SelectionDAG.cpp revision 23e1df8b8d1d1fc8b9a20b80a47b0a2fdffe7f84
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // PPC long double cannot be converted to any other type.
78  if (VT == MVT::ppcf128 ||
79      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80    return false;
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  return Val2.convert(*MVTToAPFloatSemantics(VT),
85                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86}
87
88//===----------------------------------------------------------------------===//
89//                              ISD Namespace
90//===----------------------------------------------------------------------===//
91
92/// isBuildVectorAllOnes - Return true if the specified node is a
93/// BUILD_VECTOR where all of the elements are ~0 or undef.
94bool ISD::isBuildVectorAllOnes(const SDNode *N) {
95  // Look through a bit convert.
96  if (N->getOpcode() == ISD::BIT_CONVERT)
97    N = N->getOperand(0).Val;
98
99  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100
101  unsigned i = 0, e = N->getNumOperands();
102
103  // Skip over all of the undef values.
104  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105    ++i;
106
107  // Do not accept an all-undef vector.
108  if (i == e) return false;
109
110  // Do not accept build_vectors that aren't all constants or which have non-~0
111  // elements.
112  SDOperand NotZero = N->getOperand(i);
113  if (isa<ConstantSDNode>(NotZero)) {
114    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115      return false;
116  } else if (isa<ConstantFPSDNode>(NotZero)) {
117    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118                convertToAPInt().isAllOnesValue())
119      return false;
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
297    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
298    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
299    }
300  }
301
302  return Result;
303}
304
305const TargetMachine &SelectionDAG::getTarget() const {
306  return TLI.getTargetMachine();
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              SDOperandPtr Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->Val);
331    ID.AddInteger(Ops->ResNo);
332  }
333}
334
335static void AddNodeIDNode(FoldingSetNodeID &ID,
336                          unsigned short OpC, SDVTList VTList,
337                          SDOperandPtr OpList, unsigned N) {
338  AddNodeIDOpcode(ID, OpC);
339  AddNodeIDValueTypes(ID, VTList);
340  AddNodeIDOperands(ID, OpList, N);
341}
342
343
344/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
345/// data.
346static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
347  AddNodeIDOpcode(ID, N->getOpcode());
348  // Add the return value info.
349  AddNodeIDValueTypes(ID, N->getVTList());
350  // Add the operand info.
351  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
352
353  // Handle SDNode leafs with special info.
354  switch (N->getOpcode()) {
355  default: break;  // Normal nodes don't need extra info.
356  case ISD::ARG_FLAGS:
357    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
358    break;
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    break;
376  }
377  case ISD::BasicBlock:
378    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
379    break;
380  case ISD::Register:
381    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
382    break;
383  case ISD::SRCVALUE:
384    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
385    break;
386  case ISD::MEMOPERAND: {
387    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
388    ID.AddPointer(MO.getValue());
389    ID.AddInteger(MO.getFlags());
390    ID.AddInteger(MO.getOffset());
391    ID.AddInteger(MO.getSize());
392    ID.AddInteger(MO.getAlignment());
393    break;
394  }
395  case ISD::FrameIndex:
396  case ISD::TargetFrameIndex:
397    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
398    break;
399  case ISD::JumpTable:
400  case ISD::TargetJumpTable:
401    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
402    break;
403  case ISD::ConstantPool:
404  case ISD::TargetConstantPool: {
405    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
406    ID.AddInteger(CP->getAlignment());
407    ID.AddInteger(CP->getOffset());
408    if (CP->isMachineConstantPoolEntry())
409      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
410    else
411      ID.AddPointer(CP->getConstVal());
412    break;
413  }
414  case ISD::LOAD: {
415    LoadSDNode *LD = cast<LoadSDNode>(N);
416    ID.AddInteger(LD->getAddressingMode());
417    ID.AddInteger(LD->getExtensionType());
418    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
419    ID.AddInteger(LD->getAlignment());
420    ID.AddInteger(LD->isVolatile());
421    break;
422  }
423  case ISD::STORE: {
424    StoreSDNode *ST = cast<StoreSDNode>(N);
425    ID.AddInteger(ST->getAddressingMode());
426    ID.AddInteger(ST->isTruncatingStore());
427    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
428    ID.AddInteger(ST->getAlignment());
429    ID.AddInteger(ST->isVolatile());
430    break;
431  }
432  }
433}
434
435//===----------------------------------------------------------------------===//
436//                              SelectionDAG Class
437//===----------------------------------------------------------------------===//
438
439/// RemoveDeadNodes - This method deletes all unreachable nodes in the
440/// SelectionDAG.
441void SelectionDAG::RemoveDeadNodes() {
442  // Create a dummy node (which is not added to allnodes), that adds a reference
443  // to the root node, preventing it from being deleted.
444  HandleSDNode Dummy(getRoot());
445
446  SmallVector<SDNode*, 128> DeadNodes;
447
448  // Add all obviously-dead nodes to the DeadNodes worklist.
449  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
450    if (I->use_empty())
451      DeadNodes.push_back(I);
452
453  // Process the worklist, deleting the nodes and adding their uses to the
454  // worklist.
455  while (!DeadNodes.empty()) {
456    SDNode *N = DeadNodes.back();
457    DeadNodes.pop_back();
458
459    // Take the node out of the appropriate CSE map.
460    RemoveNodeFromCSEMaps(N);
461
462    // Next, brutally remove the operand list.  This is safe to do, as there are
463    // no cycles in the graph.
464    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
465      SDNode *Operand = I->getVal();
466      Operand->removeUser(std::distance(N->op_begin(), I), N);
467
468      // Now that we removed this operand, see if there are no uses of it left.
469      if (Operand->use_empty())
470        DeadNodes.push_back(Operand);
471    }
472    if (N->OperandsNeedDelete) {
473      delete[] N->OperandList;
474    }
475    N->OperandList = 0;
476    N->NumOperands = 0;
477
478    // Finally, remove N itself.
479    AllNodes.erase(N);
480  }
481
482  // If the root changed (e.g. it was a dead load, update the root).
483  setRoot(Dummy.getValue());
484}
485
486void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
487  SmallVector<SDNode*, 16> DeadNodes;
488  DeadNodes.push_back(N);
489
490  // Process the worklist, deleting the nodes and adding their uses to the
491  // worklist.
492  while (!DeadNodes.empty()) {
493    SDNode *N = DeadNodes.back();
494    DeadNodes.pop_back();
495
496    if (UpdateListener)
497      UpdateListener->NodeDeleted(N);
498
499    // Take the node out of the appropriate CSE map.
500    RemoveNodeFromCSEMaps(N);
501
502    // Next, brutally remove the operand list.  This is safe to do, as there are
503    // no cycles in the graph.
504    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
505      SDNode *Operand = I->getVal();
506      Operand->removeUser(std::distance(N->op_begin(), I), N);
507
508      // Now that we removed this operand, see if there are no uses of it left.
509      if (Operand->use_empty())
510        DeadNodes.push_back(Operand);
511    }
512    if (N->OperandsNeedDelete) {
513      delete[] N->OperandList;
514    }
515    N->OperandList = 0;
516    N->NumOperands = 0;
517
518    // Finally, remove N itself.
519    AllNodes.erase(N);
520  }
521}
522
523void SelectionDAG::DeleteNode(SDNode *N) {
524  assert(N->use_empty() && "Cannot delete a node that is not dead!");
525
526  // First take this out of the appropriate CSE map.
527  RemoveNodeFromCSEMaps(N);
528
529  // Finally, remove uses due to operands of this node, remove from the
530  // AllNodes list, and delete the node.
531  DeleteNodeNotInCSEMaps(N);
532}
533
534void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
535
536  // Remove it from the AllNodes list.
537  AllNodes.remove(N);
538
539  // Drop all of the operands and decrement used nodes use counts.
540  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
541    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
542  if (N->OperandsNeedDelete) {
543    delete[] N->OperandList;
544  }
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           SDOperandPtr Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete) {
706      delete [] N->OperandList;
707    }
708    N->OperandList = 0;
709    N->NumOperands = 0;
710    AllNodes.pop_front();
711  }
712}
713
714SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
715  if (Op.getValueType() == VT) return Op;
716  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
717                                   MVT::getSizeInBits(VT));
718  return getNode(ISD::AND, Op.getValueType(), Op,
719                 getConstant(Imm, Op.getValueType()));
720}
721
722SDOperand SelectionDAG::getString(const std::string &Val) {
723  StringSDNode *&N = StringNodes[Val];
724  if (!N) {
725    N = new StringSDNode(Val);
726    AllNodes.push_back(N);
727  }
728  return SDOperand(N, 0);
729}
730
731SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
732  MVT::ValueType EltVT =
733    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
734
735  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
736}
737
738SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
739  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
740
741  MVT::ValueType EltVT =
742    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
743
744  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
745         "APInt size does not match type size!");
746
747  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
748  FoldingSetNodeID ID;
749  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
750  ID.Add(Val);
751  void *IP = 0;
752  SDNode *N = NULL;
753  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
754    if (!MVT::isVector(VT))
755      return SDOperand(N, 0);
756  if (!N) {
757    N = new ConstantSDNode(isT, Val, EltVT);
758    CSEMap.InsertNode(N, IP);
759    AllNodes.push_back(N);
760  }
761
762  SDOperand Result(N, 0);
763  if (MVT::isVector(VT)) {
764    SmallVector<SDOperand, 8> Ops;
765    Ops.assign(MVT::getVectorNumElements(VT), Result);
766    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
767  }
768  return Result;
769}
770
771SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
772  return getConstant(Val, TLI.getPointerTy(), isTarget);
773}
774
775
776SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
777                                      bool isTarget) {
778  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
779
780  MVT::ValueType EltVT =
781    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
782
783  // Do the map lookup using the actual bit pattern for the floating point
784  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
785  // we don't have issues with SNANs.
786  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
789  ID.Add(V);
790  void *IP = 0;
791  SDNode *N = NULL;
792  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
793    if (!MVT::isVector(VT))
794      return SDOperand(N, 0);
795  if (!N) {
796    N = new ConstantFPSDNode(isTarget, V, EltVT);
797    CSEMap.InsertNode(N, IP);
798    AllNodes.push_back(N);
799  }
800
801  SDOperand Result(N, 0);
802  if (MVT::isVector(VT)) {
803    SmallVector<SDOperand, 8> Ops;
804    Ops.assign(MVT::getVectorNumElements(VT), Result);
805    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
806  }
807  return Result;
808}
809
810SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
811                                      bool isTarget) {
812  MVT::ValueType EltVT =
813    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
814  if (EltVT==MVT::f32)
815    return getConstantFP(APFloat((float)Val), VT, isTarget);
816  else
817    return getConstantFP(APFloat(Val), VT, isTarget);
818}
819
820SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
821                                         MVT::ValueType VT, int Offset,
822                                         bool isTargetGA) {
823  unsigned Opc;
824
825  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
826  if (!GVar) {
827    // If GV is an alias then use the aliasee for determining thread-localness.
828    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
829      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
830  }
831
832  if (GVar && GVar->isThreadLocal())
833    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
834  else
835    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
836
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
839  ID.AddPointer(GV);
840  ID.AddInteger(Offset);
841  void *IP = 0;
842  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
843   return SDOperand(E, 0);
844  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
845  CSEMap.InsertNode(N, IP);
846  AllNodes.push_back(N);
847  return SDOperand(N, 0);
848}
849
850SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
851                                      bool isTarget) {
852  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
855  ID.AddInteger(FI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
866  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
867  FoldingSetNodeID ID;
868  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
869  ID.AddInteger(JTI);
870  void *IP = 0;
871  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872    return SDOperand(E, 0);
873  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
874  CSEMap.InsertNode(N, IP);
875  AllNodes.push_back(N);
876  return SDOperand(N, 0);
877}
878
879SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
880                                        unsigned Alignment, int Offset,
881                                        bool isTarget) {
882  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
883  FoldingSetNodeID ID;
884  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
885  ID.AddInteger(Alignment);
886  ID.AddInteger(Offset);
887  ID.AddPointer(C);
888  void *IP = 0;
889  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
890    return SDOperand(E, 0);
891  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
892  CSEMap.InsertNode(N, IP);
893  AllNodes.push_back(N);
894  return SDOperand(N, 0);
895}
896
897
898SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
899                                        MVT::ValueType VT,
900                                        unsigned Alignment, int Offset,
901                                        bool isTarget) {
902  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
905  ID.AddInteger(Alignment);
906  ID.AddInteger(Offset);
907  C->AddSelectionDAGCSEId(ID);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917
918SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
921  ID.AddPointer(MBB);
922  void *IP = 0;
923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924    return SDOperand(E, 0);
925  SDNode *N = new BasicBlockSDNode(MBB);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
934  ID.AddInteger(Flags.getRawBits());
935  void *IP = 0;
936  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
937    return SDOperand(E, 0);
938  SDNode *N = new ARG_FLAGSSDNode(Flags);
939  CSEMap.InsertNode(N, IP);
940  AllNodes.push_back(N);
941  return SDOperand(N, 0);
942}
943
944SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
945  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
946    ValueTypeNodes.resize(VT+1);
947
948  SDNode *&N = MVT::isExtendedVT(VT) ?
949    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
950
951  if (N) return SDOperand(N, 0);
952  N = new VTSDNode(VT);
953  AllNodes.push_back(N);
954  return SDOperand(N, 0);
955}
956
957SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
958  SDNode *&N = ExternalSymbols[Sym];
959  if (N) return SDOperand(N, 0);
960  N = new ExternalSymbolSDNode(false, Sym, VT);
961  AllNodes.push_back(N);
962  return SDOperand(N, 0);
963}
964
965SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
966                                                MVT::ValueType VT) {
967  SDNode *&N = TargetExternalSymbols[Sym];
968  if (N) return SDOperand(N, 0);
969  N = new ExternalSymbolSDNode(true, Sym, VT);
970  AllNodes.push_back(N);
971  return SDOperand(N, 0);
972}
973
974SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
975  if ((unsigned)Cond >= CondCodeNodes.size())
976    CondCodeNodes.resize(Cond+1);
977
978  if (CondCodeNodes[Cond] == 0) {
979    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
980    AllNodes.push_back(CondCodeNodes[Cond]);
981  }
982  return SDOperand(CondCodeNodes[Cond], 0);
983}
984
985SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
986  FoldingSetNodeID ID;
987  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
988  ID.AddInteger(RegNo);
989  void *IP = 0;
990  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
991    return SDOperand(E, 0);
992  SDNode *N = new RegisterSDNode(RegNo, VT);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDOperand(N, 0);
996}
997
998SDOperand SelectionDAG::getSrcValue(const Value *V) {
999  assert((!V || isa<PointerType>(V->getType())) &&
1000         "SrcValue is not a pointer?");
1001
1002  FoldingSetNodeID ID;
1003  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1004  ID.AddPointer(V);
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new SrcValueSDNode(V);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1017  const Value *v = MO.getValue();
1018  assert((!v || isa<PointerType>(v->getType())) &&
1019         "SrcValue is not a pointer?");
1020
1021  FoldingSetNodeID ID;
1022  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1023  ID.AddPointer(v);
1024  ID.AddInteger(MO.getFlags());
1025  ID.AddInteger(MO.getOffset());
1026  ID.AddInteger(MO.getSize());
1027  ID.AddInteger(MO.getAlignment());
1028
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDOperand(E, 0);
1032
1033  SDNode *N = new MemOperandSDNode(MO);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDOperand(N, 0);
1037}
1038
1039/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1040/// specified value type.
1041SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1042  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1043  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1044  const Type *Ty = MVT::getTypeForValueType(VT);
1045  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1046  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1047  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1048}
1049
1050
1051SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1052                                  SDOperand N2, ISD::CondCode Cond) {
1053  // These setcc operations always fold.
1054  switch (Cond) {
1055  default: break;
1056  case ISD::SETFALSE:
1057  case ISD::SETFALSE2: return getConstant(0, VT);
1058  case ISD::SETTRUE:
1059  case ISD::SETTRUE2:  return getConstant(1, VT);
1060
1061  case ISD::SETOEQ:
1062  case ISD::SETOGT:
1063  case ISD::SETOGE:
1064  case ISD::SETOLT:
1065  case ISD::SETOLE:
1066  case ISD::SETONE:
1067  case ISD::SETO:
1068  case ISD::SETUO:
1069  case ISD::SETUEQ:
1070  case ISD::SETUNE:
1071    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1072    break;
1073  }
1074
1075  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1076    const APInt &C2 = N2C->getAPIntValue();
1077    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1078      const APInt &C1 = N1C->getAPIntValue();
1079
1080      switch (Cond) {
1081      default: assert(0 && "Unknown integer setcc!");
1082      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1083      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1084      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1085      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1086      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1087      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1088      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1089      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1090      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1091      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1092      }
1093    }
1094  }
1095  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1096    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1097      // No compile time operations on this type yet.
1098      if (N1C->getValueType(0) == MVT::ppcf128)
1099        return SDOperand();
1100
1101      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1102      switch (Cond) {
1103      default: break;
1104      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1108      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1109                          return getNode(ISD::UNDEF, VT);
1110                        // fall through
1111      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpLessThan, VT);
1113      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1114                          return getNode(ISD::UNDEF, VT);
1115                        // fall through
1116      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1117      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1118                          return getNode(ISD::UNDEF, VT);
1119                        // fall through
1120      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1121      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1122                          return getNode(ISD::UNDEF, VT);
1123                        // fall through
1124      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1125                                           R==APFloat::cmpEqual, VT);
1126      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1127                          return getNode(ISD::UNDEF, VT);
1128                        // fall through
1129      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1130                                           R==APFloat::cmpEqual, VT);
1131      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1132      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1133      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1134                                           R==APFloat::cmpEqual, VT);
1135      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1136      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1137                                           R==APFloat::cmpLessThan, VT);
1138      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1139                                           R==APFloat::cmpUnordered, VT);
1140      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1141      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1142      }
1143    } else {
1144      // Ensure that the constant occurs on the RHS.
1145      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1146    }
1147  }
1148
1149  // Could not fold it.
1150  return SDOperand();
1151}
1152
1153/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1154/// use this predicate to simplify operations downstream.
1155bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1156  unsigned BitWidth = Op.getValueSizeInBits();
1157  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1158}
1159
1160/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1161/// this predicate to simplify operations downstream.  Mask is known to be zero
1162/// for bits that V cannot have.
1163bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1164                                     unsigned Depth) const {
1165  APInt KnownZero, KnownOne;
1166  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1167  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1168  return (KnownZero & Mask) == Mask;
1169}
1170
1171/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1172/// known to be either zero or one and return them in the KnownZero/KnownOne
1173/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1174/// processing.
1175void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1176                                     APInt &KnownZero, APInt &KnownOne,
1177                                     unsigned Depth) const {
1178  unsigned BitWidth = Mask.getBitWidth();
1179  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1180         "Mask size mismatches value type size!");
1181
1182  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1183  if (Depth == 6 || Mask == 0)
1184    return;  // Limit search depth.
1185
1186  APInt KnownZero2, KnownOne2;
1187
1188  switch (Op.getOpcode()) {
1189  case ISD::Constant:
1190    // We know all of the bits for a constant!
1191    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1192    KnownZero = ~KnownOne & Mask;
1193    return;
1194  case ISD::AND:
1195    // If either the LHS or the RHS are Zero, the result is zero.
1196    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1197    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1198                      KnownZero2, KnownOne2, Depth+1);
1199    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1200    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1201
1202    // Output known-1 bits are only known if set in both the LHS & RHS.
1203    KnownOne &= KnownOne2;
1204    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1205    KnownZero |= KnownZero2;
1206    return;
1207  case ISD::OR:
1208    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1209    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1210                      KnownZero2, KnownOne2, Depth+1);
1211    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1213
1214    // Output known-0 bits are only known if clear in both the LHS & RHS.
1215    KnownZero &= KnownZero2;
1216    // Output known-1 are known to be set if set in either the LHS | RHS.
1217    KnownOne |= KnownOne2;
1218    return;
1219  case ISD::XOR: {
1220    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1221    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1222    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1224
1225    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1226    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1227    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1228    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1229    KnownZero = KnownZeroOut;
1230    return;
1231  }
1232  case ISD::MUL: {
1233    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1234    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1235    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1236    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1237    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1238
1239    // If low bits are zero in either operand, output low known-0 bits.
1240    // Also compute a conserative estimate for high known-0 bits.
1241    // More trickiness is possible, but this is sufficient for the
1242    // interesting case of alignment computation.
1243    KnownOne.clear();
1244    unsigned TrailZ = KnownZero.countTrailingOnes() +
1245                      KnownZero2.countTrailingOnes();
1246    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1247                               KnownZero2.countLeadingOnes() +
1248                               1, BitWidth) - BitWidth;
1249
1250    TrailZ = std::min(TrailZ, BitWidth);
1251    LeadZ = std::min(LeadZ, BitWidth);
1252    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1253                APInt::getHighBitsSet(BitWidth, LeadZ);
1254    KnownZero &= Mask;
1255    return;
1256  }
1257  case ISD::UDIV: {
1258    // For the purposes of computing leading zeros we can conservatively
1259    // treat a udiv as a logical right shift by the power of 2 known to
1260    // be less than the denominator.
1261    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1262    ComputeMaskedBits(Op.getOperand(0),
1263                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1264    unsigned LeadZ = KnownZero2.countLeadingOnes();
1265
1266    KnownOne2.clear();
1267    KnownZero2.clear();
1268    ComputeMaskedBits(Op.getOperand(1),
1269                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1270    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1271    if (RHSUnknownLeadingOnes != BitWidth)
1272      LeadZ = std::min(BitWidth,
1273                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1274
1275    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1276    return;
1277  }
1278  case ISD::SELECT:
1279    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1280    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1281    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1282    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1283
1284    // Only known if known in both the LHS and RHS.
1285    KnownOne &= KnownOne2;
1286    KnownZero &= KnownZero2;
1287    return;
1288  case ISD::SELECT_CC:
1289    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1290    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1291    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1292    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1293
1294    // Only known if known in both the LHS and RHS.
1295    KnownOne &= KnownOne2;
1296    KnownZero &= KnownZero2;
1297    return;
1298  case ISD::SETCC:
1299    // If we know the result of a setcc has the top bits zero, use this info.
1300    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1301        BitWidth > 1)
1302      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1303    return;
1304  case ISD::SHL:
1305    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1306    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1307      unsigned ShAmt = SA->getValue();
1308
1309      // If the shift count is an invalid immediate, don't do anything.
1310      if (ShAmt >= BitWidth)
1311        return;
1312
1313      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1314                        KnownZero, KnownOne, Depth+1);
1315      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1316      KnownZero <<= ShAmt;
1317      KnownOne  <<= ShAmt;
1318      // low bits known zero.
1319      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1320    }
1321    return;
1322  case ISD::SRL:
1323    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1324    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1325      unsigned ShAmt = SA->getValue();
1326
1327      // If the shift count is an invalid immediate, don't do anything.
1328      if (ShAmt >= BitWidth)
1329        return;
1330
1331      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1332                        KnownZero, KnownOne, Depth+1);
1333      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1334      KnownZero = KnownZero.lshr(ShAmt);
1335      KnownOne  = KnownOne.lshr(ShAmt);
1336
1337      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1338      KnownZero |= HighBits;  // High bits known zero.
1339    }
1340    return;
1341  case ISD::SRA:
1342    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1343      unsigned ShAmt = SA->getValue();
1344
1345      // If the shift count is an invalid immediate, don't do anything.
1346      if (ShAmt >= BitWidth)
1347        return;
1348
1349      APInt InDemandedMask = (Mask << ShAmt);
1350      // If any of the demanded bits are produced by the sign extension, we also
1351      // demand the input sign bit.
1352      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1353      if (HighBits.getBoolValue())
1354        InDemandedMask |= APInt::getSignBit(BitWidth);
1355
1356      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1357                        Depth+1);
1358      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1359      KnownZero = KnownZero.lshr(ShAmt);
1360      KnownOne  = KnownOne.lshr(ShAmt);
1361
1362      // Handle the sign bits.
1363      APInt SignBit = APInt::getSignBit(BitWidth);
1364      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1365
1366      if (KnownZero.intersects(SignBit)) {
1367        KnownZero |= HighBits;  // New bits are known zero.
1368      } else if (KnownOne.intersects(SignBit)) {
1369        KnownOne  |= HighBits;  // New bits are known one.
1370      }
1371    }
1372    return;
1373  case ISD::SIGN_EXTEND_INREG: {
1374    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1375    unsigned EBits = MVT::getSizeInBits(EVT);
1376
1377    // Sign extension.  Compute the demanded bits in the result that are not
1378    // present in the input.
1379    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1380
1381    APInt InSignBit = APInt::getSignBit(EBits);
1382    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1383
1384    // If the sign extended bits are demanded, we know that the sign
1385    // bit is demanded.
1386    InSignBit.zext(BitWidth);
1387    if (NewBits.getBoolValue())
1388      InputDemandedBits |= InSignBit;
1389
1390    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1391                      KnownZero, KnownOne, Depth+1);
1392    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1393
1394    // If the sign bit of the input is known set or clear, then we know the
1395    // top bits of the result.
1396    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1397      KnownZero |= NewBits;
1398      KnownOne  &= ~NewBits;
1399    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1400      KnownOne  |= NewBits;
1401      KnownZero &= ~NewBits;
1402    } else {                              // Input sign bit unknown
1403      KnownZero &= ~NewBits;
1404      KnownOne  &= ~NewBits;
1405    }
1406    return;
1407  }
1408  case ISD::CTTZ:
1409  case ISD::CTLZ:
1410  case ISD::CTPOP: {
1411    unsigned LowBits = Log2_32(BitWidth)+1;
1412    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1413    KnownOne  = APInt(BitWidth, 0);
1414    return;
1415  }
1416  case ISD::LOAD: {
1417    if (ISD::isZEXTLoad(Op.Val)) {
1418      LoadSDNode *LD = cast<LoadSDNode>(Op);
1419      MVT::ValueType VT = LD->getMemoryVT();
1420      unsigned MemBits = MVT::getSizeInBits(VT);
1421      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1422    }
1423    return;
1424  }
1425  case ISD::ZERO_EXTEND: {
1426    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1427    unsigned InBits = MVT::getSizeInBits(InVT);
1428    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1429    APInt InMask    = Mask;
1430    InMask.trunc(InBits);
1431    KnownZero.trunc(InBits);
1432    KnownOne.trunc(InBits);
1433    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1434    KnownZero.zext(BitWidth);
1435    KnownOne.zext(BitWidth);
1436    KnownZero |= NewBits;
1437    return;
1438  }
1439  case ISD::SIGN_EXTEND: {
1440    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1441    unsigned InBits = MVT::getSizeInBits(InVT);
1442    APInt InSignBit = APInt::getSignBit(InBits);
1443    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1444    APInt InMask = Mask;
1445    InMask.trunc(InBits);
1446
1447    // If any of the sign extended bits are demanded, we know that the sign
1448    // bit is demanded. Temporarily set this bit in the mask for our callee.
1449    if (NewBits.getBoolValue())
1450      InMask |= InSignBit;
1451
1452    KnownZero.trunc(InBits);
1453    KnownOne.trunc(InBits);
1454    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1455
1456    // Note if the sign bit is known to be zero or one.
1457    bool SignBitKnownZero = KnownZero.isNegative();
1458    bool SignBitKnownOne  = KnownOne.isNegative();
1459    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1460           "Sign bit can't be known to be both zero and one!");
1461
1462    // If the sign bit wasn't actually demanded by our caller, we don't
1463    // want it set in the KnownZero and KnownOne result values. Reset the
1464    // mask and reapply it to the result values.
1465    InMask = Mask;
1466    InMask.trunc(InBits);
1467    KnownZero &= InMask;
1468    KnownOne  &= InMask;
1469
1470    KnownZero.zext(BitWidth);
1471    KnownOne.zext(BitWidth);
1472
1473    // If the sign bit is known zero or one, the top bits match.
1474    if (SignBitKnownZero)
1475      KnownZero |= NewBits;
1476    else if (SignBitKnownOne)
1477      KnownOne  |= NewBits;
1478    return;
1479  }
1480  case ISD::ANY_EXTEND: {
1481    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1482    unsigned InBits = MVT::getSizeInBits(InVT);
1483    APInt InMask = Mask;
1484    InMask.trunc(InBits);
1485    KnownZero.trunc(InBits);
1486    KnownOne.trunc(InBits);
1487    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1488    KnownZero.zext(BitWidth);
1489    KnownOne.zext(BitWidth);
1490    return;
1491  }
1492  case ISD::TRUNCATE: {
1493    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1494    unsigned InBits = MVT::getSizeInBits(InVT);
1495    APInt InMask = Mask;
1496    InMask.zext(InBits);
1497    KnownZero.zext(InBits);
1498    KnownOne.zext(InBits);
1499    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1500    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1501    KnownZero.trunc(BitWidth);
1502    KnownOne.trunc(BitWidth);
1503    break;
1504  }
1505  case ISD::AssertZext: {
1506    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1507    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1508    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1509                      KnownOne, Depth+1);
1510    KnownZero |= (~InMask) & Mask;
1511    return;
1512  }
1513  case ISD::FGETSIGN:
1514    // All bits are zero except the low bit.
1515    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1516    return;
1517
1518  case ISD::SUB: {
1519    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1520      // We know that the top bits of C-X are clear if X contains less bits
1521      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1522      // positive if we can prove that X is >= 0 and < 16.
1523      if (CLHS->getAPIntValue().isNonNegative()) {
1524        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1525        // NLZ can't be BitWidth with no sign bit
1526        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1527        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1528                          Depth+1);
1529
1530        // If all of the MaskV bits are known to be zero, then we know the
1531        // output top bits are zero, because we now know that the output is
1532        // from [0-C].
1533        if ((KnownZero2 & MaskV) == MaskV) {
1534          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1535          // Top bits known zero.
1536          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1537        }
1538      }
1539    }
1540  }
1541  // fall through
1542  case ISD::ADD: {
1543    // Output known-0 bits are known if clear or set in both the low clear bits
1544    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1545    // low 3 bits clear.
1546    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1547    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1548    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1549    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1550
1551    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1552    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1553    KnownZeroOut = std::min(KnownZeroOut,
1554                            KnownZero2.countTrailingOnes());
1555
1556    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1557    return;
1558  }
1559  case ISD::SREM:
1560    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1561      APInt RA = Rem->getAPIntValue();
1562      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1563        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1564        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1565        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1566
1567        // The sign of a remainder is equal to the sign of the first
1568        // operand (zero being positive).
1569        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1570          KnownZero2 |= ~LowBits;
1571        else if (KnownOne2[BitWidth-1])
1572          KnownOne2 |= ~LowBits;
1573
1574        KnownZero |= KnownZero2 & Mask;
1575        KnownOne |= KnownOne2 & Mask;
1576
1577        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1578      }
1579    }
1580    return;
1581  case ISD::UREM: {
1582    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1583      APInt RA = Rem->getAPIntValue();
1584      if (RA.isPowerOf2()) {
1585        APInt LowBits = (RA - 1);
1586        APInt Mask2 = LowBits & Mask;
1587        KnownZero |= ~LowBits & Mask;
1588        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1589        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1590        break;
1591      }
1592    }
1593
1594    // Since the result is less than or equal to either operand, any leading
1595    // zero bits in either operand must also exist in the result.
1596    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1597    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1598                      Depth+1);
1599    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1600                      Depth+1);
1601
1602    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1603                                KnownZero2.countLeadingOnes());
1604    KnownOne.clear();
1605    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1606    return;
1607  }
1608  default:
1609    // Allow the target to implement this method for its nodes.
1610    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1611  case ISD::INTRINSIC_WO_CHAIN:
1612  case ISD::INTRINSIC_W_CHAIN:
1613  case ISD::INTRINSIC_VOID:
1614      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1615    }
1616    return;
1617  }
1618}
1619
1620/// ComputeNumSignBits - Return the number of times the sign bit of the
1621/// register is replicated into the other bits.  We know that at least 1 bit
1622/// is always equal to the sign bit (itself), but other cases can give us
1623/// information.  For example, immediately after an "SRA X, 2", we know that
1624/// the top 3 bits are all equal to each other, so we return 3.
1625unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1626  MVT::ValueType VT = Op.getValueType();
1627  assert(MVT::isInteger(VT) && "Invalid VT!");
1628  unsigned VTBits = MVT::getSizeInBits(VT);
1629  unsigned Tmp, Tmp2;
1630
1631  if (Depth == 6)
1632    return 1;  // Limit search depth.
1633
1634  switch (Op.getOpcode()) {
1635  default: break;
1636  case ISD::AssertSext:
1637    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1638    return VTBits-Tmp+1;
1639  case ISD::AssertZext:
1640    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1641    return VTBits-Tmp;
1642
1643  case ISD::Constant: {
1644    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1645    // If negative, return # leading ones.
1646    if (Val.isNegative())
1647      return Val.countLeadingOnes();
1648
1649    // Return # leading zeros.
1650    return Val.countLeadingZeros();
1651  }
1652
1653  case ISD::SIGN_EXTEND:
1654    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1655    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1656
1657  case ISD::SIGN_EXTEND_INREG:
1658    // Max of the input and what this extends.
1659    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1660    Tmp = VTBits-Tmp+1;
1661
1662    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1663    return std::max(Tmp, Tmp2);
1664
1665  case ISD::SRA:
1666    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1667    // SRA X, C   -> adds C sign bits.
1668    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1669      Tmp += C->getValue();
1670      if (Tmp > VTBits) Tmp = VTBits;
1671    }
1672    return Tmp;
1673  case ISD::SHL:
1674    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1675      // shl destroys sign bits.
1676      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1677      if (C->getValue() >= VTBits ||      // Bad shift.
1678          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1679      return Tmp - C->getValue();
1680    }
1681    break;
1682  case ISD::AND:
1683  case ISD::OR:
1684  case ISD::XOR:    // NOT is handled here.
1685    // Logical binary ops preserve the number of sign bits.
1686    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1687    if (Tmp == 1) return 1;  // Early out.
1688    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1689    return std::min(Tmp, Tmp2);
1690
1691  case ISD::SELECT:
1692    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1693    if (Tmp == 1) return 1;  // Early out.
1694    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1695    return std::min(Tmp, Tmp2);
1696
1697  case ISD::SETCC:
1698    // If setcc returns 0/-1, all bits are sign bits.
1699    if (TLI.getSetCCResultContents() ==
1700        TargetLowering::ZeroOrNegativeOneSetCCResult)
1701      return VTBits;
1702    break;
1703  case ISD::ROTL:
1704  case ISD::ROTR:
1705    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1706      unsigned RotAmt = C->getValue() & (VTBits-1);
1707
1708      // Handle rotate right by N like a rotate left by 32-N.
1709      if (Op.getOpcode() == ISD::ROTR)
1710        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1711
1712      // If we aren't rotating out all of the known-in sign bits, return the
1713      // number that are left.  This handles rotl(sext(x), 1) for example.
1714      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1715      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1716    }
1717    break;
1718  case ISD::ADD:
1719    // Add can have at most one carry bit.  Thus we know that the output
1720    // is, at worst, one more bit than the inputs.
1721    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1722    if (Tmp == 1) return 1;  // Early out.
1723
1724    // Special case decrementing a value (ADD X, -1):
1725    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1726      if (CRHS->isAllOnesValue()) {
1727        APInt KnownZero, KnownOne;
1728        APInt Mask = APInt::getAllOnesValue(VTBits);
1729        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1730
1731        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1732        // sign bits set.
1733        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1734          return VTBits;
1735
1736        // If we are subtracting one from a positive number, there is no carry
1737        // out of the result.
1738        if (KnownZero.isNegative())
1739          return Tmp;
1740      }
1741
1742    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1743    if (Tmp2 == 1) return 1;
1744      return std::min(Tmp, Tmp2)-1;
1745    break;
1746
1747  case ISD::SUB:
1748    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1749    if (Tmp2 == 1) return 1;
1750
1751    // Handle NEG.
1752    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1753      if (CLHS->isNullValue()) {
1754        APInt KnownZero, KnownOne;
1755        APInt Mask = APInt::getAllOnesValue(VTBits);
1756        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1757        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1758        // sign bits set.
1759        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1760          return VTBits;
1761
1762        // If the input is known to be positive (the sign bit is known clear),
1763        // the output of the NEG has the same number of sign bits as the input.
1764        if (KnownZero.isNegative())
1765          return Tmp2;
1766
1767        // Otherwise, we treat this like a SUB.
1768      }
1769
1770    // Sub can have at most one carry bit.  Thus we know that the output
1771    // is, at worst, one more bit than the inputs.
1772    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1773    if (Tmp == 1) return 1;  // Early out.
1774      return std::min(Tmp, Tmp2)-1;
1775    break;
1776  case ISD::TRUNCATE:
1777    // FIXME: it's tricky to do anything useful for this, but it is an important
1778    // case for targets like X86.
1779    break;
1780  }
1781
1782  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1783  if (Op.getOpcode() == ISD::LOAD) {
1784    LoadSDNode *LD = cast<LoadSDNode>(Op);
1785    unsigned ExtType = LD->getExtensionType();
1786    switch (ExtType) {
1787    default: break;
1788    case ISD::SEXTLOAD:    // '17' bits known
1789      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1790      return VTBits-Tmp+1;
1791    case ISD::ZEXTLOAD:    // '16' bits known
1792      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1793      return VTBits-Tmp;
1794    }
1795  }
1796
1797  // Allow the target to implement this method for its nodes.
1798  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1799      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1800      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1801      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1802    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1803    if (NumBits > 1) return NumBits;
1804  }
1805
1806  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1807  // use this information.
1808  APInt KnownZero, KnownOne;
1809  APInt Mask = APInt::getAllOnesValue(VTBits);
1810  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1811
1812  if (KnownZero.isNegative()) {        // sign bit is 0
1813    Mask = KnownZero;
1814  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1815    Mask = KnownOne;
1816  } else {
1817    // Nothing known.
1818    return 1;
1819  }
1820
1821  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1822  // the number of identical bits in the top of the input value.
1823  Mask = ~Mask;
1824  Mask <<= Mask.getBitWidth()-VTBits;
1825  // Return # leading zeros.  We use 'min' here in case Val was zero before
1826  // shifting.  We don't want to return '64' as for an i32 "0".
1827  return std::min(VTBits, Mask.countLeadingZeros());
1828}
1829
1830
1831bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1832  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1833  if (!GA) return false;
1834  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1835  if (!GV) return false;
1836  MachineModuleInfo *MMI = getMachineModuleInfo();
1837  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1838}
1839
1840
1841/// getNode - Gets or creates the specified node.
1842///
1843SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1844  FoldingSetNodeID ID;
1845  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1846  void *IP = 0;
1847  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1848    return SDOperand(E, 0);
1849  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1850  CSEMap.InsertNode(N, IP);
1851
1852  AllNodes.push_back(N);
1853  return SDOperand(N, 0);
1854}
1855
1856SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1857                                SDOperand Operand) {
1858  // Constant fold unary operations with an integer constant operand.
1859  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1860    const APInt &Val = C->getAPIntValue();
1861    unsigned BitWidth = MVT::getSizeInBits(VT);
1862    switch (Opcode) {
1863    default: break;
1864    case ISD::SIGN_EXTEND:
1865      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1866    case ISD::ANY_EXTEND:
1867    case ISD::ZERO_EXTEND:
1868    case ISD::TRUNCATE:
1869      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1870    case ISD::UINT_TO_FP:
1871    case ISD::SINT_TO_FP: {
1872      const uint64_t zero[] = {0, 0};
1873      // No compile time operations on this type.
1874      if (VT==MVT::ppcf128)
1875        break;
1876      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1877      (void)apf.convertFromAPInt(Val,
1878                                 Opcode==ISD::SINT_TO_FP,
1879                                 APFloat::rmNearestTiesToEven);
1880      return getConstantFP(apf, VT);
1881    }
1882    case ISD::BIT_CONVERT:
1883      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1884        return getConstantFP(Val.bitsToFloat(), VT);
1885      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1886        return getConstantFP(Val.bitsToDouble(), VT);
1887      break;
1888    case ISD::BSWAP:
1889      return getConstant(Val.byteSwap(), VT);
1890    case ISD::CTPOP:
1891      return getConstant(Val.countPopulation(), VT);
1892    case ISD::CTLZ:
1893      return getConstant(Val.countLeadingZeros(), VT);
1894    case ISD::CTTZ:
1895      return getConstant(Val.countTrailingZeros(), VT);
1896    }
1897  }
1898
1899  // Constant fold unary operations with a floating point constant operand.
1900  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1901    APFloat V = C->getValueAPF();    // make copy
1902    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1903      switch (Opcode) {
1904      case ISD::FNEG:
1905        V.changeSign();
1906        return getConstantFP(V, VT);
1907      case ISD::FABS:
1908        V.clearSign();
1909        return getConstantFP(V, VT);
1910      case ISD::FP_ROUND:
1911      case ISD::FP_EXTEND:
1912        // This can return overflow, underflow, or inexact; we don't care.
1913        // FIXME need to be more flexible about rounding mode.
1914        (void)V.convert(*MVTToAPFloatSemantics(VT),
1915                        APFloat::rmNearestTiesToEven);
1916        return getConstantFP(V, VT);
1917      case ISD::FP_TO_SINT:
1918      case ISD::FP_TO_UINT: {
1919        integerPart x;
1920        assert(integerPartWidth >= 64);
1921        // FIXME need to be more flexible about rounding mode.
1922        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1923                              Opcode==ISD::FP_TO_SINT,
1924                              APFloat::rmTowardZero);
1925        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1926          break;
1927        return getConstant(x, VT);
1928      }
1929      case ISD::BIT_CONVERT:
1930        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1931          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1932        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1933          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1934        break;
1935      }
1936    }
1937  }
1938
1939  unsigned OpOpcode = Operand.Val->getOpcode();
1940  switch (Opcode) {
1941  case ISD::TokenFactor:
1942  case ISD::MERGE_VALUES:
1943    return Operand;         // Factor or merge of one node?  No need.
1944  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1945  case ISD::FP_EXTEND:
1946    assert(MVT::isFloatingPoint(VT) &&
1947           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1948    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1949    if (Operand.getOpcode() == ISD::UNDEF)
1950      return getNode(ISD::UNDEF, VT);
1951    break;
1952  case ISD::SIGN_EXTEND:
1953    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1954           "Invalid SIGN_EXTEND!");
1955    if (Operand.getValueType() == VT) return Operand;   // noop extension
1956    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1957           && "Invalid sext node, dst < src!");
1958    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1959      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1960    break;
1961  case ISD::ZERO_EXTEND:
1962    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1963           "Invalid ZERO_EXTEND!");
1964    if (Operand.getValueType() == VT) return Operand;   // noop extension
1965    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1966           && "Invalid zext node, dst < src!");
1967    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1968      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1969    break;
1970  case ISD::ANY_EXTEND:
1971    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1972           "Invalid ANY_EXTEND!");
1973    if (Operand.getValueType() == VT) return Operand;   // noop extension
1974    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1975           && "Invalid anyext node, dst < src!");
1976    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1977      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1978      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1979    break;
1980  case ISD::TRUNCATE:
1981    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1982           "Invalid TRUNCATE!");
1983    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1984    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1985           && "Invalid truncate node, src < dst!");
1986    if (OpOpcode == ISD::TRUNCATE)
1987      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1988    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1989             OpOpcode == ISD::ANY_EXTEND) {
1990      // If the source is smaller than the dest, we still need an extend.
1991      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1992          < MVT::getSizeInBits(VT))
1993        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1994      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1995               > MVT::getSizeInBits(VT))
1996        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1997      else
1998        return Operand.Val->getOperand(0);
1999    }
2000    break;
2001  case ISD::BIT_CONVERT:
2002    // Basic sanity checking.
2003    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
2004           && "Cannot BIT_CONVERT between types of different sizes!");
2005    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2006    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2007      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2008    if (OpOpcode == ISD::UNDEF)
2009      return getNode(ISD::UNDEF, VT);
2010    break;
2011  case ISD::SCALAR_TO_VECTOR:
2012    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
2013           MVT::getVectorElementType(VT) == Operand.getValueType() &&
2014           "Illegal SCALAR_TO_VECTOR node!");
2015    if (OpOpcode == ISD::UNDEF)
2016      return getNode(ISD::UNDEF, VT);
2017    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2018    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2019        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2020        Operand.getConstantOperandVal(1) == 0 &&
2021        Operand.getOperand(0).getValueType() == VT)
2022      return Operand.getOperand(0);
2023    break;
2024  case ISD::FNEG:
2025    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2026      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2027                     Operand.Val->getOperand(0));
2028    if (OpOpcode == ISD::FNEG)  // --X -> X
2029      return Operand.Val->getOperand(0);
2030    break;
2031  case ISD::FABS:
2032    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2033      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2034    break;
2035  }
2036
2037  SDNode *N;
2038  SDVTList VTs = getVTList(VT);
2039  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2040    FoldingSetNodeID ID;
2041    SDOperand Ops[1] = { Operand };
2042    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2043    void *IP = 0;
2044    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2045      return SDOperand(E, 0);
2046    N = new UnarySDNode(Opcode, VTs, Operand);
2047    CSEMap.InsertNode(N, IP);
2048  } else {
2049    N = new UnarySDNode(Opcode, VTs, Operand);
2050  }
2051  AllNodes.push_back(N);
2052  return SDOperand(N, 0);
2053}
2054
2055
2056
2057SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2058                                SDOperand N1, SDOperand N2) {
2059  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2060  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2061  switch (Opcode) {
2062  default: break;
2063  case ISD::TokenFactor:
2064    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2065           N2.getValueType() == MVT::Other && "Invalid token factor!");
2066    // Fold trivial token factors.
2067    if (N1.getOpcode() == ISD::EntryToken) return N2;
2068    if (N2.getOpcode() == ISD::EntryToken) return N1;
2069    break;
2070  case ISD::AND:
2071    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2072           N1.getValueType() == VT && "Binary operator types must match!");
2073    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2074    // worth handling here.
2075    if (N2C && N2C->isNullValue())
2076      return N2;
2077    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2078      return N1;
2079    break;
2080  case ISD::OR:
2081  case ISD::XOR:
2082    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2083           N1.getValueType() == VT && "Binary operator types must match!");
2084    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2085    // worth handling here.
2086    if (N2C && N2C->isNullValue())
2087      return N1;
2088    break;
2089  case ISD::UDIV:
2090  case ISD::UREM:
2091  case ISD::MULHU:
2092  case ISD::MULHS:
2093    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2094    // fall through
2095  case ISD::ADD:
2096  case ISD::SUB:
2097  case ISD::MUL:
2098  case ISD::SDIV:
2099  case ISD::SREM:
2100  case ISD::FADD:
2101  case ISD::FSUB:
2102  case ISD::FMUL:
2103  case ISD::FDIV:
2104  case ISD::FREM:
2105    assert(N1.getValueType() == N2.getValueType() &&
2106           N1.getValueType() == VT && "Binary operator types must match!");
2107    break;
2108  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2109    assert(N1.getValueType() == VT &&
2110           MVT::isFloatingPoint(N1.getValueType()) &&
2111           MVT::isFloatingPoint(N2.getValueType()) &&
2112           "Invalid FCOPYSIGN!");
2113    break;
2114  case ISD::SHL:
2115  case ISD::SRA:
2116  case ISD::SRL:
2117  case ISD::ROTL:
2118  case ISD::ROTR:
2119    assert(VT == N1.getValueType() &&
2120           "Shift operators return type must be the same as their first arg");
2121    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2122           VT != MVT::i1 && "Shifts only work on integers");
2123    break;
2124  case ISD::FP_ROUND_INREG: {
2125    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2126    assert(VT == N1.getValueType() && "Not an inreg round!");
2127    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2128           "Cannot FP_ROUND_INREG integer types");
2129    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2130           "Not rounding down!");
2131    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2132    break;
2133  }
2134  case ISD::FP_ROUND:
2135    assert(MVT::isFloatingPoint(VT) &&
2136           MVT::isFloatingPoint(N1.getValueType()) &&
2137           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2138           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2139    if (N1.getValueType() == VT) return N1;  // noop conversion.
2140    break;
2141  case ISD::AssertSext:
2142  case ISD::AssertZext: {
2143    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2144    assert(VT == N1.getValueType() && "Not an inreg extend!");
2145    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2146           "Cannot *_EXTEND_INREG FP types");
2147    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2148           "Not extending!");
2149    if (VT == EVT) return N1; // noop assertion.
2150    break;
2151  }
2152  case ISD::SIGN_EXTEND_INREG: {
2153    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2154    assert(VT == N1.getValueType() && "Not an inreg extend!");
2155    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2156           "Cannot *_EXTEND_INREG FP types");
2157    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2158           "Not extending!");
2159    if (EVT == VT) return N1;  // Not actually extending
2160
2161    if (N1C) {
2162      APInt Val = N1C->getAPIntValue();
2163      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2164      Val <<= Val.getBitWidth()-FromBits;
2165      Val = Val.ashr(Val.getBitWidth()-FromBits);
2166      return getConstant(Val, VT);
2167    }
2168    break;
2169  }
2170  case ISD::EXTRACT_VECTOR_ELT:
2171    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2172
2173    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2174    if (N1.getOpcode() == ISD::UNDEF)
2175      return getNode(ISD::UNDEF, VT);
2176
2177    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2178    // expanding copies of large vectors from registers.
2179    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2180        N1.getNumOperands() > 0) {
2181      unsigned Factor =
2182        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2183      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2184                     N1.getOperand(N2C->getValue() / Factor),
2185                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2186    }
2187
2188    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2189    // expanding large vector constants.
2190    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2191      return N1.getOperand(N2C->getValue());
2192
2193    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2194    // operations are lowered to scalars.
2195    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2196      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2197        if (IEC == N2C)
2198          return N1.getOperand(1);
2199        else
2200          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2201      }
2202    break;
2203  case ISD::EXTRACT_ELEMENT:
2204    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2205    assert(!MVT::isVector(N1.getValueType()) &&
2206           MVT::isInteger(N1.getValueType()) &&
2207           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2208           "EXTRACT_ELEMENT only applies to integers!");
2209
2210    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2211    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2212    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2213    if (N1.getOpcode() == ISD::BUILD_PAIR)
2214      return N1.getOperand(N2C->getValue());
2215
2216    // EXTRACT_ELEMENT of a constant int is also very common.
2217    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2218      unsigned ElementSize = MVT::getSizeInBits(VT);
2219      unsigned Shift = ElementSize * N2C->getValue();
2220      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2221      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2222    }
2223    break;
2224  case ISD::EXTRACT_SUBVECTOR:
2225    if (N1.getValueType() == VT) // Trivial extraction.
2226      return N1;
2227    break;
2228  }
2229
2230  if (N1C) {
2231    if (N2C) {
2232      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2233      switch (Opcode) {
2234      case ISD::ADD: return getConstant(C1 + C2, VT);
2235      case ISD::SUB: return getConstant(C1 - C2, VT);
2236      case ISD::MUL: return getConstant(C1 * C2, VT);
2237      case ISD::UDIV:
2238        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2239        break;
2240      case ISD::UREM :
2241        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2242        break;
2243      case ISD::SDIV :
2244        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2245        break;
2246      case ISD::SREM :
2247        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2248        break;
2249      case ISD::AND  : return getConstant(C1 & C2, VT);
2250      case ISD::OR   : return getConstant(C1 | C2, VT);
2251      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2252      case ISD::SHL  : return getConstant(C1 << C2, VT);
2253      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2254      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2255      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2256      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2257      default: break;
2258      }
2259    } else {      // Cannonicalize constant to RHS if commutative
2260      if (isCommutativeBinOp(Opcode)) {
2261        std::swap(N1C, N2C);
2262        std::swap(N1, N2);
2263      }
2264    }
2265  }
2266
2267  // Constant fold FP operations.
2268  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2269  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2270  if (N1CFP) {
2271    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2272      // Cannonicalize constant to RHS if commutative
2273      std::swap(N1CFP, N2CFP);
2274      std::swap(N1, N2);
2275    } else if (N2CFP && VT != MVT::ppcf128) {
2276      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2277      APFloat::opStatus s;
2278      switch (Opcode) {
2279      case ISD::FADD:
2280        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2281        if (s != APFloat::opInvalidOp)
2282          return getConstantFP(V1, VT);
2283        break;
2284      case ISD::FSUB:
2285        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2286        if (s!=APFloat::opInvalidOp)
2287          return getConstantFP(V1, VT);
2288        break;
2289      case ISD::FMUL:
2290        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2291        if (s!=APFloat::opInvalidOp)
2292          return getConstantFP(V1, VT);
2293        break;
2294      case ISD::FDIV:
2295        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2296        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2297          return getConstantFP(V1, VT);
2298        break;
2299      case ISD::FREM :
2300        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2301        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2302          return getConstantFP(V1, VT);
2303        break;
2304      case ISD::FCOPYSIGN:
2305        V1.copySign(V2);
2306        return getConstantFP(V1, VT);
2307      default: break;
2308      }
2309    }
2310  }
2311
2312  // Canonicalize an UNDEF to the RHS, even over a constant.
2313  if (N1.getOpcode() == ISD::UNDEF) {
2314    if (isCommutativeBinOp(Opcode)) {
2315      std::swap(N1, N2);
2316    } else {
2317      switch (Opcode) {
2318      case ISD::FP_ROUND_INREG:
2319      case ISD::SIGN_EXTEND_INREG:
2320      case ISD::SUB:
2321      case ISD::FSUB:
2322      case ISD::FDIV:
2323      case ISD::FREM:
2324      case ISD::SRA:
2325        return N1;     // fold op(undef, arg2) -> undef
2326      case ISD::UDIV:
2327      case ISD::SDIV:
2328      case ISD::UREM:
2329      case ISD::SREM:
2330      case ISD::SRL:
2331      case ISD::SHL:
2332        if (!MVT::isVector(VT))
2333          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2334        // For vectors, we can't easily build an all zero vector, just return
2335        // the LHS.
2336        return N2;
2337      }
2338    }
2339  }
2340
2341  // Fold a bunch of operators when the RHS is undef.
2342  if (N2.getOpcode() == ISD::UNDEF) {
2343    switch (Opcode) {
2344    case ISD::XOR:
2345      if (N1.getOpcode() == ISD::UNDEF)
2346        // Handle undef ^ undef -> 0 special case. This is a common
2347        // idiom (misuse).
2348        return getConstant(0, VT);
2349      // fallthrough
2350    case ISD::ADD:
2351    case ISD::ADDC:
2352    case ISD::ADDE:
2353    case ISD::SUB:
2354    case ISD::FADD:
2355    case ISD::FSUB:
2356    case ISD::FMUL:
2357    case ISD::FDIV:
2358    case ISD::FREM:
2359    case ISD::UDIV:
2360    case ISD::SDIV:
2361    case ISD::UREM:
2362    case ISD::SREM:
2363      return N2;       // fold op(arg1, undef) -> undef
2364    case ISD::MUL:
2365    case ISD::AND:
2366    case ISD::SRL:
2367    case ISD::SHL:
2368      if (!MVT::isVector(VT))
2369        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2370      // For vectors, we can't easily build an all zero vector, just return
2371      // the LHS.
2372      return N1;
2373    case ISD::OR:
2374      if (!MVT::isVector(VT))
2375        return getConstant(MVT::getIntVTBitMask(VT), VT);
2376      // For vectors, we can't easily build an all one vector, just return
2377      // the LHS.
2378      return N1;
2379    case ISD::SRA:
2380      return N1;
2381    }
2382  }
2383
2384  // Memoize this node if possible.
2385  SDNode *N;
2386  SDVTList VTs = getVTList(VT);
2387  if (VT != MVT::Flag) {
2388    SDOperand Ops[] = { N1, N2 };
2389    FoldingSetNodeID ID;
2390    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2391    void *IP = 0;
2392    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2393      return SDOperand(E, 0);
2394    N = new BinarySDNode(Opcode, VTs, N1, N2);
2395    CSEMap.InsertNode(N, IP);
2396  } else {
2397    N = new BinarySDNode(Opcode, VTs, N1, N2);
2398  }
2399
2400  AllNodes.push_back(N);
2401  return SDOperand(N, 0);
2402}
2403
2404SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2405                                SDOperand N1, SDOperand N2, SDOperand N3) {
2406  // Perform various simplifications.
2407  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2408  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2409  switch (Opcode) {
2410  case ISD::SETCC: {
2411    // Use FoldSetCC to simplify SETCC's.
2412    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2413    if (Simp.Val) return Simp;
2414    break;
2415  }
2416  case ISD::SELECT:
2417    if (N1C) {
2418     if (N1C->getValue())
2419        return N2;             // select true, X, Y -> X
2420      else
2421        return N3;             // select false, X, Y -> Y
2422    }
2423
2424    if (N2 == N3) return N2;   // select C, X, X -> X
2425    break;
2426  case ISD::BRCOND:
2427    if (N2C) {
2428      if (N2C->getValue()) // Unconditional branch
2429        return getNode(ISD::BR, MVT::Other, N1, N3);
2430      else
2431        return N1;         // Never-taken branch
2432    }
2433    break;
2434  case ISD::VECTOR_SHUFFLE:
2435    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2436           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2437           N3.getOpcode() == ISD::BUILD_VECTOR &&
2438           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2439           "Illegal VECTOR_SHUFFLE node!");
2440    break;
2441  case ISD::BIT_CONVERT:
2442    // Fold bit_convert nodes from a type to themselves.
2443    if (N1.getValueType() == VT)
2444      return N1;
2445    break;
2446  }
2447
2448  // Memoize node if it doesn't produce a flag.
2449  SDNode *N;
2450  SDVTList VTs = getVTList(VT);
2451  if (VT != MVT::Flag) {
2452    SDOperand Ops[] = { N1, N2, N3 };
2453    FoldingSetNodeID ID;
2454    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2455    void *IP = 0;
2456    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2457      return SDOperand(E, 0);
2458    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2459    CSEMap.InsertNode(N, IP);
2460  } else {
2461    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2462  }
2463  AllNodes.push_back(N);
2464  return SDOperand(N, 0);
2465}
2466
2467SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2468                                SDOperand N1, SDOperand N2, SDOperand N3,
2469                                SDOperand N4) {
2470  SDOperand Ops[] = { N1, N2, N3, N4 };
2471  return getNode(Opcode, VT, Ops, 4);
2472}
2473
2474SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2475                                SDOperand N1, SDOperand N2, SDOperand N3,
2476                                SDOperand N4, SDOperand N5) {
2477  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2478  return getNode(Opcode, VT, Ops, 5);
2479}
2480
2481/// getMemsetValue - Vectorized representation of the memset value
2482/// operand.
2483static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2484                                SelectionDAG &DAG) {
2485  MVT::ValueType CurVT = VT;
2486  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2487    uint64_t Val   = C->getValue() & 255;
2488    unsigned Shift = 8;
2489    while (CurVT != MVT::i8) {
2490      Val = (Val << Shift) | Val;
2491      Shift <<= 1;
2492      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2493    }
2494    return DAG.getConstant(Val, VT);
2495  } else {
2496    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2497    unsigned Shift = 8;
2498    while (CurVT != MVT::i8) {
2499      Value =
2500        DAG.getNode(ISD::OR, VT,
2501                    DAG.getNode(ISD::SHL, VT, Value,
2502                                DAG.getConstant(Shift, MVT::i8)), Value);
2503      Shift <<= 1;
2504      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2505    }
2506
2507    return Value;
2508  }
2509}
2510
2511/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2512/// used when a memcpy is turned into a memset when the source is a constant
2513/// string ptr.
2514static SDOperand getMemsetStringVal(MVT::ValueType VT,
2515                                    SelectionDAG &DAG,
2516                                    const TargetLowering &TLI,
2517                                    std::string &Str, unsigned Offset) {
2518  uint64_t Val = 0;
2519  unsigned MSB = MVT::getSizeInBits(VT) / 8;
2520  if (TLI.isLittleEndian())
2521    Offset = Offset + MSB - 1;
2522  for (unsigned i = 0; i != MSB; ++i) {
2523    Val = (Val << 8) | (unsigned char)Str[Offset];
2524    Offset += TLI.isLittleEndian() ? -1 : 1;
2525  }
2526  return DAG.getConstant(Val, VT);
2527}
2528
2529/// getMemBasePlusOffset - Returns base and offset node for the
2530static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2531                                      SelectionDAG &DAG) {
2532  MVT::ValueType VT = Base.getValueType();
2533  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2534}
2535
2536/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2537/// to replace the memset / memcpy is below the threshold. It also returns the
2538/// types of the sequence of memory ops to perform memset / memcpy.
2539static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2540                                     unsigned Limit, uint64_t Size,
2541                                     unsigned Align,
2542                                     const TargetLowering &TLI) {
2543  MVT::ValueType VT;
2544
2545  if (TLI.allowsUnalignedMemoryAccesses()) {
2546    VT = MVT::i64;
2547  } else {
2548    switch (Align & 7) {
2549    case 0:
2550      VT = MVT::i64;
2551      break;
2552    case 4:
2553      VT = MVT::i32;
2554      break;
2555    case 2:
2556      VT = MVT::i16;
2557      break;
2558    default:
2559      VT = MVT::i8;
2560      break;
2561    }
2562  }
2563
2564  MVT::ValueType LVT = MVT::i64;
2565  while (!TLI.isTypeLegal(LVT))
2566    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2567  assert(MVT::isInteger(LVT));
2568
2569  if (VT > LVT)
2570    VT = LVT;
2571
2572  unsigned NumMemOps = 0;
2573  while (Size != 0) {
2574    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2575    while (VTSize > Size) {
2576      VT = (MVT::ValueType)((unsigned)VT - 1);
2577      VTSize >>= 1;
2578    }
2579    assert(MVT::isInteger(VT));
2580
2581    if (++NumMemOps > Limit)
2582      return false;
2583    MemOps.push_back(VT);
2584    Size -= VTSize;
2585  }
2586
2587  return true;
2588}
2589
2590static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2591                                         SDOperand Chain, SDOperand Dst,
2592                                         SDOperand Src, uint64_t Size,
2593                                         unsigned Align,
2594                                         bool AlwaysInline,
2595                                         const Value *DstSV, uint64_t DstSVOff,
2596                                         const Value *SrcSV, uint64_t SrcSVOff){
2597  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2598
2599  // Expand memcpy to a series of store ops if the size operand falls below
2600  // a certain threshold.
2601  std::vector<MVT::ValueType> MemOps;
2602  uint64_t Limit = -1;
2603  if (!AlwaysInline)
2604    Limit = TLI.getMaxStoresPerMemcpy();
2605  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
2606    return SDOperand();
2607
2608  SmallVector<SDOperand, 8> OutChains;
2609
2610  unsigned NumMemOps = MemOps.size();
2611  unsigned SrcDelta = 0;
2612  GlobalAddressSDNode *G = NULL;
2613  std::string Str;
2614  bool CopyFromStr = false;
2615  uint64_t SrcOff = 0, DstOff = 0;
2616
2617  if (Src.getOpcode() == ISD::GlobalAddress)
2618    G = cast<GlobalAddressSDNode>(Src);
2619  else if (Src.getOpcode() == ISD::ADD &&
2620           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2621           Src.getOperand(1).getOpcode() == ISD::Constant) {
2622    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2623    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2624  }
2625  if (G) {
2626    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2627    if (GV && GV->isConstant()) {
2628      Str = GV->getStringValue(false);
2629      if (!Str.empty()) {
2630        CopyFromStr = true;
2631        SrcOff += SrcDelta;
2632      }
2633    }
2634  }
2635
2636  for (unsigned i = 0; i < NumMemOps; i++) {
2637    MVT::ValueType VT = MemOps[i];
2638    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2639    SDOperand Value, Store;
2640
2641    if (CopyFromStr) {
2642      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2643      Store =
2644        DAG.getStore(Chain, Value,
2645                     getMemBasePlusOffset(Dst, DstOff, DAG),
2646                     DstSV, DstSVOff + DstOff);
2647    } else {
2648      Value = DAG.getLoad(VT, Chain,
2649                          getMemBasePlusOffset(Src, SrcOff, DAG),
2650                          SrcSV, SrcSVOff + SrcOff, false, Align);
2651      Store =
2652        DAG.getStore(Chain, Value,
2653                     getMemBasePlusOffset(Dst, DstOff, DAG),
2654                     DstSV, DstSVOff + DstOff, false, Align);
2655    }
2656    OutChains.push_back(Store);
2657    SrcOff += VTSize;
2658    DstOff += VTSize;
2659  }
2660
2661  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2662                     &OutChains[0], OutChains.size());
2663}
2664
2665static SDOperand getMemsetStores(SelectionDAG &DAG,
2666                                 SDOperand Chain, SDOperand Dst,
2667                                 SDOperand Src, uint64_t Size,
2668                                 unsigned Align,
2669                                 const Value *DstSV, uint64_t DstSVOff) {
2670  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2671
2672  // Expand memset to a series of load/store ops if the size operand
2673  // falls below a certain threshold.
2674  std::vector<MVT::ValueType> MemOps;
2675  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2676                                Size, Align, TLI))
2677    return SDOperand();
2678
2679  SmallVector<SDOperand, 8> OutChains;
2680  uint64_t DstOff = 0;
2681
2682  unsigned NumMemOps = MemOps.size();
2683  for (unsigned i = 0; i < NumMemOps; i++) {
2684    MVT::ValueType VT = MemOps[i];
2685    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2686    SDOperand Value = getMemsetValue(Src, VT, DAG);
2687    SDOperand Store = DAG.getStore(Chain, Value,
2688                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2689                                   DstSV, DstSVOff + DstOff);
2690    OutChains.push_back(Store);
2691    DstOff += VTSize;
2692  }
2693
2694  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2695                     &OutChains[0], OutChains.size());
2696}
2697
2698SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2699                                  SDOperand Src, SDOperand Size,
2700                                  unsigned Align, bool AlwaysInline,
2701                                  const Value *DstSV, uint64_t DstSVOff,
2702                                  const Value *SrcSV, uint64_t SrcSVOff) {
2703
2704  // Check to see if we should lower the memcpy to loads and stores first.
2705  // For cases within the target-specified limits, this is the best choice.
2706  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2707  if (ConstantSize) {
2708    // Memcpy with size zero? Just return the original chain.
2709    if (ConstantSize->isNullValue())
2710      return Chain;
2711
2712    SDOperand Result =
2713      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2714                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2715    if (Result.Val)
2716      return Result;
2717  }
2718
2719  // Then check to see if we should lower the memcpy with target-specific
2720  // code. If the target chooses to do this, this is the next best.
2721  SDOperand Result =
2722    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2723                                AlwaysInline,
2724                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2725  if (Result.Val)
2726    return Result;
2727
2728  // If we really need inline code and the target declined to provide it,
2729  // use a (potentially long) sequence of loads and stores.
2730  if (AlwaysInline) {
2731    assert(ConstantSize && "AlwaysInline requires a constant size!");
2732    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2733                                   ConstantSize->getValue(), Align, true,
2734                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2735  }
2736
2737  // Emit a library call.
2738  TargetLowering::ArgListTy Args;
2739  TargetLowering::ArgListEntry Entry;
2740  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2741  Entry.Node = Dst; Args.push_back(Entry);
2742  Entry.Node = Src; Args.push_back(Entry);
2743  Entry.Node = Size; Args.push_back(Entry);
2744  std::pair<SDOperand,SDOperand> CallResult =
2745    TLI.LowerCallTo(Chain, Type::VoidTy,
2746                    false, false, false, CallingConv::C, false,
2747                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2748                    Args, *this);
2749  return CallResult.second;
2750}
2751
2752SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2753                                   SDOperand Src, SDOperand Size,
2754                                   unsigned Align,
2755                                   const Value *DstSV, uint64_t DstSVOff,
2756                                   const Value *SrcSV, uint64_t SrcSVOff) {
2757
2758  // TODO: Optimize small memmove cases with simple loads and stores,
2759  // ensuring that all loads precede all stores. This can cause severe
2760  // register pressure, so targets should be careful with the size limit.
2761
2762  // Then check to see if we should lower the memmove with target-specific
2763  // code. If the target chooses to do this, this is the next best.
2764  SDOperand Result =
2765    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2766                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2767  if (Result.Val)
2768    return Result;
2769
2770  // Emit a library call.
2771  TargetLowering::ArgListTy Args;
2772  TargetLowering::ArgListEntry Entry;
2773  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2774  Entry.Node = Dst; Args.push_back(Entry);
2775  Entry.Node = Src; Args.push_back(Entry);
2776  Entry.Node = Size; Args.push_back(Entry);
2777  std::pair<SDOperand,SDOperand> CallResult =
2778    TLI.LowerCallTo(Chain, Type::VoidTy,
2779                    false, false, false, CallingConv::C, false,
2780                    getExternalSymbol("memmove", TLI.getPointerTy()),
2781                    Args, *this);
2782  return CallResult.second;
2783}
2784
2785SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2786                                  SDOperand Src, SDOperand Size,
2787                                  unsigned Align,
2788                                  const Value *DstSV, uint64_t DstSVOff) {
2789
2790  // Check to see if we should lower the memset to stores first.
2791  // For cases within the target-specified limits, this is the best choice.
2792  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2793  if (ConstantSize) {
2794    // Memset with size zero? Just return the original chain.
2795    if (ConstantSize->isNullValue())
2796      return Chain;
2797
2798    SDOperand Result =
2799      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2800                      DstSV, DstSVOff);
2801    if (Result.Val)
2802      return Result;
2803  }
2804
2805  // Then check to see if we should lower the memset with target-specific
2806  // code. If the target chooses to do this, this is the next best.
2807  SDOperand Result =
2808    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2809                                DstSV, DstSVOff);
2810  if (Result.Val)
2811    return Result;
2812
2813  // Emit a library call.
2814  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2815  TargetLowering::ArgListTy Args;
2816  TargetLowering::ArgListEntry Entry;
2817  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2818  Args.push_back(Entry);
2819  // Extend or truncate the argument to be an i32 value for the call.
2820  if (Src.getValueType() > MVT::i32)
2821    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2822  else
2823    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2824  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2825  Args.push_back(Entry);
2826  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2827  Args.push_back(Entry);
2828  std::pair<SDOperand,SDOperand> CallResult =
2829    TLI.LowerCallTo(Chain, Type::VoidTy,
2830                    false, false, false, CallingConv::C, false,
2831                    getExternalSymbol("memset", TLI.getPointerTy()),
2832                    Args, *this);
2833  return CallResult.second;
2834}
2835
2836SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2837                                  SDOperand Ptr, SDOperand Cmp,
2838                                  SDOperand Swp, MVT::ValueType VT) {
2839  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2840  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2841  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2842  FoldingSetNodeID ID;
2843  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2844  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2845  ID.AddInteger((unsigned int)VT);
2846  void* IP = 0;
2847  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2848    return SDOperand(E, 0);
2849  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2850  CSEMap.InsertNode(N, IP);
2851  AllNodes.push_back(N);
2852  return SDOperand(N, 0);
2853}
2854
2855SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2856                                  SDOperand Ptr, SDOperand Val,
2857                                  MVT::ValueType VT) {
2858  assert((   Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_LSS
2859          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
2860          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
2861          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
2862          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
2863         && "Invalid Atomic Op");
2864  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2865  FoldingSetNodeID ID;
2866  SDOperand Ops[] = {Chain, Ptr, Val};
2867  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2868  ID.AddInteger((unsigned int)VT);
2869  void* IP = 0;
2870  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2871    return SDOperand(E, 0);
2872  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2873  CSEMap.InsertNode(N, IP);
2874  AllNodes.push_back(N);
2875  return SDOperand(N, 0);
2876}
2877
2878SDOperand
2879SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
2880                      MVT::ValueType VT, SDOperand Chain,
2881                      SDOperand Ptr, SDOperand Offset,
2882                      const Value *SV, int SVOffset, MVT::ValueType EVT,
2883                      bool isVolatile, unsigned Alignment) {
2884  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2885    const Type *Ty = 0;
2886    if (VT != MVT::iPTR) {
2887      Ty = MVT::getTypeForValueType(VT);
2888    } else if (SV) {
2889      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2890      assert(PT && "Value for load must be a pointer");
2891      Ty = PT->getElementType();
2892    }
2893    assert(Ty && "Could not get type information for load");
2894    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2895  }
2896
2897  if (VT == EVT) {
2898    ExtType = ISD::NON_EXTLOAD;
2899  } else if (ExtType == ISD::NON_EXTLOAD) {
2900    assert(VT == EVT && "Non-extending load from different memory type!");
2901  } else {
2902    // Extending load.
2903    if (MVT::isVector(VT))
2904      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2905    else
2906      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2907             "Should only be an extending load, not truncating!");
2908    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2909           "Cannot sign/zero extend a FP/Vector load!");
2910    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2911           "Cannot convert from FP to Int or Int -> FP!");
2912  }
2913
2914  bool Indexed = AM != ISD::UNINDEXED;
2915  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
2916         "Unindexed load with an offset!");
2917
2918  SDVTList VTs = Indexed ?
2919    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
2920  SDOperand Ops[] = { Chain, Ptr, Offset };
2921  FoldingSetNodeID ID;
2922  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2923  ID.AddInteger(AM);
2924  ID.AddInteger(ExtType);
2925  ID.AddInteger((unsigned int)EVT);
2926  ID.AddInteger(Alignment);
2927  ID.AddInteger(isVolatile);
2928  void *IP = 0;
2929  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2930    return SDOperand(E, 0);
2931  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
2932                             Alignment, isVolatile);
2933  CSEMap.InsertNode(N, IP);
2934  AllNodes.push_back(N);
2935  return SDOperand(N, 0);
2936}
2937
2938SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2939                                SDOperand Chain, SDOperand Ptr,
2940                                const Value *SV, int SVOffset,
2941                                bool isVolatile, unsigned Alignment) {
2942  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2943  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
2944                 SV, SVOffset, VT, isVolatile, Alignment);
2945}
2946
2947SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2948                                   SDOperand Chain, SDOperand Ptr,
2949                                   const Value *SV,
2950                                   int SVOffset, MVT::ValueType EVT,
2951                                   bool isVolatile, unsigned Alignment) {
2952  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2953  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
2954                 SV, SVOffset, EVT, isVolatile, Alignment);
2955}
2956
2957SDOperand
2958SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2959                             SDOperand Offset, ISD::MemIndexedMode AM) {
2960  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2961  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2962         "Load is already a indexed load!");
2963  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
2964                 LD->getChain(), Base, Offset, LD->getSrcValue(),
2965                 LD->getSrcValueOffset(), LD->getMemoryVT(),
2966                 LD->isVolatile(), LD->getAlignment());
2967}
2968
2969SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2970                                 SDOperand Ptr, const Value *SV, int SVOffset,
2971                                 bool isVolatile, unsigned Alignment) {
2972  MVT::ValueType VT = Val.getValueType();
2973
2974  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2975    const Type *Ty = 0;
2976    if (VT != MVT::iPTR) {
2977      Ty = MVT::getTypeForValueType(VT);
2978    } else if (SV) {
2979      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2980      assert(PT && "Value for store must be a pointer");
2981      Ty = PT->getElementType();
2982    }
2983    assert(Ty && "Could not get type information for store");
2984    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2985  }
2986  SDVTList VTs = getVTList(MVT::Other);
2987  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2988  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2989  FoldingSetNodeID ID;
2990  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2991  ID.AddInteger(ISD::UNINDEXED);
2992  ID.AddInteger(false);
2993  ID.AddInteger((unsigned int)VT);
2994  ID.AddInteger(Alignment);
2995  ID.AddInteger(isVolatile);
2996  void *IP = 0;
2997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2998    return SDOperand(E, 0);
2999  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3000                              VT, SV, SVOffset, Alignment, isVolatile);
3001  CSEMap.InsertNode(N, IP);
3002  AllNodes.push_back(N);
3003  return SDOperand(N, 0);
3004}
3005
3006SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3007                                      SDOperand Ptr, const Value *SV,
3008                                      int SVOffset, MVT::ValueType SVT,
3009                                      bool isVolatile, unsigned Alignment) {
3010  MVT::ValueType VT = Val.getValueType();
3011
3012  if (VT == SVT)
3013    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3014
3015  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
3016         "Not a truncation?");
3017  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
3018         "Can't do FP-INT conversion!");
3019
3020  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3021    const Type *Ty = 0;
3022    if (VT != MVT::iPTR) {
3023      Ty = MVT::getTypeForValueType(VT);
3024    } else if (SV) {
3025      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3026      assert(PT && "Value for store must be a pointer");
3027      Ty = PT->getElementType();
3028    }
3029    assert(Ty && "Could not get type information for store");
3030    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3031  }
3032  SDVTList VTs = getVTList(MVT::Other);
3033  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3034  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3035  FoldingSetNodeID ID;
3036  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3037  ID.AddInteger(ISD::UNINDEXED);
3038  ID.AddInteger(1);
3039  ID.AddInteger((unsigned int)SVT);
3040  ID.AddInteger(Alignment);
3041  ID.AddInteger(isVolatile);
3042  void *IP = 0;
3043  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3044    return SDOperand(E, 0);
3045  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3046                              SVT, SV, SVOffset, Alignment, isVolatile);
3047  CSEMap.InsertNode(N, IP);
3048  AllNodes.push_back(N);
3049  return SDOperand(N, 0);
3050}
3051
3052SDOperand
3053SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3054                              SDOperand Offset, ISD::MemIndexedMode AM) {
3055  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3056  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3057         "Store is already a indexed store!");
3058  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3059  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3060  FoldingSetNodeID ID;
3061  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3062  ID.AddInteger(AM);
3063  ID.AddInteger(ST->isTruncatingStore());
3064  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
3065  ID.AddInteger(ST->getAlignment());
3066  ID.AddInteger(ST->isVolatile());
3067  void *IP = 0;
3068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3069    return SDOperand(E, 0);
3070  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3071                              ST->isTruncatingStore(), ST->getMemoryVT(),
3072                              ST->getSrcValue(), ST->getSrcValueOffset(),
3073                              ST->getAlignment(), ST->isVolatile());
3074  CSEMap.InsertNode(N, IP);
3075  AllNodes.push_back(N);
3076  return SDOperand(N, 0);
3077}
3078
3079SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
3080                                 SDOperand Chain, SDOperand Ptr,
3081                                 SDOperand SV) {
3082  SDOperand Ops[] = { Chain, Ptr, SV };
3083  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3084}
3085
3086SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
3087                                SDOperandPtr Ops, unsigned NumOps) {
3088  switch (NumOps) {
3089  case 0: return getNode(Opcode, VT);
3090  case 1: return getNode(Opcode, VT, Ops[0]);
3091  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3092  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3093  default: break;
3094  }
3095
3096  switch (Opcode) {
3097  default: break;
3098  case ISD::SELECT_CC: {
3099    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3100    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3101           "LHS and RHS of condition must have same type!");
3102    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3103           "True and False arms of SelectCC must have same type!");
3104    assert(Ops[2].getValueType() == VT &&
3105           "select_cc node must be of same type as true and false value!");
3106    break;
3107  }
3108  case ISD::BR_CC: {
3109    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3110    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3111           "LHS/RHS of comparison should match types!");
3112    break;
3113  }
3114  }
3115
3116  // Memoize nodes.
3117  SDNode *N;
3118  SDVTList VTs = getVTList(VT);
3119  if (VT != MVT::Flag) {
3120    FoldingSetNodeID ID;
3121    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3122    void *IP = 0;
3123    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3124      return SDOperand(E, 0);
3125    N = new SDNode(Opcode, VTs, Ops, NumOps);
3126    CSEMap.InsertNode(N, IP);
3127  } else {
3128    N = new SDNode(Opcode, VTs, Ops, NumOps);
3129  }
3130  AllNodes.push_back(N);
3131  return SDOperand(N, 0);
3132}
3133
3134SDOperand SelectionDAG::getNode(unsigned Opcode,
3135                                std::vector<MVT::ValueType> &ResultTys,
3136                                SDOperandPtr Ops, unsigned NumOps) {
3137  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3138                 Ops, NumOps);
3139}
3140
3141SDOperand SelectionDAG::getNode(unsigned Opcode,
3142                                const MVT::ValueType *VTs, unsigned NumVTs,
3143                                SDOperandPtr Ops, unsigned NumOps) {
3144  if (NumVTs == 1)
3145    return getNode(Opcode, VTs[0], Ops, NumOps);
3146  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3147}
3148
3149SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3150                                SDOperandPtr Ops, unsigned NumOps) {
3151  if (VTList.NumVTs == 1)
3152    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3153
3154  switch (Opcode) {
3155  // FIXME: figure out how to safely handle things like
3156  // int foo(int x) { return 1 << (x & 255); }
3157  // int bar() { return foo(256); }
3158#if 0
3159  case ISD::SRA_PARTS:
3160  case ISD::SRL_PARTS:
3161  case ISD::SHL_PARTS:
3162    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3163        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3164      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3165    else if (N3.getOpcode() == ISD::AND)
3166      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3167        // If the and is only masking out bits that cannot effect the shift,
3168        // eliminate the and.
3169        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3170        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3171          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3172      }
3173    break;
3174#endif
3175  }
3176
3177  // Memoize the node unless it returns a flag.
3178  SDNode *N;
3179  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3180    FoldingSetNodeID ID;
3181    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3182    void *IP = 0;
3183    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3184      return SDOperand(E, 0);
3185    if (NumOps == 1)
3186      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3187    else if (NumOps == 2)
3188      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3189    else if (NumOps == 3)
3190      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3191    else
3192      N = new SDNode(Opcode, VTList, Ops, NumOps);
3193    CSEMap.InsertNode(N, IP);
3194  } else {
3195    if (NumOps == 1)
3196      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3197    else if (NumOps == 2)
3198      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3199    else if (NumOps == 3)
3200      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3201    else
3202      N = new SDNode(Opcode, VTList, Ops, NumOps);
3203  }
3204  AllNodes.push_back(N);
3205  return SDOperand(N, 0);
3206}
3207
3208SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3209  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3210}
3211
3212SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3213                                SDOperand N1) {
3214  SDOperand Ops[] = { N1 };
3215  return getNode(Opcode, VTList, Ops, 1);
3216}
3217
3218SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3219                                SDOperand N1, SDOperand N2) {
3220  SDOperand Ops[] = { N1, N2 };
3221  return getNode(Opcode, VTList, Ops, 2);
3222}
3223
3224SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3225                                SDOperand N1, SDOperand N2, SDOperand N3) {
3226  SDOperand Ops[] = { N1, N2, N3 };
3227  return getNode(Opcode, VTList, Ops, 3);
3228}
3229
3230SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3231                                SDOperand N1, SDOperand N2, SDOperand N3,
3232                                SDOperand N4) {
3233  SDOperand Ops[] = { N1, N2, N3, N4 };
3234  return getNode(Opcode, VTList, Ops, 4);
3235}
3236
3237SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3238                                SDOperand N1, SDOperand N2, SDOperand N3,
3239                                SDOperand N4, SDOperand N5) {
3240  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3241  return getNode(Opcode, VTList, Ops, 5);
3242}
3243
3244SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3245  return makeVTList(SDNode::getValueTypeList(VT), 1);
3246}
3247
3248SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3249  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3250       E = VTList.end(); I != E; ++I) {
3251    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3252      return makeVTList(&(*I)[0], 2);
3253  }
3254  std::vector<MVT::ValueType> V;
3255  V.push_back(VT1);
3256  V.push_back(VT2);
3257  VTList.push_front(V);
3258  return makeVTList(&(*VTList.begin())[0], 2);
3259}
3260SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3261                                 MVT::ValueType VT3) {
3262  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3263       E = VTList.end(); I != E; ++I) {
3264    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3265        (*I)[2] == VT3)
3266      return makeVTList(&(*I)[0], 3);
3267  }
3268  std::vector<MVT::ValueType> V;
3269  V.push_back(VT1);
3270  V.push_back(VT2);
3271  V.push_back(VT3);
3272  VTList.push_front(V);
3273  return makeVTList(&(*VTList.begin())[0], 3);
3274}
3275
3276SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3277  switch (NumVTs) {
3278    case 0: assert(0 && "Cannot have nodes without results!");
3279    case 1: return getVTList(VTs[0]);
3280    case 2: return getVTList(VTs[0], VTs[1]);
3281    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3282    default: break;
3283  }
3284
3285  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3286       E = VTList.end(); I != E; ++I) {
3287    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3288
3289    bool NoMatch = false;
3290    for (unsigned i = 2; i != NumVTs; ++i)
3291      if (VTs[i] != (*I)[i]) {
3292        NoMatch = true;
3293        break;
3294      }
3295    if (!NoMatch)
3296      return makeVTList(&*I->begin(), NumVTs);
3297  }
3298
3299  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3300  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3301}
3302
3303
3304/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3305/// specified operands.  If the resultant node already exists in the DAG,
3306/// this does not modify the specified node, instead it returns the node that
3307/// already exists.  If the resultant node does not exist in the DAG, the
3308/// input node is returned.  As a degenerate case, if you specify the same
3309/// input operands as the node already has, the input node is returned.
3310SDOperand SelectionDAG::
3311UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3312  SDNode *N = InN.Val;
3313  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3314
3315  // Check to see if there is no change.
3316  if (Op == N->getOperand(0)) return InN;
3317
3318  // See if the modified node already exists.
3319  void *InsertPos = 0;
3320  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3321    return SDOperand(Existing, InN.ResNo);
3322
3323  // Nope it doesn't.  Remove the node from it's current place in the maps.
3324  if (InsertPos)
3325    RemoveNodeFromCSEMaps(N);
3326
3327  // Now we update the operands.
3328  N->OperandList[0].getVal()->removeUser(0, N);
3329  N->OperandList[0] = Op;
3330  N->OperandList[0].setUser(N);
3331  Op.Val->addUser(0, N);
3332
3333  // If this gets put into a CSE map, add it.
3334  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3335  return InN;
3336}
3337
3338SDOperand SelectionDAG::
3339UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3340  SDNode *N = InN.Val;
3341  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3342
3343  // Check to see if there is no change.
3344  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3345    return InN;   // No operands changed, just return the input node.
3346
3347  // See if the modified node already exists.
3348  void *InsertPos = 0;
3349  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3350    return SDOperand(Existing, InN.ResNo);
3351
3352  // Nope it doesn't.  Remove the node from it's current place in the maps.
3353  if (InsertPos)
3354    RemoveNodeFromCSEMaps(N);
3355
3356  // Now we update the operands.
3357  if (N->OperandList[0] != Op1) {
3358    N->OperandList[0].getVal()->removeUser(0, N);
3359    N->OperandList[0] = Op1;
3360    N->OperandList[0].setUser(N);
3361    Op1.Val->addUser(0, N);
3362  }
3363  if (N->OperandList[1] != Op2) {
3364    N->OperandList[1].getVal()->removeUser(1, N);
3365    N->OperandList[1] = Op2;
3366    N->OperandList[1].setUser(N);
3367    Op2.Val->addUser(1, N);
3368  }
3369
3370  // If this gets put into a CSE map, add it.
3371  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3372  return InN;
3373}
3374
3375SDOperand SelectionDAG::
3376UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3377  SDOperand Ops[] = { Op1, Op2, Op3 };
3378  return UpdateNodeOperands(N, Ops, 3);
3379}
3380
3381SDOperand SelectionDAG::
3382UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3383                   SDOperand Op3, SDOperand Op4) {
3384  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3385  return UpdateNodeOperands(N, Ops, 4);
3386}
3387
3388SDOperand SelectionDAG::
3389UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3390                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3391  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3392  return UpdateNodeOperands(N, Ops, 5);
3393}
3394
3395SDOperand SelectionDAG::
3396UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3397  SDNode *N = InN.Val;
3398  assert(N->getNumOperands() == NumOps &&
3399         "Update with wrong number of operands");
3400
3401  // Check to see if there is no change.
3402  bool AnyChange = false;
3403  for (unsigned i = 0; i != NumOps; ++i) {
3404    if (Ops[i] != N->getOperand(i)) {
3405      AnyChange = true;
3406      break;
3407    }
3408  }
3409
3410  // No operands changed, just return the input node.
3411  if (!AnyChange) return InN;
3412
3413  // See if the modified node already exists.
3414  void *InsertPos = 0;
3415  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3416    return SDOperand(Existing, InN.ResNo);
3417
3418  // Nope it doesn't.  Remove the node from its current place in the maps.
3419  if (InsertPos)
3420    RemoveNodeFromCSEMaps(N);
3421
3422  // Now we update the operands.
3423  for (unsigned i = 0; i != NumOps; ++i) {
3424    if (N->OperandList[i] != Ops[i]) {
3425      N->OperandList[i].getVal()->removeUser(i, N);
3426      N->OperandList[i] = Ops[i];
3427      N->OperandList[i].setUser(N);
3428      Ops[i].Val->addUser(i, N);
3429    }
3430  }
3431
3432  // If this gets put into a CSE map, add it.
3433  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3434  return InN;
3435}
3436
3437/// MorphNodeTo - This frees the operands of the current node, resets the
3438/// opcode, types, and operands to the specified value.  This should only be
3439/// used by the SelectionDAG class.
3440void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3441                         SDOperandPtr Ops, unsigned NumOps) {
3442  NodeType = Opc;
3443  ValueList = L.VTs;
3444  NumValues = L.NumVTs;
3445
3446  // Clear the operands list, updating used nodes to remove this from their
3447  // use list.
3448  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3449    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3450
3451  // If NumOps is larger than the # of operands we currently have, reallocate
3452  // the operand list.
3453  if (NumOps > NumOperands) {
3454    if (OperandsNeedDelete) {
3455      delete [] OperandList;
3456    }
3457    OperandList = new SDUse[NumOps];
3458    OperandsNeedDelete = true;
3459  }
3460
3461  // Assign the new operands.
3462  NumOperands = NumOps;
3463
3464  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3465    OperandList[i] = Ops[i];
3466    OperandList[i].setUser(this);
3467    SDNode *N = OperandList[i].getVal();
3468    N->addUser(i, this);
3469    ++N->UsesSize;
3470  }
3471}
3472
3473/// SelectNodeTo - These are used for target selectors to *mutate* the
3474/// specified node to have the specified return type, Target opcode, and
3475/// operands.  Note that target opcodes are stored as
3476/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3477///
3478/// Note that SelectNodeTo returns the resultant node.  If there is already a
3479/// node of the specified opcode and operands, it returns that node instead of
3480/// the current one.
3481SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3482                                   MVT::ValueType VT) {
3483  SDVTList VTs = getVTList(VT);
3484  FoldingSetNodeID ID;
3485  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3486  void *IP = 0;
3487  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3488    return ON;
3489
3490  RemoveNodeFromCSEMaps(N);
3491
3492  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3493
3494  CSEMap.InsertNode(N, IP);
3495  return N;
3496}
3497
3498SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3499                                   MVT::ValueType VT, SDOperand Op1) {
3500  // If an identical node already exists, use it.
3501  SDVTList VTs = getVTList(VT);
3502  SDOperand Ops[] = { Op1 };
3503
3504  FoldingSetNodeID ID;
3505  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3506  void *IP = 0;
3507  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3508    return ON;
3509
3510  RemoveNodeFromCSEMaps(N);
3511  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3512  CSEMap.InsertNode(N, IP);
3513  return N;
3514}
3515
3516SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3517                                   MVT::ValueType VT, SDOperand Op1,
3518                                   SDOperand Op2) {
3519  // If an identical node already exists, use it.
3520  SDVTList VTs = getVTList(VT);
3521  SDOperand Ops[] = { Op1, Op2 };
3522
3523  FoldingSetNodeID ID;
3524  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3525  void *IP = 0;
3526  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3527    return ON;
3528
3529  RemoveNodeFromCSEMaps(N);
3530
3531  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3532
3533  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3534  return N;
3535}
3536
3537SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3538                                   MVT::ValueType VT, SDOperand Op1,
3539                                   SDOperand Op2, SDOperand Op3) {
3540  // If an identical node already exists, use it.
3541  SDVTList VTs = getVTList(VT);
3542  SDOperand Ops[] = { Op1, Op2, Op3 };
3543  FoldingSetNodeID ID;
3544  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3545  void *IP = 0;
3546  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3547    return ON;
3548
3549  RemoveNodeFromCSEMaps(N);
3550
3551  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3552
3553  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3554  return N;
3555}
3556
3557SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3558                                   MVT::ValueType VT, SDOperandPtr Ops,
3559                                   unsigned NumOps) {
3560  // If an identical node already exists, use it.
3561  SDVTList VTs = getVTList(VT);
3562  FoldingSetNodeID ID;
3563  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3564  void *IP = 0;
3565  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3566    return ON;
3567
3568  RemoveNodeFromCSEMaps(N);
3569  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3570
3571  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3572  return N;
3573}
3574
3575SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3576                                   MVT::ValueType VT1, MVT::ValueType VT2,
3577                                   SDOperand Op1, SDOperand Op2) {
3578  SDVTList VTs = getVTList(VT1, VT2);
3579  FoldingSetNodeID ID;
3580  SDOperand Ops[] = { Op1, Op2 };
3581  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3582  void *IP = 0;
3583  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3584    return ON;
3585
3586  RemoveNodeFromCSEMaps(N);
3587  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3588  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3589  return N;
3590}
3591
3592SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3593                                   MVT::ValueType VT1, MVT::ValueType VT2,
3594                                   SDOperand Op1, SDOperand Op2,
3595                                   SDOperand Op3) {
3596  // If an identical node already exists, use it.
3597  SDVTList VTs = getVTList(VT1, VT2);
3598  SDOperand Ops[] = { Op1, Op2, Op3 };
3599  FoldingSetNodeID ID;
3600  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3601  void *IP = 0;
3602  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3603    return ON;
3604
3605  RemoveNodeFromCSEMaps(N);
3606
3607  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3608  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3609  return N;
3610}
3611
3612
3613/// getTargetNode - These are used for target selectors to create a new node
3614/// with specified return type(s), target opcode, and operands.
3615///
3616/// Note that getTargetNode returns the resultant node.  If there is already a
3617/// node of the specified opcode and operands, it returns that node instead of
3618/// the current one.
3619SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3620  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3621}
3622SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3623                                    SDOperand Op1) {
3624  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3625}
3626SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3627                                    SDOperand Op1, SDOperand Op2) {
3628  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3629}
3630SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3631                                    SDOperand Op1, SDOperand Op2,
3632                                    SDOperand Op3) {
3633  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3634}
3635SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3636                                    SDOperandPtr Ops, unsigned NumOps) {
3637  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3638}
3639SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3640                                    MVT::ValueType VT2) {
3641  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3642  SDOperand Op;
3643  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3644}
3645SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3646                                    MVT::ValueType VT2, SDOperand Op1) {
3647  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3648  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3649}
3650SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3651                                    MVT::ValueType VT2, SDOperand Op1,
3652                                    SDOperand Op2) {
3653  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3654  SDOperand Ops[] = { Op1, Op2 };
3655  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3656}
3657SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3658                                    MVT::ValueType VT2, SDOperand Op1,
3659                                    SDOperand Op2, SDOperand Op3) {
3660  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3661  SDOperand Ops[] = { Op1, Op2, Op3 };
3662  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3663}
3664SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3665                                    MVT::ValueType VT2,
3666                                    SDOperandPtr Ops, unsigned NumOps) {
3667  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3668  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3669}
3670SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3671                                    MVT::ValueType VT2, MVT::ValueType VT3,
3672                                    SDOperand Op1, SDOperand Op2) {
3673  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3674  SDOperand Ops[] = { Op1, Op2 };
3675  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3676}
3677SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3678                                    MVT::ValueType VT2, MVT::ValueType VT3,
3679                                    SDOperand Op1, SDOperand Op2,
3680                                    SDOperand Op3) {
3681  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3682  SDOperand Ops[] = { Op1, Op2, Op3 };
3683  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3684}
3685SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3686                                    MVT::ValueType VT2, MVT::ValueType VT3,
3687                                    SDOperandPtr Ops, unsigned NumOps) {
3688  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3689  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3690}
3691SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3692                                    MVT::ValueType VT2, MVT::ValueType VT3,
3693                                    MVT::ValueType VT4,
3694                                    SDOperandPtr Ops, unsigned NumOps) {
3695  std::vector<MVT::ValueType> VTList;
3696  VTList.push_back(VT1);
3697  VTList.push_back(VT2);
3698  VTList.push_back(VT3);
3699  VTList.push_back(VT4);
3700  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3701  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3702}
3703SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3704                                    std::vector<MVT::ValueType> &ResultTys,
3705                                    SDOperandPtr Ops, unsigned NumOps) {
3706  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3707  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3708                 Ops, NumOps).Val;
3709}
3710
3711/// getNodeIfExists - Get the specified node if it's already available, or
3712/// else return NULL.
3713SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3714                                      SDOperandPtr Ops, unsigned NumOps) {
3715  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3716    FoldingSetNodeID ID;
3717    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3718    void *IP = 0;
3719    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3720      return E;
3721  }
3722  return NULL;
3723}
3724
3725
3726/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3727/// This can cause recursive merging of nodes in the DAG.
3728///
3729/// This version assumes From has a single result value.
3730///
3731void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3732                                      DAGUpdateListener *UpdateListener) {
3733  SDNode *From = FromN.Val;
3734  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3735         "Cannot replace with this method!");
3736  assert(From != To.Val && "Cannot replace uses of with self");
3737
3738  while (!From->use_empty()) {
3739    SDNode::use_iterator UI = From->use_begin();
3740    SDNode *U = UI->getUser();
3741
3742    // This node is about to morph, remove its old self from the CSE maps.
3743    RemoveNodeFromCSEMaps(U);
3744    int operandNum = 0;
3745    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3746         I != E; ++I, ++operandNum)
3747      if (I->getVal() == From) {
3748        From->removeUser(operandNum, U);
3749        *I = To;
3750        I->setUser(U);
3751        To.Val->addUser(operandNum, U);
3752      }
3753
3754    // Now that we have modified U, add it back to the CSE maps.  If it already
3755    // exists there, recursively merge the results together.
3756    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3757      ReplaceAllUsesWith(U, Existing, UpdateListener);
3758      // U is now dead.  Inform the listener if it exists and delete it.
3759      if (UpdateListener)
3760        UpdateListener->NodeDeleted(U);
3761      DeleteNodeNotInCSEMaps(U);
3762    } else {
3763      // If the node doesn't already exist, we updated it.  Inform a listener if
3764      // it exists.
3765      if (UpdateListener)
3766        UpdateListener->NodeUpdated(U);
3767    }
3768  }
3769}
3770
3771/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3772/// This can cause recursive merging of nodes in the DAG.
3773///
3774/// This version assumes From/To have matching types and numbers of result
3775/// values.
3776///
3777void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3778                                      DAGUpdateListener *UpdateListener) {
3779  assert(From != To && "Cannot replace uses of with self");
3780  assert(From->getNumValues() == To->getNumValues() &&
3781         "Cannot use this version of ReplaceAllUsesWith!");
3782  if (From->getNumValues() == 1)   // If possible, use the faster version.
3783    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3784                              UpdateListener);
3785
3786  while (!From->use_empty()) {
3787    SDNode::use_iterator UI = From->use_begin();
3788    SDNode *U = UI->getUser();
3789
3790    // This node is about to morph, remove its old self from the CSE maps.
3791    RemoveNodeFromCSEMaps(U);
3792    int operandNum = 0;
3793    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3794         I != E; ++I, ++operandNum)
3795      if (I->getVal() == From) {
3796        From->removeUser(operandNum, U);
3797        I->getVal() = To;
3798        To->addUser(operandNum, U);
3799      }
3800
3801    // Now that we have modified U, add it back to the CSE maps.  If it already
3802    // exists there, recursively merge the results together.
3803    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3804      ReplaceAllUsesWith(U, Existing, UpdateListener);
3805      // U is now dead.  Inform the listener if it exists and delete it.
3806      if (UpdateListener)
3807        UpdateListener->NodeDeleted(U);
3808      DeleteNodeNotInCSEMaps(U);
3809    } else {
3810      // If the node doesn't already exist, we updated it.  Inform a listener if
3811      // it exists.
3812      if (UpdateListener)
3813        UpdateListener->NodeUpdated(U);
3814    }
3815  }
3816}
3817
3818/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3819/// This can cause recursive merging of nodes in the DAG.
3820///
3821/// This version can replace From with any result values.  To must match the
3822/// number and types of values returned by From.
3823void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3824                                      SDOperandPtr To,
3825                                      DAGUpdateListener *UpdateListener) {
3826  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3827    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3828
3829  while (!From->use_empty()) {
3830    SDNode::use_iterator UI = From->use_begin();
3831    SDNode *U = UI->getUser();
3832
3833    // This node is about to morph, remove its old self from the CSE maps.
3834    RemoveNodeFromCSEMaps(U);
3835    int operandNum = 0;
3836    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3837         I != E; ++I, ++operandNum)
3838      if (I->getVal() == From) {
3839        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3840        From->removeUser(operandNum, U);
3841        *I = ToOp;
3842        I->setUser(U);
3843        ToOp.Val->addUser(operandNum, U);
3844      }
3845
3846    // Now that we have modified U, add it back to the CSE maps.  If it already
3847    // exists there, recursively merge the results together.
3848    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3849      ReplaceAllUsesWith(U, Existing, UpdateListener);
3850      // U is now dead.  Inform the listener if it exists and delete it.
3851      if (UpdateListener)
3852        UpdateListener->NodeDeleted(U);
3853      DeleteNodeNotInCSEMaps(U);
3854    } else {
3855      // If the node doesn't already exist, we updated it.  Inform a listener if
3856      // it exists.
3857      if (UpdateListener)
3858        UpdateListener->NodeUpdated(U);
3859    }
3860  }
3861}
3862
3863namespace {
3864  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3865  /// any deleted nodes from the set passed into its constructor and recursively
3866  /// notifies another update listener if specified.
3867  class ChainedSetUpdaterListener :
3868  public SelectionDAG::DAGUpdateListener {
3869    SmallSetVector<SDNode*, 16> &Set;
3870    SelectionDAG::DAGUpdateListener *Chain;
3871  public:
3872    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3873                              SelectionDAG::DAGUpdateListener *chain)
3874      : Set(set), Chain(chain) {}
3875
3876    virtual void NodeDeleted(SDNode *N) {
3877      Set.remove(N);
3878      if (Chain) Chain->NodeDeleted(N);
3879    }
3880    virtual void NodeUpdated(SDNode *N) {
3881      if (Chain) Chain->NodeUpdated(N);
3882    }
3883  };
3884}
3885
3886/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3887/// uses of other values produced by From.Val alone.  The Deleted vector is
3888/// handled the same way as for ReplaceAllUsesWith.
3889void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3890                                             DAGUpdateListener *UpdateListener){
3891  assert(From != To && "Cannot replace a value with itself");
3892
3893  // Handle the simple, trivial, case efficiently.
3894  if (From.Val->getNumValues() == 1) {
3895    ReplaceAllUsesWith(From, To, UpdateListener);
3896    return;
3897  }
3898
3899  if (From.use_empty()) return;
3900
3901  // Get all of the users of From.Val.  We want these in a nice,
3902  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3903  SmallSetVector<SDNode*, 16> Users;
3904  for (SDNode::use_iterator UI = From.Val->use_begin(),
3905      E = From.Val->use_end(); UI != E; ++UI) {
3906    SDNode *User = UI->getUser();
3907    if (!Users.count(User))
3908      Users.insert(User);
3909  }
3910
3911  // When one of the recursive merges deletes nodes from the graph, we need to
3912  // make sure that UpdateListener is notified *and* that the node is removed
3913  // from Users if present.  CSUL does this.
3914  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3915
3916  while (!Users.empty()) {
3917    // We know that this user uses some value of From.  If it is the right
3918    // value, update it.
3919    SDNode *User = Users.back();
3920    Users.pop_back();
3921
3922    // Scan for an operand that matches From.
3923    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
3924    for (; Op != E; ++Op)
3925      if (*Op == From) break;
3926
3927    // If there are no matches, the user must use some other result of From.
3928    if (Op == E) continue;
3929
3930    // Okay, we know this user needs to be updated.  Remove its old self
3931    // from the CSE maps.
3932    RemoveNodeFromCSEMaps(User);
3933
3934    // Update all operands that match "From" in case there are multiple uses.
3935    for (; Op != E; ++Op) {
3936      if (*Op == From) {
3937        From.Val->removeUser(Op-User->op_begin(), User);
3938        *Op = To;
3939        Op->setUser(User);
3940        To.Val->addUser(Op-User->op_begin(), User);
3941      }
3942    }
3943
3944    // Now that we have modified User, add it back to the CSE maps.  If it
3945    // already exists there, recursively merge the results together.
3946    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3947    if (!Existing) {
3948      if (UpdateListener) UpdateListener->NodeUpdated(User);
3949      continue;  // Continue on to next user.
3950    }
3951
3952    // If there was already an existing matching node, use ReplaceAllUsesWith
3953    // to replace the dead one with the existing one.  This can cause
3954    // recursive merging of other unrelated nodes down the line.  The merging
3955    // can cause deletion of nodes that used the old value.  To handle this, we
3956    // use CSUL to remove them from the Users set.
3957    ReplaceAllUsesWith(User, Existing, &CSUL);
3958
3959    // User is now dead.  Notify a listener if present.
3960    if (UpdateListener) UpdateListener->NodeDeleted(User);
3961    DeleteNodeNotInCSEMaps(User);
3962  }
3963}
3964
3965/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3966/// their allnodes order. It returns the maximum id.
3967unsigned SelectionDAG::AssignNodeIds() {
3968  unsigned Id = 0;
3969  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3970    SDNode *N = I;
3971    N->setNodeId(Id++);
3972  }
3973  return Id;
3974}
3975
3976/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3977/// based on their topological order. It returns the maximum id and a vector
3978/// of the SDNodes* in assigned order by reference.
3979unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3980  unsigned DAGSize = AllNodes.size();
3981  std::vector<unsigned> InDegree(DAGSize);
3982  std::vector<SDNode*> Sources;
3983
3984  // Use a two pass approach to avoid using a std::map which is slow.
3985  unsigned Id = 0;
3986  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3987    SDNode *N = I;
3988    N->setNodeId(Id++);
3989    unsigned Degree = N->use_size();
3990    InDegree[N->getNodeId()] = Degree;
3991    if (Degree == 0)
3992      Sources.push_back(N);
3993  }
3994
3995  TopOrder.clear();
3996  while (!Sources.empty()) {
3997    SDNode *N = Sources.back();
3998    Sources.pop_back();
3999    TopOrder.push_back(N);
4000    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4001      SDNode *P = I->getVal();
4002      unsigned Degree = --InDegree[P->getNodeId()];
4003      if (Degree == 0)
4004        Sources.push_back(P);
4005    }
4006  }
4007
4008  // Second pass, assign the actual topological order as node ids.
4009  Id = 0;
4010  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4011       TI != TE; ++TI)
4012    (*TI)->setNodeId(Id++);
4013
4014  return Id;
4015}
4016
4017
4018
4019//===----------------------------------------------------------------------===//
4020//                              SDNode Class
4021//===----------------------------------------------------------------------===//
4022
4023// Out-of-line virtual method to give class a home.
4024void SDNode::ANCHOR() {}
4025void UnarySDNode::ANCHOR() {}
4026void BinarySDNode::ANCHOR() {}
4027void TernarySDNode::ANCHOR() {}
4028void HandleSDNode::ANCHOR() {}
4029void StringSDNode::ANCHOR() {}
4030void ConstantSDNode::ANCHOR() {}
4031void ConstantFPSDNode::ANCHOR() {}
4032void GlobalAddressSDNode::ANCHOR() {}
4033void FrameIndexSDNode::ANCHOR() {}
4034void JumpTableSDNode::ANCHOR() {}
4035void ConstantPoolSDNode::ANCHOR() {}
4036void BasicBlockSDNode::ANCHOR() {}
4037void SrcValueSDNode::ANCHOR() {}
4038void MemOperandSDNode::ANCHOR() {}
4039void RegisterSDNode::ANCHOR() {}
4040void ExternalSymbolSDNode::ANCHOR() {}
4041void CondCodeSDNode::ANCHOR() {}
4042void ARG_FLAGSSDNode::ANCHOR() {}
4043void VTSDNode::ANCHOR() {}
4044void LoadSDNode::ANCHOR() {}
4045void StoreSDNode::ANCHOR() {}
4046void AtomicSDNode::ANCHOR() {}
4047
4048HandleSDNode::~HandleSDNode() {
4049  SDVTList VTs = { 0, 0 };
4050  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4051}
4052
4053GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4054                                         MVT::ValueType VT, int o)
4055  : SDNode(isa<GlobalVariable>(GA) &&
4056           cast<GlobalVariable>(GA)->isThreadLocal() ?
4057           // Thread Local
4058           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4059           // Non Thread Local
4060           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4061           getSDVTList(VT)), Offset(o) {
4062  TheGlobal = const_cast<GlobalValue*>(GA);
4063}
4064
4065/// getMemOperand - Return a MachineMemOperand object describing the memory
4066/// reference performed by this load or store.
4067MachineMemOperand LSBaseSDNode::getMemOperand() const {
4068  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
4069  int Flags =
4070    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4071                               MachineMemOperand::MOStore;
4072  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
4073
4074  // Check if the load references a frame index, and does not have
4075  // an SV attached.
4076  const FrameIndexSDNode *FI =
4077    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4078  if (!getSrcValue() && FI)
4079    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4080                             FI->getIndex(), Size, Alignment);
4081  else
4082    return MachineMemOperand(getSrcValue(), Flags,
4083                             getSrcValueOffset(), Size, Alignment);
4084}
4085
4086/// Profile - Gather unique data for the node.
4087///
4088void SDNode::Profile(FoldingSetNodeID &ID) {
4089  AddNodeIDNode(ID, this);
4090}
4091
4092/// getValueTypeList - Return a pointer to the specified value type.
4093///
4094const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
4095  if (MVT::isExtendedVT(VT)) {
4096    static std::set<MVT::ValueType> EVTs;
4097    return &(*EVTs.insert(VT).first);
4098  } else {
4099    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4100    VTs[VT] = VT;
4101    return &VTs[VT];
4102  }
4103}
4104
4105/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4106/// indicated value.  This method ignores uses of other values defined by this
4107/// operation.
4108bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4109  assert(Value < getNumValues() && "Bad value!");
4110
4111  // If there is only one value, this is easy.
4112  if (getNumValues() == 1)
4113    return use_size() == NUses;
4114  if (use_size() < NUses) return false;
4115
4116  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4117
4118  SmallPtrSet<SDNode*, 32> UsersHandled;
4119
4120  // TODO: Only iterate over uses of a given value of the node
4121  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4122    if (*UI == TheValue) {
4123      if (NUses == 0)
4124        return false;
4125      --NUses;
4126    }
4127  }
4128
4129  // Found exactly the right number of uses?
4130  return NUses == 0;
4131}
4132
4133
4134/// hasAnyUseOfValue - Return true if there are any use of the indicated
4135/// value. This method ignores uses of other values defined by this operation.
4136bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4137  assert(Value < getNumValues() && "Bad value!");
4138
4139  if (use_empty()) return false;
4140
4141  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4142
4143  SmallPtrSet<SDNode*, 32> UsersHandled;
4144
4145  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4146    SDNode *User = UI->getUser();
4147    if (User->getNumOperands() == 1 ||
4148        UsersHandled.insert(User))     // First time we've seen this?
4149      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4150        if (User->getOperand(i) == TheValue) {
4151          return true;
4152        }
4153  }
4154
4155  return false;
4156}
4157
4158
4159/// isOnlyUseOf - Return true if this node is the only use of N.
4160///
4161bool SDNode::isOnlyUseOf(SDNode *N) const {
4162  bool Seen = false;
4163  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4164    SDNode *User = I->getUser();
4165    if (User == this)
4166      Seen = true;
4167    else
4168      return false;
4169  }
4170
4171  return Seen;
4172}
4173
4174/// isOperand - Return true if this node is an operand of N.
4175///
4176bool SDOperand::isOperandOf(SDNode *N) const {
4177  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4178    if (*this == N->getOperand(i))
4179      return true;
4180  return false;
4181}
4182
4183bool SDNode::isOperandOf(SDNode *N) const {
4184  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4185    if (this == N->OperandList[i].getVal())
4186      return true;
4187  return false;
4188}
4189
4190/// reachesChainWithoutSideEffects - Return true if this operand (which must
4191/// be a chain) reaches the specified operand without crossing any
4192/// side-effecting instructions.  In practice, this looks through token
4193/// factors and non-volatile loads.  In order to remain efficient, this only
4194/// looks a couple of nodes in, it does not do an exhaustive search.
4195bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4196                                               unsigned Depth) const {
4197  if (*this == Dest) return true;
4198
4199  // Don't search too deeply, we just want to be able to see through
4200  // TokenFactor's etc.
4201  if (Depth == 0) return false;
4202
4203  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4204  // of the operands of the TF reach dest, then we can do the xform.
4205  if (getOpcode() == ISD::TokenFactor) {
4206    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4207      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4208        return true;
4209    return false;
4210  }
4211
4212  // Loads don't have side effects, look through them.
4213  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4214    if (!Ld->isVolatile())
4215      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4216  }
4217  return false;
4218}
4219
4220
4221static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4222                            SmallPtrSet<SDNode *, 32> &Visited) {
4223  if (found || !Visited.insert(N))
4224    return;
4225
4226  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4227    SDNode *Op = N->getOperand(i).Val;
4228    if (Op == P) {
4229      found = true;
4230      return;
4231    }
4232    findPredecessor(Op, P, found, Visited);
4233  }
4234}
4235
4236/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4237/// is either an operand of N or it can be reached by recursively traversing
4238/// up the operands.
4239/// NOTE: this is an expensive method. Use it carefully.
4240bool SDNode::isPredecessorOf(SDNode *N) const {
4241  SmallPtrSet<SDNode *, 32> Visited;
4242  bool found = false;
4243  findPredecessor(N, this, found, Visited);
4244  return found;
4245}
4246
4247uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4248  assert(Num < NumOperands && "Invalid child # of SDNode!");
4249  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4250}
4251
4252std::string SDNode::getOperationName(const SelectionDAG *G) const {
4253  switch (getOpcode()) {
4254  default:
4255    if (getOpcode() < ISD::BUILTIN_OP_END)
4256      return "<<Unknown DAG Node>>";
4257    else {
4258      if (G) {
4259        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4260          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4261            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4262
4263        TargetLowering &TLI = G->getTargetLoweringInfo();
4264        const char *Name =
4265          TLI.getTargetNodeName(getOpcode());
4266        if (Name) return Name;
4267      }
4268
4269      return "<<Unknown Target Node>>";
4270    }
4271
4272  case ISD::PREFETCH:      return "Prefetch";
4273  case ISD::MEMBARRIER:    return "MemBarrier";
4274  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4275  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4276  case ISD::ATOMIC_LSS:    return "AtomicLSS";
4277  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4278  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4279  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4280  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4281  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4282  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4283  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4284  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4285  case ISD::PCMARKER:      return "PCMarker";
4286  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4287  case ISD::SRCVALUE:      return "SrcValue";
4288  case ISD::MEMOPERAND:    return "MemOperand";
4289  case ISD::EntryToken:    return "EntryToken";
4290  case ISD::TokenFactor:   return "TokenFactor";
4291  case ISD::AssertSext:    return "AssertSext";
4292  case ISD::AssertZext:    return "AssertZext";
4293
4294  case ISD::STRING:        return "String";
4295  case ISD::BasicBlock:    return "BasicBlock";
4296  case ISD::ARG_FLAGS:     return "ArgFlags";
4297  case ISD::VALUETYPE:     return "ValueType";
4298  case ISD::Register:      return "Register";
4299
4300  case ISD::Constant:      return "Constant";
4301  case ISD::ConstantFP:    return "ConstantFP";
4302  case ISD::GlobalAddress: return "GlobalAddress";
4303  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4304  case ISD::FrameIndex:    return "FrameIndex";
4305  case ISD::JumpTable:     return "JumpTable";
4306  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4307  case ISD::RETURNADDR: return "RETURNADDR";
4308  case ISD::FRAMEADDR: return "FRAMEADDR";
4309  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4310  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4311  case ISD::EHSELECTION: return "EHSELECTION";
4312  case ISD::EH_RETURN: return "EH_RETURN";
4313  case ISD::ConstantPool:  return "ConstantPool";
4314  case ISD::ExternalSymbol: return "ExternalSymbol";
4315  case ISD::INTRINSIC_WO_CHAIN: {
4316    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4317    return Intrinsic::getName((Intrinsic::ID)IID);
4318  }
4319  case ISD::INTRINSIC_VOID:
4320  case ISD::INTRINSIC_W_CHAIN: {
4321    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4322    return Intrinsic::getName((Intrinsic::ID)IID);
4323  }
4324
4325  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4326  case ISD::TargetConstant: return "TargetConstant";
4327  case ISD::TargetConstantFP:return "TargetConstantFP";
4328  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4329  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4330  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4331  case ISD::TargetJumpTable:  return "TargetJumpTable";
4332  case ISD::TargetConstantPool:  return "TargetConstantPool";
4333  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4334
4335  case ISD::CopyToReg:     return "CopyToReg";
4336  case ISD::CopyFromReg:   return "CopyFromReg";
4337  case ISD::UNDEF:         return "undef";
4338  case ISD::MERGE_VALUES:  return "merge_values";
4339  case ISD::INLINEASM:     return "inlineasm";
4340  case ISD::LABEL:         return "label";
4341  case ISD::DECLARE:       return "declare";
4342  case ISD::HANDLENODE:    return "handlenode";
4343  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4344  case ISD::CALL:          return "call";
4345
4346  // Unary operators
4347  case ISD::FABS:   return "fabs";
4348  case ISD::FNEG:   return "fneg";
4349  case ISD::FSQRT:  return "fsqrt";
4350  case ISD::FSIN:   return "fsin";
4351  case ISD::FCOS:   return "fcos";
4352  case ISD::FPOWI:  return "fpowi";
4353  case ISD::FPOW:   return "fpow";
4354
4355  // Binary operators
4356  case ISD::ADD:    return "add";
4357  case ISD::SUB:    return "sub";
4358  case ISD::MUL:    return "mul";
4359  case ISD::MULHU:  return "mulhu";
4360  case ISD::MULHS:  return "mulhs";
4361  case ISD::SDIV:   return "sdiv";
4362  case ISD::UDIV:   return "udiv";
4363  case ISD::SREM:   return "srem";
4364  case ISD::UREM:   return "urem";
4365  case ISD::SMUL_LOHI:  return "smul_lohi";
4366  case ISD::UMUL_LOHI:  return "umul_lohi";
4367  case ISD::SDIVREM:    return "sdivrem";
4368  case ISD::UDIVREM:    return "divrem";
4369  case ISD::AND:    return "and";
4370  case ISD::OR:     return "or";
4371  case ISD::XOR:    return "xor";
4372  case ISD::SHL:    return "shl";
4373  case ISD::SRA:    return "sra";
4374  case ISD::SRL:    return "srl";
4375  case ISD::ROTL:   return "rotl";
4376  case ISD::ROTR:   return "rotr";
4377  case ISD::FADD:   return "fadd";
4378  case ISD::FSUB:   return "fsub";
4379  case ISD::FMUL:   return "fmul";
4380  case ISD::FDIV:   return "fdiv";
4381  case ISD::FREM:   return "frem";
4382  case ISD::FCOPYSIGN: return "fcopysign";
4383  case ISD::FGETSIGN:  return "fgetsign";
4384
4385  case ISD::SETCC:       return "setcc";
4386  case ISD::SELECT:      return "select";
4387  case ISD::SELECT_CC:   return "select_cc";
4388  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4389  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4390  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4391  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4392  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4393  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4394  case ISD::CARRY_FALSE:         return "carry_false";
4395  case ISD::ADDC:        return "addc";
4396  case ISD::ADDE:        return "adde";
4397  case ISD::SUBC:        return "subc";
4398  case ISD::SUBE:        return "sube";
4399  case ISD::SHL_PARTS:   return "shl_parts";
4400  case ISD::SRA_PARTS:   return "sra_parts";
4401  case ISD::SRL_PARTS:   return "srl_parts";
4402
4403  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4404  case ISD::INSERT_SUBREG:      return "insert_subreg";
4405
4406  // Conversion operators.
4407  case ISD::SIGN_EXTEND: return "sign_extend";
4408  case ISD::ZERO_EXTEND: return "zero_extend";
4409  case ISD::ANY_EXTEND:  return "any_extend";
4410  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4411  case ISD::TRUNCATE:    return "truncate";
4412  case ISD::FP_ROUND:    return "fp_round";
4413  case ISD::FLT_ROUNDS_: return "flt_rounds";
4414  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4415  case ISD::FP_EXTEND:   return "fp_extend";
4416
4417  case ISD::SINT_TO_FP:  return "sint_to_fp";
4418  case ISD::UINT_TO_FP:  return "uint_to_fp";
4419  case ISD::FP_TO_SINT:  return "fp_to_sint";
4420  case ISD::FP_TO_UINT:  return "fp_to_uint";
4421  case ISD::BIT_CONVERT: return "bit_convert";
4422
4423    // Control flow instructions
4424  case ISD::BR:      return "br";
4425  case ISD::BRIND:   return "brind";
4426  case ISD::BR_JT:   return "br_jt";
4427  case ISD::BRCOND:  return "brcond";
4428  case ISD::BR_CC:   return "br_cc";
4429  case ISD::RET:     return "ret";
4430  case ISD::CALLSEQ_START:  return "callseq_start";
4431  case ISD::CALLSEQ_END:    return "callseq_end";
4432
4433    // Other operators
4434  case ISD::LOAD:               return "load";
4435  case ISD::STORE:              return "store";
4436  case ISD::VAARG:              return "vaarg";
4437  case ISD::VACOPY:             return "vacopy";
4438  case ISD::VAEND:              return "vaend";
4439  case ISD::VASTART:            return "vastart";
4440  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4441  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4442  case ISD::BUILD_PAIR:         return "build_pair";
4443  case ISD::STACKSAVE:          return "stacksave";
4444  case ISD::STACKRESTORE:       return "stackrestore";
4445  case ISD::TRAP:               return "trap";
4446
4447  // Bit manipulation
4448  case ISD::BSWAP:   return "bswap";
4449  case ISD::CTPOP:   return "ctpop";
4450  case ISD::CTTZ:    return "cttz";
4451  case ISD::CTLZ:    return "ctlz";
4452
4453  // Debug info
4454  case ISD::LOCATION: return "location";
4455  case ISD::DEBUG_LOC: return "debug_loc";
4456
4457  // Trampolines
4458  case ISD::TRAMPOLINE: return "trampoline";
4459
4460  case ISD::CONDCODE:
4461    switch (cast<CondCodeSDNode>(this)->get()) {
4462    default: assert(0 && "Unknown setcc condition!");
4463    case ISD::SETOEQ:  return "setoeq";
4464    case ISD::SETOGT:  return "setogt";
4465    case ISD::SETOGE:  return "setoge";
4466    case ISD::SETOLT:  return "setolt";
4467    case ISD::SETOLE:  return "setole";
4468    case ISD::SETONE:  return "setone";
4469
4470    case ISD::SETO:    return "seto";
4471    case ISD::SETUO:   return "setuo";
4472    case ISD::SETUEQ:  return "setue";
4473    case ISD::SETUGT:  return "setugt";
4474    case ISD::SETUGE:  return "setuge";
4475    case ISD::SETULT:  return "setult";
4476    case ISD::SETULE:  return "setule";
4477    case ISD::SETUNE:  return "setune";
4478
4479    case ISD::SETEQ:   return "seteq";
4480    case ISD::SETGT:   return "setgt";
4481    case ISD::SETGE:   return "setge";
4482    case ISD::SETLT:   return "setlt";
4483    case ISD::SETLE:   return "setle";
4484    case ISD::SETNE:   return "setne";
4485    }
4486  }
4487}
4488
4489const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4490  switch (AM) {
4491  default:
4492    return "";
4493  case ISD::PRE_INC:
4494    return "<pre-inc>";
4495  case ISD::PRE_DEC:
4496    return "<pre-dec>";
4497  case ISD::POST_INC:
4498    return "<post-inc>";
4499  case ISD::POST_DEC:
4500    return "<post-dec>";
4501  }
4502}
4503
4504std::string ISD::ArgFlagsTy::getArgFlagsString() {
4505  std::string S = "< ";
4506
4507  if (isZExt())
4508    S += "zext ";
4509  if (isSExt())
4510    S += "sext ";
4511  if (isInReg())
4512    S += "inreg ";
4513  if (isSRet())
4514    S += "sret ";
4515  if (isByVal())
4516    S += "byval ";
4517  if (isNest())
4518    S += "nest ";
4519  if (getByValAlign())
4520    S += "byval-align:" + utostr(getByValAlign()) + " ";
4521  if (getOrigAlign())
4522    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4523  if (getByValSize())
4524    S += "byval-size:" + utostr(getByValSize()) + " ";
4525  return S + ">";
4526}
4527
4528void SDNode::dump() const { dump(0); }
4529void SDNode::dump(const SelectionDAG *G) const {
4530  cerr << (void*)this << ": ";
4531
4532  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4533    if (i) cerr << ",";
4534    if (getValueType(i) == MVT::Other)
4535      cerr << "ch";
4536    else
4537      cerr << MVT::getValueTypeString(getValueType(i));
4538  }
4539  cerr << " = " << getOperationName(G);
4540
4541  cerr << " ";
4542  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4543    if (i) cerr << ", ";
4544    cerr << (void*)getOperand(i).Val;
4545    if (unsigned RN = getOperand(i).ResNo)
4546      cerr << ":" << RN;
4547  }
4548
4549  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4550    SDNode *Mask = getOperand(2).Val;
4551    cerr << "<";
4552    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4553      if (i) cerr << ",";
4554      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4555        cerr << "u";
4556      else
4557        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4558    }
4559    cerr << ">";
4560  }
4561
4562  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4563    cerr << "<" << CSDN->getValue() << ">";
4564  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4565    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4566      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4567    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4568      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4569    else {
4570      cerr << "<APFloat(";
4571      CSDN->getValueAPF().convertToAPInt().dump();
4572      cerr << ")>";
4573    }
4574  } else if (const GlobalAddressSDNode *GADN =
4575             dyn_cast<GlobalAddressSDNode>(this)) {
4576    int offset = GADN->getOffset();
4577    cerr << "<";
4578    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4579    if (offset > 0)
4580      cerr << " + " << offset;
4581    else
4582      cerr << " " << offset;
4583  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4584    cerr << "<" << FIDN->getIndex() << ">";
4585  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4586    cerr << "<" << JTDN->getIndex() << ">";
4587  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4588    int offset = CP->getOffset();
4589    if (CP->isMachineConstantPoolEntry())
4590      cerr << "<" << *CP->getMachineCPVal() << ">";
4591    else
4592      cerr << "<" << *CP->getConstVal() << ">";
4593    if (offset > 0)
4594      cerr << " + " << offset;
4595    else
4596      cerr << " " << offset;
4597  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4598    cerr << "<";
4599    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4600    if (LBB)
4601      cerr << LBB->getName() << " ";
4602    cerr << (const void*)BBDN->getBasicBlock() << ">";
4603  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4604    if (G && R->getReg() &&
4605        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4606      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4607    } else {
4608      cerr << " #" << R->getReg();
4609    }
4610  } else if (const ExternalSymbolSDNode *ES =
4611             dyn_cast<ExternalSymbolSDNode>(this)) {
4612    cerr << "'" << ES->getSymbol() << "'";
4613  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4614    if (M->getValue())
4615      cerr << "<" << M->getValue() << ">";
4616    else
4617      cerr << "<null>";
4618  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4619    if (M->MO.getValue())
4620      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4621    else
4622      cerr << "<null:" << M->MO.getOffset() << ">";
4623  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4624    cerr << N->getArgFlags().getArgFlagsString();
4625  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4626    cerr << ":" << MVT::getValueTypeString(N->getVT());
4627  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4628    const Value *SrcValue = LD->getSrcValue();
4629    int SrcOffset = LD->getSrcValueOffset();
4630    cerr << " <";
4631    if (SrcValue)
4632      cerr << SrcValue;
4633    else
4634      cerr << "null";
4635    cerr << ":" << SrcOffset << ">";
4636
4637    bool doExt = true;
4638    switch (LD->getExtensionType()) {
4639    default: doExt = false; break;
4640    case ISD::EXTLOAD:
4641      cerr << " <anyext ";
4642      break;
4643    case ISD::SEXTLOAD:
4644      cerr << " <sext ";
4645      break;
4646    case ISD::ZEXTLOAD:
4647      cerr << " <zext ";
4648      break;
4649    }
4650    if (doExt)
4651      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4652
4653    const char *AM = getIndexedModeName(LD->getAddressingMode());
4654    if (*AM)
4655      cerr << " " << AM;
4656    if (LD->isVolatile())
4657      cerr << " <volatile>";
4658    cerr << " alignment=" << LD->getAlignment();
4659  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4660    const Value *SrcValue = ST->getSrcValue();
4661    int SrcOffset = ST->getSrcValueOffset();
4662    cerr << " <";
4663    if (SrcValue)
4664      cerr << SrcValue;
4665    else
4666      cerr << "null";
4667    cerr << ":" << SrcOffset << ">";
4668
4669    if (ST->isTruncatingStore())
4670      cerr << " <trunc "
4671           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4672
4673    const char *AM = getIndexedModeName(ST->getAddressingMode());
4674    if (*AM)
4675      cerr << " " << AM;
4676    if (ST->isVolatile())
4677      cerr << " <volatile>";
4678    cerr << " alignment=" << ST->getAlignment();
4679  }
4680}
4681
4682static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4683  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4684    if (N->getOperand(i).Val->hasOneUse())
4685      DumpNodes(N->getOperand(i).Val, indent+2, G);
4686    else
4687      cerr << "\n" << std::string(indent+2, ' ')
4688           << (void*)N->getOperand(i).Val << ": <multiple use>";
4689
4690
4691  cerr << "\n" << std::string(indent, ' ');
4692  N->dump(G);
4693}
4694
4695void SelectionDAG::dump() const {
4696  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4697  std::vector<const SDNode*> Nodes;
4698  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4699       I != E; ++I)
4700    Nodes.push_back(I);
4701
4702  std::sort(Nodes.begin(), Nodes.end());
4703
4704  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4705    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4706      DumpNodes(Nodes[i], 2, this);
4707  }
4708
4709  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4710
4711  cerr << "\n\n";
4712}
4713
4714const Type *ConstantPoolSDNode::getType() const {
4715  if (isMachineConstantPoolEntry())
4716    return Val.MachineCPVal->getType();
4717  return Val.ConstVal->getType();
4718}
4719