of nodes in the DAG.
4932///
4933/// This version can replace From with any result values.  To must match the
4934/// number and types of values returned by From.
4935void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4936                                      const SDValue *To,
4937                                      DAGUpdateListener *UpdateListener) {
4938  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4939    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4940
4941  // Iterate over just the existing users of From. See the comments in
4942  // the ReplaceAllUsesWith above.
4943  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4944  while (UI != UE) {
4945    SDNode *User = *UI;
4946
4947    // This node is about to morph, remove its old self from the CSE maps.
4948    RemoveNodeFromCSEMaps(User);
4949
4950    // A user can appear in a use list multiple times, and when this
4951    // happens the uses are usually next to each other in the list.
4952    // To help reduce the number of CSE recomputations, process all
4953    // the uses of this user that we can find this way.
4954    do {
4955      SDUse &Use = UI.getUse();
4956      const SDValue &ToOp = To[Use.getResNo()];
4957      ++UI;
4958      Use.set(ToOp);
4959    } while (UI != UE && *UI == User);
4960
4961    // Now that we have modified User, add it back to the CSE maps.  If it
4962    // already exists there, recursively merge the results together.
4963    AddModifiedNodeToCSEMaps(User, UpdateListener);
4964  }
4965}
4966
4967/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4968/// uses of other values produced by From.getNode() alone.  The Deleted
4969/// vector is handled the same way as for ReplaceAllUsesWith.
4970void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4971                                             DAGUpdateListener *UpdateListener){
4972  // Handle the really simple, really trivial case efficiently.
4973  if (From == To) return;
4974
4975  // Handle the simple, trivial, case efficiently.
4976  if (From.getNode()->getNumValues() == 1) {
4977    ReplaceAllUsesWith(From, To, UpdateListener);
4978    return;
4979  }
4980
4981  // Iterate over just the existing users of From. See the comments in
4982  // the ReplaceAllUsesWith above.
4983  SDNode::use_iterator UI = From.getNode()->use_begin(),
4984                       UE = From.getNode()->use_end();
4985  while (UI != UE) {
4986    SDNode *User = *UI;
4987    bool UserRemovedFromCSEMaps = false;
4988
4989    // A user can appear in a use list multiple times, and when this
4990    // happens the uses are usually next to each other in the list.
4991    // To help reduce the number of CSE recomputations, process all
4992    // the uses of this user that we can find this way.
4993    do {
4994      SDUse &Use = UI.getUse();
4995
4996      // Skip uses of different values from the same node.
4997      if (Use.getResNo() != From.getResNo()) {
4998        ++UI;
4999        continue;
5000      }
5001
5002      // If this node hasn't been modified yet, it's still in the CSE maps,
5003      // so remove its old self from the CSE maps.
5004      if (!UserRemovedFromCSEMaps) {
5005        RemoveNodeFromCSEMaps(User);
5006        UserRemovedFromCSEMaps = true;
5007      }
5008
5009      ++UI;
5010      Use.set(To);
5011    } while (UI != UE && *UI == User);
5012
5013    // We are iterating over all uses of the From node, so if a use
5014    // doesn't use the specific value, no changes are made.
5015    if (!UserRemovedFromCSEMaps)
5016      continue;
5017
5018    // Now that we have modified User, add it back to the CSE maps.  If it
5019    // already exists there, recursively merge the results together.
5020    AddModifiedNodeToCSEMaps(User, UpdateListener);
5021  }
5022}
5023
5024namespace {
5025  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5026  /// to record information about a use.
5027  struct UseMemo {
5028    SDNode *User;
5029    unsigned Index;
5030    SDUse *Use;
5031  };
5032
5033  /// operator< - Sort Memos by User.
5034  bool operator<(const UseMemo &L, const UseMemo &R) {
5035    return (intptr_t)L.User < (intptr_t)R.User;
5036  }
5037}
5038
5039/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5040/// uses of other values produced by From.getNode() alone.  The same value
5041/// may appear in both the From and To list.  The Deleted vector is
5042/// handled the same way as for ReplaceAllUsesWith.
5043void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5044                                              const SDValue *To,
5045                                              unsigned Num,
5046                                              DAGUpdateListener *UpdateListener){
5047  // Handle the simple, trivial case efficiently.
5048  if (Num == 1)
5049    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5050
5051  // Read up all the uses and make records of them. This helps
5052  // processing new uses that are introduced during the
5053  // replacement process.
5054  SmallVector<UseMemo, 4> Uses;
5055  for (unsigned i = 0; i != Num; ++i) {
5056    unsigned FromResNo = From[i].getResNo();
5057    SDNode *FromNode = From[i].getNode();
5058    for (SDNode::use_iterator UI = FromNode->use_begin(),
5059         E = FromNode->use_end(); UI != E; ++UI) {
5060      SDUse &Use = UI.getUse();
5061      if (Use.getResNo() == FromResNo) {
5062        UseMemo Memo = { *UI, i, &Use };
5063        Uses.push_back(Memo);
5064      }
5065    }
5066  }
5067
5068  // Sort the uses, so that all the uses from a given User are together.
5069  std::sort(Uses.begin(), Uses.end());
5070
5071  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5072       UseIndex != UseIndexEnd; ) {
5073    // We know that this user uses some value of From.  If it is the right
5074    // value, update it.
5075    SDNode *User = Uses[UseIndex].User;
5076
5077    // This node is about to morph, remove its old self from the CSE maps.
5078    RemoveNodeFromCSEMaps(User);
5079
5080    // The Uses array is sorted, so all the uses for a given User
5081    // are next to each other in the list.
5082    // To help reduce the number of CSE recomputations, process all
5083    // the uses of this user that we can find this way.
5084    do {
5085      unsigned i = Uses[UseIndex].Index;
5086      SDUse &Use = *Uses[UseIndex].Use;
5087      ++UseIndex;
5088
5089      Use.set(To[i]);
5090    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5091
5092    // Now that we have modified User, add it back to the CSE maps.  If it
5093    // already exists there, recursively merge the results together.
5094    AddModifiedNodeToCSEMaps(User, UpdateListener);
5095  }
5096}
5097
5098/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5099/// based on their topological order. It returns the maximum id and a vector
5100/// of the SDNodes* in assigned order by reference.
5101unsigned SelectionDAG::AssignTopologicalOrder() {
5102
5103  unsigned DAGSize = 0;
5104
5105  // SortedPos tracks the progress of the algorithm. Nodes before it are
5106  // sorted, nodes after it are unsorted. When the algorithm completes
5107  // it is at the end of the list.
5108  allnodes_iterator SortedPos = allnodes_begin();
5109
5110  // Visit all the nodes. Move nodes with no operands to the front of
5111  // the list immediately. Annotate nodes that do have operands with their
5112  // operand count. Before we do this, the Node Id fields of the nodes
5113  // may contain arbitrary values. After, the Node Id fields for nodes
5114  // before SortedPos will contain the topological sort index, and the
5115  // Node Id fields for nodes At SortedPos and after will contain the
5116  // count of outstanding operands.
5117  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5118    SDNode *N = I++;
5119    unsigned Degree = N->getNumOperands();
5120    if (Degree == 0) {
5121      // A node with no uses, add it to the result array immediately.
5122      N->setNodeId(DAGSize++);
5123      allnodes_iterator Q = N;
5124      if (Q != SortedPos)
5125        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5126      ++SortedPos;
5127    } else {
5128      // Temporarily use the Node Id as scratch space for the degree count.
5129      N->setNodeId(Degree);
5130    }
5131  }
5132
5133  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5134  // such that by the time the end is reached all nodes will be sorted.
5135  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5136    SDNode *N = I;
5137    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5138         UI != UE; ++UI) {
5139      SDNode *P = *UI;
5140      unsigned Degree = P->getNodeId();
5141      --Degree;
5142      if (Degree == 0) {
5143        // All of P's operands are sorted, so P may sorted now.
5144        P->setNodeId(DAGSize++);
5145        if (P != SortedPos)
5146          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5147        ++SortedPos;
5148      } else {
5149        // Update P's outstanding operand count.
5150        P->setNodeId(Degree);
5151      }
5152    }
5153  }
5154
5155  assert(SortedPos == AllNodes.end() &&
5156         "Topological sort incomplete!");
5157  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5158         "First node in topological sort is not the entry token!");
5159  assert(AllNodes.front().getNodeId() == 0 &&
5160         "First node in topological sort has non-zero id!");
5161  assert(AllNodes.front().getNumOperands() == 0 &&
5162         "First node in topological sort has operands!");
5163  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5164         "Last node in topologic sort has unexpected id!");
5165  assert(AllNodes.back().use_empty() &&
5166         "Last node in topologic sort has users!");
5167  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5168  return DAGSize;
5169}
5170
5171
5172
5173//===----------------------------------------------------------------------===//
5174//                              SDNode Class
5175//===----------------------------------------------------------------------===//
5176
5177HandleSDNode::~HandleSDNode() {
5178  DropOperands();
5179}
5180
5181GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5182                                         EVT VT, int64_t o, unsigned char TF)
5183  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5184    Offset(o), TargetFlags(TF) {
5185  TheGlobal = const_cast<GlobalValue*>(GA);
5186}
5187
5188MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5189                     MachineMemOperand *mmo)
5190 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5191  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5192  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5193  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5194}
5195
5196MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5197                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5198                     MachineMemOperand *mmo)
5199   : SDNode(Opc, dl, VTs, Ops, NumOps),
5200     MemoryVT(memvt), MMO(mmo) {
5201  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5202  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5203  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5204}
5205
5206/// Profile - Gather unique data for the node.
5207///
5208void SDNode::Profile(FoldingSetNodeID &ID) const {
5209  AddNodeIDNode(ID, this);
5210}
5211
5212namespace {
5213  struct EVTArray {
5214    std::vector<EVT> VTs;
5215
5216    EVTArray() {
5217      VTs.reserve(MVT::LAST_VALUETYPE);
5218      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5219        VTs.push_back(MVT((MVT::SimpleValueType)i));
5220    }
5221  };
5222}
5223
5224static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5225static ManagedStatic<EVTArray> SimpleVTArray;
5226static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5227
5228/// getValueTypeList - Return a pointer to the specified value type.
5229///
5230const EVT *SDNode::getValueTypeList(EVT VT) {
5231  if (VT.isExtended()) {
5232    sys::SmartScopedLock<true> Lock(*VTMutex);
5233    return &(*EVTs->insert(VT).first);
5234  } else {
5235    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5236  }
5237}
5238
5239/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5240/// indicated value.  This method ignores uses of other values defined by this
5241/// operation.
5242bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5243  assert(Value < getNumValues() && "Bad value!");
5244
5245  // TODO: Only iterate over uses of a given value of the node
5246  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5247    if (UI.getUse().getResNo() == Value) {
5248      if (NUses == 0)
5249        return false;
5250      --NUses;
5251    }
5252  }
5253
5254  // Found exactly the right number of uses?
5255  return NUses == 0;
5256}
5257
5258
5259/// hasAnyUseOfValue - Return true if there are any use of the indicated
5260/// value. This method ignores uses of other values defined by this operation.
5261bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5262  assert(Value < getNumValues() && "Bad value!");
5263
5264  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5265    if (UI.getUse().getResNo() == Value)
5266      return true;
5267
5268  return false;
5269}
5270
5271
5272/// isOnlyUserOf - Return true if this node is the only use of N.
5273///
5274bool SDNode::isOnlyUserOf(SDNode *N) const {
5275  bool Seen = false;
5276  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5277    SDNode *User = *I;
5278    if (User == this)
5279      Seen = true;
5280    else
5281      return false;
5282  }
5283
5284  return Seen;
5285}
5286
5287/// isOperand - Return true if this node is an operand of N.
5288///
5289bool SDValue::isOperandOf(SDNode *N) const {
5290  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5291    if (*this == N->getOperand(i))
5292      return true;
5293  return false;
5294}
5295
5296bool SDNode::isOperandOf(SDNode *N) const {
5297  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5298    if (this == N->OperandList[i].getNode())
5299      return true;
5300  return false;
5301}
5302
5303/// reachesChainWithoutSideEffects - Return true if this operand (which must
5304/// be a chain) reaches the specified operand without crossing any
5305/// side-effecting instructions.  In practice, this looks through token
5306/// factors and non-volatile loads.  In order to remain efficient, this only
5307/// looks a couple of nodes in, it does not do an exhaustive search.
5308bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5309                                               unsigned Depth) const {
5310  if (*this == Dest) return true;
5311
5312  // Don't search too deeply, we just want to be able to see through
5313  // TokenFactor's etc.
5314  if (Depth == 0) return false;
5315
5316  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5317  // of the operands of the TF reach dest, then we can do the xform.
5318  if (getOpcode() == ISD::TokenFactor) {
5319    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5320      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5321        return true;
5322    return false;
5323  }
5324
5325  // Loads don't have side effects, look through them.
5326  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5327    if (!Ld->isVolatile())
5328      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5329  }
5330  return false;
5331}
5332
5333/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5334/// is either an operand of N or it can be reached by traversing up the operands.
5335/// NOTE: this is an expensive method. Use it carefully.
5336bool SDNode::isPredecessorOf(SDNode *N) const {
5337  SmallPtrSet<SDNode *, 32> Visited;
5338  SmallVector<SDNode *, 16> Worklist;
5339  Worklist.push_back(N);
5340
5341  do {
5342    N = Worklist.pop_back_val();
5343    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5344      SDNode *Op = N->getOperand(i).getNode();
5345      if (Op == this)
5346        return true;
5347      if (Visited.insert(Op))
5348        Worklist.push_back(Op);
5349    }
5350  } while (!Worklist.empty());
5351
5352  return false;
5353}
5354
5355uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5356  assert(Num < NumOperands && "Invalid child # of SDNode!");
5357  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5358}
5359
5360std::string SDNode::getOperationName(const SelectionDAG *G) const {
5361  switch (getOpcode()) {
5362  default:
5363    if (getOpcode() < ISD::BUILTIN_OP_END)
5364      return "<<Unknown DAG Node>>";
5365    if (isMachineOpcode()) {
5366      if (G)
5367        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5368          if (getMachineOpcode() < TII->getNumOpcodes())
5369            return TII->get(getMachineOpcode()).getName();
5370      return "<<Unknown Machine Node>>";
5371    }
5372    if (G) {
5373      const TargetLowering &TLI = G->getTargetLoweringInfo();
5374      const char *Name = TLI.getTargetNodeName(getOpcode());
5375      if (Name) return Name;
5376      return "<<Unknown Target Node>>";
5377    }
5378    return "<<Unknown Node>>";
5379
5380#ifndef NDEBUG
5381  case ISD::DELETED_NODE:
5382    return "<<Deleted Node!>>";
5383#endif
5384  case ISD::PREFETCH:      return "Prefetch";
5385  case ISD::MEMBARRIER:    return "MemBarrier";
5386  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5387  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5388  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5389  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5390  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5391  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5392  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5393  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5394  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5395  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5396  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5397  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5398  case ISD::PCMARKER:      return "PCMarker";
5399  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5400  case ISD::SRCVALUE:      return "SrcValue";
5401  case ISD::EntryToken:    return "EntryToken";
5402  case ISD::TokenFactor:   return "TokenFactor";
5403  case ISD::AssertSext:    return "AssertSext";
5404  case ISD::AssertZext:    return "AssertZext";
5405
5406  case ISD::BasicBlock:    return "BasicBlock";
5407  case ISD::VALUETYPE:     return "ValueType";
5408  case ISD::Register:      return "Register";
5409
5410  case ISD::Constant:      return "Constant";
5411  case ISD::ConstantFP:    return "ConstantFP";
5412  case ISD::GlobalAddress: return "GlobalAddress";
5413  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5414  case ISD::FrameIndex:    return "FrameIndex";
5415  case ISD::JumpTable:     return "JumpTable";
5416  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5417  case ISD::RETURNADDR: return "RETURNADDR";
5418  case ISD::FRAMEADDR: return "FRAMEADDR";
5419  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5420  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5421  case ISD::LSDAADDR: return "LSDAADDR";
5422  case ISD::EHSELECTION: return "EHSELECTION";
5423  case ISD::EH_RETURN: return "EH_RETURN";
5424  case ISD::ConstantPool:  return "ConstantPool";
5425  case ISD::ExternalSymbol: return "ExternalSymbol";
5426  case ISD::BlockAddress:  return "BlockAddress";
5427  case ISD::INTRINSIC_WO_CHAIN:
5428  case ISD::INTRINSIC_VOID:
5429  case ISD::INTRINSIC_W_CHAIN: {
5430    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5431    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5432    if (IID < Intrinsic::num_intrinsics)
5433      return Intrinsic::getName((Intrinsic::ID)IID);
5434    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5435      return TII->getName(IID);
5436    llvm_unreachable("Invalid intrinsic ID");
5437  }
5438
5439  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5440  case ISD::TargetConstant: return "TargetConstant";
5441  case ISD::TargetConstantFP:return "TargetConstantFP";
5442  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5443  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5444  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5445  case ISD::TargetJumpTable:  return "TargetJumpTable";
5446  case ISD::TargetConstantPool:  return "TargetConstantPool";
5447  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5448  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5449
5450  case ISD::CopyToReg:     return "CopyToReg";
5451  case ISD::CopyFromReg:   return "CopyFromReg";
5452  case ISD::UNDEF:         return "undef";
5453  case ISD::MERGE_VALUES:  return "merge_values";
5454  case ISD::INLINEASM:     return "inlineasm";
5455  case ISD::DBG_LABEL:     return "dbg_label";
5456  case ISD::EH_LABEL:      return "eh_label";
5457  case ISD::HANDLENODE:    return "handlenode";
5458
5459  // Unary operators
5460  case ISD::FABS:   return "fabs";
5461  case ISD::FNEG:   return "fneg";
5462  case ISD::FSQRT:  return "fsqrt";
5463  case ISD::FSIN:   return "fsin";
5464  case ISD::FCOS:   return "fcos";
5465  case ISD::FPOWI:  return "fpowi";
5466  case ISD::FPOW:   return "fpow";
5467  case ISD::FTRUNC: return "ftrunc";
5468  case ISD::FFLOOR: return "ffloor";
5469  case ISD::FCEIL:  return "fceil";
5470  case ISD::FRINT:  return "frint";
5471  case ISD::FNEARBYINT: return "fnearbyint";
5472
5473  // Binary operators
5474  case ISD::ADD:    return "add";
5475  case ISD::SUB:    return "sub";
5476  case ISD::MUL:    return "mul";
5477  case ISD::MULHU:  return "mulhu";
5478  case ISD::MULHS:  return "mulhs";
5479  case ISD::SDIV:   return "sdiv";
5480  case ISD::UDIV:   return "udiv";
5481  case ISD::SREM:   return "srem";
5482  case ISD::UREM:   return "urem";
5483  case ISD::SMUL_LOHI:  return "smul_lohi";
5484  case ISD::UMUL_LOHI:  return "umul_lohi";
5485  case ISD::SDIVREM:    return "sdivrem";
5486  case ISD::UDIVREM:    return "udivrem";
5487  case ISD::AND:    return "and";
5488  case ISD::OR:     return "or";
5489  case ISD::XOR:    return "xor";
5490  case ISD::SHL:    return "shl";
5491  case ISD::SRA:    return "sra";
5492  case ISD::SRL:    return "srl";
5493  case ISD::ROTL:   return "rotl";
5494  case ISD::ROTR:   return "rotr";
5495  case ISD::FADD:   return "fadd";
5496  case ISD::FSUB:   return "fsub";
5497  case ISD::FMUL:   return "fmul";
5498  case ISD::FDIV:   return "fdiv";
5499  case ISD::FREM:   return "frem";
5500  case ISD::FCOPYSIGN: return "fcopysign";
5501  case ISD::FGETSIGN:  return "fgetsign";
5502
5503  case ISD::SETCC:       return "setcc";
5504  case ISD::VSETCC:      return "vsetcc";
5505  case ISD::SELECT:      return "select";
5506  case ISD::SELECT_CC:   return "select_cc";
5507  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5508  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5509  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5510  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5511  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5512  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5513  case ISD::CARRY_FALSE:         return "carry_false";
5514  case ISD::ADDC:        return "addc";
5515  case ISD::ADDE:        return "adde";
5516  case ISD::SADDO:       return "saddo";
5517  case ISD::UADDO:       return "uaddo";
5518  case ISD::SSUBO:       return "ssubo";
5519  case ISD::USUBO:       return "usubo";
5520  case ISD::SMULO:       return "smulo";
5521  case ISD::UMULO:       return "umulo";
5522  case ISD::SUBC:        return "subc";
5523  case ISD::SUBE:        return "sube";
5524  case ISD::SHL_PARTS:   return "shl_parts";
5525  case ISD::SRA_PARTS:   return "sra_parts";
5526  case ISD::SRL_PARTS:   return "srl_parts";
5527
5528  // Conversion operators.
5529  case ISD::SIGN_EXTEND: return "sign_extend";
5530  case ISD::ZERO_EXTEND: return "zero_extend";
5531  case ISD::ANY_EXTEND:  return "any_extend";
5532  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5533  case ISD::TRUNCATE:    return "truncate";
5534  case ISD::FP_ROUND:    return "fp_round";
5535  case ISD::FLT_ROUNDS_: return "flt_rounds";
5536  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5537  case ISD::FP_EXTEND:   return "fp_extend";
5538
5539  case ISD::SINT_TO_FP:  return "sint_to_fp";
5540  case ISD::UINT_TO_FP:  return "uint_to_fp";
5541  case ISD::FP_TO_SINT:  return "fp_to_sint";
5542  case ISD::FP_TO_UINT:  return "fp_to_uint";
5543  case ISD::BIT_CONVERT: return "bit_convert";
5544
5545  case ISD::CONVERT_RNDSAT: {
5546    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5547    default: llvm_unreachable("Unknown cvt code!");
5548    case ISD::CVT_FF:  return "cvt_ff";
5549    case ISD::CVT_FS:  return "cvt_fs";
5550    case ISD::CVT_FU:  return "cvt_fu";
5551    case ISD::CVT_SF:  return "cvt_sf";
5552    case ISD::CVT_UF:  return "cvt_uf";
5553    case ISD::CVT_SS:  return "cvt_ss";
5554    case ISD::CVT_SU:  return "cvt_su";
5555    case ISD::CVT_US:  return "cvt_us";
5556    case ISD::CVT_UU:  return "cvt_uu";
5557    }
5558  }
5559
5560    // Control flow instructions
5561  case ISD::BR:      return "br";
5562  case ISD::BRIND:   return "brind";
5563  case ISD::BR_JT:   return "br_jt";
5564  case ISD::BRCOND:  return "brcond";
5565  case ISD::BR_CC:   return "br_cc";
5566  case ISD::CALLSEQ_START:  return "callseq_start";
5567  case ISD::CALLSEQ_END:    return "callseq_end";
5568
5569    // Other operators
5570  case ISD::LOAD:               return "load";
5571  case ISD::STORE:              return "store";
5572  case ISD::VAARG:              return "vaarg";
5573  case ISD::VACOPY:             return "vacopy";
5574  case ISD::VAEND:              return "vaend";
5575  case ISD::VASTART:            return "vastart";
5576  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5577  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5578  case ISD::BUILD_PAIR:         return "build_pair";
5579  case ISD::STACKSAVE:          return "stacksave";
5580  case ISD::STACKRESTORE:       return "stackrestore";
5581  case ISD::TRAP:               return "trap";
5582
5583  // Bit manipulation
5584  case ISD::BSWAP:   return "bswap";
5585  case ISD::CTPOP:   return "ctpop";
5586  case ISD::CTTZ:    return "cttz";
5587  case ISD::CTLZ:    return "ctlz";
5588
5589  // Debug info
5590  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5591  case ISD::DEBUG_LOC: return "debug_loc";
5592
5593  // Trampolines
5594  case ISD::TRAMPOLINE: return "trampoline";
5595
5596  case ISD::CONDCODE:
5597    switch (cast<CondCodeSDNode>(this)->get()) {
5598    default: llvm_unreachable("Unknown setcc condition!");
5599    case ISD::SETOEQ:  return "setoeq";
5600    case ISD::SETOGT:  return "setogt";
5601    case ISD::SETOGE:  return "setoge";
5602    case ISD::SETOLT:  return "setolt";
5603    case ISD::SETOLE:  return "setole";
5604    case ISD::SETONE:  return "setone";
5605
5606    case ISD::SETO:    return "seto";
5607    case ISD::SETUO:   return "setuo";
5608    case ISD::SETUEQ:  return "setue";
5609    case ISD::SETUGT:  return "setugt";
5610    case ISD::SETUGE:  return "setuge";
5611    case ISD::SETULT:  return "setult";
5612    case ISD::SETULE:  return "setule";
5613    case ISD::SETUNE:  return "setune";
5614
5615    case ISD::SETEQ:   return "seteq";
5616    case ISD::SETGT:   return "setgt";
5617    case ISD::SETGE:   return "setge";
5618    case ISD::SETLT:   return "setlt";
5619    case ISD::SETLE:   return "setle";
5620    case ISD::SETNE:   return "setne";
5621    }
5622  }
5623}
5624
5625const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5626  switch (AM) {
5627  default:
5628    return "";
5629  case ISD::PRE_INC:
5630    return "<pre-inc>";
5631  case ISD::PRE_DEC:
5632    return "<pre-dec>";
5633  case ISD::POST_INC:
5634    return "<post-inc>";
5635  case ISD::POST_DEC:
5636    return "<post-dec>";
5637  }
5638}
5639
5640std::string ISD::ArgFlagsTy::getArgFlagsString() {
5641  std::string S = "< ";
5642
5643  if (isZExt())
5644    S += "zext ";
5645  if (isSExt())
5646    S += "sext ";
5647  if (isInReg())
5648    S += "inreg ";
5649  if (isSRet())
5650    S += "sret ";
5651  if (isByVal())
5652    S += "byval ";
5653  if (isNest())
5654    S += "nest ";
5655  if (getByValAlign())
5656    S += "byval-align:" + utostr(getByValAlign()) + " ";
5657  if (getOrigAlign())
5658    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5659  if (getByValSize())
5660    S += "byval-size:" + utostr(getByValSize()) + " ";
5661  return S + ">";
5662}
5663
5664void SDNode::dump() const { dump(0); }
5665void SDNode::dump(const SelectionDAG *G) const {
5666  print(errs(), G);
5667}
5668
5669void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5670  OS << (void*)this << ": ";
5671
5672  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5673    if (i) OS << ",";
5674    if (getValueType(i) == MVT::Other)
5675      OS << "ch";
5676    else
5677      OS << getValueType(i).getEVTString();
5678  }
5679  OS << " = " << getOperationName(G);
5680}
5681
5682void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5683  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5684    if (!MN->memoperands_empty()) {
5685      OS << "<";
5686      OS << "Mem:";
5687      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5688           e = MN->memoperands_end(); i != e; ++i) {
5689        OS << **i;
5690        if (next(i) != e)
5691          OS << " ";
5692      }
5693      OS << ">";
5694    }
5695  } else if (const ShuffleVectorSDNode *SVN =
5696               dyn_cast<ShuffleVectorSDNode>(this)) {
5697    OS << "<";
5698    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5699      int Idx = SVN->getMaskElt(i);
5700      if (i) OS << ",";
5701      if (Idx < 0)
5702        OS << "u";
5703      else
5704        OS << Idx;
5705    }
5706    OS << ">";
5707  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5708    OS << '<' << CSDN->getAPIntValue() << '>';
5709  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5710    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5711      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5712    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5713      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5714    else {
5715      OS << "<APFloat(";
5716      CSDN->getValueAPF().bitcastToAPInt().dump();
5717      OS << ")>";
5718    }
5719  } else if (const GlobalAddressSDNode *GADN =
5720             dyn_cast<GlobalAddressSDNode>(this)) {
5721    int64_t offset = GADN->getOffset();
5722    OS << '<';
5723    WriteAsOperand(OS, GADN->getGlobal());
5724    OS << '>';
5725    if (offset > 0)
5726      OS << " + " << offset;
5727    else
5728      OS << " " << offset;
5729    if (unsigned int TF = GADN->getTargetFlags())
5730      OS << " [TF=" << TF << ']';
5731  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5732    OS << "<" << FIDN->getIndex() << ">";
5733  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5734    OS << "<" << JTDN->getIndex() << ">";
5735    if (unsigned int TF = JTDN->getTargetFlags())
5736      OS << " [TF=" << TF << ']';
5737  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5738    int offset = CP->getOffset();
5739    if (CP->isMachineConstantPoolEntry())
5740      OS << "<" << *CP->getMachineCPVal() << ">";
5741    else
5742      OS << "<" << *CP->getConstVal() << ">";
5743    if (offset > 0)
5744      OS << " + " << offset;
5745    else
5746      OS << " " << offset;
5747    if (unsigned int TF = CP->getTargetFlags())
5748      OS << " [TF=" << TF << ']';
5749  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5750    OS << "<";
5751    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5752    if (LBB)
5753      OS << LBB->getName() << " ";
5754    OS << (const void*)BBDN->getBasicBlock() << ">";
5755  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5756    if (G && R->getReg() &&
5757        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5758      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5759    } else {
5760      OS << " %reg" << R->getReg();
5761    }
5762  } else if (const ExternalSymbolSDNode *ES =
5763             dyn_cast<ExternalSymbolSDNode>(this)) {
5764    OS << "'" << ES->getSymbol() << "'";
5765    if (unsigned int TF = ES->getTargetFlags())
5766      OS << " [TF=" << TF << ']';
5767  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5768    if (M->getValue())
5769      OS << "<" << M->getValue() << ">";
5770    else
5771      OS << "<null>";
5772  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5773    OS << ":" << N->getVT().getEVTString();
5774  }
5775  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5776    OS << "<" << *LD->getMemOperand();
5777
5778    bool doExt = true;
5779    switch (LD->getExtensionType()) {
5780    default: doExt = false; break;
5781    case ISD::EXTLOAD: OS << ", anyext"; break;
5782    case ISD::SEXTLOAD: OS << ", sext"; break;
5783    case ISD::ZEXTLOAD: OS << ", zext"; break;
5784    }
5785    if (doExt)
5786      OS << " from " << LD->getMemoryVT().getEVTString();
5787
5788    const char *AM = getIndexedModeName(LD->getAddressingMode());
5789    if (*AM)
5790      OS << ", " << AM;
5791
5792    OS << ">";
5793  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5794    OS << "<" << *ST->getMemOperand();
5795
5796    if (ST->isTruncatingStore())
5797      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5798
5799    const char *AM = getIndexedModeName(ST->getAddressingMode());
5800    if (*AM)
5801      OS << ", " << AM;
5802
5803    OS << ">";
5804  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5805    OS << "<" << *M->getMemOperand() << ">";
5806  } else if (const BlockAddressSDNode *BA =
5807               dyn_cast<BlockAddressSDNode>(this)) {
5808    OS << "<";
5809    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5810    OS << ", ";
5811    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5812    OS << ">";
5813  }
5814}
5815
5816void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5817  print_types(OS, G);
5818  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5819    if (i) OS << ", "; else OS << " ";
5820    OS << (void*)getOperand(i).getNode();
5821    if (unsigned RN = getOperand(i).getResNo())
5822      OS << ":" << RN;
5823  }
5824  print_details(OS, G);
5825}
5826
5827static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5828  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5829    if (N->getOperand(i).getNode()->hasOneUse())
5830      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5831    else
5832      errs() << "\n" << std::string(indent+2, ' ')
5833             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5834
5835
5836  errs() << "\n";
5837  errs().indent(indent);
5838  N->dump(G);
5839}
5840
5841void SelectionDAG::dump() const {
5842  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
5843
5844  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5845       I != E; ++I) {
5846    const SDNode *N = I;
5847    if (!N->hasOneUse() && N != getRoot().getNode())
5848      DumpNodes(N, 2, this);
5849  }
5850
5851  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5852
5853  errs() << "\n\n";
5854}
5855
5856void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5857  print_types(OS, G);
5858  print_details(OS, G);
5859}
5860
5861typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5862static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5863                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5864  if (!once.insert(N))          // If we've been here before, return now.
5865    return;
5866  // Dump the current SDNode, but don't end the line yet.
5867  OS << std::string(indent, ' ');
5868  N->printr(OS, G);
5869  // Having printed this SDNode, walk the children:
5870  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5871    const SDNode *child = N->getOperand(i).getNode();
5872    if (i) OS << ",";
5873    OS << " ";
5874    if (child->getNumOperands() == 0) {
5875      // This child has no grandchildren; print it inline right here.
5876      child->printr(OS, G);
5877      once.insert(child);
5878    } else {          // Just the address.  FIXME: also print the child's opcode
5879      OS << (void*)child;
5880      if (unsigned RN = N->getOperand(i).getResNo())
5881        OS << ":" << RN;
5882    }
5883  }
5884  OS << "\n";
5885  // Dump children that have grandchildren on their own line(s).
5886  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5887    const SDNode *child = N->getOperand(i).getNode();
5888    DumpNodesr(OS, child, indent+2, G, once);
5889  }
5890}
5891
5892void SDNode::dumpr() const {
5893  VisitedSDNodeSet once;
5894  DumpNodesr(errs(), this, 0, 0, once);
5895}
5896
5897void SDNode::dumpr(const SelectionDAG *G) const {
5898  VisitedSDNodeSet once;
5899  DumpNodesr(errs(), this, 0, G, once);
5900}
5901
5902
5903// getAddressSpace - Return the address space this GlobalAddress belongs to.
5904unsigned GlobalAddressSDNode::getAddressSpace() const {
5905  return getGlobal()->getType()->getAddressSpace();
5906}
5907
5908
5909const Type *ConstantPoolSDNode::getType() const {
5910  if (isMachineConstantPoolEntry())
5911    return Val.MachineCPVal->getType();
5912  return Val.ConstVal->getType();
5913}
5914
5915bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5916                                        APInt &SplatUndef,
5917                                        unsigned &SplatBitSize,
5918                                        bool &HasAnyUndefs,
5919                                        unsigned MinSplatBits,
5920                                        bool isBigEndian) {
5921  EVT VT = getValueType(0);
5922  assert(VT.isVector() && "Expected a vector type");
5923  unsigned sz = VT.getSizeInBits();
5924  if (MinSplatBits > sz)
5925    return false;
5926
5927  SplatValue = APInt(sz, 0);
5928  SplatUndef = APInt(sz, 0);
5929
5930  // Get the bits.  Bits with undefined values (when the corresponding element
5931  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5932  // in SplatValue.  If any of the values are not constant, give up and return
5933  // false.
5934  unsigned int nOps = getNumOperands();
5935  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5936  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5937
5938  for (unsigned j = 0; j < nOps; ++j) {
5939    unsigned i = isBigEndian ? nOps-1-j : j;
5940    SDValue OpVal = getOperand(i);
5941    unsigned BitPos = j * EltBitSize;
5942
5943    if (OpVal.getOpcode() == ISD::UNDEF)
5944      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
5945    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5946      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5947                     zextOrTrunc(sz) << BitPos);
5948    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5949      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5950     else
5951      return false;
5952  }
5953
5954  // The build_vector is all constants or undefs.  Find the smallest element
5955  // size that splats the vector.
5956
5957  HasAnyUndefs = (SplatUndef != 0);
5958  while (sz > 8) {
5959
5960    unsigned HalfSize = sz / 2;
5961    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5962    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5963    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5964    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5965
5966    // If the two halves do not match (ignoring undef bits), stop here.
5967    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5968        MinSplatBits > HalfSize)
5969      break;
5970
5971    SplatValue = HighValue | LowValue;
5972    SplatUndef = HighUndef & LowUndef;
5973
5974    sz = HalfSize;
5975  }
5976
5977  SplatBitSize = sz;
5978  return true;
5979}
5980
5981bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5982  // Find the first non-undef value in the shuffle mask.
5983  unsigned i, e;
5984  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5985    /* search */;
5986
5987  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5988
5989  // Make sure all remaining elements are either undef or the same as the first
5990  // non-undef value.
5991  for (int Idx = Mask[i]; i != e; ++i)
5992    if (Mask[i] >= 0 && Mask[i] != Idx)
5993      return false;
5994  return true;
5995}
5996