SelectionDAG.cpp revision 24e338e8a3dab2923db30fe63d77a5ac95456ff9
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert(I->getValueType() == EltVT &&
772//             "Wrong operand type!");
773    break;
774  }
775  }
776}
777
778/// getMVTAlignment - Compute the default alignment value for the
779/// given type.
780///
781unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782  const Type *Ty = VT == MVT::iPTR ?
783                   PointerType::get(Type::Int8Ty, 0) :
784                   VT.getTypeForMVT();
785
786  return TLI.getTargetData()->getABITypeAlignment(Ty);
787}
788
789// EntryNode could meaningfully have debug info if we can find it...
790SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
791  : TLI(tli), FLI(fli), DW(0),
792    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
793    getVTList(MVT::Other)), Root(getEntryNode()) {
794  AllNodes.push_back(&EntryNode);
795}
796
797void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
798                        DwarfWriter *dw) {
799  MF = &mf;
800  MMI = mmi;
801  DW = dw;
802}
803
804SelectionDAG::~SelectionDAG() {
805  allnodes_clear();
806}
807
808void SelectionDAG::allnodes_clear() {
809  assert(&*AllNodes.begin() == &EntryNode);
810  AllNodes.remove(AllNodes.begin());
811  while (!AllNodes.empty())
812    DeallocateNode(AllNodes.begin());
813}
814
815void SelectionDAG::clear() {
816  allnodes_clear();
817  OperandAllocator.Reset();
818  CSEMap.clear();
819
820  ExtendedValueTypeNodes.clear();
821  ExternalSymbols.clear();
822  TargetExternalSymbols.clear();
823  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
824            static_cast<CondCodeSDNode*>(0));
825  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
826            static_cast<SDNode*>(0));
827
828  EntryNode.UseList = 0;
829  AllNodes.push_back(&EntryNode);
830  Root = getEntryNode();
831}
832
833SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
834  if (Op.getValueType() == VT) return Op;
835  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
836                                   VT.getSizeInBits());
837  return getNode(ISD::AND, DL, Op.getValueType(), Op,
838                 getConstant(Imm, Op.getValueType()));
839}
840
841/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
842///
843SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
844  SDValue NegOne;
845  if (VT.isVector()) {
846    MVT EltVT = VT.getVectorElementType();
847    SDValue NegOneElt =
848      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
849    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
850    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
851  } else {
852    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
853  }
854  return getNode(ISD::XOR, DL, VT, Val, NegOne);
855}
856
857SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
858  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
859  assert((EltVT.getSizeInBits() >= 64 ||
860         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
861         "getConstant with a uint64_t value that doesn't fit in the type!");
862  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
863}
864
865SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
866  return getConstant(*ConstantInt::get(Val), VT, isT);
867}
868
869SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
870  assert(VT.isInteger() && "Cannot create FP integer constant!");
871
872  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
874         "APInt size does not match type size!");
875
876  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
877  FoldingSetNodeID ID;
878  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
879  ID.AddPointer(&Val);
880  void *IP = 0;
881  SDNode *N = NULL;
882  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
883    if (!VT.isVector())
884      return SDValue(N, 0);
885  if (!N) {
886    N = NodeAllocator.Allocate<ConstantSDNode>();
887    new (N) ConstantSDNode(isT, &Val, EltVT);
888    CSEMap.InsertNode(N, IP);
889    AllNodes.push_back(N);
890  }
891
892  SDValue Result(N, 0);
893  if (VT.isVector()) {
894    SmallVector<SDValue, 8> Ops;
895    Ops.assign(VT.getVectorNumElements(), Result);
896    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
897                     VT, &Ops[0], Ops.size());
898  }
899  return Result;
900}
901
902SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
903  return getConstant(Val, TLI.getPointerTy(), isTarget);
904}
905
906
907SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
908  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
909}
910
911SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
912  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
913
914  MVT EltVT =
915    VT.isVector() ? VT.getVectorElementType() : VT;
916
917  // Do the map lookup using the actual bit pattern for the floating point
918  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
919  // we don't have issues with SNANs.
920  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
921  FoldingSetNodeID ID;
922  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
923  ID.AddPointer(&V);
924  void *IP = 0;
925  SDNode *N = NULL;
926  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
927    if (!VT.isVector())
928      return SDValue(N, 0);
929  if (!N) {
930    N = NodeAllocator.Allocate<ConstantFPSDNode>();
931    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
932    CSEMap.InsertNode(N, IP);
933    AllNodes.push_back(N);
934  }
935
936  SDValue Result(N, 0);
937  if (VT.isVector()) {
938    SmallVector<SDValue, 8> Ops;
939    Ops.assign(VT.getVectorNumElements(), Result);
940    // FIXME DebugLoc info might be appropriate here
941    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
942                     VT, &Ops[0], Ops.size());
943  }
944  return Result;
945}
946
947SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
948  MVT EltVT =
949    VT.isVector() ? VT.getVectorElementType() : VT;
950  if (EltVT==MVT::f32)
951    return getConstantFP(APFloat((float)Val), VT, isTarget);
952  else
953    return getConstantFP(APFloat(Val), VT, isTarget);
954}
955
956SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
957                                       MVT VT, int64_t Offset,
958                                       bool isTargetGA) {
959  unsigned Opc;
960
961  // Truncate (with sign-extension) the offset value to the pointer size.
962  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
963  if (BitWidth < 64)
964    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
965
966  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
967  if (!GVar) {
968    // If GV is an alias then use the aliasee for determining thread-localness.
969    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
970      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
971  }
972
973  if (GVar && GVar->isThreadLocal())
974    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
975  else
976    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
977
978  FoldingSetNodeID ID;
979  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
980  ID.AddPointer(GV);
981  ID.AddInteger(Offset);
982  void *IP = 0;
983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984    return SDValue(E, 0);
985  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
986  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
987  CSEMap.InsertNode(N, IP);
988  AllNodes.push_back(N);
989  return SDValue(N, 0);
990}
991
992SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
993  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(FI);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1001  new (N) FrameIndexSDNode(FI, VT, isTarget);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1008  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(JTI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1016  new (N) JumpTableSDNode(JTI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1023                                      unsigned Alignment, int Offset,
1024                                      bool isTarget) {
1025  if (Alignment == 0)
1026    Alignment =
1027      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1028  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1029  FoldingSetNodeID ID;
1030  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1031  ID.AddInteger(Alignment);
1032  ID.AddInteger(Offset);
1033  ID.AddPointer(C);
1034  void *IP = 0;
1035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1036    return SDValue(E, 0);
1037  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1038  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1039  CSEMap.InsertNode(N, IP);
1040  AllNodes.push_back(N);
1041  return SDValue(N, 0);
1042}
1043
1044
1045SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1046                                      unsigned Alignment, int Offset,
1047                                      bool isTarget) {
1048  if (Alignment == 0)
1049    Alignment =
1050      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1051  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1052  FoldingSetNodeID ID;
1053  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1054  ID.AddInteger(Alignment);
1055  ID.AddInteger(Offset);
1056  C->AddSelectionDAGCSEId(ID);
1057  void *IP = 0;
1058  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1059    return SDValue(E, 0);
1060  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1061  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1062  CSEMap.InsertNode(N, IP);
1063  AllNodes.push_back(N);
1064  return SDValue(N, 0);
1065}
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1141                                       SDValue Val, SDValue DTy,
1142                                       SDValue STy, SDValue Rnd, SDValue Sat,
1143                                       ISD::CvtCode Code) {
1144  // If the src and dest types are the same and the conversion is between
1145  // integer types of the same sign or two floats, no conversion is necessary.
1146  if (DTy == STy &&
1147      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1148    return Val;
1149
1150  FoldingSetNodeID ID;
1151  void* IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1155  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1156  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1157  CSEMap.InsertNode(N, IP);
1158  AllNodes.push_back(N);
1159  return SDValue(N, 0);
1160}
1161
1162SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1163  FoldingSetNodeID ID;
1164  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1165  ID.AddInteger(RegNo);
1166  void *IP = 0;
1167  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1168    return SDValue(E, 0);
1169  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1170  new (N) RegisterSDNode(RegNo, VT);
1171  CSEMap.InsertNode(N, IP);
1172  AllNodes.push_back(N);
1173  return SDValue(N, 0);
1174}
1175
1176SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1177                                      unsigned Line, unsigned Col,
1178                                      Value *CU) {
1179  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1180  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1181  AllNodes.push_back(N);
1182  return SDValue(N, 0);
1183}
1184
1185SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1186                               SDValue Root,
1187                               unsigned LabelID) {
1188  FoldingSetNodeID ID;
1189  SDValue Ops[] = { Root };
1190  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1191  ID.AddInteger(LabelID);
1192  void *IP = 0;
1193  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1194    return SDValue(E, 0);
1195  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1196  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1197  CSEMap.InsertNode(N, IP);
1198  AllNodes.push_back(N);
1199  return SDValue(N, 0);
1200}
1201
1202SDValue SelectionDAG::getSrcValue(const Value *V) {
1203  assert((!V || isa<PointerType>(V->getType())) &&
1204         "SrcValue is not a pointer?");
1205
1206  FoldingSetNodeID ID;
1207  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1208  ID.AddPointer(V);
1209
1210  void *IP = 0;
1211  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1212    return SDValue(E, 0);
1213
1214  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1215  new (N) SrcValueSDNode(V);
1216  CSEMap.InsertNode(N, IP);
1217  AllNodes.push_back(N);
1218  return SDValue(N, 0);
1219}
1220
1221SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1222#ifndef NDEBUG
1223  const Value *v = MO.getValue();
1224  assert((!v || isa<PointerType>(v->getType())) &&
1225         "SrcValue is not a pointer?");
1226#endif
1227
1228  FoldingSetNodeID ID;
1229  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1230  MO.Profile(ID);
1231
1232  void *IP = 0;
1233  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1234    return SDValue(E, 0);
1235
1236  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1237  new (N) MemOperandSDNode(MO);
1238  CSEMap.InsertNode(N, IP);
1239  AllNodes.push_back(N);
1240  return SDValue(N, 0);
1241}
1242
1243/// getShiftAmountOperand - Return the specified value casted to
1244/// the target's desired shift amount type.
1245SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1246  MVT OpTy = Op.getValueType();
1247  MVT ShTy = TLI.getShiftAmountTy();
1248  if (OpTy == ShTy || OpTy.isVector()) return Op;
1249
1250  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1251  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1252}
1253
1254/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1255/// specified value type.
1256SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1257  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1258  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1259  const Type *Ty = VT.getTypeForMVT();
1260  unsigned StackAlign =
1261  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1262
1263  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1264  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1265}
1266
1267/// CreateStackTemporary - Create a stack temporary suitable for holding
1268/// either of the specified value types.
1269SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1270  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1271                            VT2.getStoreSizeInBits())/8;
1272  const Type *Ty1 = VT1.getTypeForMVT();
1273  const Type *Ty2 = VT2.getTypeForMVT();
1274  const TargetData *TD = TLI.getTargetData();
1275  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1276                            TD->getPrefTypeAlignment(Ty2));
1277
1278  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1279  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1280  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1281}
1282
1283SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1284                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1285  // These setcc operations always fold.
1286  switch (Cond) {
1287  default: break;
1288  case ISD::SETFALSE:
1289  case ISD::SETFALSE2: return getConstant(0, VT);
1290  case ISD::SETTRUE:
1291  case ISD::SETTRUE2:  return getConstant(1, VT);
1292
1293  case ISD::SETOEQ:
1294  case ISD::SETOGT:
1295  case ISD::SETOGE:
1296  case ISD::SETOLT:
1297  case ISD::SETOLE:
1298  case ISD::SETONE:
1299  case ISD::SETO:
1300  case ISD::SETUO:
1301  case ISD::SETUEQ:
1302  case ISD::SETUNE:
1303    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1304    break;
1305  }
1306
1307  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1308    const APInt &C2 = N2C->getAPIntValue();
1309    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1310      const APInt &C1 = N1C->getAPIntValue();
1311
1312      switch (Cond) {
1313      default: assert(0 && "Unknown integer setcc!");
1314      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1315      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1316      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1317      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1318      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1319      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1320      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1321      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1322      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1323      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1324      }
1325    }
1326  }
1327  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1328    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1329      // No compile time operations on this type yet.
1330      if (N1C->getValueType(0) == MVT::ppcf128)
1331        return SDValue();
1332
1333      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1334      switch (Cond) {
1335      default: break;
1336      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1337                          return getUNDEF(VT);
1338                        // fall through
1339      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1340      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1341                          return getUNDEF(VT);
1342                        // fall through
1343      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1344                                           R==APFloat::cmpLessThan, VT);
1345      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1346                          return getUNDEF(VT);
1347                        // fall through
1348      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1349      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1350                          return getUNDEF(VT);
1351                        // fall through
1352      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1353      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1354                          return getUNDEF(VT);
1355                        // fall through
1356      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1357                                           R==APFloat::cmpEqual, VT);
1358      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1359                          return getUNDEF(VT);
1360                        // fall through
1361      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1362                                           R==APFloat::cmpEqual, VT);
1363      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1364      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1365      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1366                                           R==APFloat::cmpEqual, VT);
1367      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1368      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1369                                           R==APFloat::cmpLessThan, VT);
1370      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1371                                           R==APFloat::cmpUnordered, VT);
1372      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1373      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1374      }
1375    } else {
1376      // Ensure that the constant occurs on the RHS.
1377      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1378    }
1379  }
1380
1381  // Could not fold it.
1382  return SDValue();
1383}
1384
1385/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1386/// use this predicate to simplify operations downstream.
1387bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1388  unsigned BitWidth = Op.getValueSizeInBits();
1389  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1390}
1391
1392/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1393/// this predicate to simplify operations downstream.  Mask is known to be zero
1394/// for bits that V cannot have.
1395bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1396                                     unsigned Depth) const {
1397  APInt KnownZero, KnownOne;
1398  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1399  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1400  return (KnownZero & Mask) == Mask;
1401}
1402
1403/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1404/// known to be either zero or one and return them in the KnownZero/KnownOne
1405/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1406/// processing.
1407void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1408                                     APInt &KnownZero, APInt &KnownOne,
1409                                     unsigned Depth) const {
1410  unsigned BitWidth = Mask.getBitWidth();
1411  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1412         "Mask size mismatches value type size!");
1413
1414  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1415  if (Depth == 6 || Mask == 0)
1416    return;  // Limit search depth.
1417
1418  APInt KnownZero2, KnownOne2;
1419
1420  switch (Op.getOpcode()) {
1421  case ISD::Constant:
1422    // We know all of the bits for a constant!
1423    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1424    KnownZero = ~KnownOne & Mask;
1425    return;
1426  case ISD::AND:
1427    // If either the LHS or the RHS are Zero, the result is zero.
1428    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1429    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1430                      KnownZero2, KnownOne2, Depth+1);
1431    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1432    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1433
1434    // Output known-1 bits are only known if set in both the LHS & RHS.
1435    KnownOne &= KnownOne2;
1436    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1437    KnownZero |= KnownZero2;
1438    return;
1439  case ISD::OR:
1440    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1441    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1442                      KnownZero2, KnownOne2, Depth+1);
1443    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1444    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1445
1446    // Output known-0 bits are only known if clear in both the LHS & RHS.
1447    KnownZero &= KnownZero2;
1448    // Output known-1 are known to be set if set in either the LHS | RHS.
1449    KnownOne |= KnownOne2;
1450    return;
1451  case ISD::XOR: {
1452    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1453    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1454    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1455    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1456
1457    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1458    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1459    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1460    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1461    KnownZero = KnownZeroOut;
1462    return;
1463  }
1464  case ISD::MUL: {
1465    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1466    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1467    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1468    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1469    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1470
1471    // If low bits are zero in either operand, output low known-0 bits.
1472    // Also compute a conserative estimate for high known-0 bits.
1473    // More trickiness is possible, but this is sufficient for the
1474    // interesting case of alignment computation.
1475    KnownOne.clear();
1476    unsigned TrailZ = KnownZero.countTrailingOnes() +
1477                      KnownZero2.countTrailingOnes();
1478    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1479                               KnownZero2.countLeadingOnes(),
1480                               BitWidth) - BitWidth;
1481
1482    TrailZ = std::min(TrailZ, BitWidth);
1483    LeadZ = std::min(LeadZ, BitWidth);
1484    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1485                APInt::getHighBitsSet(BitWidth, LeadZ);
1486    KnownZero &= Mask;
1487    return;
1488  }
1489  case ISD::UDIV: {
1490    // For the purposes of computing leading zeros we can conservatively
1491    // treat a udiv as a logical right shift by the power of 2 known to
1492    // be less than the denominator.
1493    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1494    ComputeMaskedBits(Op.getOperand(0),
1495                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1496    unsigned LeadZ = KnownZero2.countLeadingOnes();
1497
1498    KnownOne2.clear();
1499    KnownZero2.clear();
1500    ComputeMaskedBits(Op.getOperand(1),
1501                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1502    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1503    if (RHSUnknownLeadingOnes != BitWidth)
1504      LeadZ = std::min(BitWidth,
1505                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1506
1507    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1508    return;
1509  }
1510  case ISD::SELECT:
1511    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1512    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1513    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1515
1516    // Only known if known in both the LHS and RHS.
1517    KnownOne &= KnownOne2;
1518    KnownZero &= KnownZero2;
1519    return;
1520  case ISD::SELECT_CC:
1521    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1522    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1523    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1524    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1525
1526    // Only known if known in both the LHS and RHS.
1527    KnownOne &= KnownOne2;
1528    KnownZero &= KnownZero2;
1529    return;
1530  case ISD::SADDO:
1531  case ISD::UADDO:
1532  case ISD::SSUBO:
1533  case ISD::USUBO:
1534  case ISD::SMULO:
1535  case ISD::UMULO:
1536    if (Op.getResNo() != 1)
1537      return;
1538    // The boolean result conforms to getBooleanContents.  Fall through.
1539  case ISD::SETCC:
1540    // If we know the result of a setcc has the top bits zero, use this info.
1541    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1542        BitWidth > 1)
1543      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1544    return;
1545  case ISD::SHL:
1546    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1547    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1548      unsigned ShAmt = SA->getZExtValue();
1549
1550      // If the shift count is an invalid immediate, don't do anything.
1551      if (ShAmt >= BitWidth)
1552        return;
1553
1554      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1555                        KnownZero, KnownOne, Depth+1);
1556      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1557      KnownZero <<= ShAmt;
1558      KnownOne  <<= ShAmt;
1559      // low bits known zero.
1560      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1561    }
1562    return;
1563  case ISD::SRL:
1564    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1565    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1566      unsigned ShAmt = SA->getZExtValue();
1567
1568      // If the shift count is an invalid immediate, don't do anything.
1569      if (ShAmt >= BitWidth)
1570        return;
1571
1572      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1573                        KnownZero, KnownOne, Depth+1);
1574      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575      KnownZero = KnownZero.lshr(ShAmt);
1576      KnownOne  = KnownOne.lshr(ShAmt);
1577
1578      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1579      KnownZero |= HighBits;  // High bits known zero.
1580    }
1581    return;
1582  case ISD::SRA:
1583    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1584      unsigned ShAmt = SA->getZExtValue();
1585
1586      // If the shift count is an invalid immediate, don't do anything.
1587      if (ShAmt >= BitWidth)
1588        return;
1589
1590      APInt InDemandedMask = (Mask << ShAmt);
1591      // If any of the demanded bits are produced by the sign extension, we also
1592      // demand the input sign bit.
1593      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1594      if (HighBits.getBoolValue())
1595        InDemandedMask |= APInt::getSignBit(BitWidth);
1596
1597      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1598                        Depth+1);
1599      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1600      KnownZero = KnownZero.lshr(ShAmt);
1601      KnownOne  = KnownOne.lshr(ShAmt);
1602
1603      // Handle the sign bits.
1604      APInt SignBit = APInt::getSignBit(BitWidth);
1605      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1606
1607      if (KnownZero.intersects(SignBit)) {
1608        KnownZero |= HighBits;  // New bits are known zero.
1609      } else if (KnownOne.intersects(SignBit)) {
1610        KnownOne  |= HighBits;  // New bits are known one.
1611      }
1612    }
1613    return;
1614  case ISD::SIGN_EXTEND_INREG: {
1615    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1616    unsigned EBits = EVT.getSizeInBits();
1617
1618    // Sign extension.  Compute the demanded bits in the result that are not
1619    // present in the input.
1620    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1621
1622    APInt InSignBit = APInt::getSignBit(EBits);
1623    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1624
1625    // If the sign extended bits are demanded, we know that the sign
1626    // bit is demanded.
1627    InSignBit.zext(BitWidth);
1628    if (NewBits.getBoolValue())
1629      InputDemandedBits |= InSignBit;
1630
1631    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1632                      KnownZero, KnownOne, Depth+1);
1633    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1634
1635    // If the sign bit of the input is known set or clear, then we know the
1636    // top bits of the result.
1637    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1638      KnownZero |= NewBits;
1639      KnownOne  &= ~NewBits;
1640    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1641      KnownOne  |= NewBits;
1642      KnownZero &= ~NewBits;
1643    } else {                              // Input sign bit unknown
1644      KnownZero &= ~NewBits;
1645      KnownOne  &= ~NewBits;
1646    }
1647    return;
1648  }
1649  case ISD::CTTZ:
1650  case ISD::CTLZ:
1651  case ISD::CTPOP: {
1652    unsigned LowBits = Log2_32(BitWidth)+1;
1653    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1654    KnownOne.clear();
1655    return;
1656  }
1657  case ISD::LOAD: {
1658    if (ISD::isZEXTLoad(Op.getNode())) {
1659      LoadSDNode *LD = cast<LoadSDNode>(Op);
1660      MVT VT = LD->getMemoryVT();
1661      unsigned MemBits = VT.getSizeInBits();
1662      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1663    }
1664    return;
1665  }
1666  case ISD::ZERO_EXTEND: {
1667    MVT InVT = Op.getOperand(0).getValueType();
1668    unsigned InBits = InVT.getSizeInBits();
1669    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1670    APInt InMask    = Mask;
1671    InMask.trunc(InBits);
1672    KnownZero.trunc(InBits);
1673    KnownOne.trunc(InBits);
1674    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1675    KnownZero.zext(BitWidth);
1676    KnownOne.zext(BitWidth);
1677    KnownZero |= NewBits;
1678    return;
1679  }
1680  case ISD::SIGN_EXTEND: {
1681    MVT InVT = Op.getOperand(0).getValueType();
1682    unsigned InBits = InVT.getSizeInBits();
1683    APInt InSignBit = APInt::getSignBit(InBits);
1684    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1685    APInt InMask = Mask;
1686    InMask.trunc(InBits);
1687
1688    // If any of the sign extended bits are demanded, we know that the sign
1689    // bit is demanded. Temporarily set this bit in the mask for our callee.
1690    if (NewBits.getBoolValue())
1691      InMask |= InSignBit;
1692
1693    KnownZero.trunc(InBits);
1694    KnownOne.trunc(InBits);
1695    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1696
1697    // Note if the sign bit is known to be zero or one.
1698    bool SignBitKnownZero = KnownZero.isNegative();
1699    bool SignBitKnownOne  = KnownOne.isNegative();
1700    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1701           "Sign bit can't be known to be both zero and one!");
1702
1703    // If the sign bit wasn't actually demanded by our caller, we don't
1704    // want it set in the KnownZero and KnownOne result values. Reset the
1705    // mask and reapply it to the result values.
1706    InMask = Mask;
1707    InMask.trunc(InBits);
1708    KnownZero &= InMask;
1709    KnownOne  &= InMask;
1710
1711    KnownZero.zext(BitWidth);
1712    KnownOne.zext(BitWidth);
1713
1714    // If the sign bit is known zero or one, the top bits match.
1715    if (SignBitKnownZero)
1716      KnownZero |= NewBits;
1717    else if (SignBitKnownOne)
1718      KnownOne  |= NewBits;
1719    return;
1720  }
1721  case ISD::ANY_EXTEND: {
1722    MVT InVT = Op.getOperand(0).getValueType();
1723    unsigned InBits = InVT.getSizeInBits();
1724    APInt InMask = Mask;
1725    InMask.trunc(InBits);
1726    KnownZero.trunc(InBits);
1727    KnownOne.trunc(InBits);
1728    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1729    KnownZero.zext(BitWidth);
1730    KnownOne.zext(BitWidth);
1731    return;
1732  }
1733  case ISD::TRUNCATE: {
1734    MVT InVT = Op.getOperand(0).getValueType();
1735    unsigned InBits = InVT.getSizeInBits();
1736    APInt InMask = Mask;
1737    InMask.zext(InBits);
1738    KnownZero.zext(InBits);
1739    KnownOne.zext(InBits);
1740    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1741    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1742    KnownZero.trunc(BitWidth);
1743    KnownOne.trunc(BitWidth);
1744    break;
1745  }
1746  case ISD::AssertZext: {
1747    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1748    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1749    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1750                      KnownOne, Depth+1);
1751    KnownZero |= (~InMask) & Mask;
1752    return;
1753  }
1754  case ISD::FGETSIGN:
1755    // All bits are zero except the low bit.
1756    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1757    return;
1758
1759  case ISD::SUB: {
1760    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1761      // We know that the top bits of C-X are clear if X contains less bits
1762      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1763      // positive if we can prove that X is >= 0 and < 16.
1764      if (CLHS->getAPIntValue().isNonNegative()) {
1765        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1766        // NLZ can't be BitWidth with no sign bit
1767        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1768        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1769                          Depth+1);
1770
1771        // If all of the MaskV bits are known to be zero, then we know the
1772        // output top bits are zero, because we now know that the output is
1773        // from [0-C].
1774        if ((KnownZero2 & MaskV) == MaskV) {
1775          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1776          // Top bits known zero.
1777          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1778        }
1779      }
1780    }
1781  }
1782  // fall through
1783  case ISD::ADD: {
1784    // Output known-0 bits are known if clear or set in both the low clear bits
1785    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1786    // low 3 bits clear.
1787    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1788    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1789    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1790    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1791
1792    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1793    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1794    KnownZeroOut = std::min(KnownZeroOut,
1795                            KnownZero2.countTrailingOnes());
1796
1797    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1798    return;
1799  }
1800  case ISD::SREM:
1801    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1802      const APInt &RA = Rem->getAPIntValue();
1803      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1804        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1805        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1806        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1807
1808        // If the sign bit of the first operand is zero, the sign bit of
1809        // the result is zero. If the first operand has no one bits below
1810        // the second operand's single 1 bit, its sign will be zero.
1811        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1812          KnownZero2 |= ~LowBits;
1813
1814        KnownZero |= KnownZero2 & Mask;
1815
1816        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1817      }
1818    }
1819    return;
1820  case ISD::UREM: {
1821    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1822      const APInt &RA = Rem->getAPIntValue();
1823      if (RA.isPowerOf2()) {
1824        APInt LowBits = (RA - 1);
1825        APInt Mask2 = LowBits & Mask;
1826        KnownZero |= ~LowBits & Mask;
1827        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1828        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1829        break;
1830      }
1831    }
1832
1833    // Since the result is less than or equal to either operand, any leading
1834    // zero bits in either operand must also exist in the result.
1835    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1836    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1837                      Depth+1);
1838    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1839                      Depth+1);
1840
1841    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1842                                KnownZero2.countLeadingOnes());
1843    KnownOne.clear();
1844    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1845    return;
1846  }
1847  default:
1848    // Allow the target to implement this method for its nodes.
1849    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1850  case ISD::INTRINSIC_WO_CHAIN:
1851  case ISD::INTRINSIC_W_CHAIN:
1852  case ISD::INTRINSIC_VOID:
1853      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1854    }
1855    return;
1856  }
1857}
1858
1859/// ComputeNumSignBits - Return the number of times the sign bit of the
1860/// register is replicated into the other bits.  We know that at least 1 bit
1861/// is always equal to the sign bit (itself), but other cases can give us
1862/// information.  For example, immediately after an "SRA X, 2", we know that
1863/// the top 3 bits are all equal to each other, so we return 3.
1864unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1865  MVT VT = Op.getValueType();
1866  assert(VT.isInteger() && "Invalid VT!");
1867  unsigned VTBits = VT.getSizeInBits();
1868  unsigned Tmp, Tmp2;
1869  unsigned FirstAnswer = 1;
1870
1871  if (Depth == 6)
1872    return 1;  // Limit search depth.
1873
1874  switch (Op.getOpcode()) {
1875  default: break;
1876  case ISD::AssertSext:
1877    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1878    return VTBits-Tmp+1;
1879  case ISD::AssertZext:
1880    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1881    return VTBits-Tmp;
1882
1883  case ISD::Constant: {
1884    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1885    // If negative, return # leading ones.
1886    if (Val.isNegative())
1887      return Val.countLeadingOnes();
1888
1889    // Return # leading zeros.
1890    return Val.countLeadingZeros();
1891  }
1892
1893  case ISD::SIGN_EXTEND:
1894    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1895    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1896
1897  case ISD::SIGN_EXTEND_INREG:
1898    // Max of the input and what this extends.
1899    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1900    Tmp = VTBits-Tmp+1;
1901
1902    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1903    return std::max(Tmp, Tmp2);
1904
1905  case ISD::SRA:
1906    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1907    // SRA X, C   -> adds C sign bits.
1908    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1909      Tmp += C->getZExtValue();
1910      if (Tmp > VTBits) Tmp = VTBits;
1911    }
1912    return Tmp;
1913  case ISD::SHL:
1914    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1915      // shl destroys sign bits.
1916      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1917      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1918          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1919      return Tmp - C->getZExtValue();
1920    }
1921    break;
1922  case ISD::AND:
1923  case ISD::OR:
1924  case ISD::XOR:    // NOT is handled here.
1925    // Logical binary ops preserve the number of sign bits at the worst.
1926    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1927    if (Tmp != 1) {
1928      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1929      FirstAnswer = std::min(Tmp, Tmp2);
1930      // We computed what we know about the sign bits as our first
1931      // answer. Now proceed to the generic code that uses
1932      // ComputeMaskedBits, and pick whichever answer is better.
1933    }
1934    break;
1935
1936  case ISD::SELECT:
1937    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1938    if (Tmp == 1) return 1;  // Early out.
1939    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1940    return std::min(Tmp, Tmp2);
1941
1942  case ISD::SADDO:
1943  case ISD::UADDO:
1944  case ISD::SSUBO:
1945  case ISD::USUBO:
1946  case ISD::SMULO:
1947  case ISD::UMULO:
1948    if (Op.getResNo() != 1)
1949      break;
1950    // The boolean result conforms to getBooleanContents.  Fall through.
1951  case ISD::SETCC:
1952    // If setcc returns 0/-1, all bits are sign bits.
1953    if (TLI.getBooleanContents() ==
1954        TargetLowering::ZeroOrNegativeOneBooleanContent)
1955      return VTBits;
1956    break;
1957  case ISD::ROTL:
1958  case ISD::ROTR:
1959    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1960      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1961
1962      // Handle rotate right by N like a rotate left by 32-N.
1963      if (Op.getOpcode() == ISD::ROTR)
1964        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1965
1966      // If we aren't rotating out all of the known-in sign bits, return the
1967      // number that are left.  This handles rotl(sext(x), 1) for example.
1968      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1969      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1970    }
1971    break;
1972  case ISD::ADD:
1973    // Add can have at most one carry bit.  Thus we know that the output
1974    // is, at worst, one more bit than the inputs.
1975    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1976    if (Tmp == 1) return 1;  // Early out.
1977
1978    // Special case decrementing a value (ADD X, -1):
1979    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1980      if (CRHS->isAllOnesValue()) {
1981        APInt KnownZero, KnownOne;
1982        APInt Mask = APInt::getAllOnesValue(VTBits);
1983        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1984
1985        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1986        // sign bits set.
1987        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1988          return VTBits;
1989
1990        // If we are subtracting one from a positive number, there is no carry
1991        // out of the result.
1992        if (KnownZero.isNegative())
1993          return Tmp;
1994      }
1995
1996    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1997    if (Tmp2 == 1) return 1;
1998      return std::min(Tmp, Tmp2)-1;
1999    break;
2000
2001  case ISD::SUB:
2002    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2003    if (Tmp2 == 1) return 1;
2004
2005    // Handle NEG.
2006    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2007      if (CLHS->isNullValue()) {
2008        APInt KnownZero, KnownOne;
2009        APInt Mask = APInt::getAllOnesValue(VTBits);
2010        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2011        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2012        // sign bits set.
2013        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2014          return VTBits;
2015
2016        // If the input is known to be positive (the sign bit is known clear),
2017        // the output of the NEG has the same number of sign bits as the input.
2018        if (KnownZero.isNegative())
2019          return Tmp2;
2020
2021        // Otherwise, we treat this like a SUB.
2022      }
2023
2024    // Sub can have at most one carry bit.  Thus we know that the output
2025    // is, at worst, one more bit than the inputs.
2026    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027    if (Tmp == 1) return 1;  // Early out.
2028      return std::min(Tmp, Tmp2)-1;
2029    break;
2030  case ISD::TRUNCATE:
2031    // FIXME: it's tricky to do anything useful for this, but it is an important
2032    // case for targets like X86.
2033    break;
2034  }
2035
2036  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2037  if (Op.getOpcode() == ISD::LOAD) {
2038    LoadSDNode *LD = cast<LoadSDNode>(Op);
2039    unsigned ExtType = LD->getExtensionType();
2040    switch (ExtType) {
2041    default: break;
2042    case ISD::SEXTLOAD:    // '17' bits known
2043      Tmp = LD->getMemoryVT().getSizeInBits();
2044      return VTBits-Tmp+1;
2045    case ISD::ZEXTLOAD:    // '16' bits known
2046      Tmp = LD->getMemoryVT().getSizeInBits();
2047      return VTBits-Tmp;
2048    }
2049  }
2050
2051  // Allow the target to implement this method for its nodes.
2052  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2053      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2054      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2055      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2056    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2057    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2058  }
2059
2060  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2061  // use this information.
2062  APInt KnownZero, KnownOne;
2063  APInt Mask = APInt::getAllOnesValue(VTBits);
2064  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2065
2066  if (KnownZero.isNegative()) {        // sign bit is 0
2067    Mask = KnownZero;
2068  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2069    Mask = KnownOne;
2070  } else {
2071    // Nothing known.
2072    return FirstAnswer;
2073  }
2074
2075  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2076  // the number of identical bits in the top of the input value.
2077  Mask = ~Mask;
2078  Mask <<= Mask.getBitWidth()-VTBits;
2079  // Return # leading zeros.  We use 'min' here in case Val was zero before
2080  // shifting.  We don't want to return '64' as for an i32 "0".
2081  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2082}
2083
2084
2085bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2086  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2087  if (!GA) return false;
2088  if (GA->getOffset() != 0) return false;
2089  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2090  if (!GV) return false;
2091  MachineModuleInfo *MMI = getMachineModuleInfo();
2092  return MMI && MMI->hasDebugInfo();
2093}
2094
2095
2096/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2097/// element of the result of the vector shuffle.
2098SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2099  MVT VT = N->getValueType(0);
2100  DebugLoc dl = N->getDebugLoc();
2101  SDValue PermMask = N->getOperand(2);
2102  SDValue Idx = PermMask.getOperand(i);
2103  if (Idx.getOpcode() == ISD::UNDEF)
2104    return getUNDEF(VT.getVectorElementType());
2105  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2106  unsigned NumElems = PermMask.getNumOperands();
2107  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2108  Index %= NumElems;
2109
2110  if (V.getOpcode() == ISD::BIT_CONVERT) {
2111    V = V.getOperand(0);
2112    MVT VVT = V.getValueType();
2113    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2114      return SDValue();
2115  }
2116  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2117    return (Index == 0) ? V.getOperand(0)
2118                      : getUNDEF(VT.getVectorElementType());
2119  if (V.getOpcode() == ISD::BUILD_VECTOR)
2120    return V.getOperand(Index);
2121  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2122    return getShuffleScalarElt(V.getNode(), Index);
2123  return SDValue();
2124}
2125
2126
2127/// getNode - Gets or creates the specified node.
2128///
2129SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2130  FoldingSetNodeID ID;
2131  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2132  void *IP = 0;
2133  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2134    return SDValue(E, 0);
2135  SDNode *N = NodeAllocator.Allocate<SDNode>();
2136  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2137  CSEMap.InsertNode(N, IP);
2138
2139  AllNodes.push_back(N);
2140#ifndef NDEBUG
2141  VerifyNode(N);
2142#endif
2143  return SDValue(N, 0);
2144}
2145
2146SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2147                              MVT VT, SDValue Operand) {
2148  // Constant fold unary operations with an integer constant operand.
2149  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2150    const APInt &Val = C->getAPIntValue();
2151    unsigned BitWidth = VT.getSizeInBits();
2152    switch (Opcode) {
2153    default: break;
2154    case ISD::SIGN_EXTEND:
2155      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2156    case ISD::ANY_EXTEND:
2157    case ISD::ZERO_EXTEND:
2158    case ISD::TRUNCATE:
2159      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2160    case ISD::UINT_TO_FP:
2161    case ISD::SINT_TO_FP: {
2162      const uint64_t zero[] = {0, 0};
2163      // No compile time operations on this type.
2164      if (VT==MVT::ppcf128)
2165        break;
2166      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2167      (void)apf.convertFromAPInt(Val,
2168                                 Opcode==ISD::SINT_TO_FP,
2169                                 APFloat::rmNearestTiesToEven);
2170      return getConstantFP(apf, VT);
2171    }
2172    case ISD::BIT_CONVERT:
2173      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2174        return getConstantFP(Val.bitsToFloat(), VT);
2175      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2176        return getConstantFP(Val.bitsToDouble(), VT);
2177      break;
2178    case ISD::BSWAP:
2179      return getConstant(Val.byteSwap(), VT);
2180    case ISD::CTPOP:
2181      return getConstant(Val.countPopulation(), VT);
2182    case ISD::CTLZ:
2183      return getConstant(Val.countLeadingZeros(), VT);
2184    case ISD::CTTZ:
2185      return getConstant(Val.countTrailingZeros(), VT);
2186    }
2187  }
2188
2189  // Constant fold unary operations with a floating point constant operand.
2190  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2191    APFloat V = C->getValueAPF();    // make copy
2192    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2193      switch (Opcode) {
2194      case ISD::FNEG:
2195        V.changeSign();
2196        return getConstantFP(V, VT);
2197      case ISD::FABS:
2198        V.clearSign();
2199        return getConstantFP(V, VT);
2200      case ISD::FP_ROUND:
2201      case ISD::FP_EXTEND: {
2202        bool ignored;
2203        // This can return overflow, underflow, or inexact; we don't care.
2204        // FIXME need to be more flexible about rounding mode.
2205        (void)V.convert(*MVTToAPFloatSemantics(VT),
2206                        APFloat::rmNearestTiesToEven, &ignored);
2207        return getConstantFP(V, VT);
2208      }
2209      case ISD::FP_TO_SINT:
2210      case ISD::FP_TO_UINT: {
2211        integerPart x;
2212        bool ignored;
2213        assert(integerPartWidth >= 64);
2214        // FIXME need to be more flexible about rounding mode.
2215        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2216                              Opcode==ISD::FP_TO_SINT,
2217                              APFloat::rmTowardZero, &ignored);
2218        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2219          break;
2220        return getConstant(x, VT);
2221      }
2222      case ISD::BIT_CONVERT:
2223        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2224          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2225        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2226          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2227        break;
2228      }
2229    }
2230  }
2231
2232  unsigned OpOpcode = Operand.getNode()->getOpcode();
2233  switch (Opcode) {
2234  case ISD::TokenFactor:
2235  case ISD::MERGE_VALUES:
2236  case ISD::CONCAT_VECTORS:
2237    return Operand;         // Factor, merge or concat of one node?  No need.
2238  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2239  case ISD::FP_EXTEND:
2240    assert(VT.isFloatingPoint() &&
2241           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2242    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2243    if (Operand.getOpcode() == ISD::UNDEF)
2244      return getUNDEF(VT);
2245    break;
2246  case ISD::SIGN_EXTEND:
2247    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2248           "Invalid SIGN_EXTEND!");
2249    if (Operand.getValueType() == VT) return Operand;   // noop extension
2250    assert(Operand.getValueType().bitsLT(VT)
2251           && "Invalid sext node, dst < src!");
2252    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2253      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2254    break;
2255  case ISD::ZERO_EXTEND:
2256    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2257           "Invalid ZERO_EXTEND!");
2258    if (Operand.getValueType() == VT) return Operand;   // noop extension
2259    assert(Operand.getValueType().bitsLT(VT)
2260           && "Invalid zext node, dst < src!");
2261    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2262      return getNode(ISD::ZERO_EXTEND, DL, VT,
2263                     Operand.getNode()->getOperand(0));
2264    break;
2265  case ISD::ANY_EXTEND:
2266    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2267           "Invalid ANY_EXTEND!");
2268    if (Operand.getValueType() == VT) return Operand;   // noop extension
2269    assert(Operand.getValueType().bitsLT(VT)
2270           && "Invalid anyext node, dst < src!");
2271    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2272      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2273      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2274    break;
2275  case ISD::TRUNCATE:
2276    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2277           "Invalid TRUNCATE!");
2278    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2279    assert(Operand.getValueType().bitsGT(VT)
2280           && "Invalid truncate node, src < dst!");
2281    if (OpOpcode == ISD::TRUNCATE)
2282      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2283    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2284             OpOpcode == ISD::ANY_EXTEND) {
2285      // If the source is smaller than the dest, we still need an extend.
2286      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2287        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2288      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2289        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2290      else
2291        return Operand.getNode()->getOperand(0);
2292    }
2293    break;
2294  case ISD::BIT_CONVERT:
2295    // Basic sanity checking.
2296    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2297           && "Cannot BIT_CONVERT between types of different sizes!");
2298    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2299    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2300      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2301    if (OpOpcode == ISD::UNDEF)
2302      return getUNDEF(VT);
2303    break;
2304  case ISD::SCALAR_TO_VECTOR:
2305    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2306           VT.getVectorElementType() == Operand.getValueType() &&
2307           "Illegal SCALAR_TO_VECTOR node!");
2308    if (OpOpcode == ISD::UNDEF)
2309      return getUNDEF(VT);
2310    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2311    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2312        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2313        Operand.getConstantOperandVal(1) == 0 &&
2314        Operand.getOperand(0).getValueType() == VT)
2315      return Operand.getOperand(0);
2316    break;
2317  case ISD::FNEG:
2318    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2319    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2320      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2321                     Operand.getNode()->getOperand(0));
2322    if (OpOpcode == ISD::FNEG)  // --X -> X
2323      return Operand.getNode()->getOperand(0);
2324    break;
2325  case ISD::FABS:
2326    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2327      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2328    break;
2329  }
2330
2331  SDNode *N;
2332  SDVTList VTs = getVTList(VT);
2333  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2334    FoldingSetNodeID ID;
2335    SDValue Ops[1] = { Operand };
2336    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2337    void *IP = 0;
2338    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2339      return SDValue(E, 0);
2340    N = NodeAllocator.Allocate<UnarySDNode>();
2341    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2342    CSEMap.InsertNode(N, IP);
2343  } else {
2344    N = NodeAllocator.Allocate<UnarySDNode>();
2345    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2346  }
2347
2348  AllNodes.push_back(N);
2349#ifndef NDEBUG
2350  VerifyNode(N);
2351#endif
2352  return SDValue(N, 0);
2353}
2354
2355SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2356                                             MVT VT,
2357                                             ConstantSDNode *Cst1,
2358                                             ConstantSDNode *Cst2) {
2359  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2360
2361  switch (Opcode) {
2362  case ISD::ADD:  return getConstant(C1 + C2, VT);
2363  case ISD::SUB:  return getConstant(C1 - C2, VT);
2364  case ISD::MUL:  return getConstant(C1 * C2, VT);
2365  case ISD::UDIV:
2366    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2367    break;
2368  case ISD::UREM:
2369    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2370    break;
2371  case ISD::SDIV:
2372    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2373    break;
2374  case ISD::SREM:
2375    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2376    break;
2377  case ISD::AND:  return getConstant(C1 & C2, VT);
2378  case ISD::OR:   return getConstant(C1 | C2, VT);
2379  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2380  case ISD::SHL:  return getConstant(C1 << C2, VT);
2381  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2382  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2383  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2384  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2385  default: break;
2386  }
2387
2388  return SDValue();
2389}
2390
2391SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2392                              SDValue N1, SDValue N2) {
2393  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2394  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2395  switch (Opcode) {
2396  default: break;
2397  case ISD::TokenFactor:
2398    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2399           N2.getValueType() == MVT::Other && "Invalid token factor!");
2400    // Fold trivial token factors.
2401    if (N1.getOpcode() == ISD::EntryToken) return N2;
2402    if (N2.getOpcode() == ISD::EntryToken) return N1;
2403    if (N1 == N2) return N1;
2404    break;
2405  case ISD::CONCAT_VECTORS:
2406    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2407    // one big BUILD_VECTOR.
2408    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2409        N2.getOpcode() == ISD::BUILD_VECTOR) {
2410      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2411      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2412      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2413    }
2414    break;
2415  case ISD::AND:
2416    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2417           N1.getValueType() == VT && "Binary operator types must match!");
2418    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2419    // worth handling here.
2420    if (N2C && N2C->isNullValue())
2421      return N2;
2422    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2423      return N1;
2424    break;
2425  case ISD::OR:
2426  case ISD::XOR:
2427  case ISD::ADD:
2428  case ISD::SUB:
2429    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2430           N1.getValueType() == VT && "Binary operator types must match!");
2431    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2432    // it's worth handling here.
2433    if (N2C && N2C->isNullValue())
2434      return N1;
2435    break;
2436  case ISD::UDIV:
2437  case ISD::UREM:
2438  case ISD::MULHU:
2439  case ISD::MULHS:
2440  case ISD::MUL:
2441  case ISD::SDIV:
2442  case ISD::SREM:
2443    assert(VT.isInteger() && "This operator does not apply to FP types!");
2444    // fall through
2445  case ISD::FADD:
2446  case ISD::FSUB:
2447  case ISD::FMUL:
2448  case ISD::FDIV:
2449  case ISD::FREM:
2450    if (UnsafeFPMath) {
2451      if (Opcode == ISD::FADD) {
2452        // 0+x --> x
2453        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2454          if (CFP->getValueAPF().isZero())
2455            return N2;
2456        // x+0 --> x
2457        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2458          if (CFP->getValueAPF().isZero())
2459            return N1;
2460      } else if (Opcode == ISD::FSUB) {
2461        // x-0 --> x
2462        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2463          if (CFP->getValueAPF().isZero())
2464            return N1;
2465      }
2466    }
2467    assert(N1.getValueType() == N2.getValueType() &&
2468           N1.getValueType() == VT && "Binary operator types must match!");
2469    break;
2470  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2471    assert(N1.getValueType() == VT &&
2472           N1.getValueType().isFloatingPoint() &&
2473           N2.getValueType().isFloatingPoint() &&
2474           "Invalid FCOPYSIGN!");
2475    break;
2476  case ISD::SHL:
2477  case ISD::SRA:
2478  case ISD::SRL:
2479  case ISD::ROTL:
2480  case ISD::ROTR:
2481    assert(VT == N1.getValueType() &&
2482           "Shift operators return type must be the same as their first arg");
2483    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2484           "Shifts only work on integers");
2485
2486    // Always fold shifts of i1 values so the code generator doesn't need to
2487    // handle them.  Since we know the size of the shift has to be less than the
2488    // size of the value, the shift/rotate count is guaranteed to be zero.
2489    if (VT == MVT::i1)
2490      return N1;
2491    break;
2492  case ISD::FP_ROUND_INREG: {
2493    MVT EVT = cast<VTSDNode>(N2)->getVT();
2494    assert(VT == N1.getValueType() && "Not an inreg round!");
2495    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2496           "Cannot FP_ROUND_INREG integer types");
2497    assert(EVT.bitsLE(VT) && "Not rounding down!");
2498    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2499    break;
2500  }
2501  case ISD::FP_ROUND:
2502    assert(VT.isFloatingPoint() &&
2503           N1.getValueType().isFloatingPoint() &&
2504           VT.bitsLE(N1.getValueType()) &&
2505           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2506    if (N1.getValueType() == VT) return N1;  // noop conversion.
2507    break;
2508  case ISD::AssertSext:
2509  case ISD::AssertZext: {
2510    MVT EVT = cast<VTSDNode>(N2)->getVT();
2511    assert(VT == N1.getValueType() && "Not an inreg extend!");
2512    assert(VT.isInteger() && EVT.isInteger() &&
2513           "Cannot *_EXTEND_INREG FP types");
2514    assert(EVT.bitsLE(VT) && "Not extending!");
2515    if (VT == EVT) return N1; // noop assertion.
2516    break;
2517  }
2518  case ISD::SIGN_EXTEND_INREG: {
2519    MVT EVT = cast<VTSDNode>(N2)->getVT();
2520    assert(VT == N1.getValueType() && "Not an inreg extend!");
2521    assert(VT.isInteger() && EVT.isInteger() &&
2522           "Cannot *_EXTEND_INREG FP types");
2523    assert(EVT.bitsLE(VT) && "Not extending!");
2524    if (EVT == VT) return N1;  // Not actually extending
2525
2526    if (N1C) {
2527      APInt Val = N1C->getAPIntValue();
2528      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2529      Val <<= Val.getBitWidth()-FromBits;
2530      Val = Val.ashr(Val.getBitWidth()-FromBits);
2531      return getConstant(Val, VT);
2532    }
2533    break;
2534  }
2535  case ISD::EXTRACT_VECTOR_ELT:
2536    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2537    if (N1.getOpcode() == ISD::UNDEF)
2538      return getUNDEF(VT);
2539
2540    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2541    // expanding copies of large vectors from registers.
2542    if (N2C &&
2543        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2544        N1.getNumOperands() > 0) {
2545      unsigned Factor =
2546        N1.getOperand(0).getValueType().getVectorNumElements();
2547      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2548                     N1.getOperand(N2C->getZExtValue() / Factor),
2549                     getConstant(N2C->getZExtValue() % Factor,
2550                                 N2.getValueType()));
2551    }
2552
2553    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2554    // expanding large vector constants.
2555    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2556      return N1.getOperand(N2C->getZExtValue());
2557
2558    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2559    // operations are lowered to scalars.
2560    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2561      // If the indices are the same, return the inserted element.
2562      if (N1.getOperand(2) == N2)
2563        return N1.getOperand(1);
2564      // If the indices are known different, extract the element from
2565      // the original vector.
2566      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2567               isa<ConstantSDNode>(N2))
2568        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2569    }
2570    break;
2571  case ISD::EXTRACT_ELEMENT:
2572    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2573    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2574           (N1.getValueType().isInteger() == VT.isInteger()) &&
2575           "Wrong types for EXTRACT_ELEMENT!");
2576
2577    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2578    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2579    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2580    if (N1.getOpcode() == ISD::BUILD_PAIR)
2581      return N1.getOperand(N2C->getZExtValue());
2582
2583    // EXTRACT_ELEMENT of a constant int is also very common.
2584    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2585      unsigned ElementSize = VT.getSizeInBits();
2586      unsigned Shift = ElementSize * N2C->getZExtValue();
2587      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2588      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2589    }
2590    break;
2591  case ISD::EXTRACT_SUBVECTOR:
2592    if (N1.getValueType() == VT) // Trivial extraction.
2593      return N1;
2594    break;
2595  }
2596
2597  if (N1C) {
2598    if (N2C) {
2599      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2600      if (SV.getNode()) return SV;
2601    } else {      // Cannonicalize constant to RHS if commutative
2602      if (isCommutativeBinOp(Opcode)) {
2603        std::swap(N1C, N2C);
2604        std::swap(N1, N2);
2605      }
2606    }
2607  }
2608
2609  // Constant fold FP operations.
2610  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2611  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2612  if (N1CFP) {
2613    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2614      // Cannonicalize constant to RHS if commutative
2615      std::swap(N1CFP, N2CFP);
2616      std::swap(N1, N2);
2617    } else if (N2CFP && VT != MVT::ppcf128) {
2618      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2619      APFloat::opStatus s;
2620      switch (Opcode) {
2621      case ISD::FADD:
2622        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2623        if (s != APFloat::opInvalidOp)
2624          return getConstantFP(V1, VT);
2625        break;
2626      case ISD::FSUB:
2627        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2628        if (s!=APFloat::opInvalidOp)
2629          return getConstantFP(V1, VT);
2630        break;
2631      case ISD::FMUL:
2632        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2633        if (s!=APFloat::opInvalidOp)
2634          return getConstantFP(V1, VT);
2635        break;
2636      case ISD::FDIV:
2637        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2638        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2639          return getConstantFP(V1, VT);
2640        break;
2641      case ISD::FREM :
2642        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2643        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2644          return getConstantFP(V1, VT);
2645        break;
2646      case ISD::FCOPYSIGN:
2647        V1.copySign(V2);
2648        return getConstantFP(V1, VT);
2649      default: break;
2650      }
2651    }
2652  }
2653
2654  // Canonicalize an UNDEF to the RHS, even over a constant.
2655  if (N1.getOpcode() == ISD::UNDEF) {
2656    if (isCommutativeBinOp(Opcode)) {
2657      std::swap(N1, N2);
2658    } else {
2659      switch (Opcode) {
2660      case ISD::FP_ROUND_INREG:
2661      case ISD::SIGN_EXTEND_INREG:
2662      case ISD::SUB:
2663      case ISD::FSUB:
2664      case ISD::FDIV:
2665      case ISD::FREM:
2666      case ISD::SRA:
2667        return N1;     // fold op(undef, arg2) -> undef
2668      case ISD::UDIV:
2669      case ISD::SDIV:
2670      case ISD::UREM:
2671      case ISD::SREM:
2672      case ISD::SRL:
2673      case ISD::SHL:
2674        if (!VT.isVector())
2675          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2676        // For vectors, we can't easily build an all zero vector, just return
2677        // the LHS.
2678        return N2;
2679      }
2680    }
2681  }
2682
2683  // Fold a bunch of operators when the RHS is undef.
2684  if (N2.getOpcode() == ISD::UNDEF) {
2685    switch (Opcode) {
2686    case ISD::XOR:
2687      if (N1.getOpcode() == ISD::UNDEF)
2688        // Handle undef ^ undef -> 0 special case. This is a common
2689        // idiom (misuse).
2690        return getConstant(0, VT);
2691      // fallthrough
2692    case ISD::ADD:
2693    case ISD::ADDC:
2694    case ISD::ADDE:
2695    case ISD::SUB:
2696    case ISD::FADD:
2697    case ISD::FSUB:
2698    case ISD::FMUL:
2699    case ISD::FDIV:
2700    case ISD::FREM:
2701    case ISD::UDIV:
2702    case ISD::SDIV:
2703    case ISD::UREM:
2704    case ISD::SREM:
2705      return N2;       // fold op(arg1, undef) -> undef
2706    case ISD::MUL:
2707    case ISD::AND:
2708    case ISD::SRL:
2709    case ISD::SHL:
2710      if (!VT.isVector())
2711        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2712      // For vectors, we can't easily build an all zero vector, just return
2713      // the LHS.
2714      return N1;
2715    case ISD::OR:
2716      if (!VT.isVector())
2717        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2718      // For vectors, we can't easily build an all one vector, just return
2719      // the LHS.
2720      return N1;
2721    case ISD::SRA:
2722      return N1;
2723    }
2724  }
2725
2726  // Memoize this node if possible.
2727  SDNode *N;
2728  SDVTList VTs = getVTList(VT);
2729  if (VT != MVT::Flag) {
2730    SDValue Ops[] = { N1, N2 };
2731    FoldingSetNodeID ID;
2732    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2733    void *IP = 0;
2734    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2735      return SDValue(E, 0);
2736    N = NodeAllocator.Allocate<BinarySDNode>();
2737    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2738    CSEMap.InsertNode(N, IP);
2739  } else {
2740    N = NodeAllocator.Allocate<BinarySDNode>();
2741    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2742  }
2743
2744  AllNodes.push_back(N);
2745#ifndef NDEBUG
2746  VerifyNode(N);
2747#endif
2748  return SDValue(N, 0);
2749}
2750
2751SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2752                              SDValue N1, SDValue N2, SDValue N3) {
2753  // Perform various simplifications.
2754  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2755  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2756  switch (Opcode) {
2757  case ISD::CONCAT_VECTORS:
2758    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2759    // one big BUILD_VECTOR.
2760    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2761        N2.getOpcode() == ISD::BUILD_VECTOR &&
2762        N3.getOpcode() == ISD::BUILD_VECTOR) {
2763      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2764      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2765      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2766      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2767    }
2768    break;
2769  case ISD::SETCC: {
2770    // Use FoldSetCC to simplify SETCC's.
2771    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2772    if (Simp.getNode()) return Simp;
2773    break;
2774  }
2775  case ISD::SELECT:
2776    if (N1C) {
2777     if (N1C->getZExtValue())
2778        return N2;             // select true, X, Y -> X
2779      else
2780        return N3;             // select false, X, Y -> Y
2781    }
2782
2783    if (N2 == N3) return N2;   // select C, X, X -> X
2784    break;
2785  case ISD::BRCOND:
2786    if (N2C) {
2787      if (N2C->getZExtValue()) // Unconditional branch
2788        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2789      else
2790        return N1;         // Never-taken branch
2791    }
2792    break;
2793  case ISD::VECTOR_SHUFFLE:
2794    assert(N1.getValueType() == N2.getValueType() &&
2795           N1.getValueType().isVector() &&
2796           VT.isVector() && N3.getValueType().isVector() &&
2797           N3.getOpcode() == ISD::BUILD_VECTOR &&
2798           VT.getVectorNumElements() == N3.getNumOperands() &&
2799           "Illegal VECTOR_SHUFFLE node!");
2800    break;
2801  case ISD::BIT_CONVERT:
2802    // Fold bit_convert nodes from a type to themselves.
2803    if (N1.getValueType() == VT)
2804      return N1;
2805    break;
2806  }
2807
2808  // Memoize node if it doesn't produce a flag.
2809  SDNode *N;
2810  SDVTList VTs = getVTList(VT);
2811  if (VT != MVT::Flag) {
2812    SDValue Ops[] = { N1, N2, N3 };
2813    FoldingSetNodeID ID;
2814    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2815    void *IP = 0;
2816    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2817      return SDValue(E, 0);
2818    N = NodeAllocator.Allocate<TernarySDNode>();
2819    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2820    CSEMap.InsertNode(N, IP);
2821  } else {
2822    N = NodeAllocator.Allocate<TernarySDNode>();
2823    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2824  }
2825  AllNodes.push_back(N);
2826#ifndef NDEBUG
2827  VerifyNode(N);
2828#endif
2829  return SDValue(N, 0);
2830}
2831
2832SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2833                              SDValue N1, SDValue N2, SDValue N3,
2834                              SDValue N4) {
2835  SDValue Ops[] = { N1, N2, N3, N4 };
2836  return getNode(Opcode, DL, VT, Ops, 4);
2837}
2838
2839SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2840                              SDValue N1, SDValue N2, SDValue N3,
2841                              SDValue N4, SDValue N5) {
2842  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2843  return getNode(Opcode, DL, VT, Ops, 5);
2844}
2845
2846/// getMemsetValue - Vectorized representation of the memset value
2847/// operand.
2848static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2849                              DebugLoc dl) {
2850  unsigned NumBits = VT.isVector() ?
2851    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2852  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2853    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2854    unsigned Shift = 8;
2855    for (unsigned i = NumBits; i > 8; i >>= 1) {
2856      Val = (Val << Shift) | Val;
2857      Shift <<= 1;
2858    }
2859    if (VT.isInteger())
2860      return DAG.getConstant(Val, VT);
2861    return DAG.getConstantFP(APFloat(Val), VT);
2862  }
2863
2864  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2865  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2866  unsigned Shift = 8;
2867  for (unsigned i = NumBits; i > 8; i >>= 1) {
2868    Value = DAG.getNode(ISD::OR, dl, VT,
2869                        DAG.getNode(ISD::SHL, dl, VT, Value,
2870                                    DAG.getConstant(Shift,
2871                                                    TLI.getShiftAmountTy())),
2872                        Value);
2873    Shift <<= 1;
2874  }
2875
2876  return Value;
2877}
2878
2879/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2880/// used when a memcpy is turned into a memset when the source is a constant
2881/// string ptr.
2882static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2883                                    const TargetLowering &TLI,
2884                                    std::string &Str, unsigned Offset) {
2885  // Handle vector with all elements zero.
2886  if (Str.empty()) {
2887    if (VT.isInteger())
2888      return DAG.getConstant(0, VT);
2889    unsigned NumElts = VT.getVectorNumElements();
2890    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2891    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2892                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2893  }
2894
2895  assert(!VT.isVector() && "Can't handle vector type here!");
2896  unsigned NumBits = VT.getSizeInBits();
2897  unsigned MSB = NumBits / 8;
2898  uint64_t Val = 0;
2899  if (TLI.isLittleEndian())
2900    Offset = Offset + MSB - 1;
2901  for (unsigned i = 0; i != MSB; ++i) {
2902    Val = (Val << 8) | (unsigned char)Str[Offset];
2903    Offset += TLI.isLittleEndian() ? -1 : 1;
2904  }
2905  return DAG.getConstant(Val, VT);
2906}
2907
2908/// getMemBasePlusOffset - Returns base and offset node for the
2909///
2910static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2911                                      SelectionDAG &DAG) {
2912  MVT VT = Base.getValueType();
2913  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2914                     VT, Base, DAG.getConstant(Offset, VT));
2915}
2916
2917/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2918///
2919static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2920  unsigned SrcDelta = 0;
2921  GlobalAddressSDNode *G = NULL;
2922  if (Src.getOpcode() == ISD::GlobalAddress)
2923    G = cast<GlobalAddressSDNode>(Src);
2924  else if (Src.getOpcode() == ISD::ADD &&
2925           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2926           Src.getOperand(1).getOpcode() == ISD::Constant) {
2927    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2928    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2929  }
2930  if (!G)
2931    return false;
2932
2933  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2934  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2935    return true;
2936
2937  return false;
2938}
2939
2940/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2941/// to replace the memset / memcpy is below the threshold. It also returns the
2942/// types of the sequence of memory ops to perform memset / memcpy.
2943static
2944bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2945                              SDValue Dst, SDValue Src,
2946                              unsigned Limit, uint64_t Size, unsigned &Align,
2947                              std::string &Str, bool &isSrcStr,
2948                              SelectionDAG &DAG,
2949                              const TargetLowering &TLI) {
2950  isSrcStr = isMemSrcFromString(Src, Str);
2951  bool isSrcConst = isa<ConstantSDNode>(Src);
2952  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2953  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2954  if (VT != MVT::iAny) {
2955    unsigned NewAlign = (unsigned)
2956      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2957    // If source is a string constant, this will require an unaligned load.
2958    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2959      if (Dst.getOpcode() != ISD::FrameIndex) {
2960        // Can't change destination alignment. It requires a unaligned store.
2961        if (AllowUnalign)
2962          VT = MVT::iAny;
2963      } else {
2964        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2965        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2966        if (MFI->isFixedObjectIndex(FI)) {
2967          // Can't change destination alignment. It requires a unaligned store.
2968          if (AllowUnalign)
2969            VT = MVT::iAny;
2970        } else {
2971          // Give the stack frame object a larger alignment if needed.
2972          if (MFI->getObjectAlignment(FI) < NewAlign)
2973            MFI->setObjectAlignment(FI, NewAlign);
2974          Align = NewAlign;
2975        }
2976      }
2977    }
2978  }
2979
2980  if (VT == MVT::iAny) {
2981    if (AllowUnalign) {
2982      VT = MVT::i64;
2983    } else {
2984      switch (Align & 7) {
2985      case 0:  VT = MVT::i64; break;
2986      case 4:  VT = MVT::i32; break;
2987      case 2:  VT = MVT::i16; break;
2988      default: VT = MVT::i8;  break;
2989      }
2990    }
2991
2992    MVT LVT = MVT::i64;
2993    while (!TLI.isTypeLegal(LVT))
2994      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2995    assert(LVT.isInteger());
2996
2997    if (VT.bitsGT(LVT))
2998      VT = LVT;
2999  }
3000
3001  unsigned NumMemOps = 0;
3002  while (Size != 0) {
3003    unsigned VTSize = VT.getSizeInBits() / 8;
3004    while (VTSize > Size) {
3005      // For now, only use non-vector load / store's for the left-over pieces.
3006      if (VT.isVector()) {
3007        VT = MVT::i64;
3008        while (!TLI.isTypeLegal(VT))
3009          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3010        VTSize = VT.getSizeInBits() / 8;
3011      } else {
3012        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3013        VTSize >>= 1;
3014      }
3015    }
3016
3017    if (++NumMemOps > Limit)
3018      return false;
3019    MemOps.push_back(VT);
3020    Size -= VTSize;
3021  }
3022
3023  return true;
3024}
3025
3026static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3027                                         SDValue Chain, SDValue Dst,
3028                                         SDValue Src, uint64_t Size,
3029                                         unsigned Align, bool AlwaysInline,
3030                                         const Value *DstSV, uint64_t DstSVOff,
3031                                         const Value *SrcSV, uint64_t SrcSVOff){
3032  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3033
3034  // Expand memcpy to a series of load and store ops if the size operand falls
3035  // below a certain threshold.
3036  std::vector<MVT> MemOps;
3037  uint64_t Limit = -1ULL;
3038  if (!AlwaysInline)
3039    Limit = TLI.getMaxStoresPerMemcpy();
3040  unsigned DstAlign = Align;  // Destination alignment can change.
3041  std::string Str;
3042  bool CopyFromStr;
3043  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3044                                Str, CopyFromStr, DAG, TLI))
3045    return SDValue();
3046
3047
3048  bool isZeroStr = CopyFromStr && Str.empty();
3049  SmallVector<SDValue, 8> OutChains;
3050  unsigned NumMemOps = MemOps.size();
3051  uint64_t SrcOff = 0, DstOff = 0;
3052  for (unsigned i = 0; i < NumMemOps; i++) {
3053    MVT VT = MemOps[i];
3054    unsigned VTSize = VT.getSizeInBits() / 8;
3055    SDValue Value, Store;
3056
3057    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3058      // It's unlikely a store of a vector immediate can be done in a single
3059      // instruction. It would require a load from a constantpool first.
3060      // We also handle store a vector with all zero's.
3061      // FIXME: Handle other cases where store of vector immediate is done in
3062      // a single instruction.
3063      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3064      Store = DAG.getStore(Chain, dl, Value,
3065                           getMemBasePlusOffset(Dst, DstOff, DAG),
3066                           DstSV, DstSVOff + DstOff, false, DstAlign);
3067    } else {
3068      Value = DAG.getLoad(VT, dl, Chain,
3069                          getMemBasePlusOffset(Src, SrcOff, DAG),
3070                          SrcSV, SrcSVOff + SrcOff, false, Align);
3071      Store = DAG.getStore(Chain, dl, Value,
3072                           getMemBasePlusOffset(Dst, DstOff, DAG),
3073                           DstSV, DstSVOff + DstOff, false, DstAlign);
3074    }
3075    OutChains.push_back(Store);
3076    SrcOff += VTSize;
3077    DstOff += VTSize;
3078  }
3079
3080  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3081                     &OutChains[0], OutChains.size());
3082}
3083
3084static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3085                                          SDValue Chain, SDValue Dst,
3086                                          SDValue Src, uint64_t Size,
3087                                          unsigned Align, bool AlwaysInline,
3088                                          const Value *DstSV, uint64_t DstSVOff,
3089                                          const Value *SrcSV, uint64_t SrcSVOff){
3090  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3091
3092  // Expand memmove to a series of load and store ops if the size operand falls
3093  // below a certain threshold.
3094  std::vector<MVT> MemOps;
3095  uint64_t Limit = -1ULL;
3096  if (!AlwaysInline)
3097    Limit = TLI.getMaxStoresPerMemmove();
3098  unsigned DstAlign = Align;  // Destination alignment can change.
3099  std::string Str;
3100  bool CopyFromStr;
3101  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3102                                Str, CopyFromStr, DAG, TLI))
3103    return SDValue();
3104
3105  uint64_t SrcOff = 0, DstOff = 0;
3106
3107  SmallVector<SDValue, 8> LoadValues;
3108  SmallVector<SDValue, 8> LoadChains;
3109  SmallVector<SDValue, 8> OutChains;
3110  unsigned NumMemOps = MemOps.size();
3111  for (unsigned i = 0; i < NumMemOps; i++) {
3112    MVT VT = MemOps[i];
3113    unsigned VTSize = VT.getSizeInBits() / 8;
3114    SDValue Value, Store;
3115
3116    Value = DAG.getLoad(VT, dl, Chain,
3117                        getMemBasePlusOffset(Src, SrcOff, DAG),
3118                        SrcSV, SrcSVOff + SrcOff, false, Align);
3119    LoadValues.push_back(Value);
3120    LoadChains.push_back(Value.getValue(1));
3121    SrcOff += VTSize;
3122  }
3123  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3124                      &LoadChains[0], LoadChains.size());
3125  OutChains.clear();
3126  for (unsigned i = 0; i < NumMemOps; i++) {
3127    MVT VT = MemOps[i];
3128    unsigned VTSize = VT.getSizeInBits() / 8;
3129    SDValue Value, Store;
3130
3131    Store = DAG.getStore(Chain, dl, LoadValues[i],
3132                         getMemBasePlusOffset(Dst, DstOff, DAG),
3133                         DstSV, DstSVOff + DstOff, false, DstAlign);
3134    OutChains.push_back(Store);
3135    DstOff += VTSize;
3136  }
3137
3138  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3139                     &OutChains[0], OutChains.size());
3140}
3141
3142static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3143                                 SDValue Chain, SDValue Dst,
3144                                 SDValue Src, uint64_t Size,
3145                                 unsigned Align,
3146                                 const Value *DstSV, uint64_t DstSVOff) {
3147  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3148
3149  // Expand memset to a series of load/store ops if the size operand
3150  // falls below a certain threshold.
3151  std::vector<MVT> MemOps;
3152  std::string Str;
3153  bool CopyFromStr;
3154  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3155                                Size, Align, Str, CopyFromStr, DAG, TLI))
3156    return SDValue();
3157
3158  SmallVector<SDValue, 8> OutChains;
3159  uint64_t DstOff = 0;
3160
3161  unsigned NumMemOps = MemOps.size();
3162  for (unsigned i = 0; i < NumMemOps; i++) {
3163    MVT VT = MemOps[i];
3164    unsigned VTSize = VT.getSizeInBits() / 8;
3165    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3166    SDValue Store = DAG.getStore(Chain, dl, Value,
3167                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3168                                 DstSV, DstSVOff + DstOff);
3169    OutChains.push_back(Store);
3170    DstOff += VTSize;
3171  }
3172
3173  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3174                     &OutChains[0], OutChains.size());
3175}
3176
3177SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3178                                SDValue Src, SDValue Size,
3179                                unsigned Align, bool AlwaysInline,
3180                                const Value *DstSV, uint64_t DstSVOff,
3181                                const Value *SrcSV, uint64_t SrcSVOff) {
3182
3183  // Check to see if we should lower the memcpy to loads and stores first.
3184  // For cases within the target-specified limits, this is the best choice.
3185  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3186  if (ConstantSize) {
3187    // Memcpy with size zero? Just return the original chain.
3188    if (ConstantSize->isNullValue())
3189      return Chain;
3190
3191    SDValue Result =
3192      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3193                              ConstantSize->getZExtValue(),
3194                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3195    if (Result.getNode())
3196      return Result;
3197  }
3198
3199  // Then check to see if we should lower the memcpy with target-specific
3200  // code. If the target chooses to do this, this is the next best.
3201  SDValue Result =
3202    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3203                                AlwaysInline,
3204                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3205  if (Result.getNode())
3206    return Result;
3207
3208  // If we really need inline code and the target declined to provide it,
3209  // use a (potentially long) sequence of loads and stores.
3210  if (AlwaysInline) {
3211    assert(ConstantSize && "AlwaysInline requires a constant size!");
3212    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3213                                   ConstantSize->getZExtValue(), Align, true,
3214                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3215  }
3216
3217  // Emit a library call.
3218  TargetLowering::ArgListTy Args;
3219  TargetLowering::ArgListEntry Entry;
3220  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3221  Entry.Node = Dst; Args.push_back(Entry);
3222  Entry.Node = Src; Args.push_back(Entry);
3223  Entry.Node = Size; Args.push_back(Entry);
3224  // FIXME: pass in DebugLoc
3225  std::pair<SDValue,SDValue> CallResult =
3226    TLI.LowerCallTo(Chain, Type::VoidTy,
3227                    false, false, false, false, CallingConv::C, false,
3228                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3229                    Args, *this, dl);
3230  return CallResult.second;
3231}
3232
3233SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3234                                 SDValue Src, SDValue Size,
3235                                 unsigned Align,
3236                                 const Value *DstSV, uint64_t DstSVOff,
3237                                 const Value *SrcSV, uint64_t SrcSVOff) {
3238
3239  // Check to see if we should lower the memmove to loads and stores first.
3240  // For cases within the target-specified limits, this is the best choice.
3241  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3242  if (ConstantSize) {
3243    // Memmove with size zero? Just return the original chain.
3244    if (ConstantSize->isNullValue())
3245      return Chain;
3246
3247    SDValue Result =
3248      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3249                               ConstantSize->getZExtValue(),
3250                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3251    if (Result.getNode())
3252      return Result;
3253  }
3254
3255  // Then check to see if we should lower the memmove with target-specific
3256  // code. If the target chooses to do this, this is the next best.
3257  SDValue Result =
3258    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3259                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3260  if (Result.getNode())
3261    return Result;
3262
3263  // Emit a library call.
3264  TargetLowering::ArgListTy Args;
3265  TargetLowering::ArgListEntry Entry;
3266  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3267  Entry.Node = Dst; Args.push_back(Entry);
3268  Entry.Node = Src; Args.push_back(Entry);
3269  Entry.Node = Size; Args.push_back(Entry);
3270  // FIXME:  pass in DebugLoc
3271  std::pair<SDValue,SDValue> CallResult =
3272    TLI.LowerCallTo(Chain, Type::VoidTy,
3273                    false, false, false, false, CallingConv::C, false,
3274                    getExternalSymbol("memmove", TLI.getPointerTy()),
3275                    Args, *this, dl);
3276  return CallResult.second;
3277}
3278
3279SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3280                                SDValue Src, SDValue Size,
3281                                unsigned Align,
3282                                const Value *DstSV, uint64_t DstSVOff) {
3283
3284  // Check to see if we should lower the memset to stores first.
3285  // For cases within the target-specified limits, this is the best choice.
3286  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3287  if (ConstantSize) {
3288    // Memset with size zero? Just return the original chain.
3289    if (ConstantSize->isNullValue())
3290      return Chain;
3291
3292    SDValue Result =
3293      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3294                      Align, DstSV, DstSVOff);
3295    if (Result.getNode())
3296      return Result;
3297  }
3298
3299  // Then check to see if we should lower the memset with target-specific
3300  // code. If the target chooses to do this, this is the next best.
3301  SDValue Result =
3302    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3303                                DstSV, DstSVOff);
3304  if (Result.getNode())
3305    return Result;
3306
3307  // Emit a library call.
3308  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3309  TargetLowering::ArgListTy Args;
3310  TargetLowering::ArgListEntry Entry;
3311  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3312  Args.push_back(Entry);
3313  // Extend or truncate the argument to be an i32 value for the call.
3314  if (Src.getValueType().bitsGT(MVT::i32))
3315    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3316  else
3317    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3318  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3319  Args.push_back(Entry);
3320  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3321  Args.push_back(Entry);
3322  // FIXME: pass in DebugLoc
3323  std::pair<SDValue,SDValue> CallResult =
3324    TLI.LowerCallTo(Chain, Type::VoidTy,
3325                    false, false, false, false, CallingConv::C, false,
3326                    getExternalSymbol("memset", TLI.getPointerTy()),
3327                    Args, *this, dl);
3328  return CallResult.second;
3329}
3330
3331SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3332                                SDValue Chain,
3333                                SDValue Ptr, SDValue Cmp,
3334                                SDValue Swp, const Value* PtrVal,
3335                                unsigned Alignment) {
3336  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3337  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3338
3339  MVT VT = Cmp.getValueType();
3340
3341  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3342    Alignment = getMVTAlignment(MemVT);
3343
3344  SDVTList VTs = getVTList(VT, MVT::Other);
3345  FoldingSetNodeID ID;
3346  ID.AddInteger(MemVT.getRawBits());
3347  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3348  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3349  void* IP = 0;
3350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3351    return SDValue(E, 0);
3352  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3353  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3354                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3355  CSEMap.InsertNode(N, IP);
3356  AllNodes.push_back(N);
3357  return SDValue(N, 0);
3358}
3359
3360SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3361                                SDValue Chain,
3362                                SDValue Ptr, SDValue Val,
3363                                const Value* PtrVal,
3364                                unsigned Alignment) {
3365  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3366          Opcode == ISD::ATOMIC_LOAD_SUB ||
3367          Opcode == ISD::ATOMIC_LOAD_AND ||
3368          Opcode == ISD::ATOMIC_LOAD_OR ||
3369          Opcode == ISD::ATOMIC_LOAD_XOR ||
3370          Opcode == ISD::ATOMIC_LOAD_NAND ||
3371          Opcode == ISD::ATOMIC_LOAD_MIN ||
3372          Opcode == ISD::ATOMIC_LOAD_MAX ||
3373          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3374          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3375          Opcode == ISD::ATOMIC_SWAP) &&
3376         "Invalid Atomic Op");
3377
3378  MVT VT = Val.getValueType();
3379
3380  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3381    Alignment = getMVTAlignment(MemVT);
3382
3383  SDVTList VTs = getVTList(VT, MVT::Other);
3384  FoldingSetNodeID ID;
3385  ID.AddInteger(MemVT.getRawBits());
3386  SDValue Ops[] = {Chain, Ptr, Val};
3387  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3388  void* IP = 0;
3389  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3390    return SDValue(E, 0);
3391  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3392  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3393                       Chain, Ptr, Val, PtrVal, Alignment);
3394  CSEMap.InsertNode(N, IP);
3395  AllNodes.push_back(N);
3396  return SDValue(N, 0);
3397}
3398
3399/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3400/// Allowed to return something different (and simpler) if Simplify is true.
3401SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3402                                     DebugLoc dl) {
3403  if (NumOps == 1)
3404    return Ops[0];
3405
3406  SmallVector<MVT, 4> VTs;
3407  VTs.reserve(NumOps);
3408  for (unsigned i = 0; i < NumOps; ++i)
3409    VTs.push_back(Ops[i].getValueType());
3410  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3411                 Ops, NumOps);
3412}
3413
3414SDValue
3415SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3416                                  const MVT *VTs, unsigned NumVTs,
3417                                  const SDValue *Ops, unsigned NumOps,
3418                                  MVT MemVT, const Value *srcValue, int SVOff,
3419                                  unsigned Align, bool Vol,
3420                                  bool ReadMem, bool WriteMem) {
3421  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3422                             MemVT, srcValue, SVOff, Align, Vol,
3423                             ReadMem, WriteMem);
3424}
3425
3426SDValue
3427SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3428                                  const SDValue *Ops, unsigned NumOps,
3429                                  MVT MemVT, const Value *srcValue, int SVOff,
3430                                  unsigned Align, bool Vol,
3431                                  bool ReadMem, bool WriteMem) {
3432  // Memoize the node unless it returns a flag.
3433  MemIntrinsicSDNode *N;
3434  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3435    FoldingSetNodeID ID;
3436    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3437    void *IP = 0;
3438    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3439      return SDValue(E, 0);
3440
3441    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3442    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3443                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3444    CSEMap.InsertNode(N, IP);
3445  } else {
3446    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3447    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3448                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3449  }
3450  AllNodes.push_back(N);
3451  return SDValue(N, 0);
3452}
3453
3454SDValue
3455SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3456                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3457                      const SDValue *Operands, unsigned NumOperands) {
3458  // Do not include isTailCall in the folding set profile.
3459  FoldingSetNodeID ID;
3460  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3461  ID.AddInteger(CallingConv);
3462  ID.AddInteger(IsVarArgs);
3463  void *IP = 0;
3464  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3465    // Instead of including isTailCall in the folding set, we just
3466    // set the flag of the existing node.
3467    if (!IsTailCall)
3468      cast<CallSDNode>(E)->setNotTailCall();
3469    return SDValue(E, 0);
3470  }
3471  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3472  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3473                     VTs, Operands, NumOperands);
3474  CSEMap.InsertNode(N, IP);
3475  AllNodes.push_back(N);
3476  return SDValue(N, 0);
3477}
3478
3479SDValue
3480SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3481                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3482                      SDValue Ptr, SDValue Offset,
3483                      const Value *SV, int SVOffset, MVT EVT,
3484                      bool isVolatile, unsigned Alignment) {
3485  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3486    Alignment = getMVTAlignment(VT);
3487
3488  if (VT == EVT) {
3489    ExtType = ISD::NON_EXTLOAD;
3490  } else if (ExtType == ISD::NON_EXTLOAD) {
3491    assert(VT == EVT && "Non-extending load from different memory type!");
3492  } else {
3493    // Extending load.
3494    if (VT.isVector())
3495      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3496             "Invalid vector extload!");
3497    else
3498      assert(EVT.bitsLT(VT) &&
3499             "Should only be an extending load, not truncating!");
3500    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3501           "Cannot sign/zero extend a FP/Vector load!");
3502    assert(VT.isInteger() == EVT.isInteger() &&
3503           "Cannot convert from FP to Int or Int -> FP!");
3504  }
3505
3506  bool Indexed = AM != ISD::UNINDEXED;
3507  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3508         "Unindexed load with an offset!");
3509
3510  SDVTList VTs = Indexed ?
3511    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3512  SDValue Ops[] = { Chain, Ptr, Offset };
3513  FoldingSetNodeID ID;
3514  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3515  ID.AddInteger(EVT.getRawBits());
3516  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3517  void *IP = 0;
3518  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3519    return SDValue(E, 0);
3520  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3521  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3522                     Alignment, isVolatile);
3523  CSEMap.InsertNode(N, IP);
3524  AllNodes.push_back(N);
3525  return SDValue(N, 0);
3526}
3527
3528SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3529                              SDValue Chain, SDValue Ptr,
3530                              const Value *SV, int SVOffset,
3531                              bool isVolatile, unsigned Alignment) {
3532  SDValue Undef = getUNDEF(Ptr.getValueType());
3533  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3534                 SV, SVOffset, VT, isVolatile, Alignment);
3535}
3536
3537SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3538                                 SDValue Chain, SDValue Ptr,
3539                                 const Value *SV,
3540                                 int SVOffset, MVT EVT,
3541                                 bool isVolatile, unsigned Alignment) {
3542  SDValue Undef = getUNDEF(Ptr.getValueType());
3543  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3544                 SV, SVOffset, EVT, isVolatile, Alignment);
3545}
3546
3547SDValue
3548SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3549                             SDValue Offset, ISD::MemIndexedMode AM) {
3550  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3551  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3552         "Load is already a indexed load!");
3553  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3554                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3555                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3556                 LD->isVolatile(), LD->getAlignment());
3557}
3558
3559SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3560                               SDValue Ptr, const Value *SV, int SVOffset,
3561                               bool isVolatile, unsigned Alignment) {
3562  MVT VT = Val.getValueType();
3563
3564  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3565    Alignment = getMVTAlignment(VT);
3566
3567  SDVTList VTs = getVTList(MVT::Other);
3568  SDValue Undef = getUNDEF(Ptr.getValueType());
3569  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3570  FoldingSetNodeID ID;
3571  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3572  ID.AddInteger(VT.getRawBits());
3573  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3574                                     isVolatile, Alignment));
3575  void *IP = 0;
3576  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3577    return SDValue(E, 0);
3578  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3579  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3580                      VT, SV, SVOffset, Alignment, isVolatile);
3581  CSEMap.InsertNode(N, IP);
3582  AllNodes.push_back(N);
3583  return SDValue(N, 0);
3584}
3585
3586SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3587                                    SDValue Ptr, const Value *SV,
3588                                    int SVOffset, MVT SVT,
3589                                    bool isVolatile, unsigned Alignment) {
3590  MVT VT = Val.getValueType();
3591
3592  if (VT == SVT)
3593    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3594
3595  assert(VT.bitsGT(SVT) && "Not a truncation?");
3596  assert(VT.isInteger() == SVT.isInteger() &&
3597         "Can't do FP-INT conversion!");
3598
3599  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3600    Alignment = getMVTAlignment(VT);
3601
3602  SDVTList VTs = getVTList(MVT::Other);
3603  SDValue Undef = getUNDEF(Ptr.getValueType());
3604  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3605  FoldingSetNodeID ID;
3606  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3607  ID.AddInteger(SVT.getRawBits());
3608  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3609                                     isVolatile, Alignment));
3610  void *IP = 0;
3611  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3612    return SDValue(E, 0);
3613  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3614  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3615                      SVT, SV, SVOffset, Alignment, isVolatile);
3616  CSEMap.InsertNode(N, IP);
3617  AllNodes.push_back(N);
3618  return SDValue(N, 0);
3619}
3620
3621SDValue
3622SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3623                              SDValue Offset, ISD::MemIndexedMode AM) {
3624  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3625  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3626         "Store is already a indexed store!");
3627  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3628  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3629  FoldingSetNodeID ID;
3630  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3631  ID.AddInteger(ST->getMemoryVT().getRawBits());
3632  ID.AddInteger(ST->getRawSubclassData());
3633  void *IP = 0;
3634  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3635    return SDValue(E, 0);
3636  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3637  new (N) StoreSDNode(Ops, dl, VTs, AM,
3638                      ST->isTruncatingStore(), ST->getMemoryVT(),
3639                      ST->getSrcValue(), ST->getSrcValueOffset(),
3640                      ST->getAlignment(), ST->isVolatile());
3641  CSEMap.InsertNode(N, IP);
3642  AllNodes.push_back(N);
3643  return SDValue(N, 0);
3644}
3645
3646SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3647                               SDValue Chain, SDValue Ptr,
3648                               SDValue SV) {
3649  SDValue Ops[] = { Chain, Ptr, SV };
3650  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3651}
3652
3653SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3654                              const SDUse *Ops, unsigned NumOps) {
3655  switch (NumOps) {
3656  case 0: return getNode(Opcode, DL, VT);
3657  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3658  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3659  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3660  default: break;
3661  }
3662
3663  // Copy from an SDUse array into an SDValue array for use with
3664  // the regular getNode logic.
3665  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3666  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3667}
3668
3669SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3670                              const SDValue *Ops, unsigned NumOps) {
3671  switch (NumOps) {
3672  case 0: return getNode(Opcode, DL, VT);
3673  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3674  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3675  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3676  default: break;
3677  }
3678
3679  switch (Opcode) {
3680  default: break;
3681  case ISD::SELECT_CC: {
3682    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3683    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3684           "LHS and RHS of condition must have same type!");
3685    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3686           "True and False arms of SelectCC must have same type!");
3687    assert(Ops[2].getValueType() == VT &&
3688           "select_cc node must be of same type as true and false value!");
3689    break;
3690  }
3691  case ISD::BR_CC: {
3692    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3693    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3694           "LHS/RHS of comparison should match types!");
3695    break;
3696  }
3697  }
3698
3699  // Memoize nodes.
3700  SDNode *N;
3701  SDVTList VTs = getVTList(VT);
3702
3703  if (VT != MVT::Flag) {
3704    FoldingSetNodeID ID;
3705    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3706    void *IP = 0;
3707
3708    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3709      return SDValue(E, 0);
3710
3711    N = NodeAllocator.Allocate<SDNode>();
3712    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3713    CSEMap.InsertNode(N, IP);
3714  } else {
3715    N = NodeAllocator.Allocate<SDNode>();
3716    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3717  }
3718
3719  AllNodes.push_back(N);
3720#ifndef NDEBUG
3721  VerifyNode(N);
3722#endif
3723  return SDValue(N, 0);
3724}
3725
3726SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3727                              const std::vector<MVT> &ResultTys,
3728                              const SDValue *Ops, unsigned NumOps) {
3729  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
3730                 Ops, NumOps);
3731}
3732
3733SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3734                              const MVT *VTs, unsigned NumVTs,
3735                              const SDValue *Ops, unsigned NumOps) {
3736  if (NumVTs == 1)
3737    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3738  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3739}
3740
3741SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3742                              const SDValue *Ops, unsigned NumOps) {
3743  if (VTList.NumVTs == 1)
3744    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3745
3746  switch (Opcode) {
3747  // FIXME: figure out how to safely handle things like
3748  // int foo(int x) { return 1 << (x & 255); }
3749  // int bar() { return foo(256); }
3750#if 0
3751  case ISD::SRA_PARTS:
3752  case ISD::SRL_PARTS:
3753  case ISD::SHL_PARTS:
3754    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3755        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3756      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3757    else if (N3.getOpcode() == ISD::AND)
3758      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3759        // If the and is only masking out bits that cannot effect the shift,
3760        // eliminate the and.
3761        unsigned NumBits = VT.getSizeInBits()*2;
3762        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3763          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3764      }
3765    break;
3766#endif
3767  }
3768
3769  // Memoize the node unless it returns a flag.
3770  SDNode *N;
3771  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3772    FoldingSetNodeID ID;
3773    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3774    void *IP = 0;
3775    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3776      return SDValue(E, 0);
3777    if (NumOps == 1) {
3778      N = NodeAllocator.Allocate<UnarySDNode>();
3779      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3780    } else if (NumOps == 2) {
3781      N = NodeAllocator.Allocate<BinarySDNode>();
3782      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3783    } else if (NumOps == 3) {
3784      N = NodeAllocator.Allocate<TernarySDNode>();
3785      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3786    } else {
3787      N = NodeAllocator.Allocate<SDNode>();
3788      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3789    }
3790    CSEMap.InsertNode(N, IP);
3791  } else {
3792    if (NumOps == 1) {
3793      N = NodeAllocator.Allocate<UnarySDNode>();
3794      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3795    } else if (NumOps == 2) {
3796      N = NodeAllocator.Allocate<BinarySDNode>();
3797      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3798    } else if (NumOps == 3) {
3799      N = NodeAllocator.Allocate<TernarySDNode>();
3800      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3801    } else {
3802      N = NodeAllocator.Allocate<SDNode>();
3803      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3804    }
3805  }
3806  AllNodes.push_back(N);
3807#ifndef NDEBUG
3808  VerifyNode(N);
3809#endif
3810  return SDValue(N, 0);
3811}
3812
3813SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3814  return getNode(Opcode, DL, VTList, 0, 0);
3815}
3816
3817SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3818                              SDValue N1) {
3819  SDValue Ops[] = { N1 };
3820  return getNode(Opcode, DL, VTList, Ops, 1);
3821}
3822
3823SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3824                              SDValue N1, SDValue N2) {
3825  SDValue Ops[] = { N1, N2 };
3826  return getNode(Opcode, DL, VTList, Ops, 2);
3827}
3828
3829SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3830                              SDValue N1, SDValue N2, SDValue N3) {
3831  SDValue Ops[] = { N1, N2, N3 };
3832  return getNode(Opcode, DL, VTList, Ops, 3);
3833}
3834
3835SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3836                              SDValue N1, SDValue N2, SDValue N3,
3837                              SDValue N4) {
3838  SDValue Ops[] = { N1, N2, N3, N4 };
3839  return getNode(Opcode, DL, VTList, Ops, 4);
3840}
3841
3842SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3843                              SDValue N1, SDValue N2, SDValue N3,
3844                              SDValue N4, SDValue N5) {
3845  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3846  return getNode(Opcode, DL, VTList, Ops, 5);
3847}
3848
3849SDVTList SelectionDAG::getVTList(MVT VT) {
3850  return makeVTList(SDNode::getValueTypeList(VT), 1);
3851}
3852
3853SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3854  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3855       E = VTList.rend(); I != E; ++I)
3856    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3857      return *I;
3858
3859  MVT *Array = Allocator.Allocate<MVT>(2);
3860  Array[0] = VT1;
3861  Array[1] = VT2;
3862  SDVTList Result = makeVTList(Array, 2);
3863  VTList.push_back(Result);
3864  return Result;
3865}
3866
3867SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3868  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3869       E = VTList.rend(); I != E; ++I)
3870    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3871                          I->VTs[2] == VT3)
3872      return *I;
3873
3874  MVT *Array = Allocator.Allocate<MVT>(3);
3875  Array[0] = VT1;
3876  Array[1] = VT2;
3877  Array[2] = VT3;
3878  SDVTList Result = makeVTList(Array, 3);
3879  VTList.push_back(Result);
3880  return Result;
3881}
3882
3883SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3884  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3885       E = VTList.rend(); I != E; ++I)
3886    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3887                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3888      return *I;
3889
3890  MVT *Array = Allocator.Allocate<MVT>(3);
3891  Array[0] = VT1;
3892  Array[1] = VT2;
3893  Array[2] = VT3;
3894  Array[3] = VT4;
3895  SDVTList Result = makeVTList(Array, 4);
3896  VTList.push_back(Result);
3897  return Result;
3898}
3899
3900SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3901  switch (NumVTs) {
3902    case 0: assert(0 && "Cannot have nodes without results!");
3903    case 1: return getVTList(VTs[0]);
3904    case 2: return getVTList(VTs[0], VTs[1]);
3905    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3906    default: break;
3907  }
3908
3909  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3910       E = VTList.rend(); I != E; ++I) {
3911    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3912      continue;
3913
3914    bool NoMatch = false;
3915    for (unsigned i = 2; i != NumVTs; ++i)
3916      if (VTs[i] != I->VTs[i]) {
3917        NoMatch = true;
3918        break;
3919      }
3920    if (!NoMatch)
3921      return *I;
3922  }
3923
3924  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3925  std::copy(VTs, VTs+NumVTs, Array);
3926  SDVTList Result = makeVTList(Array, NumVTs);
3927  VTList.push_back(Result);
3928  return Result;
3929}
3930
3931
3932/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3933/// specified operands.  If the resultant node already exists in the DAG,
3934/// this does not modify the specified node, instead it returns the node that
3935/// already exists.  If the resultant node does not exist in the DAG, the
3936/// input node is returned.  As a degenerate case, if you specify the same
3937/// input operands as the node already has, the input node is returned.
3938SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3939  SDNode *N = InN.getNode();
3940  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3941
3942  // Check to see if there is no change.
3943  if (Op == N->getOperand(0)) return InN;
3944
3945  // See if the modified node already exists.
3946  void *InsertPos = 0;
3947  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3948    return SDValue(Existing, InN.getResNo());
3949
3950  // Nope it doesn't.  Remove the node from its current place in the maps.
3951  if (InsertPos)
3952    if (!RemoveNodeFromCSEMaps(N))
3953      InsertPos = 0;
3954
3955  // Now we update the operands.
3956  N->OperandList[0].set(Op);
3957
3958  // If this gets put into a CSE map, add it.
3959  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3960  return InN;
3961}
3962
3963SDValue SelectionDAG::
3964UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3965  SDNode *N = InN.getNode();
3966  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3967
3968  // Check to see if there is no change.
3969  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3970    return InN;   // No operands changed, just return the input node.
3971
3972  // See if the modified node already exists.
3973  void *InsertPos = 0;
3974  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3975    return SDValue(Existing, InN.getResNo());
3976
3977  // Nope it doesn't.  Remove the node from its current place in the maps.
3978  if (InsertPos)
3979    if (!RemoveNodeFromCSEMaps(N))
3980      InsertPos = 0;
3981
3982  // Now we update the operands.
3983  if (N->OperandList[0] != Op1)
3984    N->OperandList[0].set(Op1);
3985  if (N->OperandList[1] != Op2)
3986    N->OperandList[1].set(Op2);
3987
3988  // If this gets put into a CSE map, add it.
3989  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3990  return InN;
3991}
3992
3993SDValue SelectionDAG::
3994UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3995  SDValue Ops[] = { Op1, Op2, Op3 };
3996  return UpdateNodeOperands(N, Ops, 3);
3997}
3998
3999SDValue SelectionDAG::
4000UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4001                   SDValue Op3, SDValue Op4) {
4002  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4003  return UpdateNodeOperands(N, Ops, 4);
4004}
4005
4006SDValue SelectionDAG::
4007UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4008                   SDValue Op3, SDValue Op4, SDValue Op5) {
4009  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4010  return UpdateNodeOperands(N, Ops, 5);
4011}
4012
4013SDValue SelectionDAG::
4014UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4015  SDNode *N = InN.getNode();
4016  assert(N->getNumOperands() == NumOps &&
4017         "Update with wrong number of operands");
4018
4019  // Check to see if there is no change.
4020  bool AnyChange = false;
4021  for (unsigned i = 0; i != NumOps; ++i) {
4022    if (Ops[i] != N->getOperand(i)) {
4023      AnyChange = true;
4024      break;
4025    }
4026  }
4027
4028  // No operands changed, just return the input node.
4029  if (!AnyChange) return InN;
4030
4031  // See if the modified node already exists.
4032  void *InsertPos = 0;
4033  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4034    return SDValue(Existing, InN.getResNo());
4035
4036  // Nope it doesn't.  Remove the node from its current place in the maps.
4037  if (InsertPos)
4038    if (!RemoveNodeFromCSEMaps(N))
4039      InsertPos = 0;
4040
4041  // Now we update the operands.
4042  for (unsigned i = 0; i != NumOps; ++i)
4043    if (N->OperandList[i] != Ops[i])
4044      N->OperandList[i].set(Ops[i]);
4045
4046  // If this gets put into a CSE map, add it.
4047  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4048  return InN;
4049}
4050
4051/// DropOperands - Release the operands and set this node to have
4052/// zero operands.
4053void SDNode::DropOperands() {
4054  // Unlike the code in MorphNodeTo that does this, we don't need to
4055  // watch for dead nodes here.
4056  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4057    SDUse &Use = *I++;
4058    Use.set(SDValue());
4059  }
4060}
4061
4062/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4063/// machine opcode.
4064///
4065SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4066                                   MVT VT) {
4067  SDVTList VTs = getVTList(VT);
4068  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4069}
4070
4071SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4072                                   MVT VT, SDValue Op1) {
4073  SDVTList VTs = getVTList(VT);
4074  SDValue Ops[] = { Op1 };
4075  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4076}
4077
4078SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4079                                   MVT VT, SDValue Op1,
4080                                   SDValue Op2) {
4081  SDVTList VTs = getVTList(VT);
4082  SDValue Ops[] = { Op1, Op2 };
4083  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4084}
4085
4086SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4087                                   MVT VT, SDValue Op1,
4088                                   SDValue Op2, SDValue Op3) {
4089  SDVTList VTs = getVTList(VT);
4090  SDValue Ops[] = { Op1, Op2, Op3 };
4091  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4092}
4093
4094SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4095                                   MVT VT, const SDValue *Ops,
4096                                   unsigned NumOps) {
4097  SDVTList VTs = getVTList(VT);
4098  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4099}
4100
4101SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4102                                   MVT VT1, MVT VT2, const SDValue *Ops,
4103                                   unsigned NumOps) {
4104  SDVTList VTs = getVTList(VT1, VT2);
4105  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4106}
4107
4108SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4109                                   MVT VT1, MVT VT2) {
4110  SDVTList VTs = getVTList(VT1, VT2);
4111  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4112}
4113
4114SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4115                                   MVT VT1, MVT VT2, MVT VT3,
4116                                   const SDValue *Ops, unsigned NumOps) {
4117  SDVTList VTs = getVTList(VT1, VT2, VT3);
4118  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4119}
4120
4121SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4122                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4123                                   const SDValue *Ops, unsigned NumOps) {
4124  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4125  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4126}
4127
4128SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4129                                   MVT VT1, MVT VT2,
4130                                   SDValue Op1) {
4131  SDVTList VTs = getVTList(VT1, VT2);
4132  SDValue Ops[] = { Op1 };
4133  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4134}
4135
4136SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4137                                   MVT VT1, MVT VT2,
4138                                   SDValue Op1, SDValue Op2) {
4139  SDVTList VTs = getVTList(VT1, VT2);
4140  SDValue Ops[] = { Op1, Op2 };
4141  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4142}
4143
4144SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4145                                   MVT VT1, MVT VT2,
4146                                   SDValue Op1, SDValue Op2,
4147                                   SDValue Op3) {
4148  SDVTList VTs = getVTList(VT1, VT2);
4149  SDValue Ops[] = { Op1, Op2, Op3 };
4150  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4151}
4152
4153SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4154                                   MVT VT1, MVT VT2, MVT VT3,
4155                                   SDValue Op1, SDValue Op2,
4156                                   SDValue Op3) {
4157  SDVTList VTs = getVTList(VT1, VT2, VT3);
4158  SDValue Ops[] = { Op1, Op2, Op3 };
4159  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4160}
4161
4162SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4163                                   SDVTList VTs, const SDValue *Ops,
4164                                   unsigned NumOps) {
4165  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4166}
4167
4168SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4169                                  MVT VT) {
4170  SDVTList VTs = getVTList(VT);
4171  return MorphNodeTo(N, Opc, VTs, 0, 0);
4172}
4173
4174SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4175                                  MVT VT, SDValue Op1) {
4176  SDVTList VTs = getVTList(VT);
4177  SDValue Ops[] = { Op1 };
4178  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4179}
4180
4181SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4182                                  MVT VT, SDValue Op1,
4183                                  SDValue Op2) {
4184  SDVTList VTs = getVTList(VT);
4185  SDValue Ops[] = { Op1, Op2 };
4186  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4187}
4188
4189SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4190                                  MVT VT, SDValue Op1,
4191                                  SDValue Op2, SDValue Op3) {
4192  SDVTList VTs = getVTList(VT);
4193  SDValue Ops[] = { Op1, Op2, Op3 };
4194  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4195}
4196
4197SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4198                                  MVT VT, const SDValue *Ops,
4199                                  unsigned NumOps) {
4200  SDVTList VTs = getVTList(VT);
4201  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4202}
4203
4204SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4205                                  MVT VT1, MVT VT2, const SDValue *Ops,
4206                                  unsigned NumOps) {
4207  SDVTList VTs = getVTList(VT1, VT2);
4208  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4209}
4210
4211SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4212                                  MVT VT1, MVT VT2) {
4213  SDVTList VTs = getVTList(VT1, VT2);
4214  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4215}
4216
4217SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4218                                  MVT VT1, MVT VT2, MVT VT3,
4219                                  const SDValue *Ops, unsigned NumOps) {
4220  SDVTList VTs = getVTList(VT1, VT2, VT3);
4221  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4222}
4223
4224SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4225                                  MVT VT1, MVT VT2,
4226                                  SDValue Op1) {
4227  SDVTList VTs = getVTList(VT1, VT2);
4228  SDValue Ops[] = { Op1 };
4229  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4230}
4231
4232SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4233                                  MVT VT1, MVT VT2,
4234                                  SDValue Op1, SDValue Op2) {
4235  SDVTList VTs = getVTList(VT1, VT2);
4236  SDValue Ops[] = { Op1, Op2 };
4237  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4238}
4239
4240SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4241                                  MVT VT1, MVT VT2,
4242                                  SDValue Op1, SDValue Op2,
4243                                  SDValue Op3) {
4244  SDVTList VTs = getVTList(VT1, VT2);
4245  SDValue Ops[] = { Op1, Op2, Op3 };
4246  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4247}
4248
4249/// MorphNodeTo - These *mutate* the specified node to have the specified
4250/// return type, opcode, and operands.
4251///
4252/// Note that MorphNodeTo returns the resultant node.  If there is already a
4253/// node of the specified opcode and operands, it returns that node instead of
4254/// the current one.  Note that the DebugLoc need not be the same.
4255///
4256/// Using MorphNodeTo is faster than creating a new node and swapping it in
4257/// with ReplaceAllUsesWith both because it often avoids allocating a new
4258/// node, and because it doesn't require CSE recalculation for any of
4259/// the node's users.
4260///
4261SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4262                                  SDVTList VTs, const SDValue *Ops,
4263                                  unsigned NumOps) {
4264  // If an identical node already exists, use it.
4265  void *IP = 0;
4266  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4267    FoldingSetNodeID ID;
4268    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4269    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4270      return ON;
4271  }
4272
4273  if (!RemoveNodeFromCSEMaps(N))
4274    IP = 0;
4275
4276  // Start the morphing.
4277  N->NodeType = Opc;
4278  N->ValueList = VTs.VTs;
4279  N->NumValues = VTs.NumVTs;
4280
4281  // Clear the operands list, updating used nodes to remove this from their
4282  // use list.  Keep track of any operands that become dead as a result.
4283  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4284  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4285    SDUse &Use = *I++;
4286    SDNode *Used = Use.getNode();
4287    Use.set(SDValue());
4288    if (Used->use_empty())
4289      DeadNodeSet.insert(Used);
4290  }
4291
4292  // If NumOps is larger than the # of operands we currently have, reallocate
4293  // the operand list.
4294  if (NumOps > N->NumOperands) {
4295    if (N->OperandsNeedDelete)
4296      delete[] N->OperandList;
4297
4298    if (N->isMachineOpcode()) {
4299      // We're creating a final node that will live unmorphed for the
4300      // remainder of the current SelectionDAG iteration, so we can allocate
4301      // the operands directly out of a pool with no recycling metadata.
4302      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4303      N->OperandsNeedDelete = false;
4304    } else {
4305      N->OperandList = new SDUse[NumOps];
4306      N->OperandsNeedDelete = true;
4307    }
4308  }
4309
4310  // Assign the new operands.
4311  N->NumOperands = NumOps;
4312  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4313    N->OperandList[i].setUser(N);
4314    N->OperandList[i].setInitial(Ops[i]);
4315  }
4316
4317  // Delete any nodes that are still dead after adding the uses for the
4318  // new operands.
4319  SmallVector<SDNode *, 16> DeadNodes;
4320  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4321       E = DeadNodeSet.end(); I != E; ++I)
4322    if ((*I)->use_empty())
4323      DeadNodes.push_back(*I);
4324  RemoveDeadNodes(DeadNodes);
4325
4326  if (IP)
4327    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4328  return N;
4329}
4330
4331
4332/// getTargetNode - These are used for target selectors to create a new node
4333/// with specified return type(s), target opcode, and operands.
4334///
4335/// Note that getTargetNode returns the resultant node.  If there is already a
4336/// node of the specified opcode and operands, it returns that node instead of
4337/// the current one.
4338SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4339  return getNode(~Opcode, dl, VT).getNode();
4340}
4341
4342SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4343                                    SDValue Op1) {
4344  return getNode(~Opcode, dl, VT, Op1).getNode();
4345}
4346
4347SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4348                                    SDValue Op1, SDValue Op2) {
4349  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4350}
4351
4352SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4353                                    SDValue Op1, SDValue Op2,
4354                                    SDValue Op3) {
4355  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4356}
4357
4358SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4359                                    const SDValue *Ops, unsigned NumOps) {
4360  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4361}
4362
4363SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4364                                    MVT VT1, MVT VT2) {
4365  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4366  SDValue Op;
4367  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4368}
4369
4370SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4371                                    MVT VT2, SDValue Op1) {
4372  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4373  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4374}
4375
4376SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4377                                    MVT VT2, SDValue Op1,
4378                                    SDValue Op2) {
4379  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4380  SDValue Ops[] = { Op1, Op2 };
4381  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4382}
4383
4384SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4385                                    MVT VT2, SDValue Op1,
4386                                    SDValue Op2, SDValue Op3) {
4387  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4388  SDValue Ops[] = { Op1, Op2, Op3 };
4389  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4390}
4391
4392SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4393                                    MVT VT1, MVT VT2,
4394                                    const SDValue *Ops, unsigned NumOps) {
4395  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4396  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4397}
4398
4399SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4400                                    MVT VT1, MVT VT2, MVT VT3,
4401                                    SDValue Op1, SDValue Op2) {
4402  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4403  SDValue Ops[] = { Op1, Op2 };
4404  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4405}
4406
4407SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4408                                    MVT VT1, MVT VT2, MVT VT3,
4409                                    SDValue Op1, SDValue Op2,
4410                                    SDValue Op3) {
4411  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4412  SDValue Ops[] = { Op1, Op2, Op3 };
4413  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4414}
4415
4416SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4417                                    MVT VT1, MVT VT2, MVT VT3,
4418                                    const SDValue *Ops, unsigned NumOps) {
4419  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4420  return getNode(~Opcode, dl, VTs, 3, Ops, NumOps).getNode();
4421}
4422
4423SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4424                                    MVT VT2, MVT VT3, MVT VT4,
4425                                    const SDValue *Ops, unsigned NumOps) {
4426  std::vector<MVT> VTList;
4427  VTList.push_back(VT1);
4428  VTList.push_back(VT2);
4429  VTList.push_back(VT3);
4430  VTList.push_back(VT4);
4431  const MVT *VTs = getNodeValueTypes(VTList);
4432  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4433}
4434
4435SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4436                                    const std::vector<MVT> &ResultTys,
4437                                    const SDValue *Ops, unsigned NumOps) {
4438  const MVT *VTs = getNodeValueTypes(ResultTys);
4439  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4440                 Ops, NumOps).getNode();
4441}
4442
4443/// getNodeIfExists - Get the specified node if it's already available, or
4444/// else return NULL.
4445SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4446                                      const SDValue *Ops, unsigned NumOps) {
4447  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4448    FoldingSetNodeID ID;
4449    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4450    void *IP = 0;
4451    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4452      return E;
4453  }
4454  return NULL;
4455}
4456
4457/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4458/// This can cause recursive merging of nodes in the DAG.
4459///
4460/// This version assumes From has a single result value.
4461///
4462void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4463                                      DAGUpdateListener *UpdateListener) {
4464  SDNode *From = FromN.getNode();
4465  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4466         "Cannot replace with this method!");
4467  assert(From != To.getNode() && "Cannot replace uses of with self");
4468
4469  // Iterate over all the existing uses of From. New uses will be added
4470  // to the beginning of the use list, which we avoid visiting.
4471  // This specifically avoids visiting uses of From that arise while the
4472  // replacement is happening, because any such uses would be the result
4473  // of CSE: If an existing node looks like From after one of its operands
4474  // is replaced by To, we don't want to replace of all its users with To
4475  // too. See PR3018 for more info.
4476  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4477  while (UI != UE) {
4478    SDNode *User = *UI;
4479
4480    // This node is about to morph, remove its old self from the CSE maps.
4481    RemoveNodeFromCSEMaps(User);
4482
4483    // A user can appear in a use list multiple times, and when this
4484    // happens the uses are usually next to each other in the list.
4485    // To help reduce the number of CSE recomputations, process all
4486    // the uses of this user that we can find this way.
4487    do {
4488      SDUse &Use = UI.getUse();
4489      ++UI;
4490      Use.set(To);
4491    } while (UI != UE && *UI == User);
4492
4493    // Now that we have modified User, add it back to the CSE maps.  If it
4494    // already exists there, recursively merge the results together.
4495    AddModifiedNodeToCSEMaps(User, UpdateListener);
4496  }
4497}
4498
4499/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4500/// This can cause recursive merging of nodes in the DAG.
4501///
4502/// This version assumes From/To have matching types and numbers of result
4503/// values.
4504///
4505void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4506                                      DAGUpdateListener *UpdateListener) {
4507  assert(From->getVTList().VTs == To->getVTList().VTs &&
4508         From->getNumValues() == To->getNumValues() &&
4509         "Cannot use this version of ReplaceAllUsesWith!");
4510
4511  // Handle the trivial case.
4512  if (From == To)
4513    return;
4514
4515  // Iterate over just the existing users of From. See the comments in
4516  // the ReplaceAllUsesWith above.
4517  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4518  while (UI != UE) {
4519    SDNode *User = *UI;
4520
4521    // This node is about to morph, remove its old self from the CSE maps.
4522    RemoveNodeFromCSEMaps(User);
4523
4524    // A user can appear in a use list multiple times, and when this
4525    // happens the uses are usually next to each other in the list.
4526    // To help reduce the number of CSE recomputations, process all
4527    // the uses of this user that we can find this way.
4528    do {
4529      SDUse &Use = UI.getUse();
4530      ++UI;
4531      Use.setNode(To);
4532    } while (UI != UE && *UI == User);
4533
4534    // Now that we have modified User, add it back to the CSE maps.  If it
4535    // already exists there, recursively merge the results together.
4536    AddModifiedNodeToCSEMaps(User, UpdateListener);
4537  }
4538}
4539
4540/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4541/// This can cause recursive merging of nodes in the DAG.
4542///
4543/// This version can replace From with any result values.  To must match the
4544/// number and types of values returned by From.
4545void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4546                                      const SDValue *To,
4547                                      DAGUpdateListener *UpdateListener) {
4548  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4549    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4550
4551  // Iterate over just the existing users of From. See the comments in
4552  // the ReplaceAllUsesWith above.
4553  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4554  while (UI != UE) {
4555    SDNode *User = *UI;
4556
4557    // This node is about to morph, remove its old self from the CSE maps.
4558    RemoveNodeFromCSEMaps(User);
4559
4560    // A user can appear in a use list multiple times, and when this
4561    // happens the uses are usually next to each other in the list.
4562    // To help reduce the number of CSE recomputations, process all
4563    // the uses of this user that we can find this way.
4564    do {
4565      SDUse &Use = UI.getUse();
4566      const SDValue &ToOp = To[Use.getResNo()];
4567      ++UI;
4568      Use.set(ToOp);
4569    } while (UI != UE && *UI == User);
4570
4571    // Now that we have modified User, add it back to the CSE maps.  If it
4572    // already exists there, recursively merge the results together.
4573    AddModifiedNodeToCSEMaps(User, UpdateListener);
4574  }
4575}
4576
4577/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4578/// uses of other values produced by From.getNode() alone.  The Deleted
4579/// vector is handled the same way as for ReplaceAllUsesWith.
4580void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4581                                             DAGUpdateListener *UpdateListener){
4582  // Handle the really simple, really trivial case efficiently.
4583  if (From == To) return;
4584
4585  // Handle the simple, trivial, case efficiently.
4586  if (From.getNode()->getNumValues() == 1) {
4587    ReplaceAllUsesWith(From, To, UpdateListener);
4588    return;
4589  }
4590
4591  // Iterate over just the existing users of From. See the comments in
4592  // the ReplaceAllUsesWith above.
4593  SDNode::use_iterator UI = From.getNode()->use_begin(),
4594                       UE = From.getNode()->use_end();
4595  while (UI != UE) {
4596    SDNode *User = *UI;
4597    bool UserRemovedFromCSEMaps = false;
4598
4599    // A user can appear in a use list multiple times, and when this
4600    // happens the uses are usually next to each other in the list.
4601    // To help reduce the number of CSE recomputations, process all
4602    // the uses of this user that we can find this way.
4603    do {
4604      SDUse &Use = UI.getUse();
4605
4606      // Skip uses of different values from the same node.
4607      if (Use.getResNo() != From.getResNo()) {
4608        ++UI;
4609        continue;
4610      }
4611
4612      // If this node hasn't been modified yet, it's still in the CSE maps,
4613      // so remove its old self from the CSE maps.
4614      if (!UserRemovedFromCSEMaps) {
4615        RemoveNodeFromCSEMaps(User);
4616        UserRemovedFromCSEMaps = true;
4617      }
4618
4619      ++UI;
4620      Use.set(To);
4621    } while (UI != UE && *UI == User);
4622
4623    // We are iterating over all uses of the From node, so if a use
4624    // doesn't use the specific value, no changes are made.
4625    if (!UserRemovedFromCSEMaps)
4626      continue;
4627
4628    // Now that we have modified User, add it back to the CSE maps.  If it
4629    // already exists there, recursively merge the results together.
4630    AddModifiedNodeToCSEMaps(User, UpdateListener);
4631  }
4632}
4633
4634namespace {
4635  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4636  /// to record information about a use.
4637  struct UseMemo {
4638    SDNode *User;
4639    unsigned Index;
4640    SDUse *Use;
4641  };
4642
4643  /// operator< - Sort Memos by User.
4644  bool operator<(const UseMemo &L, const UseMemo &R) {
4645    return (intptr_t)L.User < (intptr_t)R.User;
4646  }
4647}
4648
4649/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4650/// uses of other values produced by From.getNode() alone.  The same value
4651/// may appear in both the From and To list.  The Deleted vector is
4652/// handled the same way as for ReplaceAllUsesWith.
4653void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4654                                              const SDValue *To,
4655                                              unsigned Num,
4656                                              DAGUpdateListener *UpdateListener){
4657  // Handle the simple, trivial case efficiently.
4658  if (Num == 1)
4659    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4660
4661  // Read up all the uses and make records of them. This helps
4662  // processing new uses that are introduced during the
4663  // replacement process.
4664  SmallVector<UseMemo, 4> Uses;
4665  for (unsigned i = 0; i != Num; ++i) {
4666    unsigned FromResNo = From[i].getResNo();
4667    SDNode *FromNode = From[i].getNode();
4668    for (SDNode::use_iterator UI = FromNode->use_begin(),
4669         E = FromNode->use_end(); UI != E; ++UI) {
4670      SDUse &Use = UI.getUse();
4671      if (Use.getResNo() == FromResNo) {
4672        UseMemo Memo = { *UI, i, &Use };
4673        Uses.push_back(Memo);
4674      }
4675    }
4676  }
4677
4678  // Sort the uses, so that all the uses from a given User are together.
4679  std::sort(Uses.begin(), Uses.end());
4680
4681  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4682       UseIndex != UseIndexEnd; ) {
4683    // We know that this user uses some value of From.  If it is the right
4684    // value, update it.
4685    SDNode *User = Uses[UseIndex].User;
4686
4687    // This node is about to morph, remove its old self from the CSE maps.
4688    RemoveNodeFromCSEMaps(User);
4689
4690    // The Uses array is sorted, so all the uses for a given User
4691    // are next to each other in the list.
4692    // To help reduce the number of CSE recomputations, process all
4693    // the uses of this user that we can find this way.
4694    do {
4695      unsigned i = Uses[UseIndex].Index;
4696      SDUse &Use = *Uses[UseIndex].Use;
4697      ++UseIndex;
4698
4699      Use.set(To[i]);
4700    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4701
4702    // Now that we have modified User, add it back to the CSE maps.  If it
4703    // already exists there, recursively merge the results together.
4704    AddModifiedNodeToCSEMaps(User, UpdateListener);
4705  }
4706}
4707
4708/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4709/// based on their topological order. It returns the maximum id and a vector
4710/// of the SDNodes* in assigned order by reference.
4711unsigned SelectionDAG::AssignTopologicalOrder() {
4712
4713  unsigned DAGSize = 0;
4714
4715  // SortedPos tracks the progress of the algorithm. Nodes before it are
4716  // sorted, nodes after it are unsorted. When the algorithm completes
4717  // it is at the end of the list.
4718  allnodes_iterator SortedPos = allnodes_begin();
4719
4720  // Visit all the nodes. Move nodes with no operands to the front of
4721  // the list immediately. Annotate nodes that do have operands with their
4722  // operand count. Before we do this, the Node Id fields of the nodes
4723  // may contain arbitrary values. After, the Node Id fields for nodes
4724  // before SortedPos will contain the topological sort index, and the
4725  // Node Id fields for nodes At SortedPos and after will contain the
4726  // count of outstanding operands.
4727  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4728    SDNode *N = I++;
4729    unsigned Degree = N->getNumOperands();
4730    if (Degree == 0) {
4731      // A node with no uses, add it to the result array immediately.
4732      N->setNodeId(DAGSize++);
4733      allnodes_iterator Q = N;
4734      if (Q != SortedPos)
4735        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4736      ++SortedPos;
4737    } else {
4738      // Temporarily use the Node Id as scratch space for the degree count.
4739      N->setNodeId(Degree);
4740    }
4741  }
4742
4743  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4744  // such that by the time the end is reached all nodes will be sorted.
4745  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4746    SDNode *N = I;
4747    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4748         UI != UE; ++UI) {
4749      SDNode *P = *UI;
4750      unsigned Degree = P->getNodeId();
4751      --Degree;
4752      if (Degree == 0) {
4753        // All of P's operands are sorted, so P may sorted now.
4754        P->setNodeId(DAGSize++);
4755        if (P != SortedPos)
4756          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4757        ++SortedPos;
4758      } else {
4759        // Update P's outstanding operand count.
4760        P->setNodeId(Degree);
4761      }
4762    }
4763  }
4764
4765  assert(SortedPos == AllNodes.end() &&
4766         "Topological sort incomplete!");
4767  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4768         "First node in topological sort is not the entry token!");
4769  assert(AllNodes.front().getNodeId() == 0 &&
4770         "First node in topological sort has non-zero id!");
4771  assert(AllNodes.front().getNumOperands() == 0 &&
4772         "First node in topological sort has operands!");
4773  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4774         "Last node in topologic sort has unexpected id!");
4775  assert(AllNodes.back().use_empty() &&
4776         "Last node in topologic sort has users!");
4777  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4778  return DAGSize;
4779}
4780
4781
4782
4783//===----------------------------------------------------------------------===//
4784//                              SDNode Class
4785//===----------------------------------------------------------------------===//
4786
4787HandleSDNode::~HandleSDNode() {
4788  DropOperands();
4789}
4790
4791GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4792                                         MVT VT, int64_t o)
4793  : SDNode(isa<GlobalVariable>(GA) &&
4794           cast<GlobalVariable>(GA)->isThreadLocal() ?
4795           // Thread Local
4796           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4797           // Non Thread Local
4798           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4799           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4800  TheGlobal = const_cast<GlobalValue*>(GA);
4801}
4802
4803MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4804                     const Value *srcValue, int SVO,
4805                     unsigned alignment, bool vol)
4806 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4807  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4808  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4809  assert(getAlignment() == alignment && "Alignment representation error!");
4810  assert(isVolatile() == vol && "Volatile representation error!");
4811}
4812
4813MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4814                     const SDValue *Ops,
4815                     unsigned NumOps, MVT memvt, const Value *srcValue,
4816                     int SVO, unsigned alignment, bool vol)
4817   : SDNode(Opc, dl, VTs, Ops, NumOps),
4818     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4819  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4820  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4821  assert(getAlignment() == alignment && "Alignment representation error!");
4822  assert(isVolatile() == vol && "Volatile representation error!");
4823}
4824
4825/// getMemOperand - Return a MachineMemOperand object describing the memory
4826/// reference performed by this memory reference.
4827MachineMemOperand MemSDNode::getMemOperand() const {
4828  int Flags = 0;
4829  if (isa<LoadSDNode>(this))
4830    Flags = MachineMemOperand::MOLoad;
4831  else if (isa<StoreSDNode>(this))
4832    Flags = MachineMemOperand::MOStore;
4833  else if (isa<AtomicSDNode>(this)) {
4834    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4835  }
4836  else {
4837    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4838    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4839    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4840    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4841  }
4842
4843  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4844  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4845
4846  // Check if the memory reference references a frame index
4847  const FrameIndexSDNode *FI =
4848  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4849  if (!getSrcValue() && FI)
4850    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4851                             Flags, 0, Size, getAlignment());
4852  else
4853    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4854                             Size, getAlignment());
4855}
4856
4857/// Profile - Gather unique data for the node.
4858///
4859void SDNode::Profile(FoldingSetNodeID &ID) const {
4860  AddNodeIDNode(ID, this);
4861}
4862
4863/// getValueTypeList - Return a pointer to the specified value type.
4864///
4865const MVT *SDNode::getValueTypeList(MVT VT) {
4866  if (VT.isExtended()) {
4867    static std::set<MVT, MVT::compareRawBits> EVTs;
4868    return &(*EVTs.insert(VT).first);
4869  } else {
4870    static MVT VTs[MVT::LAST_VALUETYPE];
4871    VTs[VT.getSimpleVT()] = VT;
4872    return &VTs[VT.getSimpleVT()];
4873  }
4874}
4875
4876/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4877/// indicated value.  This method ignores uses of other values defined by this
4878/// operation.
4879bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4880  assert(Value < getNumValues() && "Bad value!");
4881
4882  // TODO: Only iterate over uses of a given value of the node
4883  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4884    if (UI.getUse().getResNo() == Value) {
4885      if (NUses == 0)
4886        return false;
4887      --NUses;
4888    }
4889  }
4890
4891  // Found exactly the right number of uses?
4892  return NUses == 0;
4893}
4894
4895
4896/// hasAnyUseOfValue - Return true if there are any use of the indicated
4897/// value. This method ignores uses of other values defined by this operation.
4898bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4899  assert(Value < getNumValues() && "Bad value!");
4900
4901  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4902    if (UI.getUse().getResNo() == Value)
4903      return true;
4904
4905  return false;
4906}
4907
4908
4909/// isOnlyUserOf - Return true if this node is the only use of N.
4910///
4911bool SDNode::isOnlyUserOf(SDNode *N) const {
4912  bool Seen = false;
4913  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4914    SDNode *User = *I;
4915    if (User == this)
4916      Seen = true;
4917    else
4918      return false;
4919  }
4920
4921  return Seen;
4922}
4923
4924/// isOperand - Return true if this node is an operand of N.
4925///
4926bool SDValue::isOperandOf(SDNode *N) const {
4927  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4928    if (*this == N->getOperand(i))
4929      return true;
4930  return false;
4931}
4932
4933bool SDNode::isOperandOf(SDNode *N) const {
4934  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4935    if (this == N->OperandList[i].getNode())
4936      return true;
4937  return false;
4938}
4939
4940/// reachesChainWithoutSideEffects - Return true if this operand (which must
4941/// be a chain) reaches the specified operand without crossing any
4942/// side-effecting instructions.  In practice, this looks through token
4943/// factors and non-volatile loads.  In order to remain efficient, this only
4944/// looks a couple of nodes in, it does not do an exhaustive search.
4945bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4946                                               unsigned Depth) const {
4947  if (*this == Dest) return true;
4948
4949  // Don't search too deeply, we just want to be able to see through
4950  // TokenFactor's etc.
4951  if (Depth == 0) return false;
4952
4953  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4954  // of the operands of the TF reach dest, then we can do the xform.
4955  if (getOpcode() == ISD::TokenFactor) {
4956    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4957      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4958        return true;
4959    return false;
4960  }
4961
4962  // Loads don't have side effects, look through them.
4963  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4964    if (!Ld->isVolatile())
4965      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4966  }
4967  return false;
4968}
4969
4970
4971static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4972                            SmallPtrSet<SDNode *, 32> &Visited) {
4973  if (found || !Visited.insert(N))
4974    return;
4975
4976  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4977    SDNode *Op = N->getOperand(i).getNode();
4978    if (Op == P) {
4979      found = true;
4980      return;
4981    }
4982    findPredecessor(Op, P, found, Visited);
4983  }
4984}
4985
4986/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4987/// is either an operand of N or it can be reached by recursively traversing
4988/// up the operands.
4989/// NOTE: this is an expensive method. Use it carefully.
4990bool SDNode::isPredecessorOf(SDNode *N) const {
4991  SmallPtrSet<SDNode *, 32> Visited;
4992  bool found = false;
4993  findPredecessor(N, this, found, Visited);
4994  return found;
4995}
4996
4997uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4998  assert(Num < NumOperands && "Invalid child # of SDNode!");
4999  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5000}
5001
5002std::string SDNode::getOperationName(const SelectionDAG *G) const {
5003  switch (getOpcode()) {
5004  default:
5005    if (getOpcode() < ISD::BUILTIN_OP_END)
5006      return "<<Unknown DAG Node>>";
5007    if (isMachineOpcode()) {
5008      if (G)
5009        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5010          if (getMachineOpcode() < TII->getNumOpcodes())
5011            return TII->get(getMachineOpcode()).getName();
5012      return "<<Unknown Machine Node>>";
5013    }
5014    if (G) {
5015      const TargetLowering &TLI = G->getTargetLoweringInfo();
5016      const char *Name = TLI.getTargetNodeName(getOpcode());
5017      if (Name) return Name;
5018      return "<<Unknown Target Node>>";
5019    }
5020    return "<<Unknown Node>>";
5021
5022#ifndef NDEBUG
5023  case ISD::DELETED_NODE:
5024    return "<<Deleted Node!>>";
5025#endif
5026  case ISD::PREFETCH:      return "Prefetch";
5027  case ISD::MEMBARRIER:    return "MemBarrier";
5028  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5029  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5030  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5031  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5032  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5033  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5034  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5035  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5036  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5037  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5038  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5039  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5040  case ISD::PCMARKER:      return "PCMarker";
5041  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5042  case ISD::SRCVALUE:      return "SrcValue";
5043  case ISD::MEMOPERAND:    return "MemOperand";
5044  case ISD::EntryToken:    return "EntryToken";
5045  case ISD::TokenFactor:   return "TokenFactor";
5046  case ISD::AssertSext:    return "AssertSext";
5047  case ISD::AssertZext:    return "AssertZext";
5048
5049  case ISD::BasicBlock:    return "BasicBlock";
5050  case ISD::ARG_FLAGS:     return "ArgFlags";
5051  case ISD::VALUETYPE:     return "ValueType";
5052  case ISD::Register:      return "Register";
5053
5054  case ISD::Constant:      return "Constant";
5055  case ISD::ConstantFP:    return "ConstantFP";
5056  case ISD::GlobalAddress: return "GlobalAddress";
5057  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5058  case ISD::FrameIndex:    return "FrameIndex";
5059  case ISD::JumpTable:     return "JumpTable";
5060  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5061  case ISD::RETURNADDR: return "RETURNADDR";
5062  case ISD::FRAMEADDR: return "FRAMEADDR";
5063  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5064  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5065  case ISD::EHSELECTION: return "EHSELECTION";
5066  case ISD::EH_RETURN: return "EH_RETURN";
5067  case ISD::ConstantPool:  return "ConstantPool";
5068  case ISD::ExternalSymbol: return "ExternalSymbol";
5069  case ISD::INTRINSIC_WO_CHAIN: {
5070    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5071    return Intrinsic::getName((Intrinsic::ID)IID);
5072  }
5073  case ISD::INTRINSIC_VOID:
5074  case ISD::INTRINSIC_W_CHAIN: {
5075    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5076    return Intrinsic::getName((Intrinsic::ID)IID);
5077  }
5078
5079  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5080  case ISD::TargetConstant: return "TargetConstant";
5081  case ISD::TargetConstantFP:return "TargetConstantFP";
5082  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5083  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5084  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5085  case ISD::TargetJumpTable:  return "TargetJumpTable";
5086  case ISD::TargetConstantPool:  return "TargetConstantPool";
5087  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5088
5089  case ISD::CopyToReg:     return "CopyToReg";
5090  case ISD::CopyFromReg:   return "CopyFromReg";
5091  case ISD::UNDEF:         return "undef";
5092  case ISD::MERGE_VALUES:  return "merge_values";
5093  case ISD::INLINEASM:     return "inlineasm";
5094  case ISD::DBG_LABEL:     return "dbg_label";
5095  case ISD::EH_LABEL:      return "eh_label";
5096  case ISD::DECLARE:       return "declare";
5097  case ISD::HANDLENODE:    return "handlenode";
5098  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5099  case ISD::CALL:          return "call";
5100
5101  // Unary operators
5102  case ISD::FABS:   return "fabs";
5103  case ISD::FNEG:   return "fneg";
5104  case ISD::FSQRT:  return "fsqrt";
5105  case ISD::FSIN:   return "fsin";
5106  case ISD::FCOS:   return "fcos";
5107  case ISD::FPOWI:  return "fpowi";
5108  case ISD::FPOW:   return "fpow";
5109  case ISD::FTRUNC: return "ftrunc";
5110  case ISD::FFLOOR: return "ffloor";
5111  case ISD::FCEIL:  return "fceil";
5112  case ISD::FRINT:  return "frint";
5113  case ISD::FNEARBYINT: return "fnearbyint";
5114
5115  // Binary operators
5116  case ISD::ADD:    return "add";
5117  case ISD::SUB:    return "sub";
5118  case ISD::MUL:    return "mul";
5119  case ISD::MULHU:  return "mulhu";
5120  case ISD::MULHS:  return "mulhs";
5121  case ISD::SDIV:   return "sdiv";
5122  case ISD::UDIV:   return "udiv";
5123  case ISD::SREM:   return "srem";
5124  case ISD::UREM:   return "urem";
5125  case ISD::SMUL_LOHI:  return "smul_lohi";
5126  case ISD::UMUL_LOHI:  return "umul_lohi";
5127  case ISD::SDIVREM:    return "sdivrem";
5128  case ISD::UDIVREM:    return "udivrem";
5129  case ISD::AND:    return "and";
5130  case ISD::OR:     return "or";
5131  case ISD::XOR:    return "xor";
5132  case ISD::SHL:    return "shl";
5133  case ISD::SRA:    return "sra";
5134  case ISD::SRL:    return "srl";
5135  case ISD::ROTL:   return "rotl";
5136  case ISD::ROTR:   return "rotr";
5137  case ISD::FADD:   return "fadd";
5138  case ISD::FSUB:   return "fsub";
5139  case ISD::FMUL:   return "fmul";
5140  case ISD::FDIV:   return "fdiv";
5141  case ISD::FREM:   return "frem";
5142  case ISD::FCOPYSIGN: return "fcopysign";
5143  case ISD::FGETSIGN:  return "fgetsign";
5144
5145  case ISD::SETCC:       return "setcc";
5146  case ISD::VSETCC:      return "vsetcc";
5147  case ISD::SELECT:      return "select";
5148  case ISD::SELECT_CC:   return "select_cc";
5149  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5150  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5151  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5152  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5153  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5154  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5155  case ISD::CARRY_FALSE:         return "carry_false";
5156  case ISD::ADDC:        return "addc";
5157  case ISD::ADDE:        return "adde";
5158  case ISD::SADDO:       return "saddo";
5159  case ISD::UADDO:       return "uaddo";
5160  case ISD::SSUBO:       return "ssubo";
5161  case ISD::USUBO:       return "usubo";
5162  case ISD::SMULO:       return "smulo";
5163  case ISD::UMULO:       return "umulo";
5164  case ISD::SUBC:        return "subc";
5165  case ISD::SUBE:        return "sube";
5166  case ISD::SHL_PARTS:   return "shl_parts";
5167  case ISD::SRA_PARTS:   return "sra_parts";
5168  case ISD::SRL_PARTS:   return "srl_parts";
5169
5170  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5171  case ISD::INSERT_SUBREG:      return "insert_subreg";
5172
5173  // Conversion operators.
5174  case ISD::SIGN_EXTEND: return "sign_extend";
5175  case ISD::ZERO_EXTEND: return "zero_extend";
5176  case ISD::ANY_EXTEND:  return "any_extend";
5177  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5178  case ISD::TRUNCATE:    return "truncate";
5179  case ISD::FP_ROUND:    return "fp_round";
5180  case ISD::FLT_ROUNDS_: return "flt_rounds";
5181  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5182  case ISD::FP_EXTEND:   return "fp_extend";
5183
5184  case ISD::SINT_TO_FP:  return "sint_to_fp";
5185  case ISD::UINT_TO_FP:  return "uint_to_fp";
5186  case ISD::FP_TO_SINT:  return "fp_to_sint";
5187  case ISD::FP_TO_UINT:  return "fp_to_uint";
5188  case ISD::BIT_CONVERT: return "bit_convert";
5189
5190  case ISD::CONVERT_RNDSAT: {
5191    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5192    default: assert(0 && "Unknown cvt code!");
5193    case ISD::CVT_FF:  return "cvt_ff";
5194    case ISD::CVT_FS:  return "cvt_fs";
5195    case ISD::CVT_FU:  return "cvt_fu";
5196    case ISD::CVT_SF:  return "cvt_sf";
5197    case ISD::CVT_UF:  return "cvt_uf";
5198    case ISD::CVT_SS:  return "cvt_ss";
5199    case ISD::CVT_SU:  return "cvt_su";
5200    case ISD::CVT_US:  return "cvt_us";
5201    case ISD::CVT_UU:  return "cvt_uu";
5202    }
5203  }
5204
5205    // Control flow instructions
5206  case ISD::BR:      return "br";
5207  case ISD::BRIND:   return "brind";
5208  case ISD::BR_JT:   return "br_jt";
5209  case ISD::BRCOND:  return "brcond";
5210  case ISD::BR_CC:   return "br_cc";
5211  case ISD::RET:     return "ret";
5212  case ISD::CALLSEQ_START:  return "callseq_start";
5213  case ISD::CALLSEQ_END:    return "callseq_end";
5214
5215    // Other operators
5216  case ISD::LOAD:               return "load";
5217  case ISD::STORE:              return "store";
5218  case ISD::VAARG:              return "vaarg";
5219  case ISD::VACOPY:             return "vacopy";
5220  case ISD::VAEND:              return "vaend";
5221  case ISD::VASTART:            return "vastart";
5222  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5223  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5224  case ISD::BUILD_PAIR:         return "build_pair";
5225  case ISD::STACKSAVE:          return "stacksave";
5226  case ISD::STACKRESTORE:       return "stackrestore";
5227  case ISD::TRAP:               return "trap";
5228
5229  // Bit manipulation
5230  case ISD::BSWAP:   return "bswap";
5231  case ISD::CTPOP:   return "ctpop";
5232  case ISD::CTTZ:    return "cttz";
5233  case ISD::CTLZ:    return "ctlz";
5234
5235  // Debug info
5236  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5237  case ISD::DEBUG_LOC: return "debug_loc";
5238
5239  // Trampolines
5240  case ISD::TRAMPOLINE: return "trampoline";
5241
5242  case ISD::CONDCODE:
5243    switch (cast<CondCodeSDNode>(this)->get()) {
5244    default: assert(0 && "Unknown setcc condition!");
5245    case ISD::SETOEQ:  return "setoeq";
5246    case ISD::SETOGT:  return "setogt";
5247    case ISD::SETOGE:  return "setoge";
5248    case ISD::SETOLT:  return "setolt";
5249    case ISD::SETOLE:  return "setole";
5250    case ISD::SETONE:  return "setone";
5251
5252    case ISD::SETO:    return "seto";
5253    case ISD::SETUO:   return "setuo";
5254    case ISD::SETUEQ:  return "setue";
5255    case ISD::SETUGT:  return "setugt";
5256    case ISD::SETUGE:  return "setuge";
5257    case ISD::SETULT:  return "setult";
5258    case ISD::SETULE:  return "setule";
5259    case ISD::SETUNE:  return "setune";
5260
5261    case ISD::SETEQ:   return "seteq";
5262    case ISD::SETGT:   return "setgt";
5263    case ISD::SETGE:   return "setge";
5264    case ISD::SETLT:   return "setlt";
5265    case ISD::SETLE:   return "setle";
5266    case ISD::SETNE:   return "setne";
5267    }
5268  }
5269}
5270
5271const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5272  switch (AM) {
5273  default:
5274    return "";
5275  case ISD::PRE_INC:
5276    return "<pre-inc>";
5277  case ISD::PRE_DEC:
5278    return "<pre-dec>";
5279  case ISD::POST_INC:
5280    return "<post-inc>";
5281  case ISD::POST_DEC:
5282    return "<post-dec>";
5283  }
5284}
5285
5286std::string ISD::ArgFlagsTy::getArgFlagsString() {
5287  std::string S = "< ";
5288
5289  if (isZExt())
5290    S += "zext ";
5291  if (isSExt())
5292    S += "sext ";
5293  if (isInReg())
5294    S += "inreg ";
5295  if (isSRet())
5296    S += "sret ";
5297  if (isByVal())
5298    S += "byval ";
5299  if (isNest())
5300    S += "nest ";
5301  if (getByValAlign())
5302    S += "byval-align:" + utostr(getByValAlign()) + " ";
5303  if (getOrigAlign())
5304    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5305  if (getByValSize())
5306    S += "byval-size:" + utostr(getByValSize()) + " ";
5307  return S + ">";
5308}
5309
5310void SDNode::dump() const { dump(0); }
5311void SDNode::dump(const SelectionDAG *G) const {
5312  print(errs(), G);
5313  errs().flush();
5314}
5315
5316void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5317  OS << (void*)this << ": ";
5318
5319  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5320    if (i) OS << ",";
5321    if (getValueType(i) == MVT::Other)
5322      OS << "ch";
5323    else
5324      OS << getValueType(i).getMVTString();
5325  }
5326  OS << " = " << getOperationName(G);
5327}
5328
5329void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5330  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5331    SDNode *Mask = getOperand(2).getNode();
5332    OS << "<";
5333    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5334      if (i) OS << ",";
5335      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5336        OS << "u";
5337      else
5338        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5339    }
5340    OS << ">";
5341  }
5342
5343  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5344    OS << '<' << CSDN->getAPIntValue() << '>';
5345  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5346    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5347      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5348    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5349      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5350    else {
5351      OS << "<APFloat(";
5352      CSDN->getValueAPF().bitcastToAPInt().dump();
5353      OS << ")>";
5354    }
5355  } else if (const GlobalAddressSDNode *GADN =
5356             dyn_cast<GlobalAddressSDNode>(this)) {
5357    int64_t offset = GADN->getOffset();
5358    OS << '<';
5359    WriteAsOperand(OS, GADN->getGlobal());
5360    OS << '>';
5361    if (offset > 0)
5362      OS << " + " << offset;
5363    else
5364      OS << " " << offset;
5365  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5366    OS << "<" << FIDN->getIndex() << ">";
5367  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5368    OS << "<" << JTDN->getIndex() << ">";
5369  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5370    int offset = CP->getOffset();
5371    if (CP->isMachineConstantPoolEntry())
5372      OS << "<" << *CP->getMachineCPVal() << ">";
5373    else
5374      OS << "<" << *CP->getConstVal() << ">";
5375    if (offset > 0)
5376      OS << " + " << offset;
5377    else
5378      OS << " " << offset;
5379  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5380    OS << "<";
5381    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5382    if (LBB)
5383      OS << LBB->getName() << " ";
5384    OS << (const void*)BBDN->getBasicBlock() << ">";
5385  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5386    if (G && R->getReg() &&
5387        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5388      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5389    } else {
5390      OS << " #" << R->getReg();
5391    }
5392  } else if (const ExternalSymbolSDNode *ES =
5393             dyn_cast<ExternalSymbolSDNode>(this)) {
5394    OS << "'" << ES->getSymbol() << "'";
5395  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5396    if (M->getValue())
5397      OS << "<" << M->getValue() << ">";
5398    else
5399      OS << "<null>";
5400  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5401    if (M->MO.getValue())
5402      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5403    else
5404      OS << "<null:" << M->MO.getOffset() << ">";
5405  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5406    OS << N->getArgFlags().getArgFlagsString();
5407  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5408    OS << ":" << N->getVT().getMVTString();
5409  }
5410  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5411    const Value *SrcValue = LD->getSrcValue();
5412    int SrcOffset = LD->getSrcValueOffset();
5413    OS << " <";
5414    if (SrcValue)
5415      OS << SrcValue;
5416    else
5417      OS << "null";
5418    OS << ":" << SrcOffset << ">";
5419
5420    bool doExt = true;
5421    switch (LD->getExtensionType()) {
5422    default: doExt = false; break;
5423    case ISD::EXTLOAD: OS << " <anyext "; break;
5424    case ISD::SEXTLOAD: OS << " <sext "; break;
5425    case ISD::ZEXTLOAD: OS << " <zext "; break;
5426    }
5427    if (doExt)
5428      OS << LD->getMemoryVT().getMVTString() << ">";
5429
5430    const char *AM = getIndexedModeName(LD->getAddressingMode());
5431    if (*AM)
5432      OS << " " << AM;
5433    if (LD->isVolatile())
5434      OS << " <volatile>";
5435    OS << " alignment=" << LD->getAlignment();
5436  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5437    const Value *SrcValue = ST->getSrcValue();
5438    int SrcOffset = ST->getSrcValueOffset();
5439    OS << " <";
5440    if (SrcValue)
5441      OS << SrcValue;
5442    else
5443      OS << "null";
5444    OS << ":" << SrcOffset << ">";
5445
5446    if (ST->isTruncatingStore())
5447      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5448
5449    const char *AM = getIndexedModeName(ST->getAddressingMode());
5450    if (*AM)
5451      OS << " " << AM;
5452    if (ST->isVolatile())
5453      OS << " <volatile>";
5454    OS << " alignment=" << ST->getAlignment();
5455  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5456    const Value *SrcValue = AT->getSrcValue();
5457    int SrcOffset = AT->getSrcValueOffset();
5458    OS << " <";
5459    if (SrcValue)
5460      OS << SrcValue;
5461    else
5462      OS << "null";
5463    OS << ":" << SrcOffset << ">";
5464    if (AT->isVolatile())
5465      OS << " <volatile>";
5466    OS << " alignment=" << AT->getAlignment();
5467  }
5468}
5469
5470void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5471  print_types(OS, G);
5472  OS << " ";
5473  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5474    if (i) OS << ", ";
5475    OS << (void*)getOperand(i).getNode();
5476    if (unsigned RN = getOperand(i).getResNo())
5477      OS << ":" << RN;
5478  }
5479  print_details(OS, G);
5480}
5481
5482static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5483  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5484    if (N->getOperand(i).getNode()->hasOneUse())
5485      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5486    else
5487      cerr << "\n" << std::string(indent+2, ' ')
5488           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5489
5490
5491  cerr << "\n" << std::string(indent, ' ');
5492  N->dump(G);
5493}
5494
5495void SelectionDAG::dump() const {
5496  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5497
5498  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5499       I != E; ++I) {
5500    const SDNode *N = I;
5501    if (!N->hasOneUse() && N != getRoot().getNode())
5502      DumpNodes(N, 2, this);
5503  }
5504
5505  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5506
5507  cerr << "\n\n";
5508}
5509
5510void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5511  print_types(OS, G);
5512  print_details(OS, G);
5513}
5514
5515typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5516static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5517		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5518  if (!once.insert(N))	// If we've been here before, return now.
5519    return;
5520  // Dump the current SDNode, but don't end the line yet.
5521  OS << std::string(indent, ' ');
5522  N->printr(OS, G);
5523  // Having printed this SDNode, walk the children:
5524  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5525    const SDNode *child = N->getOperand(i).getNode();
5526    if (i) OS << ",";
5527    OS << " ";
5528    if (child->getNumOperands() == 0) {
5529      // This child has no grandchildren; print it inline right here.
5530      child->printr(OS, G);
5531      once.insert(child);
5532    } else {	// Just the address.  FIXME: also print the child's opcode
5533      OS << (void*)child;
5534      if (unsigned RN = N->getOperand(i).getResNo())
5535	OS << ":" << RN;
5536    }
5537  }
5538  OS << "\n";
5539  // Dump children that have grandchildren on their own line(s).
5540  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5541    const SDNode *child = N->getOperand(i).getNode();
5542    DumpNodesr(OS, child, indent+2, G, once);
5543  }
5544}
5545
5546void SDNode::dumpr() const {
5547  VisitedSDNodeSet once;
5548  DumpNodesr(errs(), this, 0, 0, once);
5549  errs().flush();
5550}
5551
5552const Type *ConstantPoolSDNode::getType() const {
5553  if (isMachineConstantPoolEntry())
5554    return Val.MachineCPVal->getType();
5555  return Val.ConstVal->getType();
5556}
5557
5558bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5559                                        APInt &SplatUndef,
5560                                        unsigned &SplatBitSize,
5561                                        bool &HasAnyUndefs,
5562                                        unsigned MinSplatBits) {
5563  MVT VT = getValueType(0);
5564  assert(VT.isVector() && "Expected a vector type");
5565  unsigned sz = VT.getSizeInBits();
5566  if (MinSplatBits > sz)
5567    return false;
5568
5569  SplatValue = APInt(sz, 0);
5570  SplatUndef = APInt(sz, 0);
5571
5572  // Get the bits.  Bits with undefined values (when the corresponding element
5573  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5574  // in SplatValue.  If any of the values are not constant, give up and return
5575  // false.
5576  unsigned int nOps = getNumOperands();
5577  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5578  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5579  for (unsigned i = 0; i < nOps; ++i) {
5580    SDValue OpVal = getOperand(i);
5581    unsigned BitPos = i * EltBitSize;
5582
5583    if (OpVal.getOpcode() == ISD::UNDEF)
5584      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5585    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5586      SplatValue |= APInt(CN->getAPIntValue()).zext(sz) << BitPos;
5587    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5588      SplatValue |= CN->getValueAPF().bitcastToAPInt().zext(sz) << BitPos;
5589     else
5590      return false;
5591  }
5592
5593  // The build_vector is all constants or undefs.  Find the smallest element
5594  // size that splats the vector.
5595
5596  HasAnyUndefs = (SplatUndef != 0);
5597  while (sz > 8) {
5598
5599    unsigned HalfSize = sz / 2;
5600    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5601    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5602    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5603    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5604
5605    // If the two halves do not match (ignoring undef bits), stop here.
5606    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5607        MinSplatBits > HalfSize)
5608      break;
5609
5610    SplatValue = HighValue | LowValue;
5611    SplatUndef = HighUndef & LowUndef;
5612
5613    sz = HalfSize;
5614  }
5615
5616  SplatBitSize = sz;
5617  return true;
5618}
5619