SelectionDAG.cpp revision 24f20e083280d979e8fa1bc88959ae9e8339ee99
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/ManagedStatic.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/System/Mutex.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/StringExtras.h"
45#include <algorithm>
46#include <cmath>
47using namespace llvm;
48
49/// makeVTList - Return an instance of the SDVTList struct initialized with the
50/// specified members.
51static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
52  SDVTList Res = {VTs, NumVTs};
53  return Res;
54}
55
56static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
57  switch (VT.getSimpleVT().SimpleTy) {
58  default: llvm_unreachable("Unknown FP format");
59  case MVT::f32:     return &APFloat::IEEEsingle;
60  case MVT::f64:     return &APFloat::IEEEdouble;
61  case MVT::f80:     return &APFloat::x87DoubleExtended;
62  case MVT::f128:    return &APFloat::IEEEquad;
63  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
64  }
65}
66
67SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
68
69//===----------------------------------------------------------------------===//
70//                              ConstantFPSDNode Class
71//===----------------------------------------------------------------------===//
72
73/// isExactlyValue - We don't rely on operator== working on double values, as
74/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75/// As such, this method can be used to do an exact bit-for-bit comparison of
76/// two floating point values.
77bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
78  return getValueAPF().bitwiseIsEqual(V);
79}
80
81bool ConstantFPSDNode::isValueValidForType(EVT VT,
82                                           const APFloat& Val) {
83  assert(VT.isFloatingPoint() && "Can only convert between FP types");
84
85  // PPC long double cannot be converted to any other type.
86  if (VT == MVT::ppcf128 ||
87      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
88    return false;
89
90  // convert modifies in place, so make a copy.
91  APFloat Val2 = APFloat(Val);
92  bool losesInfo;
93  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
94                      &losesInfo);
95  return !losesInfo;
96}
97
98//===----------------------------------------------------------------------===//
99//                              ISD Namespace
100//===----------------------------------------------------------------------===//
101
102/// isBuildVectorAllOnes - Return true if the specified node is a
103/// BUILD_VECTOR where all of the elements are ~0 or undef.
104bool ISD::isBuildVectorAllOnes(const SDNode *N) {
105  // Look through a bit convert.
106  if (N->getOpcode() == ISD::BIT_CONVERT)
107    N = N->getOperand(0).getNode();
108
109  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
110
111  unsigned i = 0, e = N->getNumOperands();
112
113  // Skip over all of the undef values.
114  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
115    ++i;
116
117  // Do not accept an all-undef vector.
118  if (i == e) return false;
119
120  // Do not accept build_vectors that aren't all constants or which have non-~0
121  // elements.
122  SDValue NotZero = N->getOperand(i);
123  if (isa<ConstantSDNode>(NotZero)) {
124    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
125      return false;
126  } else if (isa<ConstantFPSDNode>(NotZero)) {
127    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
128                bitcastToAPInt().isAllOnesValue())
129      return false;
130  } else
131    return false;
132
133  // Okay, we have at least one ~0 value, check to see if the rest match or are
134  // undefs.
135  for (++i; i != e; ++i)
136    if (N->getOperand(i) != NotZero &&
137        N->getOperand(i).getOpcode() != ISD::UNDEF)
138      return false;
139  return true;
140}
141
142
143/// isBuildVectorAllZeros - Return true if the specified node is a
144/// BUILD_VECTOR where all of the elements are 0 or undef.
145bool ISD::isBuildVectorAllZeros(const SDNode *N) {
146  // Look through a bit convert.
147  if (N->getOpcode() == ISD::BIT_CONVERT)
148    N = N->getOperand(0).getNode();
149
150  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151
152  unsigned i = 0, e = N->getNumOperands();
153
154  // Skip over all of the undef values.
155  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
156    ++i;
157
158  // Do not accept an all-undef vector.
159  if (i == e) return false;
160
161  // Do not accept build_vectors that aren't all constants or which have non-0
162  // elements.
163  SDValue Zero = N->getOperand(i);
164  if (isa<ConstantSDNode>(Zero)) {
165    if (!cast<ConstantSDNode>(Zero)->isNullValue())
166      return false;
167  } else if (isa<ConstantFPSDNode>(Zero)) {
168    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
169      return false;
170  } else
171    return false;
172
173  // Okay, we have at least one 0 value, check to see if the rest match or are
174  // undefs.
175  for (++i; i != e; ++i)
176    if (N->getOperand(i) != Zero &&
177        N->getOperand(i).getOpcode() != ISD::UNDEF)
178      return false;
179  return true;
180}
181
182/// isScalarToVector - Return true if the specified node is a
183/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184/// element is not an undef.
185bool ISD::isScalarToVector(const SDNode *N) {
186  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
187    return true;
188
189  if (N->getOpcode() != ISD::BUILD_VECTOR)
190    return false;
191  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
192    return false;
193  unsigned NumElems = N->getNumOperands();
194  for (unsigned i = 1; i < NumElems; ++i) {
195    SDValue V = N->getOperand(i);
196    if (V.getOpcode() != ISD::UNDEF)
197      return false;
198  }
199  return true;
200}
201
202
203/// isDebugLabel - Return true if the specified node represents a debug
204/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
205bool ISD::isDebugLabel(const SDNode *N) {
206  SDValue Zero;
207  if (N->getOpcode() == ISD::DBG_LABEL)
208    return true;
209  if (N->isMachineOpcode() &&
210      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
211    return true;
212  return false;
213}
214
215/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
216/// when given the operation for (X op Y).
217ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
218  // To perform this operation, we just need to swap the L and G bits of the
219  // operation.
220  unsigned OldL = (Operation >> 2) & 1;
221  unsigned OldG = (Operation >> 1) & 1;
222  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
223                       (OldL << 1) |       // New G bit
224                       (OldG << 2));       // New L bit.
225}
226
227/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
228/// 'op' is a valid SetCC operation.
229ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
230  unsigned Operation = Op;
231  if (isInteger)
232    Operation ^= 7;   // Flip L, G, E bits, but not U.
233  else
234    Operation ^= 15;  // Flip all of the condition bits.
235
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;  // Don't let N and U bits get set.
238
239  return ISD::CondCode(Operation);
240}
241
242
243/// isSignedOp - For an integer comparison, return 1 if the comparison is a
244/// signed operation and 2 if the result is an unsigned comparison.  Return zero
245/// if the operation does not depend on the sign of the input (setne and seteq).
246static int isSignedOp(ISD::CondCode Opcode) {
247  switch (Opcode) {
248  default: llvm_unreachable("Illegal integer setcc operation!");
249  case ISD::SETEQ:
250  case ISD::SETNE: return 0;
251  case ISD::SETLT:
252  case ISD::SETLE:
253  case ISD::SETGT:
254  case ISD::SETGE: return 1;
255  case ISD::SETULT:
256  case ISD::SETULE:
257  case ISD::SETUGT:
258  case ISD::SETUGE: return 2;
259  }
260}
261
262/// getSetCCOrOperation - Return the result of a logical OR between different
263/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
264/// returns SETCC_INVALID if it is not possible to represent the resultant
265/// comparison.
266ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
267                                       bool isInteger) {
268  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
269    // Cannot fold a signed integer setcc with an unsigned integer setcc.
270    return ISD::SETCC_INVALID;
271
272  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
273
274  // If the N and U bits get set then the resultant comparison DOES suddenly
275  // care about orderedness, and is true when ordered.
276  if (Op > ISD::SETTRUE2)
277    Op &= ~16;     // Clear the U bit if the N bit is set.
278
279  // Canonicalize illegal integer setcc's.
280  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
281    Op = ISD::SETNE;
282
283  return ISD::CondCode(Op);
284}
285
286/// getSetCCAndOperation - Return the result of a logical AND between different
287/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
288/// function returns zero if it is not possible to represent the resultant
289/// comparison.
290ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
291                                        bool isInteger) {
292  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
293    // Cannot fold a signed setcc with an unsigned setcc.
294    return ISD::SETCC_INVALID;
295
296  // Combine all of the condition bits.
297  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
298
299  // Canonicalize illegal integer setcc's.
300  if (isInteger) {
301    switch (Result) {
302    default: break;
303    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
304    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
305    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
306    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
307    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
308    }
309  }
310
311  return Result;
312}
313
314const TargetMachine &SelectionDAG::getTarget() const {
315  return MF->getTarget();
316}
317
318//===----------------------------------------------------------------------===//
319//                           SDNode Profile Support
320//===----------------------------------------------------------------------===//
321
322/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
323///
324static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
325  ID.AddInteger(OpC);
326}
327
328/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
329/// solely with their pointer.
330static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
331  ID.AddPointer(VTList.VTs);
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDValue *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
345///
346static void AddNodeIDOperands(FoldingSetNodeID &ID,
347                              const SDUse *Ops, unsigned NumOps) {
348  for (; NumOps; --NumOps, ++Ops) {
349    ID.AddPointer(Ops->getNode());
350    ID.AddInteger(Ops->getResNo());
351  }
352}
353
354static void AddNodeIDNode(FoldingSetNodeID &ID,
355                          unsigned short OpC, SDVTList VTList,
356                          const SDValue *OpList, unsigned N) {
357  AddNodeIDOpcode(ID, OpC);
358  AddNodeIDValueTypes(ID, VTList);
359  AddNodeIDOperands(ID, OpList, N);
360}
361
362/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
363/// the NodeID data.
364static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
365  switch (N->getOpcode()) {
366  case ISD::TargetExternalSymbol:
367  case ISD::ExternalSymbol:
368    llvm_unreachable("Should only be used on nodes with operands");
369  default: break;  // Normal nodes don't need extra info.
370  case ISD::TargetConstant:
371  case ISD::Constant:
372    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
373    break;
374  case ISD::TargetConstantFP:
375  case ISD::ConstantFP: {
376    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
377    break;
378  }
379  case ISD::TargetGlobalAddress:
380  case ISD::GlobalAddress:
381  case ISD::TargetGlobalTLSAddress:
382  case ISD::GlobalTLSAddress: {
383    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
384    ID.AddPointer(GA->getGlobal());
385    ID.AddInteger(GA->getOffset());
386    ID.AddInteger(GA->getTargetFlags());
387    break;
388  }
389  case ISD::BasicBlock:
390    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
391    break;
392  case ISD::Register:
393    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
394    break;
395  case ISD::DBG_STOPPOINT: {
396    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
397    ID.AddInteger(DSP->getLine());
398    ID.AddInteger(DSP->getColumn());
399    ID.AddPointer(DSP->getCompileUnit());
400    break;
401  }
402  case ISD::SRCVALUE:
403    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
404    break;
405  case ISD::MEMOPERAND: {
406    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
407    MO.Profile(ID);
408    break;
409  }
410  case ISD::FrameIndex:
411  case ISD::TargetFrameIndex:
412    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
413    break;
414  case ISD::JumpTable:
415  case ISD::TargetJumpTable:
416    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
417    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
418    break;
419  case ISD::ConstantPool:
420  case ISD::TargetConstantPool: {
421    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
422    ID.AddInteger(CP->getAlignment());
423    ID.AddInteger(CP->getOffset());
424    if (CP->isMachineConstantPoolEntry())
425      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
426    else
427      ID.AddPointer(CP->getConstVal());
428    ID.AddInteger(CP->getTargetFlags());
429    break;
430  }
431  case ISD::LOAD: {
432    const LoadSDNode *LD = cast<LoadSDNode>(N);
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawSubclassData());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getMemoryVT().getRawBits());
440    ID.AddInteger(ST->getRawSubclassData());
441    break;
442  }
443  case ISD::ATOMIC_CMP_SWAP:
444  case ISD::ATOMIC_SWAP:
445  case ISD::ATOMIC_LOAD_ADD:
446  case ISD::ATOMIC_LOAD_SUB:
447  case ISD::ATOMIC_LOAD_AND:
448  case ISD::ATOMIC_LOAD_OR:
449  case ISD::ATOMIC_LOAD_XOR:
450  case ISD::ATOMIC_LOAD_NAND:
451  case ISD::ATOMIC_LOAD_MIN:
452  case ISD::ATOMIC_LOAD_MAX:
453  case ISD::ATOMIC_LOAD_UMIN:
454  case ISD::ATOMIC_LOAD_UMAX: {
455    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
456    ID.AddInteger(AT->getMemoryVT().getRawBits());
457    ID.AddInteger(AT->getRawSubclassData());
458    break;
459  }
460  case ISD::VECTOR_SHUFFLE: {
461    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
462    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
463         i != e; ++i)
464      ID.AddInteger(SVN->getMaskElt(i));
465    break;
466  }
467  } // end switch (N->getOpcode())
468}
469
470/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
471/// data.
472static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
473  AddNodeIDOpcode(ID, N->getOpcode());
474  // Add the return value info.
475  AddNodeIDValueTypes(ID, N->getVTList());
476  // Add the operand info.
477  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
478
479  // Handle SDNode leafs with special info.
480  AddNodeIDCustom(ID, N);
481}
482
483/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
484/// the CSE map that carries alignment, volatility, indexing mode, and
485/// extension/truncation information.
486///
487static inline unsigned
488encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
489                     bool isVolatile, unsigned Alignment) {
490  assert((ConvType & 3) == ConvType &&
491         "ConvType may not require more than 2 bits!");
492  assert((AM & 7) == AM &&
493         "AM may not require more than 3 bits!");
494  return ConvType |
495         (AM << 2) |
496         (isVolatile << 5) |
497         ((Log2_32(Alignment) + 1) << 6);
498}
499
500//===----------------------------------------------------------------------===//
501//                              SelectionDAG Class
502//===----------------------------------------------------------------------===//
503
504/// doNotCSE - Return true if CSE should not be performed for this node.
505static bool doNotCSE(SDNode *N) {
506  if (N->getValueType(0) == MVT::Flag)
507    return true; // Never CSE anything that produces a flag.
508
509  switch (N->getOpcode()) {
510  default: break;
511  case ISD::HANDLENODE:
512  case ISD::DBG_LABEL:
513  case ISD::DBG_STOPPOINT:
514  case ISD::EH_LABEL:
515    return true;   // Never CSE these nodes.
516  }
517
518  // Check that remaining values produced are not flags.
519  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
520    if (N->getValueType(i) == MVT::Flag)
521      return true; // Never CSE anything that produces a flag.
522
523  return false;
524}
525
526/// RemoveDeadNodes - This method deletes all unreachable nodes in the
527/// SelectionDAG.
528void SelectionDAG::RemoveDeadNodes() {
529  // Create a dummy node (which is not added to allnodes), that adds a reference
530  // to the root node, preventing it from being deleted.
531  HandleSDNode Dummy(getRoot());
532
533  SmallVector<SDNode*, 128> DeadNodes;
534
535  // Add all obviously-dead nodes to the DeadNodes worklist.
536  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
537    if (I->use_empty())
538      DeadNodes.push_back(I);
539
540  RemoveDeadNodes(DeadNodes);
541
542  // If the root changed (e.g. it was a dead load, update the root).
543  setRoot(Dummy.getValue());
544}
545
546/// RemoveDeadNodes - This method deletes the unreachable nodes in the
547/// given list, and any nodes that become unreachable as a result.
548void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
549                                   DAGUpdateListener *UpdateListener) {
550
551  // Process the worklist, deleting the nodes and adding their uses to the
552  // worklist.
553  while (!DeadNodes.empty()) {
554    SDNode *N = DeadNodes.pop_back_val();
555
556    if (UpdateListener)
557      UpdateListener->NodeDeleted(N, 0);
558
559    // Take the node out of the appropriate CSE map.
560    RemoveNodeFromCSEMaps(N);
561
562    // Next, brutally remove the operand list.  This is safe to do, as there are
563    // no cycles in the graph.
564    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
565      SDUse &Use = *I++;
566      SDNode *Operand = Use.getNode();
567      Use.set(SDValue());
568
569      // Now that we removed this operand, see if there are no uses of it left.
570      if (Operand->use_empty())
571        DeadNodes.push_back(Operand);
572    }
573
574    DeallocateNode(N);
575  }
576}
577
578void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579  SmallVector<SDNode*, 16> DeadNodes(1, N);
580  RemoveDeadNodes(DeadNodes, UpdateListener);
581}
582
583void SelectionDAG::DeleteNode(SDNode *N) {
584  // First take this out of the appropriate CSE map.
585  RemoveNodeFromCSEMaps(N);
586
587  // Finally, remove uses due to operands of this node, remove from the
588  // AllNodes list, and delete the node.
589  DeleteNodeNotInCSEMaps(N);
590}
591
592void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
593  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
594  assert(N->use_empty() && "Cannot delete a node that is not dead!");
595
596  // Drop all of the operands and decrement used node's use counts.
597  N->DropOperands();
598
599  DeallocateNode(N);
600}
601
602void SelectionDAG::DeallocateNode(SDNode *N) {
603  if (N->OperandsNeedDelete)
604    delete[] N->OperandList;
605
606  // Set the opcode to DELETED_NODE to help catch bugs when node
607  // memory is reallocated.
608  N->NodeType = ISD::DELETED_NODE;
609
610  NodeAllocator.Deallocate(AllNodes.remove(N));
611}
612
613/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614/// correspond to it.  This is useful when we're about to delete or repurpose
615/// the node.  We don't want future request for structurally identical nodes
616/// to return N anymore.
617bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
618  bool Erased = false;
619  switch (N->getOpcode()) {
620  case ISD::EntryToken:
621    llvm_unreachable("EntryToken should not be in CSEMaps!");
622    return false;
623  case ISD::HANDLENODE: return false;  // noop.
624  case ISD::CONDCODE:
625    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
626           "Cond code doesn't exist!");
627    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
628    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
629    break;
630  case ISD::ExternalSymbol:
631    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632    break;
633  case ISD::TargetExternalSymbol: {
634    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
635    Erased = TargetExternalSymbols.erase(
636               std::pair<std::string,unsigned char>(ESN->getSymbol(),
637                                                    ESN->getTargetFlags()));
638    break;
639  }
640  case ISD::VALUETYPE: {
641    EVT VT = cast<VTSDNode>(N)->getVT();
642    if (VT.isExtended()) {
643      Erased = ExtendedValueTypeNodes.erase(VT);
644    } else {
645      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
646      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
647    }
648    break;
649  }
650  default:
651    // Remove it from the CSE Map.
652    Erased = CSEMap.RemoveNode(N);
653    break;
654  }
655#ifndef NDEBUG
656  // Verify that the node was actually in one of the CSE maps, unless it has a
657  // flag result (which cannot be CSE'd) or is one of the special cases that are
658  // not subject to CSE.
659  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
660      !N->isMachineOpcode() && !doNotCSE(N)) {
661    N->dump(this);
662    cerr << "\n";
663    llvm_unreachable("Node is not in map!");
664  }
665#endif
666  return Erased;
667}
668
669/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
670/// maps and modified in place. Add it back to the CSE maps, unless an identical
671/// node already exists, in which case transfer all its users to the existing
672/// node. This transfer can potentially trigger recursive merging.
673///
674void
675SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
676                                       DAGUpdateListener *UpdateListener) {
677  // For node types that aren't CSE'd, just act as if no identical node
678  // already exists.
679  if (!doNotCSE(N)) {
680    SDNode *Existing = CSEMap.GetOrInsertNode(N);
681    if (Existing != N) {
682      // If there was already an existing matching node, use ReplaceAllUsesWith
683      // to replace the dead one with the existing one.  This can cause
684      // recursive merging of other unrelated nodes down the line.
685      ReplaceAllUsesWith(N, Existing, UpdateListener);
686
687      // N is now dead.  Inform the listener if it exists and delete it.
688      if (UpdateListener)
689        UpdateListener->NodeDeleted(N, Existing);
690      DeleteNodeNotInCSEMaps(N);
691      return;
692    }
693  }
694
695  // If the node doesn't already exist, we updated it.  Inform a listener if
696  // it exists.
697  if (UpdateListener)
698    UpdateListener->NodeUpdated(N);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
706                                           void *&InsertPos) {
707  if (doNotCSE(N))
708    return 0;
709
710  SDValue Ops[] = { Op };
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
713  AddNodeIDCustom(ID, N);
714  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
715}
716
717/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
718/// were replaced with those specified.  If this node is never memoized,
719/// return null, otherwise return a pointer to the slot it would take.  If a
720/// node already exists with these operands, the slot will be non-null.
721SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
722                                           SDValue Op1, SDValue Op2,
723                                           void *&InsertPos) {
724  if (doNotCSE(N))
725    return 0;
726
727  SDValue Ops[] = { Op1, Op2 };
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
730  AddNodeIDCustom(ID, N);
731  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
732}
733
734
735/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
736/// were replaced with those specified.  If this node is never memoized,
737/// return null, otherwise return a pointer to the slot it would take.  If a
738/// node already exists with these operands, the slot will be non-null.
739SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
740                                           const SDValue *Ops,unsigned NumOps,
741                                           void *&InsertPos) {
742  if (doNotCSE(N))
743    return 0;
744
745  FoldingSetNodeID ID;
746  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
747  AddNodeIDCustom(ID, N);
748  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
749}
750
751/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
752void SelectionDAG::VerifyNode(SDNode *N) {
753  switch (N->getOpcode()) {
754  default:
755    break;
756  case ISD::BUILD_PAIR: {
757    EVT VT = N->getValueType(0);
758    assert(N->getNumValues() == 1 && "Too many results!");
759    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
760           "Wrong return type!");
761    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
762    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
763           "Mismatched operand types!");
764    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
765           "Wrong operand type!");
766    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
767           "Wrong return type size");
768    break;
769  }
770  case ISD::BUILD_VECTOR: {
771    assert(N->getNumValues() == 1 && "Too many results!");
772    assert(N->getValueType(0).isVector() && "Wrong return type!");
773    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
774           "Wrong number of operands!");
775    EVT EltVT = N->getValueType(0).getVectorElementType();
776    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
777      assert((I->getValueType() == EltVT ||
778             (EltVT.isInteger() && I->getValueType().isInteger() &&
779              EltVT.bitsLE(I->getValueType()))) &&
780            "Wrong operand type!");
781    break;
782  }
783  }
784}
785
786/// getEVTAlignment - Compute the default alignment value for the
787/// given type.
788///
789unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
790  const Type *Ty = VT == MVT::iPTR ?
791                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
792                   VT.getTypeForEVT(*getContext());
793
794  return TLI.getTargetData()->getABITypeAlignment(Ty);
795}
796
797// EntryNode could meaningfully have debug info if we can find it...
798SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
799  : TLI(tli), FLI(fli), DW(0),
800    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
801    getVTList(MVT::Other)), Root(getEntryNode()) {
802  AllNodes.push_back(&EntryNode);
803}
804
805void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
806                        DwarfWriter *dw) {
807  MF = &mf;
808  MMI = mmi;
809  DW = dw;
810  Context = &mf.getFunction()->getContext();
811}
812
813SelectionDAG::~SelectionDAG() {
814  allnodes_clear();
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840}
841
842SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
843  if (Op.getValueType() == VT) return Op;
844  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
845                                   VT.getSizeInBits());
846  return getNode(ISD::AND, DL, Op.getValueType(), Op,
847                 getConstant(Imm, Op.getValueType()));
848}
849
850/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
851///
852SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
853  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
854  SDValue NegOne =
855    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
856  return getNode(ISD::XOR, DL, VT, Val, NegOne);
857}
858
859SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
860  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
861  assert((EltVT.getSizeInBits() >= 64 ||
862         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
863         "getConstant with a uint64_t value that doesn't fit in the type!");
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
899                     VT, &Ops[0], Ops.size());
900  }
901  return Result;
902}
903
904SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
905  return getConstant(Val, TLI.getPointerTy(), isTarget);
906}
907
908
909SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
910  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
911}
912
913SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
914  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
915
916  EVT EltVT =
917    VT.isVector() ? VT.getVectorElementType() : VT;
918
919  // Do the map lookup using the actual bit pattern for the floating point
920  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
921  // we don't have issues with SNANs.
922  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
925  ID.AddPointer(&V);
926  void *IP = 0;
927  SDNode *N = NULL;
928  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
929    if (!VT.isVector())
930      return SDValue(N, 0);
931  if (!N) {
932    N = NodeAllocator.Allocate<ConstantFPSDNode>();
933    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
934    CSEMap.InsertNode(N, IP);
935    AllNodes.push_back(N);
936  }
937
938  SDValue Result(N, 0);
939  if (VT.isVector()) {
940    SmallVector<SDValue, 8> Ops;
941    Ops.assign(VT.getVectorNumElements(), Result);
942    // FIXME DebugLoc info might be appropriate here
943    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
944                     VT, &Ops[0], Ops.size());
945  }
946  return Result;
947}
948
949SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
950  EVT EltVT =
951    VT.isVector() ? VT.getVectorElementType() : VT;
952  if (EltVT==MVT::f32)
953    return getConstantFP(APFloat((float)Val), VT, isTarget);
954  else
955    return getConstantFP(APFloat(Val), VT, isTarget);
956}
957
958SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
959                                       EVT VT, int64_t Offset,
960                                       bool isTargetGA,
961                                       unsigned char TargetFlags) {
962  assert((TargetFlags == 0 || isTargetGA) &&
963         "Cannot set target flags on target-independent globals");
964
965  // Truncate (with sign-extension) the offset value to the pointer size.
966  EVT PTy = TLI.getPointerTy();
967  unsigned BitWidth = PTy.getSizeInBits();
968  if (BitWidth < 64)
969    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
970
971  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
972  if (!GVar) {
973    // If GV is an alias then use the aliasee for determining thread-localness.
974    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
975      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
976  }
977
978  unsigned Opc;
979  if (GVar && GVar->isThreadLocal())
980    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
981  else
982    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
983
984  FoldingSetNodeID ID;
985  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
986  ID.AddPointer(GV);
987  ID.AddInteger(Offset);
988  ID.AddInteger(TargetFlags);
989  void *IP = 0;
990  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
991    return SDValue(E, 0);
992  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
993  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
994  CSEMap.InsertNode(N, IP);
995  AllNodes.push_back(N);
996  return SDValue(N, 0);
997}
998
999SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1000  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1001  FoldingSetNodeID ID;
1002  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1003  ID.AddInteger(FI);
1004  void *IP = 0;
1005  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1006    return SDValue(E, 0);
1007  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1008  new (N) FrameIndexSDNode(FI, VT, isTarget);
1009  CSEMap.InsertNode(N, IP);
1010  AllNodes.push_back(N);
1011  return SDValue(N, 0);
1012}
1013
1014SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1015                                   unsigned char TargetFlags) {
1016  assert((TargetFlags == 0 || isTarget) &&
1017         "Cannot set target flags on target-independent jump tables");
1018  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021  ID.AddInteger(JTI);
1022  ID.AddInteger(TargetFlags);
1023  void *IP = 0;
1024  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1025    return SDValue(E, 0);
1026  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1027  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1028  CSEMap.InsertNode(N, IP);
1029  AllNodes.push_back(N);
1030  return SDValue(N, 0);
1031}
1032
1033SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1034                                      unsigned Alignment, int Offset,
1035                                      bool isTarget,
1036                                      unsigned char TargetFlags) {
1037  assert((TargetFlags == 0 || isTarget) &&
1038         "Cannot set target flags on target-independent globals");
1039  if (Alignment == 0)
1040    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1041  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1042  FoldingSetNodeID ID;
1043  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1044  ID.AddInteger(Alignment);
1045  ID.AddInteger(Offset);
1046  ID.AddPointer(C);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1052  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1053  CSEMap.InsertNode(N, IP);
1054  AllNodes.push_back(N);
1055  return SDValue(N, 0);
1056}
1057
1058
1059SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1060                                      unsigned Alignment, int Offset,
1061                                      bool isTarget,
1062                                      unsigned char TargetFlags) {
1063  assert((TargetFlags == 0 || isTarget) &&
1064         "Cannot set target flags on target-independent globals");
1065  if (Alignment == 0)
1066    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1067  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1070  ID.AddInteger(Alignment);
1071  ID.AddInteger(Offset);
1072  C->AddSelectionDAGCSEId(ID);
1073  ID.AddInteger(TargetFlags);
1074  void *IP = 0;
1075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076    return SDValue(E, 0);
1077  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1078  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1079  CSEMap.InsertNode(N, IP);
1080  AllNodes.push_back(N);
1081  return SDValue(N, 0);
1082}
1083
1084SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1085  FoldingSetNodeID ID;
1086  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1087  ID.AddPointer(MBB);
1088  void *IP = 0;
1089  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1090    return SDValue(E, 0);
1091  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1092  new (N) BasicBlockSDNode(MBB);
1093  CSEMap.InsertNode(N, IP);
1094  AllNodes.push_back(N);
1095  return SDValue(N, 0);
1096}
1097
1098SDValue SelectionDAG::getValueType(EVT VT) {
1099  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1100      ValueTypeNodes.size())
1101    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1102
1103  SDNode *&N = VT.isExtended() ?
1104    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1105
1106  if (N) return SDValue(N, 0);
1107  N = NodeAllocator.Allocate<VTSDNode>();
1108  new (N) VTSDNode(VT);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1114  SDNode *&N = ExternalSymbols[Sym];
1115  if (N) return SDValue(N, 0);
1116  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1117  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1123                                              unsigned char TargetFlags) {
1124  SDNode *&N =
1125    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1126                                                               TargetFlags)];
1127  if (N) return SDValue(N, 0);
1128  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1129  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1135  if ((unsigned)Cond >= CondCodeNodes.size())
1136    CondCodeNodes.resize(Cond+1);
1137
1138  if (CondCodeNodes[Cond] == 0) {
1139    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1140    new (N) CondCodeSDNode(Cond);
1141    CondCodeNodes[Cond] = N;
1142    AllNodes.push_back(N);
1143  }
1144  return SDValue(CondCodeNodes[Cond], 0);
1145}
1146
1147// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1148// the shuffle mask M that point at N1 to point at N2, and indices that point
1149// N2 to point at N1.
1150static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1151  std::swap(N1, N2);
1152  int NElts = M.size();
1153  for (int i = 0; i != NElts; ++i) {
1154    if (M[i] >= NElts)
1155      M[i] -= NElts;
1156    else if (M[i] >= 0)
1157      M[i] += NElts;
1158  }
1159}
1160
1161SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1162                                       SDValue N2, const int *Mask) {
1163  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1164  assert(VT.isVector() && N1.getValueType().isVector() &&
1165         "Vector Shuffle VTs must be a vectors");
1166  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1167         && "Vector Shuffle VTs must have same element type");
1168
1169  // Canonicalize shuffle undef, undef -> undef
1170  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1171    return getUNDEF(VT);
1172
1173  // Validate that all indices in Mask are within the range of the elements
1174  // input to the shuffle.
1175  unsigned NElts = VT.getVectorNumElements();
1176  SmallVector<int, 8> MaskVec;
1177  for (unsigned i = 0; i != NElts; ++i) {
1178    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1179    MaskVec.push_back(Mask[i]);
1180  }
1181
1182  // Canonicalize shuffle v, v -> v, undef
1183  if (N1 == N2) {
1184    N2 = getUNDEF(VT);
1185    for (unsigned i = 0; i != NElts; ++i)
1186      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1187  }
1188
1189  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1190  if (N1.getOpcode() == ISD::UNDEF)
1191    commuteShuffle(N1, N2, MaskVec);
1192
1193  // Canonicalize all index into lhs, -> shuffle lhs, undef
1194  // Canonicalize all index into rhs, -> shuffle rhs, undef
1195  bool AllLHS = true, AllRHS = true;
1196  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1197  for (unsigned i = 0; i != NElts; ++i) {
1198    if (MaskVec[i] >= (int)NElts) {
1199      if (N2Undef)
1200        MaskVec[i] = -1;
1201      else
1202        AllLHS = false;
1203    } else if (MaskVec[i] >= 0) {
1204      AllRHS = false;
1205    }
1206  }
1207  if (AllLHS && AllRHS)
1208    return getUNDEF(VT);
1209  if (AllLHS && !N2Undef)
1210    N2 = getUNDEF(VT);
1211  if (AllRHS) {
1212    N1 = getUNDEF(VT);
1213    commuteShuffle(N1, N2, MaskVec);
1214  }
1215
1216  // If Identity shuffle, or all shuffle in to undef, return that node.
1217  bool AllUndef = true;
1218  bool Identity = true;
1219  for (unsigned i = 0; i != NElts; ++i) {
1220    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1221    if (MaskVec[i] >= 0) AllUndef = false;
1222  }
1223  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1224    return N1;
1225  if (AllUndef)
1226    return getUNDEF(VT);
1227
1228  FoldingSetNodeID ID;
1229  SDValue Ops[2] = { N1, N2 };
1230  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1231  for (unsigned i = 0; i != NElts; ++i)
1232    ID.AddInteger(MaskVec[i]);
1233
1234  void* IP = 0;
1235  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1236    return SDValue(E, 0);
1237
1238  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1239  // SDNode doesn't have access to it.  This memory will be "leaked" when
1240  // the node is deallocated, but recovered when the NodeAllocator is released.
1241  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1242  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1243
1244  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1245  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1246  CSEMap.InsertNode(N, IP);
1247  AllNodes.push_back(N);
1248  return SDValue(N, 0);
1249}
1250
1251SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1252                                       SDValue Val, SDValue DTy,
1253                                       SDValue STy, SDValue Rnd, SDValue Sat,
1254                                       ISD::CvtCode Code) {
1255  // If the src and dest types are the same and the conversion is between
1256  // integer types of the same sign or two floats, no conversion is necessary.
1257  if (DTy == STy &&
1258      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1259    return Val;
1260
1261  FoldingSetNodeID ID;
1262  void* IP = 0;
1263  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1264    return SDValue(E, 0);
1265  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1266  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1267  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1268  CSEMap.InsertNode(N, IP);
1269  AllNodes.push_back(N);
1270  return SDValue(N, 0);
1271}
1272
1273SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1274  FoldingSetNodeID ID;
1275  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1276  ID.AddInteger(RegNo);
1277  void *IP = 0;
1278  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1279    return SDValue(E, 0);
1280  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1281  new (N) RegisterSDNode(RegNo, VT);
1282  CSEMap.InsertNode(N, IP);
1283  AllNodes.push_back(N);
1284  return SDValue(N, 0);
1285}
1286
1287SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1288                                      unsigned Line, unsigned Col,
1289                                      Value *CU) {
1290  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1291  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1292  N->setDebugLoc(DL);
1293  AllNodes.push_back(N);
1294  return SDValue(N, 0);
1295}
1296
1297SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1298                               SDValue Root,
1299                               unsigned LabelID) {
1300  FoldingSetNodeID ID;
1301  SDValue Ops[] = { Root };
1302  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1303  ID.AddInteger(LabelID);
1304  void *IP = 0;
1305  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1306    return SDValue(E, 0);
1307  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1308  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1309  CSEMap.InsertNode(N, IP);
1310  AllNodes.push_back(N);
1311  return SDValue(N, 0);
1312}
1313
1314SDValue SelectionDAG::getSrcValue(const Value *V) {
1315  assert((!V || isa<PointerType>(V->getType())) &&
1316         "SrcValue is not a pointer?");
1317
1318  FoldingSetNodeID ID;
1319  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1320  ID.AddPointer(V);
1321
1322  void *IP = 0;
1323  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1324    return SDValue(E, 0);
1325
1326  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1327  new (N) SrcValueSDNode(V);
1328  CSEMap.InsertNode(N, IP);
1329  AllNodes.push_back(N);
1330  return SDValue(N, 0);
1331}
1332
1333SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1334#ifndef NDEBUG
1335  const Value *v = MO.getValue();
1336  assert((!v || isa<PointerType>(v->getType())) &&
1337         "SrcValue is not a pointer?");
1338#endif
1339
1340  FoldingSetNodeID ID;
1341  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1342  MO.Profile(ID);
1343
1344  void *IP = 0;
1345  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1346    return SDValue(E, 0);
1347
1348  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1349  new (N) MemOperandSDNode(MO);
1350  CSEMap.InsertNode(N, IP);
1351  AllNodes.push_back(N);
1352  return SDValue(N, 0);
1353}
1354
1355/// getShiftAmountOperand - Return the specified value casted to
1356/// the target's desired shift amount type.
1357SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1358  EVT OpTy = Op.getValueType();
1359  MVT ShTy = TLI.getShiftAmountTy();
1360  if (OpTy == ShTy || OpTy.isVector()) return Op;
1361
1362  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1363  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1364}
1365
1366/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1367/// specified value type.
1368SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1369  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1370  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1371  const Type *Ty = VT.getTypeForEVT(*getContext());
1372  unsigned StackAlign =
1373  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1374
1375  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1376  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1377}
1378
1379/// CreateStackTemporary - Create a stack temporary suitable for holding
1380/// either of the specified value types.
1381SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1382  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1383                            VT2.getStoreSizeInBits())/8;
1384  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1385  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1386  const TargetData *TD = TLI.getTargetData();
1387  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1388                            TD->getPrefTypeAlignment(Ty2));
1389
1390  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1391  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1392  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1393}
1394
1395SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1396                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1397  // These setcc operations always fold.
1398  switch (Cond) {
1399  default: break;
1400  case ISD::SETFALSE:
1401  case ISD::SETFALSE2: return getConstant(0, VT);
1402  case ISD::SETTRUE:
1403  case ISD::SETTRUE2:  return getConstant(1, VT);
1404
1405  case ISD::SETOEQ:
1406  case ISD::SETOGT:
1407  case ISD::SETOGE:
1408  case ISD::SETOLT:
1409  case ISD::SETOLE:
1410  case ISD::SETONE:
1411  case ISD::SETO:
1412  case ISD::SETUO:
1413  case ISD::SETUEQ:
1414  case ISD::SETUNE:
1415    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1416    break;
1417  }
1418
1419  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1420    const APInt &C2 = N2C->getAPIntValue();
1421    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1422      const APInt &C1 = N1C->getAPIntValue();
1423
1424      switch (Cond) {
1425      default: llvm_unreachable("Unknown integer setcc!");
1426      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1427      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1428      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1429      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1430      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1431      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1432      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1433      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1434      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1435      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1436      }
1437    }
1438  }
1439  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1440    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1441      // No compile time operations on this type yet.
1442      if (N1C->getValueType(0) == MVT::ppcf128)
1443        return SDValue();
1444
1445      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1446      switch (Cond) {
1447      default: break;
1448      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1449                          return getUNDEF(VT);
1450                        // fall through
1451      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1452      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1453                          return getUNDEF(VT);
1454                        // fall through
1455      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1456                                           R==APFloat::cmpLessThan, VT);
1457      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1458                          return getUNDEF(VT);
1459                        // fall through
1460      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1461      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1465      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1469                                           R==APFloat::cmpEqual, VT);
1470      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1474                                           R==APFloat::cmpEqual, VT);
1475      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1476      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1477      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1478                                           R==APFloat::cmpEqual, VT);
1479      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1480      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1481                                           R==APFloat::cmpLessThan, VT);
1482      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1483                                           R==APFloat::cmpUnordered, VT);
1484      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1485      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1486      }
1487    } else {
1488      // Ensure that the constant occurs on the RHS.
1489      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1490    }
1491  }
1492
1493  // Could not fold it.
1494  return SDValue();
1495}
1496
1497/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1498/// use this predicate to simplify operations downstream.
1499bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1500  // This predicate is not safe for vector operations.
1501  if (Op.getValueType().isVector())
1502    return false;
1503
1504  unsigned BitWidth = Op.getValueSizeInBits();
1505  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1506}
1507
1508/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1509/// this predicate to simplify operations downstream.  Mask is known to be zero
1510/// for bits that V cannot have.
1511bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1512                                     unsigned Depth) const {
1513  APInt KnownZero, KnownOne;
1514  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1515  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516  return (KnownZero & Mask) == Mask;
1517}
1518
1519/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1520/// known to be either zero or one and return them in the KnownZero/KnownOne
1521/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1522/// processing.
1523void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1524                                     APInt &KnownZero, APInt &KnownOne,
1525                                     unsigned Depth) const {
1526  unsigned BitWidth = Mask.getBitWidth();
1527  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1528         "Mask size mismatches value type size!");
1529
1530  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1531  if (Depth == 6 || Mask == 0)
1532    return;  // Limit search depth.
1533
1534  APInt KnownZero2, KnownOne2;
1535
1536  switch (Op.getOpcode()) {
1537  case ISD::Constant:
1538    // We know all of the bits for a constant!
1539    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1540    KnownZero = ~KnownOne & Mask;
1541    return;
1542  case ISD::AND:
1543    // If either the LHS or the RHS are Zero, the result is zero.
1544    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1545    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1546                      KnownZero2, KnownOne2, Depth+1);
1547    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1548    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1549
1550    // Output known-1 bits are only known if set in both the LHS & RHS.
1551    KnownOne &= KnownOne2;
1552    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1553    KnownZero |= KnownZero2;
1554    return;
1555  case ISD::OR:
1556    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1557    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1558                      KnownZero2, KnownOne2, Depth+1);
1559    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1561
1562    // Output known-0 bits are only known if clear in both the LHS & RHS.
1563    KnownZero &= KnownZero2;
1564    // Output known-1 are known to be set if set in either the LHS | RHS.
1565    KnownOne |= KnownOne2;
1566    return;
1567  case ISD::XOR: {
1568    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1569    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1570    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1572
1573    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1574    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1575    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1576    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1577    KnownZero = KnownZeroOut;
1578    return;
1579  }
1580  case ISD::MUL: {
1581    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1582    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1583    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1584    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1585    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1586
1587    // If low bits are zero in either operand, output low known-0 bits.
1588    // Also compute a conserative estimate for high known-0 bits.
1589    // More trickiness is possible, but this is sufficient for the
1590    // interesting case of alignment computation.
1591    KnownOne.clear();
1592    unsigned TrailZ = KnownZero.countTrailingOnes() +
1593                      KnownZero2.countTrailingOnes();
1594    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1595                               KnownZero2.countLeadingOnes(),
1596                               BitWidth) - BitWidth;
1597
1598    TrailZ = std::min(TrailZ, BitWidth);
1599    LeadZ = std::min(LeadZ, BitWidth);
1600    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1601                APInt::getHighBitsSet(BitWidth, LeadZ);
1602    KnownZero &= Mask;
1603    return;
1604  }
1605  case ISD::UDIV: {
1606    // For the purposes of computing leading zeros we can conservatively
1607    // treat a udiv as a logical right shift by the power of 2 known to
1608    // be less than the denominator.
1609    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1610    ComputeMaskedBits(Op.getOperand(0),
1611                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1612    unsigned LeadZ = KnownZero2.countLeadingOnes();
1613
1614    KnownOne2.clear();
1615    KnownZero2.clear();
1616    ComputeMaskedBits(Op.getOperand(1),
1617                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1618    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1619    if (RHSUnknownLeadingOnes != BitWidth)
1620      LeadZ = std::min(BitWidth,
1621                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1622
1623    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1624    return;
1625  }
1626  case ISD::SELECT:
1627    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1628    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1629    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1630    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1631
1632    // Only known if known in both the LHS and RHS.
1633    KnownOne &= KnownOne2;
1634    KnownZero &= KnownZero2;
1635    return;
1636  case ISD::SELECT_CC:
1637    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SADDO:
1647  case ISD::UADDO:
1648  case ISD::SSUBO:
1649  case ISD::USUBO:
1650  case ISD::SMULO:
1651  case ISD::UMULO:
1652    if (Op.getResNo() != 1)
1653      return;
1654    // The boolean result conforms to getBooleanContents.  Fall through.
1655  case ISD::SETCC:
1656    // If we know the result of a setcc has the top bits zero, use this info.
1657    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1658        BitWidth > 1)
1659      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1660    return;
1661  case ISD::SHL:
1662    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1663    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1664      unsigned ShAmt = SA->getZExtValue();
1665
1666      // If the shift count is an invalid immediate, don't do anything.
1667      if (ShAmt >= BitWidth)
1668        return;
1669
1670      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1671                        KnownZero, KnownOne, Depth+1);
1672      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1673      KnownZero <<= ShAmt;
1674      KnownOne  <<= ShAmt;
1675      // low bits known zero.
1676      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1677    }
1678    return;
1679  case ISD::SRL:
1680    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1681    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1682      unsigned ShAmt = SA->getZExtValue();
1683
1684      // If the shift count is an invalid immediate, don't do anything.
1685      if (ShAmt >= BitWidth)
1686        return;
1687
1688      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1689                        KnownZero, KnownOne, Depth+1);
1690      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1691      KnownZero = KnownZero.lshr(ShAmt);
1692      KnownOne  = KnownOne.lshr(ShAmt);
1693
1694      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1695      KnownZero |= HighBits;  // High bits known zero.
1696    }
1697    return;
1698  case ISD::SRA:
1699    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1700      unsigned ShAmt = SA->getZExtValue();
1701
1702      // If the shift count is an invalid immediate, don't do anything.
1703      if (ShAmt >= BitWidth)
1704        return;
1705
1706      APInt InDemandedMask = (Mask << ShAmt);
1707      // If any of the demanded bits are produced by the sign extension, we also
1708      // demand the input sign bit.
1709      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1710      if (HighBits.getBoolValue())
1711        InDemandedMask |= APInt::getSignBit(BitWidth);
1712
1713      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1714                        Depth+1);
1715      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1716      KnownZero = KnownZero.lshr(ShAmt);
1717      KnownOne  = KnownOne.lshr(ShAmt);
1718
1719      // Handle the sign bits.
1720      APInt SignBit = APInt::getSignBit(BitWidth);
1721      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1722
1723      if (KnownZero.intersects(SignBit)) {
1724        KnownZero |= HighBits;  // New bits are known zero.
1725      } else if (KnownOne.intersects(SignBit)) {
1726        KnownOne  |= HighBits;  // New bits are known one.
1727      }
1728    }
1729    return;
1730  case ISD::SIGN_EXTEND_INREG: {
1731    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1732    unsigned EBits = EVT.getSizeInBits();
1733
1734    // Sign extension.  Compute the demanded bits in the result that are not
1735    // present in the input.
1736    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1737
1738    APInt InSignBit = APInt::getSignBit(EBits);
1739    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1740
1741    // If the sign extended bits are demanded, we know that the sign
1742    // bit is demanded.
1743    InSignBit.zext(BitWidth);
1744    if (NewBits.getBoolValue())
1745      InputDemandedBits |= InSignBit;
1746
1747    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1748                      KnownZero, KnownOne, Depth+1);
1749    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1750
1751    // If the sign bit of the input is known set or clear, then we know the
1752    // top bits of the result.
1753    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1754      KnownZero |= NewBits;
1755      KnownOne  &= ~NewBits;
1756    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1757      KnownOne  |= NewBits;
1758      KnownZero &= ~NewBits;
1759    } else {                              // Input sign bit unknown
1760      KnownZero &= ~NewBits;
1761      KnownOne  &= ~NewBits;
1762    }
1763    return;
1764  }
1765  case ISD::CTTZ:
1766  case ISD::CTLZ:
1767  case ISD::CTPOP: {
1768    unsigned LowBits = Log2_32(BitWidth)+1;
1769    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1770    KnownOne.clear();
1771    return;
1772  }
1773  case ISD::LOAD: {
1774    if (ISD::isZEXTLoad(Op.getNode())) {
1775      LoadSDNode *LD = cast<LoadSDNode>(Op);
1776      EVT VT = LD->getMemoryVT();
1777      unsigned MemBits = VT.getSizeInBits();
1778      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1779    }
1780    return;
1781  }
1782  case ISD::ZERO_EXTEND: {
1783    EVT InVT = Op.getOperand(0).getValueType();
1784    unsigned InBits = InVT.getSizeInBits();
1785    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1786    APInt InMask    = Mask;
1787    InMask.trunc(InBits);
1788    KnownZero.trunc(InBits);
1789    KnownOne.trunc(InBits);
1790    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1791    KnownZero.zext(BitWidth);
1792    KnownOne.zext(BitWidth);
1793    KnownZero |= NewBits;
1794    return;
1795  }
1796  case ISD::SIGN_EXTEND: {
1797    EVT InVT = Op.getOperand(0).getValueType();
1798    unsigned InBits = InVT.getSizeInBits();
1799    APInt InSignBit = APInt::getSignBit(InBits);
1800    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1801    APInt InMask = Mask;
1802    InMask.trunc(InBits);
1803
1804    // If any of the sign extended bits are demanded, we know that the sign
1805    // bit is demanded. Temporarily set this bit in the mask for our callee.
1806    if (NewBits.getBoolValue())
1807      InMask |= InSignBit;
1808
1809    KnownZero.trunc(InBits);
1810    KnownOne.trunc(InBits);
1811    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1812
1813    // Note if the sign bit is known to be zero or one.
1814    bool SignBitKnownZero = KnownZero.isNegative();
1815    bool SignBitKnownOne  = KnownOne.isNegative();
1816    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1817           "Sign bit can't be known to be both zero and one!");
1818
1819    // If the sign bit wasn't actually demanded by our caller, we don't
1820    // want it set in the KnownZero and KnownOne result values. Reset the
1821    // mask and reapply it to the result values.
1822    InMask = Mask;
1823    InMask.trunc(InBits);
1824    KnownZero &= InMask;
1825    KnownOne  &= InMask;
1826
1827    KnownZero.zext(BitWidth);
1828    KnownOne.zext(BitWidth);
1829
1830    // If the sign bit is known zero or one, the top bits match.
1831    if (SignBitKnownZero)
1832      KnownZero |= NewBits;
1833    else if (SignBitKnownOne)
1834      KnownOne  |= NewBits;
1835    return;
1836  }
1837  case ISD::ANY_EXTEND: {
1838    EVT InVT = Op.getOperand(0).getValueType();
1839    unsigned InBits = InVT.getSizeInBits();
1840    APInt InMask = Mask;
1841    InMask.trunc(InBits);
1842    KnownZero.trunc(InBits);
1843    KnownOne.trunc(InBits);
1844    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1845    KnownZero.zext(BitWidth);
1846    KnownOne.zext(BitWidth);
1847    return;
1848  }
1849  case ISD::TRUNCATE: {
1850    EVT InVT = Op.getOperand(0).getValueType();
1851    unsigned InBits = InVT.getSizeInBits();
1852    APInt InMask = Mask;
1853    InMask.zext(InBits);
1854    KnownZero.zext(InBits);
1855    KnownOne.zext(InBits);
1856    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1857    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1858    KnownZero.trunc(BitWidth);
1859    KnownOne.trunc(BitWidth);
1860    break;
1861  }
1862  case ISD::AssertZext: {
1863    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1864    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1865    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1866                      KnownOne, Depth+1);
1867    KnownZero |= (~InMask) & Mask;
1868    return;
1869  }
1870  case ISD::FGETSIGN:
1871    // All bits are zero except the low bit.
1872    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1873    return;
1874
1875  case ISD::SUB: {
1876    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1877      // We know that the top bits of C-X are clear if X contains less bits
1878      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1879      // positive if we can prove that X is >= 0 and < 16.
1880      if (CLHS->getAPIntValue().isNonNegative()) {
1881        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1882        // NLZ can't be BitWidth with no sign bit
1883        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1884        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1885                          Depth+1);
1886
1887        // If all of the MaskV bits are known to be zero, then we know the
1888        // output top bits are zero, because we now know that the output is
1889        // from [0-C].
1890        if ((KnownZero2 & MaskV) == MaskV) {
1891          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1892          // Top bits known zero.
1893          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1894        }
1895      }
1896    }
1897  }
1898  // fall through
1899  case ISD::ADD: {
1900    // Output known-0 bits are known if clear or set in both the low clear bits
1901    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1902    // low 3 bits clear.
1903    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1904    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1905    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1906    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1907
1908    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1909    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1910    KnownZeroOut = std::min(KnownZeroOut,
1911                            KnownZero2.countTrailingOnes());
1912
1913    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1914    return;
1915  }
1916  case ISD::SREM:
1917    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1918      const APInt &RA = Rem->getAPIntValue();
1919      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1920        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1921        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1922        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1923
1924        // If the sign bit of the first operand is zero, the sign bit of
1925        // the result is zero. If the first operand has no one bits below
1926        // the second operand's single 1 bit, its sign will be zero.
1927        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1928          KnownZero2 |= ~LowBits;
1929
1930        KnownZero |= KnownZero2 & Mask;
1931
1932        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1933      }
1934    }
1935    return;
1936  case ISD::UREM: {
1937    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1938      const APInt &RA = Rem->getAPIntValue();
1939      if (RA.isPowerOf2()) {
1940        APInt LowBits = (RA - 1);
1941        APInt Mask2 = LowBits & Mask;
1942        KnownZero |= ~LowBits & Mask;
1943        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1944        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1945        break;
1946      }
1947    }
1948
1949    // Since the result is less than or equal to either operand, any leading
1950    // zero bits in either operand must also exist in the result.
1951    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1952    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1953                      Depth+1);
1954    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1955                      Depth+1);
1956
1957    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1958                                KnownZero2.countLeadingOnes());
1959    KnownOne.clear();
1960    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1961    return;
1962  }
1963  default:
1964    // Allow the target to implement this method for its nodes.
1965    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1966  case ISD::INTRINSIC_WO_CHAIN:
1967  case ISD::INTRINSIC_W_CHAIN:
1968  case ISD::INTRINSIC_VOID:
1969      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1970                                         Depth);
1971    }
1972    return;
1973  }
1974}
1975
1976/// ComputeNumSignBits - Return the number of times the sign bit of the
1977/// register is replicated into the other bits.  We know that at least 1 bit
1978/// is always equal to the sign bit (itself), but other cases can give us
1979/// information.  For example, immediately after an "SRA X, 2", we know that
1980/// the top 3 bits are all equal to each other, so we return 3.
1981unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1982  EVT VT = Op.getValueType();
1983  assert(VT.isInteger() && "Invalid VT!");
1984  unsigned VTBits = VT.getSizeInBits();
1985  unsigned Tmp, Tmp2;
1986  unsigned FirstAnswer = 1;
1987
1988  if (Depth == 6)
1989    return 1;  // Limit search depth.
1990
1991  switch (Op.getOpcode()) {
1992  default: break;
1993  case ISD::AssertSext:
1994    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1995    return VTBits-Tmp+1;
1996  case ISD::AssertZext:
1997    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1998    return VTBits-Tmp;
1999
2000  case ISD::Constant: {
2001    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2002    // If negative, return # leading ones.
2003    if (Val.isNegative())
2004      return Val.countLeadingOnes();
2005
2006    // Return # leading zeros.
2007    return Val.countLeadingZeros();
2008  }
2009
2010  case ISD::SIGN_EXTEND:
2011    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2012    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2013
2014  case ISD::SIGN_EXTEND_INREG:
2015    // Max of the input and what this extends.
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    Tmp = VTBits-Tmp+1;
2018
2019    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2020    return std::max(Tmp, Tmp2);
2021
2022  case ISD::SRA:
2023    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2024    // SRA X, C   -> adds C sign bits.
2025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2026      Tmp += C->getZExtValue();
2027      if (Tmp > VTBits) Tmp = VTBits;
2028    }
2029    return Tmp;
2030  case ISD::SHL:
2031    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2032      // shl destroys sign bits.
2033      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2035          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2036      return Tmp - C->getZExtValue();
2037    }
2038    break;
2039  case ISD::AND:
2040  case ISD::OR:
2041  case ISD::XOR:    // NOT is handled here.
2042    // Logical binary ops preserve the number of sign bits at the worst.
2043    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044    if (Tmp != 1) {
2045      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2046      FirstAnswer = std::min(Tmp, Tmp2);
2047      // We computed what we know about the sign bits as our first
2048      // answer. Now proceed to the generic code that uses
2049      // ComputeMaskedBits, and pick whichever answer is better.
2050    }
2051    break;
2052
2053  case ISD::SELECT:
2054    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2055    if (Tmp == 1) return 1;  // Early out.
2056    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2057    return std::min(Tmp, Tmp2);
2058
2059  case ISD::SADDO:
2060  case ISD::UADDO:
2061  case ISD::SSUBO:
2062  case ISD::USUBO:
2063  case ISD::SMULO:
2064  case ISD::UMULO:
2065    if (Op.getResNo() != 1)
2066      break;
2067    // The boolean result conforms to getBooleanContents.  Fall through.
2068  case ISD::SETCC:
2069    // If setcc returns 0/-1, all bits are sign bits.
2070    if (TLI.getBooleanContents() ==
2071        TargetLowering::ZeroOrNegativeOneBooleanContent)
2072      return VTBits;
2073    break;
2074  case ISD::ROTL:
2075  case ISD::ROTR:
2076    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2077      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2078
2079      // Handle rotate right by N like a rotate left by 32-N.
2080      if (Op.getOpcode() == ISD::ROTR)
2081        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2082
2083      // If we aren't rotating out all of the known-in sign bits, return the
2084      // number that are left.  This handles rotl(sext(x), 1) for example.
2085      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2086      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2087    }
2088    break;
2089  case ISD::ADD:
2090    // Add can have at most one carry bit.  Thus we know that the output
2091    // is, at worst, one more bit than the inputs.
2092    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2093    if (Tmp == 1) return 1;  // Early out.
2094
2095    // Special case decrementing a value (ADD X, -1):
2096    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2097      if (CRHS->isAllOnesValue()) {
2098        APInt KnownZero, KnownOne;
2099        APInt Mask = APInt::getAllOnesValue(VTBits);
2100        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2101
2102        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2103        // sign bits set.
2104        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2105          return VTBits;
2106
2107        // If we are subtracting one from a positive number, there is no carry
2108        // out of the result.
2109        if (KnownZero.isNegative())
2110          return Tmp;
2111      }
2112
2113    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2114    if (Tmp2 == 1) return 1;
2115      return std::min(Tmp, Tmp2)-1;
2116    break;
2117
2118  case ISD::SUB:
2119    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2120    if (Tmp2 == 1) return 1;
2121
2122    // Handle NEG.
2123    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2124      if (CLHS->isNullValue()) {
2125        APInt KnownZero, KnownOne;
2126        APInt Mask = APInt::getAllOnesValue(VTBits);
2127        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2128        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2129        // sign bits set.
2130        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2131          return VTBits;
2132
2133        // If the input is known to be positive (the sign bit is known clear),
2134        // the output of the NEG has the same number of sign bits as the input.
2135        if (KnownZero.isNegative())
2136          return Tmp2;
2137
2138        // Otherwise, we treat this like a SUB.
2139      }
2140
2141    // Sub can have at most one carry bit.  Thus we know that the output
2142    // is, at worst, one more bit than the inputs.
2143    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2144    if (Tmp == 1) return 1;  // Early out.
2145      return std::min(Tmp, Tmp2)-1;
2146    break;
2147  case ISD::TRUNCATE:
2148    // FIXME: it's tricky to do anything useful for this, but it is an important
2149    // case for targets like X86.
2150    break;
2151  }
2152
2153  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2154  if (Op.getOpcode() == ISD::LOAD) {
2155    LoadSDNode *LD = cast<LoadSDNode>(Op);
2156    unsigned ExtType = LD->getExtensionType();
2157    switch (ExtType) {
2158    default: break;
2159    case ISD::SEXTLOAD:    // '17' bits known
2160      Tmp = LD->getMemoryVT().getSizeInBits();
2161      return VTBits-Tmp+1;
2162    case ISD::ZEXTLOAD:    // '16' bits known
2163      Tmp = LD->getMemoryVT().getSizeInBits();
2164      return VTBits-Tmp;
2165    }
2166  }
2167
2168  // Allow the target to implement this method for its nodes.
2169  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2170      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2171      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2172      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2173    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2174    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2175  }
2176
2177  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2178  // use this information.
2179  APInt KnownZero, KnownOne;
2180  APInt Mask = APInt::getAllOnesValue(VTBits);
2181  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2182
2183  if (KnownZero.isNegative()) {        // sign bit is 0
2184    Mask = KnownZero;
2185  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2186    Mask = KnownOne;
2187  } else {
2188    // Nothing known.
2189    return FirstAnswer;
2190  }
2191
2192  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2193  // the number of identical bits in the top of the input value.
2194  Mask = ~Mask;
2195  Mask <<= Mask.getBitWidth()-VTBits;
2196  // Return # leading zeros.  We use 'min' here in case Val was zero before
2197  // shifting.  We don't want to return '64' as for an i32 "0".
2198  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2199}
2200
2201
2202bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2203  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2204  if (!GA) return false;
2205  if (GA->getOffset() != 0) return false;
2206  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2207  if (!GV) return false;
2208  MachineModuleInfo *MMI = getMachineModuleInfo();
2209  return MMI && MMI->hasDebugInfo();
2210}
2211
2212
2213/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2214/// element of the result of the vector shuffle.
2215SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2216                                          unsigned i) {
2217  EVT VT = N->getValueType(0);
2218  DebugLoc dl = N->getDebugLoc();
2219  if (N->getMaskElt(i) < 0)
2220    return getUNDEF(VT.getVectorElementType());
2221  unsigned Index = N->getMaskElt(i);
2222  unsigned NumElems = VT.getVectorNumElements();
2223  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2224  Index %= NumElems;
2225
2226  if (V.getOpcode() == ISD::BIT_CONVERT) {
2227    V = V.getOperand(0);
2228    EVT VVT = V.getValueType();
2229    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2230      return SDValue();
2231  }
2232  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2233    return (Index == 0) ? V.getOperand(0)
2234                      : getUNDEF(VT.getVectorElementType());
2235  if (V.getOpcode() == ISD::BUILD_VECTOR)
2236    return V.getOperand(Index);
2237  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2238    return getShuffleScalarElt(SVN, Index);
2239  return SDValue();
2240}
2241
2242
2243/// getNode - Gets or creates the specified node.
2244///
2245SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2246  FoldingSetNodeID ID;
2247  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2248  void *IP = 0;
2249  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2250    return SDValue(E, 0);
2251  SDNode *N = NodeAllocator.Allocate<SDNode>();
2252  new (N) SDNode(Opcode, DL, getVTList(VT));
2253  CSEMap.InsertNode(N, IP);
2254
2255  AllNodes.push_back(N);
2256#ifndef NDEBUG
2257  VerifyNode(N);
2258#endif
2259  return SDValue(N, 0);
2260}
2261
2262SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2263                              EVT VT, SDValue Operand) {
2264  // Constant fold unary operations with an integer constant operand.
2265  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2266    const APInt &Val = C->getAPIntValue();
2267    unsigned BitWidth = VT.getSizeInBits();
2268    switch (Opcode) {
2269    default: break;
2270    case ISD::SIGN_EXTEND:
2271      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2272    case ISD::ANY_EXTEND:
2273    case ISD::ZERO_EXTEND:
2274    case ISD::TRUNCATE:
2275      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2276    case ISD::UINT_TO_FP:
2277    case ISD::SINT_TO_FP: {
2278      const uint64_t zero[] = {0, 0};
2279      // No compile time operations on this type.
2280      if (VT==MVT::ppcf128)
2281        break;
2282      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2283      (void)apf.convertFromAPInt(Val,
2284                                 Opcode==ISD::SINT_TO_FP,
2285                                 APFloat::rmNearestTiesToEven);
2286      return getConstantFP(apf, VT);
2287    }
2288    case ISD::BIT_CONVERT:
2289      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2290        return getConstantFP(Val.bitsToFloat(), VT);
2291      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2292        return getConstantFP(Val.bitsToDouble(), VT);
2293      break;
2294    case ISD::BSWAP:
2295      return getConstant(Val.byteSwap(), VT);
2296    case ISD::CTPOP:
2297      return getConstant(Val.countPopulation(), VT);
2298    case ISD::CTLZ:
2299      return getConstant(Val.countLeadingZeros(), VT);
2300    case ISD::CTTZ:
2301      return getConstant(Val.countTrailingZeros(), VT);
2302    }
2303  }
2304
2305  // Constant fold unary operations with a floating point constant operand.
2306  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2307    APFloat V = C->getValueAPF();    // make copy
2308    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2309      switch (Opcode) {
2310      case ISD::FNEG:
2311        V.changeSign();
2312        return getConstantFP(V, VT);
2313      case ISD::FABS:
2314        V.clearSign();
2315        return getConstantFP(V, VT);
2316      case ISD::FP_ROUND:
2317      case ISD::FP_EXTEND: {
2318        bool ignored;
2319        // This can return overflow, underflow, or inexact; we don't care.
2320        // FIXME need to be more flexible about rounding mode.
2321        (void)V.convert(*EVTToAPFloatSemantics(VT),
2322                        APFloat::rmNearestTiesToEven, &ignored);
2323        return getConstantFP(V, VT);
2324      }
2325      case ISD::FP_TO_SINT:
2326      case ISD::FP_TO_UINT: {
2327        integerPart x[2];
2328        bool ignored;
2329        assert(integerPartWidth >= 64);
2330        // FIXME need to be more flexible about rounding mode.
2331        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2332                              Opcode==ISD::FP_TO_SINT,
2333                              APFloat::rmTowardZero, &ignored);
2334        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2335          break;
2336        APInt api(VT.getSizeInBits(), 2, x);
2337        return getConstant(api, VT);
2338      }
2339      case ISD::BIT_CONVERT:
2340        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2341          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2342        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2343          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2344        break;
2345      }
2346    }
2347  }
2348
2349  unsigned OpOpcode = Operand.getNode()->getOpcode();
2350  switch (Opcode) {
2351  case ISD::TokenFactor:
2352  case ISD::MERGE_VALUES:
2353  case ISD::CONCAT_VECTORS:
2354    return Operand;         // Factor, merge or concat of one node?  No need.
2355  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2356  case ISD::FP_EXTEND:
2357    assert(VT.isFloatingPoint() &&
2358           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2359    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2360    if (Operand.getOpcode() == ISD::UNDEF)
2361      return getUNDEF(VT);
2362    break;
2363  case ISD::SIGN_EXTEND:
2364    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2365           "Invalid SIGN_EXTEND!");
2366    if (Operand.getValueType() == VT) return Operand;   // noop extension
2367    assert(Operand.getValueType().bitsLT(VT)
2368           && "Invalid sext node, dst < src!");
2369    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2370      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2371    break;
2372  case ISD::ZERO_EXTEND:
2373    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2374           "Invalid ZERO_EXTEND!");
2375    if (Operand.getValueType() == VT) return Operand;   // noop extension
2376    assert(Operand.getValueType().bitsLT(VT)
2377           && "Invalid zext node, dst < src!");
2378    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2379      return getNode(ISD::ZERO_EXTEND, DL, VT,
2380                     Operand.getNode()->getOperand(0));
2381    break;
2382  case ISD::ANY_EXTEND:
2383    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2384           "Invalid ANY_EXTEND!");
2385    if (Operand.getValueType() == VT) return Operand;   // noop extension
2386    assert(Operand.getValueType().bitsLT(VT)
2387           && "Invalid anyext node, dst < src!");
2388    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2389      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2390      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2391    break;
2392  case ISD::TRUNCATE:
2393    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2394           "Invalid TRUNCATE!");
2395    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2396    assert(Operand.getValueType().bitsGT(VT)
2397           && "Invalid truncate node, src < dst!");
2398    if (OpOpcode == ISD::TRUNCATE)
2399      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2400    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2401             OpOpcode == ISD::ANY_EXTEND) {
2402      // If the source is smaller than the dest, we still need an extend.
2403      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2404        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2405      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2406        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2407      else
2408        return Operand.getNode()->getOperand(0);
2409    }
2410    break;
2411  case ISD::BIT_CONVERT:
2412    // Basic sanity checking.
2413    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2414           && "Cannot BIT_CONVERT between types of different sizes!");
2415    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2416    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2417      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2418    if (OpOpcode == ISD::UNDEF)
2419      return getUNDEF(VT);
2420    break;
2421  case ISD::SCALAR_TO_VECTOR:
2422    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2423           (VT.getVectorElementType() == Operand.getValueType() ||
2424            (VT.getVectorElementType().isInteger() &&
2425             Operand.getValueType().isInteger() &&
2426             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2427           "Illegal SCALAR_TO_VECTOR node!");
2428    if (OpOpcode == ISD::UNDEF)
2429      return getUNDEF(VT);
2430    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2431    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2432        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2433        Operand.getConstantOperandVal(1) == 0 &&
2434        Operand.getOperand(0).getValueType() == VT)
2435      return Operand.getOperand(0);
2436    break;
2437  case ISD::FNEG:
2438    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2439    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2440      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2441                     Operand.getNode()->getOperand(0));
2442    if (OpOpcode == ISD::FNEG)  // --X -> X
2443      return Operand.getNode()->getOperand(0);
2444    break;
2445  case ISD::FABS:
2446    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2447      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2448    break;
2449  }
2450
2451  SDNode *N;
2452  SDVTList VTs = getVTList(VT);
2453  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2454    FoldingSetNodeID ID;
2455    SDValue Ops[1] = { Operand };
2456    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2457    void *IP = 0;
2458    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2459      return SDValue(E, 0);
2460    N = NodeAllocator.Allocate<UnarySDNode>();
2461    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2462    CSEMap.InsertNode(N, IP);
2463  } else {
2464    N = NodeAllocator.Allocate<UnarySDNode>();
2465    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2466  }
2467
2468  AllNodes.push_back(N);
2469#ifndef NDEBUG
2470  VerifyNode(N);
2471#endif
2472  return SDValue(N, 0);
2473}
2474
2475SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2476                                             EVT VT,
2477                                             ConstantSDNode *Cst1,
2478                                             ConstantSDNode *Cst2) {
2479  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2480
2481  switch (Opcode) {
2482  case ISD::ADD:  return getConstant(C1 + C2, VT);
2483  case ISD::SUB:  return getConstant(C1 - C2, VT);
2484  case ISD::MUL:  return getConstant(C1 * C2, VT);
2485  case ISD::UDIV:
2486    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2487    break;
2488  case ISD::UREM:
2489    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2490    break;
2491  case ISD::SDIV:
2492    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2493    break;
2494  case ISD::SREM:
2495    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2496    break;
2497  case ISD::AND:  return getConstant(C1 & C2, VT);
2498  case ISD::OR:   return getConstant(C1 | C2, VT);
2499  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2500  case ISD::SHL:  return getConstant(C1 << C2, VT);
2501  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2502  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2503  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2504  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2505  default: break;
2506  }
2507
2508  return SDValue();
2509}
2510
2511SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2512                              SDValue N1, SDValue N2) {
2513  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2514  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2515  switch (Opcode) {
2516  default: break;
2517  case ISD::TokenFactor:
2518    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2519           N2.getValueType() == MVT::Other && "Invalid token factor!");
2520    // Fold trivial token factors.
2521    if (N1.getOpcode() == ISD::EntryToken) return N2;
2522    if (N2.getOpcode() == ISD::EntryToken) return N1;
2523    if (N1 == N2) return N1;
2524    break;
2525  case ISD::CONCAT_VECTORS:
2526    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2527    // one big BUILD_VECTOR.
2528    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2529        N2.getOpcode() == ISD::BUILD_VECTOR) {
2530      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2531      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2532      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2533    }
2534    break;
2535  case ISD::AND:
2536    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2537           N1.getValueType() == VT && "Binary operator types must match!");
2538    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2539    // worth handling here.
2540    if (N2C && N2C->isNullValue())
2541      return N2;
2542    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2543      return N1;
2544    break;
2545  case ISD::OR:
2546  case ISD::XOR:
2547  case ISD::ADD:
2548  case ISD::SUB:
2549    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2550           N1.getValueType() == VT && "Binary operator types must match!");
2551    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2552    // it's worth handling here.
2553    if (N2C && N2C->isNullValue())
2554      return N1;
2555    break;
2556  case ISD::UDIV:
2557  case ISD::UREM:
2558  case ISD::MULHU:
2559  case ISD::MULHS:
2560  case ISD::MUL:
2561  case ISD::SDIV:
2562  case ISD::SREM:
2563    assert(VT.isInteger() && "This operator does not apply to FP types!");
2564    // fall through
2565  case ISD::FADD:
2566  case ISD::FSUB:
2567  case ISD::FMUL:
2568  case ISD::FDIV:
2569  case ISD::FREM:
2570    if (UnsafeFPMath) {
2571      if (Opcode == ISD::FADD) {
2572        // 0+x --> x
2573        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2574          if (CFP->getValueAPF().isZero())
2575            return N2;
2576        // x+0 --> x
2577        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2578          if (CFP->getValueAPF().isZero())
2579            return N1;
2580      } else if (Opcode == ISD::FSUB) {
2581        // x-0 --> x
2582        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2583          if (CFP->getValueAPF().isZero())
2584            return N1;
2585      }
2586    }
2587    assert(N1.getValueType() == N2.getValueType() &&
2588           N1.getValueType() == VT && "Binary operator types must match!");
2589    break;
2590  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2591    assert(N1.getValueType() == VT &&
2592           N1.getValueType().isFloatingPoint() &&
2593           N2.getValueType().isFloatingPoint() &&
2594           "Invalid FCOPYSIGN!");
2595    break;
2596  case ISD::SHL:
2597  case ISD::SRA:
2598  case ISD::SRL:
2599  case ISD::ROTL:
2600  case ISD::ROTR:
2601    assert(VT == N1.getValueType() &&
2602           "Shift operators return type must be the same as their first arg");
2603    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2604           "Shifts only work on integers");
2605
2606    // Always fold shifts of i1 values so the code generator doesn't need to
2607    // handle them.  Since we know the size of the shift has to be less than the
2608    // size of the value, the shift/rotate count is guaranteed to be zero.
2609    if (VT == MVT::i1)
2610      return N1;
2611    break;
2612  case ISD::FP_ROUND_INREG: {
2613    EVT EVT = cast<VTSDNode>(N2)->getVT();
2614    assert(VT == N1.getValueType() && "Not an inreg round!");
2615    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2616           "Cannot FP_ROUND_INREG integer types");
2617    assert(EVT.bitsLE(VT) && "Not rounding down!");
2618    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2619    break;
2620  }
2621  case ISD::FP_ROUND:
2622    assert(VT.isFloatingPoint() &&
2623           N1.getValueType().isFloatingPoint() &&
2624           VT.bitsLE(N1.getValueType()) &&
2625           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2626    if (N1.getValueType() == VT) return N1;  // noop conversion.
2627    break;
2628  case ISD::AssertSext:
2629  case ISD::AssertZext: {
2630    EVT EVT = cast<VTSDNode>(N2)->getVT();
2631    assert(VT == N1.getValueType() && "Not an inreg extend!");
2632    assert(VT.isInteger() && EVT.isInteger() &&
2633           "Cannot *_EXTEND_INREG FP types");
2634    assert(EVT.bitsLE(VT) && "Not extending!");
2635    if (VT == EVT) return N1; // noop assertion.
2636    break;
2637  }
2638  case ISD::SIGN_EXTEND_INREG: {
2639    EVT EVT = cast<VTSDNode>(N2)->getVT();
2640    assert(VT == N1.getValueType() && "Not an inreg extend!");
2641    assert(VT.isInteger() && EVT.isInteger() &&
2642           "Cannot *_EXTEND_INREG FP types");
2643    assert(EVT.bitsLE(VT) && "Not extending!");
2644    if (EVT == VT) return N1;  // Not actually extending
2645
2646    if (N1C) {
2647      APInt Val = N1C->getAPIntValue();
2648      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2649      Val <<= Val.getBitWidth()-FromBits;
2650      Val = Val.ashr(Val.getBitWidth()-FromBits);
2651      return getConstant(Val, VT);
2652    }
2653    break;
2654  }
2655  case ISD::EXTRACT_VECTOR_ELT:
2656    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2657    if (N1.getOpcode() == ISD::UNDEF)
2658      return getUNDEF(VT);
2659
2660    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2661    // expanding copies of large vectors from registers.
2662    if (N2C &&
2663        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2664        N1.getNumOperands() > 0) {
2665      unsigned Factor =
2666        N1.getOperand(0).getValueType().getVectorNumElements();
2667      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2668                     N1.getOperand(N2C->getZExtValue() / Factor),
2669                     getConstant(N2C->getZExtValue() % Factor,
2670                                 N2.getValueType()));
2671    }
2672
2673    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2674    // expanding large vector constants.
2675    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2676      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2677      EVT VEltTy = N1.getValueType().getVectorElementType();
2678      if (Elt.getValueType() != VEltTy) {
2679        // If the vector element type is not legal, the BUILD_VECTOR operands
2680        // are promoted and implicitly truncated.  Make that explicit here.
2681        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2682      }
2683      if (VT != VEltTy) {
2684        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2685        // result is implicitly extended.
2686        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2687      }
2688      return Elt;
2689    }
2690
2691    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2692    // operations are lowered to scalars.
2693    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2694      // If the indices are the same, return the inserted element.
2695      if (N1.getOperand(2) == N2)
2696        return N1.getOperand(1);
2697      // If the indices are known different, extract the element from
2698      // the original vector.
2699      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2700               isa<ConstantSDNode>(N2))
2701        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2702    }
2703    break;
2704  case ISD::EXTRACT_ELEMENT:
2705    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2706    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2707           (N1.getValueType().isInteger() == VT.isInteger()) &&
2708           "Wrong types for EXTRACT_ELEMENT!");
2709
2710    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2711    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2712    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2713    if (N1.getOpcode() == ISD::BUILD_PAIR)
2714      return N1.getOperand(N2C->getZExtValue());
2715
2716    // EXTRACT_ELEMENT of a constant int is also very common.
2717    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2718      unsigned ElementSize = VT.getSizeInBits();
2719      unsigned Shift = ElementSize * N2C->getZExtValue();
2720      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2721      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2722    }
2723    break;
2724  case ISD::EXTRACT_SUBVECTOR:
2725    if (N1.getValueType() == VT) // Trivial extraction.
2726      return N1;
2727    break;
2728  }
2729
2730  if (N1C) {
2731    if (N2C) {
2732      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2733      if (SV.getNode()) return SV;
2734    } else {      // Cannonicalize constant to RHS if commutative
2735      if (isCommutativeBinOp(Opcode)) {
2736        std::swap(N1C, N2C);
2737        std::swap(N1, N2);
2738      }
2739    }
2740  }
2741
2742  // Constant fold FP operations.
2743  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2744  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2745  if (N1CFP) {
2746    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2747      // Cannonicalize constant to RHS if commutative
2748      std::swap(N1CFP, N2CFP);
2749      std::swap(N1, N2);
2750    } else if (N2CFP && VT != MVT::ppcf128) {
2751      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2752      APFloat::opStatus s;
2753      switch (Opcode) {
2754      case ISD::FADD:
2755        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2756        if (s != APFloat::opInvalidOp)
2757          return getConstantFP(V1, VT);
2758        break;
2759      case ISD::FSUB:
2760        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2761        if (s!=APFloat::opInvalidOp)
2762          return getConstantFP(V1, VT);
2763        break;
2764      case ISD::FMUL:
2765        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2766        if (s!=APFloat::opInvalidOp)
2767          return getConstantFP(V1, VT);
2768        break;
2769      case ISD::FDIV:
2770        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2771        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2772          return getConstantFP(V1, VT);
2773        break;
2774      case ISD::FREM :
2775        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2776        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2777          return getConstantFP(V1, VT);
2778        break;
2779      case ISD::FCOPYSIGN:
2780        V1.copySign(V2);
2781        return getConstantFP(V1, VT);
2782      default: break;
2783      }
2784    }
2785  }
2786
2787  // Canonicalize an UNDEF to the RHS, even over a constant.
2788  if (N1.getOpcode() == ISD::UNDEF) {
2789    if (isCommutativeBinOp(Opcode)) {
2790      std::swap(N1, N2);
2791    } else {
2792      switch (Opcode) {
2793      case ISD::FP_ROUND_INREG:
2794      case ISD::SIGN_EXTEND_INREG:
2795      case ISD::SUB:
2796      case ISD::FSUB:
2797      case ISD::FDIV:
2798      case ISD::FREM:
2799      case ISD::SRA:
2800        return N1;     // fold op(undef, arg2) -> undef
2801      case ISD::UDIV:
2802      case ISD::SDIV:
2803      case ISD::UREM:
2804      case ISD::SREM:
2805      case ISD::SRL:
2806      case ISD::SHL:
2807        if (!VT.isVector())
2808          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2809        // For vectors, we can't easily build an all zero vector, just return
2810        // the LHS.
2811        return N2;
2812      }
2813    }
2814  }
2815
2816  // Fold a bunch of operators when the RHS is undef.
2817  if (N2.getOpcode() == ISD::UNDEF) {
2818    switch (Opcode) {
2819    case ISD::XOR:
2820      if (N1.getOpcode() == ISD::UNDEF)
2821        // Handle undef ^ undef -> 0 special case. This is a common
2822        // idiom (misuse).
2823        return getConstant(0, VT);
2824      // fallthrough
2825    case ISD::ADD:
2826    case ISD::ADDC:
2827    case ISD::ADDE:
2828    case ISD::SUB:
2829    case ISD::UDIV:
2830    case ISD::SDIV:
2831    case ISD::UREM:
2832    case ISD::SREM:
2833      return N2;       // fold op(arg1, undef) -> undef
2834    case ISD::FADD:
2835    case ISD::FSUB:
2836    case ISD::FMUL:
2837    case ISD::FDIV:
2838    case ISD::FREM:
2839      if (UnsafeFPMath)
2840        return N2;
2841      break;
2842    case ISD::MUL:
2843    case ISD::AND:
2844    case ISD::SRL:
2845    case ISD::SHL:
2846      if (!VT.isVector())
2847        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2848      // For vectors, we can't easily build an all zero vector, just return
2849      // the LHS.
2850      return N1;
2851    case ISD::OR:
2852      if (!VT.isVector())
2853        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2854      // For vectors, we can't easily build an all one vector, just return
2855      // the LHS.
2856      return N1;
2857    case ISD::SRA:
2858      return N1;
2859    }
2860  }
2861
2862  // Memoize this node if possible.
2863  SDNode *N;
2864  SDVTList VTs = getVTList(VT);
2865  if (VT != MVT::Flag) {
2866    SDValue Ops[] = { N1, N2 };
2867    FoldingSetNodeID ID;
2868    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2869    void *IP = 0;
2870    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2871      return SDValue(E, 0);
2872    N = NodeAllocator.Allocate<BinarySDNode>();
2873    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2874    CSEMap.InsertNode(N, IP);
2875  } else {
2876    N = NodeAllocator.Allocate<BinarySDNode>();
2877    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2878  }
2879
2880  AllNodes.push_back(N);
2881#ifndef NDEBUG
2882  VerifyNode(N);
2883#endif
2884  return SDValue(N, 0);
2885}
2886
2887SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2888                              SDValue N1, SDValue N2, SDValue N3) {
2889  // Perform various simplifications.
2890  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2891  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2892  switch (Opcode) {
2893  case ISD::CONCAT_VECTORS:
2894    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2895    // one big BUILD_VECTOR.
2896    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2897        N2.getOpcode() == ISD::BUILD_VECTOR &&
2898        N3.getOpcode() == ISD::BUILD_VECTOR) {
2899      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2900      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2901      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2902      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2903    }
2904    break;
2905  case ISD::SETCC: {
2906    // Use FoldSetCC to simplify SETCC's.
2907    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2908    if (Simp.getNode()) return Simp;
2909    break;
2910  }
2911  case ISD::SELECT:
2912    if (N1C) {
2913     if (N1C->getZExtValue())
2914        return N2;             // select true, X, Y -> X
2915      else
2916        return N3;             // select false, X, Y -> Y
2917    }
2918
2919    if (N2 == N3) return N2;   // select C, X, X -> X
2920    break;
2921  case ISD::BRCOND:
2922    if (N2C) {
2923      if (N2C->getZExtValue()) // Unconditional branch
2924        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2925      else
2926        return N1;         // Never-taken branch
2927    }
2928    break;
2929  case ISD::VECTOR_SHUFFLE:
2930    llvm_unreachable("should use getVectorShuffle constructor!");
2931    break;
2932  case ISD::BIT_CONVERT:
2933    // Fold bit_convert nodes from a type to themselves.
2934    if (N1.getValueType() == VT)
2935      return N1;
2936    break;
2937  }
2938
2939  // Memoize node if it doesn't produce a flag.
2940  SDNode *N;
2941  SDVTList VTs = getVTList(VT);
2942  if (VT != MVT::Flag) {
2943    SDValue Ops[] = { N1, N2, N3 };
2944    FoldingSetNodeID ID;
2945    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2946    void *IP = 0;
2947    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2948      return SDValue(E, 0);
2949    N = NodeAllocator.Allocate<TernarySDNode>();
2950    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2951    CSEMap.InsertNode(N, IP);
2952  } else {
2953    N = NodeAllocator.Allocate<TernarySDNode>();
2954    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2955  }
2956  AllNodes.push_back(N);
2957#ifndef NDEBUG
2958  VerifyNode(N);
2959#endif
2960  return SDValue(N, 0);
2961}
2962
2963SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2964                              SDValue N1, SDValue N2, SDValue N3,
2965                              SDValue N4) {
2966  SDValue Ops[] = { N1, N2, N3, N4 };
2967  return getNode(Opcode, DL, VT, Ops, 4);
2968}
2969
2970SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2971                              SDValue N1, SDValue N2, SDValue N3,
2972                              SDValue N4, SDValue N5) {
2973  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2974  return getNode(Opcode, DL, VT, Ops, 5);
2975}
2976
2977/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2978/// the incoming stack arguments to be loaded from the stack.
2979SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2980  SmallVector<SDValue, 8> ArgChains;
2981
2982  // Include the original chain at the beginning of the list. When this is
2983  // used by target LowerCall hooks, this helps legalize find the
2984  // CALLSEQ_BEGIN node.
2985  ArgChains.push_back(Chain);
2986
2987  // Add a chain value for each stack argument.
2988  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
2989       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
2990    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2991      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2992        if (FI->getIndex() < 0)
2993          ArgChains.push_back(SDValue(L, 1));
2994
2995  // Build a tokenfactor for all the chains.
2996  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
2997                 &ArgChains[0], ArgChains.size());
2998}
2999
3000/// getMemsetValue - Vectorized representation of the memset value
3001/// operand.
3002static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3003                              DebugLoc dl) {
3004  unsigned NumBits = VT.isVector() ?
3005    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3006  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3007    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3008    unsigned Shift = 8;
3009    for (unsigned i = NumBits; i > 8; i >>= 1) {
3010      Val = (Val << Shift) | Val;
3011      Shift <<= 1;
3012    }
3013    if (VT.isInteger())
3014      return DAG.getConstant(Val, VT);
3015    return DAG.getConstantFP(APFloat(Val), VT);
3016  }
3017
3018  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3019  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3020  unsigned Shift = 8;
3021  for (unsigned i = NumBits; i > 8; i >>= 1) {
3022    Value = DAG.getNode(ISD::OR, dl, VT,
3023                        DAG.getNode(ISD::SHL, dl, VT, Value,
3024                                    DAG.getConstant(Shift,
3025                                                    TLI.getShiftAmountTy())),
3026                        Value);
3027    Shift <<= 1;
3028  }
3029
3030  return Value;
3031}
3032
3033/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3034/// used when a memcpy is turned into a memset when the source is a constant
3035/// string ptr.
3036static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3037                                    const TargetLowering &TLI,
3038                                    std::string &Str, unsigned Offset) {
3039  // Handle vector with all elements zero.
3040  if (Str.empty()) {
3041    if (VT.isInteger())
3042      return DAG.getConstant(0, VT);
3043    unsigned NumElts = VT.getVectorNumElements();
3044    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3045    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3046                       DAG.getConstant(0,
3047                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3048  }
3049
3050  assert(!VT.isVector() && "Can't handle vector type here!");
3051  unsigned NumBits = VT.getSizeInBits();
3052  unsigned MSB = NumBits / 8;
3053  uint64_t Val = 0;
3054  if (TLI.isLittleEndian())
3055    Offset = Offset + MSB - 1;
3056  for (unsigned i = 0; i != MSB; ++i) {
3057    Val = (Val << 8) | (unsigned char)Str[Offset];
3058    Offset += TLI.isLittleEndian() ? -1 : 1;
3059  }
3060  return DAG.getConstant(Val, VT);
3061}
3062
3063/// getMemBasePlusOffset - Returns base and offset node for the
3064///
3065static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3066                                      SelectionDAG &DAG) {
3067  EVT VT = Base.getValueType();
3068  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3069                     VT, Base, DAG.getConstant(Offset, VT));
3070}
3071
3072/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3073///
3074static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3075  unsigned SrcDelta = 0;
3076  GlobalAddressSDNode *G = NULL;
3077  if (Src.getOpcode() == ISD::GlobalAddress)
3078    G = cast<GlobalAddressSDNode>(Src);
3079  else if (Src.getOpcode() == ISD::ADD &&
3080           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3081           Src.getOperand(1).getOpcode() == ISD::Constant) {
3082    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3083    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3084  }
3085  if (!G)
3086    return false;
3087
3088  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3089  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3090    return true;
3091
3092  return false;
3093}
3094
3095/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3096/// to replace the memset / memcpy is below the threshold. It also returns the
3097/// types of the sequence of memory ops to perform memset / memcpy.
3098static
3099bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3100                              SDValue Dst, SDValue Src,
3101                              unsigned Limit, uint64_t Size, unsigned &Align,
3102                              std::string &Str, bool &isSrcStr,
3103                              SelectionDAG &DAG,
3104                              const TargetLowering &TLI) {
3105  isSrcStr = isMemSrcFromString(Src, Str);
3106  bool isSrcConst = isa<ConstantSDNode>(Src);
3107  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3108  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3109  if (VT != MVT::iAny) {
3110    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3111    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3112    // If source is a string constant, this will require an unaligned load.
3113    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3114      if (Dst.getOpcode() != ISD::FrameIndex) {
3115        // Can't change destination alignment. It requires a unaligned store.
3116        if (AllowUnalign)
3117          VT = MVT::iAny;
3118      } else {
3119        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3120        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3121        if (MFI->isFixedObjectIndex(FI)) {
3122          // Can't change destination alignment. It requires a unaligned store.
3123          if (AllowUnalign)
3124            VT = MVT::iAny;
3125        } else {
3126          // Give the stack frame object a larger alignment if needed.
3127          if (MFI->getObjectAlignment(FI) < NewAlign)
3128            MFI->setObjectAlignment(FI, NewAlign);
3129          Align = NewAlign;
3130        }
3131      }
3132    }
3133  }
3134
3135  if (VT == MVT::iAny) {
3136    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3137      VT = MVT::i64;
3138    } else {
3139      switch (Align & 7) {
3140      case 0:  VT = MVT::i64; break;
3141      case 4:  VT = MVT::i32; break;
3142      case 2:  VT = MVT::i16; break;
3143      default: VT = MVT::i8;  break;
3144      }
3145    }
3146
3147    MVT LVT = MVT::i64;
3148    while (!TLI.isTypeLegal(LVT))
3149      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3150    assert(LVT.isInteger());
3151
3152    if (VT.bitsGT(LVT))
3153      VT = LVT;
3154  }
3155
3156  unsigned NumMemOps = 0;
3157  while (Size != 0) {
3158    unsigned VTSize = VT.getSizeInBits() / 8;
3159    while (VTSize > Size) {
3160      // For now, only use non-vector load / store's for the left-over pieces.
3161      if (VT.isVector()) {
3162        VT = MVT::i64;
3163        while (!TLI.isTypeLegal(VT))
3164          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3165        VTSize = VT.getSizeInBits() / 8;
3166      } else {
3167        // This can result in a type that is not legal on the target, e.g.
3168        // 1 or 2 bytes on PPC.
3169        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3170        VTSize >>= 1;
3171      }
3172    }
3173
3174    if (++NumMemOps > Limit)
3175      return false;
3176    MemOps.push_back(VT);
3177    Size -= VTSize;
3178  }
3179
3180  return true;
3181}
3182
3183static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3184                                         SDValue Chain, SDValue Dst,
3185                                         SDValue Src, uint64_t Size,
3186                                         unsigned Align, bool AlwaysInline,
3187                                         const Value *DstSV, uint64_t DstSVOff,
3188                                         const Value *SrcSV, uint64_t SrcSVOff){
3189  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3190
3191  // Expand memcpy to a series of load and store ops if the size operand falls
3192  // below a certain threshold.
3193  std::vector<EVT> MemOps;
3194  uint64_t Limit = -1ULL;
3195  if (!AlwaysInline)
3196    Limit = TLI.getMaxStoresPerMemcpy();
3197  unsigned DstAlign = Align;  // Destination alignment can change.
3198  std::string Str;
3199  bool CopyFromStr;
3200  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3201                                Str, CopyFromStr, DAG, TLI))
3202    return SDValue();
3203
3204
3205  bool isZeroStr = CopyFromStr && Str.empty();
3206  SmallVector<SDValue, 8> OutChains;
3207  unsigned NumMemOps = MemOps.size();
3208  uint64_t SrcOff = 0, DstOff = 0;
3209  for (unsigned i = 0; i < NumMemOps; i++) {
3210    EVT VT = MemOps[i];
3211    unsigned VTSize = VT.getSizeInBits() / 8;
3212    SDValue Value, Store;
3213
3214    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3215      // It's unlikely a store of a vector immediate can be done in a single
3216      // instruction. It would require a load from a constantpool first.
3217      // We also handle store a vector with all zero's.
3218      // FIXME: Handle other cases where store of vector immediate is done in
3219      // a single instruction.
3220      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3221      Store = DAG.getStore(Chain, dl, Value,
3222                           getMemBasePlusOffset(Dst, DstOff, DAG),
3223                           DstSV, DstSVOff + DstOff, false, DstAlign);
3224    } else {
3225      // The type might not be legal for the target.  This should only happen
3226      // if the type is smaller than a legal type, as on PPC, so the right
3227      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3228      // to Load/Store if NVT==VT.
3229      // FIXME does the case above also need this?
3230      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3231      assert(NVT.bitsGE(VT));
3232      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3233                             getMemBasePlusOffset(Src, SrcOff, DAG),
3234                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3235      Store = DAG.getTruncStore(Chain, dl, Value,
3236                             getMemBasePlusOffset(Dst, DstOff, DAG),
3237                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3238    }
3239    OutChains.push_back(Store);
3240    SrcOff += VTSize;
3241    DstOff += VTSize;
3242  }
3243
3244  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3245                     &OutChains[0], OutChains.size());
3246}
3247
3248static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3249                                          SDValue Chain, SDValue Dst,
3250                                          SDValue Src, uint64_t Size,
3251                                          unsigned Align, bool AlwaysInline,
3252                                          const Value *DstSV, uint64_t DstSVOff,
3253                                          const Value *SrcSV, uint64_t SrcSVOff){
3254  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3255
3256  // Expand memmove to a series of load and store ops if the size operand falls
3257  // below a certain threshold.
3258  std::vector<EVT> MemOps;
3259  uint64_t Limit = -1ULL;
3260  if (!AlwaysInline)
3261    Limit = TLI.getMaxStoresPerMemmove();
3262  unsigned DstAlign = Align;  // Destination alignment can change.
3263  std::string Str;
3264  bool CopyFromStr;
3265  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3266                                Str, CopyFromStr, DAG, TLI))
3267    return SDValue();
3268
3269  uint64_t SrcOff = 0, DstOff = 0;
3270
3271  SmallVector<SDValue, 8> LoadValues;
3272  SmallVector<SDValue, 8> LoadChains;
3273  SmallVector<SDValue, 8> OutChains;
3274  unsigned NumMemOps = MemOps.size();
3275  for (unsigned i = 0; i < NumMemOps; i++) {
3276    EVT VT = MemOps[i];
3277    unsigned VTSize = VT.getSizeInBits() / 8;
3278    SDValue Value, Store;
3279
3280    Value = DAG.getLoad(VT, dl, Chain,
3281                        getMemBasePlusOffset(Src, SrcOff, DAG),
3282                        SrcSV, SrcSVOff + SrcOff, false, Align);
3283    LoadValues.push_back(Value);
3284    LoadChains.push_back(Value.getValue(1));
3285    SrcOff += VTSize;
3286  }
3287  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3288                      &LoadChains[0], LoadChains.size());
3289  OutChains.clear();
3290  for (unsigned i = 0; i < NumMemOps; i++) {
3291    EVT VT = MemOps[i];
3292    unsigned VTSize = VT.getSizeInBits() / 8;
3293    SDValue Value, Store;
3294
3295    Store = DAG.getStore(Chain, dl, LoadValues[i],
3296                         getMemBasePlusOffset(Dst, DstOff, DAG),
3297                         DstSV, DstSVOff + DstOff, false, DstAlign);
3298    OutChains.push_back(Store);
3299    DstOff += VTSize;
3300  }
3301
3302  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3303                     &OutChains[0], OutChains.size());
3304}
3305
3306static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3307                                 SDValue Chain, SDValue Dst,
3308                                 SDValue Src, uint64_t Size,
3309                                 unsigned Align,
3310                                 const Value *DstSV, uint64_t DstSVOff) {
3311  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3312
3313  // Expand memset to a series of load/store ops if the size operand
3314  // falls below a certain threshold.
3315  std::vector<EVT> MemOps;
3316  std::string Str;
3317  bool CopyFromStr;
3318  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3319                                Size, Align, Str, CopyFromStr, DAG, TLI))
3320    return SDValue();
3321
3322  SmallVector<SDValue, 8> OutChains;
3323  uint64_t DstOff = 0;
3324
3325  unsigned NumMemOps = MemOps.size();
3326  for (unsigned i = 0; i < NumMemOps; i++) {
3327    EVT VT = MemOps[i];
3328    unsigned VTSize = VT.getSizeInBits() / 8;
3329    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3330    SDValue Store = DAG.getStore(Chain, dl, Value,
3331                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3332                                 DstSV, DstSVOff + DstOff);
3333    OutChains.push_back(Store);
3334    DstOff += VTSize;
3335  }
3336
3337  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3338                     &OutChains[0], OutChains.size());
3339}
3340
3341SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3342                                SDValue Src, SDValue Size,
3343                                unsigned Align, bool AlwaysInline,
3344                                const Value *DstSV, uint64_t DstSVOff,
3345                                const Value *SrcSV, uint64_t SrcSVOff) {
3346
3347  // Check to see if we should lower the memcpy to loads and stores first.
3348  // For cases within the target-specified limits, this is the best choice.
3349  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3350  if (ConstantSize) {
3351    // Memcpy with size zero? Just return the original chain.
3352    if (ConstantSize->isNullValue())
3353      return Chain;
3354
3355    SDValue Result =
3356      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3357                              ConstantSize->getZExtValue(),
3358                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3359    if (Result.getNode())
3360      return Result;
3361  }
3362
3363  // Then check to see if we should lower the memcpy with target-specific
3364  // code. If the target chooses to do this, this is the next best.
3365  SDValue Result =
3366    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3367                                AlwaysInline,
3368                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3369  if (Result.getNode())
3370    return Result;
3371
3372  // If we really need inline code and the target declined to provide it,
3373  // use a (potentially long) sequence of loads and stores.
3374  if (AlwaysInline) {
3375    assert(ConstantSize && "AlwaysInline requires a constant size!");
3376    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3377                                   ConstantSize->getZExtValue(), Align, true,
3378                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3379  }
3380
3381  // Emit a library call.
3382  TargetLowering::ArgListTy Args;
3383  TargetLowering::ArgListEntry Entry;
3384  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3385  Entry.Node = Dst; Args.push_back(Entry);
3386  Entry.Node = Src; Args.push_back(Entry);
3387  Entry.Node = Size; Args.push_back(Entry);
3388  // FIXME: pass in DebugLoc
3389  std::pair<SDValue,SDValue> CallResult =
3390    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3391                    false, false, false, false, 0,
3392                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3393                    /*isReturnValueUsed=*/false,
3394                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3395                                      TLI.getPointerTy()),
3396                    Args, *this, dl);
3397  return CallResult.second;
3398}
3399
3400SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3401                                 SDValue Src, SDValue Size,
3402                                 unsigned Align,
3403                                 const Value *DstSV, uint64_t DstSVOff,
3404                                 const Value *SrcSV, uint64_t SrcSVOff) {
3405
3406  // Check to see if we should lower the memmove to loads and stores first.
3407  // For cases within the target-specified limits, this is the best choice.
3408  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3409  if (ConstantSize) {
3410    // Memmove with size zero? Just return the original chain.
3411    if (ConstantSize->isNullValue())
3412      return Chain;
3413
3414    SDValue Result =
3415      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3416                               ConstantSize->getZExtValue(),
3417                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3418    if (Result.getNode())
3419      return Result;
3420  }
3421
3422  // Then check to see if we should lower the memmove with target-specific
3423  // code. If the target chooses to do this, this is the next best.
3424  SDValue Result =
3425    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3426                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3427  if (Result.getNode())
3428    return Result;
3429
3430  // Emit a library call.
3431  TargetLowering::ArgListTy Args;
3432  TargetLowering::ArgListEntry Entry;
3433  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3434  Entry.Node = Dst; Args.push_back(Entry);
3435  Entry.Node = Src; Args.push_back(Entry);
3436  Entry.Node = Size; Args.push_back(Entry);
3437  // FIXME:  pass in DebugLoc
3438  std::pair<SDValue,SDValue> CallResult =
3439    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3440                    false, false, false, false, 0,
3441                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3442                    /*isReturnValueUsed=*/false,
3443                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3444                                      TLI.getPointerTy()),
3445                    Args, *this, dl);
3446  return CallResult.second;
3447}
3448
3449SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3450                                SDValue Src, SDValue Size,
3451                                unsigned Align,
3452                                const Value *DstSV, uint64_t DstSVOff) {
3453
3454  // Check to see if we should lower the memset to stores first.
3455  // For cases within the target-specified limits, this is the best choice.
3456  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3457  if (ConstantSize) {
3458    // Memset with size zero? Just return the original chain.
3459    if (ConstantSize->isNullValue())
3460      return Chain;
3461
3462    SDValue Result =
3463      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3464                      Align, DstSV, DstSVOff);
3465    if (Result.getNode())
3466      return Result;
3467  }
3468
3469  // Then check to see if we should lower the memset with target-specific
3470  // code. If the target chooses to do this, this is the next best.
3471  SDValue Result =
3472    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3473                                DstSV, DstSVOff);
3474  if (Result.getNode())
3475    return Result;
3476
3477  // Emit a library call.
3478  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3479  TargetLowering::ArgListTy Args;
3480  TargetLowering::ArgListEntry Entry;
3481  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3482  Args.push_back(Entry);
3483  // Extend or truncate the argument to be an i32 value for the call.
3484  if (Src.getValueType().bitsGT(MVT::i32))
3485    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3486  else
3487    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3488  Entry.Node = Src;
3489  Entry.Ty = Type::getInt32Ty(*getContext());
3490  Entry.isSExt = true;
3491  Args.push_back(Entry);
3492  Entry.Node = Size;
3493  Entry.Ty = IntPtrTy;
3494  Entry.isSExt = false;
3495  Args.push_back(Entry);
3496  // FIXME: pass in DebugLoc
3497  std::pair<SDValue,SDValue> CallResult =
3498    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3499                    false, false, false, false, 0,
3500                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3501                    /*isReturnValueUsed=*/false,
3502                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3503                                      TLI.getPointerTy()),
3504                    Args, *this, dl);
3505  return CallResult.second;
3506}
3507
3508SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3509                                SDValue Chain,
3510                                SDValue Ptr, SDValue Cmp,
3511                                SDValue Swp, const Value* PtrVal,
3512                                unsigned Alignment) {
3513  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3514  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3515
3516  EVT VT = Cmp.getValueType();
3517
3518  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3519    Alignment = getEVTAlignment(MemVT);
3520
3521  SDVTList VTs = getVTList(VT, MVT::Other);
3522  FoldingSetNodeID ID;
3523  ID.AddInteger(MemVT.getRawBits());
3524  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3525  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3526  void* IP = 0;
3527  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3528    return SDValue(E, 0);
3529  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3530  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3531                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3532  CSEMap.InsertNode(N, IP);
3533  AllNodes.push_back(N);
3534  return SDValue(N, 0);
3535}
3536
3537SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3538                                SDValue Chain,
3539                                SDValue Ptr, SDValue Val,
3540                                const Value* PtrVal,
3541                                unsigned Alignment) {
3542  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3543          Opcode == ISD::ATOMIC_LOAD_SUB ||
3544          Opcode == ISD::ATOMIC_LOAD_AND ||
3545          Opcode == ISD::ATOMIC_LOAD_OR ||
3546          Opcode == ISD::ATOMIC_LOAD_XOR ||
3547          Opcode == ISD::ATOMIC_LOAD_NAND ||
3548          Opcode == ISD::ATOMIC_LOAD_MIN ||
3549          Opcode == ISD::ATOMIC_LOAD_MAX ||
3550          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3551          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3552          Opcode == ISD::ATOMIC_SWAP) &&
3553         "Invalid Atomic Op");
3554
3555  EVT VT = Val.getValueType();
3556
3557  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3558    Alignment = getEVTAlignment(MemVT);
3559
3560  SDVTList VTs = getVTList(VT, MVT::Other);
3561  FoldingSetNodeID ID;
3562  ID.AddInteger(MemVT.getRawBits());
3563  SDValue Ops[] = {Chain, Ptr, Val};
3564  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3565  void* IP = 0;
3566  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3567    return SDValue(E, 0);
3568  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3569  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3570                       Chain, Ptr, Val, PtrVal, Alignment);
3571  CSEMap.InsertNode(N, IP);
3572  AllNodes.push_back(N);
3573  return SDValue(N, 0);
3574}
3575
3576/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3577/// Allowed to return something different (and simpler) if Simplify is true.
3578SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3579                                     DebugLoc dl) {
3580  if (NumOps == 1)
3581    return Ops[0];
3582
3583  SmallVector<EVT, 4> VTs;
3584  VTs.reserve(NumOps);
3585  for (unsigned i = 0; i < NumOps; ++i)
3586    VTs.push_back(Ops[i].getValueType());
3587  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3588                 Ops, NumOps);
3589}
3590
3591SDValue
3592SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3593                                  const EVT *VTs, unsigned NumVTs,
3594                                  const SDValue *Ops, unsigned NumOps,
3595                                  EVT MemVT, const Value *srcValue, int SVOff,
3596                                  unsigned Align, bool Vol,
3597                                  bool ReadMem, bool WriteMem) {
3598  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3599                             MemVT, srcValue, SVOff, Align, Vol,
3600                             ReadMem, WriteMem);
3601}
3602
3603SDValue
3604SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3605                                  const SDValue *Ops, unsigned NumOps,
3606                                  EVT MemVT, const Value *srcValue, int SVOff,
3607                                  unsigned Align, bool Vol,
3608                                  bool ReadMem, bool WriteMem) {
3609  // Memoize the node unless it returns a flag.
3610  MemIntrinsicSDNode *N;
3611  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3612    FoldingSetNodeID ID;
3613    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3614    void *IP = 0;
3615    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3616      return SDValue(E, 0);
3617
3618    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3619    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3620                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3621    CSEMap.InsertNode(N, IP);
3622  } else {
3623    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3624    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3625                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3626  }
3627  AllNodes.push_back(N);
3628  return SDValue(N, 0);
3629}
3630
3631SDValue
3632SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3633                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3634                      SDValue Ptr, SDValue Offset,
3635                      const Value *SV, int SVOffset, EVT EVT,
3636                      bool isVolatile, unsigned Alignment) {
3637  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3638    Alignment = getEVTAlignment(VT);
3639
3640  if (VT == EVT) {
3641    ExtType = ISD::NON_EXTLOAD;
3642  } else if (ExtType == ISD::NON_EXTLOAD) {
3643    assert(VT == EVT && "Non-extending load from different memory type!");
3644  } else {
3645    // Extending load.
3646    if (VT.isVector())
3647      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3648             "Invalid vector extload!");
3649    else
3650      assert(EVT.bitsLT(VT) &&
3651             "Should only be an extending load, not truncating!");
3652    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3653           "Cannot sign/zero extend a FP/Vector load!");
3654    assert(VT.isInteger() == EVT.isInteger() &&
3655           "Cannot convert from FP to Int or Int -> FP!");
3656  }
3657
3658  bool Indexed = AM != ISD::UNINDEXED;
3659  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3660         "Unindexed load with an offset!");
3661
3662  SDVTList VTs = Indexed ?
3663    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3664  SDValue Ops[] = { Chain, Ptr, Offset };
3665  FoldingSetNodeID ID;
3666  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3667  ID.AddInteger(EVT.getRawBits());
3668  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3669  void *IP = 0;
3670  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3671    return SDValue(E, 0);
3672  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3673  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3674                     Alignment, isVolatile);
3675  CSEMap.InsertNode(N, IP);
3676  AllNodes.push_back(N);
3677  return SDValue(N, 0);
3678}
3679
3680SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3681                              SDValue Chain, SDValue Ptr,
3682                              const Value *SV, int SVOffset,
3683                              bool isVolatile, unsigned Alignment) {
3684  SDValue Undef = getUNDEF(Ptr.getValueType());
3685  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3686                 SV, SVOffset, VT, isVolatile, Alignment);
3687}
3688
3689SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3690                                 SDValue Chain, SDValue Ptr,
3691                                 const Value *SV,
3692                                 int SVOffset, EVT EVT,
3693                                 bool isVolatile, unsigned Alignment) {
3694  SDValue Undef = getUNDEF(Ptr.getValueType());
3695  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3696                 SV, SVOffset, EVT, isVolatile, Alignment);
3697}
3698
3699SDValue
3700SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3701                             SDValue Offset, ISD::MemIndexedMode AM) {
3702  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3703  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3704         "Load is already a indexed load!");
3705  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3706                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3707                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3708                 LD->isVolatile(), LD->getAlignment());
3709}
3710
3711SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3712                               SDValue Ptr, const Value *SV, int SVOffset,
3713                               bool isVolatile, unsigned Alignment) {
3714  EVT VT = Val.getValueType();
3715
3716  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3717    Alignment = getEVTAlignment(VT);
3718
3719  SDVTList VTs = getVTList(MVT::Other);
3720  SDValue Undef = getUNDEF(Ptr.getValueType());
3721  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3722  FoldingSetNodeID ID;
3723  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3724  ID.AddInteger(VT.getRawBits());
3725  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3726                                     isVolatile, Alignment));
3727  void *IP = 0;
3728  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3729    return SDValue(E, 0);
3730  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3731  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3732                      VT, SV, SVOffset, Alignment, isVolatile);
3733  CSEMap.InsertNode(N, IP);
3734  AllNodes.push_back(N);
3735  return SDValue(N, 0);
3736}
3737
3738SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3739                                    SDValue Ptr, const Value *SV,
3740                                    int SVOffset, EVT SVT,
3741                                    bool isVolatile, unsigned Alignment) {
3742  EVT VT = Val.getValueType();
3743
3744  if (VT == SVT)
3745    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3746
3747  assert(VT.bitsGT(SVT) && "Not a truncation?");
3748  assert(VT.isInteger() == SVT.isInteger() &&
3749         "Can't do FP-INT conversion!");
3750
3751  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3752    Alignment = getEVTAlignment(VT);
3753
3754  SDVTList VTs = getVTList(MVT::Other);
3755  SDValue Undef = getUNDEF(Ptr.getValueType());
3756  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3757  FoldingSetNodeID ID;
3758  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3759  ID.AddInteger(SVT.getRawBits());
3760  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3761                                     isVolatile, Alignment));
3762  void *IP = 0;
3763  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3764    return SDValue(E, 0);
3765  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3766  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3767                      SVT, SV, SVOffset, Alignment, isVolatile);
3768  CSEMap.InsertNode(N, IP);
3769  AllNodes.push_back(N);
3770  return SDValue(N, 0);
3771}
3772
3773SDValue
3774SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3775                              SDValue Offset, ISD::MemIndexedMode AM) {
3776  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3777  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3778         "Store is already a indexed store!");
3779  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3780  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3781  FoldingSetNodeID ID;
3782  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3783  ID.AddInteger(ST->getMemoryVT().getRawBits());
3784  ID.AddInteger(ST->getRawSubclassData());
3785  void *IP = 0;
3786  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3787    return SDValue(E, 0);
3788  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3789  new (N) StoreSDNode(Ops, dl, VTs, AM,
3790                      ST->isTruncatingStore(), ST->getMemoryVT(),
3791                      ST->getSrcValue(), ST->getSrcValueOffset(),
3792                      ST->getAlignment(), ST->isVolatile());
3793  CSEMap.InsertNode(N, IP);
3794  AllNodes.push_back(N);
3795  return SDValue(N, 0);
3796}
3797
3798SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3799                               SDValue Chain, SDValue Ptr,
3800                               SDValue SV) {
3801  SDValue Ops[] = { Chain, Ptr, SV };
3802  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3803}
3804
3805SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3806                              const SDUse *Ops, unsigned NumOps) {
3807  switch (NumOps) {
3808  case 0: return getNode(Opcode, DL, VT);
3809  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3810  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3811  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3812  default: break;
3813  }
3814
3815  // Copy from an SDUse array into an SDValue array for use with
3816  // the regular getNode logic.
3817  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3818  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3819}
3820
3821SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3822                              const SDValue *Ops, unsigned NumOps) {
3823  switch (NumOps) {
3824  case 0: return getNode(Opcode, DL, VT);
3825  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3826  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3827  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3828  default: break;
3829  }
3830
3831  switch (Opcode) {
3832  default: break;
3833  case ISD::SELECT_CC: {
3834    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3835    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3836           "LHS and RHS of condition must have same type!");
3837    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3838           "True and False arms of SelectCC must have same type!");
3839    assert(Ops[2].getValueType() == VT &&
3840           "select_cc node must be of same type as true and false value!");
3841    break;
3842  }
3843  case ISD::BR_CC: {
3844    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3845    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3846           "LHS/RHS of comparison should match types!");
3847    break;
3848  }
3849  }
3850
3851  // Memoize nodes.
3852  SDNode *N;
3853  SDVTList VTs = getVTList(VT);
3854
3855  if (VT != MVT::Flag) {
3856    FoldingSetNodeID ID;
3857    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3858    void *IP = 0;
3859
3860    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3861      return SDValue(E, 0);
3862
3863    N = NodeAllocator.Allocate<SDNode>();
3864    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3865    CSEMap.InsertNode(N, IP);
3866  } else {
3867    N = NodeAllocator.Allocate<SDNode>();
3868    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3869  }
3870
3871  AllNodes.push_back(N);
3872#ifndef NDEBUG
3873  VerifyNode(N);
3874#endif
3875  return SDValue(N, 0);
3876}
3877
3878SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3879                              const std::vector<EVT> &ResultTys,
3880                              const SDValue *Ops, unsigned NumOps) {
3881  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3882                 Ops, NumOps);
3883}
3884
3885SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3886                              const EVT *VTs, unsigned NumVTs,
3887                              const SDValue *Ops, unsigned NumOps) {
3888  if (NumVTs == 1)
3889    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3890  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3891}
3892
3893SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3894                              const SDValue *Ops, unsigned NumOps) {
3895  if (VTList.NumVTs == 1)
3896    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3897
3898#if 0
3899  switch (Opcode) {
3900  // FIXME: figure out how to safely handle things like
3901  // int foo(int x) { return 1 << (x & 255); }
3902  // int bar() { return foo(256); }
3903  case ISD::SRA_PARTS:
3904  case ISD::SRL_PARTS:
3905  case ISD::SHL_PARTS:
3906    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3907        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3908      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3909    else if (N3.getOpcode() == ISD::AND)
3910      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3911        // If the and is only masking out bits that cannot effect the shift,
3912        // eliminate the and.
3913        unsigned NumBits = VT.getSizeInBits()*2;
3914        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3915          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3916      }
3917    break;
3918  }
3919#endif
3920
3921  // Memoize the node unless it returns a flag.
3922  SDNode *N;
3923  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3924    FoldingSetNodeID ID;
3925    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3926    void *IP = 0;
3927    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3928      return SDValue(E, 0);
3929    if (NumOps == 1) {
3930      N = NodeAllocator.Allocate<UnarySDNode>();
3931      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3932    } else if (NumOps == 2) {
3933      N = NodeAllocator.Allocate<BinarySDNode>();
3934      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3935    } else if (NumOps == 3) {
3936      N = NodeAllocator.Allocate<TernarySDNode>();
3937      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3938    } else {
3939      N = NodeAllocator.Allocate<SDNode>();
3940      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3941    }
3942    CSEMap.InsertNode(N, IP);
3943  } else {
3944    if (NumOps == 1) {
3945      N = NodeAllocator.Allocate<UnarySDNode>();
3946      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3947    } else if (NumOps == 2) {
3948      N = NodeAllocator.Allocate<BinarySDNode>();
3949      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3950    } else if (NumOps == 3) {
3951      N = NodeAllocator.Allocate<TernarySDNode>();
3952      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3953    } else {
3954      N = NodeAllocator.Allocate<SDNode>();
3955      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3956    }
3957  }
3958  AllNodes.push_back(N);
3959#ifndef NDEBUG
3960  VerifyNode(N);
3961#endif
3962  return SDValue(N, 0);
3963}
3964
3965SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3966  return getNode(Opcode, DL, VTList, 0, 0);
3967}
3968
3969SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3970                              SDValue N1) {
3971  SDValue Ops[] = { N1 };
3972  return getNode(Opcode, DL, VTList, Ops, 1);
3973}
3974
3975SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3976                              SDValue N1, SDValue N2) {
3977  SDValue Ops[] = { N1, N2 };
3978  return getNode(Opcode, DL, VTList, Ops, 2);
3979}
3980
3981SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3982                              SDValue N1, SDValue N2, SDValue N3) {
3983  SDValue Ops[] = { N1, N2, N3 };
3984  return getNode(Opcode, DL, VTList, Ops, 3);
3985}
3986
3987SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3988                              SDValue N1, SDValue N2, SDValue N3,
3989                              SDValue N4) {
3990  SDValue Ops[] = { N1, N2, N3, N4 };
3991  return getNode(Opcode, DL, VTList, Ops, 4);
3992}
3993
3994SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3995                              SDValue N1, SDValue N2, SDValue N3,
3996                              SDValue N4, SDValue N5) {
3997  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3998  return getNode(Opcode, DL, VTList, Ops, 5);
3999}
4000
4001SDVTList SelectionDAG::getVTList(EVT VT) {
4002  return makeVTList(SDNode::getValueTypeList(VT), 1);
4003}
4004
4005SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4006  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4007       E = VTList.rend(); I != E; ++I)
4008    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4009      return *I;
4010
4011  EVT *Array = Allocator.Allocate<EVT>(2);
4012  Array[0] = VT1;
4013  Array[1] = VT2;
4014  SDVTList Result = makeVTList(Array, 2);
4015  VTList.push_back(Result);
4016  return Result;
4017}
4018
4019SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4020  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4021       E = VTList.rend(); I != E; ++I)
4022    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4023                          I->VTs[2] == VT3)
4024      return *I;
4025
4026  EVT *Array = Allocator.Allocate<EVT>(3);
4027  Array[0] = VT1;
4028  Array[1] = VT2;
4029  Array[2] = VT3;
4030  SDVTList Result = makeVTList(Array, 3);
4031  VTList.push_back(Result);
4032  return Result;
4033}
4034
4035SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4036  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4037       E = VTList.rend(); I != E; ++I)
4038    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4039                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4040      return *I;
4041
4042  EVT *Array = Allocator.Allocate<EVT>(3);
4043  Array[0] = VT1;
4044  Array[1] = VT2;
4045  Array[2] = VT3;
4046  Array[3] = VT4;
4047  SDVTList Result = makeVTList(Array, 4);
4048  VTList.push_back(Result);
4049  return Result;
4050}
4051
4052SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4053  switch (NumVTs) {
4054    case 0: llvm_unreachable("Cannot have nodes without results!");
4055    case 1: return getVTList(VTs[0]);
4056    case 2: return getVTList(VTs[0], VTs[1]);
4057    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4058    default: break;
4059  }
4060
4061  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4062       E = VTList.rend(); I != E; ++I) {
4063    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4064      continue;
4065
4066    bool NoMatch = false;
4067    for (unsigned i = 2; i != NumVTs; ++i)
4068      if (VTs[i] != I->VTs[i]) {
4069        NoMatch = true;
4070        break;
4071      }
4072    if (!NoMatch)
4073      return *I;
4074  }
4075
4076  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4077  std::copy(VTs, VTs+NumVTs, Array);
4078  SDVTList Result = makeVTList(Array, NumVTs);
4079  VTList.push_back(Result);
4080  return Result;
4081}
4082
4083
4084/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4085/// specified operands.  If the resultant node already exists in the DAG,
4086/// this does not modify the specified node, instead it returns the node that
4087/// already exists.  If the resultant node does not exist in the DAG, the
4088/// input node is returned.  As a degenerate case, if you specify the same
4089/// input operands as the node already has, the input node is returned.
4090SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4091  SDNode *N = InN.getNode();
4092  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4093
4094  // Check to see if there is no change.
4095  if (Op == N->getOperand(0)) return InN;
4096
4097  // See if the modified node already exists.
4098  void *InsertPos = 0;
4099  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4100    return SDValue(Existing, InN.getResNo());
4101
4102  // Nope it doesn't.  Remove the node from its current place in the maps.
4103  if (InsertPos)
4104    if (!RemoveNodeFromCSEMaps(N))
4105      InsertPos = 0;
4106
4107  // Now we update the operands.
4108  N->OperandList[0].set(Op);
4109
4110  // If this gets put into a CSE map, add it.
4111  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4112  return InN;
4113}
4114
4115SDValue SelectionDAG::
4116UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4117  SDNode *N = InN.getNode();
4118  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4119
4120  // Check to see if there is no change.
4121  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4122    return InN;   // No operands changed, just return the input node.
4123
4124  // See if the modified node already exists.
4125  void *InsertPos = 0;
4126  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4127    return SDValue(Existing, InN.getResNo());
4128
4129  // Nope it doesn't.  Remove the node from its current place in the maps.
4130  if (InsertPos)
4131    if (!RemoveNodeFromCSEMaps(N))
4132      InsertPos = 0;
4133
4134  // Now we update the operands.
4135  if (N->OperandList[0] != Op1)
4136    N->OperandList[0].set(Op1);
4137  if (N->OperandList[1] != Op2)
4138    N->OperandList[1].set(Op2);
4139
4140  // If this gets put into a CSE map, add it.
4141  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4142  return InN;
4143}
4144
4145SDValue SelectionDAG::
4146UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4147  SDValue Ops[] = { Op1, Op2, Op3 };
4148  return UpdateNodeOperands(N, Ops, 3);
4149}
4150
4151SDValue SelectionDAG::
4152UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4153                   SDValue Op3, SDValue Op4) {
4154  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4155  return UpdateNodeOperands(N, Ops, 4);
4156}
4157
4158SDValue SelectionDAG::
4159UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4160                   SDValue Op3, SDValue Op4, SDValue Op5) {
4161  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4162  return UpdateNodeOperands(N, Ops, 5);
4163}
4164
4165SDValue SelectionDAG::
4166UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4167  SDNode *N = InN.getNode();
4168  assert(N->getNumOperands() == NumOps &&
4169         "Update with wrong number of operands");
4170
4171  // Check to see if there is no change.
4172  bool AnyChange = false;
4173  for (unsigned i = 0; i != NumOps; ++i) {
4174    if (Ops[i] != N->getOperand(i)) {
4175      AnyChange = true;
4176      break;
4177    }
4178  }
4179
4180  // No operands changed, just return the input node.
4181  if (!AnyChange) return InN;
4182
4183  // See if the modified node already exists.
4184  void *InsertPos = 0;
4185  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4186    return SDValue(Existing, InN.getResNo());
4187
4188  // Nope it doesn't.  Remove the node from its current place in the maps.
4189  if (InsertPos)
4190    if (!RemoveNodeFromCSEMaps(N))
4191      InsertPos = 0;
4192
4193  // Now we update the operands.
4194  for (unsigned i = 0; i != NumOps; ++i)
4195    if (N->OperandList[i] != Ops[i])
4196      N->OperandList[i].set(Ops[i]);
4197
4198  // If this gets put into a CSE map, add it.
4199  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4200  return InN;
4201}
4202
4203/// DropOperands - Release the operands and set this node to have
4204/// zero operands.
4205void SDNode::DropOperands() {
4206  // Unlike the code in MorphNodeTo that does this, we don't need to
4207  // watch for dead nodes here.
4208  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4209    SDUse &Use = *I++;
4210    Use.set(SDValue());
4211  }
4212}
4213
4214/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4215/// machine opcode.
4216///
4217SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4218                                   EVT VT) {
4219  SDVTList VTs = getVTList(VT);
4220  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4221}
4222
4223SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4224                                   EVT VT, SDValue Op1) {
4225  SDVTList VTs = getVTList(VT);
4226  SDValue Ops[] = { Op1 };
4227  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4228}
4229
4230SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4231                                   EVT VT, SDValue Op1,
4232                                   SDValue Op2) {
4233  SDVTList VTs = getVTList(VT);
4234  SDValue Ops[] = { Op1, Op2 };
4235  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4236}
4237
4238SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4239                                   EVT VT, SDValue Op1,
4240                                   SDValue Op2, SDValue Op3) {
4241  SDVTList VTs = getVTList(VT);
4242  SDValue Ops[] = { Op1, Op2, Op3 };
4243  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4244}
4245
4246SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4247                                   EVT VT, const SDValue *Ops,
4248                                   unsigned NumOps) {
4249  SDVTList VTs = getVTList(VT);
4250  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4251}
4252
4253SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4254                                   EVT VT1, EVT VT2, const SDValue *Ops,
4255                                   unsigned NumOps) {
4256  SDVTList VTs = getVTList(VT1, VT2);
4257  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4258}
4259
4260SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4261                                   EVT VT1, EVT VT2) {
4262  SDVTList VTs = getVTList(VT1, VT2);
4263  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4264}
4265
4266SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4267                                   EVT VT1, EVT VT2, EVT VT3,
4268                                   const SDValue *Ops, unsigned NumOps) {
4269  SDVTList VTs = getVTList(VT1, VT2, VT3);
4270  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4271}
4272
4273SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4274                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4275                                   const SDValue *Ops, unsigned NumOps) {
4276  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4277  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4278}
4279
4280SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4281                                   EVT VT1, EVT VT2,
4282                                   SDValue Op1) {
4283  SDVTList VTs = getVTList(VT1, VT2);
4284  SDValue Ops[] = { Op1 };
4285  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4286}
4287
4288SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4289                                   EVT VT1, EVT VT2,
4290                                   SDValue Op1, SDValue Op2) {
4291  SDVTList VTs = getVTList(VT1, VT2);
4292  SDValue Ops[] = { Op1, Op2 };
4293  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4294}
4295
4296SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4297                                   EVT VT1, EVT VT2,
4298                                   SDValue Op1, SDValue Op2,
4299                                   SDValue Op3) {
4300  SDVTList VTs = getVTList(VT1, VT2);
4301  SDValue Ops[] = { Op1, Op2, Op3 };
4302  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4303}
4304
4305SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4306                                   EVT VT1, EVT VT2, EVT VT3,
4307                                   SDValue Op1, SDValue Op2,
4308                                   SDValue Op3) {
4309  SDVTList VTs = getVTList(VT1, VT2, VT3);
4310  SDValue Ops[] = { Op1, Op2, Op3 };
4311  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4312}
4313
4314SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4315                                   SDVTList VTs, const SDValue *Ops,
4316                                   unsigned NumOps) {
4317  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4318}
4319
4320SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4321                                  EVT VT) {
4322  SDVTList VTs = getVTList(VT);
4323  return MorphNodeTo(N, Opc, VTs, 0, 0);
4324}
4325
4326SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4327                                  EVT VT, SDValue Op1) {
4328  SDVTList VTs = getVTList(VT);
4329  SDValue Ops[] = { Op1 };
4330  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4331}
4332
4333SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4334                                  EVT VT, SDValue Op1,
4335                                  SDValue Op2) {
4336  SDVTList VTs = getVTList(VT);
4337  SDValue Ops[] = { Op1, Op2 };
4338  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4339}
4340
4341SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4342                                  EVT VT, SDValue Op1,
4343                                  SDValue Op2, SDValue Op3) {
4344  SDVTList VTs = getVTList(VT);
4345  SDValue Ops[] = { Op1, Op2, Op3 };
4346  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4347}
4348
4349SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4350                                  EVT VT, const SDValue *Ops,
4351                                  unsigned NumOps) {
4352  SDVTList VTs = getVTList(VT);
4353  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4354}
4355
4356SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4357                                  EVT VT1, EVT VT2, const SDValue *Ops,
4358                                  unsigned NumOps) {
4359  SDVTList VTs = getVTList(VT1, VT2);
4360  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4361}
4362
4363SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4364                                  EVT VT1, EVT VT2) {
4365  SDVTList VTs = getVTList(VT1, VT2);
4366  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4367}
4368
4369SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4370                                  EVT VT1, EVT VT2, EVT VT3,
4371                                  const SDValue *Ops, unsigned NumOps) {
4372  SDVTList VTs = getVTList(VT1, VT2, VT3);
4373  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4374}
4375
4376SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4377                                  EVT VT1, EVT VT2,
4378                                  SDValue Op1) {
4379  SDVTList VTs = getVTList(VT1, VT2);
4380  SDValue Ops[] = { Op1 };
4381  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4382}
4383
4384SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4385                                  EVT VT1, EVT VT2,
4386                                  SDValue Op1, SDValue Op2) {
4387  SDVTList VTs = getVTList(VT1, VT2);
4388  SDValue Ops[] = { Op1, Op2 };
4389  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4390}
4391
4392SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4393                                  EVT VT1, EVT VT2,
4394                                  SDValue Op1, SDValue Op2,
4395                                  SDValue Op3) {
4396  SDVTList VTs = getVTList(VT1, VT2);
4397  SDValue Ops[] = { Op1, Op2, Op3 };
4398  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4399}
4400
4401/// MorphNodeTo - These *mutate* the specified node to have the specified
4402/// return type, opcode, and operands.
4403///
4404/// Note that MorphNodeTo returns the resultant node.  If there is already a
4405/// node of the specified opcode and operands, it returns that node instead of
4406/// the current one.  Note that the DebugLoc need not be the same.
4407///
4408/// Using MorphNodeTo is faster than creating a new node and swapping it in
4409/// with ReplaceAllUsesWith both because it often avoids allocating a new
4410/// node, and because it doesn't require CSE recalculation for any of
4411/// the node's users.
4412///
4413SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4414                                  SDVTList VTs, const SDValue *Ops,
4415                                  unsigned NumOps) {
4416  // If an identical node already exists, use it.
4417  void *IP = 0;
4418  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4419    FoldingSetNodeID ID;
4420    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4421    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4422      return ON;
4423  }
4424
4425  if (!RemoveNodeFromCSEMaps(N))
4426    IP = 0;
4427
4428  // Start the morphing.
4429  N->NodeType = Opc;
4430  N->ValueList = VTs.VTs;
4431  N->NumValues = VTs.NumVTs;
4432
4433  // Clear the operands list, updating used nodes to remove this from their
4434  // use list.  Keep track of any operands that become dead as a result.
4435  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4436  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4437    SDUse &Use = *I++;
4438    SDNode *Used = Use.getNode();
4439    Use.set(SDValue());
4440    if (Used->use_empty())
4441      DeadNodeSet.insert(Used);
4442  }
4443
4444  // If NumOps is larger than the # of operands we currently have, reallocate
4445  // the operand list.
4446  if (NumOps > N->NumOperands) {
4447    if (N->OperandsNeedDelete)
4448      delete[] N->OperandList;
4449
4450    if (N->isMachineOpcode()) {
4451      // We're creating a final node that will live unmorphed for the
4452      // remainder of the current SelectionDAG iteration, so we can allocate
4453      // the operands directly out of a pool with no recycling metadata.
4454      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4455      N->OperandsNeedDelete = false;
4456    } else {
4457      N->OperandList = new SDUse[NumOps];
4458      N->OperandsNeedDelete = true;
4459    }
4460  }
4461
4462  // Assign the new operands.
4463  N->NumOperands = NumOps;
4464  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4465    N->OperandList[i].setUser(N);
4466    N->OperandList[i].setInitial(Ops[i]);
4467  }
4468
4469  // Delete any nodes that are still dead after adding the uses for the
4470  // new operands.
4471  SmallVector<SDNode *, 16> DeadNodes;
4472  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4473       E = DeadNodeSet.end(); I != E; ++I)
4474    if ((*I)->use_empty())
4475      DeadNodes.push_back(*I);
4476  RemoveDeadNodes(DeadNodes);
4477
4478  if (IP)
4479    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4480  return N;
4481}
4482
4483
4484/// getTargetNode - These are used for target selectors to create a new node
4485/// with specified return type(s), target opcode, and operands.
4486///
4487/// Note that getTargetNode returns the resultant node.  If there is already a
4488/// node of the specified opcode and operands, it returns that node instead of
4489/// the current one.
4490SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4491  return getNode(~Opcode, dl, VT).getNode();
4492}
4493
4494SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4495                                    SDValue Op1) {
4496  return getNode(~Opcode, dl, VT, Op1).getNode();
4497}
4498
4499SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4500                                    SDValue Op1, SDValue Op2) {
4501  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4502}
4503
4504SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4505                                    SDValue Op1, SDValue Op2,
4506                                    SDValue Op3) {
4507  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4508}
4509
4510SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4511                                    const SDValue *Ops, unsigned NumOps) {
4512  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4513}
4514
4515SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4516                                    EVT VT1, EVT VT2) {
4517  SDVTList VTs = getVTList(VT1, VT2);
4518  SDValue Op;
4519  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4520}
4521
4522SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4523                                    EVT VT2, SDValue Op1) {
4524  SDVTList VTs = getVTList(VT1, VT2);
4525  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4526}
4527
4528SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4529                                    EVT VT2, SDValue Op1,
4530                                    SDValue Op2) {
4531  SDVTList VTs = getVTList(VT1, VT2);
4532  SDValue Ops[] = { Op1, Op2 };
4533  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4534}
4535
4536SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4537                                    EVT VT2, SDValue Op1,
4538                                    SDValue Op2, SDValue Op3) {
4539  SDVTList VTs = getVTList(VT1, VT2);
4540  SDValue Ops[] = { Op1, Op2, Op3 };
4541  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4542}
4543
4544SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4545                                    EVT VT1, EVT VT2,
4546                                    const SDValue *Ops, unsigned NumOps) {
4547  SDVTList VTs = getVTList(VT1, VT2);
4548  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4549}
4550
4551SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4552                                    EVT VT1, EVT VT2, EVT VT3,
4553                                    SDValue Op1, SDValue Op2) {
4554  SDVTList VTs = getVTList(VT1, VT2, VT3);
4555  SDValue Ops[] = { Op1, Op2 };
4556  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4557}
4558
4559SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4560                                    EVT VT1, EVT VT2, EVT VT3,
4561                                    SDValue Op1, SDValue Op2,
4562                                    SDValue Op3) {
4563  SDVTList VTs = getVTList(VT1, VT2, VT3);
4564  SDValue Ops[] = { Op1, Op2, Op3 };
4565  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4566}
4567
4568SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4569                                    EVT VT1, EVT VT2, EVT VT3,
4570                                    const SDValue *Ops, unsigned NumOps) {
4571  SDVTList VTs = getVTList(VT1, VT2, VT3);
4572  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4573}
4574
4575SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4576                                    EVT VT2, EVT VT3, EVT VT4,
4577                                    const SDValue *Ops, unsigned NumOps) {
4578  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4579  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4580}
4581
4582SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4583                                    const std::vector<EVT> &ResultTys,
4584                                    const SDValue *Ops, unsigned NumOps) {
4585  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4586}
4587
4588/// getTargetExtractSubreg - A convenience function for creating
4589/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4590SDValue
4591SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4592                                     SDValue Operand) {
4593  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4594  SDNode *Subreg = getTargetNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4595                                 VT, Operand, SRIdxVal);
4596  return SDValue(Subreg, 0);
4597}
4598
4599/// getNodeIfExists - Get the specified node if it's already available, or
4600/// else return NULL.
4601SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4602                                      const SDValue *Ops, unsigned NumOps) {
4603  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4604    FoldingSetNodeID ID;
4605    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4606    void *IP = 0;
4607    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4608      return E;
4609  }
4610  return NULL;
4611}
4612
4613/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4614/// This can cause recursive merging of nodes in the DAG.
4615///
4616/// This version assumes From has a single result value.
4617///
4618void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4619                                      DAGUpdateListener *UpdateListener) {
4620  SDNode *From = FromN.getNode();
4621  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4622         "Cannot replace with this method!");
4623  assert(From != To.getNode() && "Cannot replace uses of with self");
4624
4625  // Iterate over all the existing uses of From. New uses will be added
4626  // to the beginning of the use list, which we avoid visiting.
4627  // This specifically avoids visiting uses of From that arise while the
4628  // replacement is happening, because any such uses would be the result
4629  // of CSE: If an existing node looks like From after one of its operands
4630  // is replaced by To, we don't want to replace of all its users with To
4631  // too. See PR3018 for more info.
4632  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4633  while (UI != UE) {
4634    SDNode *User = *UI;
4635
4636    // This node is about to morph, remove its old self from the CSE maps.
4637    RemoveNodeFromCSEMaps(User);
4638
4639    // A user can appear in a use list multiple times, and when this
4640    // happens the uses are usually next to each other in the list.
4641    // To help reduce the number of CSE recomputations, process all
4642    // the uses of this user that we can find this way.
4643    do {
4644      SDUse &Use = UI.getUse();
4645      ++UI;
4646      Use.set(To);
4647    } while (UI != UE && *UI == User);
4648
4649    // Now that we have modified User, add it back to the CSE maps.  If it
4650    // already exists there, recursively merge the results together.
4651    AddModifiedNodeToCSEMaps(User, UpdateListener);
4652  }
4653}
4654
4655/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4656/// This can cause recursive merging of nodes in the DAG.
4657///
4658/// This version assumes that for each value of From, there is a
4659/// corresponding value in To in the same position with the same type.
4660///
4661void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4662                                      DAGUpdateListener *UpdateListener) {
4663#ifndef NDEBUG
4664  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4665    assert((!From->hasAnyUseOfValue(i) ||
4666            From->getValueType(i) == To->getValueType(i)) &&
4667           "Cannot use this version of ReplaceAllUsesWith!");
4668#endif
4669
4670  // Handle the trivial case.
4671  if (From == To)
4672    return;
4673
4674  // Iterate over just the existing users of From. See the comments in
4675  // the ReplaceAllUsesWith above.
4676  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4677  while (UI != UE) {
4678    SDNode *User = *UI;
4679
4680    // This node is about to morph, remove its old self from the CSE maps.
4681    RemoveNodeFromCSEMaps(User);
4682
4683    // A user can appear in a use list multiple times, and when this
4684    // happens the uses are usually next to each other in the list.
4685    // To help reduce the number of CSE recomputations, process all
4686    // the uses of this user that we can find this way.
4687    do {
4688      SDUse &Use = UI.getUse();
4689      ++UI;
4690      Use.setNode(To);
4691    } while (UI != UE && *UI == User);
4692
4693    // Now that we have modified User, add it back to the CSE maps.  If it
4694    // already exists there, recursively merge the results together.
4695    AddModifiedNodeToCSEMaps(User, UpdateListener);
4696  }
4697}
4698
4699/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4700/// This can cause recursive merging of nodes in the DAG.
4701///
4702/// This version can replace From with any result values.  To must match the
4703/// number and types of values returned by From.
4704void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4705                                      const SDValue *To,
4706                                      DAGUpdateListener *UpdateListener) {
4707  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4708    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4709
4710  // Iterate over just the existing users of From. See the comments in
4711  // the ReplaceAllUsesWith above.
4712  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4713  while (UI != UE) {
4714    SDNode *User = *UI;
4715
4716    // This node is about to morph, remove its old self from the CSE maps.
4717    RemoveNodeFromCSEMaps(User);
4718
4719    // A user can appear in a use list multiple times, and when this
4720    // happens the uses are usually next to each other in the list.
4721    // To help reduce the number of CSE recomputations, process all
4722    // the uses of this user that we can find this way.
4723    do {
4724      SDUse &Use = UI.getUse();
4725      const SDValue &ToOp = To[Use.getResNo()];
4726      ++UI;
4727      Use.set(ToOp);
4728    } while (UI != UE && *UI == User);
4729
4730    // Now that we have modified User, add it back to the CSE maps.  If it
4731    // already exists there, recursively merge the results together.
4732    AddModifiedNodeToCSEMaps(User, UpdateListener);
4733  }
4734}
4735
4736/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4737/// uses of other values produced by From.getNode() alone.  The Deleted
4738/// vector is handled the same way as for ReplaceAllUsesWith.
4739void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4740                                             DAGUpdateListener *UpdateListener){
4741  // Handle the really simple, really trivial case efficiently.
4742  if (From == To) return;
4743
4744  // Handle the simple, trivial, case efficiently.
4745  if (From.getNode()->getNumValues() == 1) {
4746    ReplaceAllUsesWith(From, To, UpdateListener);
4747    return;
4748  }
4749
4750  // Iterate over just the existing users of From. See the comments in
4751  // the ReplaceAllUsesWith above.
4752  SDNode::use_iterator UI = From.getNode()->use_begin(),
4753                       UE = From.getNode()->use_end();
4754  while (UI != UE) {
4755    SDNode *User = *UI;
4756    bool UserRemovedFromCSEMaps = false;
4757
4758    // A user can appear in a use list multiple times, and when this
4759    // happens the uses are usually next to each other in the list.
4760    // To help reduce the number of CSE recomputations, process all
4761    // the uses of this user that we can find this way.
4762    do {
4763      SDUse &Use = UI.getUse();
4764
4765      // Skip uses of different values from the same node.
4766      if (Use.getResNo() != From.getResNo()) {
4767        ++UI;
4768        continue;
4769      }
4770
4771      // If this node hasn't been modified yet, it's still in the CSE maps,
4772      // so remove its old self from the CSE maps.
4773      if (!UserRemovedFromCSEMaps) {
4774        RemoveNodeFromCSEMaps(User);
4775        UserRemovedFromCSEMaps = true;
4776      }
4777
4778      ++UI;
4779      Use.set(To);
4780    } while (UI != UE && *UI == User);
4781
4782    // We are iterating over all uses of the From node, so if a use
4783    // doesn't use the specific value, no changes are made.
4784    if (!UserRemovedFromCSEMaps)
4785      continue;
4786
4787    // Now that we have modified User, add it back to the CSE maps.  If it
4788    // already exists there, recursively merge the results together.
4789    AddModifiedNodeToCSEMaps(User, UpdateListener);
4790  }
4791}
4792
4793namespace {
4794  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4795  /// to record information about a use.
4796  struct UseMemo {
4797    SDNode *User;
4798    unsigned Index;
4799    SDUse *Use;
4800  };
4801
4802  /// operator< - Sort Memos by User.
4803  bool operator<(const UseMemo &L, const UseMemo &R) {
4804    return (intptr_t)L.User < (intptr_t)R.User;
4805  }
4806}
4807
4808/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4809/// uses of other values produced by From.getNode() alone.  The same value
4810/// may appear in both the From and To list.  The Deleted vector is
4811/// handled the same way as for ReplaceAllUsesWith.
4812void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4813                                              const SDValue *To,
4814                                              unsigned Num,
4815                                              DAGUpdateListener *UpdateListener){
4816  // Handle the simple, trivial case efficiently.
4817  if (Num == 1)
4818    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4819
4820  // Read up all the uses and make records of them. This helps
4821  // processing new uses that are introduced during the
4822  // replacement process.
4823  SmallVector<UseMemo, 4> Uses;
4824  for (unsigned i = 0; i != Num; ++i) {
4825    unsigned FromResNo = From[i].getResNo();
4826    SDNode *FromNode = From[i].getNode();
4827    for (SDNode::use_iterator UI = FromNode->use_begin(),
4828         E = FromNode->use_end(); UI != E; ++UI) {
4829      SDUse &Use = UI.getUse();
4830      if (Use.getResNo() == FromResNo) {
4831        UseMemo Memo = { *UI, i, &Use };
4832        Uses.push_back(Memo);
4833      }
4834    }
4835  }
4836
4837  // Sort the uses, so that all the uses from a given User are together.
4838  std::sort(Uses.begin(), Uses.end());
4839
4840  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4841       UseIndex != UseIndexEnd; ) {
4842    // We know that this user uses some value of From.  If it is the right
4843    // value, update it.
4844    SDNode *User = Uses[UseIndex].User;
4845
4846    // This node is about to morph, remove its old self from the CSE maps.
4847    RemoveNodeFromCSEMaps(User);
4848
4849    // The Uses array is sorted, so all the uses for a given User
4850    // are next to each other in the list.
4851    // To help reduce the number of CSE recomputations, process all
4852    // the uses of this user that we can find this way.
4853    do {
4854      unsigned i = Uses[UseIndex].Index;
4855      SDUse &Use = *Uses[UseIndex].Use;
4856      ++UseIndex;
4857
4858      Use.set(To[i]);
4859    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4860
4861    // Now that we have modified User, add it back to the CSE maps.  If it
4862    // already exists there, recursively merge the results together.
4863    AddModifiedNodeToCSEMaps(User, UpdateListener);
4864  }
4865}
4866
4867/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4868/// based on their topological order. It returns the maximum id and a vector
4869/// of the SDNodes* in assigned order by reference.
4870unsigned SelectionDAG::AssignTopologicalOrder() {
4871
4872  unsigned DAGSize = 0;
4873
4874  // SortedPos tracks the progress of the algorithm. Nodes before it are
4875  // sorted, nodes after it are unsorted. When the algorithm completes
4876  // it is at the end of the list.
4877  allnodes_iterator SortedPos = allnodes_begin();
4878
4879  // Visit all the nodes. Move nodes with no operands to the front of
4880  // the list immediately. Annotate nodes that do have operands with their
4881  // operand count. Before we do this, the Node Id fields of the nodes
4882  // may contain arbitrary values. After, the Node Id fields for nodes
4883  // before SortedPos will contain the topological sort index, and the
4884  // Node Id fields for nodes At SortedPos and after will contain the
4885  // count of outstanding operands.
4886  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4887    SDNode *N = I++;
4888    unsigned Degree = N->getNumOperands();
4889    if (Degree == 0) {
4890      // A node with no uses, add it to the result array immediately.
4891      N->setNodeId(DAGSize++);
4892      allnodes_iterator Q = N;
4893      if (Q != SortedPos)
4894        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4895      ++SortedPos;
4896    } else {
4897      // Temporarily use the Node Id as scratch space for the degree count.
4898      N->setNodeId(Degree);
4899    }
4900  }
4901
4902  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4903  // such that by the time the end is reached all nodes will be sorted.
4904  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4905    SDNode *N = I;
4906    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4907         UI != UE; ++UI) {
4908      SDNode *P = *UI;
4909      unsigned Degree = P->getNodeId();
4910      --Degree;
4911      if (Degree == 0) {
4912        // All of P's operands are sorted, so P may sorted now.
4913        P->setNodeId(DAGSize++);
4914        if (P != SortedPos)
4915          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4916        ++SortedPos;
4917      } else {
4918        // Update P's outstanding operand count.
4919        P->setNodeId(Degree);
4920      }
4921    }
4922  }
4923
4924  assert(SortedPos == AllNodes.end() &&
4925         "Topological sort incomplete!");
4926  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4927         "First node in topological sort is not the entry token!");
4928  assert(AllNodes.front().getNodeId() == 0 &&
4929         "First node in topological sort has non-zero id!");
4930  assert(AllNodes.front().getNumOperands() == 0 &&
4931         "First node in topological sort has operands!");
4932  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4933         "Last node in topologic sort has unexpected id!");
4934  assert(AllNodes.back().use_empty() &&
4935         "Last node in topologic sort has users!");
4936  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4937  return DAGSize;
4938}
4939
4940
4941
4942//===----------------------------------------------------------------------===//
4943//                              SDNode Class
4944//===----------------------------------------------------------------------===//
4945
4946HandleSDNode::~HandleSDNode() {
4947  DropOperands();
4948}
4949
4950GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4951                                         EVT VT, int64_t o, unsigned char TF)
4952  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4953    Offset(o), TargetFlags(TF) {
4954  TheGlobal = const_cast<GlobalValue*>(GA);
4955}
4956
4957MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
4958                     const Value *srcValue, int SVO,
4959                     unsigned alignment, bool vol)
4960 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4961  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4962  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4963  assert(getAlignment() == alignment && "Alignment representation error!");
4964  assert(isVolatile() == vol && "Volatile representation error!");
4965}
4966
4967MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4968                     const SDValue *Ops,
4969                     unsigned NumOps, EVT memvt, const Value *srcValue,
4970                     int SVO, unsigned alignment, bool vol)
4971   : SDNode(Opc, dl, VTs, Ops, NumOps),
4972     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4973  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4974  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4975  assert(getAlignment() == alignment && "Alignment representation error!");
4976  assert(isVolatile() == vol && "Volatile representation error!");
4977}
4978
4979/// getMemOperand - Return a MachineMemOperand object describing the memory
4980/// reference performed by this memory reference.
4981MachineMemOperand MemSDNode::getMemOperand() const {
4982  int Flags = 0;
4983  if (isa<LoadSDNode>(this))
4984    Flags = MachineMemOperand::MOLoad;
4985  else if (isa<StoreSDNode>(this))
4986    Flags = MachineMemOperand::MOStore;
4987  else if (isa<AtomicSDNode>(this)) {
4988    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4989  }
4990  else {
4991    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4992    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4993    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4994    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4995  }
4996
4997  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4998  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4999
5000  // Check if the memory reference references a frame index
5001  const FrameIndexSDNode *FI =
5002  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5003  if (!getSrcValue() && FI)
5004    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5005                             Flags, 0, Size, getAlignment());
5006  else
5007    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5008                             Size, getAlignment());
5009}
5010
5011/// Profile - Gather unique data for the node.
5012///
5013void SDNode::Profile(FoldingSetNodeID &ID) const {
5014  AddNodeIDNode(ID, this);
5015}
5016
5017static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5018static EVT VTs[MVT::LAST_VALUETYPE];
5019static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5020
5021/// getValueTypeList - Return a pointer to the specified value type.
5022///
5023const EVT *SDNode::getValueTypeList(EVT VT) {
5024  if (VT.isExtended()) {
5025    sys::SmartScopedLock<true> Lock(*VTMutex);
5026    return &(*EVTs->insert(VT).first);
5027  } else {
5028    // All writes to this location will have the same value, so it's ok
5029    // to race on it.  We only need to ensure that at least one write has
5030    // succeeded before we return the pointer into the array.
5031    VTs[VT.getSimpleVT().SimpleTy] = VT;
5032    sys::MemoryFence();
5033    return VTs + VT.getSimpleVT().SimpleTy;
5034  }
5035}
5036
5037/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5038/// indicated value.  This method ignores uses of other values defined by this
5039/// operation.
5040bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5041  assert(Value < getNumValues() && "Bad value!");
5042
5043  // TODO: Only iterate over uses of a given value of the node
5044  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5045    if (UI.getUse().getResNo() == Value) {
5046      if (NUses == 0)
5047        return false;
5048      --NUses;
5049    }
5050  }
5051
5052  // Found exactly the right number of uses?
5053  return NUses == 0;
5054}
5055
5056
5057/// hasAnyUseOfValue - Return true if there are any use of the indicated
5058/// value. This method ignores uses of other values defined by this operation.
5059bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5060  assert(Value < getNumValues() && "Bad value!");
5061
5062  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5063    if (UI.getUse().getResNo() == Value)
5064      return true;
5065
5066  return false;
5067}
5068
5069
5070/// isOnlyUserOf - Return true if this node is the only use of N.
5071///
5072bool SDNode::isOnlyUserOf(SDNode *N) const {
5073  bool Seen = false;
5074  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5075    SDNode *User = *I;
5076    if (User == this)
5077      Seen = true;
5078    else
5079      return false;
5080  }
5081
5082  return Seen;
5083}
5084
5085/// isOperand - Return true if this node is an operand of N.
5086///
5087bool SDValue::isOperandOf(SDNode *N) const {
5088  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5089    if (*this == N->getOperand(i))
5090      return true;
5091  return false;
5092}
5093
5094bool SDNode::isOperandOf(SDNode *N) const {
5095  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5096    if (this == N->OperandList[i].getNode())
5097      return true;
5098  return false;
5099}
5100
5101/// reachesChainWithoutSideEffects - Return true if this operand (which must
5102/// be a chain) reaches the specified operand without crossing any
5103/// side-effecting instructions.  In practice, this looks through token
5104/// factors and non-volatile loads.  In order to remain efficient, this only
5105/// looks a couple of nodes in, it does not do an exhaustive search.
5106bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5107                                               unsigned Depth) const {
5108  if (*this == Dest) return true;
5109
5110  // Don't search too deeply, we just want to be able to see through
5111  // TokenFactor's etc.
5112  if (Depth == 0) return false;
5113
5114  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5115  // of the operands of the TF reach dest, then we can do the xform.
5116  if (getOpcode() == ISD::TokenFactor) {
5117    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5118      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5119        return true;
5120    return false;
5121  }
5122
5123  // Loads don't have side effects, look through them.
5124  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5125    if (!Ld->isVolatile())
5126      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5127  }
5128  return false;
5129}
5130
5131
5132static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5133                            SmallPtrSet<SDNode *, 32> &Visited) {
5134  if (found || !Visited.insert(N))
5135    return;
5136
5137  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5138    SDNode *Op = N->getOperand(i).getNode();
5139    if (Op == P) {
5140      found = true;
5141      return;
5142    }
5143    findPredecessor(Op, P, found, Visited);
5144  }
5145}
5146
5147/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5148/// is either an operand of N or it can be reached by recursively traversing
5149/// up the operands.
5150/// NOTE: this is an expensive method. Use it carefully.
5151bool SDNode::isPredecessorOf(SDNode *N) const {
5152  SmallPtrSet<SDNode *, 32> Visited;
5153  bool found = false;
5154  findPredecessor(N, this, found, Visited);
5155  return found;
5156}
5157
5158uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5159  assert(Num < NumOperands && "Invalid child # of SDNode!");
5160  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5161}
5162
5163std::string SDNode::getOperationName(const SelectionDAG *G) const {
5164  switch (getOpcode()) {
5165  default:
5166    if (getOpcode() < ISD::BUILTIN_OP_END)
5167      return "<<Unknown DAG Node>>";
5168    if (isMachineOpcode()) {
5169      if (G)
5170        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5171          if (getMachineOpcode() < TII->getNumOpcodes())
5172            return TII->get(getMachineOpcode()).getName();
5173      return "<<Unknown Machine Node>>";
5174    }
5175    if (G) {
5176      const TargetLowering &TLI = G->getTargetLoweringInfo();
5177      const char *Name = TLI.getTargetNodeName(getOpcode());
5178      if (Name) return Name;
5179      return "<<Unknown Target Node>>";
5180    }
5181    return "<<Unknown Node>>";
5182
5183#ifndef NDEBUG
5184  case ISD::DELETED_NODE:
5185    return "<<Deleted Node!>>";
5186#endif
5187  case ISD::PREFETCH:      return "Prefetch";
5188  case ISD::MEMBARRIER:    return "MemBarrier";
5189  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5190  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5191  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5192  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5193  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5194  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5195  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5196  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5197  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5198  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5199  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5200  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5201  case ISD::PCMARKER:      return "PCMarker";
5202  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5203  case ISD::SRCVALUE:      return "SrcValue";
5204  case ISD::MEMOPERAND:    return "MemOperand";
5205  case ISD::EntryToken:    return "EntryToken";
5206  case ISD::TokenFactor:   return "TokenFactor";
5207  case ISD::AssertSext:    return "AssertSext";
5208  case ISD::AssertZext:    return "AssertZext";
5209
5210  case ISD::BasicBlock:    return "BasicBlock";
5211  case ISD::VALUETYPE:     return "ValueType";
5212  case ISD::Register:      return "Register";
5213
5214  case ISD::Constant:      return "Constant";
5215  case ISD::ConstantFP:    return "ConstantFP";
5216  case ISD::GlobalAddress: return "GlobalAddress";
5217  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5218  case ISD::FrameIndex:    return "FrameIndex";
5219  case ISD::JumpTable:     return "JumpTable";
5220  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5221  case ISD::RETURNADDR: return "RETURNADDR";
5222  case ISD::FRAMEADDR: return "FRAMEADDR";
5223  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5224  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5225  case ISD::LSDAADDR: return "LSDAADDR";
5226  case ISD::EHSELECTION: return "EHSELECTION";
5227  case ISD::EH_RETURN: return "EH_RETURN";
5228  case ISD::ConstantPool:  return "ConstantPool";
5229  case ISD::ExternalSymbol: return "ExternalSymbol";
5230  case ISD::INTRINSIC_WO_CHAIN: {
5231    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5232    return Intrinsic::getName((Intrinsic::ID)IID);
5233  }
5234  case ISD::INTRINSIC_VOID:
5235  case ISD::INTRINSIC_W_CHAIN: {
5236    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5237    return Intrinsic::getName((Intrinsic::ID)IID);
5238  }
5239
5240  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5241  case ISD::TargetConstant: return "TargetConstant";
5242  case ISD::TargetConstantFP:return "TargetConstantFP";
5243  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5244  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5245  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5246  case ISD::TargetJumpTable:  return "TargetJumpTable";
5247  case ISD::TargetConstantPool:  return "TargetConstantPool";
5248  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5249
5250  case ISD::CopyToReg:     return "CopyToReg";
5251  case ISD::CopyFromReg:   return "CopyFromReg";
5252  case ISD::UNDEF:         return "undef";
5253  case ISD::MERGE_VALUES:  return "merge_values";
5254  case ISD::INLINEASM:     return "inlineasm";
5255  case ISD::DBG_LABEL:     return "dbg_label";
5256  case ISD::EH_LABEL:      return "eh_label";
5257  case ISD::HANDLENODE:    return "handlenode";
5258
5259  // Unary operators
5260  case ISD::FABS:   return "fabs";
5261  case ISD::FNEG:   return "fneg";
5262  case ISD::FSQRT:  return "fsqrt";
5263  case ISD::FSIN:   return "fsin";
5264  case ISD::FCOS:   return "fcos";
5265  case ISD::FPOWI:  return "fpowi";
5266  case ISD::FPOW:   return "fpow";
5267  case ISD::FTRUNC: return "ftrunc";
5268  case ISD::FFLOOR: return "ffloor";
5269  case ISD::FCEIL:  return "fceil";
5270  case ISD::FRINT:  return "frint";
5271  case ISD::FNEARBYINT: return "fnearbyint";
5272
5273  // Binary operators
5274  case ISD::ADD:    return "add";
5275  case ISD::SUB:    return "sub";
5276  case ISD::MUL:    return "mul";
5277  case ISD::MULHU:  return "mulhu";
5278  case ISD::MULHS:  return "mulhs";
5279  case ISD::SDIV:   return "sdiv";
5280  case ISD::UDIV:   return "udiv";
5281  case ISD::SREM:   return "srem";
5282  case ISD::UREM:   return "urem";
5283  case ISD::SMUL_LOHI:  return "smul_lohi";
5284  case ISD::UMUL_LOHI:  return "umul_lohi";
5285  case ISD::SDIVREM:    return "sdivrem";
5286  case ISD::UDIVREM:    return "udivrem";
5287  case ISD::AND:    return "and";
5288  case ISD::OR:     return "or";
5289  case ISD::XOR:    return "xor";
5290  case ISD::SHL:    return "shl";
5291  case ISD::SRA:    return "sra";
5292  case ISD::SRL:    return "srl";
5293  case ISD::ROTL:   return "rotl";
5294  case ISD::ROTR:   return "rotr";
5295  case ISD::FADD:   return "fadd";
5296  case ISD::FSUB:   return "fsub";
5297  case ISD::FMUL:   return "fmul";
5298  case ISD::FDIV:   return "fdiv";
5299  case ISD::FREM:   return "frem";
5300  case ISD::FCOPYSIGN: return "fcopysign";
5301  case ISD::FGETSIGN:  return "fgetsign";
5302
5303  case ISD::SETCC:       return "setcc";
5304  case ISD::VSETCC:      return "vsetcc";
5305  case ISD::SELECT:      return "select";
5306  case ISD::SELECT_CC:   return "select_cc";
5307  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5308  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5309  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5310  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5311  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5312  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5313  case ISD::CARRY_FALSE:         return "carry_false";
5314  case ISD::ADDC:        return "addc";
5315  case ISD::ADDE:        return "adde";
5316  case ISD::SADDO:       return "saddo";
5317  case ISD::UADDO:       return "uaddo";
5318  case ISD::SSUBO:       return "ssubo";
5319  case ISD::USUBO:       return "usubo";
5320  case ISD::SMULO:       return "smulo";
5321  case ISD::UMULO:       return "umulo";
5322  case ISD::SUBC:        return "subc";
5323  case ISD::SUBE:        return "sube";
5324  case ISD::SHL_PARTS:   return "shl_parts";
5325  case ISD::SRA_PARTS:   return "sra_parts";
5326  case ISD::SRL_PARTS:   return "srl_parts";
5327
5328  // Conversion operators.
5329  case ISD::SIGN_EXTEND: return "sign_extend";
5330  case ISD::ZERO_EXTEND: return "zero_extend";
5331  case ISD::ANY_EXTEND:  return "any_extend";
5332  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5333  case ISD::TRUNCATE:    return "truncate";
5334  case ISD::FP_ROUND:    return "fp_round";
5335  case ISD::FLT_ROUNDS_: return "flt_rounds";
5336  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5337  case ISD::FP_EXTEND:   return "fp_extend";
5338
5339  case ISD::SINT_TO_FP:  return "sint_to_fp";
5340  case ISD::UINT_TO_FP:  return "uint_to_fp";
5341  case ISD::FP_TO_SINT:  return "fp_to_sint";
5342  case ISD::FP_TO_UINT:  return "fp_to_uint";
5343  case ISD::BIT_CONVERT: return "bit_convert";
5344
5345  case ISD::CONVERT_RNDSAT: {
5346    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5347    default: llvm_unreachable("Unknown cvt code!");
5348    case ISD::CVT_FF:  return "cvt_ff";
5349    case ISD::CVT_FS:  return "cvt_fs";
5350    case ISD::CVT_FU:  return "cvt_fu";
5351    case ISD::CVT_SF:  return "cvt_sf";
5352    case ISD::CVT_UF:  return "cvt_uf";
5353    case ISD::CVT_SS:  return "cvt_ss";
5354    case ISD::CVT_SU:  return "cvt_su";
5355    case ISD::CVT_US:  return "cvt_us";
5356    case ISD::CVT_UU:  return "cvt_uu";
5357    }
5358  }
5359
5360    // Control flow instructions
5361  case ISD::BR:      return "br";
5362  case ISD::BRIND:   return "brind";
5363  case ISD::BR_JT:   return "br_jt";
5364  case ISD::BRCOND:  return "brcond";
5365  case ISD::BR_CC:   return "br_cc";
5366  case ISD::CALLSEQ_START:  return "callseq_start";
5367  case ISD::CALLSEQ_END:    return "callseq_end";
5368
5369    // Other operators
5370  case ISD::LOAD:               return "load";
5371  case ISD::STORE:              return "store";
5372  case ISD::VAARG:              return "vaarg";
5373  case ISD::VACOPY:             return "vacopy";
5374  case ISD::VAEND:              return "vaend";
5375  case ISD::VASTART:            return "vastart";
5376  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5377  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5378  case ISD::BUILD_PAIR:         return "build_pair";
5379  case ISD::STACKSAVE:          return "stacksave";
5380  case ISD::STACKRESTORE:       return "stackrestore";
5381  case ISD::TRAP:               return "trap";
5382
5383  // Bit manipulation
5384  case ISD::BSWAP:   return "bswap";
5385  case ISD::CTPOP:   return "ctpop";
5386  case ISD::CTTZ:    return "cttz";
5387  case ISD::CTLZ:    return "ctlz";
5388
5389  // Debug info
5390  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5391  case ISD::DEBUG_LOC: return "debug_loc";
5392
5393  // Trampolines
5394  case ISD::TRAMPOLINE: return "trampoline";
5395
5396  case ISD::CONDCODE:
5397    switch (cast<CondCodeSDNode>(this)->get()) {
5398    default: llvm_unreachable("Unknown setcc condition!");
5399    case ISD::SETOEQ:  return "setoeq";
5400    case ISD::SETOGT:  return "setogt";
5401    case ISD::SETOGE:  return "setoge";
5402    case ISD::SETOLT:  return "setolt";
5403    case ISD::SETOLE:  return "setole";
5404    case ISD::SETONE:  return "setone";
5405
5406    case ISD::SETO:    return "seto";
5407    case ISD::SETUO:   return "setuo";
5408    case ISD::SETUEQ:  return "setue";
5409    case ISD::SETUGT:  return "setugt";
5410    case ISD::SETUGE:  return "setuge";
5411    case ISD::SETULT:  return "setult";
5412    case ISD::SETULE:  return "setule";
5413    case ISD::SETUNE:  return "setune";
5414
5415    case ISD::SETEQ:   return "seteq";
5416    case ISD::SETGT:   return "setgt";
5417    case ISD::SETGE:   return "setge";
5418    case ISD::SETLT:   return "setlt";
5419    case ISD::SETLE:   return "setle";
5420    case ISD::SETNE:   return "setne";
5421    }
5422  }
5423}
5424
5425const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5426  switch (AM) {
5427  default:
5428    return "";
5429  case ISD::PRE_INC:
5430    return "<pre-inc>";
5431  case ISD::PRE_DEC:
5432    return "<pre-dec>";
5433  case ISD::POST_INC:
5434    return "<post-inc>";
5435  case ISD::POST_DEC:
5436    return "<post-dec>";
5437  }
5438}
5439
5440std::string ISD::ArgFlagsTy::getArgFlagsString() {
5441  std::string S = "< ";
5442
5443  if (isZExt())
5444    S += "zext ";
5445  if (isSExt())
5446    S += "sext ";
5447  if (isInReg())
5448    S += "inreg ";
5449  if (isSRet())
5450    S += "sret ";
5451  if (isByVal())
5452    S += "byval ";
5453  if (isNest())
5454    S += "nest ";
5455  if (getByValAlign())
5456    S += "byval-align:" + utostr(getByValAlign()) + " ";
5457  if (getOrigAlign())
5458    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5459  if (getByValSize())
5460    S += "byval-size:" + utostr(getByValSize()) + " ";
5461  return S + ">";
5462}
5463
5464void SDNode::dump() const { dump(0); }
5465void SDNode::dump(const SelectionDAG *G) const {
5466  print(errs(), G);
5467}
5468
5469void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5470  OS << (void*)this << ": ";
5471
5472  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5473    if (i) OS << ",";
5474    if (getValueType(i) == MVT::Other)
5475      OS << "ch";
5476    else
5477      OS << getValueType(i).getEVTString();
5478  }
5479  OS << " = " << getOperationName(G);
5480}
5481
5482void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5483  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5484    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5485    OS << "<";
5486    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5487      int Idx = SVN->getMaskElt(i);
5488      if (i) OS << ",";
5489      if (Idx < 0)
5490        OS << "u";
5491      else
5492        OS << Idx;
5493    }
5494    OS << ">";
5495  }
5496
5497  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5498    OS << '<' << CSDN->getAPIntValue() << '>';
5499  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5500    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5501      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5502    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5503      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5504    else {
5505      OS << "<APFloat(";
5506      CSDN->getValueAPF().bitcastToAPInt().dump();
5507      OS << ")>";
5508    }
5509  } else if (const GlobalAddressSDNode *GADN =
5510             dyn_cast<GlobalAddressSDNode>(this)) {
5511    int64_t offset = GADN->getOffset();
5512    OS << '<';
5513    WriteAsOperand(OS, GADN->getGlobal());
5514    OS << '>';
5515    if (offset > 0)
5516      OS << " + " << offset;
5517    else
5518      OS << " " << offset;
5519    if (unsigned int TF = GADN->getTargetFlags())
5520      OS << " [TF=" << TF << ']';
5521  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5522    OS << "<" << FIDN->getIndex() << ">";
5523  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5524    OS << "<" << JTDN->getIndex() << ">";
5525    if (unsigned int TF = JTDN->getTargetFlags())
5526      OS << " [TF=" << TF << ']';
5527  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5528    int offset = CP->getOffset();
5529    if (CP->isMachineConstantPoolEntry())
5530      OS << "<" << *CP->getMachineCPVal() << ">";
5531    else
5532      OS << "<" << *CP->getConstVal() << ">";
5533    if (offset > 0)
5534      OS << " + " << offset;
5535    else
5536      OS << " " << offset;
5537    if (unsigned int TF = CP->getTargetFlags())
5538      OS << " [TF=" << TF << ']';
5539  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5540    OS << "<";
5541    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5542    if (LBB)
5543      OS << LBB->getName() << " ";
5544    OS << (const void*)BBDN->getBasicBlock() << ">";
5545  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5546    if (G && R->getReg() &&
5547        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5548      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5549    } else {
5550      OS << " #" << R->getReg();
5551    }
5552  } else if (const ExternalSymbolSDNode *ES =
5553             dyn_cast<ExternalSymbolSDNode>(this)) {
5554    OS << "'" << ES->getSymbol() << "'";
5555    if (unsigned int TF = ES->getTargetFlags())
5556      OS << " [TF=" << TF << ']';
5557  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5558    if (M->getValue())
5559      OS << "<" << M->getValue() << ">";
5560    else
5561      OS << "<null>";
5562  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5563    if (M->MO.getValue())
5564      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5565    else
5566      OS << "<null:" << M->MO.getOffset() << ">";
5567  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5568    OS << ":" << N->getVT().getEVTString();
5569  }
5570  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5571    const Value *SrcValue = LD->getSrcValue();
5572    int SrcOffset = LD->getSrcValueOffset();
5573    OS << " <";
5574    if (SrcValue)
5575      OS << SrcValue;
5576    else
5577      OS << "null";
5578    OS << ":" << SrcOffset << ">";
5579
5580    bool doExt = true;
5581    switch (LD->getExtensionType()) {
5582    default: doExt = false; break;
5583    case ISD::EXTLOAD: OS << " <anyext "; break;
5584    case ISD::SEXTLOAD: OS << " <sext "; break;
5585    case ISD::ZEXTLOAD: OS << " <zext "; break;
5586    }
5587    if (doExt)
5588      OS << LD->getMemoryVT().getEVTString() << ">";
5589
5590    const char *AM = getIndexedModeName(LD->getAddressingMode());
5591    if (*AM)
5592      OS << " " << AM;
5593    if (LD->isVolatile())
5594      OS << " <volatile>";
5595    OS << " alignment=" << LD->getAlignment();
5596  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5597    const Value *SrcValue = ST->getSrcValue();
5598    int SrcOffset = ST->getSrcValueOffset();
5599    OS << " <";
5600    if (SrcValue)
5601      OS << SrcValue;
5602    else
5603      OS << "null";
5604    OS << ":" << SrcOffset << ">";
5605
5606    if (ST->isTruncatingStore())
5607      OS << " <trunc " << ST->getMemoryVT().getEVTString() << ">";
5608
5609    const char *AM = getIndexedModeName(ST->getAddressingMode());
5610    if (*AM)
5611      OS << " " << AM;
5612    if (ST->isVolatile())
5613      OS << " <volatile>";
5614    OS << " alignment=" << ST->getAlignment();
5615  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5616    const Value *SrcValue = AT->getSrcValue();
5617    int SrcOffset = AT->getSrcValueOffset();
5618    OS << " <";
5619    if (SrcValue)
5620      OS << SrcValue;
5621    else
5622      OS << "null";
5623    OS << ":" << SrcOffset << ">";
5624    if (AT->isVolatile())
5625      OS << " <volatile>";
5626    OS << " alignment=" << AT->getAlignment();
5627  }
5628}
5629
5630void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5631  print_types(OS, G);
5632  OS << " ";
5633  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5634    if (i) OS << ", ";
5635    OS << (void*)getOperand(i).getNode();
5636    if (unsigned RN = getOperand(i).getResNo())
5637      OS << ":" << RN;
5638  }
5639  print_details(OS, G);
5640}
5641
5642static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5643  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5644    if (N->getOperand(i).getNode()->hasOneUse())
5645      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5646    else
5647      cerr << "\n" << std::string(indent+2, ' ')
5648           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5649
5650
5651  cerr << "\n" << std::string(indent, ' ');
5652  N->dump(G);
5653}
5654
5655void SelectionDAG::dump() const {
5656  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5657
5658  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5659       I != E; ++I) {
5660    const SDNode *N = I;
5661    if (!N->hasOneUse() && N != getRoot().getNode())
5662      DumpNodes(N, 2, this);
5663  }
5664
5665  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5666
5667  cerr << "\n\n";
5668}
5669
5670void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5671  print_types(OS, G);
5672  print_details(OS, G);
5673}
5674
5675typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5676static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5677                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5678  if (!once.insert(N))          // If we've been here before, return now.
5679    return;
5680  // Dump the current SDNode, but don't end the line yet.
5681  OS << std::string(indent, ' ');
5682  N->printr(OS, G);
5683  // Having printed this SDNode, walk the children:
5684  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5685    const SDNode *child = N->getOperand(i).getNode();
5686    if (i) OS << ",";
5687    OS << " ";
5688    if (child->getNumOperands() == 0) {
5689      // This child has no grandchildren; print it inline right here.
5690      child->printr(OS, G);
5691      once.insert(child);
5692    } else {          // Just the address.  FIXME: also print the child's opcode
5693      OS << (void*)child;
5694      if (unsigned RN = N->getOperand(i).getResNo())
5695        OS << ":" << RN;
5696    }
5697  }
5698  OS << "\n";
5699  // Dump children that have grandchildren on their own line(s).
5700  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5701    const SDNode *child = N->getOperand(i).getNode();
5702    DumpNodesr(OS, child, indent+2, G, once);
5703  }
5704}
5705
5706void SDNode::dumpr() const {
5707  VisitedSDNodeSet once;
5708  DumpNodesr(errs(), this, 0, 0, once);
5709}
5710
5711
5712// getAddressSpace - Return the address space this GlobalAddress belongs to.
5713unsigned GlobalAddressSDNode::getAddressSpace() const {
5714  return getGlobal()->getType()->getAddressSpace();
5715}
5716
5717
5718const Type *ConstantPoolSDNode::getType() const {
5719  if (isMachineConstantPoolEntry())
5720    return Val.MachineCPVal->getType();
5721  return Val.ConstVal->getType();
5722}
5723
5724bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5725                                        APInt &SplatUndef,
5726                                        unsigned &SplatBitSize,
5727                                        bool &HasAnyUndefs,
5728                                        unsigned MinSplatBits) {
5729  EVT VT = getValueType(0);
5730  assert(VT.isVector() && "Expected a vector type");
5731  unsigned sz = VT.getSizeInBits();
5732  if (MinSplatBits > sz)
5733    return false;
5734
5735  SplatValue = APInt(sz, 0);
5736  SplatUndef = APInt(sz, 0);
5737
5738  // Get the bits.  Bits with undefined values (when the corresponding element
5739  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5740  // in SplatValue.  If any of the values are not constant, give up and return
5741  // false.
5742  unsigned int nOps = getNumOperands();
5743  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5744  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5745  for (unsigned i = 0; i < nOps; ++i) {
5746    SDValue OpVal = getOperand(i);
5747    unsigned BitPos = i * EltBitSize;
5748
5749    if (OpVal.getOpcode() == ISD::UNDEF)
5750      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5751    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5752      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5753                     zextOrTrunc(sz) << BitPos);
5754    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5755      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5756     else
5757      return false;
5758  }
5759
5760  // The build_vector is all constants or undefs.  Find the smallest element
5761  // size that splats the vector.
5762
5763  HasAnyUndefs = (SplatUndef != 0);
5764  while (sz > 8) {
5765
5766    unsigned HalfSize = sz / 2;
5767    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5768    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5769    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5770    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5771
5772    // If the two halves do not match (ignoring undef bits), stop here.
5773    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5774        MinSplatBits > HalfSize)
5775      break;
5776
5777    SplatValue = HighValue | LowValue;
5778    SplatUndef = HighUndef & LowUndef;
5779
5780    sz = HalfSize;
5781  }
5782
5783  SplatBitSize = sz;
5784  return true;
5785}
5786
5787bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5788  // Find the first non-undef value in the shuffle mask.
5789  unsigned i, e;
5790  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5791    /* search */;
5792
5793  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5794
5795  // Make sure all remaining elements are either undef or the same as the first
5796  // non-undef value.
5797  for (int Idx = Mask[i]; i != e; ++i)
5798    if (Mask[i] >= 0 && Mask[i] != Idx)
5799      return false;
5800  return true;
5801}
5802