SelectionDAG.cpp revision 2205e3b404764988bdf78b76e965447159c29e8a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isScalarToVector - Return true if the specified node is a
180/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
181/// element is not an undef.
182bool ISD::isScalarToVector(const SDNode *N) {
183  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
184    return true;
185
186  if (N->getOpcode() != ISD::BUILD_VECTOR)
187    return false;
188  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
189    return false;
190  unsigned NumElems = N->getNumOperands();
191  for (unsigned i = 1; i < NumElems; ++i) {
192    SDOperand V = N->getOperand(i);
193    if (V.getOpcode() != ISD::UNDEF)
194      return false;
195  }
196  return true;
197}
198
199
200/// isDebugLabel - Return true if the specified node represents a debug
201/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
202/// is 0).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDOperand Zero;
205  if (N->getOpcode() == ISD::LABEL)
206    Zero = N->getOperand(2);
207  else if (N->isTargetOpcode() &&
208           N->getTargetOpcode() == TargetInstrInfo::LABEL)
209    // Chain moved to last operand.
210    Zero = N->getOperand(1);
211  else
212    return false;
213  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
214}
215
216/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
217/// when given the operation for (X op Y).
218ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
219  // To perform this operation, we just need to swap the L and G bits of the
220  // operation.
221  unsigned OldL = (Operation >> 2) & 1;
222  unsigned OldG = (Operation >> 1) & 1;
223  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
224                       (OldL << 1) |       // New G bit
225                       (OldG << 2));        // New L bit.
226}
227
228/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
229/// 'op' is a valid SetCC operation.
230ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
231  unsigned Operation = Op;
232  if (isInteger)
233    Operation ^= 7;   // Flip L, G, E bits, but not U.
234  else
235    Operation ^= 15;  // Flip all of the condition bits.
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;     // Don't let N and U bits get set.
238  return ISD::CondCode(Operation);
239}
240
241
242/// isSignedOp - For an integer comparison, return 1 if the comparison is a
243/// signed operation and 2 if the result is an unsigned comparison.  Return zero
244/// if the operation does not depend on the sign of the input (setne and seteq).
245static int isSignedOp(ISD::CondCode Opcode) {
246  switch (Opcode) {
247  default: assert(0 && "Illegal integer setcc operation!");
248  case ISD::SETEQ:
249  case ISD::SETNE: return 0;
250  case ISD::SETLT:
251  case ISD::SETLE:
252  case ISD::SETGT:
253  case ISD::SETGE: return 1;
254  case ISD::SETULT:
255  case ISD::SETULE:
256  case ISD::SETUGT:
257  case ISD::SETUGE: return 2;
258  }
259}
260
261/// getSetCCOrOperation - Return the result of a logical OR between different
262/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
263/// returns SETCC_INVALID if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                       bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed integer setcc with an unsigned integer setcc.
269    return ISD::SETCC_INVALID;
270
271  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
272
273  // If the N and U bits get set then the resultant comparison DOES suddenly
274  // care about orderedness, and is true when ordered.
275  if (Op > ISD::SETTRUE2)
276    Op &= ~16;     // Clear the U bit if the N bit is set.
277
278  // Canonicalize illegal integer setcc's.
279  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
280    Op = ISD::SETNE;
281
282  return ISD::CondCode(Op);
283}
284
285/// getSetCCAndOperation - Return the result of a logical AND between different
286/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
287/// function returns zero if it is not possible to represent the resultant
288/// comparison.
289ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
290                                        bool isInteger) {
291  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
292    // Cannot fold a signed setcc with an unsigned setcc.
293    return ISD::SETCC_INVALID;
294
295  // Combine all of the condition bits.
296  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
297
298  // Canonicalize illegal integer setcc's.
299  if (isInteger) {
300    switch (Result) {
301    default: break;
302    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return TLI.getTargetMachine();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDOperand *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->Val);
338    ID.AddInteger(Ops->ResNo);
339  }
340}
341
342static void AddNodeIDNode(FoldingSetNodeID &ID,
343                          unsigned short OpC, SDVTList VTList,
344                          const SDOperand *OpList, unsigned N) {
345  AddNodeIDOpcode(ID, OpC);
346  AddNodeIDValueTypes(ID, VTList);
347  AddNodeIDOperands(ID, OpList, N);
348}
349
350/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
351/// data.
352static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
353  AddNodeIDOpcode(ID, N->getOpcode());
354  // Add the return value info.
355  AddNodeIDValueTypes(ID, N->getVTList());
356  // Add the operand info.
357  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
358
359  // Handle SDNode leafs with special info.
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::MEMOPERAND: {
390    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
391    ID.AddPointer(MO.getValue());
392    ID.AddInteger(MO.getFlags());
393    ID.AddInteger(MO.getOffset());
394    ID.AddInteger(MO.getSize());
395    ID.AddInteger(MO.getAlignment());
396    break;
397  }
398  case ISD::FrameIndex:
399  case ISD::TargetFrameIndex:
400    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
401    break;
402  case ISD::JumpTable:
403  case ISD::TargetJumpTable:
404    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
405    break;
406  case ISD::ConstantPool:
407  case ISD::TargetConstantPool: {
408    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
409    ID.AddInteger(CP->getAlignment());
410    ID.AddInteger(CP->getOffset());
411    if (CP->isMachineConstantPoolEntry())
412      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
413    else
414      ID.AddPointer(CP->getConstVal());
415    break;
416  }
417  case ISD::LOAD: {
418    LoadSDNode *LD = cast<LoadSDNode>(N);
419    ID.AddInteger(LD->getAddressingMode());
420    ID.AddInteger(LD->getExtensionType());
421    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
422    ID.AddInteger(LD->getAlignment());
423    ID.AddInteger(LD->isVolatile());
424    break;
425  }
426  case ISD::STORE: {
427    StoreSDNode *ST = cast<StoreSDNode>(N);
428    ID.AddInteger(ST->getAddressingMode());
429    ID.AddInteger(ST->isTruncatingStore());
430    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
431    ID.AddInteger(ST->getAlignment());
432    ID.AddInteger(ST->isVolatile());
433    break;
434  }
435  }
436}
437
438//===----------------------------------------------------------------------===//
439//                              SelectionDAG Class
440//===----------------------------------------------------------------------===//
441
442/// RemoveDeadNodes - This method deletes all unreachable nodes in the
443/// SelectionDAG.
444void SelectionDAG::RemoveDeadNodes() {
445  // Create a dummy node (which is not added to allnodes), that adds a reference
446  // to the root node, preventing it from being deleted.
447  HandleSDNode Dummy(getRoot());
448
449  SmallVector<SDNode*, 128> DeadNodes;
450
451  // Add all obviously-dead nodes to the DeadNodes worklist.
452  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
453    if (I->use_empty())
454      DeadNodes.push_back(I);
455
456  // Process the worklist, deleting the nodes and adding their uses to the
457  // worklist.
458  while (!DeadNodes.empty()) {
459    SDNode *N = DeadNodes.back();
460    DeadNodes.pop_back();
461
462    // Take the node out of the appropriate CSE map.
463    RemoveNodeFromCSEMaps(N);
464
465    // Next, brutally remove the operand list.  This is safe to do, as there are
466    // no cycles in the graph.
467    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
468      SDNode *Operand = I->Val;
469      Operand->removeUser(N);
470
471      // Now that we removed this operand, see if there are no uses of it left.
472      if (Operand->use_empty())
473        DeadNodes.push_back(Operand);
474    }
475    if (N->OperandsNeedDelete)
476      delete[] N->OperandList;
477    N->OperandList = 0;
478    N->NumOperands = 0;
479
480    // Finally, remove N itself.
481    AllNodes.erase(N);
482  }
483
484  // If the root changed (e.g. it was a dead load, update the root).
485  setRoot(Dummy.getValue());
486}
487
488void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
489  SmallVector<SDNode*, 16> DeadNodes;
490  DeadNodes.push_back(N);
491
492  // Process the worklist, deleting the nodes and adding their uses to the
493  // worklist.
494  while (!DeadNodes.empty()) {
495    SDNode *N = DeadNodes.back();
496    DeadNodes.pop_back();
497
498    if (UpdateListener)
499      UpdateListener->NodeDeleted(N);
500
501    // Take the node out of the appropriate CSE map.
502    RemoveNodeFromCSEMaps(N);
503
504    // Next, brutally remove the operand list.  This is safe to do, as there are
505    // no cycles in the graph.
506    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
507      SDNode *Operand = I->Val;
508      Operand->removeUser(N);
509
510      // Now that we removed this operand, see if there are no uses of it left.
511      if (Operand->use_empty())
512        DeadNodes.push_back(Operand);
513    }
514    if (N->OperandsNeedDelete)
515      delete[] N->OperandList;
516    N->OperandList = 0;
517    N->NumOperands = 0;
518
519    // Finally, remove N itself.
520    AllNodes.erase(N);
521  }
522}
523
524void SelectionDAG::DeleteNode(SDNode *N) {
525  assert(N->use_empty() && "Cannot delete a node that is not dead!");
526
527  // First take this out of the appropriate CSE map.
528  RemoveNodeFromCSEMaps(N);
529
530  // Finally, remove uses due to operands of this node, remove from the
531  // AllNodes list, and delete the node.
532  DeleteNodeNotInCSEMaps(N);
533}
534
535void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
536
537  // Remove it from the AllNodes list.
538  AllNodes.remove(N);
539
540  // Drop all of the operands and decrement used nodes use counts.
541  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
542    I->Val->removeUser(N);
543  if (N->OperandsNeedDelete)
544    delete[] N->OperandList;
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           const SDOperand *Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete)
706      delete [] N->OperandList;
707    N->OperandList = 0;
708    N->NumOperands = 0;
709    AllNodes.pop_front();
710  }
711}
712
713SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
714  if (Op.getValueType() == VT) return Op;
715  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
716  return getNode(ISD::AND, Op.getValueType(), Op,
717                 getConstant(Imm, Op.getValueType()));
718}
719
720SDOperand SelectionDAG::getString(const std::string &Val) {
721  StringSDNode *&N = StringNodes[Val];
722  if (!N) {
723    N = new StringSDNode(Val);
724    AllNodes.push_back(N);
725  }
726  return SDOperand(N, 0);
727}
728
729SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
730  MVT::ValueType EltVT =
731    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
732
733  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
734}
735
736SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
737  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
738
739  MVT::ValueType EltVT =
740    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
741
742  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
743         "APInt size does not match type size!");
744
745  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
748  ID.Add(Val);
749  void *IP = 0;
750  SDNode *N = NULL;
751  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
752    if (!MVT::isVector(VT))
753      return SDOperand(N, 0);
754  if (!N) {
755    N = new ConstantSDNode(isT, Val, EltVT);
756    CSEMap.InsertNode(N, IP);
757    AllNodes.push_back(N);
758  }
759
760  SDOperand Result(N, 0);
761  if (MVT::isVector(VT)) {
762    SmallVector<SDOperand, 8> Ops;
763    Ops.assign(MVT::getVectorNumElements(VT), Result);
764    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
765  }
766  return Result;
767}
768
769SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
770  return getConstant(Val, TLI.getPointerTy(), isTarget);
771}
772
773
774SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
775                                      bool isTarget) {
776  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
777
778  MVT::ValueType EltVT =
779    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
780
781  // Do the map lookup using the actual bit pattern for the floating point
782  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
783  // we don't have issues with SNANs.
784  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
785  FoldingSetNodeID ID;
786  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
787  ID.Add(V);
788  void *IP = 0;
789  SDNode *N = NULL;
790  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
791    if (!MVT::isVector(VT))
792      return SDOperand(N, 0);
793  if (!N) {
794    N = new ConstantFPSDNode(isTarget, V, EltVT);
795    CSEMap.InsertNode(N, IP);
796    AllNodes.push_back(N);
797  }
798
799  SDOperand Result(N, 0);
800  if (MVT::isVector(VT)) {
801    SmallVector<SDOperand, 8> Ops;
802    Ops.assign(MVT::getVectorNumElements(VT), Result);
803    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
804  }
805  return Result;
806}
807
808SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
809                                      bool isTarget) {
810  MVT::ValueType EltVT =
811    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
812  if (EltVT==MVT::f32)
813    return getConstantFP(APFloat((float)Val), VT, isTarget);
814  else
815    return getConstantFP(APFloat(Val), VT, isTarget);
816}
817
818SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
819                                         MVT::ValueType VT, int Offset,
820                                         bool isTargetGA) {
821  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
822  unsigned Opc;
823  if (GVar && GVar->isThreadLocal())
824    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
825  else
826    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
827  FoldingSetNodeID ID;
828  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
829  ID.AddPointer(GV);
830  ID.AddInteger(Offset);
831  void *IP = 0;
832  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
833   return SDOperand(E, 0);
834  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
835  CSEMap.InsertNode(N, IP);
836  AllNodes.push_back(N);
837  return SDOperand(N, 0);
838}
839
840SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
841                                      bool isTarget) {
842  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
843  FoldingSetNodeID ID;
844  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
845  ID.AddInteger(FI);
846  void *IP = 0;
847  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
848    return SDOperand(E, 0);
849  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
850  CSEMap.InsertNode(N, IP);
851  AllNodes.push_back(N);
852  return SDOperand(N, 0);
853}
854
855SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
856  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
857  FoldingSetNodeID ID;
858  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
859  ID.AddInteger(JTI);
860  void *IP = 0;
861  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
862    return SDOperand(E, 0);
863  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
864  CSEMap.InsertNode(N, IP);
865  AllNodes.push_back(N);
866  return SDOperand(N, 0);
867}
868
869SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
870                                        unsigned Alignment, int Offset,
871                                        bool isTarget) {
872  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
873  FoldingSetNodeID ID;
874  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
875  ID.AddInteger(Alignment);
876  ID.AddInteger(Offset);
877  ID.AddPointer(C);
878  void *IP = 0;
879  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
880    return SDOperand(E, 0);
881  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
882  CSEMap.InsertNode(N, IP);
883  AllNodes.push_back(N);
884  return SDOperand(N, 0);
885}
886
887
888SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
889                                        MVT::ValueType VT,
890                                        unsigned Alignment, int Offset,
891                                        bool isTarget) {
892  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
893  FoldingSetNodeID ID;
894  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
895  ID.AddInteger(Alignment);
896  ID.AddInteger(Offset);
897  C->AddSelectionDAGCSEId(ID);
898  void *IP = 0;
899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
900    return SDOperand(E, 0);
901  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
902  CSEMap.InsertNode(N, IP);
903  AllNodes.push_back(N);
904  return SDOperand(N, 0);
905}
906
907
908SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
909  FoldingSetNodeID ID;
910  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
911  ID.AddPointer(MBB);
912  void *IP = 0;
913  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
914    return SDOperand(E, 0);
915  SDNode *N = new BasicBlockSDNode(MBB);
916  CSEMap.InsertNode(N, IP);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
922  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
923    ValueTypeNodes.resize(VT+1);
924
925  SDNode *&N = MVT::isExtendedVT(VT) ?
926    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
927
928  if (N) return SDOperand(N, 0);
929  N = new VTSDNode(VT);
930  AllNodes.push_back(N);
931  return SDOperand(N, 0);
932}
933
934SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
935  SDNode *&N = ExternalSymbols[Sym];
936  if (N) return SDOperand(N, 0);
937  N = new ExternalSymbolSDNode(false, Sym, VT);
938  AllNodes.push_back(N);
939  return SDOperand(N, 0);
940}
941
942SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
943                                                MVT::ValueType VT) {
944  SDNode *&N = TargetExternalSymbols[Sym];
945  if (N) return SDOperand(N, 0);
946  N = new ExternalSymbolSDNode(true, Sym, VT);
947  AllNodes.push_back(N);
948  return SDOperand(N, 0);
949}
950
951SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
952  if ((unsigned)Cond >= CondCodeNodes.size())
953    CondCodeNodes.resize(Cond+1);
954
955  if (CondCodeNodes[Cond] == 0) {
956    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
957    AllNodes.push_back(CondCodeNodes[Cond]);
958  }
959  return SDOperand(CondCodeNodes[Cond], 0);
960}
961
962SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
963  FoldingSetNodeID ID;
964  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
965  ID.AddInteger(RegNo);
966  void *IP = 0;
967  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
968    return SDOperand(E, 0);
969  SDNode *N = new RegisterSDNode(RegNo, VT);
970  CSEMap.InsertNode(N, IP);
971  AllNodes.push_back(N);
972  return SDOperand(N, 0);
973}
974
975SDOperand SelectionDAG::getSrcValue(const Value *V) {
976  assert((!V || isa<PointerType>(V->getType())) &&
977         "SrcValue is not a pointer?");
978
979  FoldingSetNodeID ID;
980  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
981  ID.AddPointer(V);
982
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDOperand(E, 0);
986
987  SDNode *N = new SrcValueSDNode(V);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDOperand(N, 0);
991}
992
993SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
994  const Value *v = MO.getValue();
995  assert((!v || isa<PointerType>(v->getType())) &&
996         "SrcValue is not a pointer?");
997
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1000  ID.AddPointer(v);
1001  ID.AddInteger(MO.getFlags());
1002  ID.AddInteger(MO.getOffset());
1003  ID.AddInteger(MO.getSize());
1004  ID.AddInteger(MO.getAlignment());
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new MemOperandSDNode(MO);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1017/// specified value type.
1018SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1019  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1020  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1021  const Type *Ty = MVT::getTypeForValueType(VT);
1022  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1023  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1024  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1025}
1026
1027
1028SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1029                                  SDOperand N2, ISD::CondCode Cond) {
1030  // These setcc operations always fold.
1031  switch (Cond) {
1032  default: break;
1033  case ISD::SETFALSE:
1034  case ISD::SETFALSE2: return getConstant(0, VT);
1035  case ISD::SETTRUE:
1036  case ISD::SETTRUE2:  return getConstant(1, VT);
1037
1038  case ISD::SETOEQ:
1039  case ISD::SETOGT:
1040  case ISD::SETOGE:
1041  case ISD::SETOLT:
1042  case ISD::SETOLE:
1043  case ISD::SETONE:
1044  case ISD::SETO:
1045  case ISD::SETUO:
1046  case ISD::SETUEQ:
1047  case ISD::SETUNE:
1048    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1049    break;
1050  }
1051
1052  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1053    uint64_t C2 = N2C->getValue();
1054    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1055      uint64_t C1 = N1C->getValue();
1056
1057      // Sign extend the operands if required
1058      if (ISD::isSignedIntSetCC(Cond)) {
1059        C1 = N1C->getSignExtended();
1060        C2 = N2C->getSignExtended();
1061      }
1062
1063      switch (Cond) {
1064      default: assert(0 && "Unknown integer setcc!");
1065      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1066      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1067      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1068      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1069      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1070      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1071      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1072      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1073      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1074      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1075      }
1076    }
1077  }
1078  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1079    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1080      // No compile time operations on this type yet.
1081      if (N1C->getValueType(0) == MVT::ppcf128)
1082        return SDOperand();
1083
1084      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1085      switch (Cond) {
1086      default: break;
1087      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1088                          return getNode(ISD::UNDEF, VT);
1089                        // fall through
1090      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1091      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1092                          return getNode(ISD::UNDEF, VT);
1093                        // fall through
1094      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1095                                           R==APFloat::cmpLessThan, VT);
1096      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1097                          return getNode(ISD::UNDEF, VT);
1098                        // fall through
1099      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1100      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1101                          return getNode(ISD::UNDEF, VT);
1102                        // fall through
1103      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1104      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1108                                           R==APFloat::cmpEqual, VT);
1109      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1110                          return getNode(ISD::UNDEF, VT);
1111                        // fall through
1112      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1113                                           R==APFloat::cmpEqual, VT);
1114      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1115      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1116      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1117                                           R==APFloat::cmpEqual, VT);
1118      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1119      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1120                                           R==APFloat::cmpLessThan, VT);
1121      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1122                                           R==APFloat::cmpUnordered, VT);
1123      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1124      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1125      }
1126    } else {
1127      // Ensure that the constant occurs on the RHS.
1128      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1129    }
1130  }
1131
1132  // Could not fold it.
1133  return SDOperand();
1134}
1135
1136/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1137/// this predicate to simplify operations downstream.  Mask is known to be zero
1138/// for bits that V cannot have.
1139bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1140                                     unsigned Depth) const {
1141  // The masks are not wide enough to represent this type!  Should use APInt.
1142  if (Op.getValueType() == MVT::i128)
1143    return false;
1144
1145  uint64_t KnownZero, KnownOne;
1146  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1147  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1148  return (KnownZero & Mask) == Mask;
1149}
1150
1151/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1152/// known to be either zero or one and return them in the KnownZero/KnownOne
1153/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1154/// processing.
1155void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1156                                     APInt &KnownZero, APInt &KnownOne,
1157                                     unsigned Depth) const {
1158  unsigned BitWidth = Mask.getBitWidth();
1159  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1160         "Mask size mismatches value type size!");
1161
1162  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1163  if (Depth == 6 || Mask == 0)
1164    return;  // Limit search depth.
1165
1166  APInt KnownZero2, KnownOne2;
1167
1168  switch (Op.getOpcode()) {
1169  case ISD::Constant:
1170    // We know all of the bits for a constant!
1171    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1172    KnownZero = ~KnownOne & Mask;
1173    return;
1174  case ISD::AND:
1175    // If either the LHS or the RHS are Zero, the result is zero.
1176    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1177    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1178                      KnownZero2, KnownOne2, Depth+1);
1179    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1180    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1181
1182    // Output known-1 bits are only known if set in both the LHS & RHS.
1183    KnownOne &= KnownOne2;
1184    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1185    KnownZero |= KnownZero2;
1186    return;
1187  case ISD::OR:
1188    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1189    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1190                      KnownZero2, KnownOne2, Depth+1);
1191    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1192    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1193
1194    // Output known-0 bits are only known if clear in both the LHS & RHS.
1195    KnownZero &= KnownZero2;
1196    // Output known-1 are known to be set if set in either the LHS | RHS.
1197    KnownOne |= KnownOne2;
1198    return;
1199  case ISD::XOR: {
1200    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1201    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1202    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1203    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1204
1205    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1206    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1207    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1208    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1209    KnownZero = KnownZeroOut;
1210    return;
1211  }
1212  case ISD::SELECT:
1213    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1214    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1215    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1216    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1217
1218    // Only known if known in both the LHS and RHS.
1219    KnownOne &= KnownOne2;
1220    KnownZero &= KnownZero2;
1221    return;
1222  case ISD::SELECT_CC:
1223    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1224    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1225    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1226    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1227
1228    // Only known if known in both the LHS and RHS.
1229    KnownOne &= KnownOne2;
1230    KnownZero &= KnownZero2;
1231    return;
1232  case ISD::SETCC:
1233    // If we know the result of a setcc has the top bits zero, use this info.
1234    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1235        BitWidth > 1)
1236      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1237    return;
1238  case ISD::SHL:
1239    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1240    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1241      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(SA->getValue()),
1242                        KnownZero, KnownOne, Depth+1);
1243      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1244      KnownZero <<= SA->getValue();
1245      KnownOne  <<= SA->getValue();
1246      // low bits known zero.
1247      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
1248    }
1249    return;
1250  case ISD::SRL:
1251    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1252    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1253      unsigned ShAmt = SA->getValue();
1254
1255      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1256                        KnownZero, KnownOne, Depth+1);
1257      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1258      KnownZero = KnownZero.lshr(ShAmt);
1259      KnownOne  = KnownOne.lshr(ShAmt);
1260
1261      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1262      KnownZero |= HighBits;  // High bits known zero.
1263    }
1264    return;
1265  case ISD::SRA:
1266    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1267      unsigned ShAmt = SA->getValue();
1268
1269      APInt InDemandedMask = (Mask << ShAmt);
1270      // If any of the demanded bits are produced by the sign extension, we also
1271      // demand the input sign bit.
1272      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1273      if (HighBits.getBoolValue())
1274        InDemandedMask |= APInt::getSignBit(BitWidth);
1275
1276      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1277                        Depth+1);
1278      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1279      KnownZero = KnownZero.lshr(ShAmt);
1280      KnownOne  = KnownOne.lshr(ShAmt);
1281
1282      // Handle the sign bits.
1283      APInt SignBit = APInt::getSignBit(BitWidth);
1284      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1285
1286      if (KnownZero.intersects(SignBit)) {
1287        KnownZero |= HighBits;  // New bits are known zero.
1288      } else if (KnownOne.intersects(SignBit)) {
1289        KnownOne  |= HighBits;  // New bits are known one.
1290      }
1291    }
1292    return;
1293  case ISD::SIGN_EXTEND_INREG: {
1294    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1295    unsigned EBits = MVT::getSizeInBits(EVT);
1296
1297    // Sign extension.  Compute the demanded bits in the result that are not
1298    // present in the input.
1299    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1300
1301    APInt InSignBit = APInt::getSignBit(EBits);
1302    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1303
1304    // If the sign extended bits are demanded, we know that the sign
1305    // bit is demanded.
1306    InSignBit.zext(BitWidth);
1307    if (NewBits.getBoolValue())
1308      InputDemandedBits |= InSignBit;
1309
1310    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1311                      KnownZero, KnownOne, Depth+1);
1312    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1313
1314    // If the sign bit of the input is known set or clear, then we know the
1315    // top bits of the result.
1316    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1317      KnownZero |= NewBits;
1318      KnownOne  &= ~NewBits;
1319    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1320      KnownOne  |= NewBits;
1321      KnownZero &= ~NewBits;
1322    } else {                              // Input sign bit unknown
1323      KnownZero &= ~NewBits;
1324      KnownOne  &= ~NewBits;
1325    }
1326    return;
1327  }
1328  case ISD::CTTZ:
1329  case ISD::CTLZ:
1330  case ISD::CTPOP: {
1331    unsigned LowBits = Log2_32(BitWidth)+1;
1332    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1333    KnownOne  = APInt(BitWidth, 0);
1334    return;
1335  }
1336  case ISD::LOAD: {
1337    if (ISD::isZEXTLoad(Op.Val)) {
1338      LoadSDNode *LD = cast<LoadSDNode>(Op);
1339      MVT::ValueType VT = LD->getMemoryVT();
1340      unsigned MemBits = MVT::getSizeInBits(VT);
1341      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1342    }
1343    return;
1344  }
1345  case ISD::ZERO_EXTEND: {
1346    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1347    unsigned InBits = MVT::getSizeInBits(InVT);
1348    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1349    APInt InMask    = Mask;
1350    InMask.trunc(InBits);
1351    KnownZero.trunc(InBits);
1352    KnownOne.trunc(InBits);
1353    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1354    KnownZero.zext(BitWidth);
1355    KnownOne.zext(BitWidth);
1356    KnownZero |= NewBits;
1357    return;
1358  }
1359  case ISD::SIGN_EXTEND: {
1360    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1361    unsigned InBits = MVT::getSizeInBits(InVT);
1362    APInt InSignBit = APInt::getSignBit(InBits);
1363    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1364    APInt InMask = Mask;
1365    InMask.trunc(InBits);
1366
1367    // If any of the sign extended bits are demanded, we know that the sign
1368    // bit is demanded. Temporarily set this bit in the mask for our callee.
1369    if (NewBits.getBoolValue())
1370      InMask |= InSignBit;
1371
1372    KnownZero.trunc(InBits);
1373    KnownOne.trunc(InBits);
1374    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1375
1376    // Note if the sign bit is known to be zero or one.
1377    bool SignBitKnownZero = KnownZero.isNegative();
1378    bool SignBitKnownOne  = KnownOne.isNegative();
1379    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1380           "Sign bit can't be known to be both zero and one!");
1381
1382    // If the sign bit wasn't actually demanded by our caller, we don't
1383    // want it set in the KnownZero and KnownOne result values. Reset the
1384    // mask and reapply it to the result values.
1385    InMask = Mask;
1386    InMask.trunc(InBits);
1387    KnownZero &= InMask;
1388    KnownOne  &= InMask;
1389
1390    KnownZero.zext(BitWidth);
1391    KnownOne.zext(BitWidth);
1392
1393    // If the sign bit is known zero or one, the top bits match.
1394    if (SignBitKnownZero)
1395      KnownZero |= NewBits;
1396    else if (SignBitKnownOne)
1397      KnownOne  |= NewBits;
1398    return;
1399  }
1400  case ISD::ANY_EXTEND: {
1401    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1402    unsigned InBits = MVT::getSizeInBits(InVT);
1403    APInt InMask = Mask;
1404    InMask.trunc(InBits);
1405    KnownZero.trunc(InBits);
1406    KnownOne.trunc(InBits);
1407    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1408    KnownZero.zext(BitWidth);
1409    KnownOne.zext(BitWidth);
1410    return;
1411  }
1412  case ISD::TRUNCATE: {
1413    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1414    unsigned InBits = MVT::getSizeInBits(InVT);
1415    APInt InMask = Mask;
1416    InMask.zext(InBits);
1417    KnownZero.zext(InBits);
1418    KnownOne.zext(InBits);
1419    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    KnownZero.trunc(BitWidth);
1422    KnownOne.trunc(BitWidth);
1423    break;
1424  }
1425  case ISD::AssertZext: {
1426    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1427    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1428    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1429                      KnownOne, Depth+1);
1430    KnownZero |= (~InMask) & Mask;
1431    return;
1432  }
1433  case ISD::FGETSIGN:
1434    // All bits are zero except the low bit.
1435    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1436    return;
1437
1438  case ISD::ADD: {
1439    // If either the LHS or the RHS are Zero, the result is zero.
1440    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1441    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1442    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1443    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1444
1445    // Output known-0 bits are known if clear or set in both the low clear bits
1446    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1447    // low 3 bits clear.
1448    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1449                                     KnownZero2.countTrailingOnes());
1450
1451    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1452    KnownOne = APInt(BitWidth, 0);
1453    return;
1454  }
1455  case ISD::SUB: {
1456    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1457    if (!CLHS) return;
1458
1459    // We know that the top bits of C-X are clear if X contains less bits
1460    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1461    // positive if we can prove that X is >= 0 and < 16.
1462    if (CLHS->getAPIntValue().isNonNegative()) {
1463      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1464      // NLZ can't be BitWidth with no sign bit
1465      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1466      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1467
1468      // If all of the MaskV bits are known to be zero, then we know the output
1469      // top bits are zero, because we now know that the output is from [0-C].
1470      if ((KnownZero & MaskV) == MaskV) {
1471        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1472        // Top bits known zero.
1473        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1474        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1475      } else {
1476        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1477      }
1478    }
1479    return;
1480  }
1481  default:
1482    // Allow the target to implement this method for its nodes.
1483    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1484  case ISD::INTRINSIC_WO_CHAIN:
1485  case ISD::INTRINSIC_W_CHAIN:
1486  case ISD::INTRINSIC_VOID:
1487      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1488    }
1489    return;
1490  }
1491}
1492
1493/// ComputeMaskedBits - This is a wrapper around the APInt-using
1494/// form of ComputeMaskedBits for use by clients that haven't been converted
1495/// to APInt yet.
1496void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1497                                     uint64_t &KnownZero, uint64_t &KnownOne,
1498                                     unsigned Depth) const {
1499  // The masks are not wide enough to represent this type!  Should use APInt.
1500  if (Op.getValueType() == MVT::i128)
1501    return;
1502
1503  unsigned NumBits = MVT::getSizeInBits(Op.getValueType());
1504  APInt APIntMask(NumBits, Mask);
1505  APInt APIntKnownZero(NumBits, 0);
1506  APInt APIntKnownOne(NumBits, 0);
1507  ComputeMaskedBits(Op, APIntMask, APIntKnownZero, APIntKnownOne, Depth);
1508  KnownZero = APIntKnownZero.getZExtValue();
1509  KnownOne = APIntKnownOne.getZExtValue();
1510}
1511
1512/// ComputeNumSignBits - Return the number of times the sign bit of the
1513/// register is replicated into the other bits.  We know that at least 1 bit
1514/// is always equal to the sign bit (itself), but other cases can give us
1515/// information.  For example, immediately after an "SRA X, 2", we know that
1516/// the top 3 bits are all equal to each other, so we return 3.
1517unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1518  MVT::ValueType VT = Op.getValueType();
1519  assert(MVT::isInteger(VT) && "Invalid VT!");
1520  unsigned VTBits = MVT::getSizeInBits(VT);
1521  unsigned Tmp, Tmp2;
1522
1523  if (Depth == 6)
1524    return 1;  // Limit search depth.
1525
1526  switch (Op.getOpcode()) {
1527  default: break;
1528  case ISD::AssertSext:
1529    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1530    return VTBits-Tmp+1;
1531  case ISD::AssertZext:
1532    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1533    return VTBits-Tmp;
1534
1535  case ISD::Constant: {
1536    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1537    // If negative, invert the bits, then look at it.
1538    if (Val & MVT::getIntVTSignBit(VT))
1539      Val = ~Val;
1540
1541    // Shift the bits so they are the leading bits in the int64_t.
1542    Val <<= 64-VTBits;
1543
1544    // Return # leading zeros.  We use 'min' here in case Val was zero before
1545    // shifting.  We don't want to return '64' as for an i32 "0".
1546    return std::min(VTBits, CountLeadingZeros_64(Val));
1547  }
1548
1549  case ISD::SIGN_EXTEND:
1550    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1551    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1552
1553  case ISD::SIGN_EXTEND_INREG:
1554    // Max of the input and what this extends.
1555    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1556    Tmp = VTBits-Tmp+1;
1557
1558    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1559    return std::max(Tmp, Tmp2);
1560
1561  case ISD::SRA:
1562    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1563    // SRA X, C   -> adds C sign bits.
1564    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1565      Tmp += C->getValue();
1566      if (Tmp > VTBits) Tmp = VTBits;
1567    }
1568    return Tmp;
1569  case ISD::SHL:
1570    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1571      // shl destroys sign bits.
1572      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1573      if (C->getValue() >= VTBits ||      // Bad shift.
1574          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1575      return Tmp - C->getValue();
1576    }
1577    break;
1578  case ISD::AND:
1579  case ISD::OR:
1580  case ISD::XOR:    // NOT is handled here.
1581    // Logical binary ops preserve the number of sign bits.
1582    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1583    if (Tmp == 1) return 1;  // Early out.
1584    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1585    return std::min(Tmp, Tmp2);
1586
1587  case ISD::SELECT:
1588    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1589    if (Tmp == 1) return 1;  // Early out.
1590    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1591    return std::min(Tmp, Tmp2);
1592
1593  case ISD::SETCC:
1594    // If setcc returns 0/-1, all bits are sign bits.
1595    if (TLI.getSetCCResultContents() ==
1596        TargetLowering::ZeroOrNegativeOneSetCCResult)
1597      return VTBits;
1598    break;
1599  case ISD::ROTL:
1600  case ISD::ROTR:
1601    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1602      unsigned RotAmt = C->getValue() & (VTBits-1);
1603
1604      // Handle rotate right by N like a rotate left by 32-N.
1605      if (Op.getOpcode() == ISD::ROTR)
1606        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1607
1608      // If we aren't rotating out all of the known-in sign bits, return the
1609      // number that are left.  This handles rotl(sext(x), 1) for example.
1610      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1611      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1612    }
1613    break;
1614  case ISD::ADD:
1615    // Add can have at most one carry bit.  Thus we know that the output
1616    // is, at worst, one more bit than the inputs.
1617    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1618    if (Tmp == 1) return 1;  // Early out.
1619
1620    // Special case decrementing a value (ADD X, -1):
1621    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1622      if (CRHS->isAllOnesValue()) {
1623        uint64_t KnownZero, KnownOne;
1624        uint64_t Mask = MVT::getIntVTBitMask(VT);
1625        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1626
1627        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1628        // sign bits set.
1629        if ((KnownZero|1) == Mask)
1630          return VTBits;
1631
1632        // If we are subtracting one from a positive number, there is no carry
1633        // out of the result.
1634        if (KnownZero & MVT::getIntVTSignBit(VT))
1635          return Tmp;
1636      }
1637
1638    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1639    if (Tmp2 == 1) return 1;
1640      return std::min(Tmp, Tmp2)-1;
1641    break;
1642
1643  case ISD::SUB:
1644    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1645    if (Tmp2 == 1) return 1;
1646
1647    // Handle NEG.
1648    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1649      if (CLHS->getValue() == 0) {
1650        uint64_t KnownZero, KnownOne;
1651        uint64_t Mask = MVT::getIntVTBitMask(VT);
1652        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1653        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1654        // sign bits set.
1655        if ((KnownZero|1) == Mask)
1656          return VTBits;
1657
1658        // If the input is known to be positive (the sign bit is known clear),
1659        // the output of the NEG has the same number of sign bits as the input.
1660        if (KnownZero & MVT::getIntVTSignBit(VT))
1661          return Tmp2;
1662
1663        // Otherwise, we treat this like a SUB.
1664      }
1665
1666    // Sub can have at most one carry bit.  Thus we know that the output
1667    // is, at worst, one more bit than the inputs.
1668    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1669    if (Tmp == 1) return 1;  // Early out.
1670      return std::min(Tmp, Tmp2)-1;
1671    break;
1672  case ISD::TRUNCATE:
1673    // FIXME: it's tricky to do anything useful for this, but it is an important
1674    // case for targets like X86.
1675    break;
1676  }
1677
1678  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1679  if (Op.getOpcode() == ISD::LOAD) {
1680    LoadSDNode *LD = cast<LoadSDNode>(Op);
1681    unsigned ExtType = LD->getExtensionType();
1682    switch (ExtType) {
1683    default: break;
1684    case ISD::SEXTLOAD:    // '17' bits known
1685      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1686      return VTBits-Tmp+1;
1687    case ISD::ZEXTLOAD:    // '16' bits known
1688      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1689      return VTBits-Tmp;
1690    }
1691  }
1692
1693  // Allow the target to implement this method for its nodes.
1694  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1695      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1696      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1697      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1698    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1699    if (NumBits > 1) return NumBits;
1700  }
1701
1702  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1703  // use this information.
1704  uint64_t KnownZero, KnownOne;
1705  uint64_t Mask = MVT::getIntVTBitMask(VT);
1706  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1707
1708  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1709  if (KnownZero & SignBit) {        // SignBit is 0
1710    Mask = KnownZero;
1711  } else if (KnownOne & SignBit) {  // SignBit is 1;
1712    Mask = KnownOne;
1713  } else {
1714    // Nothing known.
1715    return 1;
1716  }
1717
1718  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1719  // the number of identical bits in the top of the input value.
1720  Mask ^= ~0ULL;
1721  Mask <<= 64-VTBits;
1722  // Return # leading zeros.  We use 'min' here in case Val was zero before
1723  // shifting.  We don't want to return '64' as for an i32 "0".
1724  return std::min(VTBits, CountLeadingZeros_64(Mask));
1725}
1726
1727
1728bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1729  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1730  if (!GA) return false;
1731  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1732  if (!GV) return false;
1733  MachineModuleInfo *MMI = getMachineModuleInfo();
1734  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1735}
1736
1737
1738/// getNode - Gets or creates the specified node.
1739///
1740SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1741  FoldingSetNodeID ID;
1742  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1743  void *IP = 0;
1744  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1745    return SDOperand(E, 0);
1746  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1747  CSEMap.InsertNode(N, IP);
1748
1749  AllNodes.push_back(N);
1750  return SDOperand(N, 0);
1751}
1752
1753SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1754                                SDOperand Operand) {
1755  unsigned Tmp1;
1756  // Constant fold unary operations with an integer constant operand.
1757  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1758    uint64_t Val = C->getValue();
1759    switch (Opcode) {
1760    default: break;
1761    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1762    case ISD::ANY_EXTEND:
1763    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1764    case ISD::TRUNCATE:    return getConstant(Val, VT);
1765    case ISD::UINT_TO_FP:
1766    case ISD::SINT_TO_FP: {
1767      const uint64_t zero[] = {0, 0};
1768      // No compile time operations on this type.
1769      if (VT==MVT::ppcf128)
1770        break;
1771      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1772      (void)apf.convertFromZeroExtendedInteger(&Val,
1773                               MVT::getSizeInBits(Operand.getValueType()),
1774                               Opcode==ISD::SINT_TO_FP,
1775                               APFloat::rmNearestTiesToEven);
1776      return getConstantFP(apf, VT);
1777    }
1778    case ISD::BIT_CONVERT:
1779      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1780        return getConstantFP(BitsToFloat(Val), VT);
1781      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1782        return getConstantFP(BitsToDouble(Val), VT);
1783      break;
1784    case ISD::BSWAP:
1785      switch(VT) {
1786      default: assert(0 && "Invalid bswap!"); break;
1787      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1788      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1789      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1790      }
1791      break;
1792    case ISD::CTPOP:
1793      switch(VT) {
1794      default: assert(0 && "Invalid ctpop!"); break;
1795      case MVT::i1: return getConstant(Val != 0, VT);
1796      case MVT::i8:
1797        Tmp1 = (unsigned)Val & 0xFF;
1798        return getConstant(CountPopulation_32(Tmp1), VT);
1799      case MVT::i16:
1800        Tmp1 = (unsigned)Val & 0xFFFF;
1801        return getConstant(CountPopulation_32(Tmp1), VT);
1802      case MVT::i32:
1803        return getConstant(CountPopulation_32((unsigned)Val), VT);
1804      case MVT::i64:
1805        return getConstant(CountPopulation_64(Val), VT);
1806      }
1807    case ISD::CTLZ:
1808      switch(VT) {
1809      default: assert(0 && "Invalid ctlz!"); break;
1810      case MVT::i1: return getConstant(Val == 0, VT);
1811      case MVT::i8:
1812        Tmp1 = (unsigned)Val & 0xFF;
1813        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1814      case MVT::i16:
1815        Tmp1 = (unsigned)Val & 0xFFFF;
1816        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1817      case MVT::i32:
1818        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1819      case MVT::i64:
1820        return getConstant(CountLeadingZeros_64(Val), VT);
1821      }
1822    case ISD::CTTZ:
1823      switch(VT) {
1824      default: assert(0 && "Invalid cttz!"); break;
1825      case MVT::i1: return getConstant(Val == 0, VT);
1826      case MVT::i8:
1827        Tmp1 = (unsigned)Val | 0x100;
1828        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1829      case MVT::i16:
1830        Tmp1 = (unsigned)Val | 0x10000;
1831        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1832      case MVT::i32:
1833        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1834      case MVT::i64:
1835        return getConstant(CountTrailingZeros_64(Val), VT);
1836      }
1837    }
1838  }
1839
1840  // Constant fold unary operations with a floating point constant operand.
1841  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1842    APFloat V = C->getValueAPF();    // make copy
1843    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1844      switch (Opcode) {
1845      case ISD::FNEG:
1846        V.changeSign();
1847        return getConstantFP(V, VT);
1848      case ISD::FABS:
1849        V.clearSign();
1850        return getConstantFP(V, VT);
1851      case ISD::FP_ROUND:
1852      case ISD::FP_EXTEND:
1853        // This can return overflow, underflow, or inexact; we don't care.
1854        // FIXME need to be more flexible about rounding mode.
1855        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1856                         VT==MVT::f64 ? APFloat::IEEEdouble :
1857                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1858                         VT==MVT::f128 ? APFloat::IEEEquad :
1859                         APFloat::Bogus,
1860                         APFloat::rmNearestTiesToEven);
1861        return getConstantFP(V, VT);
1862      case ISD::FP_TO_SINT:
1863      case ISD::FP_TO_UINT: {
1864        integerPart x;
1865        assert(integerPartWidth >= 64);
1866        // FIXME need to be more flexible about rounding mode.
1867        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1868                              Opcode==ISD::FP_TO_SINT,
1869                              APFloat::rmTowardZero);
1870        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1871          break;
1872        return getConstant(x, VT);
1873      }
1874      case ISD::BIT_CONVERT:
1875        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1876          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1877        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1878          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1879        break;
1880      }
1881    }
1882  }
1883
1884  unsigned OpOpcode = Operand.Val->getOpcode();
1885  switch (Opcode) {
1886  case ISD::TokenFactor:
1887    return Operand;         // Factor of one node?  No factor.
1888  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1889  case ISD::FP_EXTEND:
1890    assert(MVT::isFloatingPoint(VT) &&
1891           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1892    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1893    break;
1894    case ISD::SIGN_EXTEND:
1895    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1896           "Invalid SIGN_EXTEND!");
1897    if (Operand.getValueType() == VT) return Operand;   // noop extension
1898    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1899           && "Invalid sext node, dst < src!");
1900    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1901      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1902    break;
1903  case ISD::ZERO_EXTEND:
1904    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1905           "Invalid ZERO_EXTEND!");
1906    if (Operand.getValueType() == VT) return Operand;   // noop extension
1907    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1908           && "Invalid zext node, dst < src!");
1909    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1910      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1911    break;
1912  case ISD::ANY_EXTEND:
1913    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1914           "Invalid ANY_EXTEND!");
1915    if (Operand.getValueType() == VT) return Operand;   // noop extension
1916    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1917           && "Invalid anyext node, dst < src!");
1918    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1919      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1920      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1921    break;
1922  case ISD::TRUNCATE:
1923    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1924           "Invalid TRUNCATE!");
1925    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1926    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1927           && "Invalid truncate node, src < dst!");
1928    if (OpOpcode == ISD::TRUNCATE)
1929      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1930    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1931             OpOpcode == ISD::ANY_EXTEND) {
1932      // If the source is smaller than the dest, we still need an extend.
1933      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1934          < MVT::getSizeInBits(VT))
1935        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1936      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1937               > MVT::getSizeInBits(VT))
1938        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1939      else
1940        return Operand.Val->getOperand(0);
1941    }
1942    break;
1943  case ISD::BIT_CONVERT:
1944    // Basic sanity checking.
1945    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1946           && "Cannot BIT_CONVERT between types of different sizes!");
1947    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1948    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1949      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1950    if (OpOpcode == ISD::UNDEF)
1951      return getNode(ISD::UNDEF, VT);
1952    break;
1953  case ISD::SCALAR_TO_VECTOR:
1954    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1955           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1956           "Illegal SCALAR_TO_VECTOR node!");
1957    break;
1958  case ISD::FNEG:
1959    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1960      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1961                     Operand.Val->getOperand(0));
1962    if (OpOpcode == ISD::FNEG)  // --X -> X
1963      return Operand.Val->getOperand(0);
1964    break;
1965  case ISD::FABS:
1966    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1967      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1968    break;
1969  }
1970
1971  SDNode *N;
1972  SDVTList VTs = getVTList(VT);
1973  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1974    FoldingSetNodeID ID;
1975    SDOperand Ops[1] = { Operand };
1976    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1977    void *IP = 0;
1978    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1979      return SDOperand(E, 0);
1980    N = new UnarySDNode(Opcode, VTs, Operand);
1981    CSEMap.InsertNode(N, IP);
1982  } else {
1983    N = new UnarySDNode(Opcode, VTs, Operand);
1984  }
1985  AllNodes.push_back(N);
1986  return SDOperand(N, 0);
1987}
1988
1989
1990
1991SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1992                                SDOperand N1, SDOperand N2) {
1993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1994  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1995  switch (Opcode) {
1996  default: break;
1997  case ISD::TokenFactor:
1998    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1999           N2.getValueType() == MVT::Other && "Invalid token factor!");
2000    // Fold trivial token factors.
2001    if (N1.getOpcode() == ISD::EntryToken) return N2;
2002    if (N2.getOpcode() == ISD::EntryToken) return N1;
2003    break;
2004  case ISD::AND:
2005    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2006           N1.getValueType() == VT && "Binary operator types must match!");
2007    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2008    // worth handling here.
2009    if (N2C && N2C->getValue() == 0)
2010      return N2;
2011    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2012      return N1;
2013    break;
2014  case ISD::OR:
2015  case ISD::XOR:
2016    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2017           N1.getValueType() == VT && "Binary operator types must match!");
2018    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2019    // worth handling here.
2020    if (N2C && N2C->getValue() == 0)
2021      return N1;
2022    break;
2023  case ISD::UDIV:
2024  case ISD::UREM:
2025  case ISD::MULHU:
2026  case ISD::MULHS:
2027    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2028    // fall through
2029  case ISD::ADD:
2030  case ISD::SUB:
2031  case ISD::MUL:
2032  case ISD::SDIV:
2033  case ISD::SREM:
2034  case ISD::FADD:
2035  case ISD::FSUB:
2036  case ISD::FMUL:
2037  case ISD::FDIV:
2038  case ISD::FREM:
2039    assert(N1.getValueType() == N2.getValueType() &&
2040           N1.getValueType() == VT && "Binary operator types must match!");
2041    break;
2042  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2043    assert(N1.getValueType() == VT &&
2044           MVT::isFloatingPoint(N1.getValueType()) &&
2045           MVT::isFloatingPoint(N2.getValueType()) &&
2046           "Invalid FCOPYSIGN!");
2047    break;
2048  case ISD::SHL:
2049  case ISD::SRA:
2050  case ISD::SRL:
2051  case ISD::ROTL:
2052  case ISD::ROTR:
2053    assert(VT == N1.getValueType() &&
2054           "Shift operators return type must be the same as their first arg");
2055    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2056           VT != MVT::i1 && "Shifts only work on integers");
2057    break;
2058  case ISD::FP_ROUND_INREG: {
2059    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2060    assert(VT == N1.getValueType() && "Not an inreg round!");
2061    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2062           "Cannot FP_ROUND_INREG integer types");
2063    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2064           "Not rounding down!");
2065    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2066    break;
2067  }
2068  case ISD::FP_ROUND:
2069    assert(MVT::isFloatingPoint(VT) &&
2070           MVT::isFloatingPoint(N1.getValueType()) &&
2071           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2072           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2073    if (N1.getValueType() == VT) return N1;  // noop conversion.
2074    break;
2075  case ISD::AssertSext:
2076  case ISD::AssertZext: {
2077    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2078    assert(VT == N1.getValueType() && "Not an inreg extend!");
2079    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2080           "Cannot *_EXTEND_INREG FP types");
2081    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2082           "Not extending!");
2083    if (VT == EVT) return N1; // noop assertion.
2084    break;
2085  }
2086  case ISD::SIGN_EXTEND_INREG: {
2087    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2088    assert(VT == N1.getValueType() && "Not an inreg extend!");
2089    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2090           "Cannot *_EXTEND_INREG FP types");
2091    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2092           "Not extending!");
2093    if (EVT == VT) return N1;  // Not actually extending
2094
2095    if (N1C) {
2096      int64_t Val = N1C->getValue();
2097      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2098      Val <<= 64-FromBits;
2099      Val >>= 64-FromBits;
2100      return getConstant(Val, VT);
2101    }
2102    break;
2103  }
2104  case ISD::EXTRACT_VECTOR_ELT:
2105    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2106
2107    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2108    // expanding copies of large vectors from registers.
2109    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2110        N1.getNumOperands() > 0) {
2111      unsigned Factor =
2112        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2113      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2114                     N1.getOperand(N2C->getValue() / Factor),
2115                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2116    }
2117
2118    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2119    // expanding large vector constants.
2120    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2121      return N1.getOperand(N2C->getValue());
2122
2123    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2124    // operations are lowered to scalars.
2125    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2126      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2127        if (IEC == N2C)
2128          return N1.getOperand(1);
2129        else
2130          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2131      }
2132    break;
2133  case ISD::EXTRACT_ELEMENT:
2134    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2135
2136    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2137    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2138    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2139    if (N1.getOpcode() == ISD::BUILD_PAIR)
2140      return N1.getOperand(N2C->getValue());
2141
2142    // EXTRACT_ELEMENT of a constant int is also very common.
2143    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2144      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2145      return getConstant(C->getValue() >> Shift, VT);
2146    }
2147    break;
2148  case ISD::EXTRACT_SUBVECTOR:
2149    if (N1.getValueType() == VT) // Trivial extraction.
2150      return N1;
2151    break;
2152  }
2153
2154  if (N1C) {
2155    if (N2C) {
2156      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2157      switch (Opcode) {
2158      case ISD::ADD: return getConstant(C1 + C2, VT);
2159      case ISD::SUB: return getConstant(C1 - C2, VT);
2160      case ISD::MUL: return getConstant(C1 * C2, VT);
2161      case ISD::UDIV:
2162        if (C2) return getConstant(C1 / C2, VT);
2163        break;
2164      case ISD::UREM :
2165        if (C2) return getConstant(C1 % C2, VT);
2166        break;
2167      case ISD::SDIV :
2168        if (C2) return getConstant(N1C->getSignExtended() /
2169                                   N2C->getSignExtended(), VT);
2170        break;
2171      case ISD::SREM :
2172        if (C2) return getConstant(N1C->getSignExtended() %
2173                                   N2C->getSignExtended(), VT);
2174        break;
2175      case ISD::AND  : return getConstant(C1 & C2, VT);
2176      case ISD::OR   : return getConstant(C1 | C2, VT);
2177      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2178      case ISD::SHL  : return getConstant(C1 << C2, VT);
2179      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2180      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2181      case ISD::ROTL :
2182        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2183                           VT);
2184      case ISD::ROTR :
2185        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2186                           VT);
2187      default: break;
2188      }
2189    } else {      // Cannonicalize constant to RHS if commutative
2190      if (isCommutativeBinOp(Opcode)) {
2191        std::swap(N1C, N2C);
2192        std::swap(N1, N2);
2193      }
2194    }
2195  }
2196
2197  // Constant fold FP operations.
2198  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2199  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2200  if (N1CFP) {
2201    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2202      // Cannonicalize constant to RHS if commutative
2203      std::swap(N1CFP, N2CFP);
2204      std::swap(N1, N2);
2205    } else if (N2CFP && VT != MVT::ppcf128) {
2206      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2207      APFloat::opStatus s;
2208      switch (Opcode) {
2209      case ISD::FADD:
2210        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2211        if (s != APFloat::opInvalidOp)
2212          return getConstantFP(V1, VT);
2213        break;
2214      case ISD::FSUB:
2215        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2216        if (s!=APFloat::opInvalidOp)
2217          return getConstantFP(V1, VT);
2218        break;
2219      case ISD::FMUL:
2220        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2221        if (s!=APFloat::opInvalidOp)
2222          return getConstantFP(V1, VT);
2223        break;
2224      case ISD::FDIV:
2225        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2226        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2227          return getConstantFP(V1, VT);
2228        break;
2229      case ISD::FREM :
2230        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2231        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2232          return getConstantFP(V1, VT);
2233        break;
2234      case ISD::FCOPYSIGN:
2235        V1.copySign(V2);
2236        return getConstantFP(V1, VT);
2237      default: break;
2238      }
2239    }
2240  }
2241
2242  // Canonicalize an UNDEF to the RHS, even over a constant.
2243  if (N1.getOpcode() == ISD::UNDEF) {
2244    if (isCommutativeBinOp(Opcode)) {
2245      std::swap(N1, N2);
2246    } else {
2247      switch (Opcode) {
2248      case ISD::FP_ROUND_INREG:
2249      case ISD::SIGN_EXTEND_INREG:
2250      case ISD::SUB:
2251      case ISD::FSUB:
2252      case ISD::FDIV:
2253      case ISD::FREM:
2254      case ISD::SRA:
2255        return N1;     // fold op(undef, arg2) -> undef
2256      case ISD::UDIV:
2257      case ISD::SDIV:
2258      case ISD::UREM:
2259      case ISD::SREM:
2260      case ISD::SRL:
2261      case ISD::SHL:
2262        if (!MVT::isVector(VT))
2263          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2264        // For vectors, we can't easily build an all zero vector, just return
2265        // the LHS.
2266        return N2;
2267      }
2268    }
2269  }
2270
2271  // Fold a bunch of operators when the RHS is undef.
2272  if (N2.getOpcode() == ISD::UNDEF) {
2273    switch (Opcode) {
2274    case ISD::ADD:
2275    case ISD::ADDC:
2276    case ISD::ADDE:
2277    case ISD::SUB:
2278    case ISD::FADD:
2279    case ISD::FSUB:
2280    case ISD::FMUL:
2281    case ISD::FDIV:
2282    case ISD::FREM:
2283    case ISD::UDIV:
2284    case ISD::SDIV:
2285    case ISD::UREM:
2286    case ISD::SREM:
2287    case ISD::XOR:
2288      return N2;       // fold op(arg1, undef) -> undef
2289    case ISD::MUL:
2290    case ISD::AND:
2291    case ISD::SRL:
2292    case ISD::SHL:
2293      if (!MVT::isVector(VT))
2294        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2295      // For vectors, we can't easily build an all zero vector, just return
2296      // the LHS.
2297      return N1;
2298    case ISD::OR:
2299      if (!MVT::isVector(VT))
2300        return getConstant(MVT::getIntVTBitMask(VT), VT);
2301      // For vectors, we can't easily build an all one vector, just return
2302      // the LHS.
2303      return N1;
2304    case ISD::SRA:
2305      return N1;
2306    }
2307  }
2308
2309  // Memoize this node if possible.
2310  SDNode *N;
2311  SDVTList VTs = getVTList(VT);
2312  if (VT != MVT::Flag) {
2313    SDOperand Ops[] = { N1, N2 };
2314    FoldingSetNodeID ID;
2315    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2316    void *IP = 0;
2317    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2318      return SDOperand(E, 0);
2319    N = new BinarySDNode(Opcode, VTs, N1, N2);
2320    CSEMap.InsertNode(N, IP);
2321  } else {
2322    N = new BinarySDNode(Opcode, VTs, N1, N2);
2323  }
2324
2325  AllNodes.push_back(N);
2326  return SDOperand(N, 0);
2327}
2328
2329SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2330                                SDOperand N1, SDOperand N2, SDOperand N3) {
2331  // Perform various simplifications.
2332  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2333  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2334  switch (Opcode) {
2335  case ISD::SETCC: {
2336    // Use FoldSetCC to simplify SETCC's.
2337    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2338    if (Simp.Val) return Simp;
2339    break;
2340  }
2341  case ISD::SELECT:
2342    if (N1C) {
2343     if (N1C->getValue())
2344        return N2;             // select true, X, Y -> X
2345      else
2346        return N3;             // select false, X, Y -> Y
2347    }
2348
2349    if (N2 == N3) return N2;   // select C, X, X -> X
2350    break;
2351  case ISD::BRCOND:
2352    if (N2C) {
2353      if (N2C->getValue()) // Unconditional branch
2354        return getNode(ISD::BR, MVT::Other, N1, N3);
2355      else
2356        return N1;         // Never-taken branch
2357    }
2358    break;
2359  case ISD::VECTOR_SHUFFLE:
2360    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2361           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2362           N3.getOpcode() == ISD::BUILD_VECTOR &&
2363           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2364           "Illegal VECTOR_SHUFFLE node!");
2365    break;
2366  case ISD::BIT_CONVERT:
2367    // Fold bit_convert nodes from a type to themselves.
2368    if (N1.getValueType() == VT)
2369      return N1;
2370    break;
2371  }
2372
2373  // Memoize node if it doesn't produce a flag.
2374  SDNode *N;
2375  SDVTList VTs = getVTList(VT);
2376  if (VT != MVT::Flag) {
2377    SDOperand Ops[] = { N1, N2, N3 };
2378    FoldingSetNodeID ID;
2379    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2380    void *IP = 0;
2381    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2382      return SDOperand(E, 0);
2383    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2384    CSEMap.InsertNode(N, IP);
2385  } else {
2386    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2387  }
2388  AllNodes.push_back(N);
2389  return SDOperand(N, 0);
2390}
2391
2392SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2393                                SDOperand N1, SDOperand N2, SDOperand N3,
2394                                SDOperand N4) {
2395  SDOperand Ops[] = { N1, N2, N3, N4 };
2396  return getNode(Opcode, VT, Ops, 4);
2397}
2398
2399SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2400                                SDOperand N1, SDOperand N2, SDOperand N3,
2401                                SDOperand N4, SDOperand N5) {
2402  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2403  return getNode(Opcode, VT, Ops, 5);
2404}
2405
2406SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2407                                  SDOperand Src, SDOperand Size,
2408                                  SDOperand Align,
2409                                  SDOperand AlwaysInline) {
2410  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2411  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2412}
2413
2414SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2415                                  SDOperand Src, SDOperand Size,
2416                                  SDOperand Align,
2417                                  SDOperand AlwaysInline) {
2418  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2419  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2420}
2421
2422SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2423                                  SDOperand Src, SDOperand Size,
2424                                  SDOperand Align,
2425                                  SDOperand AlwaysInline) {
2426  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2427  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2428}
2429
2430SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2431                                  SDOperand Ptr, SDOperand Cmp,
2432                                  SDOperand Swp, MVT::ValueType VT) {
2433  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2434  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2435  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2436  FoldingSetNodeID ID;
2437  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2438  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2439  ID.AddInteger((unsigned int)VT);
2440  void* IP = 0;
2441  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2442    return SDOperand(E, 0);
2443  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2444  CSEMap.InsertNode(N, IP);
2445  AllNodes.push_back(N);
2446  return SDOperand(N, 0);
2447}
2448
2449SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2450                                  SDOperand Ptr, SDOperand Val,
2451                                  MVT::ValueType VT) {
2452  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2453         && "Invalid Atomic Op");
2454  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2455  FoldingSetNodeID ID;
2456  SDOperand Ops[] = {Chain, Ptr, Val};
2457  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2458  ID.AddInteger((unsigned int)VT);
2459  void* IP = 0;
2460  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2461    return SDOperand(E, 0);
2462  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2463  CSEMap.InsertNode(N, IP);
2464  AllNodes.push_back(N);
2465  return SDOperand(N, 0);
2466}
2467
2468SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2469                                SDOperand Chain, SDOperand Ptr,
2470                                const Value *SV, int SVOffset,
2471                                bool isVolatile, unsigned Alignment) {
2472  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2473    const Type *Ty = 0;
2474    if (VT != MVT::iPTR) {
2475      Ty = MVT::getTypeForValueType(VT);
2476    } else if (SV) {
2477      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2478      assert(PT && "Value for load must be a pointer");
2479      Ty = PT->getElementType();
2480    }
2481    assert(Ty && "Could not get type information for load");
2482    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2483  }
2484  SDVTList VTs = getVTList(VT, MVT::Other);
2485  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2486  SDOperand Ops[] = { Chain, Ptr, Undef };
2487  FoldingSetNodeID ID;
2488  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2489  ID.AddInteger(ISD::UNINDEXED);
2490  ID.AddInteger(ISD::NON_EXTLOAD);
2491  ID.AddInteger((unsigned int)VT);
2492  ID.AddInteger(Alignment);
2493  ID.AddInteger(isVolatile);
2494  void *IP = 0;
2495  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2496    return SDOperand(E, 0);
2497  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2498                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2499                             isVolatile);
2500  CSEMap.InsertNode(N, IP);
2501  AllNodes.push_back(N);
2502  return SDOperand(N, 0);
2503}
2504
2505SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2506                                   SDOperand Chain, SDOperand Ptr,
2507                                   const Value *SV,
2508                                   int SVOffset, MVT::ValueType EVT,
2509                                   bool isVolatile, unsigned Alignment) {
2510  // If they are asking for an extending load from/to the same thing, return a
2511  // normal load.
2512  if (VT == EVT)
2513    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2514
2515  if (MVT::isVector(VT))
2516    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2517  else
2518    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2519           "Should only be an extending load, not truncating!");
2520  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2521         "Cannot sign/zero extend a FP/Vector load!");
2522  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2523         "Cannot convert from FP to Int or Int -> FP!");
2524
2525  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2526    const Type *Ty = 0;
2527    if (VT != MVT::iPTR) {
2528      Ty = MVT::getTypeForValueType(VT);
2529    } else if (SV) {
2530      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2531      assert(PT && "Value for load must be a pointer");
2532      Ty = PT->getElementType();
2533    }
2534    assert(Ty && "Could not get type information for load");
2535    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2536  }
2537  SDVTList VTs = getVTList(VT, MVT::Other);
2538  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2539  SDOperand Ops[] = { Chain, Ptr, Undef };
2540  FoldingSetNodeID ID;
2541  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2542  ID.AddInteger(ISD::UNINDEXED);
2543  ID.AddInteger(ExtType);
2544  ID.AddInteger((unsigned int)EVT);
2545  ID.AddInteger(Alignment);
2546  ID.AddInteger(isVolatile);
2547  void *IP = 0;
2548  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2549    return SDOperand(E, 0);
2550  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2551                             SV, SVOffset, Alignment, isVolatile);
2552  CSEMap.InsertNode(N, IP);
2553  AllNodes.push_back(N);
2554  return SDOperand(N, 0);
2555}
2556
2557SDOperand
2558SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2559                             SDOperand Offset, ISD::MemIndexedMode AM) {
2560  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2561  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2562         "Load is already a indexed load!");
2563  MVT::ValueType VT = OrigLoad.getValueType();
2564  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2565  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2566  FoldingSetNodeID ID;
2567  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2568  ID.AddInteger(AM);
2569  ID.AddInteger(LD->getExtensionType());
2570  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2571  ID.AddInteger(LD->getAlignment());
2572  ID.AddInteger(LD->isVolatile());
2573  void *IP = 0;
2574  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2575    return SDOperand(E, 0);
2576  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2577                             LD->getExtensionType(), LD->getMemoryVT(),
2578                             LD->getSrcValue(), LD->getSrcValueOffset(),
2579                             LD->getAlignment(), LD->isVolatile());
2580  CSEMap.InsertNode(N, IP);
2581  AllNodes.push_back(N);
2582  return SDOperand(N, 0);
2583}
2584
2585SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2586                                 SDOperand Ptr, const Value *SV, int SVOffset,
2587                                 bool isVolatile, unsigned Alignment) {
2588  MVT::ValueType VT = Val.getValueType();
2589
2590  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2591    const Type *Ty = 0;
2592    if (VT != MVT::iPTR) {
2593      Ty = MVT::getTypeForValueType(VT);
2594    } else if (SV) {
2595      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2596      assert(PT && "Value for store must be a pointer");
2597      Ty = PT->getElementType();
2598    }
2599    assert(Ty && "Could not get type information for store");
2600    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2601  }
2602  SDVTList VTs = getVTList(MVT::Other);
2603  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2604  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2605  FoldingSetNodeID ID;
2606  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2607  ID.AddInteger(ISD::UNINDEXED);
2608  ID.AddInteger(false);
2609  ID.AddInteger((unsigned int)VT);
2610  ID.AddInteger(Alignment);
2611  ID.AddInteger(isVolatile);
2612  void *IP = 0;
2613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2614    return SDOperand(E, 0);
2615  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2616                              VT, SV, SVOffset, Alignment, isVolatile);
2617  CSEMap.InsertNode(N, IP);
2618  AllNodes.push_back(N);
2619  return SDOperand(N, 0);
2620}
2621
2622SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2623                                      SDOperand Ptr, const Value *SV,
2624                                      int SVOffset, MVT::ValueType SVT,
2625                                      bool isVolatile, unsigned Alignment) {
2626  MVT::ValueType VT = Val.getValueType();
2627
2628  if (VT == SVT)
2629    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2630
2631  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2632         "Not a truncation?");
2633  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2634         "Can't do FP-INT conversion!");
2635
2636  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2637    const Type *Ty = 0;
2638    if (VT != MVT::iPTR) {
2639      Ty = MVT::getTypeForValueType(VT);
2640    } else if (SV) {
2641      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2642      assert(PT && "Value for store must be a pointer");
2643      Ty = PT->getElementType();
2644    }
2645    assert(Ty && "Could not get type information for store");
2646    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2647  }
2648  SDVTList VTs = getVTList(MVT::Other);
2649  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2650  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2651  FoldingSetNodeID ID;
2652  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2653  ID.AddInteger(ISD::UNINDEXED);
2654  ID.AddInteger(1);
2655  ID.AddInteger((unsigned int)SVT);
2656  ID.AddInteger(Alignment);
2657  ID.AddInteger(isVolatile);
2658  void *IP = 0;
2659  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2660    return SDOperand(E, 0);
2661  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2662                              SVT, SV, SVOffset, Alignment, isVolatile);
2663  CSEMap.InsertNode(N, IP);
2664  AllNodes.push_back(N);
2665  return SDOperand(N, 0);
2666}
2667
2668SDOperand
2669SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2670                              SDOperand Offset, ISD::MemIndexedMode AM) {
2671  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2672  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2673         "Store is already a indexed store!");
2674  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2675  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2676  FoldingSetNodeID ID;
2677  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2678  ID.AddInteger(AM);
2679  ID.AddInteger(ST->isTruncatingStore());
2680  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2681  ID.AddInteger(ST->getAlignment());
2682  ID.AddInteger(ST->isVolatile());
2683  void *IP = 0;
2684  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2685    return SDOperand(E, 0);
2686  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2687                              ST->isTruncatingStore(), ST->getMemoryVT(),
2688                              ST->getSrcValue(), ST->getSrcValueOffset(),
2689                              ST->getAlignment(), ST->isVolatile());
2690  CSEMap.InsertNode(N, IP);
2691  AllNodes.push_back(N);
2692  return SDOperand(N, 0);
2693}
2694
2695SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2696                                 SDOperand Chain, SDOperand Ptr,
2697                                 SDOperand SV) {
2698  SDOperand Ops[] = { Chain, Ptr, SV };
2699  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2700}
2701
2702SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2703                                const SDOperand *Ops, unsigned NumOps) {
2704  switch (NumOps) {
2705  case 0: return getNode(Opcode, VT);
2706  case 1: return getNode(Opcode, VT, Ops[0]);
2707  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2708  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2709  default: break;
2710  }
2711
2712  switch (Opcode) {
2713  default: break;
2714  case ISD::SELECT_CC: {
2715    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2716    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2717           "LHS and RHS of condition must have same type!");
2718    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2719           "True and False arms of SelectCC must have same type!");
2720    assert(Ops[2].getValueType() == VT &&
2721           "select_cc node must be of same type as true and false value!");
2722    break;
2723  }
2724  case ISD::BR_CC: {
2725    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2726    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2727           "LHS/RHS of comparison should match types!");
2728    break;
2729  }
2730  }
2731
2732  // Memoize nodes.
2733  SDNode *N;
2734  SDVTList VTs = getVTList(VT);
2735  if (VT != MVT::Flag) {
2736    FoldingSetNodeID ID;
2737    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2738    void *IP = 0;
2739    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2740      return SDOperand(E, 0);
2741    N = new SDNode(Opcode, VTs, Ops, NumOps);
2742    CSEMap.InsertNode(N, IP);
2743  } else {
2744    N = new SDNode(Opcode, VTs, Ops, NumOps);
2745  }
2746  AllNodes.push_back(N);
2747  return SDOperand(N, 0);
2748}
2749
2750SDOperand SelectionDAG::getNode(unsigned Opcode,
2751                                std::vector<MVT::ValueType> &ResultTys,
2752                                const SDOperand *Ops, unsigned NumOps) {
2753  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2754                 Ops, NumOps);
2755}
2756
2757SDOperand SelectionDAG::getNode(unsigned Opcode,
2758                                const MVT::ValueType *VTs, unsigned NumVTs,
2759                                const SDOperand *Ops, unsigned NumOps) {
2760  if (NumVTs == 1)
2761    return getNode(Opcode, VTs[0], Ops, NumOps);
2762  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2763}
2764
2765SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2766                                const SDOperand *Ops, unsigned NumOps) {
2767  if (VTList.NumVTs == 1)
2768    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2769
2770  switch (Opcode) {
2771  // FIXME: figure out how to safely handle things like
2772  // int foo(int x) { return 1 << (x & 255); }
2773  // int bar() { return foo(256); }
2774#if 0
2775  case ISD::SRA_PARTS:
2776  case ISD::SRL_PARTS:
2777  case ISD::SHL_PARTS:
2778    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2779        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2780      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2781    else if (N3.getOpcode() == ISD::AND)
2782      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2783        // If the and is only masking out bits that cannot effect the shift,
2784        // eliminate the and.
2785        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2786        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2787          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2788      }
2789    break;
2790#endif
2791  }
2792
2793  // Memoize the node unless it returns a flag.
2794  SDNode *N;
2795  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2796    FoldingSetNodeID ID;
2797    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2798    void *IP = 0;
2799    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2800      return SDOperand(E, 0);
2801    if (NumOps == 1)
2802      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2803    else if (NumOps == 2)
2804      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2805    else if (NumOps == 3)
2806      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2807    else
2808      N = new SDNode(Opcode, VTList, Ops, NumOps);
2809    CSEMap.InsertNode(N, IP);
2810  } else {
2811    if (NumOps == 1)
2812      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2813    else if (NumOps == 2)
2814      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2815    else if (NumOps == 3)
2816      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2817    else
2818      N = new SDNode(Opcode, VTList, Ops, NumOps);
2819  }
2820  AllNodes.push_back(N);
2821  return SDOperand(N, 0);
2822}
2823
2824SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2825  return getNode(Opcode, VTList, 0, 0);
2826}
2827
2828SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2829                                SDOperand N1) {
2830  SDOperand Ops[] = { N1 };
2831  return getNode(Opcode, VTList, Ops, 1);
2832}
2833
2834SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2835                                SDOperand N1, SDOperand N2) {
2836  SDOperand Ops[] = { N1, N2 };
2837  return getNode(Opcode, VTList, Ops, 2);
2838}
2839
2840SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2841                                SDOperand N1, SDOperand N2, SDOperand N3) {
2842  SDOperand Ops[] = { N1, N2, N3 };
2843  return getNode(Opcode, VTList, Ops, 3);
2844}
2845
2846SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2847                                SDOperand N1, SDOperand N2, SDOperand N3,
2848                                SDOperand N4) {
2849  SDOperand Ops[] = { N1, N2, N3, N4 };
2850  return getNode(Opcode, VTList, Ops, 4);
2851}
2852
2853SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2854                                SDOperand N1, SDOperand N2, SDOperand N3,
2855                                SDOperand N4, SDOperand N5) {
2856  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2857  return getNode(Opcode, VTList, Ops, 5);
2858}
2859
2860SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2861  return makeVTList(SDNode::getValueTypeList(VT), 1);
2862}
2863
2864SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2865  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2866       E = VTList.end(); I != E; ++I) {
2867    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2868      return makeVTList(&(*I)[0], 2);
2869  }
2870  std::vector<MVT::ValueType> V;
2871  V.push_back(VT1);
2872  V.push_back(VT2);
2873  VTList.push_front(V);
2874  return makeVTList(&(*VTList.begin())[0], 2);
2875}
2876SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2877                                 MVT::ValueType VT3) {
2878  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2879       E = VTList.end(); I != E; ++I) {
2880    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2881        (*I)[2] == VT3)
2882      return makeVTList(&(*I)[0], 3);
2883  }
2884  std::vector<MVT::ValueType> V;
2885  V.push_back(VT1);
2886  V.push_back(VT2);
2887  V.push_back(VT3);
2888  VTList.push_front(V);
2889  return makeVTList(&(*VTList.begin())[0], 3);
2890}
2891
2892SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2893  switch (NumVTs) {
2894    case 0: assert(0 && "Cannot have nodes without results!");
2895    case 1: return getVTList(VTs[0]);
2896    case 2: return getVTList(VTs[0], VTs[1]);
2897    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2898    default: break;
2899  }
2900
2901  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2902       E = VTList.end(); I != E; ++I) {
2903    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2904
2905    bool NoMatch = false;
2906    for (unsigned i = 2; i != NumVTs; ++i)
2907      if (VTs[i] != (*I)[i]) {
2908        NoMatch = true;
2909        break;
2910      }
2911    if (!NoMatch)
2912      return makeVTList(&*I->begin(), NumVTs);
2913  }
2914
2915  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2916  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2917}
2918
2919
2920/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2921/// specified operands.  If the resultant node already exists in the DAG,
2922/// this does not modify the specified node, instead it returns the node that
2923/// already exists.  If the resultant node does not exist in the DAG, the
2924/// input node is returned.  As a degenerate case, if you specify the same
2925/// input operands as the node already has, the input node is returned.
2926SDOperand SelectionDAG::
2927UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2928  SDNode *N = InN.Val;
2929  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2930
2931  // Check to see if there is no change.
2932  if (Op == N->getOperand(0)) return InN;
2933
2934  // See if the modified node already exists.
2935  void *InsertPos = 0;
2936  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2937    return SDOperand(Existing, InN.ResNo);
2938
2939  // Nope it doesn't.  Remove the node from it's current place in the maps.
2940  if (InsertPos)
2941    RemoveNodeFromCSEMaps(N);
2942
2943  // Now we update the operands.
2944  N->OperandList[0].Val->removeUser(N);
2945  Op.Val->addUser(N);
2946  N->OperandList[0] = Op;
2947
2948  // If this gets put into a CSE map, add it.
2949  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2950  return InN;
2951}
2952
2953SDOperand SelectionDAG::
2954UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2955  SDNode *N = InN.Val;
2956  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2957
2958  // Check to see if there is no change.
2959  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2960    return InN;   // No operands changed, just return the input node.
2961
2962  // See if the modified node already exists.
2963  void *InsertPos = 0;
2964  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2965    return SDOperand(Existing, InN.ResNo);
2966
2967  // Nope it doesn't.  Remove the node from it's current place in the maps.
2968  if (InsertPos)
2969    RemoveNodeFromCSEMaps(N);
2970
2971  // Now we update the operands.
2972  if (N->OperandList[0] != Op1) {
2973    N->OperandList[0].Val->removeUser(N);
2974    Op1.Val->addUser(N);
2975    N->OperandList[0] = Op1;
2976  }
2977  if (N->OperandList[1] != Op2) {
2978    N->OperandList[1].Val->removeUser(N);
2979    Op2.Val->addUser(N);
2980    N->OperandList[1] = Op2;
2981  }
2982
2983  // If this gets put into a CSE map, add it.
2984  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2985  return InN;
2986}
2987
2988SDOperand SelectionDAG::
2989UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2990  SDOperand Ops[] = { Op1, Op2, Op3 };
2991  return UpdateNodeOperands(N, Ops, 3);
2992}
2993
2994SDOperand SelectionDAG::
2995UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2996                   SDOperand Op3, SDOperand Op4) {
2997  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2998  return UpdateNodeOperands(N, Ops, 4);
2999}
3000
3001SDOperand SelectionDAG::
3002UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3003                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3004  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3005  return UpdateNodeOperands(N, Ops, 5);
3006}
3007
3008
3009SDOperand SelectionDAG::
3010UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
3011  SDNode *N = InN.Val;
3012  assert(N->getNumOperands() == NumOps &&
3013         "Update with wrong number of operands");
3014
3015  // Check to see if there is no change.
3016  bool AnyChange = false;
3017  for (unsigned i = 0; i != NumOps; ++i) {
3018    if (Ops[i] != N->getOperand(i)) {
3019      AnyChange = true;
3020      break;
3021    }
3022  }
3023
3024  // No operands changed, just return the input node.
3025  if (!AnyChange) return InN;
3026
3027  // See if the modified node already exists.
3028  void *InsertPos = 0;
3029  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3030    return SDOperand(Existing, InN.ResNo);
3031
3032  // Nope it doesn't.  Remove the node from it's current place in the maps.
3033  if (InsertPos)
3034    RemoveNodeFromCSEMaps(N);
3035
3036  // Now we update the operands.
3037  for (unsigned i = 0; i != NumOps; ++i) {
3038    if (N->OperandList[i] != Ops[i]) {
3039      N->OperandList[i].Val->removeUser(N);
3040      Ops[i].Val->addUser(N);
3041      N->OperandList[i] = Ops[i];
3042    }
3043  }
3044
3045  // If this gets put into a CSE map, add it.
3046  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3047  return InN;
3048}
3049
3050
3051/// MorphNodeTo - This frees the operands of the current node, resets the
3052/// opcode, types, and operands to the specified value.  This should only be
3053/// used by the SelectionDAG class.
3054void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3055                         const SDOperand *Ops, unsigned NumOps) {
3056  NodeType = Opc;
3057  ValueList = L.VTs;
3058  NumValues = L.NumVTs;
3059
3060  // Clear the operands list, updating used nodes to remove this from their
3061  // use list.
3062  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3063    I->Val->removeUser(this);
3064
3065  // If NumOps is larger than the # of operands we currently have, reallocate
3066  // the operand list.
3067  if (NumOps > NumOperands) {
3068    if (OperandsNeedDelete)
3069      delete [] OperandList;
3070    OperandList = new SDOperand[NumOps];
3071    OperandsNeedDelete = true;
3072  }
3073
3074  // Assign the new operands.
3075  NumOperands = NumOps;
3076
3077  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3078    OperandList[i] = Ops[i];
3079    SDNode *N = OperandList[i].Val;
3080    N->Uses.push_back(this);
3081  }
3082}
3083
3084/// SelectNodeTo - These are used for target selectors to *mutate* the
3085/// specified node to have the specified return type, Target opcode, and
3086/// operands.  Note that target opcodes are stored as
3087/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3088///
3089/// Note that SelectNodeTo returns the resultant node.  If there is already a
3090/// node of the specified opcode and operands, it returns that node instead of
3091/// the current one.
3092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3093                                   MVT::ValueType VT) {
3094  SDVTList VTs = getVTList(VT);
3095  FoldingSetNodeID ID;
3096  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3097  void *IP = 0;
3098  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3099    return ON;
3100
3101  RemoveNodeFromCSEMaps(N);
3102
3103  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3104
3105  CSEMap.InsertNode(N, IP);
3106  return N;
3107}
3108
3109SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3110                                   MVT::ValueType VT, SDOperand Op1) {
3111  // If an identical node already exists, use it.
3112  SDVTList VTs = getVTList(VT);
3113  SDOperand Ops[] = { Op1 };
3114
3115  FoldingSetNodeID ID;
3116  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3117  void *IP = 0;
3118  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3119    return ON;
3120
3121  RemoveNodeFromCSEMaps(N);
3122  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3123  CSEMap.InsertNode(N, IP);
3124  return N;
3125}
3126
3127SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3128                                   MVT::ValueType VT, SDOperand Op1,
3129                                   SDOperand Op2) {
3130  // If an identical node already exists, use it.
3131  SDVTList VTs = getVTList(VT);
3132  SDOperand Ops[] = { Op1, Op2 };
3133
3134  FoldingSetNodeID ID;
3135  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3136  void *IP = 0;
3137  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3138    return ON;
3139
3140  RemoveNodeFromCSEMaps(N);
3141
3142  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3143
3144  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3145  return N;
3146}
3147
3148SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3149                                   MVT::ValueType VT, SDOperand Op1,
3150                                   SDOperand Op2, SDOperand Op3) {
3151  // If an identical node already exists, use it.
3152  SDVTList VTs = getVTList(VT);
3153  SDOperand Ops[] = { Op1, Op2, Op3 };
3154  FoldingSetNodeID ID;
3155  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3156  void *IP = 0;
3157  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3158    return ON;
3159
3160  RemoveNodeFromCSEMaps(N);
3161
3162  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3163
3164  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3165  return N;
3166}
3167
3168SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3169                                   MVT::ValueType VT, const SDOperand *Ops,
3170                                   unsigned NumOps) {
3171  // If an identical node already exists, use it.
3172  SDVTList VTs = getVTList(VT);
3173  FoldingSetNodeID ID;
3174  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3175  void *IP = 0;
3176  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3177    return ON;
3178
3179  RemoveNodeFromCSEMaps(N);
3180  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3181
3182  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3183  return N;
3184}
3185
3186SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3187                                   MVT::ValueType VT1, MVT::ValueType VT2,
3188                                   SDOperand Op1, SDOperand Op2) {
3189  SDVTList VTs = getVTList(VT1, VT2);
3190  FoldingSetNodeID ID;
3191  SDOperand Ops[] = { Op1, Op2 };
3192  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3193  void *IP = 0;
3194  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3195    return ON;
3196
3197  RemoveNodeFromCSEMaps(N);
3198  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3199  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3200  return N;
3201}
3202
3203SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3204                                   MVT::ValueType VT1, MVT::ValueType VT2,
3205                                   SDOperand Op1, SDOperand Op2,
3206                                   SDOperand Op3) {
3207  // If an identical node already exists, use it.
3208  SDVTList VTs = getVTList(VT1, VT2);
3209  SDOperand Ops[] = { Op1, Op2, Op3 };
3210  FoldingSetNodeID ID;
3211  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3212  void *IP = 0;
3213  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3214    return ON;
3215
3216  RemoveNodeFromCSEMaps(N);
3217
3218  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3219  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3220  return N;
3221}
3222
3223
3224/// getTargetNode - These are used for target selectors to create a new node
3225/// with specified return type(s), target opcode, and operands.
3226///
3227/// Note that getTargetNode returns the resultant node.  If there is already a
3228/// node of the specified opcode and operands, it returns that node instead of
3229/// the current one.
3230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3231  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3232}
3233SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3234                                    SDOperand Op1) {
3235  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3236}
3237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3238                                    SDOperand Op1, SDOperand Op2) {
3239  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3240}
3241SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3242                                    SDOperand Op1, SDOperand Op2,
3243                                    SDOperand Op3) {
3244  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3245}
3246SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3247                                    const SDOperand *Ops, unsigned NumOps) {
3248  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3249}
3250SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3251                                    MVT::ValueType VT2) {
3252  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3253  SDOperand Op;
3254  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3255}
3256SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3257                                    MVT::ValueType VT2, SDOperand Op1) {
3258  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3259  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3260}
3261SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3262                                    MVT::ValueType VT2, SDOperand Op1,
3263                                    SDOperand Op2) {
3264  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3265  SDOperand Ops[] = { Op1, Op2 };
3266  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3267}
3268SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3269                                    MVT::ValueType VT2, SDOperand Op1,
3270                                    SDOperand Op2, SDOperand Op3) {
3271  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3272  SDOperand Ops[] = { Op1, Op2, Op3 };
3273  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3274}
3275SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3276                                    MVT::ValueType VT2,
3277                                    const SDOperand *Ops, unsigned NumOps) {
3278  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3279  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3280}
3281SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3282                                    MVT::ValueType VT2, MVT::ValueType VT3,
3283                                    SDOperand Op1, SDOperand Op2) {
3284  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3285  SDOperand Ops[] = { Op1, Op2 };
3286  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3287}
3288SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3289                                    MVT::ValueType VT2, MVT::ValueType VT3,
3290                                    SDOperand Op1, SDOperand Op2,
3291                                    SDOperand Op3) {
3292  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3293  SDOperand Ops[] = { Op1, Op2, Op3 };
3294  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3295}
3296SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3297                                    MVT::ValueType VT2, MVT::ValueType VT3,
3298                                    const SDOperand *Ops, unsigned NumOps) {
3299  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3300  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3301}
3302SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3303                                    MVT::ValueType VT2, MVT::ValueType VT3,
3304                                    MVT::ValueType VT4,
3305                                    const SDOperand *Ops, unsigned NumOps) {
3306  std::vector<MVT::ValueType> VTList;
3307  VTList.push_back(VT1);
3308  VTList.push_back(VT2);
3309  VTList.push_back(VT3);
3310  VTList.push_back(VT4);
3311  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3312  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3313}
3314SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3315                                    std::vector<MVT::ValueType> &ResultTys,
3316                                    const SDOperand *Ops, unsigned NumOps) {
3317  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3318  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3319                 Ops, NumOps).Val;
3320}
3321
3322
3323/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3324/// This can cause recursive merging of nodes in the DAG.
3325///
3326/// This version assumes From has a single result value.
3327///
3328void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3329                                      DAGUpdateListener *UpdateListener) {
3330  SDNode *From = FromN.Val;
3331  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3332         "Cannot replace with this method!");
3333  assert(From != To.Val && "Cannot replace uses of with self");
3334
3335  while (!From->use_empty()) {
3336    // Process users until they are all gone.
3337    SDNode *U = *From->use_begin();
3338
3339    // This node is about to morph, remove its old self from the CSE maps.
3340    RemoveNodeFromCSEMaps(U);
3341
3342    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3343         I != E; ++I)
3344      if (I->Val == From) {
3345        From->removeUser(U);
3346        *I = To;
3347        To.Val->addUser(U);
3348      }
3349
3350    // Now that we have modified U, add it back to the CSE maps.  If it already
3351    // exists there, recursively merge the results together.
3352    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3353      ReplaceAllUsesWith(U, Existing, UpdateListener);
3354      // U is now dead.  Inform the listener if it exists and delete it.
3355      if (UpdateListener)
3356        UpdateListener->NodeDeleted(U);
3357      DeleteNodeNotInCSEMaps(U);
3358    } else {
3359      // If the node doesn't already exist, we updated it.  Inform a listener if
3360      // it exists.
3361      if (UpdateListener)
3362        UpdateListener->NodeUpdated(U);
3363    }
3364  }
3365}
3366
3367/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3368/// This can cause recursive merging of nodes in the DAG.
3369///
3370/// This version assumes From/To have matching types and numbers of result
3371/// values.
3372///
3373void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3374                                      DAGUpdateListener *UpdateListener) {
3375  assert(From != To && "Cannot replace uses of with self");
3376  assert(From->getNumValues() == To->getNumValues() &&
3377         "Cannot use this version of ReplaceAllUsesWith!");
3378  if (From->getNumValues() == 1)   // If possible, use the faster version.
3379    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3380                              UpdateListener);
3381
3382  while (!From->use_empty()) {
3383    // Process users until they are all gone.
3384    SDNode *U = *From->use_begin();
3385
3386    // This node is about to morph, remove its old self from the CSE maps.
3387    RemoveNodeFromCSEMaps(U);
3388
3389    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3390         I != E; ++I)
3391      if (I->Val == From) {
3392        From->removeUser(U);
3393        I->Val = To;
3394        To->addUser(U);
3395      }
3396
3397    // Now that we have modified U, add it back to the CSE maps.  If it already
3398    // exists there, recursively merge the results together.
3399    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3400      ReplaceAllUsesWith(U, Existing, UpdateListener);
3401      // U is now dead.  Inform the listener if it exists and delete it.
3402      if (UpdateListener)
3403        UpdateListener->NodeDeleted(U);
3404      DeleteNodeNotInCSEMaps(U);
3405    } else {
3406      // If the node doesn't already exist, we updated it.  Inform a listener if
3407      // it exists.
3408      if (UpdateListener)
3409        UpdateListener->NodeUpdated(U);
3410    }
3411  }
3412}
3413
3414/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3415/// This can cause recursive merging of nodes in the DAG.
3416///
3417/// This version can replace From with any result values.  To must match the
3418/// number and types of values returned by From.
3419void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3420                                      const SDOperand *To,
3421                                      DAGUpdateListener *UpdateListener) {
3422  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3423    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3424
3425  while (!From->use_empty()) {
3426    // Process users until they are all gone.
3427    SDNode *U = *From->use_begin();
3428
3429    // This node is about to morph, remove its old self from the CSE maps.
3430    RemoveNodeFromCSEMaps(U);
3431
3432    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3433         I != E; ++I)
3434      if (I->Val == From) {
3435        const SDOperand &ToOp = To[I->ResNo];
3436        From->removeUser(U);
3437        *I = ToOp;
3438        ToOp.Val->addUser(U);
3439      }
3440
3441    // Now that we have modified U, add it back to the CSE maps.  If it already
3442    // exists there, recursively merge the results together.
3443    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3444      ReplaceAllUsesWith(U, Existing, UpdateListener);
3445      // U is now dead.  Inform the listener if it exists and delete it.
3446      if (UpdateListener)
3447        UpdateListener->NodeDeleted(U);
3448      DeleteNodeNotInCSEMaps(U);
3449    } else {
3450      // If the node doesn't already exist, we updated it.  Inform a listener if
3451      // it exists.
3452      if (UpdateListener)
3453        UpdateListener->NodeUpdated(U);
3454    }
3455  }
3456}
3457
3458namespace {
3459  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3460  /// any deleted nodes from the set passed into its constructor and recursively
3461  /// notifies another update listener if specified.
3462  class ChainedSetUpdaterListener :
3463  public SelectionDAG::DAGUpdateListener {
3464    SmallSetVector<SDNode*, 16> &Set;
3465    SelectionDAG::DAGUpdateListener *Chain;
3466  public:
3467    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3468                              SelectionDAG::DAGUpdateListener *chain)
3469      : Set(set), Chain(chain) {}
3470
3471    virtual void NodeDeleted(SDNode *N) {
3472      Set.remove(N);
3473      if (Chain) Chain->NodeDeleted(N);
3474    }
3475    virtual void NodeUpdated(SDNode *N) {
3476      if (Chain) Chain->NodeUpdated(N);
3477    }
3478  };
3479}
3480
3481/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3482/// uses of other values produced by From.Val alone.  The Deleted vector is
3483/// handled the same way as for ReplaceAllUsesWith.
3484void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3485                                             DAGUpdateListener *UpdateListener){
3486  assert(From != To && "Cannot replace a value with itself");
3487
3488  // Handle the simple, trivial, case efficiently.
3489  if (From.Val->getNumValues() == 1) {
3490    ReplaceAllUsesWith(From, To, UpdateListener);
3491    return;
3492  }
3493
3494  if (From.use_empty()) return;
3495
3496  // Get all of the users of From.Val.  We want these in a nice,
3497  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3498  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3499
3500  // When one of the recursive merges deletes nodes from the graph, we need to
3501  // make sure that UpdateListener is notified *and* that the node is removed
3502  // from Users if present.  CSUL does this.
3503  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3504
3505  while (!Users.empty()) {
3506    // We know that this user uses some value of From.  If it is the right
3507    // value, update it.
3508    SDNode *User = Users.back();
3509    Users.pop_back();
3510
3511    // Scan for an operand that matches From.
3512    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3513    for (; Op != E; ++Op)
3514      if (*Op == From) break;
3515
3516    // If there are no matches, the user must use some other result of From.
3517    if (Op == E) continue;
3518
3519    // Okay, we know this user needs to be updated.  Remove its old self
3520    // from the CSE maps.
3521    RemoveNodeFromCSEMaps(User);
3522
3523    // Update all operands that match "From" in case there are multiple uses.
3524    for (; Op != E; ++Op) {
3525      if (*Op == From) {
3526        From.Val->removeUser(User);
3527        *Op = To;
3528        To.Val->addUser(User);
3529      }
3530    }
3531
3532    // Now that we have modified User, add it back to the CSE maps.  If it
3533    // already exists there, recursively merge the results together.
3534    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3535    if (!Existing) {
3536      if (UpdateListener) UpdateListener->NodeUpdated(User);
3537      continue;  // Continue on to next user.
3538    }
3539
3540    // If there was already an existing matching node, use ReplaceAllUsesWith
3541    // to replace the dead one with the existing one.  This can cause
3542    // recursive merging of other unrelated nodes down the line.  The merging
3543    // can cause deletion of nodes that used the old value.  To handle this, we
3544    // use CSUL to remove them from the Users set.
3545    ReplaceAllUsesWith(User, Existing, &CSUL);
3546
3547    // User is now dead.  Notify a listener if present.
3548    if (UpdateListener) UpdateListener->NodeDeleted(User);
3549    DeleteNodeNotInCSEMaps(User);
3550  }
3551}
3552
3553
3554/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3555/// their allnodes order. It returns the maximum id.
3556unsigned SelectionDAG::AssignNodeIds() {
3557  unsigned Id = 0;
3558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3559    SDNode *N = I;
3560    N->setNodeId(Id++);
3561  }
3562  return Id;
3563}
3564
3565/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3566/// based on their topological order. It returns the maximum id and a vector
3567/// of the SDNodes* in assigned order by reference.
3568unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3569  unsigned DAGSize = AllNodes.size();
3570  std::vector<unsigned> InDegree(DAGSize);
3571  std::vector<SDNode*> Sources;
3572
3573  // Use a two pass approach to avoid using a std::map which is slow.
3574  unsigned Id = 0;
3575  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3576    SDNode *N = I;
3577    N->setNodeId(Id++);
3578    unsigned Degree = N->use_size();
3579    InDegree[N->getNodeId()] = Degree;
3580    if (Degree == 0)
3581      Sources.push_back(N);
3582  }
3583
3584  TopOrder.clear();
3585  while (!Sources.empty()) {
3586    SDNode *N = Sources.back();
3587    Sources.pop_back();
3588    TopOrder.push_back(N);
3589    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3590      SDNode *P = I->Val;
3591      unsigned Degree = --InDegree[P->getNodeId()];
3592      if (Degree == 0)
3593        Sources.push_back(P);
3594    }
3595  }
3596
3597  // Second pass, assign the actual topological order as node ids.
3598  Id = 0;
3599  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3600       TI != TE; ++TI)
3601    (*TI)->setNodeId(Id++);
3602
3603  return Id;
3604}
3605
3606
3607
3608//===----------------------------------------------------------------------===//
3609//                              SDNode Class
3610//===----------------------------------------------------------------------===//
3611
3612// Out-of-line virtual method to give class a home.
3613void SDNode::ANCHOR() {}
3614void UnarySDNode::ANCHOR() {}
3615void BinarySDNode::ANCHOR() {}
3616void TernarySDNode::ANCHOR() {}
3617void HandleSDNode::ANCHOR() {}
3618void StringSDNode::ANCHOR() {}
3619void ConstantSDNode::ANCHOR() {}
3620void ConstantFPSDNode::ANCHOR() {}
3621void GlobalAddressSDNode::ANCHOR() {}
3622void FrameIndexSDNode::ANCHOR() {}
3623void JumpTableSDNode::ANCHOR() {}
3624void ConstantPoolSDNode::ANCHOR() {}
3625void BasicBlockSDNode::ANCHOR() {}
3626void SrcValueSDNode::ANCHOR() {}
3627void MemOperandSDNode::ANCHOR() {}
3628void RegisterSDNode::ANCHOR() {}
3629void ExternalSymbolSDNode::ANCHOR() {}
3630void CondCodeSDNode::ANCHOR() {}
3631void VTSDNode::ANCHOR() {}
3632void LoadSDNode::ANCHOR() {}
3633void StoreSDNode::ANCHOR() {}
3634void AtomicSDNode::ANCHOR() {}
3635
3636HandleSDNode::~HandleSDNode() {
3637  SDVTList VTs = { 0, 0 };
3638  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3639}
3640
3641GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3642                                         MVT::ValueType VT, int o)
3643  : SDNode(isa<GlobalVariable>(GA) &&
3644           cast<GlobalVariable>(GA)->isThreadLocal() ?
3645           // Thread Local
3646           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3647           // Non Thread Local
3648           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3649           getSDVTList(VT)), Offset(o) {
3650  TheGlobal = const_cast<GlobalValue*>(GA);
3651}
3652
3653/// getMemOperand - Return a MemOperand object describing the memory
3654/// reference performed by this load or store.
3655MemOperand LSBaseSDNode::getMemOperand() const {
3656  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3657  int Flags =
3658    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3659  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3660
3661  // Check if the load references a frame index, and does not have
3662  // an SV attached.
3663  const FrameIndexSDNode *FI =
3664    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3665  if (!getSrcValue() && FI)
3666    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3667                      FI->getIndex(), Size, Alignment);
3668  else
3669    return MemOperand(getSrcValue(), Flags,
3670                      getSrcValueOffset(), Size, Alignment);
3671}
3672
3673/// Profile - Gather unique data for the node.
3674///
3675void SDNode::Profile(FoldingSetNodeID &ID) {
3676  AddNodeIDNode(ID, this);
3677}
3678
3679/// getValueTypeList - Return a pointer to the specified value type.
3680///
3681const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3682  if (MVT::isExtendedVT(VT)) {
3683    static std::set<MVT::ValueType> EVTs;
3684    return &(*EVTs.insert(VT).first);
3685  } else {
3686    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3687    VTs[VT] = VT;
3688    return &VTs[VT];
3689  }
3690}
3691
3692/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3693/// indicated value.  This method ignores uses of other values defined by this
3694/// operation.
3695bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3696  assert(Value < getNumValues() && "Bad value!");
3697
3698  // If there is only one value, this is easy.
3699  if (getNumValues() == 1)
3700    return use_size() == NUses;
3701  if (use_size() < NUses) return false;
3702
3703  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3704
3705  SmallPtrSet<SDNode*, 32> UsersHandled;
3706
3707  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3708    SDNode *User = *UI;
3709    if (User->getNumOperands() == 1 ||
3710        UsersHandled.insert(User))     // First time we've seen this?
3711      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3712        if (User->getOperand(i) == TheValue) {
3713          if (NUses == 0)
3714            return false;   // too many uses
3715          --NUses;
3716        }
3717  }
3718
3719  // Found exactly the right number of uses?
3720  return NUses == 0;
3721}
3722
3723
3724/// hasAnyUseOfValue - Return true if there are any use of the indicated
3725/// value. This method ignores uses of other values defined by this operation.
3726bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3727  assert(Value < getNumValues() && "Bad value!");
3728
3729  if (use_empty()) return false;
3730
3731  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3732
3733  SmallPtrSet<SDNode*, 32> UsersHandled;
3734
3735  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3736    SDNode *User = *UI;
3737    if (User->getNumOperands() == 1 ||
3738        UsersHandled.insert(User))     // First time we've seen this?
3739      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3740        if (User->getOperand(i) == TheValue) {
3741          return true;
3742        }
3743  }
3744
3745  return false;
3746}
3747
3748
3749/// isOnlyUse - Return true if this node is the only use of N.
3750///
3751bool SDNode::isOnlyUse(SDNode *N) const {
3752  bool Seen = false;
3753  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3754    SDNode *User = *I;
3755    if (User == this)
3756      Seen = true;
3757    else
3758      return false;
3759  }
3760
3761  return Seen;
3762}
3763
3764/// isOperand - Return true if this node is an operand of N.
3765///
3766bool SDOperand::isOperand(SDNode *N) const {
3767  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3768    if (*this == N->getOperand(i))
3769      return true;
3770  return false;
3771}
3772
3773bool SDNode::isOperand(SDNode *N) const {
3774  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3775    if (this == N->OperandList[i].Val)
3776      return true;
3777  return false;
3778}
3779
3780/// reachesChainWithoutSideEffects - Return true if this operand (which must
3781/// be a chain) reaches the specified operand without crossing any
3782/// side-effecting instructions.  In practice, this looks through token
3783/// factors and non-volatile loads.  In order to remain efficient, this only
3784/// looks a couple of nodes in, it does not do an exhaustive search.
3785bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3786                                               unsigned Depth) const {
3787  if (*this == Dest) return true;
3788
3789  // Don't search too deeply, we just want to be able to see through
3790  // TokenFactor's etc.
3791  if (Depth == 0) return false;
3792
3793  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3794  // of the operands of the TF reach dest, then we can do the xform.
3795  if (getOpcode() == ISD::TokenFactor) {
3796    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3797      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3798        return true;
3799    return false;
3800  }
3801
3802  // Loads don't have side effects, look through them.
3803  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3804    if (!Ld->isVolatile())
3805      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3806  }
3807  return false;
3808}
3809
3810
3811static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3812                            SmallPtrSet<SDNode *, 32> &Visited) {
3813  if (found || !Visited.insert(N))
3814    return;
3815
3816  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3817    SDNode *Op = N->getOperand(i).Val;
3818    if (Op == P) {
3819      found = true;
3820      return;
3821    }
3822    findPredecessor(Op, P, found, Visited);
3823  }
3824}
3825
3826/// isPredecessor - Return true if this node is a predecessor of N. This node
3827/// is either an operand of N or it can be reached by recursively traversing
3828/// up the operands.
3829/// NOTE: this is an expensive method. Use it carefully.
3830bool SDNode::isPredecessor(SDNode *N) const {
3831  SmallPtrSet<SDNode *, 32> Visited;
3832  bool found = false;
3833  findPredecessor(N, this, found, Visited);
3834  return found;
3835}
3836
3837uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3838  assert(Num < NumOperands && "Invalid child # of SDNode!");
3839  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3840}
3841
3842std::string SDNode::getOperationName(const SelectionDAG *G) const {
3843  switch (getOpcode()) {
3844  default:
3845    if (getOpcode() < ISD::BUILTIN_OP_END)
3846      return "<<Unknown DAG Node>>";
3847    else {
3848      if (G) {
3849        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3850          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3851            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3852
3853        TargetLowering &TLI = G->getTargetLoweringInfo();
3854        const char *Name =
3855          TLI.getTargetNodeName(getOpcode());
3856        if (Name) return Name;
3857      }
3858
3859      return "<<Unknown Target Node>>";
3860    }
3861
3862  case ISD::MEMBARRIER:    return "MemBarrier";
3863  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3864  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3865  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3866  case ISD::PCMARKER:      return "PCMarker";
3867  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3868  case ISD::SRCVALUE:      return "SrcValue";
3869  case ISD::MEMOPERAND:    return "MemOperand";
3870  case ISD::EntryToken:    return "EntryToken";
3871  case ISD::TokenFactor:   return "TokenFactor";
3872  case ISD::AssertSext:    return "AssertSext";
3873  case ISD::AssertZext:    return "AssertZext";
3874
3875  case ISD::STRING:        return "String";
3876  case ISD::BasicBlock:    return "BasicBlock";
3877  case ISD::VALUETYPE:     return "ValueType";
3878  case ISD::Register:      return "Register";
3879
3880  case ISD::Constant:      return "Constant";
3881  case ISD::ConstantFP:    return "ConstantFP";
3882  case ISD::GlobalAddress: return "GlobalAddress";
3883  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3884  case ISD::FrameIndex:    return "FrameIndex";
3885  case ISD::JumpTable:     return "JumpTable";
3886  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3887  case ISD::RETURNADDR: return "RETURNADDR";
3888  case ISD::FRAMEADDR: return "FRAMEADDR";
3889  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3890  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3891  case ISD::EHSELECTION: return "EHSELECTION";
3892  case ISD::EH_RETURN: return "EH_RETURN";
3893  case ISD::ConstantPool:  return "ConstantPool";
3894  case ISD::ExternalSymbol: return "ExternalSymbol";
3895  case ISD::INTRINSIC_WO_CHAIN: {
3896    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3897    return Intrinsic::getName((Intrinsic::ID)IID);
3898  }
3899  case ISD::INTRINSIC_VOID:
3900  case ISD::INTRINSIC_W_CHAIN: {
3901    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3902    return Intrinsic::getName((Intrinsic::ID)IID);
3903  }
3904
3905  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3906  case ISD::TargetConstant: return "TargetConstant";
3907  case ISD::TargetConstantFP:return "TargetConstantFP";
3908  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3909  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3910  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3911  case ISD::TargetJumpTable:  return "TargetJumpTable";
3912  case ISD::TargetConstantPool:  return "TargetConstantPool";
3913  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3914
3915  case ISD::CopyToReg:     return "CopyToReg";
3916  case ISD::CopyFromReg:   return "CopyFromReg";
3917  case ISD::UNDEF:         return "undef";
3918  case ISD::MERGE_VALUES:  return "merge_values";
3919  case ISD::INLINEASM:     return "inlineasm";
3920  case ISD::LABEL:         return "label";
3921  case ISD::DECLARE:       return "declare";
3922  case ISD::HANDLENODE:    return "handlenode";
3923  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3924  case ISD::CALL:          return "call";
3925
3926  // Unary operators
3927  case ISD::FABS:   return "fabs";
3928  case ISD::FNEG:   return "fneg";
3929  case ISD::FSQRT:  return "fsqrt";
3930  case ISD::FSIN:   return "fsin";
3931  case ISD::FCOS:   return "fcos";
3932  case ISD::FPOWI:  return "fpowi";
3933  case ISD::FPOW:   return "fpow";
3934
3935  // Binary operators
3936  case ISD::ADD:    return "add";
3937  case ISD::SUB:    return "sub";
3938  case ISD::MUL:    return "mul";
3939  case ISD::MULHU:  return "mulhu";
3940  case ISD::MULHS:  return "mulhs";
3941  case ISD::SDIV:   return "sdiv";
3942  case ISD::UDIV:   return "udiv";
3943  case ISD::SREM:   return "srem";
3944  case ISD::UREM:   return "urem";
3945  case ISD::SMUL_LOHI:  return "smul_lohi";
3946  case ISD::UMUL_LOHI:  return "umul_lohi";
3947  case ISD::SDIVREM:    return "sdivrem";
3948  case ISD::UDIVREM:    return "divrem";
3949  case ISD::AND:    return "and";
3950  case ISD::OR:     return "or";
3951  case ISD::XOR:    return "xor";
3952  case ISD::SHL:    return "shl";
3953  case ISD::SRA:    return "sra";
3954  case ISD::SRL:    return "srl";
3955  case ISD::ROTL:   return "rotl";
3956  case ISD::ROTR:   return "rotr";
3957  case ISD::FADD:   return "fadd";
3958  case ISD::FSUB:   return "fsub";
3959  case ISD::FMUL:   return "fmul";
3960  case ISD::FDIV:   return "fdiv";
3961  case ISD::FREM:   return "frem";
3962  case ISD::FCOPYSIGN: return "fcopysign";
3963  case ISD::FGETSIGN:  return "fgetsign";
3964
3965  case ISD::SETCC:       return "setcc";
3966  case ISD::SELECT:      return "select";
3967  case ISD::SELECT_CC:   return "select_cc";
3968  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3969  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3970  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3971  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3972  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3973  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3974  case ISD::CARRY_FALSE:         return "carry_false";
3975  case ISD::ADDC:        return "addc";
3976  case ISD::ADDE:        return "adde";
3977  case ISD::SUBC:        return "subc";
3978  case ISD::SUBE:        return "sube";
3979  case ISD::SHL_PARTS:   return "shl_parts";
3980  case ISD::SRA_PARTS:   return "sra_parts";
3981  case ISD::SRL_PARTS:   return "srl_parts";
3982
3983  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3984  case ISD::INSERT_SUBREG:      return "insert_subreg";
3985
3986  // Conversion operators.
3987  case ISD::SIGN_EXTEND: return "sign_extend";
3988  case ISD::ZERO_EXTEND: return "zero_extend";
3989  case ISD::ANY_EXTEND:  return "any_extend";
3990  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3991  case ISD::TRUNCATE:    return "truncate";
3992  case ISD::FP_ROUND:    return "fp_round";
3993  case ISD::FLT_ROUNDS_: return "flt_rounds";
3994  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3995  case ISD::FP_EXTEND:   return "fp_extend";
3996
3997  case ISD::SINT_TO_FP:  return "sint_to_fp";
3998  case ISD::UINT_TO_FP:  return "uint_to_fp";
3999  case ISD::FP_TO_SINT:  return "fp_to_sint";
4000  case ISD::FP_TO_UINT:  return "fp_to_uint";
4001  case ISD::BIT_CONVERT: return "bit_convert";
4002
4003    // Control flow instructions
4004  case ISD::BR:      return "br";
4005  case ISD::BRIND:   return "brind";
4006  case ISD::BR_JT:   return "br_jt";
4007  case ISD::BRCOND:  return "brcond";
4008  case ISD::BR_CC:   return "br_cc";
4009  case ISD::RET:     return "ret";
4010  case ISD::CALLSEQ_START:  return "callseq_start";
4011  case ISD::CALLSEQ_END:    return "callseq_end";
4012
4013    // Other operators
4014  case ISD::LOAD:               return "load";
4015  case ISD::STORE:              return "store";
4016  case ISD::VAARG:              return "vaarg";
4017  case ISD::VACOPY:             return "vacopy";
4018  case ISD::VAEND:              return "vaend";
4019  case ISD::VASTART:            return "vastart";
4020  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4021  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4022  case ISD::BUILD_PAIR:         return "build_pair";
4023  case ISD::STACKSAVE:          return "stacksave";
4024  case ISD::STACKRESTORE:       return "stackrestore";
4025  case ISD::TRAP:               return "trap";
4026
4027  // Block memory operations.
4028  case ISD::MEMSET:  return "memset";
4029  case ISD::MEMCPY:  return "memcpy";
4030  case ISD::MEMMOVE: return "memmove";
4031
4032  // Bit manipulation
4033  case ISD::BSWAP:   return "bswap";
4034  case ISD::CTPOP:   return "ctpop";
4035  case ISD::CTTZ:    return "cttz";
4036  case ISD::CTLZ:    return "ctlz";
4037
4038  // Debug info
4039  case ISD::LOCATION: return "location";
4040  case ISD::DEBUG_LOC: return "debug_loc";
4041
4042  // Trampolines
4043  case ISD::TRAMPOLINE: return "trampoline";
4044
4045  case ISD::CONDCODE:
4046    switch (cast<CondCodeSDNode>(this)->get()) {
4047    default: assert(0 && "Unknown setcc condition!");
4048    case ISD::SETOEQ:  return "setoeq";
4049    case ISD::SETOGT:  return "setogt";
4050    case ISD::SETOGE:  return "setoge";
4051    case ISD::SETOLT:  return "setolt";
4052    case ISD::SETOLE:  return "setole";
4053    case ISD::SETONE:  return "setone";
4054
4055    case ISD::SETO:    return "seto";
4056    case ISD::SETUO:   return "setuo";
4057    case ISD::SETUEQ:  return "setue";
4058    case ISD::SETUGT:  return "setugt";
4059    case ISD::SETUGE:  return "setuge";
4060    case ISD::SETULT:  return "setult";
4061    case ISD::SETULE:  return "setule";
4062    case ISD::SETUNE:  return "setune";
4063
4064    case ISD::SETEQ:   return "seteq";
4065    case ISD::SETGT:   return "setgt";
4066    case ISD::SETGE:   return "setge";
4067    case ISD::SETLT:   return "setlt";
4068    case ISD::SETLE:   return "setle";
4069    case ISD::SETNE:   return "setne";
4070    }
4071  }
4072}
4073
4074const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4075  switch (AM) {
4076  default:
4077    return "";
4078  case ISD::PRE_INC:
4079    return "<pre-inc>";
4080  case ISD::PRE_DEC:
4081    return "<pre-dec>";
4082  case ISD::POST_INC:
4083    return "<post-inc>";
4084  case ISD::POST_DEC:
4085    return "<post-dec>";
4086  }
4087}
4088
4089void SDNode::dump() const { dump(0); }
4090void SDNode::dump(const SelectionDAG *G) const {
4091  cerr << (void*)this << ": ";
4092
4093  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4094    if (i) cerr << ",";
4095    if (getValueType(i) == MVT::Other)
4096      cerr << "ch";
4097    else
4098      cerr << MVT::getValueTypeString(getValueType(i));
4099  }
4100  cerr << " = " << getOperationName(G);
4101
4102  cerr << " ";
4103  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4104    if (i) cerr << ", ";
4105    cerr << (void*)getOperand(i).Val;
4106    if (unsigned RN = getOperand(i).ResNo)
4107      cerr << ":" << RN;
4108  }
4109
4110  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4111    SDNode *Mask = getOperand(2).Val;
4112    cerr << "<";
4113    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4114      if (i) cerr << ",";
4115      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4116        cerr << "u";
4117      else
4118        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4119    }
4120    cerr << ">";
4121  }
4122
4123  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4124    cerr << "<" << CSDN->getValue() << ">";
4125  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4126    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4127      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4128    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4129      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4130    else {
4131      cerr << "<APFloat(";
4132      CSDN->getValueAPF().convertToAPInt().dump();
4133      cerr << ")>";
4134    }
4135  } else if (const GlobalAddressSDNode *GADN =
4136             dyn_cast<GlobalAddressSDNode>(this)) {
4137    int offset = GADN->getOffset();
4138    cerr << "<";
4139    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4140    if (offset > 0)
4141      cerr << " + " << offset;
4142    else
4143      cerr << " " << offset;
4144  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4145    cerr << "<" << FIDN->getIndex() << ">";
4146  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4147    cerr << "<" << JTDN->getIndex() << ">";
4148  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4149    int offset = CP->getOffset();
4150    if (CP->isMachineConstantPoolEntry())
4151      cerr << "<" << *CP->getMachineCPVal() << ">";
4152    else
4153      cerr << "<" << *CP->getConstVal() << ">";
4154    if (offset > 0)
4155      cerr << " + " << offset;
4156    else
4157      cerr << " " << offset;
4158  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4159    cerr << "<";
4160    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4161    if (LBB)
4162      cerr << LBB->getName() << " ";
4163    cerr << (const void*)BBDN->getBasicBlock() << ">";
4164  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4165    if (G && R->getReg() &&
4166        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4167      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4168    } else {
4169      cerr << " #" << R->getReg();
4170    }
4171  } else if (const ExternalSymbolSDNode *ES =
4172             dyn_cast<ExternalSymbolSDNode>(this)) {
4173    cerr << "'" << ES->getSymbol() << "'";
4174  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4175    if (M->getValue())
4176      cerr << "<" << M->getValue() << ">";
4177    else
4178      cerr << "<null>";
4179  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4180    if (M->MO.getValue())
4181      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4182    else
4183      cerr << "<null:" << M->MO.getOffset() << ">";
4184  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4185    cerr << ":" << MVT::getValueTypeString(N->getVT());
4186  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4187    const Value *SrcValue = LD->getSrcValue();
4188    int SrcOffset = LD->getSrcValueOffset();
4189    cerr << " <";
4190    if (SrcValue)
4191      cerr << SrcValue;
4192    else
4193      cerr << "null";
4194    cerr << ":" << SrcOffset << ">";
4195
4196    bool doExt = true;
4197    switch (LD->getExtensionType()) {
4198    default: doExt = false; break;
4199    case ISD::EXTLOAD:
4200      cerr << " <anyext ";
4201      break;
4202    case ISD::SEXTLOAD:
4203      cerr << " <sext ";
4204      break;
4205    case ISD::ZEXTLOAD:
4206      cerr << " <zext ";
4207      break;
4208    }
4209    if (doExt)
4210      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4211
4212    const char *AM = getIndexedModeName(LD->getAddressingMode());
4213    if (*AM)
4214      cerr << " " << AM;
4215    if (LD->isVolatile())
4216      cerr << " <volatile>";
4217    cerr << " alignment=" << LD->getAlignment();
4218  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4219    const Value *SrcValue = ST->getSrcValue();
4220    int SrcOffset = ST->getSrcValueOffset();
4221    cerr << " <";
4222    if (SrcValue)
4223      cerr << SrcValue;
4224    else
4225      cerr << "null";
4226    cerr << ":" << SrcOffset << ">";
4227
4228    if (ST->isTruncatingStore())
4229      cerr << " <trunc "
4230           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4231
4232    const char *AM = getIndexedModeName(ST->getAddressingMode());
4233    if (*AM)
4234      cerr << " " << AM;
4235    if (ST->isVolatile())
4236      cerr << " <volatile>";
4237    cerr << " alignment=" << ST->getAlignment();
4238  }
4239}
4240
4241static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4242  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4243    if (N->getOperand(i).Val->hasOneUse())
4244      DumpNodes(N->getOperand(i).Val, indent+2, G);
4245    else
4246      cerr << "\n" << std::string(indent+2, ' ')
4247           << (void*)N->getOperand(i).Val << ": <multiple use>";
4248
4249
4250  cerr << "\n" << std::string(indent, ' ');
4251  N->dump(G);
4252}
4253
4254void SelectionDAG::dump() const {
4255  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4256  std::vector<const SDNode*> Nodes;
4257  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4258       I != E; ++I)
4259    Nodes.push_back(I);
4260
4261  std::sort(Nodes.begin(), Nodes.end());
4262
4263  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4264    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4265      DumpNodes(Nodes[i], 2, this);
4266  }
4267
4268  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4269
4270  cerr << "\n\n";
4271}
4272
4273const Type *ConstantPoolSDNode::getType() const {
4274  if (isMachineConstantPoolEntry())
4275    return Val.MachineCPVal->getType();
4276  return Val.ConstVal->getType();
4277}
4278