SelectionDAG.cpp revision 1f13c686df75ddbbe15b208606ece4846d7479a8
1ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//
3ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//                     The LLVM Compiler Infrastructure
4ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//
5ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown// This file is distributed under the University of Illinois Open Source
6ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown// License. See LICENSE.TXT for details.
7ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//
8ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//===----------------------------------------------------------------------===//
9ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//
10ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown// This implements the SelectionDAG class.
11ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//
12ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//===----------------------------------------------------------------------===//
13ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/CodeGen/SelectionDAG.h"
14ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Constants.h"
15ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/GlobalAlias.h"
16ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/GlobalVariable.h"
17ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Intrinsics.h"
18ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/DerivedTypes.h"
19ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Assembly/Writer.h"
20ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/CallingConv.h"
21ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/CodeGen/MachineBasicBlock.h"
22ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/CodeGen/MachineConstantPool.h"
23ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/CodeGen/MachineFrameInfo.h"
24ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/CodeGen/MachineModuleInfo.h"
25ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/CodeGen/PseudoSourceValue.h"
26ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Support/MathExtras.h"
27ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Target/TargetRegisterInfo.h"
28ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Target/TargetData.h"
29ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Target/TargetLowering.h"
30ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Target/TargetInstrInfo.h"
31ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/Target/TargetMachine.h"
32ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/ADT/SetVector.h"
33ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/ADT/SmallPtrSet.h"
34ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/ADT/SmallSet.h"
35ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/ADT/SmallVector.h"
36ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include "llvm/ADT/StringExtras.h"
37ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include <algorithm>
38ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown#include <cmath>
39ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brownusing namespace llvm;
40ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
41ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// makeVTList - Return an instance of the SDVTList struct initialized with the
42ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// specified members.
43ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brownstatic SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  SDVTList Res = {VTs, NumVTs};
45ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  return Res;
46ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown}
47ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
48ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brownstatic const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  switch (VT) {
50ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  default: assert(0 && "Unknown FP format");
51ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  case MVT::f32:     return &APFloat::IEEEsingle;
52ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  case MVT::f64:     return &APFloat::IEEEdouble;
53ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  case MVT::f80:     return &APFloat::x87DoubleExtended;
54ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  case MVT::f128:    return &APFloat::IEEEquad;
55ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  }
57ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown}
58ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
59ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff BrownSelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
61ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//===----------------------------------------------------------------------===//
62ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//                              ConstantFPSDNode Class
63ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//===----------------------------------------------------------------------===//
64ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
65ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// isExactlyValue - We don't rely on operator== working on double values, as
66ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// As such, this method can be used to do an exact bit-for-bit comparison of
68ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// two floating point values.
69ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brownbool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  return Value.bitwiseIsEqual(V);
71ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown}
72ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
73ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brownbool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown                                           const APFloat& Val) {
75ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
77ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // PPC long double cannot be converted to any other type.
78ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  if (VT == MVT::ppcf128 ||
79ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown    return false;
81ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
82ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // convert modifies in place, so make a copy.
83ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  APFloat Val2 = APFloat(Val);
84ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  return Val2.convert(*MVTToAPFloatSemantics(VT),
85ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown}
87ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
88ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//===----------------------------------------------------------------------===//
89ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//                              ISD Namespace
90ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown//===----------------------------------------------------------------------===//
91ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
92ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// isBuildVectorAllOnes - Return true if the specified node is a
93ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown/// BUILD_VECTOR where all of the elements are ~0 or undef.
94ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brownbool ISD::isBuildVectorAllOnes(const SDNode *N) {
95ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // Look through a bit convert.
96ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  if (N->getOpcode() == ISD::BIT_CONVERT)
97ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown    N = N->getOperand(0).Val;
98ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
99ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
101ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  unsigned i = 0, e = N->getNumOperands();
102ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
103ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // Skip over all of the undef values.
104ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown    ++i;
106ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
107ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // Do not accept an all-undef vector.
108ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  if (i == e) return false;
109ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
110ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // Do not accept build_vectors that aren't all constants or which have non-~0
111ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // elements.
112ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  SDOperand NotZero = N->getOperand(i);
113ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  if (isa<ConstantSDNode>(NotZero)) {
114ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown      return false;
116ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  } else if (isa<ConstantFPSDNode>(NotZero)) {
117ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown                convertToAPInt().isAllOnesValue())
119ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown      return false;
120ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  } else
121ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown    return false;
122ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown
123ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // Okay, we have at least one ~0 value, check to see if the rest match or are
124ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  // undefs.
125ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  for (++i; i != e; ++i)
126ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown    if (N->getOperand(i) != NotZero &&
127ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown        N->getOperand(i).getOpcode() != ISD::UNDEF)
128ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown      return false;
129ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown  return true;
130ed07e00d438c74b7a23c01bfffde77e3968305e4Jeff Brown}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
297    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
298    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
299    }
300  }
301
302  return Result;
303}
304
305const TargetMachine &SelectionDAG::getTarget() const {
306  return TLI.getTargetMachine();
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              SDOperandPtr Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->Val);
331    ID.AddInteger(Ops->ResNo);
332  }
333}
334
335static void AddNodeIDNode(FoldingSetNodeID &ID,
336                          unsigned short OpC, SDVTList VTList,
337                          SDOperandPtr OpList, unsigned N) {
338  AddNodeIDOpcode(ID, OpC);
339  AddNodeIDValueTypes(ID, VTList);
340  AddNodeIDOperands(ID, OpList, N);
341}
342
343
344/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
345/// data.
346static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
347  AddNodeIDOpcode(ID, N->getOpcode());
348  // Add the return value info.
349  AddNodeIDValueTypes(ID, N->getVTList());
350  // Add the operand info.
351  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
352
353  // Handle SDNode leafs with special info.
354  switch (N->getOpcode()) {
355  default: break;  // Normal nodes don't need extra info.
356  case ISD::ARG_FLAGS:
357    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
358    break;
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    break;
376  }
377  case ISD::BasicBlock:
378    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
379    break;
380  case ISD::Register:
381    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
382    break;
383  case ISD::SRCVALUE:
384    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
385    break;
386  case ISD::MEMOPERAND: {
387    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
388    ID.AddPointer(MO.getValue());
389    ID.AddInteger(MO.getFlags());
390    ID.AddInteger(MO.getOffset());
391    ID.AddInteger(MO.getSize());
392    ID.AddInteger(MO.getAlignment());
393    break;
394  }
395  case ISD::FrameIndex:
396  case ISD::TargetFrameIndex:
397    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
398    break;
399  case ISD::JumpTable:
400  case ISD::TargetJumpTable:
401    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
402    break;
403  case ISD::ConstantPool:
404  case ISD::TargetConstantPool: {
405    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
406    ID.AddInteger(CP->getAlignment());
407    ID.AddInteger(CP->getOffset());
408    if (CP->isMachineConstantPoolEntry())
409      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
410    else
411      ID.AddPointer(CP->getConstVal());
412    break;
413  }
414  case ISD::LOAD: {
415    LoadSDNode *LD = cast<LoadSDNode>(N);
416    ID.AddInteger(LD->getAddressingMode());
417    ID.AddInteger(LD->getExtensionType());
418    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
419    ID.AddInteger(LD->getAlignment());
420    ID.AddInteger(LD->isVolatile());
421    break;
422  }
423  case ISD::STORE: {
424    StoreSDNode *ST = cast<StoreSDNode>(N);
425    ID.AddInteger(ST->getAddressingMode());
426    ID.AddInteger(ST->isTruncatingStore());
427    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
428    ID.AddInteger(ST->getAlignment());
429    ID.AddInteger(ST->isVolatile());
430    break;
431  }
432  }
433}
434
435//===----------------------------------------------------------------------===//
436//                              SelectionDAG Class
437//===----------------------------------------------------------------------===//
438
439/// RemoveDeadNodes - This method deletes all unreachable nodes in the
440/// SelectionDAG.
441void SelectionDAG::RemoveDeadNodes() {
442  // Create a dummy node (which is not added to allnodes), that adds a reference
443  // to the root node, preventing it from being deleted.
444  HandleSDNode Dummy(getRoot());
445
446  SmallVector<SDNode*, 128> DeadNodes;
447
448  // Add all obviously-dead nodes to the DeadNodes worklist.
449  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
450    if (I->use_empty())
451      DeadNodes.push_back(I);
452
453  // Process the worklist, deleting the nodes and adding their uses to the
454  // worklist.
455  while (!DeadNodes.empty()) {
456    SDNode *N = DeadNodes.back();
457    DeadNodes.pop_back();
458
459    // Take the node out of the appropriate CSE map.
460    RemoveNodeFromCSEMaps(N);
461
462    // Next, brutally remove the operand list.  This is safe to do, as there are
463    // no cycles in the graph.
464    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
465      SDNode *Operand = I->getVal();
466      Operand->removeUser(std::distance(N->op_begin(), I), N);
467
468      // Now that we removed this operand, see if there are no uses of it left.
469      if (Operand->use_empty())
470        DeadNodes.push_back(Operand);
471    }
472    if (N->OperandsNeedDelete) {
473      delete[] N->OperandList;
474    }
475    N->OperandList = 0;
476    N->NumOperands = 0;
477
478    // Finally, remove N itself.
479    AllNodes.erase(N);
480  }
481
482  // If the root changed (e.g. it was a dead load, update the root).
483  setRoot(Dummy.getValue());
484}
485
486void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
487  SmallVector<SDNode*, 16> DeadNodes;
488  DeadNodes.push_back(N);
489
490  // Process the worklist, deleting the nodes and adding their uses to the
491  // worklist.
492  while (!DeadNodes.empty()) {
493    SDNode *N = DeadNodes.back();
494    DeadNodes.pop_back();
495
496    if (UpdateListener)
497      UpdateListener->NodeDeleted(N);
498
499    // Take the node out of the appropriate CSE map.
500    RemoveNodeFromCSEMaps(N);
501
502    // Next, brutally remove the operand list.  This is safe to do, as there are
503    // no cycles in the graph.
504    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
505      SDNode *Operand = I->getVal();
506      Operand->removeUser(std::distance(N->op_begin(), I), N);
507
508      // Now that we removed this operand, see if there are no uses of it left.
509      if (Operand->use_empty())
510        DeadNodes.push_back(Operand);
511    }
512    if (N->OperandsNeedDelete) {
513      delete[] N->OperandList;
514    }
515    N->OperandList = 0;
516    N->NumOperands = 0;
517
518    // Finally, remove N itself.
519    AllNodes.erase(N);
520  }
521}
522
523void SelectionDAG::DeleteNode(SDNode *N) {
524  assert(N->use_empty() && "Cannot delete a node that is not dead!");
525
526  // First take this out of the appropriate CSE map.
527  RemoveNodeFromCSEMaps(N);
528
529  // Finally, remove uses due to operands of this node, remove from the
530  // AllNodes list, and delete the node.
531  DeleteNodeNotInCSEMaps(N);
532}
533
534void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
535
536  // Remove it from the AllNodes list.
537  AllNodes.remove(N);
538
539  // Drop all of the operands and decrement used nodes use counts.
540  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
541    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
542  if (N->OperandsNeedDelete) {
543    delete[] N->OperandList;
544  }
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           SDOperandPtr Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete) {
706      delete [] N->OperandList;
707    }
708    N->OperandList = 0;
709    N->NumOperands = 0;
710    AllNodes.pop_front();
711  }
712}
713
714SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
715  if (Op.getValueType() == VT) return Op;
716  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
717                                   MVT::getSizeInBits(VT));
718  return getNode(ISD::AND, Op.getValueType(), Op,
719                 getConstant(Imm, Op.getValueType()));
720}
721
722SDOperand SelectionDAG::getString(const std::string &Val) {
723  StringSDNode *&N = StringNodes[Val];
724  if (!N) {
725    N = new StringSDNode(Val);
726    AllNodes.push_back(N);
727  }
728  return SDOperand(N, 0);
729}
730
731SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
732  MVT::ValueType EltVT =
733    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
734
735  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
736}
737
738SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
739  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
740
741  MVT::ValueType EltVT =
742    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
743
744  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
745         "APInt size does not match type size!");
746
747  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
748  FoldingSetNodeID ID;
749  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
750  ID.Add(Val);
751  void *IP = 0;
752  SDNode *N = NULL;
753  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
754    if (!MVT::isVector(VT))
755      return SDOperand(N, 0);
756  if (!N) {
757    N = new ConstantSDNode(isT, Val, EltVT);
758    CSEMap.InsertNode(N, IP);
759    AllNodes.push_back(N);
760  }
761
762  SDOperand Result(N, 0);
763  if (MVT::isVector(VT)) {
764    SmallVector<SDOperand, 8> Ops;
765    Ops.assign(MVT::getVectorNumElements(VT), Result);
766    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
767  }
768  return Result;
769}
770
771SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
772  return getConstant(Val, TLI.getPointerTy(), isTarget);
773}
774
775
776SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
777                                      bool isTarget) {
778  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
779
780  MVT::ValueType EltVT =
781    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
782
783  // Do the map lookup using the actual bit pattern for the floating point
784  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
785  // we don't have issues with SNANs.
786  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
789  ID.Add(V);
790  void *IP = 0;
791  SDNode *N = NULL;
792  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
793    if (!MVT::isVector(VT))
794      return SDOperand(N, 0);
795  if (!N) {
796    N = new ConstantFPSDNode(isTarget, V, EltVT);
797    CSEMap.InsertNode(N, IP);
798    AllNodes.push_back(N);
799  }
800
801  SDOperand Result(N, 0);
802  if (MVT::isVector(VT)) {
803    SmallVector<SDOperand, 8> Ops;
804    Ops.assign(MVT::getVectorNumElements(VT), Result);
805    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
806  }
807  return Result;
808}
809
810SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
811                                      bool isTarget) {
812  MVT::ValueType EltVT =
813    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
814  if (EltVT==MVT::f32)
815    return getConstantFP(APFloat((float)Val), VT, isTarget);
816  else
817    return getConstantFP(APFloat(Val), VT, isTarget);
818}
819
820SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
821                                         MVT::ValueType VT, int Offset,
822                                         bool isTargetGA) {
823  unsigned Opc;
824
825  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
826  if (!GVar) {
827    // If GV is an alias then use the aliasee for determining thread-localness.
828    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
829      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
830  }
831
832  if (GVar && GVar->isThreadLocal())
833    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
834  else
835    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
836
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
839  ID.AddPointer(GV);
840  ID.AddInteger(Offset);
841  void *IP = 0;
842  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
843   return SDOperand(E, 0);
844  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
845  CSEMap.InsertNode(N, IP);
846  AllNodes.push_back(N);
847  return SDOperand(N, 0);
848}
849
850SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
851                                      bool isTarget) {
852  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
855  ID.AddInteger(FI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
866  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
867  FoldingSetNodeID ID;
868  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
869  ID.AddInteger(JTI);
870  void *IP = 0;
871  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872    return SDOperand(E, 0);
873  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
874  CSEMap.InsertNode(N, IP);
875  AllNodes.push_back(N);
876  return SDOperand(N, 0);
877}
878
879SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
880                                        unsigned Alignment, int Offset,
881                                        bool isTarget) {
882  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
883  FoldingSetNodeID ID;
884  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
885  ID.AddInteger(Alignment);
886  ID.AddInteger(Offset);
887  ID.AddPointer(C);
888  void *IP = 0;
889  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
890    return SDOperand(E, 0);
891  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
892  CSEMap.InsertNode(N, IP);
893  AllNodes.push_back(N);
894  return SDOperand(N, 0);
895}
896
897
898SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
899                                        MVT::ValueType VT,
900                                        unsigned Alignment, int Offset,
901                                        bool isTarget) {
902  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
905  ID.AddInteger(Alignment);
906  ID.AddInteger(Offset);
907  C->AddSelectionDAGCSEId(ID);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917
918SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
921  ID.AddPointer(MBB);
922  void *IP = 0;
923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924    return SDOperand(E, 0);
925  SDNode *N = new BasicBlockSDNode(MBB);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
934  ID.AddInteger(Flags.getRawBits());
935  void *IP = 0;
936  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
937    return SDOperand(E, 0);
938  SDNode *N = new ARG_FLAGSSDNode(Flags);
939  CSEMap.InsertNode(N, IP);
940  AllNodes.push_back(N);
941  return SDOperand(N, 0);
942}
943
944SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
945  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
946    ValueTypeNodes.resize(VT+1);
947
948  SDNode *&N = MVT::isExtendedVT(VT) ?
949    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
950
951  if (N) return SDOperand(N, 0);
952  N = new VTSDNode(VT);
953  AllNodes.push_back(N);
954  return SDOperand(N, 0);
955}
956
957SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
958  SDNode *&N = ExternalSymbols[Sym];
959  if (N) return SDOperand(N, 0);
960  N = new ExternalSymbolSDNode(false, Sym, VT);
961  AllNodes.push_back(N);
962  return SDOperand(N, 0);
963}
964
965SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
966                                                MVT::ValueType VT) {
967  SDNode *&N = TargetExternalSymbols[Sym];
968  if (N) return SDOperand(N, 0);
969  N = new ExternalSymbolSDNode(true, Sym, VT);
970  AllNodes.push_back(N);
971  return SDOperand(N, 0);
972}
973
974SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
975  if ((unsigned)Cond >= CondCodeNodes.size())
976    CondCodeNodes.resize(Cond+1);
977
978  if (CondCodeNodes[Cond] == 0) {
979    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
980    AllNodes.push_back(CondCodeNodes[Cond]);
981  }
982  return SDOperand(CondCodeNodes[Cond], 0);
983}
984
985SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
986  FoldingSetNodeID ID;
987  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
988  ID.AddInteger(RegNo);
989  void *IP = 0;
990  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
991    return SDOperand(E, 0);
992  SDNode *N = new RegisterSDNode(RegNo, VT);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDOperand(N, 0);
996}
997
998SDOperand SelectionDAG::getSrcValue(const Value *V) {
999  assert((!V || isa<PointerType>(V->getType())) &&
1000         "SrcValue is not a pointer?");
1001
1002  FoldingSetNodeID ID;
1003  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1004  ID.AddPointer(V);
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new SrcValueSDNode(V);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1017  const Value *v = MO.getValue();
1018  assert((!v || isa<PointerType>(v->getType())) &&
1019         "SrcValue is not a pointer?");
1020
1021  FoldingSetNodeID ID;
1022  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1023  ID.AddPointer(v);
1024  ID.AddInteger(MO.getFlags());
1025  ID.AddInteger(MO.getOffset());
1026  ID.AddInteger(MO.getSize());
1027  ID.AddInteger(MO.getAlignment());
1028
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDOperand(E, 0);
1032
1033  SDNode *N = new MemOperandSDNode(MO);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDOperand(N, 0);
1037}
1038
1039/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1040/// specified value type.
1041SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1042  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1043  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1044  const Type *Ty = MVT::getTypeForValueType(VT);
1045  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1046  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1047  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1048}
1049
1050
1051SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1052                                  SDOperand N2, ISD::CondCode Cond) {
1053  // These setcc operations always fold.
1054  switch (Cond) {
1055  default: break;
1056  case ISD::SETFALSE:
1057  case ISD::SETFALSE2: return getConstant(0, VT);
1058  case ISD::SETTRUE:
1059  case ISD::SETTRUE2:  return getConstant(1, VT);
1060
1061  case ISD::SETOEQ:
1062  case ISD::SETOGT:
1063  case ISD::SETOGE:
1064  case ISD::SETOLT:
1065  case ISD::SETOLE:
1066  case ISD::SETONE:
1067  case ISD::SETO:
1068  case ISD::SETUO:
1069  case ISD::SETUEQ:
1070  case ISD::SETUNE:
1071    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1072    break;
1073  }
1074
1075  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1076    const APInt &C2 = N2C->getAPIntValue();
1077    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1078      const APInt &C1 = N1C->getAPIntValue();
1079
1080      switch (Cond) {
1081      default: assert(0 && "Unknown integer setcc!");
1082      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1083      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1084      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1085      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1086      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1087      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1088      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1089      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1090      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1091      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1092      }
1093    }
1094  }
1095  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1096    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1097      // No compile time operations on this type yet.
1098      if (N1C->getValueType(0) == MVT::ppcf128)
1099        return SDOperand();
1100
1101      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1102      switch (Cond) {
1103      default: break;
1104      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1108      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1109                          return getNode(ISD::UNDEF, VT);
1110                        // fall through
1111      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpLessThan, VT);
1113      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1114                          return getNode(ISD::UNDEF, VT);
1115                        // fall through
1116      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1117      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1118                          return getNode(ISD::UNDEF, VT);
1119                        // fall through
1120      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1121      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1122                          return getNode(ISD::UNDEF, VT);
1123                        // fall through
1124      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1125                                           R==APFloat::cmpEqual, VT);
1126      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1127                          return getNode(ISD::UNDEF, VT);
1128                        // fall through
1129      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1130                                           R==APFloat::cmpEqual, VT);
1131      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1132      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1133      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1134                                           R==APFloat::cmpEqual, VT);
1135      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1136      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1137                                           R==APFloat::cmpLessThan, VT);
1138      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1139                                           R==APFloat::cmpUnordered, VT);
1140      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1141      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1142      }
1143    } else {
1144      // Ensure that the constant occurs on the RHS.
1145      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1146    }
1147  }
1148
1149  // Could not fold it.
1150  return SDOperand();
1151}
1152
1153/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1154/// use this predicate to simplify operations downstream.
1155bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1156  unsigned BitWidth = Op.getValueSizeInBits();
1157  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1158}
1159
1160/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1161/// this predicate to simplify operations downstream.  Mask is known to be zero
1162/// for bits that V cannot have.
1163bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1164                                     unsigned Depth) const {
1165  APInt KnownZero, KnownOne;
1166  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1167  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1168  return (KnownZero & Mask) == Mask;
1169}
1170
1171/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1172/// known to be either zero or one and return them in the KnownZero/KnownOne
1173/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1174/// processing.
1175void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1176                                     APInt &KnownZero, APInt &KnownOne,
1177                                     unsigned Depth) const {
1178  unsigned BitWidth = Mask.getBitWidth();
1179  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1180         "Mask size mismatches value type size!");
1181
1182  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1183  if (Depth == 6 || Mask == 0)
1184    return;  // Limit search depth.
1185
1186  APInt KnownZero2, KnownOne2;
1187
1188  switch (Op.getOpcode()) {
1189  case ISD::Constant:
1190    // We know all of the bits for a constant!
1191    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1192    KnownZero = ~KnownOne & Mask;
1193    return;
1194  case ISD::AND:
1195    // If either the LHS or the RHS are Zero, the result is zero.
1196    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1197    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1198                      KnownZero2, KnownOne2, Depth+1);
1199    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1200    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1201
1202    // Output known-1 bits are only known if set in both the LHS & RHS.
1203    KnownOne &= KnownOne2;
1204    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1205    KnownZero |= KnownZero2;
1206    return;
1207  case ISD::OR:
1208    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1209    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1210                      KnownZero2, KnownOne2, Depth+1);
1211    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1213
1214    // Output known-0 bits are only known if clear in both the LHS & RHS.
1215    KnownZero &= KnownZero2;
1216    // Output known-1 are known to be set if set in either the LHS | RHS.
1217    KnownOne |= KnownOne2;
1218    return;
1219  case ISD::XOR: {
1220    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1221    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1222    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1224
1225    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1226    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1227    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1228    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1229    KnownZero = KnownZeroOut;
1230    return;
1231  }
1232  case ISD::MUL: {
1233    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1234    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1235    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1236    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1237    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1238
1239    // If low bits are zero in either operand, output low known-0 bits.
1240    // Also compute a conserative estimate for high known-0 bits.
1241    // More trickiness is possible, but this is sufficient for the
1242    // interesting case of alignment computation.
1243    KnownOne.clear();
1244    unsigned TrailZ = KnownZero.countTrailingOnes() +
1245                      KnownZero2.countTrailingOnes();
1246    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1247                               KnownZero2.countLeadingOnes() +
1248                               1, BitWidth) - BitWidth;
1249
1250    TrailZ = std::min(TrailZ, BitWidth);
1251    LeadZ = std::min(LeadZ, BitWidth);
1252    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1253                APInt::getHighBitsSet(BitWidth, LeadZ);
1254    KnownZero &= Mask;
1255    return;
1256  }
1257  case ISD::UDIV: {
1258    // For the purposes of computing leading zeros we can conservatively
1259    // treat a udiv as a logical right shift by the power of 2 known to
1260    // be greater than the denominator.
1261    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1262    ComputeMaskedBits(Op.getOperand(0),
1263                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1264    unsigned LeadZ = KnownZero2.countLeadingOnes();
1265
1266    KnownOne2.clear();
1267    KnownZero2.clear();
1268    ComputeMaskedBits(Op.getOperand(1),
1269                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1270    LeadZ = std::min(BitWidth,
1271                     LeadZ + BitWidth - KnownOne2.countLeadingZeros());
1272
1273    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1274    return;
1275  }
1276  case ISD::SELECT:
1277    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1278    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1279    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1280    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1281
1282    // Only known if known in both the LHS and RHS.
1283    KnownOne &= KnownOne2;
1284    KnownZero &= KnownZero2;
1285    return;
1286  case ISD::SELECT_CC:
1287    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1288    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1289    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1290    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1291
1292    // Only known if known in both the LHS and RHS.
1293    KnownOne &= KnownOne2;
1294    KnownZero &= KnownZero2;
1295    return;
1296  case ISD::SETCC:
1297    // If we know the result of a setcc has the top bits zero, use this info.
1298    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1299        BitWidth > 1)
1300      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1301    return;
1302  case ISD::SHL:
1303    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1304    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1305      unsigned ShAmt = SA->getValue();
1306
1307      // If the shift count is an invalid immediate, don't do anything.
1308      if (ShAmt >= BitWidth)
1309        return;
1310
1311      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1312                        KnownZero, KnownOne, Depth+1);
1313      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1314      KnownZero <<= ShAmt;
1315      KnownOne  <<= ShAmt;
1316      // low bits known zero.
1317      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1318    }
1319    return;
1320  case ISD::SRL:
1321    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1322    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1323      unsigned ShAmt = SA->getValue();
1324
1325      // If the shift count is an invalid immediate, don't do anything.
1326      if (ShAmt >= BitWidth)
1327        return;
1328
1329      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1330                        KnownZero, KnownOne, Depth+1);
1331      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1332      KnownZero = KnownZero.lshr(ShAmt);
1333      KnownOne  = KnownOne.lshr(ShAmt);
1334
1335      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1336      KnownZero |= HighBits;  // High bits known zero.
1337    }
1338    return;
1339  case ISD::SRA:
1340    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1341      unsigned ShAmt = SA->getValue();
1342
1343      // If the shift count is an invalid immediate, don't do anything.
1344      if (ShAmt >= BitWidth)
1345        return;
1346
1347      APInt InDemandedMask = (Mask << ShAmt);
1348      // If any of the demanded bits are produced by the sign extension, we also
1349      // demand the input sign bit.
1350      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1351      if (HighBits.getBoolValue())
1352        InDemandedMask |= APInt::getSignBit(BitWidth);
1353
1354      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1355                        Depth+1);
1356      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1357      KnownZero = KnownZero.lshr(ShAmt);
1358      KnownOne  = KnownOne.lshr(ShAmt);
1359
1360      // Handle the sign bits.
1361      APInt SignBit = APInt::getSignBit(BitWidth);
1362      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1363
1364      if (KnownZero.intersects(SignBit)) {
1365        KnownZero |= HighBits;  // New bits are known zero.
1366      } else if (KnownOne.intersects(SignBit)) {
1367        KnownOne  |= HighBits;  // New bits are known one.
1368      }
1369    }
1370    return;
1371  case ISD::SIGN_EXTEND_INREG: {
1372    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1373    unsigned EBits = MVT::getSizeInBits(EVT);
1374
1375    // Sign extension.  Compute the demanded bits in the result that are not
1376    // present in the input.
1377    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1378
1379    APInt InSignBit = APInt::getSignBit(EBits);
1380    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1381
1382    // If the sign extended bits are demanded, we know that the sign
1383    // bit is demanded.
1384    InSignBit.zext(BitWidth);
1385    if (NewBits.getBoolValue())
1386      InputDemandedBits |= InSignBit;
1387
1388    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1389                      KnownZero, KnownOne, Depth+1);
1390    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1391
1392    // If the sign bit of the input is known set or clear, then we know the
1393    // top bits of the result.
1394    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1395      KnownZero |= NewBits;
1396      KnownOne  &= ~NewBits;
1397    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1398      KnownOne  |= NewBits;
1399      KnownZero &= ~NewBits;
1400    } else {                              // Input sign bit unknown
1401      KnownZero &= ~NewBits;
1402      KnownOne  &= ~NewBits;
1403    }
1404    return;
1405  }
1406  case ISD::CTTZ:
1407  case ISD::CTLZ:
1408  case ISD::CTPOP: {
1409    unsigned LowBits = Log2_32(BitWidth)+1;
1410    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1411    KnownOne  = APInt(BitWidth, 0);
1412    return;
1413  }
1414  case ISD::LOAD: {
1415    if (ISD::isZEXTLoad(Op.Val)) {
1416      LoadSDNode *LD = cast<LoadSDNode>(Op);
1417      MVT::ValueType VT = LD->getMemoryVT();
1418      unsigned MemBits = MVT::getSizeInBits(VT);
1419      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1420    }
1421    return;
1422  }
1423  case ISD::ZERO_EXTEND: {
1424    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1425    unsigned InBits = MVT::getSizeInBits(InVT);
1426    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1427    APInt InMask    = Mask;
1428    InMask.trunc(InBits);
1429    KnownZero.trunc(InBits);
1430    KnownOne.trunc(InBits);
1431    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1432    KnownZero.zext(BitWidth);
1433    KnownOne.zext(BitWidth);
1434    KnownZero |= NewBits;
1435    return;
1436  }
1437  case ISD::SIGN_EXTEND: {
1438    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1439    unsigned InBits = MVT::getSizeInBits(InVT);
1440    APInt InSignBit = APInt::getSignBit(InBits);
1441    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1442    APInt InMask = Mask;
1443    InMask.trunc(InBits);
1444
1445    // If any of the sign extended bits are demanded, we know that the sign
1446    // bit is demanded. Temporarily set this bit in the mask for our callee.
1447    if (NewBits.getBoolValue())
1448      InMask |= InSignBit;
1449
1450    KnownZero.trunc(InBits);
1451    KnownOne.trunc(InBits);
1452    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1453
1454    // Note if the sign bit is known to be zero or one.
1455    bool SignBitKnownZero = KnownZero.isNegative();
1456    bool SignBitKnownOne  = KnownOne.isNegative();
1457    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1458           "Sign bit can't be known to be both zero and one!");
1459
1460    // If the sign bit wasn't actually demanded by our caller, we don't
1461    // want it set in the KnownZero and KnownOne result values. Reset the
1462    // mask and reapply it to the result values.
1463    InMask = Mask;
1464    InMask.trunc(InBits);
1465    KnownZero &= InMask;
1466    KnownOne  &= InMask;
1467
1468    KnownZero.zext(BitWidth);
1469    KnownOne.zext(BitWidth);
1470
1471    // If the sign bit is known zero or one, the top bits match.
1472    if (SignBitKnownZero)
1473      KnownZero |= NewBits;
1474    else if (SignBitKnownOne)
1475      KnownOne  |= NewBits;
1476    return;
1477  }
1478  case ISD::ANY_EXTEND: {
1479    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1480    unsigned InBits = MVT::getSizeInBits(InVT);
1481    APInt InMask = Mask;
1482    InMask.trunc(InBits);
1483    KnownZero.trunc(InBits);
1484    KnownOne.trunc(InBits);
1485    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1486    KnownZero.zext(BitWidth);
1487    KnownOne.zext(BitWidth);
1488    return;
1489  }
1490  case ISD::TRUNCATE: {
1491    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1492    unsigned InBits = MVT::getSizeInBits(InVT);
1493    APInt InMask = Mask;
1494    InMask.zext(InBits);
1495    KnownZero.zext(InBits);
1496    KnownOne.zext(InBits);
1497    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1498    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1499    KnownZero.trunc(BitWidth);
1500    KnownOne.trunc(BitWidth);
1501    break;
1502  }
1503  case ISD::AssertZext: {
1504    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1505    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1506    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1507                      KnownOne, Depth+1);
1508    KnownZero |= (~InMask) & Mask;
1509    return;
1510  }
1511  case ISD::FGETSIGN:
1512    // All bits are zero except the low bit.
1513    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1514    return;
1515
1516  case ISD::SUB: {
1517    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1518      // We know that the top bits of C-X are clear if X contains less bits
1519      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1520      // positive if we can prove that X is >= 0 and < 16.
1521      if (CLHS->getAPIntValue().isNonNegative()) {
1522        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1523        // NLZ can't be BitWidth with no sign bit
1524        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1525        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1526                          Depth+1);
1527
1528        // If all of the MaskV bits are known to be zero, then we know the
1529        // output top bits are zero, because we now know that the output is
1530        // from [0-C].
1531        if ((KnownZero2 & MaskV) == MaskV) {
1532          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1533          // Top bits known zero.
1534          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1535        }
1536      }
1537    }
1538  }
1539  // fall through
1540  case ISD::ADD: {
1541    // Output known-0 bits are known if clear or set in both the low clear bits
1542    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1543    // low 3 bits clear.
1544    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1545    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1546    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1547    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1548
1549    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1550    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1551    KnownZeroOut = std::min(KnownZeroOut,
1552                            KnownZero2.countTrailingOnes());
1553
1554    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1555    return;
1556  }
1557  case ISD::SREM:
1558    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1559      APInt RA = Rem->getAPIntValue();
1560      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1561        APInt LowBits = RA.isStrictlyPositive() ? ((RA - 1) | RA) : ~RA;
1562        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1563        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1564
1565        // The sign of a remainder is equal to the sign of the first
1566        // operand (zero being positive).
1567        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1568          KnownZero2 |= ~LowBits;
1569        else if (KnownOne2[BitWidth-1])
1570          KnownOne2 |= ~LowBits;
1571
1572        KnownZero |= KnownZero2 & Mask;
1573        KnownOne |= KnownOne2 & Mask;
1574
1575        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1576      }
1577    }
1578    return;
1579  case ISD::UREM: {
1580    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1581      APInt RA = Rem->getAPIntValue();
1582      if (RA.isStrictlyPositive() && RA.isPowerOf2()) {
1583        APInt LowBits = (RA - 1) | RA;
1584        APInt Mask2 = LowBits & Mask;
1585        KnownZero |= ~LowBits & Mask;
1586        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1587        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1588        break;
1589      }
1590    }
1591
1592    // Since the result is less than or equal to either operand, any leading
1593    // zero bits in either operand must also exist in the result.
1594    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1595    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1596                      Depth+1);
1597    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1598                      Depth+1);
1599
1600    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1601                                KnownZero2.countLeadingOnes());
1602    KnownOne.clear();
1603    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1604    return;
1605  }
1606  default:
1607    // Allow the target to implement this method for its nodes.
1608    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1609  case ISD::INTRINSIC_WO_CHAIN:
1610  case ISD::INTRINSIC_W_CHAIN:
1611  case ISD::INTRINSIC_VOID:
1612      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1613    }
1614    return;
1615  }
1616}
1617
1618/// ComputeNumSignBits - Return the number of times the sign bit of the
1619/// register is replicated into the other bits.  We know that at least 1 bit
1620/// is always equal to the sign bit (itself), but other cases can give us
1621/// information.  For example, immediately after an "SRA X, 2", we know that
1622/// the top 3 bits are all equal to each other, so we return 3.
1623unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1624  MVT::ValueType VT = Op.getValueType();
1625  assert(MVT::isInteger(VT) && "Invalid VT!");
1626  unsigned VTBits = MVT::getSizeInBits(VT);
1627  unsigned Tmp, Tmp2;
1628
1629  if (Depth == 6)
1630    return 1;  // Limit search depth.
1631
1632  switch (Op.getOpcode()) {
1633  default: break;
1634  case ISD::AssertSext:
1635    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1636    return VTBits-Tmp+1;
1637  case ISD::AssertZext:
1638    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1639    return VTBits-Tmp;
1640
1641  case ISD::Constant: {
1642    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1643    // If negative, return # leading ones.
1644    if (Val.isNegative())
1645      return Val.countLeadingOnes();
1646
1647    // Return # leading zeros.
1648    return Val.countLeadingZeros();
1649  }
1650
1651  case ISD::SIGN_EXTEND:
1652    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1653    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1654
1655  case ISD::SIGN_EXTEND_INREG:
1656    // Max of the input and what this extends.
1657    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1658    Tmp = VTBits-Tmp+1;
1659
1660    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1661    return std::max(Tmp, Tmp2);
1662
1663  case ISD::SRA:
1664    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1665    // SRA X, C   -> adds C sign bits.
1666    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1667      Tmp += C->getValue();
1668      if (Tmp > VTBits) Tmp = VTBits;
1669    }
1670    return Tmp;
1671  case ISD::SHL:
1672    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1673      // shl destroys sign bits.
1674      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1675      if (C->getValue() >= VTBits ||      // Bad shift.
1676          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1677      return Tmp - C->getValue();
1678    }
1679    break;
1680  case ISD::AND:
1681  case ISD::OR:
1682  case ISD::XOR:    // NOT is handled here.
1683    // Logical binary ops preserve the number of sign bits.
1684    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1685    if (Tmp == 1) return 1;  // Early out.
1686    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1687    return std::min(Tmp, Tmp2);
1688
1689  case ISD::SELECT:
1690    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1691    if (Tmp == 1) return 1;  // Early out.
1692    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1693    return std::min(Tmp, Tmp2);
1694
1695  case ISD::SETCC:
1696    // If setcc returns 0/-1, all bits are sign bits.
1697    if (TLI.getSetCCResultContents() ==
1698        TargetLowering::ZeroOrNegativeOneSetCCResult)
1699      return VTBits;
1700    break;
1701  case ISD::ROTL:
1702  case ISD::ROTR:
1703    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1704      unsigned RotAmt = C->getValue() & (VTBits-1);
1705
1706      // Handle rotate right by N like a rotate left by 32-N.
1707      if (Op.getOpcode() == ISD::ROTR)
1708        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1709
1710      // If we aren't rotating out all of the known-in sign bits, return the
1711      // number that are left.  This handles rotl(sext(x), 1) for example.
1712      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1713      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1714    }
1715    break;
1716  case ISD::ADD:
1717    // Add can have at most one carry bit.  Thus we know that the output
1718    // is, at worst, one more bit than the inputs.
1719    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1720    if (Tmp == 1) return 1;  // Early out.
1721
1722    // Special case decrementing a value (ADD X, -1):
1723    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1724      if (CRHS->isAllOnesValue()) {
1725        APInt KnownZero, KnownOne;
1726        APInt Mask = APInt::getAllOnesValue(VTBits);
1727        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1728
1729        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1730        // sign bits set.
1731        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1732          return VTBits;
1733
1734        // If we are subtracting one from a positive number, there is no carry
1735        // out of the result.
1736        if (KnownZero.isNegative())
1737          return Tmp;
1738      }
1739
1740    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1741    if (Tmp2 == 1) return 1;
1742      return std::min(Tmp, Tmp2)-1;
1743    break;
1744
1745  case ISD::SUB:
1746    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1747    if (Tmp2 == 1) return 1;
1748
1749    // Handle NEG.
1750    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1751      if (CLHS->isNullValue()) {
1752        APInt KnownZero, KnownOne;
1753        APInt Mask = APInt::getAllOnesValue(VTBits);
1754        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1755        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1756        // sign bits set.
1757        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1758          return VTBits;
1759
1760        // If the input is known to be positive (the sign bit is known clear),
1761        // the output of the NEG has the same number of sign bits as the input.
1762        if (KnownZero.isNegative())
1763          return Tmp2;
1764
1765        // Otherwise, we treat this like a SUB.
1766      }
1767
1768    // Sub can have at most one carry bit.  Thus we know that the output
1769    // is, at worst, one more bit than the inputs.
1770    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1771    if (Tmp == 1) return 1;  // Early out.
1772      return std::min(Tmp, Tmp2)-1;
1773    break;
1774  case ISD::TRUNCATE:
1775    // FIXME: it's tricky to do anything useful for this, but it is an important
1776    // case for targets like X86.
1777    break;
1778  }
1779
1780  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1781  if (Op.getOpcode() == ISD::LOAD) {
1782    LoadSDNode *LD = cast<LoadSDNode>(Op);
1783    unsigned ExtType = LD->getExtensionType();
1784    switch (ExtType) {
1785    default: break;
1786    case ISD::SEXTLOAD:    // '17' bits known
1787      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1788      return VTBits-Tmp+1;
1789    case ISD::ZEXTLOAD:    // '16' bits known
1790      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1791      return VTBits-Tmp;
1792    }
1793  }
1794
1795  // Allow the target to implement this method for its nodes.
1796  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1797      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1798      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1799      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1800    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1801    if (NumBits > 1) return NumBits;
1802  }
1803
1804  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1805  // use this information.
1806  APInt KnownZero, KnownOne;
1807  APInt Mask = APInt::getAllOnesValue(VTBits);
1808  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1809
1810  if (KnownZero.isNegative()) {        // sign bit is 0
1811    Mask = KnownZero;
1812  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1813    Mask = KnownOne;
1814  } else {
1815    // Nothing known.
1816    return 1;
1817  }
1818
1819  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1820  // the number of identical bits in the top of the input value.
1821  Mask = ~Mask;
1822  Mask <<= Mask.getBitWidth()-VTBits;
1823  // Return # leading zeros.  We use 'min' here in case Val was zero before
1824  // shifting.  We don't want to return '64' as for an i32 "0".
1825  return std::min(VTBits, Mask.countLeadingZeros());
1826}
1827
1828
1829bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1830  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1831  if (!GA) return false;
1832  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1833  if (!GV) return false;
1834  MachineModuleInfo *MMI = getMachineModuleInfo();
1835  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1836}
1837
1838
1839/// getNode - Gets or creates the specified node.
1840///
1841SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1842  FoldingSetNodeID ID;
1843  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1844  void *IP = 0;
1845  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1846    return SDOperand(E, 0);
1847  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1848  CSEMap.InsertNode(N, IP);
1849
1850  AllNodes.push_back(N);
1851  return SDOperand(N, 0);
1852}
1853
1854SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1855                                SDOperand Operand) {
1856  // Constant fold unary operations with an integer constant operand.
1857  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1858    const APInt &Val = C->getAPIntValue();
1859    unsigned BitWidth = MVT::getSizeInBits(VT);
1860    switch (Opcode) {
1861    default: break;
1862    case ISD::SIGN_EXTEND:
1863      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1864    case ISD::ANY_EXTEND:
1865    case ISD::ZERO_EXTEND:
1866    case ISD::TRUNCATE:
1867      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1868    case ISD::UINT_TO_FP:
1869    case ISD::SINT_TO_FP: {
1870      const uint64_t zero[] = {0, 0};
1871      // No compile time operations on this type.
1872      if (VT==MVT::ppcf128)
1873        break;
1874      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1875      (void)apf.convertFromAPInt(Val,
1876                                 Opcode==ISD::SINT_TO_FP,
1877                                 APFloat::rmNearestTiesToEven);
1878      return getConstantFP(apf, VT);
1879    }
1880    case ISD::BIT_CONVERT:
1881      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1882        return getConstantFP(Val.bitsToFloat(), VT);
1883      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1884        return getConstantFP(Val.bitsToDouble(), VT);
1885      break;
1886    case ISD::BSWAP:
1887      return getConstant(Val.byteSwap(), VT);
1888    case ISD::CTPOP:
1889      return getConstant(Val.countPopulation(), VT);
1890    case ISD::CTLZ:
1891      return getConstant(Val.countLeadingZeros(), VT);
1892    case ISD::CTTZ:
1893      return getConstant(Val.countTrailingZeros(), VT);
1894    }
1895  }
1896
1897  // Constant fold unary operations with a floating point constant operand.
1898  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1899    APFloat V = C->getValueAPF();    // make copy
1900    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1901      switch (Opcode) {
1902      case ISD::FNEG:
1903        V.changeSign();
1904        return getConstantFP(V, VT);
1905      case ISD::FABS:
1906        V.clearSign();
1907        return getConstantFP(V, VT);
1908      case ISD::FP_ROUND:
1909      case ISD::FP_EXTEND:
1910        // This can return overflow, underflow, or inexact; we don't care.
1911        // FIXME need to be more flexible about rounding mode.
1912        (void)V.convert(*MVTToAPFloatSemantics(VT),
1913                        APFloat::rmNearestTiesToEven);
1914        return getConstantFP(V, VT);
1915      case ISD::FP_TO_SINT:
1916      case ISD::FP_TO_UINT: {
1917        integerPart x;
1918        assert(integerPartWidth >= 64);
1919        // FIXME need to be more flexible about rounding mode.
1920        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1921                              Opcode==ISD::FP_TO_SINT,
1922                              APFloat::rmTowardZero);
1923        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1924          break;
1925        return getConstant(x, VT);
1926      }
1927      case ISD::BIT_CONVERT:
1928        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1929          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1930        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1931          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1932        break;
1933      }
1934    }
1935  }
1936
1937  unsigned OpOpcode = Operand.Val->getOpcode();
1938  switch (Opcode) {
1939  case ISD::TokenFactor:
1940  case ISD::MERGE_VALUES:
1941    return Operand;         // Factor or merge of one node?  No need.
1942  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1943  case ISD::FP_EXTEND:
1944    assert(MVT::isFloatingPoint(VT) &&
1945           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1946    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1947    if (Operand.getOpcode() == ISD::UNDEF)
1948      return getNode(ISD::UNDEF, VT);
1949    break;
1950  case ISD::SIGN_EXTEND:
1951    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1952           "Invalid SIGN_EXTEND!");
1953    if (Operand.getValueType() == VT) return Operand;   // noop extension
1954    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1955           && "Invalid sext node, dst < src!");
1956    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1957      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1958    break;
1959  case ISD::ZERO_EXTEND:
1960    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1961           "Invalid ZERO_EXTEND!");
1962    if (Operand.getValueType() == VT) return Operand;   // noop extension
1963    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1964           && "Invalid zext node, dst < src!");
1965    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1966      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1967    break;
1968  case ISD::ANY_EXTEND:
1969    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1970           "Invalid ANY_EXTEND!");
1971    if (Operand.getValueType() == VT) return Operand;   // noop extension
1972    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1973           && "Invalid anyext node, dst < src!");
1974    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1975      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1976      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1977    break;
1978  case ISD::TRUNCATE:
1979    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1980           "Invalid TRUNCATE!");
1981    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1982    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1983           && "Invalid truncate node, src < dst!");
1984    if (OpOpcode == ISD::TRUNCATE)
1985      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1986    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1987             OpOpcode == ISD::ANY_EXTEND) {
1988      // If the source is smaller than the dest, we still need an extend.
1989      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1990          < MVT::getSizeInBits(VT))
1991        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1992      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1993               > MVT::getSizeInBits(VT))
1994        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1995      else
1996        return Operand.Val->getOperand(0);
1997    }
1998    break;
1999  case ISD::BIT_CONVERT:
2000    // Basic sanity checking.
2001    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
2002           && "Cannot BIT_CONVERT between types of different sizes!");
2003    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2004    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2005      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2006    if (OpOpcode == ISD::UNDEF)
2007      return getNode(ISD::UNDEF, VT);
2008    break;
2009  case ISD::SCALAR_TO_VECTOR:
2010    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
2011           MVT::getVectorElementType(VT) == Operand.getValueType() &&
2012           "Illegal SCALAR_TO_VECTOR node!");
2013    if (OpOpcode == ISD::UNDEF)
2014      return getNode(ISD::UNDEF, VT);
2015    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2016    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2017        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2018        Operand.getConstantOperandVal(1) == 0 &&
2019        Operand.getOperand(0).getValueType() == VT)
2020      return Operand.getOperand(0);
2021    break;
2022  case ISD::FNEG:
2023    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2024      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2025                     Operand.Val->getOperand(0));
2026    if (OpOpcode == ISD::FNEG)  // --X -> X
2027      return Operand.Val->getOperand(0);
2028    break;
2029  case ISD::FABS:
2030    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2031      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2032    break;
2033  }
2034
2035  SDNode *N;
2036  SDVTList VTs = getVTList(VT);
2037  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2038    FoldingSetNodeID ID;
2039    SDOperand Ops[1] = { Operand };
2040    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2041    void *IP = 0;
2042    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2043      return SDOperand(E, 0);
2044    N = new UnarySDNode(Opcode, VTs, Operand);
2045    CSEMap.InsertNode(N, IP);
2046  } else {
2047    N = new UnarySDNode(Opcode, VTs, Operand);
2048  }
2049  AllNodes.push_back(N);
2050  return SDOperand(N, 0);
2051}
2052
2053
2054
2055SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2056                                SDOperand N1, SDOperand N2) {
2057  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2058  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2059  switch (Opcode) {
2060  default: break;
2061  case ISD::TokenFactor:
2062    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2063           N2.getValueType() == MVT::Other && "Invalid token factor!");
2064    // Fold trivial token factors.
2065    if (N1.getOpcode() == ISD::EntryToken) return N2;
2066    if (N2.getOpcode() == ISD::EntryToken) return N1;
2067    break;
2068  case ISD::AND:
2069    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2070           N1.getValueType() == VT && "Binary operator types must match!");
2071    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2072    // worth handling here.
2073    if (N2C && N2C->isNullValue())
2074      return N2;
2075    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2076      return N1;
2077    break;
2078  case ISD::OR:
2079  case ISD::XOR:
2080    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2081           N1.getValueType() == VT && "Binary operator types must match!");
2082    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2083    // worth handling here.
2084    if (N2C && N2C->isNullValue())
2085      return N1;
2086    break;
2087  case ISD::UDIV:
2088  case ISD::UREM:
2089  case ISD::MULHU:
2090  case ISD::MULHS:
2091    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2092    // fall through
2093  case ISD::ADD:
2094  case ISD::SUB:
2095  case ISD::MUL:
2096  case ISD::SDIV:
2097  case ISD::SREM:
2098  case ISD::FADD:
2099  case ISD::FSUB:
2100  case ISD::FMUL:
2101  case ISD::FDIV:
2102  case ISD::FREM:
2103    assert(N1.getValueType() == N2.getValueType() &&
2104           N1.getValueType() == VT && "Binary operator types must match!");
2105    break;
2106  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2107    assert(N1.getValueType() == VT &&
2108           MVT::isFloatingPoint(N1.getValueType()) &&
2109           MVT::isFloatingPoint(N2.getValueType()) &&
2110           "Invalid FCOPYSIGN!");
2111    break;
2112  case ISD::SHL:
2113  case ISD::SRA:
2114  case ISD::SRL:
2115  case ISD::ROTL:
2116  case ISD::ROTR:
2117    assert(VT == N1.getValueType() &&
2118           "Shift operators return type must be the same as their first arg");
2119    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2120           VT != MVT::i1 && "Shifts only work on integers");
2121    break;
2122  case ISD::FP_ROUND_INREG: {
2123    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2124    assert(VT == N1.getValueType() && "Not an inreg round!");
2125    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2126           "Cannot FP_ROUND_INREG integer types");
2127    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2128           "Not rounding down!");
2129    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2130    break;
2131  }
2132  case ISD::FP_ROUND:
2133    assert(MVT::isFloatingPoint(VT) &&
2134           MVT::isFloatingPoint(N1.getValueType()) &&
2135           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2136           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2137    if (N1.getValueType() == VT) return N1;  // noop conversion.
2138    break;
2139  case ISD::AssertSext:
2140  case ISD::AssertZext: {
2141    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2142    assert(VT == N1.getValueType() && "Not an inreg extend!");
2143    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2144           "Cannot *_EXTEND_INREG FP types");
2145    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2146           "Not extending!");
2147    if (VT == EVT) return N1; // noop assertion.
2148    break;
2149  }
2150  case ISD::SIGN_EXTEND_INREG: {
2151    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2152    assert(VT == N1.getValueType() && "Not an inreg extend!");
2153    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2154           "Cannot *_EXTEND_INREG FP types");
2155    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2156           "Not extending!");
2157    if (EVT == VT) return N1;  // Not actually extending
2158
2159    if (N1C) {
2160      APInt Val = N1C->getAPIntValue();
2161      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2162      Val <<= Val.getBitWidth()-FromBits;
2163      Val = Val.ashr(Val.getBitWidth()-FromBits);
2164      return getConstant(Val, VT);
2165    }
2166    break;
2167  }
2168  case ISD::EXTRACT_VECTOR_ELT:
2169    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2170
2171    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2172    if (N1.getOpcode() == ISD::UNDEF)
2173      return getNode(ISD::UNDEF, VT);
2174
2175    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2176    // expanding copies of large vectors from registers.
2177    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2178        N1.getNumOperands() > 0) {
2179      unsigned Factor =
2180        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2181      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2182                     N1.getOperand(N2C->getValue() / Factor),
2183                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2184    }
2185
2186    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2187    // expanding large vector constants.
2188    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2189      return N1.getOperand(N2C->getValue());
2190
2191    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2192    // operations are lowered to scalars.
2193    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2194      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2195        if (IEC == N2C)
2196          return N1.getOperand(1);
2197        else
2198          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2199      }
2200    break;
2201  case ISD::EXTRACT_ELEMENT:
2202    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2203    assert(!MVT::isVector(N1.getValueType()) &&
2204           MVT::isInteger(N1.getValueType()) &&
2205           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2206           "EXTRACT_ELEMENT only applies to integers!");
2207
2208    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2209    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2210    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2211    if (N1.getOpcode() == ISD::BUILD_PAIR)
2212      return N1.getOperand(N2C->getValue());
2213
2214    // EXTRACT_ELEMENT of a constant int is also very common.
2215    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2216      unsigned ElementSize = MVT::getSizeInBits(VT);
2217      unsigned Shift = ElementSize * N2C->getValue();
2218      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2219      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2220    }
2221    break;
2222  case ISD::EXTRACT_SUBVECTOR:
2223    if (N1.getValueType() == VT) // Trivial extraction.
2224      return N1;
2225    break;
2226  }
2227
2228  if (N1C) {
2229    if (N2C) {
2230      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2231      switch (Opcode) {
2232      case ISD::ADD: return getConstant(C1 + C2, VT);
2233      case ISD::SUB: return getConstant(C1 - C2, VT);
2234      case ISD::MUL: return getConstant(C1 * C2, VT);
2235      case ISD::UDIV:
2236        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2237        break;
2238      case ISD::UREM :
2239        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2240        break;
2241      case ISD::SDIV :
2242        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2243        break;
2244      case ISD::SREM :
2245        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2246        break;
2247      case ISD::AND  : return getConstant(C1 & C2, VT);
2248      case ISD::OR   : return getConstant(C1 | C2, VT);
2249      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2250      case ISD::SHL  : return getConstant(C1 << C2, VT);
2251      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2252      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2253      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2254      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2255      default: break;
2256      }
2257    } else {      // Cannonicalize constant to RHS if commutative
2258      if (isCommutativeBinOp(Opcode)) {
2259        std::swap(N1C, N2C);
2260        std::swap(N1, N2);
2261      }
2262    }
2263  }
2264
2265  // Constant fold FP operations.
2266  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2267  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2268  if (N1CFP) {
2269    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2270      // Cannonicalize constant to RHS if commutative
2271      std::swap(N1CFP, N2CFP);
2272      std::swap(N1, N2);
2273    } else if (N2CFP && VT != MVT::ppcf128) {
2274      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2275      APFloat::opStatus s;
2276      switch (Opcode) {
2277      case ISD::FADD:
2278        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2279        if (s != APFloat::opInvalidOp)
2280          return getConstantFP(V1, VT);
2281        break;
2282      case ISD::FSUB:
2283        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2284        if (s!=APFloat::opInvalidOp)
2285          return getConstantFP(V1, VT);
2286        break;
2287      case ISD::FMUL:
2288        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2289        if (s!=APFloat::opInvalidOp)
2290          return getConstantFP(V1, VT);
2291        break;
2292      case ISD::FDIV:
2293        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2294        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2295          return getConstantFP(V1, VT);
2296        break;
2297      case ISD::FREM :
2298        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2299        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2300          return getConstantFP(V1, VT);
2301        break;
2302      case ISD::FCOPYSIGN:
2303        V1.copySign(V2);
2304        return getConstantFP(V1, VT);
2305      default: break;
2306      }
2307    }
2308  }
2309
2310  // Canonicalize an UNDEF to the RHS, even over a constant.
2311  if (N1.getOpcode() == ISD::UNDEF) {
2312    if (isCommutativeBinOp(Opcode)) {
2313      std::swap(N1, N2);
2314    } else {
2315      switch (Opcode) {
2316      case ISD::FP_ROUND_INREG:
2317      case ISD::SIGN_EXTEND_INREG:
2318      case ISD::SUB:
2319      case ISD::FSUB:
2320      case ISD::FDIV:
2321      case ISD::FREM:
2322      case ISD::SRA:
2323        return N1;     // fold op(undef, arg2) -> undef
2324      case ISD::UDIV:
2325      case ISD::SDIV:
2326      case ISD::UREM:
2327      case ISD::SREM:
2328      case ISD::SRL:
2329      case ISD::SHL:
2330        if (!MVT::isVector(VT))
2331          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2332        // For vectors, we can't easily build an all zero vector, just return
2333        // the LHS.
2334        return N2;
2335      }
2336    }
2337  }
2338
2339  // Fold a bunch of operators when the RHS is undef.
2340  if (N2.getOpcode() == ISD::UNDEF) {
2341    switch (Opcode) {
2342    case ISD::XOR:
2343      if (N1.getOpcode() == ISD::UNDEF)
2344        // Handle undef ^ undef -> 0 special case. This is a common
2345        // idiom (misuse).
2346        return getConstant(0, VT);
2347      // fallthrough
2348    case ISD::ADD:
2349    case ISD::ADDC:
2350    case ISD::ADDE:
2351    case ISD::SUB:
2352    case ISD::FADD:
2353    case ISD::FSUB:
2354    case ISD::FMUL:
2355    case ISD::FDIV:
2356    case ISD::FREM:
2357    case ISD::UDIV:
2358    case ISD::SDIV:
2359    case ISD::UREM:
2360    case ISD::SREM:
2361      return N2;       // fold op(arg1, undef) -> undef
2362    case ISD::MUL:
2363    case ISD::AND:
2364    case ISD::SRL:
2365    case ISD::SHL:
2366      if (!MVT::isVector(VT))
2367        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2368      // For vectors, we can't easily build an all zero vector, just return
2369      // the LHS.
2370      return N1;
2371    case ISD::OR:
2372      if (!MVT::isVector(VT))
2373        return getConstant(MVT::getIntVTBitMask(VT), VT);
2374      // For vectors, we can't easily build an all one vector, just return
2375      // the LHS.
2376      return N1;
2377    case ISD::SRA:
2378      return N1;
2379    }
2380  }
2381
2382  // Memoize this node if possible.
2383  SDNode *N;
2384  SDVTList VTs = getVTList(VT);
2385  if (VT != MVT::Flag) {
2386    SDOperand Ops[] = { N1, N2 };
2387    FoldingSetNodeID ID;
2388    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2389    void *IP = 0;
2390    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2391      return SDOperand(E, 0);
2392    N = new BinarySDNode(Opcode, VTs, N1, N2);
2393    CSEMap.InsertNode(N, IP);
2394  } else {
2395    N = new BinarySDNode(Opcode, VTs, N1, N2);
2396  }
2397
2398  AllNodes.push_back(N);
2399  return SDOperand(N, 0);
2400}
2401
2402SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2403                                SDOperand N1, SDOperand N2, SDOperand N3) {
2404  // Perform various simplifications.
2405  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2406  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2407  switch (Opcode) {
2408  case ISD::SETCC: {
2409    // Use FoldSetCC to simplify SETCC's.
2410    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2411    if (Simp.Val) return Simp;
2412    break;
2413  }
2414  case ISD::SELECT:
2415    if (N1C) {
2416     if (N1C->getValue())
2417        return N2;             // select true, X, Y -> X
2418      else
2419        return N3;             // select false, X, Y -> Y
2420    }
2421
2422    if (N2 == N3) return N2;   // select C, X, X -> X
2423    break;
2424  case ISD::BRCOND:
2425    if (N2C) {
2426      if (N2C->getValue()) // Unconditional branch
2427        return getNode(ISD::BR, MVT::Other, N1, N3);
2428      else
2429        return N1;         // Never-taken branch
2430    }
2431    break;
2432  case ISD::VECTOR_SHUFFLE:
2433    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2434           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2435           N3.getOpcode() == ISD::BUILD_VECTOR &&
2436           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2437           "Illegal VECTOR_SHUFFLE node!");
2438    break;
2439  case ISD::BIT_CONVERT:
2440    // Fold bit_convert nodes from a type to themselves.
2441    if (N1.getValueType() == VT)
2442      return N1;
2443    break;
2444  }
2445
2446  // Memoize node if it doesn't produce a flag.
2447  SDNode *N;
2448  SDVTList VTs = getVTList(VT);
2449  if (VT != MVT::Flag) {
2450    SDOperand Ops[] = { N1, N2, N3 };
2451    FoldingSetNodeID ID;
2452    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2453    void *IP = 0;
2454    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2455      return SDOperand(E, 0);
2456    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2457    CSEMap.InsertNode(N, IP);
2458  } else {
2459    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2460  }
2461  AllNodes.push_back(N);
2462  return SDOperand(N, 0);
2463}
2464
2465SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2466                                SDOperand N1, SDOperand N2, SDOperand N3,
2467                                SDOperand N4) {
2468  SDOperand Ops[] = { N1, N2, N3, N4 };
2469  return getNode(Opcode, VT, Ops, 4);
2470}
2471
2472SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2473                                SDOperand N1, SDOperand N2, SDOperand N3,
2474                                SDOperand N4, SDOperand N5) {
2475  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2476  return getNode(Opcode, VT, Ops, 5);
2477}
2478
2479/// getMemsetValue - Vectorized representation of the memset value
2480/// operand.
2481static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2482                                SelectionDAG &DAG) {
2483  MVT::ValueType CurVT = VT;
2484  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2485    uint64_t Val   = C->getValue() & 255;
2486    unsigned Shift = 8;
2487    while (CurVT != MVT::i8) {
2488      Val = (Val << Shift) | Val;
2489      Shift <<= 1;
2490      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2491    }
2492    return DAG.getConstant(Val, VT);
2493  } else {
2494    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2495    unsigned Shift = 8;
2496    while (CurVT != MVT::i8) {
2497      Value =
2498        DAG.getNode(ISD::OR, VT,
2499                    DAG.getNode(ISD::SHL, VT, Value,
2500                                DAG.getConstant(Shift, MVT::i8)), Value);
2501      Shift <<= 1;
2502      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2503    }
2504
2505    return Value;
2506  }
2507}
2508
2509/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2510/// used when a memcpy is turned into a memset when the source is a constant
2511/// string ptr.
2512static SDOperand getMemsetStringVal(MVT::ValueType VT,
2513                                    SelectionDAG &DAG,
2514                                    const TargetLowering &TLI,
2515                                    std::string &Str, unsigned Offset) {
2516  uint64_t Val = 0;
2517  unsigned MSB = MVT::getSizeInBits(VT) / 8;
2518  if (TLI.isLittleEndian())
2519    Offset = Offset + MSB - 1;
2520  for (unsigned i = 0; i != MSB; ++i) {
2521    Val = (Val << 8) | (unsigned char)Str[Offset];
2522    Offset += TLI.isLittleEndian() ? -1 : 1;
2523  }
2524  return DAG.getConstant(Val, VT);
2525}
2526
2527/// getMemBasePlusOffset - Returns base and offset node for the
2528static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2529                                      SelectionDAG &DAG) {
2530  MVT::ValueType VT = Base.getValueType();
2531  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2532}
2533
2534/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2535/// to replace the memset / memcpy is below the threshold. It also returns the
2536/// types of the sequence of memory ops to perform memset / memcpy.
2537static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2538                                     unsigned Limit, uint64_t Size,
2539                                     unsigned Align,
2540                                     const TargetLowering &TLI) {
2541  MVT::ValueType VT;
2542
2543  if (TLI.allowsUnalignedMemoryAccesses()) {
2544    VT = MVT::i64;
2545  } else {
2546    switch (Align & 7) {
2547    case 0:
2548      VT = MVT::i64;
2549      break;
2550    case 4:
2551      VT = MVT::i32;
2552      break;
2553    case 2:
2554      VT = MVT::i16;
2555      break;
2556    default:
2557      VT = MVT::i8;
2558      break;
2559    }
2560  }
2561
2562  MVT::ValueType LVT = MVT::i64;
2563  while (!TLI.isTypeLegal(LVT))
2564    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2565  assert(MVT::isInteger(LVT));
2566
2567  if (VT > LVT)
2568    VT = LVT;
2569
2570  unsigned NumMemOps = 0;
2571  while (Size != 0) {
2572    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2573    while (VTSize > Size) {
2574      VT = (MVT::ValueType)((unsigned)VT - 1);
2575      VTSize >>= 1;
2576    }
2577    assert(MVT::isInteger(VT));
2578
2579    if (++NumMemOps > Limit)
2580      return false;
2581    MemOps.push_back(VT);
2582    Size -= VTSize;
2583  }
2584
2585  return true;
2586}
2587
2588static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2589                                         SDOperand Chain, SDOperand Dst,
2590                                         SDOperand Src, uint64_t Size,
2591                                         unsigned Align,
2592                                         bool AlwaysInline,
2593                                         const Value *DstSV, uint64_t DstSVOff,
2594                                         const Value *SrcSV, uint64_t SrcSVOff){
2595  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2596
2597  // Expand memcpy to a series of store ops if the size operand falls below
2598  // a certain threshold.
2599  std::vector<MVT::ValueType> MemOps;
2600  uint64_t Limit = -1;
2601  if (!AlwaysInline)
2602    Limit = TLI.getMaxStoresPerMemcpy();
2603  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
2604    return SDOperand();
2605
2606  SmallVector<SDOperand, 8> OutChains;
2607
2608  unsigned NumMemOps = MemOps.size();
2609  unsigned SrcDelta = 0;
2610  GlobalAddressSDNode *G = NULL;
2611  std::string Str;
2612  bool CopyFromStr = false;
2613  uint64_t SrcOff = 0, DstOff = 0;
2614
2615  if (Src.getOpcode() == ISD::GlobalAddress)
2616    G = cast<GlobalAddressSDNode>(Src);
2617  else if (Src.getOpcode() == ISD::ADD &&
2618           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2619           Src.getOperand(1).getOpcode() == ISD::Constant) {
2620    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2621    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2622  }
2623  if (G) {
2624    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2625    if (GV && GV->isConstant()) {
2626      Str = GV->getStringValue(false);
2627      if (!Str.empty()) {
2628        CopyFromStr = true;
2629        SrcOff += SrcDelta;
2630      }
2631    }
2632  }
2633
2634  for (unsigned i = 0; i < NumMemOps; i++) {
2635    MVT::ValueType VT = MemOps[i];
2636    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2637    SDOperand Value, Store;
2638
2639    if (CopyFromStr) {
2640      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2641      Store =
2642        DAG.getStore(Chain, Value,
2643                     getMemBasePlusOffset(Dst, DstOff, DAG),
2644                     DstSV, DstSVOff + DstOff);
2645    } else {
2646      Value = DAG.getLoad(VT, Chain,
2647                          getMemBasePlusOffset(Src, SrcOff, DAG),
2648                          SrcSV, SrcSVOff + SrcOff, false, Align);
2649      Store =
2650        DAG.getStore(Chain, Value,
2651                     getMemBasePlusOffset(Dst, DstOff, DAG),
2652                     DstSV, DstSVOff + DstOff, false, Align);
2653    }
2654    OutChains.push_back(Store);
2655    SrcOff += VTSize;
2656    DstOff += VTSize;
2657  }
2658
2659  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2660                     &OutChains[0], OutChains.size());
2661}
2662
2663static SDOperand getMemsetStores(SelectionDAG &DAG,
2664                                 SDOperand Chain, SDOperand Dst,
2665                                 SDOperand Src, uint64_t Size,
2666                                 unsigned Align,
2667                                 const Value *DstSV, uint64_t DstSVOff) {
2668  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2669
2670  // Expand memset to a series of load/store ops if the size operand
2671  // falls below a certain threshold.
2672  std::vector<MVT::ValueType> MemOps;
2673  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2674                                Size, Align, TLI))
2675    return SDOperand();
2676
2677  SmallVector<SDOperand, 8> OutChains;
2678  uint64_t DstOff = 0;
2679
2680  unsigned NumMemOps = MemOps.size();
2681  for (unsigned i = 0; i < NumMemOps; i++) {
2682    MVT::ValueType VT = MemOps[i];
2683    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2684    SDOperand Value = getMemsetValue(Src, VT, DAG);
2685    SDOperand Store = DAG.getStore(Chain, Value,
2686                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2687                                   DstSV, DstSVOff + DstOff);
2688    OutChains.push_back(Store);
2689    DstOff += VTSize;
2690  }
2691
2692  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2693                     &OutChains[0], OutChains.size());
2694}
2695
2696SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2697                                  SDOperand Src, SDOperand Size,
2698                                  unsigned Align, bool AlwaysInline,
2699                                  const Value *DstSV, uint64_t DstSVOff,
2700                                  const Value *SrcSV, uint64_t SrcSVOff) {
2701
2702  // Check to see if we should lower the memcpy to loads and stores first.
2703  // For cases within the target-specified limits, this is the best choice.
2704  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2705  if (ConstantSize) {
2706    // Memcpy with size zero? Just return the original chain.
2707    if (ConstantSize->isNullValue())
2708      return Chain;
2709
2710    SDOperand Result =
2711      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2712                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2713    if (Result.Val)
2714      return Result;
2715  }
2716
2717  // Then check to see if we should lower the memcpy with target-specific
2718  // code. If the target chooses to do this, this is the next best.
2719  SDOperand Result =
2720    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2721                                AlwaysInline,
2722                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2723  if (Result.Val)
2724    return Result;
2725
2726  // If we really need inline code and the target declined to provide it,
2727  // use a (potentially long) sequence of loads and stores.
2728  if (AlwaysInline) {
2729    assert(ConstantSize && "AlwaysInline requires a constant size!");
2730    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2731                                   ConstantSize->getValue(), Align, true,
2732                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2733  }
2734
2735  // Emit a library call.
2736  TargetLowering::ArgListTy Args;
2737  TargetLowering::ArgListEntry Entry;
2738  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2739  Entry.Node = Dst; Args.push_back(Entry);
2740  Entry.Node = Src; Args.push_back(Entry);
2741  Entry.Node = Size; Args.push_back(Entry);
2742  std::pair<SDOperand,SDOperand> CallResult =
2743    TLI.LowerCallTo(Chain, Type::VoidTy,
2744                    false, false, false, CallingConv::C, false,
2745                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2746                    Args, *this);
2747  return CallResult.second;
2748}
2749
2750SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2751                                   SDOperand Src, SDOperand Size,
2752                                   unsigned Align,
2753                                   const Value *DstSV, uint64_t DstSVOff,
2754                                   const Value *SrcSV, uint64_t SrcSVOff) {
2755
2756  // TODO: Optimize small memmove cases with simple loads and stores,
2757  // ensuring that all loads precede all stores. This can cause severe
2758  // register pressure, so targets should be careful with the size limit.
2759
2760  // Then check to see if we should lower the memmove with target-specific
2761  // code. If the target chooses to do this, this is the next best.
2762  SDOperand Result =
2763    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2764                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2765  if (Result.Val)
2766    return Result;
2767
2768  // Emit a library call.
2769  TargetLowering::ArgListTy Args;
2770  TargetLowering::ArgListEntry Entry;
2771  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2772  Entry.Node = Dst; Args.push_back(Entry);
2773  Entry.Node = Src; Args.push_back(Entry);
2774  Entry.Node = Size; Args.push_back(Entry);
2775  std::pair<SDOperand,SDOperand> CallResult =
2776    TLI.LowerCallTo(Chain, Type::VoidTy,
2777                    false, false, false, CallingConv::C, false,
2778                    getExternalSymbol("memmove", TLI.getPointerTy()),
2779                    Args, *this);
2780  return CallResult.second;
2781}
2782
2783SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2784                                  SDOperand Src, SDOperand Size,
2785                                  unsigned Align,
2786                                  const Value *DstSV, uint64_t DstSVOff) {
2787
2788  // Check to see if we should lower the memset to stores first.
2789  // For cases within the target-specified limits, this is the best choice.
2790  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2791  if (ConstantSize) {
2792    // Memset with size zero? Just return the original chain.
2793    if (ConstantSize->isNullValue())
2794      return Chain;
2795
2796    SDOperand Result =
2797      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2798                      DstSV, DstSVOff);
2799    if (Result.Val)
2800      return Result;
2801  }
2802
2803  // Then check to see if we should lower the memset with target-specific
2804  // code. If the target chooses to do this, this is the next best.
2805  SDOperand Result =
2806    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2807                                DstSV, DstSVOff);
2808  if (Result.Val)
2809    return Result;
2810
2811  // Emit a library call.
2812  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2813  TargetLowering::ArgListTy Args;
2814  TargetLowering::ArgListEntry Entry;
2815  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2816  Args.push_back(Entry);
2817  // Extend or truncate the argument to be an i32 value for the call.
2818  if (Src.getValueType() > MVT::i32)
2819    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2820  else
2821    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2822  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2823  Args.push_back(Entry);
2824  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2825  Args.push_back(Entry);
2826  std::pair<SDOperand,SDOperand> CallResult =
2827    TLI.LowerCallTo(Chain, Type::VoidTy,
2828                    false, false, false, CallingConv::C, false,
2829                    getExternalSymbol("memset", TLI.getPointerTy()),
2830                    Args, *this);
2831  return CallResult.second;
2832}
2833
2834SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2835                                  SDOperand Ptr, SDOperand Cmp,
2836                                  SDOperand Swp, MVT::ValueType VT) {
2837  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2838  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2839  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2840  FoldingSetNodeID ID;
2841  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2842  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2843  ID.AddInteger((unsigned int)VT);
2844  void* IP = 0;
2845  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2846    return SDOperand(E, 0);
2847  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2848  CSEMap.InsertNode(N, IP);
2849  AllNodes.push_back(N);
2850  return SDOperand(N, 0);
2851}
2852
2853SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2854                                  SDOperand Ptr, SDOperand Val,
2855                                  MVT::ValueType VT) {
2856  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2857         && "Invalid Atomic Op");
2858  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2859  FoldingSetNodeID ID;
2860  SDOperand Ops[] = {Chain, Ptr, Val};
2861  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2862  ID.AddInteger((unsigned int)VT);
2863  void* IP = 0;
2864  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2865    return SDOperand(E, 0);
2866  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2867  CSEMap.InsertNode(N, IP);
2868  AllNodes.push_back(N);
2869  return SDOperand(N, 0);
2870}
2871
2872SDOperand
2873SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
2874                      MVT::ValueType VT, SDOperand Chain,
2875                      SDOperand Ptr, SDOperand Offset,
2876                      const Value *SV, int SVOffset, MVT::ValueType EVT,
2877                      bool isVolatile, unsigned Alignment) {
2878  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2879    const Type *Ty = 0;
2880    if (VT != MVT::iPTR) {
2881      Ty = MVT::getTypeForValueType(VT);
2882    } else if (SV) {
2883      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2884      assert(PT && "Value for load must be a pointer");
2885      Ty = PT->getElementType();
2886    }
2887    assert(Ty && "Could not get type information for load");
2888    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2889  }
2890
2891  if (VT == EVT) {
2892    ExtType = ISD::NON_EXTLOAD;
2893  } else if (ExtType == ISD::NON_EXTLOAD) {
2894    assert(VT == EVT && "Non-extending load from different memory type!");
2895  } else {
2896    // Extending load.
2897    if (MVT::isVector(VT))
2898      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2899    else
2900      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2901             "Should only be an extending load, not truncating!");
2902    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2903           "Cannot sign/zero extend a FP/Vector load!");
2904    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2905           "Cannot convert from FP to Int or Int -> FP!");
2906  }
2907
2908  bool Indexed = AM != ISD::UNINDEXED;
2909  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
2910         "Unindexed load with an offset!");
2911
2912  SDVTList VTs = Indexed ?
2913    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
2914  SDOperand Ops[] = { Chain, Ptr, Offset };
2915  FoldingSetNodeID ID;
2916  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2917  ID.AddInteger(AM);
2918  ID.AddInteger(ExtType);
2919  ID.AddInteger((unsigned int)EVT);
2920  ID.AddInteger(Alignment);
2921  ID.AddInteger(isVolatile);
2922  void *IP = 0;
2923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2924    return SDOperand(E, 0);
2925  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
2926                             Alignment, isVolatile);
2927  CSEMap.InsertNode(N, IP);
2928  AllNodes.push_back(N);
2929  return SDOperand(N, 0);
2930}
2931
2932SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2933                                SDOperand Chain, SDOperand Ptr,
2934                                const Value *SV, int SVOffset,
2935                                bool isVolatile, unsigned Alignment) {
2936  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2937  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
2938                 SV, SVOffset, VT, isVolatile, Alignment);
2939}
2940
2941SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2942                                   SDOperand Chain, SDOperand Ptr,
2943                                   const Value *SV,
2944                                   int SVOffset, MVT::ValueType EVT,
2945                                   bool isVolatile, unsigned Alignment) {
2946  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2947  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
2948                 SV, SVOffset, EVT, isVolatile, Alignment);
2949}
2950
2951SDOperand
2952SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2953                             SDOperand Offset, ISD::MemIndexedMode AM) {
2954  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2955  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2956         "Load is already a indexed load!");
2957  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
2958                 LD->getChain(), Base, Offset, LD->getSrcValue(),
2959                 LD->getSrcValueOffset(), LD->getMemoryVT(),
2960                 LD->isVolatile(), LD->getAlignment());
2961}
2962
2963SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2964                                 SDOperand Ptr, const Value *SV, int SVOffset,
2965                                 bool isVolatile, unsigned Alignment) {
2966  MVT::ValueType VT = Val.getValueType();
2967
2968  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2969    const Type *Ty = 0;
2970    if (VT != MVT::iPTR) {
2971      Ty = MVT::getTypeForValueType(VT);
2972    } else if (SV) {
2973      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2974      assert(PT && "Value for store must be a pointer");
2975      Ty = PT->getElementType();
2976    }
2977    assert(Ty && "Could not get type information for store");
2978    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2979  }
2980  SDVTList VTs = getVTList(MVT::Other);
2981  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2982  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2983  FoldingSetNodeID ID;
2984  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2985  ID.AddInteger(ISD::UNINDEXED);
2986  ID.AddInteger(false);
2987  ID.AddInteger((unsigned int)VT);
2988  ID.AddInteger(Alignment);
2989  ID.AddInteger(isVolatile);
2990  void *IP = 0;
2991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2992    return SDOperand(E, 0);
2993  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2994                              VT, SV, SVOffset, Alignment, isVolatile);
2995  CSEMap.InsertNode(N, IP);
2996  AllNodes.push_back(N);
2997  return SDOperand(N, 0);
2998}
2999
3000SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3001                                      SDOperand Ptr, const Value *SV,
3002                                      int SVOffset, MVT::ValueType SVT,
3003                                      bool isVolatile, unsigned Alignment) {
3004  MVT::ValueType VT = Val.getValueType();
3005
3006  if (VT == SVT)
3007    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3008
3009  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
3010         "Not a truncation?");
3011  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
3012         "Can't do FP-INT conversion!");
3013
3014  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3015    const Type *Ty = 0;
3016    if (VT != MVT::iPTR) {
3017      Ty = MVT::getTypeForValueType(VT);
3018    } else if (SV) {
3019      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3020      assert(PT && "Value for store must be a pointer");
3021      Ty = PT->getElementType();
3022    }
3023    assert(Ty && "Could not get type information for store");
3024    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3025  }
3026  SDVTList VTs = getVTList(MVT::Other);
3027  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3028  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3029  FoldingSetNodeID ID;
3030  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3031  ID.AddInteger(ISD::UNINDEXED);
3032  ID.AddInteger(1);
3033  ID.AddInteger((unsigned int)SVT);
3034  ID.AddInteger(Alignment);
3035  ID.AddInteger(isVolatile);
3036  void *IP = 0;
3037  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3038    return SDOperand(E, 0);
3039  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3040                              SVT, SV, SVOffset, Alignment, isVolatile);
3041  CSEMap.InsertNode(N, IP);
3042  AllNodes.push_back(N);
3043  return SDOperand(N, 0);
3044}
3045
3046SDOperand
3047SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3048                              SDOperand Offset, ISD::MemIndexedMode AM) {
3049  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3050  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3051         "Store is already a indexed store!");
3052  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3053  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3054  FoldingSetNodeID ID;
3055  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3056  ID.AddInteger(AM);
3057  ID.AddInteger(ST->isTruncatingStore());
3058  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
3059  ID.AddInteger(ST->getAlignment());
3060  ID.AddInteger(ST->isVolatile());
3061  void *IP = 0;
3062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3063    return SDOperand(E, 0);
3064  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3065                              ST->isTruncatingStore(), ST->getMemoryVT(),
3066                              ST->getSrcValue(), ST->getSrcValueOffset(),
3067                              ST->getAlignment(), ST->isVolatile());
3068  CSEMap.InsertNode(N, IP);
3069  AllNodes.push_back(N);
3070  return SDOperand(N, 0);
3071}
3072
3073SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
3074                                 SDOperand Chain, SDOperand Ptr,
3075                                 SDOperand SV) {
3076  SDOperand Ops[] = { Chain, Ptr, SV };
3077  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3078}
3079
3080SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
3081                                SDOperandPtr Ops, unsigned NumOps) {
3082  switch (NumOps) {
3083  case 0: return getNode(Opcode, VT);
3084  case 1: return getNode(Opcode, VT, Ops[0]);
3085  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3086  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3087  default: break;
3088  }
3089
3090  switch (Opcode) {
3091  default: break;
3092  case ISD::SELECT_CC: {
3093    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3094    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3095           "LHS and RHS of condition must have same type!");
3096    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3097           "True and False arms of SelectCC must have same type!");
3098    assert(Ops[2].getValueType() == VT &&
3099           "select_cc node must be of same type as true and false value!");
3100    break;
3101  }
3102  case ISD::BR_CC: {
3103    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3104    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3105           "LHS/RHS of comparison should match types!");
3106    break;
3107  }
3108  }
3109
3110  // Memoize nodes.
3111  SDNode *N;
3112  SDVTList VTs = getVTList(VT);
3113  if (VT != MVT::Flag) {
3114    FoldingSetNodeID ID;
3115    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3116    void *IP = 0;
3117    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3118      return SDOperand(E, 0);
3119    N = new SDNode(Opcode, VTs, Ops, NumOps);
3120    CSEMap.InsertNode(N, IP);
3121  } else {
3122    N = new SDNode(Opcode, VTs, Ops, NumOps);
3123  }
3124  AllNodes.push_back(N);
3125  return SDOperand(N, 0);
3126}
3127
3128SDOperand SelectionDAG::getNode(unsigned Opcode,
3129                                std::vector<MVT::ValueType> &ResultTys,
3130                                SDOperandPtr Ops, unsigned NumOps) {
3131  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3132                 Ops, NumOps);
3133}
3134
3135SDOperand SelectionDAG::getNode(unsigned Opcode,
3136                                const MVT::ValueType *VTs, unsigned NumVTs,
3137                                SDOperandPtr Ops, unsigned NumOps) {
3138  if (NumVTs == 1)
3139    return getNode(Opcode, VTs[0], Ops, NumOps);
3140  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3141}
3142
3143SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3144                                SDOperandPtr Ops, unsigned NumOps) {
3145  if (VTList.NumVTs == 1)
3146    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3147
3148  switch (Opcode) {
3149  // FIXME: figure out how to safely handle things like
3150  // int foo(int x) { return 1 << (x & 255); }
3151  // int bar() { return foo(256); }
3152#if 0
3153  case ISD::SRA_PARTS:
3154  case ISD::SRL_PARTS:
3155  case ISD::SHL_PARTS:
3156    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3157        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3158      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3159    else if (N3.getOpcode() == ISD::AND)
3160      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3161        // If the and is only masking out bits that cannot effect the shift,
3162        // eliminate the and.
3163        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3164        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3165          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3166      }
3167    break;
3168#endif
3169  }
3170
3171  // Memoize the node unless it returns a flag.
3172  SDNode *N;
3173  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3174    FoldingSetNodeID ID;
3175    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3176    void *IP = 0;
3177    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3178      return SDOperand(E, 0);
3179    if (NumOps == 1)
3180      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3181    else if (NumOps == 2)
3182      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3183    else if (NumOps == 3)
3184      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3185    else
3186      N = new SDNode(Opcode, VTList, Ops, NumOps);
3187    CSEMap.InsertNode(N, IP);
3188  } else {
3189    if (NumOps == 1)
3190      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3191    else if (NumOps == 2)
3192      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3193    else if (NumOps == 3)
3194      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3195    else
3196      N = new SDNode(Opcode, VTList, Ops, NumOps);
3197  }
3198  AllNodes.push_back(N);
3199  return SDOperand(N, 0);
3200}
3201
3202SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3203  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3204}
3205
3206SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3207                                SDOperand N1) {
3208  SDOperand Ops[] = { N1 };
3209  return getNode(Opcode, VTList, Ops, 1);
3210}
3211
3212SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3213                                SDOperand N1, SDOperand N2) {
3214  SDOperand Ops[] = { N1, N2 };
3215  return getNode(Opcode, VTList, Ops, 2);
3216}
3217
3218SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3219                                SDOperand N1, SDOperand N2, SDOperand N3) {
3220  SDOperand Ops[] = { N1, N2, N3 };
3221  return getNode(Opcode, VTList, Ops, 3);
3222}
3223
3224SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3225                                SDOperand N1, SDOperand N2, SDOperand N3,
3226                                SDOperand N4) {
3227  SDOperand Ops[] = { N1, N2, N3, N4 };
3228  return getNode(Opcode, VTList, Ops, 4);
3229}
3230
3231SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3232                                SDOperand N1, SDOperand N2, SDOperand N3,
3233                                SDOperand N4, SDOperand N5) {
3234  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3235  return getNode(Opcode, VTList, Ops, 5);
3236}
3237
3238SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3239  return makeVTList(SDNode::getValueTypeList(VT), 1);
3240}
3241
3242SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3243  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3244       E = VTList.end(); I != E; ++I) {
3245    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3246      return makeVTList(&(*I)[0], 2);
3247  }
3248  std::vector<MVT::ValueType> V;
3249  V.push_back(VT1);
3250  V.push_back(VT2);
3251  VTList.push_front(V);
3252  return makeVTList(&(*VTList.begin())[0], 2);
3253}
3254SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3255                                 MVT::ValueType VT3) {
3256  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3257       E = VTList.end(); I != E; ++I) {
3258    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3259        (*I)[2] == VT3)
3260      return makeVTList(&(*I)[0], 3);
3261  }
3262  std::vector<MVT::ValueType> V;
3263  V.push_back(VT1);
3264  V.push_back(VT2);
3265  V.push_back(VT3);
3266  VTList.push_front(V);
3267  return makeVTList(&(*VTList.begin())[0], 3);
3268}
3269
3270SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3271  switch (NumVTs) {
3272    case 0: assert(0 && "Cannot have nodes without results!");
3273    case 1: return getVTList(VTs[0]);
3274    case 2: return getVTList(VTs[0], VTs[1]);
3275    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3276    default: break;
3277  }
3278
3279  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3280       E = VTList.end(); I != E; ++I) {
3281    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3282
3283    bool NoMatch = false;
3284    for (unsigned i = 2; i != NumVTs; ++i)
3285      if (VTs[i] != (*I)[i]) {
3286        NoMatch = true;
3287        break;
3288      }
3289    if (!NoMatch)
3290      return makeVTList(&*I->begin(), NumVTs);
3291  }
3292
3293  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3294  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3295}
3296
3297
3298/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3299/// specified operands.  If the resultant node already exists in the DAG,
3300/// this does not modify the specified node, instead it returns the node that
3301/// already exists.  If the resultant node does not exist in the DAG, the
3302/// input node is returned.  As a degenerate case, if you specify the same
3303/// input operands as the node already has, the input node is returned.
3304SDOperand SelectionDAG::
3305UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3306  SDNode *N = InN.Val;
3307  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3308
3309  // Check to see if there is no change.
3310  if (Op == N->getOperand(0)) return InN;
3311
3312  // See if the modified node already exists.
3313  void *InsertPos = 0;
3314  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3315    return SDOperand(Existing, InN.ResNo);
3316
3317  // Nope it doesn't.  Remove the node from it's current place in the maps.
3318  if (InsertPos)
3319    RemoveNodeFromCSEMaps(N);
3320
3321  // Now we update the operands.
3322  N->OperandList[0].getVal()->removeUser(0, N);
3323  N->OperandList[0] = Op;
3324  N->OperandList[0].setUser(N);
3325  Op.Val->addUser(0, N);
3326
3327  // If this gets put into a CSE map, add it.
3328  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3329  return InN;
3330}
3331
3332SDOperand SelectionDAG::
3333UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3334  SDNode *N = InN.Val;
3335  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3336
3337  // Check to see if there is no change.
3338  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3339    return InN;   // No operands changed, just return the input node.
3340
3341  // See if the modified node already exists.
3342  void *InsertPos = 0;
3343  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3344    return SDOperand(Existing, InN.ResNo);
3345
3346  // Nope it doesn't.  Remove the node from it's current place in the maps.
3347  if (InsertPos)
3348    RemoveNodeFromCSEMaps(N);
3349
3350  // Now we update the operands.
3351  if (N->OperandList[0] != Op1) {
3352    N->OperandList[0].getVal()->removeUser(0, N);
3353    N->OperandList[0] = Op1;
3354    N->OperandList[0].setUser(N);
3355    Op1.Val->addUser(0, N);
3356  }
3357  if (N->OperandList[1] != Op2) {
3358    N->OperandList[1].getVal()->removeUser(1, N);
3359    N->OperandList[1] = Op2;
3360    N->OperandList[1].setUser(N);
3361    Op2.Val->addUser(1, N);
3362  }
3363
3364  // If this gets put into a CSE map, add it.
3365  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3366  return InN;
3367}
3368
3369SDOperand SelectionDAG::
3370UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3371  SDOperand Ops[] = { Op1, Op2, Op3 };
3372  return UpdateNodeOperands(N, Ops, 3);
3373}
3374
3375SDOperand SelectionDAG::
3376UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3377                   SDOperand Op3, SDOperand Op4) {
3378  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3379  return UpdateNodeOperands(N, Ops, 4);
3380}
3381
3382SDOperand SelectionDAG::
3383UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3384                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3385  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3386  return UpdateNodeOperands(N, Ops, 5);
3387}
3388
3389SDOperand SelectionDAG::
3390UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3391  SDNode *N = InN.Val;
3392  assert(N->getNumOperands() == NumOps &&
3393         "Update with wrong number of operands");
3394
3395  // Check to see if there is no change.
3396  bool AnyChange = false;
3397  for (unsigned i = 0; i != NumOps; ++i) {
3398    if (Ops[i] != N->getOperand(i)) {
3399      AnyChange = true;
3400      break;
3401    }
3402  }
3403
3404  // No operands changed, just return the input node.
3405  if (!AnyChange) return InN;
3406
3407  // See if the modified node already exists.
3408  void *InsertPos = 0;
3409  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3410    return SDOperand(Existing, InN.ResNo);
3411
3412  // Nope it doesn't.  Remove the node from it's current place in the maps.
3413  if (InsertPos)
3414    RemoveNodeFromCSEMaps(N);
3415
3416  // Now we update the operands.
3417  for (unsigned i = 0; i != NumOps; ++i) {
3418    if (N->OperandList[i] != Ops[i]) {
3419      N->OperandList[i].getVal()->removeUser(i, N);
3420      N->OperandList[i] = Ops[i];
3421      N->OperandList[i].setUser(N);
3422      Ops[i].Val->addUser(i, N);
3423    }
3424  }
3425
3426  // If this gets put into a CSE map, add it.
3427  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3428  return InN;
3429}
3430
3431/// MorphNodeTo - This frees the operands of the current node, resets the
3432/// opcode, types, and operands to the specified value.  This should only be
3433/// used by the SelectionDAG class.
3434void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3435                         SDOperandPtr Ops, unsigned NumOps) {
3436  NodeType = Opc;
3437  ValueList = L.VTs;
3438  NumValues = L.NumVTs;
3439
3440  // Clear the operands list, updating used nodes to remove this from their
3441  // use list.
3442  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3443    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3444
3445  // If NumOps is larger than the # of operands we currently have, reallocate
3446  // the operand list.
3447  if (NumOps > NumOperands) {
3448    if (OperandsNeedDelete) {
3449      delete [] OperandList;
3450    }
3451    OperandList = new SDUse[NumOps];
3452    OperandsNeedDelete = true;
3453  }
3454
3455  // Assign the new operands.
3456  NumOperands = NumOps;
3457
3458  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3459    OperandList[i] = Ops[i];
3460    OperandList[i].setUser(this);
3461    SDNode *N = OperandList[i].getVal();
3462    N->addUser(i, this);
3463    ++N->UsesSize;
3464  }
3465}
3466
3467/// SelectNodeTo - These are used for target selectors to *mutate* the
3468/// specified node to have the specified return type, Target opcode, and
3469/// operands.  Note that target opcodes are stored as
3470/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3471///
3472/// Note that SelectNodeTo returns the resultant node.  If there is already a
3473/// node of the specified opcode and operands, it returns that node instead of
3474/// the current one.
3475SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3476                                   MVT::ValueType VT) {
3477  SDVTList VTs = getVTList(VT);
3478  FoldingSetNodeID ID;
3479  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3480  void *IP = 0;
3481  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3482    return ON;
3483
3484  RemoveNodeFromCSEMaps(N);
3485
3486  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3487
3488  CSEMap.InsertNode(N, IP);
3489  return N;
3490}
3491
3492SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3493                                   MVT::ValueType VT, SDOperand Op1) {
3494  // If an identical node already exists, use it.
3495  SDVTList VTs = getVTList(VT);
3496  SDOperand Ops[] = { Op1 };
3497
3498  FoldingSetNodeID ID;
3499  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3500  void *IP = 0;
3501  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3502    return ON;
3503
3504  RemoveNodeFromCSEMaps(N);
3505  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3506  CSEMap.InsertNode(N, IP);
3507  return N;
3508}
3509
3510SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3511                                   MVT::ValueType VT, SDOperand Op1,
3512                                   SDOperand Op2) {
3513  // If an identical node already exists, use it.
3514  SDVTList VTs = getVTList(VT);
3515  SDOperand Ops[] = { Op1, Op2 };
3516
3517  FoldingSetNodeID ID;
3518  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3519  void *IP = 0;
3520  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3521    return ON;
3522
3523  RemoveNodeFromCSEMaps(N);
3524
3525  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3526
3527  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3528  return N;
3529}
3530
3531SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3532                                   MVT::ValueType VT, SDOperand Op1,
3533                                   SDOperand Op2, SDOperand Op3) {
3534  // If an identical node already exists, use it.
3535  SDVTList VTs = getVTList(VT);
3536  SDOperand Ops[] = { Op1, Op2, Op3 };
3537  FoldingSetNodeID ID;
3538  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3539  void *IP = 0;
3540  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3541    return ON;
3542
3543  RemoveNodeFromCSEMaps(N);
3544
3545  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3546
3547  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3548  return N;
3549}
3550
3551SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3552                                   MVT::ValueType VT, SDOperandPtr Ops,
3553                                   unsigned NumOps) {
3554  // If an identical node already exists, use it.
3555  SDVTList VTs = getVTList(VT);
3556  FoldingSetNodeID ID;
3557  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3558  void *IP = 0;
3559  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3560    return ON;
3561
3562  RemoveNodeFromCSEMaps(N);
3563  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3564
3565  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3566  return N;
3567}
3568
3569SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3570                                   MVT::ValueType VT1, MVT::ValueType VT2,
3571                                   SDOperand Op1, SDOperand Op2) {
3572  SDVTList VTs = getVTList(VT1, VT2);
3573  FoldingSetNodeID ID;
3574  SDOperand Ops[] = { Op1, Op2 };
3575  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3576  void *IP = 0;
3577  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3578    return ON;
3579
3580  RemoveNodeFromCSEMaps(N);
3581  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3582  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3583  return N;
3584}
3585
3586SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3587                                   MVT::ValueType VT1, MVT::ValueType VT2,
3588                                   SDOperand Op1, SDOperand Op2,
3589                                   SDOperand Op3) {
3590  // If an identical node already exists, use it.
3591  SDVTList VTs = getVTList(VT1, VT2);
3592  SDOperand Ops[] = { Op1, Op2, Op3 };
3593  FoldingSetNodeID ID;
3594  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3595  void *IP = 0;
3596  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3597    return ON;
3598
3599  RemoveNodeFromCSEMaps(N);
3600
3601  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3602  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3603  return N;
3604}
3605
3606
3607/// getTargetNode - These are used for target selectors to create a new node
3608/// with specified return type(s), target opcode, and operands.
3609///
3610/// Note that getTargetNode returns the resultant node.  If there is already a
3611/// node of the specified opcode and operands, it returns that node instead of
3612/// the current one.
3613SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3614  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3615}
3616SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3617                                    SDOperand Op1) {
3618  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3619}
3620SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3621                                    SDOperand Op1, SDOperand Op2) {
3622  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3623}
3624SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3625                                    SDOperand Op1, SDOperand Op2,
3626                                    SDOperand Op3) {
3627  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3628}
3629SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3630                                    SDOperandPtr Ops, unsigned NumOps) {
3631  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3632}
3633SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3634                                    MVT::ValueType VT2) {
3635  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3636  SDOperand Op;
3637  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3638}
3639SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3640                                    MVT::ValueType VT2, SDOperand Op1) {
3641  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3642  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3643}
3644SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3645                                    MVT::ValueType VT2, SDOperand Op1,
3646                                    SDOperand Op2) {
3647  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3648  SDOperand Ops[] = { Op1, Op2 };
3649  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3650}
3651SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3652                                    MVT::ValueType VT2, SDOperand Op1,
3653                                    SDOperand Op2, SDOperand Op3) {
3654  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3655  SDOperand Ops[] = { Op1, Op2, Op3 };
3656  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3657}
3658SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3659                                    MVT::ValueType VT2,
3660                                    SDOperandPtr Ops, unsigned NumOps) {
3661  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3662  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3663}
3664SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3665                                    MVT::ValueType VT2, MVT::ValueType VT3,
3666                                    SDOperand Op1, SDOperand Op2) {
3667  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3668  SDOperand Ops[] = { Op1, Op2 };
3669  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3670}
3671SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3672                                    MVT::ValueType VT2, MVT::ValueType VT3,
3673                                    SDOperand Op1, SDOperand Op2,
3674                                    SDOperand Op3) {
3675  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3676  SDOperand Ops[] = { Op1, Op2, Op3 };
3677  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3678}
3679SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3680                                    MVT::ValueType VT2, MVT::ValueType VT3,
3681                                    SDOperandPtr Ops, unsigned NumOps) {
3682  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3683  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3684}
3685SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3686                                    MVT::ValueType VT2, MVT::ValueType VT3,
3687                                    MVT::ValueType VT4,
3688                                    SDOperandPtr Ops, unsigned NumOps) {
3689  std::vector<MVT::ValueType> VTList;
3690  VTList.push_back(VT1);
3691  VTList.push_back(VT2);
3692  VTList.push_back(VT3);
3693  VTList.push_back(VT4);
3694  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3695  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3696}
3697SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3698                                    std::vector<MVT::ValueType> &ResultTys,
3699                                    SDOperandPtr Ops, unsigned NumOps) {
3700  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3701  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3702                 Ops, NumOps).Val;
3703}
3704
3705/// getNodeIfExists - Get the specified node if it's already available, or
3706/// else return NULL.
3707SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3708                                      SDOperandPtr Ops, unsigned NumOps) {
3709  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3710    FoldingSetNodeID ID;
3711    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3712    void *IP = 0;
3713    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3714      return E;
3715  }
3716  return NULL;
3717}
3718
3719
3720/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3721/// This can cause recursive merging of nodes in the DAG.
3722///
3723/// This version assumes From has a single result value.
3724///
3725void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3726                                      DAGUpdateListener *UpdateListener) {
3727  SDNode *From = FromN.Val;
3728  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3729         "Cannot replace with this method!");
3730  assert(From != To.Val && "Cannot replace uses of with self");
3731
3732  while (!From->use_empty()) {
3733    SDNode::use_iterator UI = From->use_begin();
3734    SDNode *U = UI->getUser();
3735
3736    // This node is about to morph, remove its old self from the CSE maps.
3737    RemoveNodeFromCSEMaps(U);
3738    int operandNum = 0;
3739    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3740         I != E; ++I, ++operandNum)
3741      if (I->getVal() == From) {
3742        From->removeUser(operandNum, U);
3743        *I = To;
3744        I->setUser(U);
3745        To.Val->addUser(operandNum, U);
3746      }
3747
3748    // Now that we have modified U, add it back to the CSE maps.  If it already
3749    // exists there, recursively merge the results together.
3750    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3751      ReplaceAllUsesWith(U, Existing, UpdateListener);
3752      // U is now dead.  Inform the listener if it exists and delete it.
3753      if (UpdateListener)
3754        UpdateListener->NodeDeleted(U);
3755      DeleteNodeNotInCSEMaps(U);
3756    } else {
3757      // If the node doesn't already exist, we updated it.  Inform a listener if
3758      // it exists.
3759      if (UpdateListener)
3760        UpdateListener->NodeUpdated(U);
3761    }
3762  }
3763}
3764
3765/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3766/// This can cause recursive merging of nodes in the DAG.
3767///
3768/// This version assumes From/To have matching types and numbers of result
3769/// values.
3770///
3771void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3772                                      DAGUpdateListener *UpdateListener) {
3773  assert(From != To && "Cannot replace uses of with self");
3774  assert(From->getNumValues() == To->getNumValues() &&
3775         "Cannot use this version of ReplaceAllUsesWith!");
3776  if (From->getNumValues() == 1)   // If possible, use the faster version.
3777    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3778                              UpdateListener);
3779
3780  while (!From->use_empty()) {
3781    SDNode::use_iterator UI = From->use_begin();
3782    SDNode *U = UI->getUser();
3783
3784    // This node is about to morph, remove its old self from the CSE maps.
3785    RemoveNodeFromCSEMaps(U);
3786    int operandNum = 0;
3787    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3788         I != E; ++I, ++operandNum)
3789      if (I->getVal() == From) {
3790        From->removeUser(operandNum, U);
3791        I->getVal() = To;
3792        To->addUser(operandNum, U);
3793      }
3794
3795    // Now that we have modified U, add it back to the CSE maps.  If it already
3796    // exists there, recursively merge the results together.
3797    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3798      ReplaceAllUsesWith(U, Existing, UpdateListener);
3799      // U is now dead.  Inform the listener if it exists and delete it.
3800      if (UpdateListener)
3801        UpdateListener->NodeDeleted(U);
3802      DeleteNodeNotInCSEMaps(U);
3803    } else {
3804      // If the node doesn't already exist, we updated it.  Inform a listener if
3805      // it exists.
3806      if (UpdateListener)
3807        UpdateListener->NodeUpdated(U);
3808    }
3809  }
3810}
3811
3812/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3813/// This can cause recursive merging of nodes in the DAG.
3814///
3815/// This version can replace From with any result values.  To must match the
3816/// number and types of values returned by From.
3817void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3818                                      SDOperandPtr To,
3819                                      DAGUpdateListener *UpdateListener) {
3820  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3821    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3822
3823  while (!From->use_empty()) {
3824    SDNode::use_iterator UI = From->use_begin();
3825    SDNode *U = UI->getUser();
3826
3827    // This node is about to morph, remove its old self from the CSE maps.
3828    RemoveNodeFromCSEMaps(U);
3829    int operandNum = 0;
3830    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3831         I != E; ++I, ++operandNum)
3832      if (I->getVal() == From) {
3833        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3834        From->removeUser(operandNum, U);
3835        *I = ToOp;
3836        I->setUser(U);
3837        ToOp.Val->addUser(operandNum, U);
3838      }
3839
3840    // Now that we have modified U, add it back to the CSE maps.  If it already
3841    // exists there, recursively merge the results together.
3842    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3843      ReplaceAllUsesWith(U, Existing, UpdateListener);
3844      // U is now dead.  Inform the listener if it exists and delete it.
3845      if (UpdateListener)
3846        UpdateListener->NodeDeleted(U);
3847      DeleteNodeNotInCSEMaps(U);
3848    } else {
3849      // If the node doesn't already exist, we updated it.  Inform a listener if
3850      // it exists.
3851      if (UpdateListener)
3852        UpdateListener->NodeUpdated(U);
3853    }
3854  }
3855}
3856
3857namespace {
3858  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3859  /// any deleted nodes from the set passed into its constructor and recursively
3860  /// notifies another update listener if specified.
3861  class ChainedSetUpdaterListener :
3862  public SelectionDAG::DAGUpdateListener {
3863    SmallSetVector<SDNode*, 16> &Set;
3864    SelectionDAG::DAGUpdateListener *Chain;
3865  public:
3866    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3867                              SelectionDAG::DAGUpdateListener *chain)
3868      : Set(set), Chain(chain) {}
3869
3870    virtual void NodeDeleted(SDNode *N) {
3871      Set.remove(N);
3872      if (Chain) Chain->NodeDeleted(N);
3873    }
3874    virtual void NodeUpdated(SDNode *N) {
3875      if (Chain) Chain->NodeUpdated(N);
3876    }
3877  };
3878}
3879
3880/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3881/// uses of other values produced by From.Val alone.  The Deleted vector is
3882/// handled the same way as for ReplaceAllUsesWith.
3883void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3884                                             DAGUpdateListener *UpdateListener){
3885  assert(From != To && "Cannot replace a value with itself");
3886
3887  // Handle the simple, trivial, case efficiently.
3888  if (From.Val->getNumValues() == 1) {
3889    ReplaceAllUsesWith(From, To, UpdateListener);
3890    return;
3891  }
3892
3893  if (From.use_empty()) return;
3894
3895  // Get all of the users of From.Val.  We want these in a nice,
3896  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3897  SmallSetVector<SDNode*, 16> Users;
3898  for (SDNode::use_iterator UI = From.Val->use_begin(),
3899      E = From.Val->use_end(); UI != E; ++UI) {
3900    SDNode *User = UI->getUser();
3901    if (!Users.count(User))
3902      Users.insert(User);
3903  }
3904
3905  // When one of the recursive merges deletes nodes from the graph, we need to
3906  // make sure that UpdateListener is notified *and* that the node is removed
3907  // from Users if present.  CSUL does this.
3908  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3909
3910  while (!Users.empty()) {
3911    // We know that this user uses some value of From.  If it is the right
3912    // value, update it.
3913    SDNode *User = Users.back();
3914    Users.pop_back();
3915
3916    // Scan for an operand that matches From.
3917    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
3918    for (; Op != E; ++Op)
3919      if (*Op == From) break;
3920
3921    // If there are no matches, the user must use some other result of From.
3922    if (Op == E) continue;
3923
3924    // Okay, we know this user needs to be updated.  Remove its old self
3925    // from the CSE maps.
3926    RemoveNodeFromCSEMaps(User);
3927
3928    // Update all operands that match "From" in case there are multiple uses.
3929    for (; Op != E; ++Op) {
3930      if (*Op == From) {
3931        From.Val->removeUser(Op-User->op_begin(), User);
3932        *Op = To;
3933        Op->setUser(User);
3934        To.Val->addUser(Op-User->op_begin(), User);
3935      }
3936    }
3937
3938    // Now that we have modified User, add it back to the CSE maps.  If it
3939    // already exists there, recursively merge the results together.
3940    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3941    if (!Existing) {
3942      if (UpdateListener) UpdateListener->NodeUpdated(User);
3943      continue;  // Continue on to next user.
3944    }
3945
3946    // If there was already an existing matching node, use ReplaceAllUsesWith
3947    // to replace the dead one with the existing one.  This can cause
3948    // recursive merging of other unrelated nodes down the line.  The merging
3949    // can cause deletion of nodes that used the old value.  To handle this, we
3950    // use CSUL to remove them from the Users set.
3951    ReplaceAllUsesWith(User, Existing, &CSUL);
3952
3953    // User is now dead.  Notify a listener if present.
3954    if (UpdateListener) UpdateListener->NodeDeleted(User);
3955    DeleteNodeNotInCSEMaps(User);
3956  }
3957}
3958
3959/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3960/// their allnodes order. It returns the maximum id.
3961unsigned SelectionDAG::AssignNodeIds() {
3962  unsigned Id = 0;
3963  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3964    SDNode *N = I;
3965    N->setNodeId(Id++);
3966  }
3967  return Id;
3968}
3969
3970/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3971/// based on their topological order. It returns the maximum id and a vector
3972/// of the SDNodes* in assigned order by reference.
3973unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3974  unsigned DAGSize = AllNodes.size();
3975  std::vector<unsigned> InDegree(DAGSize);
3976  std::vector<SDNode*> Sources;
3977
3978  // Use a two pass approach to avoid using a std::map which is slow.
3979  unsigned Id = 0;
3980  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3981    SDNode *N = I;
3982    N->setNodeId(Id++);
3983    unsigned Degree = N->use_size();
3984    InDegree[N->getNodeId()] = Degree;
3985    if (Degree == 0)
3986      Sources.push_back(N);
3987  }
3988
3989  TopOrder.clear();
3990  while (!Sources.empty()) {
3991    SDNode *N = Sources.back();
3992    Sources.pop_back();
3993    TopOrder.push_back(N);
3994    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3995      SDNode *P = I->getVal();
3996      unsigned Degree = --InDegree[P->getNodeId()];
3997      if (Degree == 0)
3998        Sources.push_back(P);
3999    }
4000  }
4001
4002  // Second pass, assign the actual topological order as node ids.
4003  Id = 0;
4004  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4005       TI != TE; ++TI)
4006    (*TI)->setNodeId(Id++);
4007
4008  return Id;
4009}
4010
4011
4012
4013//===----------------------------------------------------------------------===//
4014//                              SDNode Class
4015//===----------------------------------------------------------------------===//
4016
4017// Out-of-line virtual method to give class a home.
4018void SDNode::ANCHOR() {}
4019void UnarySDNode::ANCHOR() {}
4020void BinarySDNode::ANCHOR() {}
4021void TernarySDNode::ANCHOR() {}
4022void HandleSDNode::ANCHOR() {}
4023void StringSDNode::ANCHOR() {}
4024void ConstantSDNode::ANCHOR() {}
4025void ConstantFPSDNode::ANCHOR() {}
4026void GlobalAddressSDNode::ANCHOR() {}
4027void FrameIndexSDNode::ANCHOR() {}
4028void JumpTableSDNode::ANCHOR() {}
4029void ConstantPoolSDNode::ANCHOR() {}
4030void BasicBlockSDNode::ANCHOR() {}
4031void SrcValueSDNode::ANCHOR() {}
4032void MemOperandSDNode::ANCHOR() {}
4033void RegisterSDNode::ANCHOR() {}
4034void ExternalSymbolSDNode::ANCHOR() {}
4035void CondCodeSDNode::ANCHOR() {}
4036void ARG_FLAGSSDNode::ANCHOR() {}
4037void VTSDNode::ANCHOR() {}
4038void LoadSDNode::ANCHOR() {}
4039void StoreSDNode::ANCHOR() {}
4040void AtomicSDNode::ANCHOR() {}
4041
4042HandleSDNode::~HandleSDNode() {
4043  SDVTList VTs = { 0, 0 };
4044  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4045}
4046
4047GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4048                                         MVT::ValueType VT, int o)
4049  : SDNode(isa<GlobalVariable>(GA) &&
4050           cast<GlobalVariable>(GA)->isThreadLocal() ?
4051           // Thread Local
4052           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4053           // Non Thread Local
4054           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4055           getSDVTList(VT)), Offset(o) {
4056  TheGlobal = const_cast<GlobalValue*>(GA);
4057}
4058
4059/// getMemOperand - Return a MachineMemOperand object describing the memory
4060/// reference performed by this load or store.
4061MachineMemOperand LSBaseSDNode::getMemOperand() const {
4062  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
4063  int Flags =
4064    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4065                               MachineMemOperand::MOStore;
4066  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
4067
4068  // Check if the load references a frame index, and does not have
4069  // an SV attached.
4070  const FrameIndexSDNode *FI =
4071    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4072  if (!getSrcValue() && FI)
4073    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4074                             FI->getIndex(), Size, Alignment);
4075  else
4076    return MachineMemOperand(getSrcValue(), Flags,
4077                             getSrcValueOffset(), Size, Alignment);
4078}
4079
4080/// Profile - Gather unique data for the node.
4081///
4082void SDNode::Profile(FoldingSetNodeID &ID) {
4083  AddNodeIDNode(ID, this);
4084}
4085
4086/// getValueTypeList - Return a pointer to the specified value type.
4087///
4088const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
4089  if (MVT::isExtendedVT(VT)) {
4090    static std::set<MVT::ValueType> EVTs;
4091    return &(*EVTs.insert(VT).first);
4092  } else {
4093    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4094    VTs[VT] = VT;
4095    return &VTs[VT];
4096  }
4097}
4098
4099/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4100/// indicated value.  This method ignores uses of other values defined by this
4101/// operation.
4102bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4103  assert(Value < getNumValues() && "Bad value!");
4104
4105  // If there is only one value, this is easy.
4106  if (getNumValues() == 1)
4107    return use_size() == NUses;
4108  if (use_size() < NUses) return false;
4109
4110  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4111
4112  SmallPtrSet<SDNode*, 32> UsersHandled;
4113
4114  // TODO: Only iterate over uses of a given value of the node
4115  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4116    if (*UI == TheValue) {
4117      if (NUses == 0)
4118        return false;
4119      --NUses;
4120    }
4121  }
4122
4123  // Found exactly the right number of uses?
4124  return NUses == 0;
4125}
4126
4127
4128/// hasAnyUseOfValue - Return true if there are any use of the indicated
4129/// value. This method ignores uses of other values defined by this operation.
4130bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4131  assert(Value < getNumValues() && "Bad value!");
4132
4133  if (use_empty()) return false;
4134
4135  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4136
4137  SmallPtrSet<SDNode*, 32> UsersHandled;
4138
4139  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4140    SDNode *User = UI->getUser();
4141    if (User->getNumOperands() == 1 ||
4142        UsersHandled.insert(User))     // First time we've seen this?
4143      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4144        if (User->getOperand(i) == TheValue) {
4145          return true;
4146        }
4147  }
4148
4149  return false;
4150}
4151
4152
4153/// isOnlyUseOf - Return true if this node is the only use of N.
4154///
4155bool SDNode::isOnlyUseOf(SDNode *N) const {
4156  bool Seen = false;
4157  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4158    SDNode *User = I->getUser();
4159    if (User == this)
4160      Seen = true;
4161    else
4162      return false;
4163  }
4164
4165  return Seen;
4166}
4167
4168/// isOperand - Return true if this node is an operand of N.
4169///
4170bool SDOperand::isOperandOf(SDNode *N) const {
4171  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4172    if (*this == N->getOperand(i))
4173      return true;
4174  return false;
4175}
4176
4177bool SDNode::isOperandOf(SDNode *N) const {
4178  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4179    if (this == N->OperandList[i].getVal())
4180      return true;
4181  return false;
4182}
4183
4184/// reachesChainWithoutSideEffects - Return true if this operand (which must
4185/// be a chain) reaches the specified operand without crossing any
4186/// side-effecting instructions.  In practice, this looks through token
4187/// factors and non-volatile loads.  In order to remain efficient, this only
4188/// looks a couple of nodes in, it does not do an exhaustive search.
4189bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4190                                               unsigned Depth) const {
4191  if (*this == Dest) return true;
4192
4193  // Don't search too deeply, we just want to be able to see through
4194  // TokenFactor's etc.
4195  if (Depth == 0) return false;
4196
4197  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4198  // of the operands of the TF reach dest, then we can do the xform.
4199  if (getOpcode() == ISD::TokenFactor) {
4200    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4201      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4202        return true;
4203    return false;
4204  }
4205
4206  // Loads don't have side effects, look through them.
4207  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4208    if (!Ld->isVolatile())
4209      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4210  }
4211  return false;
4212}
4213
4214
4215static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4216                            SmallPtrSet<SDNode *, 32> &Visited) {
4217  if (found || !Visited.insert(N))
4218    return;
4219
4220  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4221    SDNode *Op = N->getOperand(i).Val;
4222    if (Op == P) {
4223      found = true;
4224      return;
4225    }
4226    findPredecessor(Op, P, found, Visited);
4227  }
4228}
4229
4230/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4231/// is either an operand of N or it can be reached by recursively traversing
4232/// up the operands.
4233/// NOTE: this is an expensive method. Use it carefully.
4234bool SDNode::isPredecessorOf(SDNode *N) const {
4235  SmallPtrSet<SDNode *, 32> Visited;
4236  bool found = false;
4237  findPredecessor(N, this, found, Visited);
4238  return found;
4239}
4240
4241uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4242  assert(Num < NumOperands && "Invalid child # of SDNode!");
4243  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4244}
4245
4246std::string SDNode::getOperationName(const SelectionDAG *G) const {
4247  switch (getOpcode()) {
4248  default:
4249    if (getOpcode() < ISD::BUILTIN_OP_END)
4250      return "<<Unknown DAG Node>>";
4251    else {
4252      if (G) {
4253        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4254          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4255            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4256
4257        TargetLowering &TLI = G->getTargetLoweringInfo();
4258        const char *Name =
4259          TLI.getTargetNodeName(getOpcode());
4260        if (Name) return Name;
4261      }
4262
4263      return "<<Unknown Target Node>>";
4264    }
4265
4266  case ISD::PREFETCH:      return "Prefetch";
4267  case ISD::MEMBARRIER:    return "MemBarrier";
4268  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4269  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4270  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
4271  case ISD::PCMARKER:      return "PCMarker";
4272  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4273  case ISD::SRCVALUE:      return "SrcValue";
4274  case ISD::MEMOPERAND:    return "MemOperand";
4275  case ISD::EntryToken:    return "EntryToken";
4276  case ISD::TokenFactor:   return "TokenFactor";
4277  case ISD::AssertSext:    return "AssertSext";
4278  case ISD::AssertZext:    return "AssertZext";
4279
4280  case ISD::STRING:        return "String";
4281  case ISD::BasicBlock:    return "BasicBlock";
4282  case ISD::ARG_FLAGS:     return "ArgFlags";
4283  case ISD::VALUETYPE:     return "ValueType";
4284  case ISD::Register:      return "Register";
4285
4286  case ISD::Constant:      return "Constant";
4287  case ISD::ConstantFP:    return "ConstantFP";
4288  case ISD::GlobalAddress: return "GlobalAddress";
4289  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4290  case ISD::FrameIndex:    return "FrameIndex";
4291  case ISD::JumpTable:     return "JumpTable";
4292  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4293  case ISD::RETURNADDR: return "RETURNADDR";
4294  case ISD::FRAMEADDR: return "FRAMEADDR";
4295  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4296  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4297  case ISD::EHSELECTION: return "EHSELECTION";
4298  case ISD::EH_RETURN: return "EH_RETURN";
4299  case ISD::ConstantPool:  return "ConstantPool";
4300  case ISD::ExternalSymbol: return "ExternalSymbol";
4301  case ISD::INTRINSIC_WO_CHAIN: {
4302    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4303    return Intrinsic::getName((Intrinsic::ID)IID);
4304  }
4305  case ISD::INTRINSIC_VOID:
4306  case ISD::INTRINSIC_W_CHAIN: {
4307    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4308    return Intrinsic::getName((Intrinsic::ID)IID);
4309  }
4310
4311  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4312  case ISD::TargetConstant: return "TargetConstant";
4313  case ISD::TargetConstantFP:return "TargetConstantFP";
4314  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4315  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4316  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4317  case ISD::TargetJumpTable:  return "TargetJumpTable";
4318  case ISD::TargetConstantPool:  return "TargetConstantPool";
4319  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4320
4321  case ISD::CopyToReg:     return "CopyToReg";
4322  case ISD::CopyFromReg:   return "CopyFromReg";
4323  case ISD::UNDEF:         return "undef";
4324  case ISD::MERGE_VALUES:  return "merge_values";
4325  case ISD::INLINEASM:     return "inlineasm";
4326  case ISD::LABEL:         return "label";
4327  case ISD::DECLARE:       return "declare";
4328  case ISD::HANDLENODE:    return "handlenode";
4329  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4330  case ISD::CALL:          return "call";
4331
4332  // Unary operators
4333  case ISD::FABS:   return "fabs";
4334  case ISD::FNEG:   return "fneg";
4335  case ISD::FSQRT:  return "fsqrt";
4336  case ISD::FSIN:   return "fsin";
4337  case ISD::FCOS:   return "fcos";
4338  case ISD::FPOWI:  return "fpowi";
4339  case ISD::FPOW:   return "fpow";
4340
4341  // Binary operators
4342  case ISD::ADD:    return "add";
4343  case ISD::SUB:    return "sub";
4344  case ISD::MUL:    return "mul";
4345  case ISD::MULHU:  return "mulhu";
4346  case ISD::MULHS:  return "mulhs";
4347  case ISD::SDIV:   return "sdiv";
4348  case ISD::UDIV:   return "udiv";
4349  case ISD::SREM:   return "srem";
4350  case ISD::UREM:   return "urem";
4351  case ISD::SMUL_LOHI:  return "smul_lohi";
4352  case ISD::UMUL_LOHI:  return "umul_lohi";
4353  case ISD::SDIVREM:    return "sdivrem";
4354  case ISD::UDIVREM:    return "divrem";
4355  case ISD::AND:    return "and";
4356  case ISD::OR:     return "or";
4357  case ISD::XOR:    return "xor";
4358  case ISD::SHL:    return "shl";
4359  case ISD::SRA:    return "sra";
4360  case ISD::SRL:    return "srl";
4361  case ISD::ROTL:   return "rotl";
4362  case ISD::ROTR:   return "rotr";
4363  case ISD::FADD:   return "fadd";
4364  case ISD::FSUB:   return "fsub";
4365  case ISD::FMUL:   return "fmul";
4366  case ISD::FDIV:   return "fdiv";
4367  case ISD::FREM:   return "frem";
4368  case ISD::FCOPYSIGN: return "fcopysign";
4369  case ISD::FGETSIGN:  return "fgetsign";
4370
4371  case ISD::SETCC:       return "setcc";
4372  case ISD::SELECT:      return "select";
4373  case ISD::SELECT_CC:   return "select_cc";
4374  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4375  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4376  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4377  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4378  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4379  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4380  case ISD::CARRY_FALSE:         return "carry_false";
4381  case ISD::ADDC:        return "addc";
4382  case ISD::ADDE:        return "adde";
4383  case ISD::SUBC:        return "subc";
4384  case ISD::SUBE:        return "sube";
4385  case ISD::SHL_PARTS:   return "shl_parts";
4386  case ISD::SRA_PARTS:   return "sra_parts";
4387  case ISD::SRL_PARTS:   return "srl_parts";
4388
4389  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4390  case ISD::INSERT_SUBREG:      return "insert_subreg";
4391
4392  // Conversion operators.
4393  case ISD::SIGN_EXTEND: return "sign_extend";
4394  case ISD::ZERO_EXTEND: return "zero_extend";
4395  case ISD::ANY_EXTEND:  return "any_extend";
4396  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4397  case ISD::TRUNCATE:    return "truncate";
4398  case ISD::FP_ROUND:    return "fp_round";
4399  case ISD::FLT_ROUNDS_: return "flt_rounds";
4400  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4401  case ISD::FP_EXTEND:   return "fp_extend";
4402
4403  case ISD::SINT_TO_FP:  return "sint_to_fp";
4404  case ISD::UINT_TO_FP:  return "uint_to_fp";
4405  case ISD::FP_TO_SINT:  return "fp_to_sint";
4406  case ISD::FP_TO_UINT:  return "fp_to_uint";
4407  case ISD::BIT_CONVERT: return "bit_convert";
4408
4409    // Control flow instructions
4410  case ISD::BR:      return "br";
4411  case ISD::BRIND:   return "brind";
4412  case ISD::BR_JT:   return "br_jt";
4413  case ISD::BRCOND:  return "brcond";
4414  case ISD::BR_CC:   return "br_cc";
4415  case ISD::RET:     return "ret";
4416  case ISD::CALLSEQ_START:  return "callseq_start";
4417  case ISD::CALLSEQ_END:    return "callseq_end";
4418
4419    // Other operators
4420  case ISD::LOAD:               return "load";
4421  case ISD::STORE:              return "store";
4422  case ISD::VAARG:              return "vaarg";
4423  case ISD::VACOPY:             return "vacopy";
4424  case ISD::VAEND:              return "vaend";
4425  case ISD::VASTART:            return "vastart";
4426  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4427  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4428  case ISD::BUILD_PAIR:         return "build_pair";
4429  case ISD::STACKSAVE:          return "stacksave";
4430  case ISD::STACKRESTORE:       return "stackrestore";
4431  case ISD::TRAP:               return "trap";
4432
4433  // Bit manipulation
4434  case ISD::BSWAP:   return "bswap";
4435  case ISD::CTPOP:   return "ctpop";
4436  case ISD::CTTZ:    return "cttz";
4437  case ISD::CTLZ:    return "ctlz";
4438
4439  // Debug info
4440  case ISD::LOCATION: return "location";
4441  case ISD::DEBUG_LOC: return "debug_loc";
4442
4443  // Trampolines
4444  case ISD::TRAMPOLINE: return "trampoline";
4445
4446  case ISD::CONDCODE:
4447    switch (cast<CondCodeSDNode>(this)->get()) {
4448    default: assert(0 && "Unknown setcc condition!");
4449    case ISD::SETOEQ:  return "setoeq";
4450    case ISD::SETOGT:  return "setogt";
4451    case ISD::SETOGE:  return "setoge";
4452    case ISD::SETOLT:  return "setolt";
4453    case ISD::SETOLE:  return "setole";
4454    case ISD::SETONE:  return "setone";
4455
4456    case ISD::SETO:    return "seto";
4457    case ISD::SETUO:   return "setuo";
4458    case ISD::SETUEQ:  return "setue";
4459    case ISD::SETUGT:  return "setugt";
4460    case ISD::SETUGE:  return "setuge";
4461    case ISD::SETULT:  return "setult";
4462    case ISD::SETULE:  return "setule";
4463    case ISD::SETUNE:  return "setune";
4464
4465    case ISD::SETEQ:   return "seteq";
4466    case ISD::SETGT:   return "setgt";
4467    case ISD::SETGE:   return "setge";
4468    case ISD::SETLT:   return "setlt";
4469    case ISD::SETLE:   return "setle";
4470    case ISD::SETNE:   return "setne";
4471    }
4472  }
4473}
4474
4475const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4476  switch (AM) {
4477  default:
4478    return "";
4479  case ISD::PRE_INC:
4480    return "<pre-inc>";
4481  case ISD::PRE_DEC:
4482    return "<pre-dec>";
4483  case ISD::POST_INC:
4484    return "<post-inc>";
4485  case ISD::POST_DEC:
4486    return "<post-dec>";
4487  }
4488}
4489
4490std::string ISD::ArgFlagsTy::getArgFlagsString() {
4491  std::string S = "< ";
4492
4493  if (isZExt())
4494    S += "zext ";
4495  if (isSExt())
4496    S += "sext ";
4497  if (isInReg())
4498    S += "inreg ";
4499  if (isSRet())
4500    S += "sret ";
4501  if (isByVal())
4502    S += "byval ";
4503  if (isNest())
4504    S += "nest ";
4505  if (getByValAlign())
4506    S += "byval-align:" + utostr(getByValAlign()) + " ";
4507  if (getOrigAlign())
4508    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4509  if (getByValSize())
4510    S += "byval-size:" + utostr(getByValSize()) + " ";
4511  return S + ">";
4512}
4513
4514void SDNode::dump() const { dump(0); }
4515void SDNode::dump(const SelectionDAG *G) const {
4516  cerr << (void*)this << ": ";
4517
4518  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4519    if (i) cerr << ",";
4520    if (getValueType(i) == MVT::Other)
4521      cerr << "ch";
4522    else
4523      cerr << MVT::getValueTypeString(getValueType(i));
4524  }
4525  cerr << " = " << getOperationName(G);
4526
4527  cerr << " ";
4528  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4529    if (i) cerr << ", ";
4530    cerr << (void*)getOperand(i).Val;
4531    if (unsigned RN = getOperand(i).ResNo)
4532      cerr << ":" << RN;
4533  }
4534
4535  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4536    SDNode *Mask = getOperand(2).Val;
4537    cerr << "<";
4538    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4539      if (i) cerr << ",";
4540      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4541        cerr << "u";
4542      else
4543        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4544    }
4545    cerr << ">";
4546  }
4547
4548  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4549    cerr << "<" << CSDN->getValue() << ">";
4550  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4551    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4552      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4553    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4554      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4555    else {
4556      cerr << "<APFloat(";
4557      CSDN->getValueAPF().convertToAPInt().dump();
4558      cerr << ")>";
4559    }
4560  } else if (const GlobalAddressSDNode *GADN =
4561             dyn_cast<GlobalAddressSDNode>(this)) {
4562    int offset = GADN->getOffset();
4563    cerr << "<";
4564    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4565    if (offset > 0)
4566      cerr << " + " << offset;
4567    else
4568      cerr << " " << offset;
4569  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4570    cerr << "<" << FIDN->getIndex() << ">";
4571  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4572    cerr << "<" << JTDN->getIndex() << ">";
4573  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4574    int offset = CP->getOffset();
4575    if (CP->isMachineConstantPoolEntry())
4576      cerr << "<" << *CP->getMachineCPVal() << ">";
4577    else
4578      cerr << "<" << *CP->getConstVal() << ">";
4579    if (offset > 0)
4580      cerr << " + " << offset;
4581    else
4582      cerr << " " << offset;
4583  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4584    cerr << "<";
4585    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4586    if (LBB)
4587      cerr << LBB->getName() << " ";
4588    cerr << (const void*)BBDN->getBasicBlock() << ">";
4589  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4590    if (G && R->getReg() &&
4591        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4592      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4593    } else {
4594      cerr << " #" << R->getReg();
4595    }
4596  } else if (const ExternalSymbolSDNode *ES =
4597             dyn_cast<ExternalSymbolSDNode>(this)) {
4598    cerr << "'" << ES->getSymbol() << "'";
4599  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4600    if (M->getValue())
4601      cerr << "<" << M->getValue() << ">";
4602    else
4603      cerr << "<null>";
4604  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4605    if (M->MO.getValue())
4606      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4607    else
4608      cerr << "<null:" << M->MO.getOffset() << ">";
4609  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4610    cerr << N->getArgFlags().getArgFlagsString();
4611  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4612    cerr << ":" << MVT::getValueTypeString(N->getVT());
4613  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4614    const Value *SrcValue = LD->getSrcValue();
4615    int SrcOffset = LD->getSrcValueOffset();
4616    cerr << " <";
4617    if (SrcValue)
4618      cerr << SrcValue;
4619    else
4620      cerr << "null";
4621    cerr << ":" << SrcOffset << ">";
4622
4623    bool doExt = true;
4624    switch (LD->getExtensionType()) {
4625    default: doExt = false; break;
4626    case ISD::EXTLOAD:
4627      cerr << " <anyext ";
4628      break;
4629    case ISD::SEXTLOAD:
4630      cerr << " <sext ";
4631      break;
4632    case ISD::ZEXTLOAD:
4633      cerr << " <zext ";
4634      break;
4635    }
4636    if (doExt)
4637      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4638
4639    const char *AM = getIndexedModeName(LD->getAddressingMode());
4640    if (*AM)
4641      cerr << " " << AM;
4642    if (LD->isVolatile())
4643      cerr << " <volatile>";
4644    cerr << " alignment=" << LD->getAlignment();
4645  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4646    const Value *SrcValue = ST->getSrcValue();
4647    int SrcOffset = ST->getSrcValueOffset();
4648    cerr << " <";
4649    if (SrcValue)
4650      cerr << SrcValue;
4651    else
4652      cerr << "null";
4653    cerr << ":" << SrcOffset << ">";
4654
4655    if (ST->isTruncatingStore())
4656      cerr << " <trunc "
4657           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4658
4659    const char *AM = getIndexedModeName(ST->getAddressingMode());
4660    if (*AM)
4661      cerr << " " << AM;
4662    if (ST->isVolatile())
4663      cerr << " <volatile>";
4664    cerr << " alignment=" << ST->getAlignment();
4665  }
4666}
4667
4668static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4669  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4670    if (N->getOperand(i).Val->hasOneUse())
4671      DumpNodes(N->getOperand(i).Val, indent+2, G);
4672    else
4673      cerr << "\n" << std::string(indent+2, ' ')
4674           << (void*)N->getOperand(i).Val << ": <multiple use>";
4675
4676
4677  cerr << "\n" << std::string(indent, ' ');
4678  N->dump(G);
4679}
4680
4681void SelectionDAG::dump() const {
4682  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4683  std::vector<const SDNode*> Nodes;
4684  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4685       I != E; ++I)
4686    Nodes.push_back(I);
4687
4688  std::sort(Nodes.begin(), Nodes.end());
4689
4690  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4691    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4692      DumpNodes(Nodes[i], 2, this);
4693  }
4694
4695  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4696
4697  cerr << "\n\n";
4698}
4699
4700const Type *ConstantPoolSDNode::getType() const {
4701  if (isMachineConstantPoolEntry())
4702    return Val.MachineCPVal->getType();
4703  return Val.ConstVal->getType();
4704}
4705