SelectionDAG.cpp revision 221925eccace7433cb3b3c42875645c499db91a2
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57  SDVTList Res = {VTs, NumVTs};
58  return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  default: llvm_unreachable("Unknown FP format");
64  case MVT::f32:     return &APFloat::IEEEsingle;
65  case MVT::f64:     return &APFloat::IEEEdouble;
66  case MVT::f80:     return &APFloat::x87DoubleExtended;
67  case MVT::f128:    return &APFloat::IEEEquad;
68  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69  }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75//                              ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83  return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87                                           const APFloat& Val) {
88  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90  // PPC long double cannot be converted to any other type.
91  if (VT == MVT::ppcf128 ||
92      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93    return false;
94
95  // convert modifies in place, so make a copy.
96  APFloat Val2 = APFloat(Val);
97  bool losesInfo;
98  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99                      &losesInfo);
100  return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104//                              ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).getNode();
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDValue NotZero = N->getOperand(i);
128  if (isa<ConstantSDNode>(NotZero)) {
129    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(NotZero)) {
132    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133                bitcastToAPInt().isAllOnesValue())
134      return false;
135  } else
136    return false;
137
138  // Okay, we have at least one ~0 value, check to see if the rest match or are
139  // undefs.
140  for (++i; i != e; ++i)
141    if (N->getOperand(i) != NotZero &&
142        N->getOperand(i).getOpcode() != ISD::UNDEF)
143      return false;
144  return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151  // Look through a bit convert.
152  if (N->getOpcode() == ISD::BIT_CONVERT)
153    N = N->getOperand(0).getNode();
154
155  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157  unsigned i = 0, e = N->getNumOperands();
158
159  // Skip over all of the undef values.
160  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161    ++i;
162
163  // Do not accept an all-undef vector.
164  if (i == e) return false;
165
166  // Do not accept build_vectors that aren't all constants or which have non-0
167  // elements.
168  SDValue Zero = N->getOperand(i);
169  if (isa<ConstantSDNode>(Zero)) {
170    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171      return false;
172  } else if (isa<ConstantFPSDNode>(Zero)) {
173    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174      return false;
175  } else
176    return false;
177
178  // Okay, we have at least one 0 value, check to see if the rest match or are
179  // undefs.
180  for (++i; i != e; ++i)
181    if (N->getOperand(i) != Zero &&
182        N->getOperand(i).getOpcode() != ISD::UNDEF)
183      return false;
184  return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192    return true;
193
194  if (N->getOpcode() != ISD::BUILD_VECTOR)
195    return false;
196  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197    return false;
198  unsigned NumElems = N->getNumOperands();
199  for (unsigned i = 1; i < NumElems; ++i) {
200    SDValue V = N->getOperand(i);
201    if (V.getOpcode() != ISD::UNDEF)
202      return false;
203  }
204  return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));       // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;  // Don't let N and U bits get set.
230
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: llvm_unreachable("Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::EH_LABEL:
498    return true;   // Never CSE these nodes.
499  }
500
501  // Check that remaining values produced are not flags.
502  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503    if (N->getValueType(i) == MVT::Flag)
504      return true; // Never CSE anything that produces a flag.
505
506  return false;
507}
508
509/// RemoveDeadNodes - This method deletes all unreachable nodes in the
510/// SelectionDAG.
511void SelectionDAG::RemoveDeadNodes() {
512  // Create a dummy node (which is not added to allnodes), that adds a reference
513  // to the root node, preventing it from being deleted.
514  HandleSDNode Dummy(getRoot());
515
516  SmallVector<SDNode*, 128> DeadNodes;
517
518  // Add all obviously-dead nodes to the DeadNodes worklist.
519  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520    if (I->use_empty())
521      DeadNodes.push_back(I);
522
523  RemoveDeadNodes(DeadNodes);
524
525  // If the root changed (e.g. it was a dead load, update the root).
526  setRoot(Dummy.getValue());
527}
528
529/// RemoveDeadNodes - This method deletes the unreachable nodes in the
530/// given list, and any nodes that become unreachable as a result.
531void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532                                   DAGUpdateListener *UpdateListener) {
533
534  // Process the worklist, deleting the nodes and adding their uses to the
535  // worklist.
536  while (!DeadNodes.empty()) {
537    SDNode *N = DeadNodes.pop_back_val();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548      SDUse &Use = *I++;
549      SDNode *Operand = Use.getNode();
550      Use.set(SDValue());
551
552      // Now that we removed this operand, see if there are no uses of it left.
553      if (Operand->use_empty())
554        DeadNodes.push_back(Operand);
555    }
556
557    DeallocateNode(N);
558  }
559}
560
561void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562  SmallVector<SDNode*, 16> DeadNodes(1, N);
563  RemoveDeadNodes(DeadNodes, UpdateListener);
564}
565
566void SelectionDAG::DeleteNode(SDNode *N) {
567  // First take this out of the appropriate CSE map.
568  RemoveNodeFromCSEMaps(N);
569
570  // Finally, remove uses due to operands of this node, remove from the
571  // AllNodes list, and delete the node.
572  DeleteNodeNotInCSEMaps(N);
573}
574
575void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // Drop all of the operands and decrement used node's use counts.
580  N->DropOperands();
581
582  DeallocateNode(N);
583}
584
585void SelectionDAG::DeallocateNode(SDNode *N) {
586  if (N->OperandsNeedDelete)
587    delete[] N->OperandList;
588
589  // Set the opcode to DELETED_NODE to help catch bugs when node
590  // memory is reallocated.
591  N->NodeType = ISD::DELETED_NODE;
592
593  NodeAllocator.Deallocate(AllNodes.remove(N));
594
595  // Remove the ordering of this node.
596  if (Ordering) Ordering->remove(N);
597}
598
599/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
600/// correspond to it.  This is useful when we're about to delete or repurpose
601/// the node.  We don't want future request for structurally identical nodes
602/// to return N anymore.
603bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
604  bool Erased = false;
605  switch (N->getOpcode()) {
606  case ISD::EntryToken:
607    llvm_unreachable("EntryToken should not be in CSEMaps!");
608    return false;
609  case ISD::HANDLENODE: return false;  // noop.
610  case ISD::CONDCODE:
611    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
612           "Cond code doesn't exist!");
613    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
614    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
615    break;
616  case ISD::ExternalSymbol:
617    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
618    break;
619  case ISD::TargetExternalSymbol: {
620    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
621    Erased = TargetExternalSymbols.erase(
622               std::pair<std::string,unsigned char>(ESN->getSymbol(),
623                                                    ESN->getTargetFlags()));
624    break;
625  }
626  case ISD::VALUETYPE: {
627    EVT VT = cast<VTSDNode>(N)->getVT();
628    if (VT.isExtended()) {
629      Erased = ExtendedValueTypeNodes.erase(VT);
630    } else {
631      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
632      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
633    }
634    break;
635  }
636  default:
637    // Remove it from the CSE Map.
638    Erased = CSEMap.RemoveNode(N);
639    break;
640  }
641#ifndef NDEBUG
642  // Verify that the node was actually in one of the CSE maps, unless it has a
643  // flag result (which cannot be CSE'd) or is one of the special cases that are
644  // not subject to CSE.
645  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646      !N->isMachineOpcode() && !doNotCSE(N)) {
647    N->dump(this);
648    dbgs() << "\n";
649    llvm_unreachable("Node is not in map!");
650  }
651#endif
652  return Erased;
653}
654
655/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
656/// maps and modified in place. Add it back to the CSE maps, unless an identical
657/// node already exists, in which case transfer all its users to the existing
658/// node. This transfer can potentially trigger recursive merging.
659///
660void
661SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
662                                       DAGUpdateListener *UpdateListener) {
663  // For node types that aren't CSE'd, just act as if no identical node
664  // already exists.
665  if (!doNotCSE(N)) {
666    SDNode *Existing = CSEMap.GetOrInsertNode(N);
667    if (Existing != N) {
668      // If there was already an existing matching node, use ReplaceAllUsesWith
669      // to replace the dead one with the existing one.  This can cause
670      // recursive merging of other unrelated nodes down the line.
671      ReplaceAllUsesWith(N, Existing, UpdateListener);
672
673      // N is now dead.  Inform the listener if it exists and delete it.
674      if (UpdateListener)
675        UpdateListener->NodeDeleted(N, Existing);
676      DeleteNodeNotInCSEMaps(N);
677      return;
678    }
679  }
680
681  // If the node doesn't already exist, we updated it.  Inform a listener if
682  // it exists.
683  if (UpdateListener)
684    UpdateListener->NodeUpdated(N);
685}
686
687/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688/// were replaced with those specified.  If this node is never memoized,
689/// return null, otherwise return a pointer to the slot it would take.  If a
690/// node already exists with these operands, the slot will be non-null.
691SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
699  AddNodeIDCustom(ID, N);
700  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701  return Node;
702}
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           SDValue Op1, SDValue Op2,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  SDValue Ops[] = { Op1, Op2 };
715  FoldingSetNodeID ID;
716  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
717  AddNodeIDCustom(ID, N);
718  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719  return Node;
720}
721
722
723/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724/// were replaced with those specified.  If this node is never memoized,
725/// return null, otherwise return a pointer to the slot it would take.  If a
726/// node already exists with these operands, the slot will be non-null.
727SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728                                           const SDValue *Ops,unsigned NumOps,
729                                           void *&InsertPos) {
730  if (doNotCSE(N))
731    return 0;
732
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
735  AddNodeIDCustom(ID, N);
736  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737  return Node;
738}
739
740/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
741void SelectionDAG::VerifyNode(SDNode *N) {
742  switch (N->getOpcode()) {
743  default:
744    break;
745  case ISD::BUILD_PAIR: {
746    EVT VT = N->getValueType(0);
747    assert(N->getNumValues() == 1 && "Too many results!");
748    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
749           "Wrong return type!");
750    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
751    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
752           "Mismatched operand types!");
753    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
754           "Wrong operand type!");
755    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
756           "Wrong return type size");
757    break;
758  }
759  case ISD::BUILD_VECTOR: {
760    assert(N->getNumValues() == 1 && "Too many results!");
761    assert(N->getValueType(0).isVector() && "Wrong return type!");
762    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
763           "Wrong number of operands!");
764    EVT EltVT = N->getValueType(0).getVectorElementType();
765    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
766      assert((I->getValueType() == EltVT ||
767             (EltVT.isInteger() && I->getValueType().isInteger() &&
768              EltVT.bitsLE(I->getValueType()))) &&
769            "Wrong operand type!");
770    break;
771  }
772  }
773}
774
775/// getEVTAlignment - Compute the default alignment value for the
776/// given type.
777///
778unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
779  const Type *Ty = VT == MVT::iPTR ?
780                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
781                   VT.getTypeForEVT(*getContext());
782
783  return TLI.getTargetData()->getABITypeAlignment(Ty);
784}
785
786// EntryNode could meaningfully have debug info if we can find it...
787SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
788  : TLI(tli), FLI(fli), DW(0),
789    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
790              getVTList(MVT::Other)),
791    Root(getEntryNode()), Ordering(0) {
792  AllNodes.push_back(&EntryNode);
793  if (DisableScheduling)
794    Ordering = new SDNodeOrdering();
795}
796
797void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
798                        DwarfWriter *dw) {
799  MF = &mf;
800  MMI = mmi;
801  DW = dw;
802  Context = &mf.getFunction()->getContext();
803}
804
805SelectionDAG::~SelectionDAG() {
806  allnodes_clear();
807  delete Ordering;
808}
809
810void SelectionDAG::allnodes_clear() {
811  assert(&*AllNodes.begin() == &EntryNode);
812  AllNodes.remove(AllNodes.begin());
813  while (!AllNodes.empty())
814    DeallocateNode(AllNodes.begin());
815}
816
817void SelectionDAG::clear() {
818  allnodes_clear();
819  OperandAllocator.Reset();
820  CSEMap.clear();
821
822  ExtendedValueTypeNodes.clear();
823  ExternalSymbols.clear();
824  TargetExternalSymbols.clear();
825  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
826            static_cast<CondCodeSDNode*>(0));
827  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
828            static_cast<SDNode*>(0));
829
830  EntryNode.UseList = 0;
831  AllNodes.push_back(&EntryNode);
832  Root = getEntryNode();
833  if (DisableScheduling)
834    Ordering = new SDNodeOrdering();
835}
836
837SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
838  return VT.bitsGT(Op.getValueType()) ?
839    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
840    getNode(ISD::TRUNCATE, DL, VT, Op);
841}
842
843SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
844  return VT.bitsGT(Op.getValueType()) ?
845    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
846    getNode(ISD::TRUNCATE, DL, VT, Op);
847}
848
849SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
850  assert(!VT.isVector() &&
851         "getZeroExtendInReg should use the vector element type instead of "
852         "the vector type!");
853  if (Op.getValueType() == VT) return Op;
854  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
855  APInt Imm = APInt::getLowBitsSet(BitWidth,
856                                   VT.getSizeInBits());
857  return getNode(ISD::AND, DL, Op.getValueType(), Op,
858                 getConstant(Imm, Op.getValueType()));
859}
860
861/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
862///
863SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
864  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
865  SDValue NegOne =
866    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
867  return getNode(ISD::XOR, DL, VT, Val, NegOne);
868}
869
870SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
871  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
872  assert((EltVT.getSizeInBits() >= 64 ||
873         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
874         "getConstant with a uint64_t value that doesn't fit in the type!");
875  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
876}
877
878SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
879  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
880}
881
882SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
883  assert(VT.isInteger() && "Cannot create FP integer constant!");
884
885  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
886  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
887         "APInt size does not match type size!");
888
889  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
890  FoldingSetNodeID ID;
891  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
892  ID.AddPointer(&Val);
893  void *IP = 0;
894  SDNode *N = NULL;
895  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
896    if (!VT.isVector())
897      return SDValue(N, 0);
898
899  if (!N) {
900    N = NodeAllocator.Allocate<ConstantSDNode>();
901    new (N) ConstantSDNode(isT, &Val, EltVT);
902    CSEMap.InsertNode(N, IP);
903    AllNodes.push_back(N);
904  }
905
906  SDValue Result(N, 0);
907  if (VT.isVector()) {
908    SmallVector<SDValue, 8> Ops;
909    Ops.assign(VT.getVectorNumElements(), Result);
910    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
911                     VT, &Ops[0], Ops.size());
912  }
913  return Result;
914}
915
916SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
917  return getConstant(Val, TLI.getPointerTy(), isTarget);
918}
919
920
921SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
922  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
923}
924
925SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
926  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
927
928  EVT EltVT =
929    VT.isVector() ? VT.getVectorElementType() : VT;
930
931  // Do the map lookup using the actual bit pattern for the floating point
932  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933  // we don't have issues with SNANs.
934  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937  ID.AddPointer(&V);
938  void *IP = 0;
939  SDNode *N = NULL;
940  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941    if (!VT.isVector())
942      return SDValue(N, 0);
943
944  if (!N) {
945    N = NodeAllocator.Allocate<ConstantFPSDNode>();
946    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
947    CSEMap.InsertNode(N, IP);
948    AllNodes.push_back(N);
949  }
950
951  SDValue Result(N, 0);
952  if (VT.isVector()) {
953    SmallVector<SDValue, 8> Ops;
954    Ops.assign(VT.getVectorNumElements(), Result);
955    // FIXME DebugLoc info might be appropriate here
956    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
957                     VT, &Ops[0], Ops.size());
958  }
959  return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
963  EVT EltVT =
964    VT.isVector() ? VT.getVectorElementType() : VT;
965  if (EltVT==MVT::f32)
966    return getConstantFP(APFloat((float)Val), VT, isTarget);
967  else
968    return getConstantFP(APFloat(Val), VT, isTarget);
969}
970
971SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
972                                       EVT VT, int64_t Offset,
973                                       bool isTargetGA,
974                                       unsigned char TargetFlags) {
975  assert((TargetFlags == 0 || isTargetGA) &&
976         "Cannot set target flags on target-independent globals");
977
978  // Truncate (with sign-extension) the offset value to the pointer size.
979  EVT PTy = TLI.getPointerTy();
980  unsigned BitWidth = PTy.getSizeInBits();
981  if (BitWidth < 64)
982    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
983
984  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
985  if (!GVar) {
986    // If GV is an alias then use the aliasee for determining thread-localness.
987    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
988      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
989  }
990
991  unsigned Opc;
992  if (GVar && GVar->isThreadLocal())
993    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
994  else
995    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
996
997  FoldingSetNodeID ID;
998  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999  ID.AddPointer(GV);
1000  ID.AddInteger(Offset);
1001  ID.AddInteger(TargetFlags);
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDValue(E, 0);
1005
1006  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1007  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1008  CSEMap.InsertNode(N, IP);
1009  AllNodes.push_back(N);
1010  return SDValue(N, 0);
1011}
1012
1013SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1014  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1015  FoldingSetNodeID ID;
1016  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1017  ID.AddInteger(FI);
1018  void *IP = 0;
1019  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1020    return SDValue(E, 0);
1021
1022  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1023  new (N) FrameIndexSDNode(FI, VT, isTarget);
1024  CSEMap.InsertNode(N, IP);
1025  AllNodes.push_back(N);
1026  return SDValue(N, 0);
1027}
1028
1029SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1030                                   unsigned char TargetFlags) {
1031  assert((TargetFlags == 0 || isTarget) &&
1032         "Cannot set target flags on target-independent jump tables");
1033  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1034  FoldingSetNodeID ID;
1035  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1036  ID.AddInteger(JTI);
1037  ID.AddInteger(TargetFlags);
1038  void *IP = 0;
1039  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1040    return SDValue(E, 0);
1041
1042  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1043  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1044  CSEMap.InsertNode(N, IP);
1045  AllNodes.push_back(N);
1046  return SDValue(N, 0);
1047}
1048
1049SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1050                                      unsigned Alignment, int Offset,
1051                                      bool isTarget,
1052                                      unsigned char TargetFlags) {
1053  assert((TargetFlags == 0 || isTarget) &&
1054         "Cannot set target flags on target-independent globals");
1055  if (Alignment == 0)
1056    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1057  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1058  FoldingSetNodeID ID;
1059  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1060  ID.AddInteger(Alignment);
1061  ID.AddInteger(Offset);
1062  ID.AddPointer(C);
1063  ID.AddInteger(TargetFlags);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1069  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1070  CSEMap.InsertNode(N, IP);
1071  AllNodes.push_back(N);
1072  return SDValue(N, 0);
1073}
1074
1075
1076SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1077                                      unsigned Alignment, int Offset,
1078                                      bool isTarget,
1079                                      unsigned char TargetFlags) {
1080  assert((TargetFlags == 0 || isTarget) &&
1081         "Cannot set target flags on target-independent globals");
1082  if (Alignment == 0)
1083    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1084  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1085  FoldingSetNodeID ID;
1086  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1087  ID.AddInteger(Alignment);
1088  ID.AddInteger(Offset);
1089  C->AddSelectionDAGCSEId(ID);
1090  ID.AddInteger(TargetFlags);
1091  void *IP = 0;
1092  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1093    return SDValue(E, 0);
1094
1095  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1096  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1097  CSEMap.InsertNode(N, IP);
1098  AllNodes.push_back(N);
1099  return SDValue(N, 0);
1100}
1101
1102SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1105  ID.AddPointer(MBB);
1106  void *IP = 0;
1107  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1108    return SDValue(E, 0);
1109
1110  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1111  new (N) BasicBlockSDNode(MBB);
1112  CSEMap.InsertNode(N, IP);
1113  AllNodes.push_back(N);
1114  return SDValue(N, 0);
1115}
1116
1117SDValue SelectionDAG::getValueType(EVT VT) {
1118  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1119      ValueTypeNodes.size())
1120    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1121
1122  SDNode *&N = VT.isExtended() ?
1123    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1124
1125  if (N) return SDValue(N, 0);
1126  N = NodeAllocator.Allocate<VTSDNode>();
1127  new (N) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1136  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1137  AllNodes.push_back(N);
1138  return SDValue(N, 0);
1139}
1140
1141SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1142                                              unsigned char TargetFlags) {
1143  SDNode *&N =
1144    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1145                                                               TargetFlags)];
1146  if (N) return SDValue(N, 0);
1147  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1148  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1149  AllNodes.push_back(N);
1150  return SDValue(N, 0);
1151}
1152
1153SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1154  if ((unsigned)Cond >= CondCodeNodes.size())
1155    CondCodeNodes.resize(Cond+1);
1156
1157  if (CondCodeNodes[Cond] == 0) {
1158    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1159    new (N) CondCodeSDNode(Cond);
1160    CondCodeNodes[Cond] = N;
1161    AllNodes.push_back(N);
1162  }
1163
1164  return SDValue(CondCodeNodes[Cond], 0);
1165}
1166
1167// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1168// the shuffle mask M that point at N1 to point at N2, and indices that point
1169// N2 to point at N1.
1170static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1171  std::swap(N1, N2);
1172  int NElts = M.size();
1173  for (int i = 0; i != NElts; ++i) {
1174    if (M[i] >= NElts)
1175      M[i] -= NElts;
1176    else if (M[i] >= 0)
1177      M[i] += NElts;
1178  }
1179}
1180
1181SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1182                                       SDValue N2, const int *Mask) {
1183  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1184  assert(VT.isVector() && N1.getValueType().isVector() &&
1185         "Vector Shuffle VTs must be a vectors");
1186  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1187         && "Vector Shuffle VTs must have same element type");
1188
1189  // Canonicalize shuffle undef, undef -> undef
1190  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1191    return getUNDEF(VT);
1192
1193  // Validate that all indices in Mask are within the range of the elements
1194  // input to the shuffle.
1195  unsigned NElts = VT.getVectorNumElements();
1196  SmallVector<int, 8> MaskVec;
1197  for (unsigned i = 0; i != NElts; ++i) {
1198    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1199    MaskVec.push_back(Mask[i]);
1200  }
1201
1202  // Canonicalize shuffle v, v -> v, undef
1203  if (N1 == N2) {
1204    N2 = getUNDEF(VT);
1205    for (unsigned i = 0; i != NElts; ++i)
1206      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1207  }
1208
1209  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1210  if (N1.getOpcode() == ISD::UNDEF)
1211    commuteShuffle(N1, N2, MaskVec);
1212
1213  // Canonicalize all index into lhs, -> shuffle lhs, undef
1214  // Canonicalize all index into rhs, -> shuffle rhs, undef
1215  bool AllLHS = true, AllRHS = true;
1216  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1217  for (unsigned i = 0; i != NElts; ++i) {
1218    if (MaskVec[i] >= (int)NElts) {
1219      if (N2Undef)
1220        MaskVec[i] = -1;
1221      else
1222        AllLHS = false;
1223    } else if (MaskVec[i] >= 0) {
1224      AllRHS = false;
1225    }
1226  }
1227  if (AllLHS && AllRHS)
1228    return getUNDEF(VT);
1229  if (AllLHS && !N2Undef)
1230    N2 = getUNDEF(VT);
1231  if (AllRHS) {
1232    N1 = getUNDEF(VT);
1233    commuteShuffle(N1, N2, MaskVec);
1234  }
1235
1236  // If Identity shuffle, or all shuffle in to undef, return that node.
1237  bool AllUndef = true;
1238  bool Identity = true;
1239  for (unsigned i = 0; i != NElts; ++i) {
1240    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1241    if (MaskVec[i] >= 0) AllUndef = false;
1242  }
1243  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1244    return N1;
1245  if (AllUndef)
1246    return getUNDEF(VT);
1247
1248  FoldingSetNodeID ID;
1249  SDValue Ops[2] = { N1, N2 };
1250  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1251  for (unsigned i = 0; i != NElts; ++i)
1252    ID.AddInteger(MaskVec[i]);
1253
1254  void* IP = 0;
1255  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1256    return SDValue(E, 0);
1257
1258  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1259  // SDNode doesn't have access to it.  This memory will be "leaked" when
1260  // the node is deallocated, but recovered when the NodeAllocator is released.
1261  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1262  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1263
1264  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1265  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1266  CSEMap.InsertNode(N, IP);
1267  AllNodes.push_back(N);
1268  return SDValue(N, 0);
1269}
1270
1271SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1272                                       SDValue Val, SDValue DTy,
1273                                       SDValue STy, SDValue Rnd, SDValue Sat,
1274                                       ISD::CvtCode Code) {
1275  // If the src and dest types are the same and the conversion is between
1276  // integer types of the same sign or two floats, no conversion is necessary.
1277  if (DTy == STy &&
1278      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1279    return Val;
1280
1281  FoldingSetNodeID ID;
1282  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1283  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1284  void* IP = 0;
1285  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1286    return SDValue(E, 0);
1287
1288  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1289  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1290  CSEMap.InsertNode(N, IP);
1291  AllNodes.push_back(N);
1292  return SDValue(N, 0);
1293}
1294
1295SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1296  FoldingSetNodeID ID;
1297  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1298  ID.AddInteger(RegNo);
1299  void *IP = 0;
1300  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1301    return SDValue(E, 0);
1302
1303  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1304  new (N) RegisterSDNode(RegNo, VT);
1305  CSEMap.InsertNode(N, IP);
1306  AllNodes.push_back(N);
1307  return SDValue(N, 0);
1308}
1309
1310SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1311                               SDValue Root,
1312                               unsigned LabelID) {
1313  FoldingSetNodeID ID;
1314  SDValue Ops[] = { Root };
1315  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1316  ID.AddInteger(LabelID);
1317  void *IP = 0;
1318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319    return SDValue(E, 0);
1320
1321  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1322  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1323  CSEMap.InsertNode(N, IP);
1324  AllNodes.push_back(N);
1325  return SDValue(N, 0);
1326}
1327
1328SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1329                                      bool isTarget,
1330                                      unsigned char TargetFlags) {
1331  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1332
1333  FoldingSetNodeID ID;
1334  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1335  ID.AddPointer(BA);
1336  ID.AddInteger(TargetFlags);
1337  void *IP = 0;
1338  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1339    return SDValue(E, 0);
1340
1341  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1342  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1343  CSEMap.InsertNode(N, IP);
1344  AllNodes.push_back(N);
1345  return SDValue(N, 0);
1346}
1347
1348SDValue SelectionDAG::getSrcValue(const Value *V) {
1349  assert((!V || isa<PointerType>(V->getType())) &&
1350         "SrcValue is not a pointer?");
1351
1352  FoldingSetNodeID ID;
1353  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1354  ID.AddPointer(V);
1355
1356  void *IP = 0;
1357  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1358    return SDValue(E, 0);
1359
1360  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1361  new (N) SrcValueSDNode(V);
1362  CSEMap.InsertNode(N, IP);
1363  AllNodes.push_back(N);
1364  return SDValue(N, 0);
1365}
1366
1367/// getShiftAmountOperand - Return the specified value casted to
1368/// the target's desired shift amount type.
1369SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1370  EVT OpTy = Op.getValueType();
1371  MVT ShTy = TLI.getShiftAmountTy();
1372  if (OpTy == ShTy || OpTy.isVector()) return Op;
1373
1374  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1375  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1376}
1377
1378/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1379/// specified value type.
1380SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1381  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1382  unsigned ByteSize = VT.getStoreSize();
1383  const Type *Ty = VT.getTypeForEVT(*getContext());
1384  unsigned StackAlign =
1385  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1386
1387  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1388  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1389}
1390
1391/// CreateStackTemporary - Create a stack temporary suitable for holding
1392/// either of the specified value types.
1393SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1394  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1395                            VT2.getStoreSizeInBits())/8;
1396  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1397  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1398  const TargetData *TD = TLI.getTargetData();
1399  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1400                            TD->getPrefTypeAlignment(Ty2));
1401
1402  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1403  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1404  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1405}
1406
1407SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1408                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1409  // These setcc operations always fold.
1410  switch (Cond) {
1411  default: break;
1412  case ISD::SETFALSE:
1413  case ISD::SETFALSE2: return getConstant(0, VT);
1414  case ISD::SETTRUE:
1415  case ISD::SETTRUE2:  return getConstant(1, VT);
1416
1417  case ISD::SETOEQ:
1418  case ISD::SETOGT:
1419  case ISD::SETOGE:
1420  case ISD::SETOLT:
1421  case ISD::SETOLE:
1422  case ISD::SETONE:
1423  case ISD::SETO:
1424  case ISD::SETUO:
1425  case ISD::SETUEQ:
1426  case ISD::SETUNE:
1427    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1428    break;
1429  }
1430
1431  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1432    const APInt &C2 = N2C->getAPIntValue();
1433    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1434      const APInt &C1 = N1C->getAPIntValue();
1435
1436      switch (Cond) {
1437      default: llvm_unreachable("Unknown integer setcc!");
1438      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1439      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1440      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1441      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1442      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1443      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1444      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1445      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1446      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1447      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1448      }
1449    }
1450  }
1451  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1452    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1453      // No compile time operations on this type yet.
1454      if (N1C->getValueType(0) == MVT::ppcf128)
1455        return SDValue();
1456
1457      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1458      switch (Cond) {
1459      default: break;
1460      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1461                          return getUNDEF(VT);
1462                        // fall through
1463      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1464      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1465                          return getUNDEF(VT);
1466                        // fall through
1467      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1468                                           R==APFloat::cmpLessThan, VT);
1469      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1473      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1474                          return getUNDEF(VT);
1475                        // fall through
1476      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1477      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1478                          return getUNDEF(VT);
1479                        // fall through
1480      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1481                                           R==APFloat::cmpEqual, VT);
1482      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1486                                           R==APFloat::cmpEqual, VT);
1487      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1488      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1489      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1490                                           R==APFloat::cmpEqual, VT);
1491      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1492      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1493                                           R==APFloat::cmpLessThan, VT);
1494      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1495                                           R==APFloat::cmpUnordered, VT);
1496      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1497      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1498      }
1499    } else {
1500      // Ensure that the constant occurs on the RHS.
1501      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1502    }
1503  }
1504
1505  // Could not fold it.
1506  return SDValue();
1507}
1508
1509/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1510/// use this predicate to simplify operations downstream.
1511bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1512  // This predicate is not safe for vector operations.
1513  if (Op.getValueType().isVector())
1514    return false;
1515
1516  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1517  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1518}
1519
1520/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1521/// this predicate to simplify operations downstream.  Mask is known to be zero
1522/// for bits that V cannot have.
1523bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1524                                     unsigned Depth) const {
1525  APInt KnownZero, KnownOne;
1526  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1527  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1528  return (KnownZero & Mask) == Mask;
1529}
1530
1531/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1532/// known to be either zero or one and return them in the KnownZero/KnownOne
1533/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1534/// processing.
1535void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1536                                     APInt &KnownZero, APInt &KnownOne,
1537                                     unsigned Depth) const {
1538  unsigned BitWidth = Mask.getBitWidth();
1539  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1540         "Mask size mismatches value type size!");
1541
1542  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1543  if (Depth == 6 || Mask == 0)
1544    return;  // Limit search depth.
1545
1546  APInt KnownZero2, KnownOne2;
1547
1548  switch (Op.getOpcode()) {
1549  case ISD::Constant:
1550    // We know all of the bits for a constant!
1551    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1552    KnownZero = ~KnownOne & Mask;
1553    return;
1554  case ISD::AND:
1555    // If either the LHS or the RHS are Zero, the result is zero.
1556    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1557    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1558                      KnownZero2, KnownOne2, Depth+1);
1559    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1561
1562    // Output known-1 bits are only known if set in both the LHS & RHS.
1563    KnownOne &= KnownOne2;
1564    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1565    KnownZero |= KnownZero2;
1566    return;
1567  case ISD::OR:
1568    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1569    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1570                      KnownZero2, KnownOne2, Depth+1);
1571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1573
1574    // Output known-0 bits are only known if clear in both the LHS & RHS.
1575    KnownZero &= KnownZero2;
1576    // Output known-1 are known to be set if set in either the LHS | RHS.
1577    KnownOne |= KnownOne2;
1578    return;
1579  case ISD::XOR: {
1580    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1581    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1582    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1583    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1584
1585    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1586    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1587    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1588    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1589    KnownZero = KnownZeroOut;
1590    return;
1591  }
1592  case ISD::MUL: {
1593    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1594    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1595    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1596    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1597    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1598
1599    // If low bits are zero in either operand, output low known-0 bits.
1600    // Also compute a conserative estimate for high known-0 bits.
1601    // More trickiness is possible, but this is sufficient for the
1602    // interesting case of alignment computation.
1603    KnownOne.clear();
1604    unsigned TrailZ = KnownZero.countTrailingOnes() +
1605                      KnownZero2.countTrailingOnes();
1606    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1607                               KnownZero2.countLeadingOnes(),
1608                               BitWidth) - BitWidth;
1609
1610    TrailZ = std::min(TrailZ, BitWidth);
1611    LeadZ = std::min(LeadZ, BitWidth);
1612    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1613                APInt::getHighBitsSet(BitWidth, LeadZ);
1614    KnownZero &= Mask;
1615    return;
1616  }
1617  case ISD::UDIV: {
1618    // For the purposes of computing leading zeros we can conservatively
1619    // treat a udiv as a logical right shift by the power of 2 known to
1620    // be less than the denominator.
1621    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1622    ComputeMaskedBits(Op.getOperand(0),
1623                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1624    unsigned LeadZ = KnownZero2.countLeadingOnes();
1625
1626    KnownOne2.clear();
1627    KnownZero2.clear();
1628    ComputeMaskedBits(Op.getOperand(1),
1629                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1630    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1631    if (RHSUnknownLeadingOnes != BitWidth)
1632      LeadZ = std::min(BitWidth,
1633                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1634
1635    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1636    return;
1637  }
1638  case ISD::SELECT:
1639    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1640    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1641    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1642    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1643
1644    // Only known if known in both the LHS and RHS.
1645    KnownOne &= KnownOne2;
1646    KnownZero &= KnownZero2;
1647    return;
1648  case ISD::SELECT_CC:
1649    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1650    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1651    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1652    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1653
1654    // Only known if known in both the LHS and RHS.
1655    KnownOne &= KnownOne2;
1656    KnownZero &= KnownZero2;
1657    return;
1658  case ISD::SADDO:
1659  case ISD::UADDO:
1660  case ISD::SSUBO:
1661  case ISD::USUBO:
1662  case ISD::SMULO:
1663  case ISD::UMULO:
1664    if (Op.getResNo() != 1)
1665      return;
1666    // The boolean result conforms to getBooleanContents.  Fall through.
1667  case ISD::SETCC:
1668    // If we know the result of a setcc has the top bits zero, use this info.
1669    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1670        BitWidth > 1)
1671      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1672    return;
1673  case ISD::SHL:
1674    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1675    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1676      unsigned ShAmt = SA->getZExtValue();
1677
1678      // If the shift count is an invalid immediate, don't do anything.
1679      if (ShAmt >= BitWidth)
1680        return;
1681
1682      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1683                        KnownZero, KnownOne, Depth+1);
1684      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1685      KnownZero <<= ShAmt;
1686      KnownOne  <<= ShAmt;
1687      // low bits known zero.
1688      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1689    }
1690    return;
1691  case ISD::SRL:
1692    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1693    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1694      unsigned ShAmt = SA->getZExtValue();
1695
1696      // If the shift count is an invalid immediate, don't do anything.
1697      if (ShAmt >= BitWidth)
1698        return;
1699
1700      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1701                        KnownZero, KnownOne, Depth+1);
1702      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1703      KnownZero = KnownZero.lshr(ShAmt);
1704      KnownOne  = KnownOne.lshr(ShAmt);
1705
1706      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1707      KnownZero |= HighBits;  // High bits known zero.
1708    }
1709    return;
1710  case ISD::SRA:
1711    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1712      unsigned ShAmt = SA->getZExtValue();
1713
1714      // If the shift count is an invalid immediate, don't do anything.
1715      if (ShAmt >= BitWidth)
1716        return;
1717
1718      APInt InDemandedMask = (Mask << ShAmt);
1719      // If any of the demanded bits are produced by the sign extension, we also
1720      // demand the input sign bit.
1721      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1722      if (HighBits.getBoolValue())
1723        InDemandedMask |= APInt::getSignBit(BitWidth);
1724
1725      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1726                        Depth+1);
1727      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1728      KnownZero = KnownZero.lshr(ShAmt);
1729      KnownOne  = KnownOne.lshr(ShAmt);
1730
1731      // Handle the sign bits.
1732      APInt SignBit = APInt::getSignBit(BitWidth);
1733      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1734
1735      if (KnownZero.intersects(SignBit)) {
1736        KnownZero |= HighBits;  // New bits are known zero.
1737      } else if (KnownOne.intersects(SignBit)) {
1738        KnownOne  |= HighBits;  // New bits are known one.
1739      }
1740    }
1741    return;
1742  case ISD::SIGN_EXTEND_INREG: {
1743    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1744    unsigned EBits = EVT.getScalarType().getSizeInBits();
1745
1746    // Sign extension.  Compute the demanded bits in the result that are not
1747    // present in the input.
1748    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1749
1750    APInt InSignBit = APInt::getSignBit(EBits);
1751    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1752
1753    // If the sign extended bits are demanded, we know that the sign
1754    // bit is demanded.
1755    InSignBit.zext(BitWidth);
1756    if (NewBits.getBoolValue())
1757      InputDemandedBits |= InSignBit;
1758
1759    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1760                      KnownZero, KnownOne, Depth+1);
1761    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1762
1763    // If the sign bit of the input is known set or clear, then we know the
1764    // top bits of the result.
1765    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1766      KnownZero |= NewBits;
1767      KnownOne  &= ~NewBits;
1768    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1769      KnownOne  |= NewBits;
1770      KnownZero &= ~NewBits;
1771    } else {                              // Input sign bit unknown
1772      KnownZero &= ~NewBits;
1773      KnownOne  &= ~NewBits;
1774    }
1775    return;
1776  }
1777  case ISD::CTTZ:
1778  case ISD::CTLZ:
1779  case ISD::CTPOP: {
1780    unsigned LowBits = Log2_32(BitWidth)+1;
1781    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1782    KnownOne.clear();
1783    return;
1784  }
1785  case ISD::LOAD: {
1786    if (ISD::isZEXTLoad(Op.getNode())) {
1787      LoadSDNode *LD = cast<LoadSDNode>(Op);
1788      EVT VT = LD->getMemoryVT();
1789      unsigned MemBits = VT.getScalarType().getSizeInBits();
1790      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1791    }
1792    return;
1793  }
1794  case ISD::ZERO_EXTEND: {
1795    EVT InVT = Op.getOperand(0).getValueType();
1796    unsigned InBits = InVT.getScalarType().getSizeInBits();
1797    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1798    APInt InMask    = Mask;
1799    InMask.trunc(InBits);
1800    KnownZero.trunc(InBits);
1801    KnownOne.trunc(InBits);
1802    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1803    KnownZero.zext(BitWidth);
1804    KnownOne.zext(BitWidth);
1805    KnownZero |= NewBits;
1806    return;
1807  }
1808  case ISD::SIGN_EXTEND: {
1809    EVT InVT = Op.getOperand(0).getValueType();
1810    unsigned InBits = InVT.getScalarType().getSizeInBits();
1811    APInt InSignBit = APInt::getSignBit(InBits);
1812    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1813    APInt InMask = Mask;
1814    InMask.trunc(InBits);
1815
1816    // If any of the sign extended bits are demanded, we know that the sign
1817    // bit is demanded. Temporarily set this bit in the mask for our callee.
1818    if (NewBits.getBoolValue())
1819      InMask |= InSignBit;
1820
1821    KnownZero.trunc(InBits);
1822    KnownOne.trunc(InBits);
1823    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1824
1825    // Note if the sign bit is known to be zero or one.
1826    bool SignBitKnownZero = KnownZero.isNegative();
1827    bool SignBitKnownOne  = KnownOne.isNegative();
1828    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1829           "Sign bit can't be known to be both zero and one!");
1830
1831    // If the sign bit wasn't actually demanded by our caller, we don't
1832    // want it set in the KnownZero and KnownOne result values. Reset the
1833    // mask and reapply it to the result values.
1834    InMask = Mask;
1835    InMask.trunc(InBits);
1836    KnownZero &= InMask;
1837    KnownOne  &= InMask;
1838
1839    KnownZero.zext(BitWidth);
1840    KnownOne.zext(BitWidth);
1841
1842    // If the sign bit is known zero or one, the top bits match.
1843    if (SignBitKnownZero)
1844      KnownZero |= NewBits;
1845    else if (SignBitKnownOne)
1846      KnownOne  |= NewBits;
1847    return;
1848  }
1849  case ISD::ANY_EXTEND: {
1850    EVT InVT = Op.getOperand(0).getValueType();
1851    unsigned InBits = InVT.getScalarType().getSizeInBits();
1852    APInt InMask = Mask;
1853    InMask.trunc(InBits);
1854    KnownZero.trunc(InBits);
1855    KnownOne.trunc(InBits);
1856    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1857    KnownZero.zext(BitWidth);
1858    KnownOne.zext(BitWidth);
1859    return;
1860  }
1861  case ISD::TRUNCATE: {
1862    EVT InVT = Op.getOperand(0).getValueType();
1863    unsigned InBits = InVT.getScalarType().getSizeInBits();
1864    APInt InMask = Mask;
1865    InMask.zext(InBits);
1866    KnownZero.zext(InBits);
1867    KnownOne.zext(InBits);
1868    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1869    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1870    KnownZero.trunc(BitWidth);
1871    KnownOne.trunc(BitWidth);
1872    break;
1873  }
1874  case ISD::AssertZext: {
1875    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1876    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1877    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1878                      KnownOne, Depth+1);
1879    KnownZero |= (~InMask) & Mask;
1880    return;
1881  }
1882  case ISD::FGETSIGN:
1883    // All bits are zero except the low bit.
1884    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1885    return;
1886
1887  case ISD::SUB: {
1888    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1889      // We know that the top bits of C-X are clear if X contains less bits
1890      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1891      // positive if we can prove that X is >= 0 and < 16.
1892      if (CLHS->getAPIntValue().isNonNegative()) {
1893        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1894        // NLZ can't be BitWidth with no sign bit
1895        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1896        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1897                          Depth+1);
1898
1899        // If all of the MaskV bits are known to be zero, then we know the
1900        // output top bits are zero, because we now know that the output is
1901        // from [0-C].
1902        if ((KnownZero2 & MaskV) == MaskV) {
1903          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1904          // Top bits known zero.
1905          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1906        }
1907      }
1908    }
1909  }
1910  // fall through
1911  case ISD::ADD: {
1912    // Output known-0 bits are known if clear or set in both the low clear bits
1913    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1914    // low 3 bits clear.
1915    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1916    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1917    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1918    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1919
1920    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1921    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1922    KnownZeroOut = std::min(KnownZeroOut,
1923                            KnownZero2.countTrailingOnes());
1924
1925    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1926    return;
1927  }
1928  case ISD::SREM:
1929    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1930      const APInt &RA = Rem->getAPIntValue();
1931      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1932        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1933        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1934        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1935
1936        // If the sign bit of the first operand is zero, the sign bit of
1937        // the result is zero. If the first operand has no one bits below
1938        // the second operand's single 1 bit, its sign will be zero.
1939        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1940          KnownZero2 |= ~LowBits;
1941
1942        KnownZero |= KnownZero2 & Mask;
1943
1944        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1945      }
1946    }
1947    return;
1948  case ISD::UREM: {
1949    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1950      const APInt &RA = Rem->getAPIntValue();
1951      if (RA.isPowerOf2()) {
1952        APInt LowBits = (RA - 1);
1953        APInt Mask2 = LowBits & Mask;
1954        KnownZero |= ~LowBits & Mask;
1955        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1956        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1957        break;
1958      }
1959    }
1960
1961    // Since the result is less than or equal to either operand, any leading
1962    // zero bits in either operand must also exist in the result.
1963    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1964    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1965                      Depth+1);
1966    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1967                      Depth+1);
1968
1969    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1970                                KnownZero2.countLeadingOnes());
1971    KnownOne.clear();
1972    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1973    return;
1974  }
1975  default:
1976    // Allow the target to implement this method for its nodes.
1977    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1978  case ISD::INTRINSIC_WO_CHAIN:
1979  case ISD::INTRINSIC_W_CHAIN:
1980  case ISD::INTRINSIC_VOID:
1981      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1982                                         Depth);
1983    }
1984    return;
1985  }
1986}
1987
1988/// ComputeNumSignBits - Return the number of times the sign bit of the
1989/// register is replicated into the other bits.  We know that at least 1 bit
1990/// is always equal to the sign bit (itself), but other cases can give us
1991/// information.  For example, immediately after an "SRA X, 2", we know that
1992/// the top 3 bits are all equal to each other, so we return 3.
1993unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1994  EVT VT = Op.getValueType();
1995  assert(VT.isInteger() && "Invalid VT!");
1996  unsigned VTBits = VT.getScalarType().getSizeInBits();
1997  unsigned Tmp, Tmp2;
1998  unsigned FirstAnswer = 1;
1999
2000  if (Depth == 6)
2001    return 1;  // Limit search depth.
2002
2003  switch (Op.getOpcode()) {
2004  default: break;
2005  case ISD::AssertSext:
2006    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2007    return VTBits-Tmp+1;
2008  case ISD::AssertZext:
2009    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2010    return VTBits-Tmp;
2011
2012  case ISD::Constant: {
2013    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2014    // If negative, return # leading ones.
2015    if (Val.isNegative())
2016      return Val.countLeadingOnes();
2017
2018    // Return # leading zeros.
2019    return Val.countLeadingZeros();
2020  }
2021
2022  case ISD::SIGN_EXTEND:
2023    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2024    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2025
2026  case ISD::SIGN_EXTEND_INREG:
2027    // Max of the input and what this extends.
2028    Tmp =
2029      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2030    Tmp = VTBits-Tmp+1;
2031
2032    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2033    return std::max(Tmp, Tmp2);
2034
2035  case ISD::SRA:
2036    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2037    // SRA X, C   -> adds C sign bits.
2038    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2039      Tmp += C->getZExtValue();
2040      if (Tmp > VTBits) Tmp = VTBits;
2041    }
2042    return Tmp;
2043  case ISD::SHL:
2044    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2045      // shl destroys sign bits.
2046      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2047      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2048          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2049      return Tmp - C->getZExtValue();
2050    }
2051    break;
2052  case ISD::AND:
2053  case ISD::OR:
2054  case ISD::XOR:    // NOT is handled here.
2055    // Logical binary ops preserve the number of sign bits at the worst.
2056    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2057    if (Tmp != 1) {
2058      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2059      FirstAnswer = std::min(Tmp, Tmp2);
2060      // We computed what we know about the sign bits as our first
2061      // answer. Now proceed to the generic code that uses
2062      // ComputeMaskedBits, and pick whichever answer is better.
2063    }
2064    break;
2065
2066  case ISD::SELECT:
2067    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2068    if (Tmp == 1) return 1;  // Early out.
2069    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2070    return std::min(Tmp, Tmp2);
2071
2072  case ISD::SADDO:
2073  case ISD::UADDO:
2074  case ISD::SSUBO:
2075  case ISD::USUBO:
2076  case ISD::SMULO:
2077  case ISD::UMULO:
2078    if (Op.getResNo() != 1)
2079      break;
2080    // The boolean result conforms to getBooleanContents.  Fall through.
2081  case ISD::SETCC:
2082    // If setcc returns 0/-1, all bits are sign bits.
2083    if (TLI.getBooleanContents() ==
2084        TargetLowering::ZeroOrNegativeOneBooleanContent)
2085      return VTBits;
2086    break;
2087  case ISD::ROTL:
2088  case ISD::ROTR:
2089    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2090      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2091
2092      // Handle rotate right by N like a rotate left by 32-N.
2093      if (Op.getOpcode() == ISD::ROTR)
2094        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2095
2096      // If we aren't rotating out all of the known-in sign bits, return the
2097      // number that are left.  This handles rotl(sext(x), 1) for example.
2098      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2099      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2100    }
2101    break;
2102  case ISD::ADD:
2103    // Add can have at most one carry bit.  Thus we know that the output
2104    // is, at worst, one more bit than the inputs.
2105    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106    if (Tmp == 1) return 1;  // Early out.
2107
2108    // Special case decrementing a value (ADD X, -1):
2109    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2110      if (CRHS->isAllOnesValue()) {
2111        APInt KnownZero, KnownOne;
2112        APInt Mask = APInt::getAllOnesValue(VTBits);
2113        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2114
2115        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2116        // sign bits set.
2117        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2118          return VTBits;
2119
2120        // If we are subtracting one from a positive number, there is no carry
2121        // out of the result.
2122        if (KnownZero.isNegative())
2123          return Tmp;
2124      }
2125
2126    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2127    if (Tmp2 == 1) return 1;
2128      return std::min(Tmp, Tmp2)-1;
2129    break;
2130
2131  case ISD::SUB:
2132    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2133    if (Tmp2 == 1) return 1;
2134
2135    // Handle NEG.
2136    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2137      if (CLHS->isNullValue()) {
2138        APInt KnownZero, KnownOne;
2139        APInt Mask = APInt::getAllOnesValue(VTBits);
2140        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2141        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2142        // sign bits set.
2143        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2144          return VTBits;
2145
2146        // If the input is known to be positive (the sign bit is known clear),
2147        // the output of the NEG has the same number of sign bits as the input.
2148        if (KnownZero.isNegative())
2149          return Tmp2;
2150
2151        // Otherwise, we treat this like a SUB.
2152      }
2153
2154    // Sub can have at most one carry bit.  Thus we know that the output
2155    // is, at worst, one more bit than the inputs.
2156    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2157    if (Tmp == 1) return 1;  // Early out.
2158      return std::min(Tmp, Tmp2)-1;
2159    break;
2160  case ISD::TRUNCATE:
2161    // FIXME: it's tricky to do anything useful for this, but it is an important
2162    // case for targets like X86.
2163    break;
2164  }
2165
2166  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2167  if (Op.getOpcode() == ISD::LOAD) {
2168    LoadSDNode *LD = cast<LoadSDNode>(Op);
2169    unsigned ExtType = LD->getExtensionType();
2170    switch (ExtType) {
2171    default: break;
2172    case ISD::SEXTLOAD:    // '17' bits known
2173      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2174      return VTBits-Tmp+1;
2175    case ISD::ZEXTLOAD:    // '16' bits known
2176      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2177      return VTBits-Tmp;
2178    }
2179  }
2180
2181  // Allow the target to implement this method for its nodes.
2182  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2183      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2184      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2185      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2186    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2187    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2188  }
2189
2190  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2191  // use this information.
2192  APInt KnownZero, KnownOne;
2193  APInt Mask = APInt::getAllOnesValue(VTBits);
2194  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2195
2196  if (KnownZero.isNegative()) {        // sign bit is 0
2197    Mask = KnownZero;
2198  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2199    Mask = KnownOne;
2200  } else {
2201    // Nothing known.
2202    return FirstAnswer;
2203  }
2204
2205  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2206  // the number of identical bits in the top of the input value.
2207  Mask = ~Mask;
2208  Mask <<= Mask.getBitWidth()-VTBits;
2209  // Return # leading zeros.  We use 'min' here in case Val was zero before
2210  // shifting.  We don't want to return '64' as for an i32 "0".
2211  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2212}
2213
2214bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2215  // If we're told that NaNs won't happen, assume they won't.
2216  if (FiniteOnlyFPMath())
2217    return true;
2218
2219  // If the value is a constant, we can obviously see if it is a NaN or not.
2220  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2221    return !C->getValueAPF().isNaN();
2222
2223  // TODO: Recognize more cases here.
2224
2225  return false;
2226}
2227
2228bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2229  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2230  if (!GA) return false;
2231  if (GA->getOffset() != 0) return false;
2232  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2233  if (!GV) return false;
2234  MachineModuleInfo *MMI = getMachineModuleInfo();
2235  return MMI && MMI->hasDebugInfo();
2236}
2237
2238
2239/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2240/// element of the result of the vector shuffle.
2241SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2242                                          unsigned i) {
2243  EVT VT = N->getValueType(0);
2244  DebugLoc dl = N->getDebugLoc();
2245  if (N->getMaskElt(i) < 0)
2246    return getUNDEF(VT.getVectorElementType());
2247  unsigned Index = N->getMaskElt(i);
2248  unsigned NumElems = VT.getVectorNumElements();
2249  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2250  Index %= NumElems;
2251
2252  if (V.getOpcode() == ISD::BIT_CONVERT) {
2253    V = V.getOperand(0);
2254    EVT VVT = V.getValueType();
2255    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2256      return SDValue();
2257  }
2258  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2259    return (Index == 0) ? V.getOperand(0)
2260                      : getUNDEF(VT.getVectorElementType());
2261  if (V.getOpcode() == ISD::BUILD_VECTOR)
2262    return V.getOperand(Index);
2263  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2264    return getShuffleScalarElt(SVN, Index);
2265  return SDValue();
2266}
2267
2268
2269/// getNode - Gets or creates the specified node.
2270///
2271SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2272  FoldingSetNodeID ID;
2273  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2274  void *IP = 0;
2275  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2276    return SDValue(E, 0);
2277
2278  SDNode *N = NodeAllocator.Allocate<SDNode>();
2279  new (N) SDNode(Opcode, DL, getVTList(VT));
2280  CSEMap.InsertNode(N, IP);
2281
2282  AllNodes.push_back(N);
2283#ifndef NDEBUG
2284  VerifyNode(N);
2285#endif
2286  return SDValue(N, 0);
2287}
2288
2289SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2290                              EVT VT, SDValue Operand) {
2291  // Constant fold unary operations with an integer constant operand.
2292  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2293    const APInt &Val = C->getAPIntValue();
2294    unsigned BitWidth = VT.getSizeInBits();
2295    switch (Opcode) {
2296    default: break;
2297    case ISD::SIGN_EXTEND:
2298      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2299    case ISD::ANY_EXTEND:
2300    case ISD::ZERO_EXTEND:
2301    case ISD::TRUNCATE:
2302      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2303    case ISD::UINT_TO_FP:
2304    case ISD::SINT_TO_FP: {
2305      const uint64_t zero[] = {0, 0};
2306      // No compile time operations on this type.
2307      if (VT==MVT::ppcf128)
2308        break;
2309      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2310      (void)apf.convertFromAPInt(Val,
2311                                 Opcode==ISD::SINT_TO_FP,
2312                                 APFloat::rmNearestTiesToEven);
2313      return getConstantFP(apf, VT);
2314    }
2315    case ISD::BIT_CONVERT:
2316      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2317        return getConstantFP(Val.bitsToFloat(), VT);
2318      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2319        return getConstantFP(Val.bitsToDouble(), VT);
2320      break;
2321    case ISD::BSWAP:
2322      return getConstant(Val.byteSwap(), VT);
2323    case ISD::CTPOP:
2324      return getConstant(Val.countPopulation(), VT);
2325    case ISD::CTLZ:
2326      return getConstant(Val.countLeadingZeros(), VT);
2327    case ISD::CTTZ:
2328      return getConstant(Val.countTrailingZeros(), VT);
2329    }
2330  }
2331
2332  // Constant fold unary operations with a floating point constant operand.
2333  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2334    APFloat V = C->getValueAPF();    // make copy
2335    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2336      switch (Opcode) {
2337      case ISD::FNEG:
2338        V.changeSign();
2339        return getConstantFP(V, VT);
2340      case ISD::FABS:
2341        V.clearSign();
2342        return getConstantFP(V, VT);
2343      case ISD::FP_ROUND:
2344      case ISD::FP_EXTEND: {
2345        bool ignored;
2346        // This can return overflow, underflow, or inexact; we don't care.
2347        // FIXME need to be more flexible about rounding mode.
2348        (void)V.convert(*EVTToAPFloatSemantics(VT),
2349                        APFloat::rmNearestTiesToEven, &ignored);
2350        return getConstantFP(V, VT);
2351      }
2352      case ISD::FP_TO_SINT:
2353      case ISD::FP_TO_UINT: {
2354        integerPart x[2];
2355        bool ignored;
2356        assert(integerPartWidth >= 64);
2357        // FIXME need to be more flexible about rounding mode.
2358        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2359                              Opcode==ISD::FP_TO_SINT,
2360                              APFloat::rmTowardZero, &ignored);
2361        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2362          break;
2363        APInt api(VT.getSizeInBits(), 2, x);
2364        return getConstant(api, VT);
2365      }
2366      case ISD::BIT_CONVERT:
2367        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2368          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2369        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2370          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2371        break;
2372      }
2373    }
2374  }
2375
2376  unsigned OpOpcode = Operand.getNode()->getOpcode();
2377  switch (Opcode) {
2378  case ISD::TokenFactor:
2379  case ISD::MERGE_VALUES:
2380  case ISD::CONCAT_VECTORS:
2381    return Operand;         // Factor, merge or concat of one node?  No need.
2382  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2383  case ISD::FP_EXTEND:
2384    assert(VT.isFloatingPoint() &&
2385           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2386    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2387    assert((!VT.isVector() ||
2388            VT.getVectorNumElements() ==
2389            Operand.getValueType().getVectorNumElements()) &&
2390           "Vector element count mismatch!");
2391    if (Operand.getOpcode() == ISD::UNDEF)
2392      return getUNDEF(VT);
2393    break;
2394  case ISD::SIGN_EXTEND:
2395    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2396           "Invalid SIGN_EXTEND!");
2397    if (Operand.getValueType() == VT) return Operand;   // noop extension
2398    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2399           "Invalid sext node, dst < src!");
2400    assert((!VT.isVector() ||
2401            VT.getVectorNumElements() ==
2402            Operand.getValueType().getVectorNumElements()) &&
2403           "Vector element count mismatch!");
2404    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2405      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2406    break;
2407  case ISD::ZERO_EXTEND:
2408    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2409           "Invalid ZERO_EXTEND!");
2410    if (Operand.getValueType() == VT) return Operand;   // noop extension
2411    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2412           "Invalid zext node, dst < src!");
2413    assert((!VT.isVector() ||
2414            VT.getVectorNumElements() ==
2415            Operand.getValueType().getVectorNumElements()) &&
2416           "Vector element count mismatch!");
2417    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2418      return getNode(ISD::ZERO_EXTEND, DL, VT,
2419                     Operand.getNode()->getOperand(0));
2420    break;
2421  case ISD::ANY_EXTEND:
2422    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2423           "Invalid ANY_EXTEND!");
2424    if (Operand.getValueType() == VT) return Operand;   // noop extension
2425    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2426           "Invalid anyext node, dst < src!");
2427    assert((!VT.isVector() ||
2428            VT.getVectorNumElements() ==
2429            Operand.getValueType().getVectorNumElements()) &&
2430           "Vector element count mismatch!");
2431    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2432      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2433      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2434    break;
2435  case ISD::TRUNCATE:
2436    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2437           "Invalid TRUNCATE!");
2438    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2439    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2440           "Invalid truncate node, src < dst!");
2441    assert((!VT.isVector() ||
2442            VT.getVectorNumElements() ==
2443            Operand.getValueType().getVectorNumElements()) &&
2444           "Vector element count mismatch!");
2445    if (OpOpcode == ISD::TRUNCATE)
2446      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2447    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2448             OpOpcode == ISD::ANY_EXTEND) {
2449      // If the source is smaller than the dest, we still need an extend.
2450      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2451            .bitsLT(VT.getScalarType()))
2452        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2453      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2454        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2455      else
2456        return Operand.getNode()->getOperand(0);
2457    }
2458    break;
2459  case ISD::BIT_CONVERT:
2460    // Basic sanity checking.
2461    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2462           && "Cannot BIT_CONVERT between types of different sizes!");
2463    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2464    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2465      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2466    if (OpOpcode == ISD::UNDEF)
2467      return getUNDEF(VT);
2468    break;
2469  case ISD::SCALAR_TO_VECTOR:
2470    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2471           (VT.getVectorElementType() == Operand.getValueType() ||
2472            (VT.getVectorElementType().isInteger() &&
2473             Operand.getValueType().isInteger() &&
2474             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2475           "Illegal SCALAR_TO_VECTOR node!");
2476    if (OpOpcode == ISD::UNDEF)
2477      return getUNDEF(VT);
2478    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2479    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2480        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2481        Operand.getConstantOperandVal(1) == 0 &&
2482        Operand.getOperand(0).getValueType() == VT)
2483      return Operand.getOperand(0);
2484    break;
2485  case ISD::FNEG:
2486    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2487    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2488      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2489                     Operand.getNode()->getOperand(0));
2490    if (OpOpcode == ISD::FNEG)  // --X -> X
2491      return Operand.getNode()->getOperand(0);
2492    break;
2493  case ISD::FABS:
2494    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2495      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2496    break;
2497  }
2498
2499  SDNode *N;
2500  SDVTList VTs = getVTList(VT);
2501  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2502    FoldingSetNodeID ID;
2503    SDValue Ops[1] = { Operand };
2504    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2505    void *IP = 0;
2506    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2507      return SDValue(E, 0);
2508
2509    N = NodeAllocator.Allocate<UnarySDNode>();
2510    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2511    CSEMap.InsertNode(N, IP);
2512  } else {
2513    N = NodeAllocator.Allocate<UnarySDNode>();
2514    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2515  }
2516
2517  AllNodes.push_back(N);
2518#ifndef NDEBUG
2519  VerifyNode(N);
2520#endif
2521  return SDValue(N, 0);
2522}
2523
2524SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2525                                             EVT VT,
2526                                             ConstantSDNode *Cst1,
2527                                             ConstantSDNode *Cst2) {
2528  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2529
2530  switch (Opcode) {
2531  case ISD::ADD:  return getConstant(C1 + C2, VT);
2532  case ISD::SUB:  return getConstant(C1 - C2, VT);
2533  case ISD::MUL:  return getConstant(C1 * C2, VT);
2534  case ISD::UDIV:
2535    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2536    break;
2537  case ISD::UREM:
2538    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2539    break;
2540  case ISD::SDIV:
2541    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2542    break;
2543  case ISD::SREM:
2544    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2545    break;
2546  case ISD::AND:  return getConstant(C1 & C2, VT);
2547  case ISD::OR:   return getConstant(C1 | C2, VT);
2548  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2549  case ISD::SHL:  return getConstant(C1 << C2, VT);
2550  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2551  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2552  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2553  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2554  default: break;
2555  }
2556
2557  return SDValue();
2558}
2559
2560SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2561                              SDValue N1, SDValue N2) {
2562  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2563  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2564  switch (Opcode) {
2565  default: break;
2566  case ISD::TokenFactor:
2567    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2568           N2.getValueType() == MVT::Other && "Invalid token factor!");
2569    // Fold trivial token factors.
2570    if (N1.getOpcode() == ISD::EntryToken) return N2;
2571    if (N2.getOpcode() == ISD::EntryToken) return N1;
2572    if (N1 == N2) return N1;
2573    break;
2574  case ISD::CONCAT_VECTORS:
2575    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2576    // one big BUILD_VECTOR.
2577    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2578        N2.getOpcode() == ISD::BUILD_VECTOR) {
2579      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2580      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2581      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2582    }
2583    break;
2584  case ISD::AND:
2585    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2586           N1.getValueType() == VT && "Binary operator types must match!");
2587    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2588    // worth handling here.
2589    if (N2C && N2C->isNullValue())
2590      return N2;
2591    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2592      return N1;
2593    break;
2594  case ISD::OR:
2595  case ISD::XOR:
2596  case ISD::ADD:
2597  case ISD::SUB:
2598    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2599           N1.getValueType() == VT && "Binary operator types must match!");
2600    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2601    // it's worth handling here.
2602    if (N2C && N2C->isNullValue())
2603      return N1;
2604    break;
2605  case ISD::UDIV:
2606  case ISD::UREM:
2607  case ISD::MULHU:
2608  case ISD::MULHS:
2609  case ISD::MUL:
2610  case ISD::SDIV:
2611  case ISD::SREM:
2612    assert(VT.isInteger() && "This operator does not apply to FP types!");
2613    // fall through
2614  case ISD::FADD:
2615  case ISD::FSUB:
2616  case ISD::FMUL:
2617  case ISD::FDIV:
2618  case ISD::FREM:
2619    if (UnsafeFPMath) {
2620      if (Opcode == ISD::FADD) {
2621        // 0+x --> x
2622        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2623          if (CFP->getValueAPF().isZero())
2624            return N2;
2625        // x+0 --> x
2626        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2627          if (CFP->getValueAPF().isZero())
2628            return N1;
2629      } else if (Opcode == ISD::FSUB) {
2630        // x-0 --> x
2631        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2632          if (CFP->getValueAPF().isZero())
2633            return N1;
2634      }
2635    }
2636    assert(N1.getValueType() == N2.getValueType() &&
2637           N1.getValueType() == VT && "Binary operator types must match!");
2638    break;
2639  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2640    assert(N1.getValueType() == VT &&
2641           N1.getValueType().isFloatingPoint() &&
2642           N2.getValueType().isFloatingPoint() &&
2643           "Invalid FCOPYSIGN!");
2644    break;
2645  case ISD::SHL:
2646  case ISD::SRA:
2647  case ISD::SRL:
2648  case ISD::ROTL:
2649  case ISD::ROTR:
2650    assert(VT == N1.getValueType() &&
2651           "Shift operators return type must be the same as their first arg");
2652    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2653           "Shifts only work on integers");
2654
2655    // Always fold shifts of i1 values so the code generator doesn't need to
2656    // handle them.  Since we know the size of the shift has to be less than the
2657    // size of the value, the shift/rotate count is guaranteed to be zero.
2658    if (VT == MVT::i1)
2659      return N1;
2660    if (N2C && N2C->isNullValue())
2661      return N1;
2662    break;
2663  case ISD::FP_ROUND_INREG: {
2664    EVT EVT = cast<VTSDNode>(N2)->getVT();
2665    assert(VT == N1.getValueType() && "Not an inreg round!");
2666    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2667           "Cannot FP_ROUND_INREG integer types");
2668    assert(EVT.isVector() == VT.isVector() &&
2669           "FP_ROUND_INREG type should be vector iff the operand "
2670           "type is vector!");
2671    assert((!EVT.isVector() ||
2672            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2673           "Vector element counts must match in FP_ROUND_INREG");
2674    assert(EVT.bitsLE(VT) && "Not rounding down!");
2675    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2676    break;
2677  }
2678  case ISD::FP_ROUND:
2679    assert(VT.isFloatingPoint() &&
2680           N1.getValueType().isFloatingPoint() &&
2681           VT.bitsLE(N1.getValueType()) &&
2682           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2683    if (N1.getValueType() == VT) return N1;  // noop conversion.
2684    break;
2685  case ISD::AssertSext:
2686  case ISD::AssertZext: {
2687    EVT EVT = cast<VTSDNode>(N2)->getVT();
2688    assert(VT == N1.getValueType() && "Not an inreg extend!");
2689    assert(VT.isInteger() && EVT.isInteger() &&
2690           "Cannot *_EXTEND_INREG FP types");
2691    assert(!EVT.isVector() &&
2692           "AssertSExt/AssertZExt type should be the vector element type "
2693           "rather than the vector type!");
2694    assert(EVT.bitsLE(VT) && "Not extending!");
2695    if (VT == EVT) return N1; // noop assertion.
2696    break;
2697  }
2698  case ISD::SIGN_EXTEND_INREG: {
2699    EVT EVT = cast<VTSDNode>(N2)->getVT();
2700    assert(VT == N1.getValueType() && "Not an inreg extend!");
2701    assert(VT.isInteger() && EVT.isInteger() &&
2702           "Cannot *_EXTEND_INREG FP types");
2703    assert(EVT.isVector() == VT.isVector() &&
2704           "SIGN_EXTEND_INREG type should be vector iff the operand "
2705           "type is vector!");
2706    assert((!EVT.isVector() ||
2707            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2708           "Vector element counts must match in SIGN_EXTEND_INREG");
2709    assert(EVT.bitsLE(VT) && "Not extending!");
2710    if (EVT == VT) return N1;  // Not actually extending
2711
2712    if (N1C) {
2713      APInt Val = N1C->getAPIntValue();
2714      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2715      Val <<= Val.getBitWidth()-FromBits;
2716      Val = Val.ashr(Val.getBitWidth()-FromBits);
2717      return getConstant(Val, VT);
2718    }
2719    break;
2720  }
2721  case ISD::EXTRACT_VECTOR_ELT:
2722    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2723    if (N1.getOpcode() == ISD::UNDEF)
2724      return getUNDEF(VT);
2725
2726    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2727    // expanding copies of large vectors from registers.
2728    if (N2C &&
2729        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2730        N1.getNumOperands() > 0) {
2731      unsigned Factor =
2732        N1.getOperand(0).getValueType().getVectorNumElements();
2733      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2734                     N1.getOperand(N2C->getZExtValue() / Factor),
2735                     getConstant(N2C->getZExtValue() % Factor,
2736                                 N2.getValueType()));
2737    }
2738
2739    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2740    // expanding large vector constants.
2741    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2742      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2743      EVT VEltTy = N1.getValueType().getVectorElementType();
2744      if (Elt.getValueType() != VEltTy) {
2745        // If the vector element type is not legal, the BUILD_VECTOR operands
2746        // are promoted and implicitly truncated.  Make that explicit here.
2747        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2748      }
2749      if (VT != VEltTy) {
2750        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2751        // result is implicitly extended.
2752        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2753      }
2754      return Elt;
2755    }
2756
2757    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2758    // operations are lowered to scalars.
2759    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2760      // If the indices are the same, return the inserted element.
2761      if (N1.getOperand(2) == N2)
2762        return N1.getOperand(1);
2763      // If the indices are known different, extract the element from
2764      // the original vector.
2765      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2766               isa<ConstantSDNode>(N2))
2767        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2768    }
2769    break;
2770  case ISD::EXTRACT_ELEMENT:
2771    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2772    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2773           (N1.getValueType().isInteger() == VT.isInteger()) &&
2774           "Wrong types for EXTRACT_ELEMENT!");
2775
2776    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2777    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2778    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2779    if (N1.getOpcode() == ISD::BUILD_PAIR)
2780      return N1.getOperand(N2C->getZExtValue());
2781
2782    // EXTRACT_ELEMENT of a constant int is also very common.
2783    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2784      unsigned ElementSize = VT.getSizeInBits();
2785      unsigned Shift = ElementSize * N2C->getZExtValue();
2786      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2787      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2788    }
2789    break;
2790  case ISD::EXTRACT_SUBVECTOR:
2791    if (N1.getValueType() == VT) // Trivial extraction.
2792      return N1;
2793    break;
2794  }
2795
2796  if (N1C) {
2797    if (N2C) {
2798      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2799      if (SV.getNode()) return SV;
2800    } else {      // Cannonicalize constant to RHS if commutative
2801      if (isCommutativeBinOp(Opcode)) {
2802        std::swap(N1C, N2C);
2803        std::swap(N1, N2);
2804      }
2805    }
2806  }
2807
2808  // Constant fold FP operations.
2809  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2810  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2811  if (N1CFP) {
2812    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2813      // Cannonicalize constant to RHS if commutative
2814      std::swap(N1CFP, N2CFP);
2815      std::swap(N1, N2);
2816    } else if (N2CFP && VT != MVT::ppcf128) {
2817      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2818      APFloat::opStatus s;
2819      switch (Opcode) {
2820      case ISD::FADD:
2821        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2822        if (s != APFloat::opInvalidOp)
2823          return getConstantFP(V1, VT);
2824        break;
2825      case ISD::FSUB:
2826        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2827        if (s!=APFloat::opInvalidOp)
2828          return getConstantFP(V1, VT);
2829        break;
2830      case ISD::FMUL:
2831        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2832        if (s!=APFloat::opInvalidOp)
2833          return getConstantFP(V1, VT);
2834        break;
2835      case ISD::FDIV:
2836        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2837        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2838          return getConstantFP(V1, VT);
2839        break;
2840      case ISD::FREM :
2841        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2842        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2843          return getConstantFP(V1, VT);
2844        break;
2845      case ISD::FCOPYSIGN:
2846        V1.copySign(V2);
2847        return getConstantFP(V1, VT);
2848      default: break;
2849      }
2850    }
2851  }
2852
2853  // Canonicalize an UNDEF to the RHS, even over a constant.
2854  if (N1.getOpcode() == ISD::UNDEF) {
2855    if (isCommutativeBinOp(Opcode)) {
2856      std::swap(N1, N2);
2857    } else {
2858      switch (Opcode) {
2859      case ISD::FP_ROUND_INREG:
2860      case ISD::SIGN_EXTEND_INREG:
2861      case ISD::SUB:
2862      case ISD::FSUB:
2863      case ISD::FDIV:
2864      case ISD::FREM:
2865      case ISD::SRA:
2866        return N1;     // fold op(undef, arg2) -> undef
2867      case ISD::UDIV:
2868      case ISD::SDIV:
2869      case ISD::UREM:
2870      case ISD::SREM:
2871      case ISD::SRL:
2872      case ISD::SHL:
2873        if (!VT.isVector())
2874          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2875        // For vectors, we can't easily build an all zero vector, just return
2876        // the LHS.
2877        return N2;
2878      }
2879    }
2880  }
2881
2882  // Fold a bunch of operators when the RHS is undef.
2883  if (N2.getOpcode() == ISD::UNDEF) {
2884    switch (Opcode) {
2885    case ISD::XOR:
2886      if (N1.getOpcode() == ISD::UNDEF)
2887        // Handle undef ^ undef -> 0 special case. This is a common
2888        // idiom (misuse).
2889        return getConstant(0, VT);
2890      // fallthrough
2891    case ISD::ADD:
2892    case ISD::ADDC:
2893    case ISD::ADDE:
2894    case ISD::SUB:
2895    case ISD::UDIV:
2896    case ISD::SDIV:
2897    case ISD::UREM:
2898    case ISD::SREM:
2899      return N2;       // fold op(arg1, undef) -> undef
2900    case ISD::FADD:
2901    case ISD::FSUB:
2902    case ISD::FMUL:
2903    case ISD::FDIV:
2904    case ISD::FREM:
2905      if (UnsafeFPMath)
2906        return N2;
2907      break;
2908    case ISD::MUL:
2909    case ISD::AND:
2910    case ISD::SRL:
2911    case ISD::SHL:
2912      if (!VT.isVector())
2913        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2914      // For vectors, we can't easily build an all zero vector, just return
2915      // the LHS.
2916      return N1;
2917    case ISD::OR:
2918      if (!VT.isVector())
2919        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2920      // For vectors, we can't easily build an all one vector, just return
2921      // the LHS.
2922      return N1;
2923    case ISD::SRA:
2924      return N1;
2925    }
2926  }
2927
2928  // Memoize this node if possible.
2929  SDNode *N;
2930  SDVTList VTs = getVTList(VT);
2931  if (VT != MVT::Flag) {
2932    SDValue Ops[] = { N1, N2 };
2933    FoldingSetNodeID ID;
2934    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2935    void *IP = 0;
2936    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2937      return SDValue(E, 0);
2938
2939    N = NodeAllocator.Allocate<BinarySDNode>();
2940    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2941    CSEMap.InsertNode(N, IP);
2942  } else {
2943    N = NodeAllocator.Allocate<BinarySDNode>();
2944    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2945  }
2946
2947  AllNodes.push_back(N);
2948#ifndef NDEBUG
2949  VerifyNode(N);
2950#endif
2951  return SDValue(N, 0);
2952}
2953
2954SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2955                              SDValue N1, SDValue N2, SDValue N3) {
2956  // Perform various simplifications.
2957  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2958  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2959  switch (Opcode) {
2960  case ISD::CONCAT_VECTORS:
2961    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2962    // one big BUILD_VECTOR.
2963    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2964        N2.getOpcode() == ISD::BUILD_VECTOR &&
2965        N3.getOpcode() == ISD::BUILD_VECTOR) {
2966      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2967      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2968      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2969      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2970    }
2971    break;
2972  case ISD::SETCC: {
2973    // Use FoldSetCC to simplify SETCC's.
2974    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2975    if (Simp.getNode()) return Simp;
2976    break;
2977  }
2978  case ISD::SELECT:
2979    if (N1C) {
2980     if (N1C->getZExtValue())
2981        return N2;             // select true, X, Y -> X
2982      else
2983        return N3;             // select false, X, Y -> Y
2984    }
2985
2986    if (N2 == N3) return N2;   // select C, X, X -> X
2987    break;
2988  case ISD::BRCOND:
2989    if (N2C) {
2990      if (N2C->getZExtValue()) // Unconditional branch
2991        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2992      else
2993        return N1;         // Never-taken branch
2994    }
2995    break;
2996  case ISD::VECTOR_SHUFFLE:
2997    llvm_unreachable("should use getVectorShuffle constructor!");
2998    break;
2999  case ISD::BIT_CONVERT:
3000    // Fold bit_convert nodes from a type to themselves.
3001    if (N1.getValueType() == VT)
3002      return N1;
3003    break;
3004  }
3005
3006  // Memoize node if it doesn't produce a flag.
3007  SDNode *N;
3008  SDVTList VTs = getVTList(VT);
3009  if (VT != MVT::Flag) {
3010    SDValue Ops[] = { N1, N2, N3 };
3011    FoldingSetNodeID ID;
3012    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3013    void *IP = 0;
3014    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3015      return SDValue(E, 0);
3016
3017    N = NodeAllocator.Allocate<TernarySDNode>();
3018    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3019    CSEMap.InsertNode(N, IP);
3020  } else {
3021    N = NodeAllocator.Allocate<TernarySDNode>();
3022    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3023  }
3024
3025  AllNodes.push_back(N);
3026#ifndef NDEBUG
3027  VerifyNode(N);
3028#endif
3029  return SDValue(N, 0);
3030}
3031
3032SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3033                              SDValue N1, SDValue N2, SDValue N3,
3034                              SDValue N4) {
3035  SDValue Ops[] = { N1, N2, N3, N4 };
3036  return getNode(Opcode, DL, VT, Ops, 4);
3037}
3038
3039SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3040                              SDValue N1, SDValue N2, SDValue N3,
3041                              SDValue N4, SDValue N5) {
3042  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3043  return getNode(Opcode, DL, VT, Ops, 5);
3044}
3045
3046/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3047/// the incoming stack arguments to be loaded from the stack.
3048SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3049  SmallVector<SDValue, 8> ArgChains;
3050
3051  // Include the original chain at the beginning of the list. When this is
3052  // used by target LowerCall hooks, this helps legalize find the
3053  // CALLSEQ_BEGIN node.
3054  ArgChains.push_back(Chain);
3055
3056  // Add a chain value for each stack argument.
3057  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3058       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3059    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3060      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3061        if (FI->getIndex() < 0)
3062          ArgChains.push_back(SDValue(L, 1));
3063
3064  // Build a tokenfactor for all the chains.
3065  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3066                 &ArgChains[0], ArgChains.size());
3067}
3068
3069/// getMemsetValue - Vectorized representation of the memset value
3070/// operand.
3071static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3072                              DebugLoc dl) {
3073  unsigned NumBits = VT.isVector() ?
3074    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3075  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3076    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3077    unsigned Shift = 8;
3078    for (unsigned i = NumBits; i > 8; i >>= 1) {
3079      Val = (Val << Shift) | Val;
3080      Shift <<= 1;
3081    }
3082    if (VT.isInteger())
3083      return DAG.getConstant(Val, VT);
3084    return DAG.getConstantFP(APFloat(Val), VT);
3085  }
3086
3087  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3089  unsigned Shift = 8;
3090  for (unsigned i = NumBits; i > 8; i >>= 1) {
3091    Value = DAG.getNode(ISD::OR, dl, VT,
3092                        DAG.getNode(ISD::SHL, dl, VT, Value,
3093                                    DAG.getConstant(Shift,
3094                                                    TLI.getShiftAmountTy())),
3095                        Value);
3096    Shift <<= 1;
3097  }
3098
3099  return Value;
3100}
3101
3102/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3103/// used when a memcpy is turned into a memset when the source is a constant
3104/// string ptr.
3105static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3106                                  const TargetLowering &TLI,
3107                                  std::string &Str, unsigned Offset) {
3108  // Handle vector with all elements zero.
3109  if (Str.empty()) {
3110    if (VT.isInteger())
3111      return DAG.getConstant(0, VT);
3112    unsigned NumElts = VT.getVectorNumElements();
3113    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3114    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3115                       DAG.getConstant(0,
3116                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3117  }
3118
3119  assert(!VT.isVector() && "Can't handle vector type here!");
3120  unsigned NumBits = VT.getSizeInBits();
3121  unsigned MSB = NumBits / 8;
3122  uint64_t Val = 0;
3123  if (TLI.isLittleEndian())
3124    Offset = Offset + MSB - 1;
3125  for (unsigned i = 0; i != MSB; ++i) {
3126    Val = (Val << 8) | (unsigned char)Str[Offset];
3127    Offset += TLI.isLittleEndian() ? -1 : 1;
3128  }
3129  return DAG.getConstant(Val, VT);
3130}
3131
3132/// getMemBasePlusOffset - Returns base and offset node for the
3133///
3134static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3135                                      SelectionDAG &DAG) {
3136  EVT VT = Base.getValueType();
3137  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3138                     VT, Base, DAG.getConstant(Offset, VT));
3139}
3140
3141/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3142///
3143static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3144  unsigned SrcDelta = 0;
3145  GlobalAddressSDNode *G = NULL;
3146  if (Src.getOpcode() == ISD::GlobalAddress)
3147    G = cast<GlobalAddressSDNode>(Src);
3148  else if (Src.getOpcode() == ISD::ADD &&
3149           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3150           Src.getOperand(1).getOpcode() == ISD::Constant) {
3151    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3152    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3153  }
3154  if (!G)
3155    return false;
3156
3157  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3158  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3159    return true;
3160
3161  return false;
3162}
3163
3164/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3165/// to replace the memset / memcpy is below the threshold. It also returns the
3166/// types of the sequence of memory ops to perform memset / memcpy.
3167static
3168bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3169                              SDValue Dst, SDValue Src,
3170                              unsigned Limit, uint64_t Size, unsigned &Align,
3171                              std::string &Str, bool &isSrcStr,
3172                              SelectionDAG &DAG,
3173                              const TargetLowering &TLI) {
3174  isSrcStr = isMemSrcFromString(Src, Str);
3175  bool isSrcConst = isa<ConstantSDNode>(Src);
3176  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3177  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3178  if (VT != MVT::iAny) {
3179    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3180    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3181    // If source is a string constant, this will require an unaligned load.
3182    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3183      if (Dst.getOpcode() != ISD::FrameIndex) {
3184        // Can't change destination alignment. It requires a unaligned store.
3185        if (AllowUnalign)
3186          VT = MVT::iAny;
3187      } else {
3188        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3189        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3190        if (MFI->isFixedObjectIndex(FI)) {
3191          // Can't change destination alignment. It requires a unaligned store.
3192          if (AllowUnalign)
3193            VT = MVT::iAny;
3194        } else {
3195          // Give the stack frame object a larger alignment if needed.
3196          if (MFI->getObjectAlignment(FI) < NewAlign)
3197            MFI->setObjectAlignment(FI, NewAlign);
3198          Align = NewAlign;
3199        }
3200      }
3201    }
3202  }
3203
3204  if (VT == MVT::iAny) {
3205    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3206      VT = MVT::i64;
3207    } else {
3208      switch (Align & 7) {
3209      case 0:  VT = MVT::i64; break;
3210      case 4:  VT = MVT::i32; break;
3211      case 2:  VT = MVT::i16; break;
3212      default: VT = MVT::i8;  break;
3213      }
3214    }
3215
3216    MVT LVT = MVT::i64;
3217    while (!TLI.isTypeLegal(LVT))
3218      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3219    assert(LVT.isInteger());
3220
3221    if (VT.bitsGT(LVT))
3222      VT = LVT;
3223  }
3224
3225  unsigned NumMemOps = 0;
3226  while (Size != 0) {
3227    unsigned VTSize = VT.getSizeInBits() / 8;
3228    while (VTSize > Size) {
3229      // For now, only use non-vector load / store's for the left-over pieces.
3230      if (VT.isVector()) {
3231        VT = MVT::i64;
3232        while (!TLI.isTypeLegal(VT))
3233          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3234        VTSize = VT.getSizeInBits() / 8;
3235      } else {
3236        // This can result in a type that is not legal on the target, e.g.
3237        // 1 or 2 bytes on PPC.
3238        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3239        VTSize >>= 1;
3240      }
3241    }
3242
3243    if (++NumMemOps > Limit)
3244      return false;
3245    MemOps.push_back(VT);
3246    Size -= VTSize;
3247  }
3248
3249  return true;
3250}
3251
3252static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3253                                         SDValue Chain, SDValue Dst,
3254                                         SDValue Src, uint64_t Size,
3255                                         unsigned Align, bool AlwaysInline,
3256                                         const Value *DstSV, uint64_t DstSVOff,
3257                                         const Value *SrcSV, uint64_t SrcSVOff){
3258  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3259
3260  // Expand memcpy to a series of load and store ops if the size operand falls
3261  // below a certain threshold.
3262  std::vector<EVT> MemOps;
3263  uint64_t Limit = -1ULL;
3264  if (!AlwaysInline)
3265    Limit = TLI.getMaxStoresPerMemcpy();
3266  unsigned DstAlign = Align;  // Destination alignment can change.
3267  std::string Str;
3268  bool CopyFromStr;
3269  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3270                                Str, CopyFromStr, DAG, TLI))
3271    return SDValue();
3272
3273
3274  bool isZeroStr = CopyFromStr && Str.empty();
3275  SmallVector<SDValue, 8> OutChains;
3276  unsigned NumMemOps = MemOps.size();
3277  uint64_t SrcOff = 0, DstOff = 0;
3278  for (unsigned i = 0; i != NumMemOps; ++i) {
3279    EVT VT = MemOps[i];
3280    unsigned VTSize = VT.getSizeInBits() / 8;
3281    SDValue Value, Store;
3282
3283    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3284      // It's unlikely a store of a vector immediate can be done in a single
3285      // instruction. It would require a load from a constantpool first.
3286      // We also handle store a vector with all zero's.
3287      // FIXME: Handle other cases where store of vector immediate is done in
3288      // a single instruction.
3289      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3290      Store = DAG.getStore(Chain, dl, Value,
3291                           getMemBasePlusOffset(Dst, DstOff, DAG),
3292                           DstSV, DstSVOff + DstOff, false, DstAlign);
3293    } else {
3294      // The type might not be legal for the target.  This should only happen
3295      // if the type is smaller than a legal type, as on PPC, so the right
3296      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3297      // to Load/Store if NVT==VT.
3298      // FIXME does the case above also need this?
3299      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3300      assert(NVT.bitsGE(VT));
3301      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3302                             getMemBasePlusOffset(Src, SrcOff, DAG),
3303                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3304      Store = DAG.getTruncStore(Chain, dl, Value,
3305                             getMemBasePlusOffset(Dst, DstOff, DAG),
3306                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3307    }
3308    OutChains.push_back(Store);
3309    SrcOff += VTSize;
3310    DstOff += VTSize;
3311  }
3312
3313  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3314                     &OutChains[0], OutChains.size());
3315}
3316
3317static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3318                                          SDValue Chain, SDValue Dst,
3319                                          SDValue Src, uint64_t Size,
3320                                          unsigned Align, bool AlwaysInline,
3321                                          const Value *DstSV, uint64_t DstSVOff,
3322                                          const Value *SrcSV, uint64_t SrcSVOff){
3323  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3324
3325  // Expand memmove to a series of load and store ops if the size operand falls
3326  // below a certain threshold.
3327  std::vector<EVT> MemOps;
3328  uint64_t Limit = -1ULL;
3329  if (!AlwaysInline)
3330    Limit = TLI.getMaxStoresPerMemmove();
3331  unsigned DstAlign = Align;  // Destination alignment can change.
3332  std::string Str;
3333  bool CopyFromStr;
3334  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3335                                Str, CopyFromStr, DAG, TLI))
3336    return SDValue();
3337
3338  uint64_t SrcOff = 0, DstOff = 0;
3339
3340  SmallVector<SDValue, 8> LoadValues;
3341  SmallVector<SDValue, 8> LoadChains;
3342  SmallVector<SDValue, 8> OutChains;
3343  unsigned NumMemOps = MemOps.size();
3344  for (unsigned i = 0; i < NumMemOps; i++) {
3345    EVT VT = MemOps[i];
3346    unsigned VTSize = VT.getSizeInBits() / 8;
3347    SDValue Value, Store;
3348
3349    Value = DAG.getLoad(VT, dl, Chain,
3350                        getMemBasePlusOffset(Src, SrcOff, DAG),
3351                        SrcSV, SrcSVOff + SrcOff, false, Align);
3352    LoadValues.push_back(Value);
3353    LoadChains.push_back(Value.getValue(1));
3354    SrcOff += VTSize;
3355  }
3356  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3357                      &LoadChains[0], LoadChains.size());
3358  OutChains.clear();
3359  for (unsigned i = 0; i < NumMemOps; i++) {
3360    EVT VT = MemOps[i];
3361    unsigned VTSize = VT.getSizeInBits() / 8;
3362    SDValue Value, Store;
3363
3364    Store = DAG.getStore(Chain, dl, LoadValues[i],
3365                         getMemBasePlusOffset(Dst, DstOff, DAG),
3366                         DstSV, DstSVOff + DstOff, false, DstAlign);
3367    OutChains.push_back(Store);
3368    DstOff += VTSize;
3369  }
3370
3371  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3372                     &OutChains[0], OutChains.size());
3373}
3374
3375static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3376                                 SDValue Chain, SDValue Dst,
3377                                 SDValue Src, uint64_t Size,
3378                                 unsigned Align,
3379                                 const Value *DstSV, uint64_t DstSVOff) {
3380  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3381
3382  // Expand memset to a series of load/store ops if the size operand
3383  // falls below a certain threshold.
3384  std::vector<EVT> MemOps;
3385  std::string Str;
3386  bool CopyFromStr;
3387  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3388                                Size, Align, Str, CopyFromStr, DAG, TLI))
3389    return SDValue();
3390
3391  SmallVector<SDValue, 8> OutChains;
3392  uint64_t DstOff = 0;
3393
3394  unsigned NumMemOps = MemOps.size();
3395  for (unsigned i = 0; i < NumMemOps; i++) {
3396    EVT VT = MemOps[i];
3397    unsigned VTSize = VT.getSizeInBits() / 8;
3398    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3399    SDValue Store = DAG.getStore(Chain, dl, Value,
3400                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3401                                 DstSV, DstSVOff + DstOff);
3402    OutChains.push_back(Store);
3403    DstOff += VTSize;
3404  }
3405
3406  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3407                     &OutChains[0], OutChains.size());
3408}
3409
3410SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3411                                SDValue Src, SDValue Size,
3412                                unsigned Align, bool AlwaysInline,
3413                                const Value *DstSV, uint64_t DstSVOff,
3414                                const Value *SrcSV, uint64_t SrcSVOff) {
3415
3416  // Check to see if we should lower the memcpy to loads and stores first.
3417  // For cases within the target-specified limits, this is the best choice.
3418  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3419  if (ConstantSize) {
3420    // Memcpy with size zero? Just return the original chain.
3421    if (ConstantSize->isNullValue())
3422      return Chain;
3423
3424    SDValue Result =
3425      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3426                              ConstantSize->getZExtValue(),
3427                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3428    if (Result.getNode())
3429      return Result;
3430  }
3431
3432  // Then check to see if we should lower the memcpy with target-specific
3433  // code. If the target chooses to do this, this is the next best.
3434  SDValue Result =
3435    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3436                                AlwaysInline,
3437                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3438  if (Result.getNode())
3439    return Result;
3440
3441  // If we really need inline code and the target declined to provide it,
3442  // use a (potentially long) sequence of loads and stores.
3443  if (AlwaysInline) {
3444    assert(ConstantSize && "AlwaysInline requires a constant size!");
3445    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3446                                   ConstantSize->getZExtValue(), Align, true,
3447                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3448  }
3449
3450  // Emit a library call.
3451  TargetLowering::ArgListTy Args;
3452  TargetLowering::ArgListEntry Entry;
3453  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3454  Entry.Node = Dst; Args.push_back(Entry);
3455  Entry.Node = Src; Args.push_back(Entry);
3456  Entry.Node = Size; Args.push_back(Entry);
3457  // FIXME: pass in DebugLoc
3458  std::pair<SDValue,SDValue> CallResult =
3459    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3460                    false, false, false, false, 0,
3461                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3462                    /*isReturnValueUsed=*/false,
3463                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3464                                      TLI.getPointerTy()),
3465                    Args, *this, dl, GetOrdering(Chain.getNode()));
3466  return CallResult.second;
3467}
3468
3469SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3470                                 SDValue Src, SDValue Size,
3471                                 unsigned Align,
3472                                 const Value *DstSV, uint64_t DstSVOff,
3473                                 const Value *SrcSV, uint64_t SrcSVOff) {
3474
3475  // Check to see if we should lower the memmove to loads and stores first.
3476  // For cases within the target-specified limits, this is the best choice.
3477  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3478  if (ConstantSize) {
3479    // Memmove with size zero? Just return the original chain.
3480    if (ConstantSize->isNullValue())
3481      return Chain;
3482
3483    SDValue Result =
3484      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3485                               ConstantSize->getZExtValue(),
3486                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3487    if (Result.getNode())
3488      return Result;
3489  }
3490
3491  // Then check to see if we should lower the memmove with target-specific
3492  // code. If the target chooses to do this, this is the next best.
3493  SDValue Result =
3494    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3495                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3496  if (Result.getNode())
3497    return Result;
3498
3499  // Emit a library call.
3500  TargetLowering::ArgListTy Args;
3501  TargetLowering::ArgListEntry Entry;
3502  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3503  Entry.Node = Dst; Args.push_back(Entry);
3504  Entry.Node = Src; Args.push_back(Entry);
3505  Entry.Node = Size; Args.push_back(Entry);
3506  // FIXME:  pass in DebugLoc
3507  std::pair<SDValue,SDValue> CallResult =
3508    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3509                    false, false, false, false, 0,
3510                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3511                    /*isReturnValueUsed=*/false,
3512                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3513                                      TLI.getPointerTy()),
3514                    Args, *this, dl, GetOrdering(Chain.getNode()));
3515  return CallResult.second;
3516}
3517
3518SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3519                                SDValue Src, SDValue Size,
3520                                unsigned Align,
3521                                const Value *DstSV, uint64_t DstSVOff) {
3522
3523  // Check to see if we should lower the memset to stores first.
3524  // For cases within the target-specified limits, this is the best choice.
3525  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3526  if (ConstantSize) {
3527    // Memset with size zero? Just return the original chain.
3528    if (ConstantSize->isNullValue())
3529      return Chain;
3530
3531    SDValue Result =
3532      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3533                      Align, DstSV, DstSVOff);
3534    if (Result.getNode())
3535      return Result;
3536  }
3537
3538  // Then check to see if we should lower the memset with target-specific
3539  // code. If the target chooses to do this, this is the next best.
3540  SDValue Result =
3541    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3542                                DstSV, DstSVOff);
3543  if (Result.getNode())
3544    return Result;
3545
3546  // Emit a library call.
3547  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3548  TargetLowering::ArgListTy Args;
3549  TargetLowering::ArgListEntry Entry;
3550  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3551  Args.push_back(Entry);
3552  // Extend or truncate the argument to be an i32 value for the call.
3553  if (Src.getValueType().bitsGT(MVT::i32))
3554    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3555  else
3556    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3557  Entry.Node = Src;
3558  Entry.Ty = Type::getInt32Ty(*getContext());
3559  Entry.isSExt = true;
3560  Args.push_back(Entry);
3561  Entry.Node = Size;
3562  Entry.Ty = IntPtrTy;
3563  Entry.isSExt = false;
3564  Args.push_back(Entry);
3565  // FIXME: pass in DebugLoc
3566  std::pair<SDValue,SDValue> CallResult =
3567    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3568                    false, false, false, false, 0,
3569                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3570                    /*isReturnValueUsed=*/false,
3571                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3572                                      TLI.getPointerTy()),
3573                    Args, *this, dl, GetOrdering(Chain.getNode()));
3574  return CallResult.second;
3575}
3576
3577SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3578                                SDValue Chain,
3579                                SDValue Ptr, SDValue Cmp,
3580                                SDValue Swp, const Value* PtrVal,
3581                                unsigned Alignment) {
3582  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3583    Alignment = getEVTAlignment(MemVT);
3584
3585  // Check if the memory reference references a frame index
3586  if (!PtrVal)
3587    if (const FrameIndexSDNode *FI =
3588          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3589      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3590
3591  MachineFunction &MF = getMachineFunction();
3592  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3593
3594  // For now, atomics are considered to be volatile always.
3595  Flags |= MachineMemOperand::MOVolatile;
3596
3597  MachineMemOperand *MMO =
3598    MF.getMachineMemOperand(PtrVal, Flags, 0,
3599                            MemVT.getStoreSize(), Alignment);
3600
3601  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3602}
3603
3604SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3605                                SDValue Chain,
3606                                SDValue Ptr, SDValue Cmp,
3607                                SDValue Swp, MachineMemOperand *MMO) {
3608  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3609  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3610
3611  EVT VT = Cmp.getValueType();
3612
3613  SDVTList VTs = getVTList(VT, MVT::Other);
3614  FoldingSetNodeID ID;
3615  ID.AddInteger(MemVT.getRawBits());
3616  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3617  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3618  void* IP = 0;
3619  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3620    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3621    return SDValue(E, 0);
3622  }
3623  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3624  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3625  CSEMap.InsertNode(N, IP);
3626  AllNodes.push_back(N);
3627  return SDValue(N, 0);
3628}
3629
3630SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3631                                SDValue Chain,
3632                                SDValue Ptr, SDValue Val,
3633                                const Value* PtrVal,
3634                                unsigned Alignment) {
3635  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3636    Alignment = getEVTAlignment(MemVT);
3637
3638  // Check if the memory reference references a frame index
3639  if (!PtrVal)
3640    if (const FrameIndexSDNode *FI =
3641          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3642      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3643
3644  MachineFunction &MF = getMachineFunction();
3645  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3646
3647  // For now, atomics are considered to be volatile always.
3648  Flags |= MachineMemOperand::MOVolatile;
3649
3650  MachineMemOperand *MMO =
3651    MF.getMachineMemOperand(PtrVal, Flags, 0,
3652                            MemVT.getStoreSize(), Alignment);
3653
3654  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3655}
3656
3657SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3658                                SDValue Chain,
3659                                SDValue Ptr, SDValue Val,
3660                                MachineMemOperand *MMO) {
3661  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3662          Opcode == ISD::ATOMIC_LOAD_SUB ||
3663          Opcode == ISD::ATOMIC_LOAD_AND ||
3664          Opcode == ISD::ATOMIC_LOAD_OR ||
3665          Opcode == ISD::ATOMIC_LOAD_XOR ||
3666          Opcode == ISD::ATOMIC_LOAD_NAND ||
3667          Opcode == ISD::ATOMIC_LOAD_MIN ||
3668          Opcode == ISD::ATOMIC_LOAD_MAX ||
3669          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3670          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3671          Opcode == ISD::ATOMIC_SWAP) &&
3672         "Invalid Atomic Op");
3673
3674  EVT VT = Val.getValueType();
3675
3676  SDVTList VTs = getVTList(VT, MVT::Other);
3677  FoldingSetNodeID ID;
3678  ID.AddInteger(MemVT.getRawBits());
3679  SDValue Ops[] = {Chain, Ptr, Val};
3680  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3681  void* IP = 0;
3682  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3683    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3684    return SDValue(E, 0);
3685  }
3686  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3687  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3688  CSEMap.InsertNode(N, IP);
3689  AllNodes.push_back(N);
3690  return SDValue(N, 0);
3691}
3692
3693/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3694/// Allowed to return something different (and simpler) if Simplify is true.
3695SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3696                                     DebugLoc dl) {
3697  if (NumOps == 1)
3698    return Ops[0];
3699
3700  SmallVector<EVT, 4> VTs;
3701  VTs.reserve(NumOps);
3702  for (unsigned i = 0; i < NumOps; ++i)
3703    VTs.push_back(Ops[i].getValueType());
3704  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3705                 Ops, NumOps);
3706}
3707
3708SDValue
3709SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3710                                  const EVT *VTs, unsigned NumVTs,
3711                                  const SDValue *Ops, unsigned NumOps,
3712                                  EVT MemVT, const Value *srcValue, int SVOff,
3713                                  unsigned Align, bool Vol,
3714                                  bool ReadMem, bool WriteMem) {
3715  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3716                             MemVT, srcValue, SVOff, Align, Vol,
3717                             ReadMem, WriteMem);
3718}
3719
3720SDValue
3721SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3722                                  const SDValue *Ops, unsigned NumOps,
3723                                  EVT MemVT, const Value *srcValue, int SVOff,
3724                                  unsigned Align, bool Vol,
3725                                  bool ReadMem, bool WriteMem) {
3726  if (Align == 0)  // Ensure that codegen never sees alignment 0
3727    Align = getEVTAlignment(MemVT);
3728
3729  MachineFunction &MF = getMachineFunction();
3730  unsigned Flags = 0;
3731  if (WriteMem)
3732    Flags |= MachineMemOperand::MOStore;
3733  if (ReadMem)
3734    Flags |= MachineMemOperand::MOLoad;
3735  if (Vol)
3736    Flags |= MachineMemOperand::MOVolatile;
3737  MachineMemOperand *MMO =
3738    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3739                            MemVT.getStoreSize(), Align);
3740
3741  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3742}
3743
3744SDValue
3745SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3746                                  const SDValue *Ops, unsigned NumOps,
3747                                  EVT MemVT, MachineMemOperand *MMO) {
3748  assert((Opcode == ISD::INTRINSIC_VOID ||
3749          Opcode == ISD::INTRINSIC_W_CHAIN ||
3750          (Opcode <= INT_MAX &&
3751           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3752         "Opcode is not a memory-accessing opcode!");
3753
3754  // Memoize the node unless it returns a flag.
3755  MemIntrinsicSDNode *N;
3756  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3757    FoldingSetNodeID ID;
3758    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3759    void *IP = 0;
3760    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3761      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3762      return SDValue(E, 0);
3763    }
3764
3765    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3766    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3767    CSEMap.InsertNode(N, IP);
3768  } else {
3769    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3770    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3771  }
3772  AllNodes.push_back(N);
3773  return SDValue(N, 0);
3774}
3775
3776SDValue
3777SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3778                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3779                      SDValue Ptr, SDValue Offset,
3780                      const Value *SV, int SVOffset, EVT MemVT,
3781                      bool isVolatile, unsigned Alignment) {
3782  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3783    Alignment = getEVTAlignment(VT);
3784
3785  // Check if the memory reference references a frame index
3786  if (!SV)
3787    if (const FrameIndexSDNode *FI =
3788          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3789      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3790
3791  MachineFunction &MF = getMachineFunction();
3792  unsigned Flags = MachineMemOperand::MOLoad;
3793  if (isVolatile)
3794    Flags |= MachineMemOperand::MOVolatile;
3795  MachineMemOperand *MMO =
3796    MF.getMachineMemOperand(SV, Flags, SVOffset,
3797                            MemVT.getStoreSize(), Alignment);
3798  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3799}
3800
3801SDValue
3802SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3803                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3804                      SDValue Ptr, SDValue Offset, EVT MemVT,
3805                      MachineMemOperand *MMO) {
3806  if (VT == MemVT) {
3807    ExtType = ISD::NON_EXTLOAD;
3808  } else if (ExtType == ISD::NON_EXTLOAD) {
3809    assert(VT == MemVT && "Non-extending load from different memory type!");
3810  } else {
3811    // Extending load.
3812    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3813           "Should only be an extending load, not truncating!");
3814    assert(VT.isInteger() == MemVT.isInteger() &&
3815           "Cannot convert from FP to Int or Int -> FP!");
3816    assert(VT.isVector() == MemVT.isVector() &&
3817           "Cannot use trunc store to convert to or from a vector!");
3818    assert((!VT.isVector() ||
3819            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3820           "Cannot use trunc store to change the number of vector elements!");
3821  }
3822
3823  bool Indexed = AM != ISD::UNINDEXED;
3824  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3825         "Unindexed load with an offset!");
3826
3827  SDVTList VTs = Indexed ?
3828    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3829  SDValue Ops[] = { Chain, Ptr, Offset };
3830  FoldingSetNodeID ID;
3831  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3832  ID.AddInteger(MemVT.getRawBits());
3833  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3834  void *IP = 0;
3835  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3836    cast<LoadSDNode>(E)->refineAlignment(MMO);
3837    return SDValue(E, 0);
3838  }
3839  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3840  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3841  CSEMap.InsertNode(N, IP);
3842  AllNodes.push_back(N);
3843  return SDValue(N, 0);
3844}
3845
3846SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3847                              SDValue Chain, SDValue Ptr,
3848                              const Value *SV, int SVOffset,
3849                              bool isVolatile, unsigned Alignment) {
3850  SDValue Undef = getUNDEF(Ptr.getValueType());
3851  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3852                 SV, SVOffset, VT, isVolatile, Alignment);
3853}
3854
3855SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3856                                 SDValue Chain, SDValue Ptr,
3857                                 const Value *SV,
3858                                 int SVOffset, EVT MemVT,
3859                                 bool isVolatile, unsigned Alignment) {
3860  SDValue Undef = getUNDEF(Ptr.getValueType());
3861  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3862                 SV, SVOffset, MemVT, isVolatile, Alignment);
3863}
3864
3865SDValue
3866SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3867                             SDValue Offset, ISD::MemIndexedMode AM) {
3868  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3869  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3870         "Load is already a indexed load!");
3871  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3872                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3873                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3874                 LD->isVolatile(), LD->getAlignment());
3875}
3876
3877SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3878                               SDValue Ptr, const Value *SV, int SVOffset,
3879                               bool isVolatile, unsigned Alignment) {
3880  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3881    Alignment = getEVTAlignment(Val.getValueType());
3882
3883  // Check if the memory reference references a frame index
3884  if (!SV)
3885    if (const FrameIndexSDNode *FI =
3886          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3887      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3888
3889  MachineFunction &MF = getMachineFunction();
3890  unsigned Flags = MachineMemOperand::MOStore;
3891  if (isVolatile)
3892    Flags |= MachineMemOperand::MOVolatile;
3893  MachineMemOperand *MMO =
3894    MF.getMachineMemOperand(SV, Flags, SVOffset,
3895                            Val.getValueType().getStoreSize(), Alignment);
3896
3897  return getStore(Chain, dl, Val, Ptr, MMO);
3898}
3899
3900SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3901                               SDValue Ptr, MachineMemOperand *MMO) {
3902  EVT VT = Val.getValueType();
3903  SDVTList VTs = getVTList(MVT::Other);
3904  SDValue Undef = getUNDEF(Ptr.getValueType());
3905  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3906  FoldingSetNodeID ID;
3907  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3908  ID.AddInteger(VT.getRawBits());
3909  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3910  void *IP = 0;
3911  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3912    cast<StoreSDNode>(E)->refineAlignment(MMO);
3913    return SDValue(E, 0);
3914  }
3915  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3916  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3917  CSEMap.InsertNode(N, IP);
3918  AllNodes.push_back(N);
3919  return SDValue(N, 0);
3920}
3921
3922SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3923                                    SDValue Ptr, const Value *SV,
3924                                    int SVOffset, EVT SVT,
3925                                    bool isVolatile, unsigned Alignment) {
3926  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3927    Alignment = getEVTAlignment(SVT);
3928
3929  // Check if the memory reference references a frame index
3930  if (!SV)
3931    if (const FrameIndexSDNode *FI =
3932          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3933      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3934
3935  MachineFunction &MF = getMachineFunction();
3936  unsigned Flags = MachineMemOperand::MOStore;
3937  if (isVolatile)
3938    Flags |= MachineMemOperand::MOVolatile;
3939  MachineMemOperand *MMO =
3940    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3941
3942  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3943}
3944
3945SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3946                                    SDValue Ptr, EVT SVT,
3947                                    MachineMemOperand *MMO) {
3948  EVT VT = Val.getValueType();
3949
3950  if (VT == SVT)
3951    return getStore(Chain, dl, Val, Ptr, MMO);
3952
3953  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3954         "Should only be a truncating store, not extending!");
3955  assert(VT.isInteger() == SVT.isInteger() &&
3956         "Can't do FP-INT conversion!");
3957  assert(VT.isVector() == SVT.isVector() &&
3958         "Cannot use trunc store to convert to or from a vector!");
3959  assert((!VT.isVector() ||
3960          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3961         "Cannot use trunc store to change the number of vector elements!");
3962
3963  SDVTList VTs = getVTList(MVT::Other);
3964  SDValue Undef = getUNDEF(Ptr.getValueType());
3965  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3966  FoldingSetNodeID ID;
3967  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3968  ID.AddInteger(SVT.getRawBits());
3969  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3970  void *IP = 0;
3971  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3972    cast<StoreSDNode>(E)->refineAlignment(MMO);
3973    return SDValue(E, 0);
3974  }
3975  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3976  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3977  CSEMap.InsertNode(N, IP);
3978  AllNodes.push_back(N);
3979  return SDValue(N, 0);
3980}
3981
3982SDValue
3983SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3984                              SDValue Offset, ISD::MemIndexedMode AM) {
3985  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3986  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3987         "Store is already a indexed store!");
3988  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3989  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3990  FoldingSetNodeID ID;
3991  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3992  ID.AddInteger(ST->getMemoryVT().getRawBits());
3993  ID.AddInteger(ST->getRawSubclassData());
3994  void *IP = 0;
3995  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3996    return SDValue(E, 0);
3997
3998  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3999  new (N) StoreSDNode(Ops, dl, VTs, AM,
4000                      ST->isTruncatingStore(), ST->getMemoryVT(),
4001                      ST->getMemOperand());
4002  CSEMap.InsertNode(N, IP);
4003  AllNodes.push_back(N);
4004  return SDValue(N, 0);
4005}
4006
4007SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4008                               SDValue Chain, SDValue Ptr,
4009                               SDValue SV) {
4010  SDValue Ops[] = { Chain, Ptr, SV };
4011  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4012}
4013
4014SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4015                              const SDUse *Ops, unsigned NumOps) {
4016  switch (NumOps) {
4017  case 0: return getNode(Opcode, DL, VT);
4018  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4019  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4020  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4021  default: break;
4022  }
4023
4024  // Copy from an SDUse array into an SDValue array for use with
4025  // the regular getNode logic.
4026  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4027  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4028}
4029
4030SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4031                              const SDValue *Ops, unsigned NumOps) {
4032  switch (NumOps) {
4033  case 0: return getNode(Opcode, DL, VT);
4034  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4035  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4036  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4037  default: break;
4038  }
4039
4040  switch (Opcode) {
4041  default: break;
4042  case ISD::SELECT_CC: {
4043    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4044    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4045           "LHS and RHS of condition must have same type!");
4046    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4047           "True and False arms of SelectCC must have same type!");
4048    assert(Ops[2].getValueType() == VT &&
4049           "select_cc node must be of same type as true and false value!");
4050    break;
4051  }
4052  case ISD::BR_CC: {
4053    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4054    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4055           "LHS/RHS of comparison should match types!");
4056    break;
4057  }
4058  }
4059
4060  // Memoize nodes.
4061  SDNode *N;
4062  SDVTList VTs = getVTList(VT);
4063
4064  if (VT != MVT::Flag) {
4065    FoldingSetNodeID ID;
4066    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4067    void *IP = 0;
4068
4069    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4070      return SDValue(E, 0);
4071
4072    N = NodeAllocator.Allocate<SDNode>();
4073    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4074    CSEMap.InsertNode(N, IP);
4075  } else {
4076    N = NodeAllocator.Allocate<SDNode>();
4077    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4078  }
4079
4080  AllNodes.push_back(N);
4081#ifndef NDEBUG
4082  VerifyNode(N);
4083#endif
4084  return SDValue(N, 0);
4085}
4086
4087SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4088                              const std::vector<EVT> &ResultTys,
4089                              const SDValue *Ops, unsigned NumOps) {
4090  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4091                 Ops, NumOps);
4092}
4093
4094SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4095                              const EVT *VTs, unsigned NumVTs,
4096                              const SDValue *Ops, unsigned NumOps) {
4097  if (NumVTs == 1)
4098    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4099  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4100}
4101
4102SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4103                              const SDValue *Ops, unsigned NumOps) {
4104  if (VTList.NumVTs == 1)
4105    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4106
4107#if 0
4108  switch (Opcode) {
4109  // FIXME: figure out how to safely handle things like
4110  // int foo(int x) { return 1 << (x & 255); }
4111  // int bar() { return foo(256); }
4112  case ISD::SRA_PARTS:
4113  case ISD::SRL_PARTS:
4114  case ISD::SHL_PARTS:
4115    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4116        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4117      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4118    else if (N3.getOpcode() == ISD::AND)
4119      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4120        // If the and is only masking out bits that cannot effect the shift,
4121        // eliminate the and.
4122        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4123        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4124          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4125      }
4126    break;
4127  }
4128#endif
4129
4130  // Memoize the node unless it returns a flag.
4131  SDNode *N;
4132  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4133    FoldingSetNodeID ID;
4134    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4135    void *IP = 0;
4136    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4137      return SDValue(E, 0);
4138
4139    if (NumOps == 1) {
4140      N = NodeAllocator.Allocate<UnarySDNode>();
4141      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4142    } else if (NumOps == 2) {
4143      N = NodeAllocator.Allocate<BinarySDNode>();
4144      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4145    } else if (NumOps == 3) {
4146      N = NodeAllocator.Allocate<TernarySDNode>();
4147      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4148    } else {
4149      N = NodeAllocator.Allocate<SDNode>();
4150      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4151    }
4152    CSEMap.InsertNode(N, IP);
4153  } else {
4154    if (NumOps == 1) {
4155      N = NodeAllocator.Allocate<UnarySDNode>();
4156      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4157    } else if (NumOps == 2) {
4158      N = NodeAllocator.Allocate<BinarySDNode>();
4159      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4160    } else if (NumOps == 3) {
4161      N = NodeAllocator.Allocate<TernarySDNode>();
4162      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4163    } else {
4164      N = NodeAllocator.Allocate<SDNode>();
4165      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4166    }
4167  }
4168  AllNodes.push_back(N);
4169#ifndef NDEBUG
4170  VerifyNode(N);
4171#endif
4172  return SDValue(N, 0);
4173}
4174
4175SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4176  return getNode(Opcode, DL, VTList, 0, 0);
4177}
4178
4179SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4180                              SDValue N1) {
4181  SDValue Ops[] = { N1 };
4182  return getNode(Opcode, DL, VTList, Ops, 1);
4183}
4184
4185SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4186                              SDValue N1, SDValue N2) {
4187  SDValue Ops[] = { N1, N2 };
4188  return getNode(Opcode, DL, VTList, Ops, 2);
4189}
4190
4191SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4192                              SDValue N1, SDValue N2, SDValue N3) {
4193  SDValue Ops[] = { N1, N2, N3 };
4194  return getNode(Opcode, DL, VTList, Ops, 3);
4195}
4196
4197SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4198                              SDValue N1, SDValue N2, SDValue N3,
4199                              SDValue N4) {
4200  SDValue Ops[] = { N1, N2, N3, N4 };
4201  return getNode(Opcode, DL, VTList, Ops, 4);
4202}
4203
4204SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4205                              SDValue N1, SDValue N2, SDValue N3,
4206                              SDValue N4, SDValue N5) {
4207  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4208  return getNode(Opcode, DL, VTList, Ops, 5);
4209}
4210
4211SDVTList SelectionDAG::getVTList(EVT VT) {
4212  return makeVTList(SDNode::getValueTypeList(VT), 1);
4213}
4214
4215SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4216  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4217       E = VTList.rend(); I != E; ++I)
4218    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4219      return *I;
4220
4221  EVT *Array = Allocator.Allocate<EVT>(2);
4222  Array[0] = VT1;
4223  Array[1] = VT2;
4224  SDVTList Result = makeVTList(Array, 2);
4225  VTList.push_back(Result);
4226  return Result;
4227}
4228
4229SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4230  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4231       E = VTList.rend(); I != E; ++I)
4232    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4233                          I->VTs[2] == VT3)
4234      return *I;
4235
4236  EVT *Array = Allocator.Allocate<EVT>(3);
4237  Array[0] = VT1;
4238  Array[1] = VT2;
4239  Array[2] = VT3;
4240  SDVTList Result = makeVTList(Array, 3);
4241  VTList.push_back(Result);
4242  return Result;
4243}
4244
4245SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4246  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4247       E = VTList.rend(); I != E; ++I)
4248    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4249                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4250      return *I;
4251
4252  EVT *Array = Allocator.Allocate<EVT>(4);
4253  Array[0] = VT1;
4254  Array[1] = VT2;
4255  Array[2] = VT3;
4256  Array[3] = VT4;
4257  SDVTList Result = makeVTList(Array, 4);
4258  VTList.push_back(Result);
4259  return Result;
4260}
4261
4262SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4263  switch (NumVTs) {
4264    case 0: llvm_unreachable("Cannot have nodes without results!");
4265    case 1: return getVTList(VTs[0]);
4266    case 2: return getVTList(VTs[0], VTs[1]);
4267    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4268    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4269    default: break;
4270  }
4271
4272  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4273       E = VTList.rend(); I != E; ++I) {
4274    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4275      continue;
4276
4277    bool NoMatch = false;
4278    for (unsigned i = 2; i != NumVTs; ++i)
4279      if (VTs[i] != I->VTs[i]) {
4280        NoMatch = true;
4281        break;
4282      }
4283    if (!NoMatch)
4284      return *I;
4285  }
4286
4287  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4288  std::copy(VTs, VTs+NumVTs, Array);
4289  SDVTList Result = makeVTList(Array, NumVTs);
4290  VTList.push_back(Result);
4291  return Result;
4292}
4293
4294
4295/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4296/// specified operands.  If the resultant node already exists in the DAG,
4297/// this does not modify the specified node, instead it returns the node that
4298/// already exists.  If the resultant node does not exist in the DAG, the
4299/// input node is returned.  As a degenerate case, if you specify the same
4300/// input operands as the node already has, the input node is returned.
4301SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4302  SDNode *N = InN.getNode();
4303  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4304
4305  // Check to see if there is no change.
4306  if (Op == N->getOperand(0)) return InN;
4307
4308  // See if the modified node already exists.
4309  void *InsertPos = 0;
4310  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4311    return SDValue(Existing, InN.getResNo());
4312
4313  // Nope it doesn't.  Remove the node from its current place in the maps.
4314  if (InsertPos)
4315    if (!RemoveNodeFromCSEMaps(N))
4316      InsertPos = 0;
4317
4318  // Now we update the operands.
4319  N->OperandList[0].set(Op);
4320
4321  // If this gets put into a CSE map, add it.
4322  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4323  return InN;
4324}
4325
4326SDValue SelectionDAG::
4327UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4328  SDNode *N = InN.getNode();
4329  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4330
4331  // Check to see if there is no change.
4332  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4333    return InN;   // No operands changed, just return the input node.
4334
4335  // See if the modified node already exists.
4336  void *InsertPos = 0;
4337  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4338    return SDValue(Existing, InN.getResNo());
4339
4340  // Nope it doesn't.  Remove the node from its current place in the maps.
4341  if (InsertPos)
4342    if (!RemoveNodeFromCSEMaps(N))
4343      InsertPos = 0;
4344
4345  // Now we update the operands.
4346  if (N->OperandList[0] != Op1)
4347    N->OperandList[0].set(Op1);
4348  if (N->OperandList[1] != Op2)
4349    N->OperandList[1].set(Op2);
4350
4351  // If this gets put into a CSE map, add it.
4352  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4353  return InN;
4354}
4355
4356SDValue SelectionDAG::
4357UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4358  SDValue Ops[] = { Op1, Op2, Op3 };
4359  return UpdateNodeOperands(N, Ops, 3);
4360}
4361
4362SDValue SelectionDAG::
4363UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4364                   SDValue Op3, SDValue Op4) {
4365  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4366  return UpdateNodeOperands(N, Ops, 4);
4367}
4368
4369SDValue SelectionDAG::
4370UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4371                   SDValue Op3, SDValue Op4, SDValue Op5) {
4372  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4373  return UpdateNodeOperands(N, Ops, 5);
4374}
4375
4376SDValue SelectionDAG::
4377UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4378  SDNode *N = InN.getNode();
4379  assert(N->getNumOperands() == NumOps &&
4380         "Update with wrong number of operands");
4381
4382  // Check to see if there is no change.
4383  bool AnyChange = false;
4384  for (unsigned i = 0; i != NumOps; ++i) {
4385    if (Ops[i] != N->getOperand(i)) {
4386      AnyChange = true;
4387      break;
4388    }
4389  }
4390
4391  // No operands changed, just return the input node.
4392  if (!AnyChange) return InN;
4393
4394  // See if the modified node already exists.
4395  void *InsertPos = 0;
4396  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4397    return SDValue(Existing, InN.getResNo());
4398
4399  // Nope it doesn't.  Remove the node from its current place in the maps.
4400  if (InsertPos)
4401    if (!RemoveNodeFromCSEMaps(N))
4402      InsertPos = 0;
4403
4404  // Now we update the operands.
4405  for (unsigned i = 0; i != NumOps; ++i)
4406    if (N->OperandList[i] != Ops[i])
4407      N->OperandList[i].set(Ops[i]);
4408
4409  // If this gets put into a CSE map, add it.
4410  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4411  return InN;
4412}
4413
4414/// DropOperands - Release the operands and set this node to have
4415/// zero operands.
4416void SDNode::DropOperands() {
4417  // Unlike the code in MorphNodeTo that does this, we don't need to
4418  // watch for dead nodes here.
4419  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4420    SDUse &Use = *I++;
4421    Use.set(SDValue());
4422  }
4423}
4424
4425/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4426/// machine opcode.
4427///
4428SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4429                                   EVT VT) {
4430  SDVTList VTs = getVTList(VT);
4431  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4432}
4433
4434SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4435                                   EVT VT, SDValue Op1) {
4436  SDVTList VTs = getVTList(VT);
4437  SDValue Ops[] = { Op1 };
4438  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4439}
4440
4441SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4442                                   EVT VT, SDValue Op1,
4443                                   SDValue Op2) {
4444  SDVTList VTs = getVTList(VT);
4445  SDValue Ops[] = { Op1, Op2 };
4446  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4447}
4448
4449SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4450                                   EVT VT, SDValue Op1,
4451                                   SDValue Op2, SDValue Op3) {
4452  SDVTList VTs = getVTList(VT);
4453  SDValue Ops[] = { Op1, Op2, Op3 };
4454  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4455}
4456
4457SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4458                                   EVT VT, const SDValue *Ops,
4459                                   unsigned NumOps) {
4460  SDVTList VTs = getVTList(VT);
4461  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4462}
4463
4464SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4465                                   EVT VT1, EVT VT2, const SDValue *Ops,
4466                                   unsigned NumOps) {
4467  SDVTList VTs = getVTList(VT1, VT2);
4468  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4469}
4470
4471SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4472                                   EVT VT1, EVT VT2) {
4473  SDVTList VTs = getVTList(VT1, VT2);
4474  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4475}
4476
4477SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4478                                   EVT VT1, EVT VT2, EVT VT3,
4479                                   const SDValue *Ops, unsigned NumOps) {
4480  SDVTList VTs = getVTList(VT1, VT2, VT3);
4481  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4482}
4483
4484SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4485                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4486                                   const SDValue *Ops, unsigned NumOps) {
4487  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4488  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4489}
4490
4491SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4492                                   EVT VT1, EVT VT2,
4493                                   SDValue Op1) {
4494  SDVTList VTs = getVTList(VT1, VT2);
4495  SDValue Ops[] = { Op1 };
4496  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4497}
4498
4499SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4500                                   EVT VT1, EVT VT2,
4501                                   SDValue Op1, SDValue Op2) {
4502  SDVTList VTs = getVTList(VT1, VT2);
4503  SDValue Ops[] = { Op1, Op2 };
4504  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4505}
4506
4507SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4508                                   EVT VT1, EVT VT2,
4509                                   SDValue Op1, SDValue Op2,
4510                                   SDValue Op3) {
4511  SDVTList VTs = getVTList(VT1, VT2);
4512  SDValue Ops[] = { Op1, Op2, Op3 };
4513  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4514}
4515
4516SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4517                                   EVT VT1, EVT VT2, EVT VT3,
4518                                   SDValue Op1, SDValue Op2,
4519                                   SDValue Op3) {
4520  SDVTList VTs = getVTList(VT1, VT2, VT3);
4521  SDValue Ops[] = { Op1, Op2, Op3 };
4522  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4523}
4524
4525SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526                                   SDVTList VTs, const SDValue *Ops,
4527                                   unsigned NumOps) {
4528  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4529}
4530
4531SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4532                                  EVT VT) {
4533  SDVTList VTs = getVTList(VT);
4534  return MorphNodeTo(N, Opc, VTs, 0, 0);
4535}
4536
4537SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4538                                  EVT VT, SDValue Op1) {
4539  SDVTList VTs = getVTList(VT);
4540  SDValue Ops[] = { Op1 };
4541  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4542}
4543
4544SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4545                                  EVT VT, SDValue Op1,
4546                                  SDValue Op2) {
4547  SDVTList VTs = getVTList(VT);
4548  SDValue Ops[] = { Op1, Op2 };
4549  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4550}
4551
4552SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4553                                  EVT VT, SDValue Op1,
4554                                  SDValue Op2, SDValue Op3) {
4555  SDVTList VTs = getVTList(VT);
4556  SDValue Ops[] = { Op1, Op2, Op3 };
4557  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4558}
4559
4560SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4561                                  EVT VT, const SDValue *Ops,
4562                                  unsigned NumOps) {
4563  SDVTList VTs = getVTList(VT);
4564  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4565}
4566
4567SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4568                                  EVT VT1, EVT VT2, const SDValue *Ops,
4569                                  unsigned NumOps) {
4570  SDVTList VTs = getVTList(VT1, VT2);
4571  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4572}
4573
4574SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4575                                  EVT VT1, EVT VT2) {
4576  SDVTList VTs = getVTList(VT1, VT2);
4577  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4578}
4579
4580SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4581                                  EVT VT1, EVT VT2, EVT VT3,
4582                                  const SDValue *Ops, unsigned NumOps) {
4583  SDVTList VTs = getVTList(VT1, VT2, VT3);
4584  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4585}
4586
4587SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4588                                  EVT VT1, EVT VT2,
4589                                  SDValue Op1) {
4590  SDVTList VTs = getVTList(VT1, VT2);
4591  SDValue Ops[] = { Op1 };
4592  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4593}
4594
4595SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4596                                  EVT VT1, EVT VT2,
4597                                  SDValue Op1, SDValue Op2) {
4598  SDVTList VTs = getVTList(VT1, VT2);
4599  SDValue Ops[] = { Op1, Op2 };
4600  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4601}
4602
4603SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4604                                  EVT VT1, EVT VT2,
4605                                  SDValue Op1, SDValue Op2,
4606                                  SDValue Op3) {
4607  SDVTList VTs = getVTList(VT1, VT2);
4608  SDValue Ops[] = { Op1, Op2, Op3 };
4609  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4610}
4611
4612/// MorphNodeTo - These *mutate* the specified node to have the specified
4613/// return type, opcode, and operands.
4614///
4615/// Note that MorphNodeTo returns the resultant node.  If there is already a
4616/// node of the specified opcode and operands, it returns that node instead of
4617/// the current one.  Note that the DebugLoc need not be the same.
4618///
4619/// Using MorphNodeTo is faster than creating a new node and swapping it in
4620/// with ReplaceAllUsesWith both because it often avoids allocating a new
4621/// node, and because it doesn't require CSE recalculation for any of
4622/// the node's users.
4623///
4624SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4625                                  SDVTList VTs, const SDValue *Ops,
4626                                  unsigned NumOps) {
4627  // If an identical node already exists, use it.
4628  void *IP = 0;
4629  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4630    FoldingSetNodeID ID;
4631    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4632    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4633      return ON;
4634  }
4635
4636  if (!RemoveNodeFromCSEMaps(N))
4637    IP = 0;
4638
4639  // Start the morphing.
4640  N->NodeType = Opc;
4641  N->ValueList = VTs.VTs;
4642  N->NumValues = VTs.NumVTs;
4643
4644  // Clear the operands list, updating used nodes to remove this from their
4645  // use list.  Keep track of any operands that become dead as a result.
4646  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4647  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4648    SDUse &Use = *I++;
4649    SDNode *Used = Use.getNode();
4650    Use.set(SDValue());
4651    if (Used->use_empty())
4652      DeadNodeSet.insert(Used);
4653  }
4654
4655  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4656    // Initialize the memory references information.
4657    MN->setMemRefs(0, 0);
4658    // If NumOps is larger than the # of operands we can have in a
4659    // MachineSDNode, reallocate the operand list.
4660    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4661      if (MN->OperandsNeedDelete)
4662        delete[] MN->OperandList;
4663      if (NumOps > array_lengthof(MN->LocalOperands))
4664        // We're creating a final node that will live unmorphed for the
4665        // remainder of the current SelectionDAG iteration, so we can allocate
4666        // the operands directly out of a pool with no recycling metadata.
4667        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4668                        Ops, NumOps);
4669      else
4670        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4671      MN->OperandsNeedDelete = false;
4672    } else
4673      MN->InitOperands(MN->OperandList, Ops, NumOps);
4674  } else {
4675    // If NumOps is larger than the # of operands we currently have, reallocate
4676    // the operand list.
4677    if (NumOps > N->NumOperands) {
4678      if (N->OperandsNeedDelete)
4679        delete[] N->OperandList;
4680      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4681      N->OperandsNeedDelete = true;
4682    } else
4683      N->InitOperands(N->OperandList, Ops, NumOps);
4684  }
4685
4686  // Delete any nodes that are still dead after adding the uses for the
4687  // new operands.
4688  SmallVector<SDNode *, 16> DeadNodes;
4689  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4690       E = DeadNodeSet.end(); I != E; ++I)
4691    if ((*I)->use_empty())
4692      DeadNodes.push_back(*I);
4693  RemoveDeadNodes(DeadNodes);
4694
4695  if (IP)
4696    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4697  return N;
4698}
4699
4700
4701/// getMachineNode - These are used for target selectors to create a new node
4702/// with specified return type(s), MachineInstr opcode, and operands.
4703///
4704/// Note that getMachineNode returns the resultant node.  If there is already a
4705/// node of the specified opcode and operands, it returns that node instead of
4706/// the current one.
4707MachineSDNode *
4708SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4709  SDVTList VTs = getVTList(VT);
4710  return getMachineNode(Opcode, dl, VTs, 0, 0);
4711}
4712
4713MachineSDNode *
4714SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4715  SDVTList VTs = getVTList(VT);
4716  SDValue Ops[] = { Op1 };
4717  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4718}
4719
4720MachineSDNode *
4721SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4722                             SDValue Op1, SDValue Op2) {
4723  SDVTList VTs = getVTList(VT);
4724  SDValue Ops[] = { Op1, Op2 };
4725  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4726}
4727
4728MachineSDNode *
4729SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4730                             SDValue Op1, SDValue Op2, SDValue Op3) {
4731  SDVTList VTs = getVTList(VT);
4732  SDValue Ops[] = { Op1, Op2, Op3 };
4733  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4734}
4735
4736MachineSDNode *
4737SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4738                             const SDValue *Ops, unsigned NumOps) {
4739  SDVTList VTs = getVTList(VT);
4740  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4741}
4742
4743MachineSDNode *
4744SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4745  SDVTList VTs = getVTList(VT1, VT2);
4746  return getMachineNode(Opcode, dl, VTs, 0, 0);
4747}
4748
4749MachineSDNode *
4750SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4751                             EVT VT1, EVT VT2, SDValue Op1) {
4752  SDVTList VTs = getVTList(VT1, VT2);
4753  SDValue Ops[] = { Op1 };
4754  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4755}
4756
4757MachineSDNode *
4758SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4759                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4760  SDVTList VTs = getVTList(VT1, VT2);
4761  SDValue Ops[] = { Op1, Op2 };
4762  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4763}
4764
4765MachineSDNode *
4766SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4767                             EVT VT1, EVT VT2, SDValue Op1,
4768                             SDValue Op2, SDValue Op3) {
4769  SDVTList VTs = getVTList(VT1, VT2);
4770  SDValue Ops[] = { Op1, Op2, Op3 };
4771  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4772}
4773
4774MachineSDNode *
4775SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4776                             EVT VT1, EVT VT2,
4777                             const SDValue *Ops, unsigned NumOps) {
4778  SDVTList VTs = getVTList(VT1, VT2);
4779  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4780}
4781
4782MachineSDNode *
4783SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4784                             EVT VT1, EVT VT2, EVT VT3,
4785                             SDValue Op1, SDValue Op2) {
4786  SDVTList VTs = getVTList(VT1, VT2, VT3);
4787  SDValue Ops[] = { Op1, Op2 };
4788  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4789}
4790
4791MachineSDNode *
4792SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4793                             EVT VT1, EVT VT2, EVT VT3,
4794                             SDValue Op1, SDValue Op2, SDValue Op3) {
4795  SDVTList VTs = getVTList(VT1, VT2, VT3);
4796  SDValue Ops[] = { Op1, Op2, Op3 };
4797  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4798}
4799
4800MachineSDNode *
4801SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4802                             EVT VT1, EVT VT2, EVT VT3,
4803                             const SDValue *Ops, unsigned NumOps) {
4804  SDVTList VTs = getVTList(VT1, VT2, VT3);
4805  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4806}
4807
4808MachineSDNode *
4809SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4810                             EVT VT2, EVT VT3, EVT VT4,
4811                             const SDValue *Ops, unsigned NumOps) {
4812  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4813  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4814}
4815
4816MachineSDNode *
4817SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4818                             const std::vector<EVT> &ResultTys,
4819                             const SDValue *Ops, unsigned NumOps) {
4820  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4821  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4822}
4823
4824MachineSDNode *
4825SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4826                             const SDValue *Ops, unsigned NumOps) {
4827  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4828  MachineSDNode *N;
4829  void *IP;
4830
4831  if (DoCSE) {
4832    FoldingSetNodeID ID;
4833    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4834    IP = 0;
4835    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4836      return cast<MachineSDNode>(E);
4837  }
4838
4839  // Allocate a new MachineSDNode.
4840  N = NodeAllocator.Allocate<MachineSDNode>();
4841  new (N) MachineSDNode(~Opcode, DL, VTs);
4842
4843  // Initialize the operands list.
4844  if (NumOps > array_lengthof(N->LocalOperands))
4845    // We're creating a final node that will live unmorphed for the
4846    // remainder of the current SelectionDAG iteration, so we can allocate
4847    // the operands directly out of a pool with no recycling metadata.
4848    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4849                    Ops, NumOps);
4850  else
4851    N->InitOperands(N->LocalOperands, Ops, NumOps);
4852  N->OperandsNeedDelete = false;
4853
4854  if (DoCSE)
4855    CSEMap.InsertNode(N, IP);
4856
4857  AllNodes.push_back(N);
4858#ifndef NDEBUG
4859  VerifyNode(N);
4860#endif
4861  return N;
4862}
4863
4864/// getTargetExtractSubreg - A convenience function for creating
4865/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4866SDValue
4867SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4868                                     SDValue Operand) {
4869  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4870  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4871                                  VT, Operand, SRIdxVal);
4872  return SDValue(Subreg, 0);
4873}
4874
4875/// getTargetInsertSubreg - A convenience function for creating
4876/// TargetInstrInfo::INSERT_SUBREG nodes.
4877SDValue
4878SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4879                                    SDValue Operand, SDValue Subreg) {
4880  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4881  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4882                                  VT, Operand, Subreg, SRIdxVal);
4883  return SDValue(Result, 0);
4884}
4885
4886/// getNodeIfExists - Get the specified node if it's already available, or
4887/// else return NULL.
4888SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4889                                      const SDValue *Ops, unsigned NumOps) {
4890  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4891    FoldingSetNodeID ID;
4892    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4893    void *IP = 0;
4894    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4895      return E;
4896  }
4897  return NULL;
4898}
4899
4900/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4901/// This can cause recursive merging of nodes in the DAG.
4902///
4903/// This version assumes From has a single result value.
4904///
4905void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4906                                      DAGUpdateListener *UpdateListener) {
4907  SDNode *From = FromN.getNode();
4908  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4909         "Cannot replace with this method!");
4910  assert(From != To.getNode() && "Cannot replace uses of with self");
4911
4912  // Iterate over all the existing uses of From. New uses will be added
4913  // to the beginning of the use list, which we avoid visiting.
4914  // This specifically avoids visiting uses of From that arise while the
4915  // replacement is happening, because any such uses would be the result
4916  // of CSE: If an existing node looks like From after one of its operands
4917  // is replaced by To, we don't want to replace of all its users with To
4918  // too. See PR3018 for more info.
4919  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4920  while (UI != UE) {
4921    SDNode *User = *UI;
4922
4923    // This node is about to morph, remove its old self from the CSE maps.
4924    RemoveNodeFromCSEMaps(User);
4925
4926    // A user can appear in a use list multiple times, and when this
4927    // happens the uses are usually next to each other in the list.
4928    // To help reduce the number of CSE recomputations, process all
4929    // the uses of this user that we can find this way.
4930    do {
4931      SDUse &Use = UI.getUse();
4932      ++UI;
4933      Use.set(To);
4934    } while (UI != UE && *UI == User);
4935
4936    // Now that we have modified User, add it back to the CSE maps.  If it
4937    // already exists there, recursively merge the results together.
4938    AddModifiedNodeToCSEMaps(User, UpdateListener);
4939  }
4940}
4941
4942/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4943/// This can cause recursive merging of nodes in the DAG.
4944///
4945/// This version assumes that for each value of From, there is a
4946/// corresponding value in To in the same position with the same type.
4947///
4948void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4949                                      DAGUpdateListener *UpdateListener) {
4950#ifndef NDEBUG
4951  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4952    assert((!From->hasAnyUseOfValue(i) ||
4953            From->getValueType(i) == To->getValueType(i)) &&
4954           "Cannot use this version of ReplaceAllUsesWith!");
4955#endif
4956
4957  // Handle the trivial case.
4958  if (From == To)
4959    return;
4960
4961  // Iterate over just the existing users of From. See the comments in
4962  // the ReplaceAllUsesWith above.
4963  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4964  while (UI != UE) {
4965    SDNode *User = *UI;
4966
4967    // This node is about to morph, remove its old self from the CSE maps.
4968    RemoveNodeFromCSEMaps(User);
4969
4970    // A user can appear in a use list multiple times, and when this
4971    // happens the uses are usually next to each other in the list.
4972    // To help reduce the number of CSE recomputations, process all
4973    // the uses of this user that we can find this way.
4974    do {
4975      SDUse &Use = UI.getUse();
4976      ++UI;
4977      Use.setNode(To);
4978    } while (UI != UE && *UI == User);
4979
4980    // Now that we have modified User, add it back to the CSE maps.  If it
4981    // already exists there, recursively merge the results together.
4982    AddModifiedNodeToCSEMaps(User, UpdateListener);
4983  }
4984}
4985
4986/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4987/// This can cause recursive merging of nodes in the DAG.
4988///
4989/// This version can replace From with any result values.  To must match the
4990/// number and types of values returned by From.
4991void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4992                                      const SDValue *To,
4993                                      DAGUpdateListener *UpdateListener) {
4994  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4995    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4996
4997  // Iterate over just the existing users of From. See the comments in
4998  // the ReplaceAllUsesWith above.
4999  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5000  while (UI != UE) {
5001    SDNode *User = *UI;
5002
5003    // This node is about to morph, remove its old self from the CSE maps.
5004    RemoveNodeFromCSEMaps(User);
5005
5006    // A user can appear in a use list multiple times, and when this
5007    // happens the uses are usually next to each other in the list.
5008    // To help reduce the number of CSE recomputations, process all
5009    // the uses of this user that we can find this way.
5010    do {
5011      SDUse &Use = UI.getUse();
5012      const SDValue &ToOp = To[Use.getResNo()];
5013      ++UI;
5014      Use.set(ToOp);
5015    } while (UI != UE && *UI == User);
5016
5017    // Now that we have modified User, add it back to the CSE maps.  If it
5018    // already exists there, recursively merge the results together.
5019    AddModifiedNodeToCSEMaps(User, UpdateListener);
5020  }
5021}
5022
5023/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5024/// uses of other values produced by From.getNode() alone.  The Deleted
5025/// vector is handled the same way as for ReplaceAllUsesWith.
5026void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5027                                             DAGUpdateListener *UpdateListener){
5028  // Handle the really simple, really trivial case efficiently.
5029  if (From == To) return;
5030
5031  // Handle the simple, trivial, case efficiently.
5032  if (From.getNode()->getNumValues() == 1) {
5033    ReplaceAllUsesWith(From, To, UpdateListener);
5034    return;
5035  }
5036
5037  // Iterate over just the existing users of From. See the comments in
5038  // the ReplaceAllUsesWith above.
5039  SDNode::use_iterator UI = From.getNode()->use_begin(),
5040                       UE = From.getNode()->use_end();
5041  while (UI != UE) {
5042    SDNode *User = *UI;
5043    bool UserRemovedFromCSEMaps = false;
5044
5045    // A user can appear in a use list multiple times, and when this
5046    // happens the uses are usually next to each other in the list.
5047    // To help reduce the number of CSE recomputations, process all
5048    // the uses of this user that we can find this way.
5049    do {
5050      SDUse &Use = UI.getUse();
5051
5052      // Skip uses of different values from the same node.
5053      if (Use.getResNo() != From.getResNo()) {
5054        ++UI;
5055        continue;
5056      }
5057
5058      // If this node hasn't been modified yet, it's still in the CSE maps,
5059      // so remove its old self from the CSE maps.
5060      if (!UserRemovedFromCSEMaps) {
5061        RemoveNodeFromCSEMaps(User);
5062        UserRemovedFromCSEMaps = true;
5063      }
5064
5065      ++UI;
5066      Use.set(To);
5067    } while (UI != UE && *UI == User);
5068
5069    // We are iterating over all uses of the From node, so if a use
5070    // doesn't use the specific value, no changes are made.
5071    if (!UserRemovedFromCSEMaps)
5072      continue;
5073
5074    // Now that we have modified User, add it back to the CSE maps.  If it
5075    // already exists there, recursively merge the results together.
5076    AddModifiedNodeToCSEMaps(User, UpdateListener);
5077  }
5078}
5079
5080namespace {
5081  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5082  /// to record information about a use.
5083  struct UseMemo {
5084    SDNode *User;
5085    unsigned Index;
5086    SDUse *Use;
5087  };
5088
5089  /// operator< - Sort Memos by User.
5090  bool operator<(const UseMemo &L, const UseMemo &R) {
5091    return (intptr_t)L.User < (intptr_t)R.User;
5092  }
5093}
5094
5095/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5096/// uses of other values produced by From.getNode() alone.  The same value
5097/// may appear in both the From and To list.  The Deleted vector is
5098/// handled the same way as for ReplaceAllUsesWith.
5099void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5100                                              const SDValue *To,
5101                                              unsigned Num,
5102                                              DAGUpdateListener *UpdateListener){
5103  // Handle the simple, trivial case efficiently.
5104  if (Num == 1)
5105    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5106
5107  // Read up all the uses and make records of them. This helps
5108  // processing new uses that are introduced during the
5109  // replacement process.
5110  SmallVector<UseMemo, 4> Uses;
5111  for (unsigned i = 0; i != Num; ++i) {
5112    unsigned FromResNo = From[i].getResNo();
5113    SDNode *FromNode = From[i].getNode();
5114    for (SDNode::use_iterator UI = FromNode->use_begin(),
5115         E = FromNode->use_end(); UI != E; ++UI) {
5116      SDUse &Use = UI.getUse();
5117      if (Use.getResNo() == FromResNo) {
5118        UseMemo Memo = { *UI, i, &Use };
5119        Uses.push_back(Memo);
5120      }
5121    }
5122  }
5123
5124  // Sort the uses, so that all the uses from a given User are together.
5125  std::sort(Uses.begin(), Uses.end());
5126
5127  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5128       UseIndex != UseIndexEnd; ) {
5129    // We know that this user uses some value of From.  If it is the right
5130    // value, update it.
5131    SDNode *User = Uses[UseIndex].User;
5132
5133    // This node is about to morph, remove its old self from the CSE maps.
5134    RemoveNodeFromCSEMaps(User);
5135
5136    // The Uses array is sorted, so all the uses for a given User
5137    // are next to each other in the list.
5138    // To help reduce the number of CSE recomputations, process all
5139    // the uses of this user that we can find this way.
5140    do {
5141      unsigned i = Uses[UseIndex].Index;
5142      SDUse &Use = *Uses[UseIndex].Use;
5143      ++UseIndex;
5144
5145      Use.set(To[i]);
5146    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5147
5148    // Now that we have modified User, add it back to the CSE maps.  If it
5149    // already exists there, recursively merge the results together.
5150    AddModifiedNodeToCSEMaps(User, UpdateListener);
5151  }
5152}
5153
5154/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5155/// based on their topological order. It returns the maximum id and a vector
5156/// of the SDNodes* in assigned order by reference.
5157unsigned SelectionDAG::AssignTopologicalOrder() {
5158
5159  unsigned DAGSize = 0;
5160
5161  // SortedPos tracks the progress of the algorithm. Nodes before it are
5162  // sorted, nodes after it are unsorted. When the algorithm completes
5163  // it is at the end of the list.
5164  allnodes_iterator SortedPos = allnodes_begin();
5165
5166  // Visit all the nodes. Move nodes with no operands to the front of
5167  // the list immediately. Annotate nodes that do have operands with their
5168  // operand count. Before we do this, the Node Id fields of the nodes
5169  // may contain arbitrary values. After, the Node Id fields for nodes
5170  // before SortedPos will contain the topological sort index, and the
5171  // Node Id fields for nodes At SortedPos and after will contain the
5172  // count of outstanding operands.
5173  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5174    SDNode *N = I++;
5175    unsigned Degree = N->getNumOperands();
5176    if (Degree == 0) {
5177      // A node with no uses, add it to the result array immediately.
5178      N->setNodeId(DAGSize++);
5179      allnodes_iterator Q = N;
5180      if (Q != SortedPos)
5181        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5182      assert(SortedPos != AllNodes.end() && "Overran node list");
5183      ++SortedPos;
5184    } else {
5185      // Temporarily use the Node Id as scratch space for the degree count.
5186      N->setNodeId(Degree);
5187    }
5188  }
5189
5190  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5191  // such that by the time the end is reached all nodes will be sorted.
5192  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5193    SDNode *N = I;
5194    // N is in sorted position, so all its uses have one less operand
5195    // that needs to be sorted.
5196    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5197         UI != UE; ++UI) {
5198      SDNode *P = *UI;
5199      unsigned Degree = P->getNodeId();
5200      assert(Degree != 0 && "Invalid node degree");
5201      --Degree;
5202      if (Degree == 0) {
5203        // All of P's operands are sorted, so P may sorted now.
5204        P->setNodeId(DAGSize++);
5205        if (P != SortedPos)
5206          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5207        assert(SortedPos != AllNodes.end() && "Overran node list");
5208        ++SortedPos;
5209      } else {
5210        // Update P's outstanding operand count.
5211        P->setNodeId(Degree);
5212      }
5213    }
5214    if (I == SortedPos) {
5215      allnodes_iterator J = I;
5216      SDNode *S = ++J;
5217      dbgs() << "Offending node:\n";
5218      S->dumprFull();
5219      assert(I != SortedPos && "Overran sorted position");
5220    }
5221  }
5222
5223  assert(SortedPos == AllNodes.end() &&
5224         "Topological sort incomplete!");
5225  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5226         "First node in topological sort is not the entry token!");
5227  assert(AllNodes.front().getNodeId() == 0 &&
5228         "First node in topological sort has non-zero id!");
5229  assert(AllNodes.front().getNumOperands() == 0 &&
5230         "First node in topological sort has operands!");
5231  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5232         "Last node in topologic sort has unexpected id!");
5233  assert(AllNodes.back().use_empty() &&
5234         "Last node in topologic sort has users!");
5235  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5236  return DAGSize;
5237}
5238
5239/// AssignOrdering - Assign an order to the SDNode.
5240void SelectionDAG::AssignOrdering(SDNode *SD, unsigned Order) {
5241  assert(SD && "Trying to assign an order to a null node!");
5242  if (Ordering)
5243    Ordering->add(SD, Order);
5244}
5245
5246/// GetOrdering - Get the order for the SDNode.
5247unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5248  assert(SD && "Trying to get the order of a null node!");
5249  return Ordering ? Ordering->getOrder(SD) : 0;
5250}
5251
5252
5253//===----------------------------------------------------------------------===//
5254//                              SDNode Class
5255//===----------------------------------------------------------------------===//
5256
5257HandleSDNode::~HandleSDNode() {
5258  DropOperands();
5259}
5260
5261GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5262                                         EVT VT, int64_t o, unsigned char TF)
5263  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5264    Offset(o), TargetFlags(TF) {
5265  TheGlobal = const_cast<GlobalValue*>(GA);
5266}
5267
5268MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5269                     MachineMemOperand *mmo)
5270 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5271  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5272  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5273  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5274}
5275
5276MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5277                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5278                     MachineMemOperand *mmo)
5279   : SDNode(Opc, dl, VTs, Ops, NumOps),
5280     MemoryVT(memvt), MMO(mmo) {
5281  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5282  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5283  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5284}
5285
5286/// Profile - Gather unique data for the node.
5287///
5288void SDNode::Profile(FoldingSetNodeID &ID) const {
5289  AddNodeIDNode(ID, this);
5290}
5291
5292namespace {
5293  struct EVTArray {
5294    std::vector<EVT> VTs;
5295
5296    EVTArray() {
5297      VTs.reserve(MVT::LAST_VALUETYPE);
5298      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5299        VTs.push_back(MVT((MVT::SimpleValueType)i));
5300    }
5301  };
5302}
5303
5304static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5305static ManagedStatic<EVTArray> SimpleVTArray;
5306static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5307
5308/// getValueTypeList - Return a pointer to the specified value type.
5309///
5310const EVT *SDNode::getValueTypeList(EVT VT) {
5311  if (VT.isExtended()) {
5312    sys::SmartScopedLock<true> Lock(*VTMutex);
5313    return &(*EVTs->insert(VT).first);
5314  } else {
5315    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5316  }
5317}
5318
5319/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5320/// indicated value.  This method ignores uses of other values defined by this
5321/// operation.
5322bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5323  assert(Value < getNumValues() && "Bad value!");
5324
5325  // TODO: Only iterate over uses of a given value of the node
5326  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5327    if (UI.getUse().getResNo() == Value) {
5328      if (NUses == 0)
5329        return false;
5330      --NUses;
5331    }
5332  }
5333
5334  // Found exactly the right number of uses?
5335  return NUses == 0;
5336}
5337
5338
5339/// hasAnyUseOfValue - Return true if there are any use of the indicated
5340/// value. This method ignores uses of other values defined by this operation.
5341bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5342  assert(Value < getNumValues() && "Bad value!");
5343
5344  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5345    if (UI.getUse().getResNo() == Value)
5346      return true;
5347
5348  return false;
5349}
5350
5351
5352/// isOnlyUserOf - Return true if this node is the only use of N.
5353///
5354bool SDNode::isOnlyUserOf(SDNode *N) const {
5355  bool Seen = false;
5356  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5357    SDNode *User = *I;
5358    if (User == this)
5359      Seen = true;
5360    else
5361      return false;
5362  }
5363
5364  return Seen;
5365}
5366
5367/// isOperand - Return true if this node is an operand of N.
5368///
5369bool SDValue::isOperandOf(SDNode *N) const {
5370  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5371    if (*this == N->getOperand(i))
5372      return true;
5373  return false;
5374}
5375
5376bool SDNode::isOperandOf(SDNode *N) const {
5377  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5378    if (this == N->OperandList[i].getNode())
5379      return true;
5380  return false;
5381}
5382
5383/// reachesChainWithoutSideEffects - Return true if this operand (which must
5384/// be a chain) reaches the specified operand without crossing any
5385/// side-effecting instructions.  In practice, this looks through token
5386/// factors and non-volatile loads.  In order to remain efficient, this only
5387/// looks a couple of nodes in, it does not do an exhaustive search.
5388bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5389                                               unsigned Depth) const {
5390  if (*this == Dest) return true;
5391
5392  // Don't search too deeply, we just want to be able to see through
5393  // TokenFactor's etc.
5394  if (Depth == 0) return false;
5395
5396  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5397  // of the operands of the TF reach dest, then we can do the xform.
5398  if (getOpcode() == ISD::TokenFactor) {
5399    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5400      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5401        return true;
5402    return false;
5403  }
5404
5405  // Loads don't have side effects, look through them.
5406  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5407    if (!Ld->isVolatile())
5408      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5409  }
5410  return false;
5411}
5412
5413/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5414/// is either an operand of N or it can be reached by traversing up the operands.
5415/// NOTE: this is an expensive method. Use it carefully.
5416bool SDNode::isPredecessorOf(SDNode *N) const {
5417  SmallPtrSet<SDNode *, 32> Visited;
5418  SmallVector<SDNode *, 16> Worklist;
5419  Worklist.push_back(N);
5420
5421  do {
5422    N = Worklist.pop_back_val();
5423    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5424      SDNode *Op = N->getOperand(i).getNode();
5425      if (Op == this)
5426        return true;
5427      if (Visited.insert(Op))
5428        Worklist.push_back(Op);
5429    }
5430  } while (!Worklist.empty());
5431
5432  return false;
5433}
5434
5435uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5436  assert(Num < NumOperands && "Invalid child # of SDNode!");
5437  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5438}
5439
5440std::string SDNode::getOperationName(const SelectionDAG *G) const {
5441  switch (getOpcode()) {
5442  default:
5443    if (getOpcode() < ISD::BUILTIN_OP_END)
5444      return "<<Unknown DAG Node>>";
5445    if (isMachineOpcode()) {
5446      if (G)
5447        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5448          if (getMachineOpcode() < TII->getNumOpcodes())
5449            return TII->get(getMachineOpcode()).getName();
5450      return "<<Unknown Machine Node>>";
5451    }
5452    if (G) {
5453      const TargetLowering &TLI = G->getTargetLoweringInfo();
5454      const char *Name = TLI.getTargetNodeName(getOpcode());
5455      if (Name) return Name;
5456      return "<<Unknown Target Node>>";
5457    }
5458    return "<<Unknown Node>>";
5459
5460#ifndef NDEBUG
5461  case ISD::DELETED_NODE:
5462    return "<<Deleted Node!>>";
5463#endif
5464  case ISD::PREFETCH:      return "Prefetch";
5465  case ISD::MEMBARRIER:    return "MemBarrier";
5466  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5467  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5468  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5469  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5470  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5471  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5472  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5473  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5474  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5475  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5476  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5477  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5478  case ISD::PCMARKER:      return "PCMarker";
5479  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5480  case ISD::SRCVALUE:      return "SrcValue";
5481  case ISD::EntryToken:    return "EntryToken";
5482  case ISD::TokenFactor:   return "TokenFactor";
5483  case ISD::AssertSext:    return "AssertSext";
5484  case ISD::AssertZext:    return "AssertZext";
5485
5486  case ISD::BasicBlock:    return "BasicBlock";
5487  case ISD::VALUETYPE:     return "ValueType";
5488  case ISD::Register:      return "Register";
5489
5490  case ISD::Constant:      return "Constant";
5491  case ISD::ConstantFP:    return "ConstantFP";
5492  case ISD::GlobalAddress: return "GlobalAddress";
5493  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5494  case ISD::FrameIndex:    return "FrameIndex";
5495  case ISD::JumpTable:     return "JumpTable";
5496  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5497  case ISD::RETURNADDR: return "RETURNADDR";
5498  case ISD::FRAMEADDR: return "FRAMEADDR";
5499  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5500  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5501  case ISD::LSDAADDR: return "LSDAADDR";
5502  case ISD::EHSELECTION: return "EHSELECTION";
5503  case ISD::EH_RETURN: return "EH_RETURN";
5504  case ISD::ConstantPool:  return "ConstantPool";
5505  case ISD::ExternalSymbol: return "ExternalSymbol";
5506  case ISD::BlockAddress:  return "BlockAddress";
5507  case ISD::INTRINSIC_WO_CHAIN:
5508  case ISD::INTRINSIC_VOID:
5509  case ISD::INTRINSIC_W_CHAIN: {
5510    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5511    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5512    if (IID < Intrinsic::num_intrinsics)
5513      return Intrinsic::getName((Intrinsic::ID)IID);
5514    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5515      return TII->getName(IID);
5516    llvm_unreachable("Invalid intrinsic ID");
5517  }
5518
5519  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5520  case ISD::TargetConstant: return "TargetConstant";
5521  case ISD::TargetConstantFP:return "TargetConstantFP";
5522  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5523  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5524  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5525  case ISD::TargetJumpTable:  return "TargetJumpTable";
5526  case ISD::TargetConstantPool:  return "TargetConstantPool";
5527  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5528  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5529
5530  case ISD::CopyToReg:     return "CopyToReg";
5531  case ISD::CopyFromReg:   return "CopyFromReg";
5532  case ISD::UNDEF:         return "undef";
5533  case ISD::MERGE_VALUES:  return "merge_values";
5534  case ISD::INLINEASM:     return "inlineasm";
5535  case ISD::EH_LABEL:      return "eh_label";
5536  case ISD::HANDLENODE:    return "handlenode";
5537
5538  // Unary operators
5539  case ISD::FABS:   return "fabs";
5540  case ISD::FNEG:   return "fneg";
5541  case ISD::FSQRT:  return "fsqrt";
5542  case ISD::FSIN:   return "fsin";
5543  case ISD::FCOS:   return "fcos";
5544  case ISD::FPOWI:  return "fpowi";
5545  case ISD::FPOW:   return "fpow";
5546  case ISD::FTRUNC: return "ftrunc";
5547  case ISD::FFLOOR: return "ffloor";
5548  case ISD::FCEIL:  return "fceil";
5549  case ISD::FRINT:  return "frint";
5550  case ISD::FNEARBYINT: return "fnearbyint";
5551
5552  // Binary operators
5553  case ISD::ADD:    return "add";
5554  case ISD::SUB:    return "sub";
5555  case ISD::MUL:    return "mul";
5556  case ISD::MULHU:  return "mulhu";
5557  case ISD::MULHS:  return "mulhs";
5558  case ISD::SDIV:   return "sdiv";
5559  case ISD::UDIV:   return "udiv";
5560  case ISD::SREM:   return "srem";
5561  case ISD::UREM:   return "urem";
5562  case ISD::SMUL_LOHI:  return "smul_lohi";
5563  case ISD::UMUL_LOHI:  return "umul_lohi";
5564  case ISD::SDIVREM:    return "sdivrem";
5565  case ISD::UDIVREM:    return "udivrem";
5566  case ISD::AND:    return "and";
5567  case ISD::OR:     return "or";
5568  case ISD::XOR:    return "xor";
5569  case ISD::SHL:    return "shl";
5570  case ISD::SRA:    return "sra";
5571  case ISD::SRL:    return "srl";
5572  case ISD::ROTL:   return "rotl";
5573  case ISD::ROTR:   return "rotr";
5574  case ISD::FADD:   return "fadd";
5575  case ISD::FSUB:   return "fsub";
5576  case ISD::FMUL:   return "fmul";
5577  case ISD::FDIV:   return "fdiv";
5578  case ISD::FREM:   return "frem";
5579  case ISD::FCOPYSIGN: return "fcopysign";
5580  case ISD::FGETSIGN:  return "fgetsign";
5581
5582  case ISD::SETCC:       return "setcc";
5583  case ISD::VSETCC:      return "vsetcc";
5584  case ISD::SELECT:      return "select";
5585  case ISD::SELECT_CC:   return "select_cc";
5586  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5587  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5588  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5589  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5590  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5591  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5592  case ISD::CARRY_FALSE:         return "carry_false";
5593  case ISD::ADDC:        return "addc";
5594  case ISD::ADDE:        return "adde";
5595  case ISD::SADDO:       return "saddo";
5596  case ISD::UADDO:       return "uaddo";
5597  case ISD::SSUBO:       return "ssubo";
5598  case ISD::USUBO:       return "usubo";
5599  case ISD::SMULO:       return "smulo";
5600  case ISD::UMULO:       return "umulo";
5601  case ISD::SUBC:        return "subc";
5602  case ISD::SUBE:        return "sube";
5603  case ISD::SHL_PARTS:   return "shl_parts";
5604  case ISD::SRA_PARTS:   return "sra_parts";
5605  case ISD::SRL_PARTS:   return "srl_parts";
5606
5607  // Conversion operators.
5608  case ISD::SIGN_EXTEND: return "sign_extend";
5609  case ISD::ZERO_EXTEND: return "zero_extend";
5610  case ISD::ANY_EXTEND:  return "any_extend";
5611  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5612  case ISD::TRUNCATE:    return "truncate";
5613  case ISD::FP_ROUND:    return "fp_round";
5614  case ISD::FLT_ROUNDS_: return "flt_rounds";
5615  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5616  case ISD::FP_EXTEND:   return "fp_extend";
5617
5618  case ISD::SINT_TO_FP:  return "sint_to_fp";
5619  case ISD::UINT_TO_FP:  return "uint_to_fp";
5620  case ISD::FP_TO_SINT:  return "fp_to_sint";
5621  case ISD::FP_TO_UINT:  return "fp_to_uint";
5622  case ISD::BIT_CONVERT: return "bit_convert";
5623
5624  case ISD::CONVERT_RNDSAT: {
5625    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5626    default: llvm_unreachable("Unknown cvt code!");
5627    case ISD::CVT_FF:  return "cvt_ff";
5628    case ISD::CVT_FS:  return "cvt_fs";
5629    case ISD::CVT_FU:  return "cvt_fu";
5630    case ISD::CVT_SF:  return "cvt_sf";
5631    case ISD::CVT_UF:  return "cvt_uf";
5632    case ISD::CVT_SS:  return "cvt_ss";
5633    case ISD::CVT_SU:  return "cvt_su";
5634    case ISD::CVT_US:  return "cvt_us";
5635    case ISD::CVT_UU:  return "cvt_uu";
5636    }
5637  }
5638
5639    // Control flow instructions
5640  case ISD::BR:      return "br";
5641  case ISD::BRIND:   return "brind";
5642  case ISD::BR_JT:   return "br_jt";
5643  case ISD::BRCOND:  return "brcond";
5644  case ISD::BR_CC:   return "br_cc";
5645  case ISD::CALLSEQ_START:  return "callseq_start";
5646  case ISD::CALLSEQ_END:    return "callseq_end";
5647
5648    // Other operators
5649  case ISD::LOAD:               return "load";
5650  case ISD::STORE:              return "store";
5651  case ISD::VAARG:              return "vaarg";
5652  case ISD::VACOPY:             return "vacopy";
5653  case ISD::VAEND:              return "vaend";
5654  case ISD::VASTART:            return "vastart";
5655  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5656  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5657  case ISD::BUILD_PAIR:         return "build_pair";
5658  case ISD::STACKSAVE:          return "stacksave";
5659  case ISD::STACKRESTORE:       return "stackrestore";
5660  case ISD::TRAP:               return "trap";
5661
5662  // Bit manipulation
5663  case ISD::BSWAP:   return "bswap";
5664  case ISD::CTPOP:   return "ctpop";
5665  case ISD::CTTZ:    return "cttz";
5666  case ISD::CTLZ:    return "ctlz";
5667
5668  // Trampolines
5669  case ISD::TRAMPOLINE: return "trampoline";
5670
5671  case ISD::CONDCODE:
5672    switch (cast<CondCodeSDNode>(this)->get()) {
5673    default: llvm_unreachable("Unknown setcc condition!");
5674    case ISD::SETOEQ:  return "setoeq";
5675    case ISD::SETOGT:  return "setogt";
5676    case ISD::SETOGE:  return "setoge";
5677    case ISD::SETOLT:  return "setolt";
5678    case ISD::SETOLE:  return "setole";
5679    case ISD::SETONE:  return "setone";
5680
5681    case ISD::SETO:    return "seto";
5682    case ISD::SETUO:   return "setuo";
5683    case ISD::SETUEQ:  return "setue";
5684    case ISD::SETUGT:  return "setugt";
5685    case ISD::SETUGE:  return "setuge";
5686    case ISD::SETULT:  return "setult";
5687    case ISD::SETULE:  return "setule";
5688    case ISD::SETUNE:  return "setune";
5689
5690    case ISD::SETEQ:   return "seteq";
5691    case ISD::SETGT:   return "setgt";
5692    case ISD::SETGE:   return "setge";
5693    case ISD::SETLT:   return "setlt";
5694    case ISD::SETLE:   return "setle";
5695    case ISD::SETNE:   return "setne";
5696    }
5697  }
5698}
5699
5700const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5701  switch (AM) {
5702  default:
5703    return "";
5704  case ISD::PRE_INC:
5705    return "<pre-inc>";
5706  case ISD::PRE_DEC:
5707    return "<pre-dec>";
5708  case ISD::POST_INC:
5709    return "<post-inc>";
5710  case ISD::POST_DEC:
5711    return "<post-dec>";
5712  }
5713}
5714
5715std::string ISD::ArgFlagsTy::getArgFlagsString() {
5716  std::string S = "< ";
5717
5718  if (isZExt())
5719    S += "zext ";
5720  if (isSExt())
5721    S += "sext ";
5722  if (isInReg())
5723    S += "inreg ";
5724  if (isSRet())
5725    S += "sret ";
5726  if (isByVal())
5727    S += "byval ";
5728  if (isNest())
5729    S += "nest ";
5730  if (getByValAlign())
5731    S += "byval-align:" + utostr(getByValAlign()) + " ";
5732  if (getOrigAlign())
5733    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5734  if (getByValSize())
5735    S += "byval-size:" + utostr(getByValSize()) + " ";
5736  return S + ">";
5737}
5738
5739void SDNode::dump() const { dump(0); }
5740void SDNode::dump(const SelectionDAG *G) const {
5741  print(dbgs(), G);
5742}
5743
5744void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5745  OS << (void*)this << ": ";
5746
5747  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5748    if (i) OS << ",";
5749    if (getValueType(i) == MVT::Other)
5750      OS << "ch";
5751    else
5752      OS << getValueType(i).getEVTString();
5753  }
5754  OS << " = " << getOperationName(G);
5755}
5756
5757void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5758  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5759    if (!MN->memoperands_empty()) {
5760      OS << "<";
5761      OS << "Mem:";
5762      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5763           e = MN->memoperands_end(); i != e; ++i) {
5764        OS << **i;
5765        if (next(i) != e)
5766          OS << " ";
5767      }
5768      OS << ">";
5769    }
5770  } else if (const ShuffleVectorSDNode *SVN =
5771               dyn_cast<ShuffleVectorSDNode>(this)) {
5772    OS << "<";
5773    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5774      int Idx = SVN->getMaskElt(i);
5775      if (i) OS << ",";
5776      if (Idx < 0)
5777        OS << "u";
5778      else
5779        OS << Idx;
5780    }
5781    OS << ">";
5782  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5783    OS << '<' << CSDN->getAPIntValue() << '>';
5784  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5785    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5786      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5787    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5788      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5789    else {
5790      OS << "<APFloat(";
5791      CSDN->getValueAPF().bitcastToAPInt().dump();
5792      OS << ")>";
5793    }
5794  } else if (const GlobalAddressSDNode *GADN =
5795             dyn_cast<GlobalAddressSDNode>(this)) {
5796    int64_t offset = GADN->getOffset();
5797    OS << '<';
5798    WriteAsOperand(OS, GADN->getGlobal());
5799    OS << '>';
5800    if (offset > 0)
5801      OS << " + " << offset;
5802    else
5803      OS << " " << offset;
5804    if (unsigned int TF = GADN->getTargetFlags())
5805      OS << " [TF=" << TF << ']';
5806  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5807    OS << "<" << FIDN->getIndex() << ">";
5808  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5809    OS << "<" << JTDN->getIndex() << ">";
5810    if (unsigned int TF = JTDN->getTargetFlags())
5811      OS << " [TF=" << TF << ']';
5812  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5813    int offset = CP->getOffset();
5814    if (CP->isMachineConstantPoolEntry())
5815      OS << "<" << *CP->getMachineCPVal() << ">";
5816    else
5817      OS << "<" << *CP->getConstVal() << ">";
5818    if (offset > 0)
5819      OS << " + " << offset;
5820    else
5821      OS << " " << offset;
5822    if (unsigned int TF = CP->getTargetFlags())
5823      OS << " [TF=" << TF << ']';
5824  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5825    OS << "<";
5826    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5827    if (LBB)
5828      OS << LBB->getName() << " ";
5829    OS << (const void*)BBDN->getBasicBlock() << ">";
5830  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5831    if (G && R->getReg() &&
5832        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5833      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5834    } else {
5835      OS << " %reg" << R->getReg();
5836    }
5837  } else if (const ExternalSymbolSDNode *ES =
5838             dyn_cast<ExternalSymbolSDNode>(this)) {
5839    OS << "'" << ES->getSymbol() << "'";
5840    if (unsigned int TF = ES->getTargetFlags())
5841      OS << " [TF=" << TF << ']';
5842  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5843    if (M->getValue())
5844      OS << "<" << M->getValue() << ">";
5845    else
5846      OS << "<null>";
5847  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5848    OS << ":" << N->getVT().getEVTString();
5849  }
5850  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5851    OS << "<" << *LD->getMemOperand();
5852
5853    bool doExt = true;
5854    switch (LD->getExtensionType()) {
5855    default: doExt = false; break;
5856    case ISD::EXTLOAD: OS << ", anyext"; break;
5857    case ISD::SEXTLOAD: OS << ", sext"; break;
5858    case ISD::ZEXTLOAD: OS << ", zext"; break;
5859    }
5860    if (doExt)
5861      OS << " from " << LD->getMemoryVT().getEVTString();
5862
5863    const char *AM = getIndexedModeName(LD->getAddressingMode());
5864    if (*AM)
5865      OS << ", " << AM;
5866
5867    OS << ">";
5868  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5869    OS << "<" << *ST->getMemOperand();
5870
5871    if (ST->isTruncatingStore())
5872      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5873
5874    const char *AM = getIndexedModeName(ST->getAddressingMode());
5875    if (*AM)
5876      OS << ", " << AM;
5877
5878    OS << ">";
5879  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5880    OS << "<" << *M->getMemOperand() << ">";
5881  } else if (const BlockAddressSDNode *BA =
5882               dyn_cast<BlockAddressSDNode>(this)) {
5883    OS << "<";
5884    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5885    OS << ", ";
5886    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5887    OS << ">";
5888    if (unsigned int TF = BA->getTargetFlags())
5889      OS << " [TF=" << TF << ']';
5890  }
5891
5892  if (G)
5893    if (unsigned Order = G->GetOrdering(this))
5894      OS << " [ORD=" << Order << ']';
5895}
5896
5897void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5898  print_types(OS, G);
5899  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5900    if (i) OS << ", "; else OS << " ";
5901    OS << (void*)getOperand(i).getNode();
5902    if (unsigned RN = getOperand(i).getResNo())
5903      OS << ":" << RN;
5904  }
5905  print_details(OS, G);
5906}
5907
5908static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5909                                  const SelectionDAG *G, unsigned depth,
5910                                  unsigned indent)
5911{
5912  if (depth == 0)
5913    return;
5914
5915  OS.indent(indent);
5916
5917  N->print(OS, G);
5918
5919  if (depth < 1)
5920    return;
5921
5922  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5923    OS << '\n';
5924    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5925  }
5926}
5927
5928void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5929                            unsigned depth) const {
5930  printrWithDepthHelper(OS, this, G, depth, 0);
5931}
5932
5933void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5934  // Don't print impossibly deep things.
5935  printrWithDepth(OS, G, 100);
5936}
5937
5938void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5939  printrWithDepth(dbgs(), G, depth);
5940}
5941
5942void SDNode::dumprFull(const SelectionDAG *G) const {
5943  // Don't print impossibly deep things.
5944  dumprWithDepth(G, 100);
5945}
5946
5947static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5948  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5949    if (N->getOperand(i).getNode()->hasOneUse())
5950      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5951    else
5952      dbgs() << "\n" << std::string(indent+2, ' ')
5953           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5954
5955
5956  dbgs() << "\n";
5957  dbgs().indent(indent);
5958  N->dump(G);
5959}
5960
5961SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5962  assert(N->getNumValues() == 1 &&
5963         "Can't unroll a vector with multiple results!");
5964
5965  EVT VT = N->getValueType(0);
5966  unsigned NE = VT.getVectorNumElements();
5967  EVT EltVT = VT.getVectorElementType();
5968  DebugLoc dl = N->getDebugLoc();
5969
5970  SmallVector<SDValue, 8> Scalars;
5971  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5972
5973  // If ResNE is 0, fully unroll the vector op.
5974  if (ResNE == 0)
5975    ResNE = NE;
5976  else if (NE > ResNE)
5977    NE = ResNE;
5978
5979  unsigned i;
5980  for (i= 0; i != NE; ++i) {
5981    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5982      SDValue Operand = N->getOperand(j);
5983      EVT OperandVT = Operand.getValueType();
5984      if (OperandVT.isVector()) {
5985        // A vector operand; extract a single element.
5986        EVT OperandEltVT = OperandVT.getVectorElementType();
5987        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5988                              OperandEltVT,
5989                              Operand,
5990                              getConstant(i, MVT::i32));
5991      } else {
5992        // A scalar operand; just use it as is.
5993        Operands[j] = Operand;
5994      }
5995    }
5996
5997    switch (N->getOpcode()) {
5998    default:
5999      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6000                                &Operands[0], Operands.size()));
6001      break;
6002    case ISD::SHL:
6003    case ISD::SRA:
6004    case ISD::SRL:
6005    case ISD::ROTL:
6006    case ISD::ROTR:
6007      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6008                                getShiftAmountOperand(Operands[1])));
6009      break;
6010    case ISD::SIGN_EXTEND_INREG:
6011    case ISD::FP_ROUND_INREG: {
6012      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6013      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6014                                Operands[0],
6015                                getValueType(ExtVT)));
6016    }
6017    }
6018  }
6019
6020  for (; i < ResNE; ++i)
6021    Scalars.push_back(getUNDEF(EltVT));
6022
6023  return getNode(ISD::BUILD_VECTOR, dl,
6024                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6025                 &Scalars[0], Scalars.size());
6026}
6027
6028
6029/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6030/// location that is 'Dist' units away from the location that the 'Base' load
6031/// is loading from.
6032bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6033                                     unsigned Bytes, int Dist) const {
6034  if (LD->getChain() != Base->getChain())
6035    return false;
6036  EVT VT = LD->getValueType(0);
6037  if (VT.getSizeInBits() / 8 != Bytes)
6038    return false;
6039
6040  SDValue Loc = LD->getOperand(1);
6041  SDValue BaseLoc = Base->getOperand(1);
6042  if (Loc.getOpcode() == ISD::FrameIndex) {
6043    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6044      return false;
6045    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6046    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6047    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6048    int FS  = MFI->getObjectSize(FI);
6049    int BFS = MFI->getObjectSize(BFI);
6050    if (FS != BFS || FS != (int)Bytes) return false;
6051    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6052  }
6053  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6054    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6055    if (V && (V->getSExtValue() == Dist*Bytes))
6056      return true;
6057  }
6058
6059  GlobalValue *GV1 = NULL;
6060  GlobalValue *GV2 = NULL;
6061  int64_t Offset1 = 0;
6062  int64_t Offset2 = 0;
6063  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6064  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6065  if (isGA1 && isGA2 && GV1 == GV2)
6066    return Offset1 == (Offset2 + Dist*Bytes);
6067  return false;
6068}
6069
6070
6071/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6072/// it cannot be inferred.
6073unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6074  // If this is a GlobalAddress + cst, return the alignment.
6075  GlobalValue *GV;
6076  int64_t GVOffset = 0;
6077  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6078    return MinAlign(GV->getAlignment(), GVOffset);
6079
6080  // If this is a direct reference to a stack slot, use information about the
6081  // stack slot's alignment.
6082  int FrameIdx = 1 << 31;
6083  int64_t FrameOffset = 0;
6084  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6085    FrameIdx = FI->getIndex();
6086  } else if (Ptr.getOpcode() == ISD::ADD &&
6087             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6088             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6089    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6090    FrameOffset = Ptr.getConstantOperandVal(1);
6091  }
6092
6093  if (FrameIdx != (1 << 31)) {
6094    // FIXME: Handle FI+CST.
6095    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6096    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6097                                    FrameOffset);
6098    if (MFI.isFixedObjectIndex(FrameIdx)) {
6099      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6100
6101      // The alignment of the frame index can be determined from its offset from
6102      // the incoming frame position.  If the frame object is at offset 32 and
6103      // the stack is guaranteed to be 16-byte aligned, then we know that the
6104      // object is 16-byte aligned.
6105      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6106      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6107
6108      // Finally, the frame object itself may have a known alignment.  Factor
6109      // the alignment + offset into a new alignment.  For example, if we know
6110      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6111      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6112      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6113      return std::max(Align, FIInfoAlign);
6114    }
6115    return FIInfoAlign;
6116  }
6117
6118  return 0;
6119}
6120
6121void SelectionDAG::dump() const {
6122  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6123
6124  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6125       I != E; ++I) {
6126    const SDNode *N = I;
6127    if (!N->hasOneUse() && N != getRoot().getNode())
6128      DumpNodes(N, 2, this);
6129  }
6130
6131  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6132
6133  dbgs() << "\n\n";
6134}
6135
6136void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6137  print_types(OS, G);
6138  print_details(OS, G);
6139}
6140
6141typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6142static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6143                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6144  if (!once.insert(N))          // If we've been here before, return now.
6145    return;
6146
6147  // Dump the current SDNode, but don't end the line yet.
6148  OS << std::string(indent, ' ');
6149  N->printr(OS, G);
6150
6151  // Having printed this SDNode, walk the children:
6152  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6153    const SDNode *child = N->getOperand(i).getNode();
6154
6155    if (i) OS << ",";
6156    OS << " ";
6157
6158    if (child->getNumOperands() == 0) {
6159      // This child has no grandchildren; print it inline right here.
6160      child->printr(OS, G);
6161      once.insert(child);
6162    } else {         // Just the address. FIXME: also print the child's opcode.
6163      OS << (void*)child;
6164      if (unsigned RN = N->getOperand(i).getResNo())
6165        OS << ":" << RN;
6166    }
6167  }
6168
6169  OS << "\n";
6170
6171  // Dump children that have grandchildren on their own line(s).
6172  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6173    const SDNode *child = N->getOperand(i).getNode();
6174    DumpNodesr(OS, child, indent+2, G, once);
6175  }
6176}
6177
6178void SDNode::dumpr() const {
6179  VisitedSDNodeSet once;
6180  DumpNodesr(dbgs(), this, 0, 0, once);
6181}
6182
6183void SDNode::dumpr(const SelectionDAG *G) const {
6184  VisitedSDNodeSet once;
6185  DumpNodesr(dbgs(), this, 0, G, once);
6186}
6187
6188
6189// getAddressSpace - Return the address space this GlobalAddress belongs to.
6190unsigned GlobalAddressSDNode::getAddressSpace() const {
6191  return getGlobal()->getType()->getAddressSpace();
6192}
6193
6194
6195const Type *ConstantPoolSDNode::getType() const {
6196  if (isMachineConstantPoolEntry())
6197    return Val.MachineCPVal->getType();
6198  return Val.ConstVal->getType();
6199}
6200
6201bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6202                                        APInt &SplatUndef,
6203                                        unsigned &SplatBitSize,
6204                                        bool &HasAnyUndefs,
6205                                        unsigned MinSplatBits,
6206                                        bool isBigEndian) {
6207  EVT VT = getValueType(0);
6208  assert(VT.isVector() && "Expected a vector type");
6209  unsigned sz = VT.getSizeInBits();
6210  if (MinSplatBits > sz)
6211    return false;
6212
6213  SplatValue = APInt(sz, 0);
6214  SplatUndef = APInt(sz, 0);
6215
6216  // Get the bits.  Bits with undefined values (when the corresponding element
6217  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6218  // in SplatValue.  If any of the values are not constant, give up and return
6219  // false.
6220  unsigned int nOps = getNumOperands();
6221  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6222  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6223
6224  for (unsigned j = 0; j < nOps; ++j) {
6225    unsigned i = isBigEndian ? nOps-1-j : j;
6226    SDValue OpVal = getOperand(i);
6227    unsigned BitPos = j * EltBitSize;
6228
6229    if (OpVal.getOpcode() == ISD::UNDEF)
6230      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6231    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6232      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6233                     zextOrTrunc(sz) << BitPos);
6234    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6235      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6236     else
6237      return false;
6238  }
6239
6240  // The build_vector is all constants or undefs.  Find the smallest element
6241  // size that splats the vector.
6242
6243  HasAnyUndefs = (SplatUndef != 0);
6244  while (sz > 8) {
6245
6246    unsigned HalfSize = sz / 2;
6247    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6248    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6249    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6250    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6251
6252    // If the two halves do not match (ignoring undef bits), stop here.
6253    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6254        MinSplatBits > HalfSize)
6255      break;
6256
6257    SplatValue = HighValue | LowValue;
6258    SplatUndef = HighUndef & LowUndef;
6259
6260    sz = HalfSize;
6261  }
6262
6263  SplatBitSize = sz;
6264  return true;
6265}
6266
6267bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6268  // Find the first non-undef value in the shuffle mask.
6269  unsigned i, e;
6270  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6271    /* search */;
6272
6273  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6274
6275  // Make sure all remaining elements are either undef or the same as the first
6276  // non-undef value.
6277  for (int Idx = Mask[i]; i != e; ++i)
6278    if (Mask[i] >= 0 && Mask[i] != Idx)
6279      return false;
6280  return true;
6281}
6282