SelectionDAG.cpp revision 25eb043759c23b61769108f78382eb9701c41db2
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // Anything can be extended to ppc long double.
78  if (VT == MVT::ppcf128)
79    return true;
80
81  // PPC long double cannot be shrunk to anything though.
82  if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  return Val2.convert(*MVTToAPFloatSemantics(VT),
88                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
89}
90
91//===----------------------------------------------------------------------===//
92//                              ISD Namespace
93//===----------------------------------------------------------------------===//
94
95/// isBuildVectorAllOnes - Return true if the specified node is a
96/// BUILD_VECTOR where all of the elements are ~0 or undef.
97bool ISD::isBuildVectorAllOnes(const SDNode *N) {
98  // Look through a bit convert.
99  if (N->getOpcode() == ISD::BIT_CONVERT)
100    N = N->getOperand(0).Val;
101
102  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
103
104  unsigned i = 0, e = N->getNumOperands();
105
106  // Skip over all of the undef values.
107  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
108    ++i;
109
110  // Do not accept an all-undef vector.
111  if (i == e) return false;
112
113  // Do not accept build_vectors that aren't all constants or which have non-~0
114  // elements.
115  SDOperand NotZero = N->getOperand(i);
116  if (isa<ConstantSDNode>(NotZero)) {
117    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
118      return false;
119  } else if (isa<ConstantFPSDNode>(NotZero)) {
120    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
121                convertToAPInt().isAllOnesValue())
122      return false;
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// isScalarToVector - Return true if the specified node is a
176/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
177/// element is not an undef.
178bool ISD::isScalarToVector(const SDNode *N) {
179  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
180    return true;
181
182  if (N->getOpcode() != ISD::BUILD_VECTOR)
183    return false;
184  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
185    return false;
186  unsigned NumElems = N->getNumOperands();
187  for (unsigned i = 1; i < NumElems; ++i) {
188    SDOperand V = N->getOperand(i);
189    if (V.getOpcode() != ISD::UNDEF)
190      return false;
191  }
192  return true;
193}
194
195
196/// isDebugLabel - Return true if the specified node represents a debug
197/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
198/// is 0).
199bool ISD::isDebugLabel(const SDNode *N) {
200  SDOperand Zero;
201  if (N->getOpcode() == ISD::LABEL)
202    Zero = N->getOperand(2);
203  else if (N->isTargetOpcode() &&
204           N->getTargetOpcode() == TargetInstrInfo::LABEL)
205    // Chain moved to last operand.
206    Zero = N->getOperand(1);
207  else
208    return false;
209  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
210}
211
212/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
213/// when given the operation for (X op Y).
214ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
215  // To perform this operation, we just need to swap the L and G bits of the
216  // operation.
217  unsigned OldL = (Operation >> 2) & 1;
218  unsigned OldG = (Operation >> 1) & 1;
219  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
220                       (OldL << 1) |       // New G bit
221                       (OldG << 2));        // New L bit.
222}
223
224/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
225/// 'op' is a valid SetCC operation.
226ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
227  unsigned Operation = Op;
228  if (isInteger)
229    Operation ^= 7;   // Flip L, G, E bits, but not U.
230  else
231    Operation ^= 15;  // Flip all of the condition bits.
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;     // Don't let N and U bits get set.
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
300    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
301    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
302    }
303  }
304
305  return Result;
306}
307
308const TargetMachine &SelectionDAG::getTarget() const {
309  return TLI.getTargetMachine();
310}
311
312//===----------------------------------------------------------------------===//
313//                           SDNode Profile Support
314//===----------------------------------------------------------------------===//
315
316/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
317///
318static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
319  ID.AddInteger(OpC);
320}
321
322/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
323/// solely with their pointer.
324void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
325  ID.AddPointer(VTList.VTs);
326}
327
328/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
329///
330static void AddNodeIDOperands(FoldingSetNodeID &ID,
331                              const SDOperand *Ops, unsigned NumOps) {
332  for (; NumOps; --NumOps, ++Ops) {
333    ID.AddPointer(Ops->Val);
334    ID.AddInteger(Ops->ResNo);
335  }
336}
337
338static void AddNodeIDNode(FoldingSetNodeID &ID,
339                          unsigned short OpC, SDVTList VTList,
340                          const SDOperand *OpList, unsigned N) {
341  AddNodeIDOpcode(ID, OpC);
342  AddNodeIDValueTypes(ID, VTList);
343  AddNodeIDOperands(ID, OpList, N);
344}
345
346/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
347/// data.
348static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
349  AddNodeIDOpcode(ID, N->getOpcode());
350  // Add the return value info.
351  AddNodeIDValueTypes(ID, N->getVTList());
352  // Add the operand info.
353  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
354
355  // Handle SDNode leafs with special info.
356  switch (N->getOpcode()) {
357  default: break;  // Normal nodes don't need extra info.
358  case ISD::TargetConstant:
359  case ISD::Constant:
360    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
361    break;
362  case ISD::TargetConstantFP:
363  case ISD::ConstantFP: {
364    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
365    break;
366  }
367  case ISD::TargetGlobalAddress:
368  case ISD::GlobalAddress:
369  case ISD::TargetGlobalTLSAddress:
370  case ISD::GlobalTLSAddress: {
371    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
372    ID.AddPointer(GA->getGlobal());
373    ID.AddInteger(GA->getOffset());
374    break;
375  }
376  case ISD::BasicBlock:
377    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
378    break;
379  case ISD::Register:
380    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
381    break;
382  case ISD::SRCVALUE:
383    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
384    break;
385  case ISD::MEMOPERAND: {
386    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
387    ID.AddPointer(MO.getValue());
388    ID.AddInteger(MO.getFlags());
389    ID.AddInteger(MO.getOffset());
390    ID.AddInteger(MO.getSize());
391    ID.AddInteger(MO.getAlignment());
392    break;
393  }
394  case ISD::FrameIndex:
395  case ISD::TargetFrameIndex:
396    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
397    break;
398  case ISD::JumpTable:
399  case ISD::TargetJumpTable:
400    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
401    break;
402  case ISD::ConstantPool:
403  case ISD::TargetConstantPool: {
404    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
405    ID.AddInteger(CP->getAlignment());
406    ID.AddInteger(CP->getOffset());
407    if (CP->isMachineConstantPoolEntry())
408      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
409    else
410      ID.AddPointer(CP->getConstVal());
411    break;
412  }
413  case ISD::LOAD: {
414    LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getAddressingMode());
416    ID.AddInteger(LD->getExtensionType());
417    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
418    ID.AddInteger(LD->getAlignment());
419    ID.AddInteger(LD->isVolatile());
420    break;
421  }
422  case ISD::STORE: {
423    StoreSDNode *ST = cast<StoreSDNode>(N);
424    ID.AddInteger(ST->getAddressingMode());
425    ID.AddInteger(ST->isTruncatingStore());
426    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
427    ID.AddInteger(ST->getAlignment());
428    ID.AddInteger(ST->isVolatile());
429    break;
430  }
431  }
432}
433
434//===----------------------------------------------------------------------===//
435//                              SelectionDAG Class
436//===----------------------------------------------------------------------===//
437
438/// RemoveDeadNodes - This method deletes all unreachable nodes in the
439/// SelectionDAG.
440void SelectionDAG::RemoveDeadNodes() {
441  // Create a dummy node (which is not added to allnodes), that adds a reference
442  // to the root node, preventing it from being deleted.
443  HandleSDNode Dummy(getRoot());
444
445  SmallVector<SDNode*, 128> DeadNodes;
446
447  // Add all obviously-dead nodes to the DeadNodes worklist.
448  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
449    if (I->use_empty())
450      DeadNodes.push_back(I);
451
452  // Process the worklist, deleting the nodes and adding their uses to the
453  // worklist.
454  while (!DeadNodes.empty()) {
455    SDNode *N = DeadNodes.back();
456    DeadNodes.pop_back();
457
458    // Take the node out of the appropriate CSE map.
459    RemoveNodeFromCSEMaps(N);
460
461    // Next, brutally remove the operand list.  This is safe to do, as there are
462    // no cycles in the graph.
463    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
464      SDNode *Operand = I->Val;
465      Operand->removeUser(N);
466
467      // Now that we removed this operand, see if there are no uses of it left.
468      if (Operand->use_empty())
469        DeadNodes.push_back(Operand);
470    }
471    if (N->OperandsNeedDelete)
472      delete[] N->OperandList;
473    N->OperandList = 0;
474    N->NumOperands = 0;
475
476    // Finally, remove N itself.
477    AllNodes.erase(N);
478  }
479
480  // If the root changed (e.g. it was a dead load, update the root).
481  setRoot(Dummy.getValue());
482}
483
484void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
485  SmallVector<SDNode*, 16> DeadNodes;
486  DeadNodes.push_back(N);
487
488  // Process the worklist, deleting the nodes and adding their uses to the
489  // worklist.
490  while (!DeadNodes.empty()) {
491    SDNode *N = DeadNodes.back();
492    DeadNodes.pop_back();
493
494    if (UpdateListener)
495      UpdateListener->NodeDeleted(N);
496
497    // Take the node out of the appropriate CSE map.
498    RemoveNodeFromCSEMaps(N);
499
500    // Next, brutally remove the operand list.  This is safe to do, as there are
501    // no cycles in the graph.
502    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
503      SDNode *Operand = I->Val;
504      Operand->removeUser(N);
505
506      // Now that we removed this operand, see if there are no uses of it left.
507      if (Operand->use_empty())
508        DeadNodes.push_back(Operand);
509    }
510    if (N->OperandsNeedDelete)
511      delete[] N->OperandList;
512    N->OperandList = 0;
513    N->NumOperands = 0;
514
515    // Finally, remove N itself.
516    AllNodes.erase(N);
517  }
518}
519
520void SelectionDAG::DeleteNode(SDNode *N) {
521  assert(N->use_empty() && "Cannot delete a node that is not dead!");
522
523  // First take this out of the appropriate CSE map.
524  RemoveNodeFromCSEMaps(N);
525
526  // Finally, remove uses due to operands of this node, remove from the
527  // AllNodes list, and delete the node.
528  DeleteNodeNotInCSEMaps(N);
529}
530
531void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
532
533  // Remove it from the AllNodes list.
534  AllNodes.remove(N);
535
536  // Drop all of the operands and decrement used nodes use counts.
537  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
538    I->Val->removeUser(N);
539  if (N->OperandsNeedDelete)
540    delete[] N->OperandList;
541  N->OperandList = 0;
542  N->NumOperands = 0;
543
544  delete N;
545}
546
547/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
548/// correspond to it.  This is useful when we're about to delete or repurpose
549/// the node.  We don't want future request for structurally identical nodes
550/// to return N anymore.
551void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
552  bool Erased = false;
553  switch (N->getOpcode()) {
554  case ISD::HANDLENODE: return;  // noop.
555  case ISD::STRING:
556    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
557    break;
558  case ISD::CONDCODE:
559    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
560           "Cond code doesn't exist!");
561    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
562    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
563    break;
564  case ISD::ExternalSymbol:
565    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
566    break;
567  case ISD::TargetExternalSymbol:
568    Erased =
569      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::VALUETYPE: {
572    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
573    if (MVT::isExtendedVT(VT)) {
574      Erased = ExtendedValueTypeNodes.erase(VT);
575    } else {
576      Erased = ValueTypeNodes[VT] != 0;
577      ValueTypeNodes[VT] = 0;
578    }
579    break;
580  }
581  default:
582    // Remove it from the CSE Map.
583    Erased = CSEMap.RemoveNode(N);
584    break;
585  }
586#ifndef NDEBUG
587  // Verify that the node was actually in one of the CSE maps, unless it has a
588  // flag result (which cannot be CSE'd) or is one of the special cases that are
589  // not subject to CSE.
590  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
591      !N->isTargetOpcode()) {
592    N->dump(this);
593    cerr << "\n";
594    assert(0 && "Node is not in map!");
595  }
596#endif
597}
598
599/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
600/// has been taken out and modified in some way.  If the specified node already
601/// exists in the CSE maps, do not modify the maps, but return the existing node
602/// instead.  If it doesn't exist, add it and return null.
603///
604SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
605  assert(N->getNumOperands() && "This is a leaf node!");
606  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
607    return 0;    // Never add these nodes.
608
609  // Check that remaining values produced are not flags.
610  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
611    if (N->getValueType(i) == MVT::Flag)
612      return 0;   // Never CSE anything that produces a flag.
613
614  SDNode *New = CSEMap.GetOrInsertNode(N);
615  if (New != N) return New;  // Node already existed.
616  return 0;
617}
618
619/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
620/// were replaced with those specified.  If this node is never memoized,
621/// return null, otherwise return a pointer to the slot it would take.  If a
622/// node already exists with these operands, the slot will be non-null.
623SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
624                                           void *&InsertPos) {
625  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
626    return 0;    // Never add these nodes.
627
628  // Check that remaining values produced are not flags.
629  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
630    if (N->getValueType(i) == MVT::Flag)
631      return 0;   // Never CSE anything that produces a flag.
632
633  SDOperand Ops[] = { Op };
634  FoldingSetNodeID ID;
635  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
636  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
637}
638
639/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
640/// were replaced with those specified.  If this node is never memoized,
641/// return null, otherwise return a pointer to the slot it would take.  If a
642/// node already exists with these operands, the slot will be non-null.
643SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
644                                           SDOperand Op1, SDOperand Op2,
645                                           void *&InsertPos) {
646  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
647    return 0;    // Never add these nodes.
648
649  // Check that remaining values produced are not flags.
650  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
651    if (N->getValueType(i) == MVT::Flag)
652      return 0;   // Never CSE anything that produces a flag.
653
654  SDOperand Ops[] = { Op1, Op2 };
655  FoldingSetNodeID ID;
656  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
657  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
658}
659
660
661/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
662/// were replaced with those specified.  If this node is never memoized,
663/// return null, otherwise return a pointer to the slot it would take.  If a
664/// node already exists with these operands, the slot will be non-null.
665SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
666                                           const SDOperand *Ops,unsigned NumOps,
667                                           void *&InsertPos) {
668  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
669    return 0;    // Never add these nodes.
670
671  // Check that remaining values produced are not flags.
672  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
673    if (N->getValueType(i) == MVT::Flag)
674      return 0;   // Never CSE anything that produces a flag.
675
676  FoldingSetNodeID ID;
677  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
678
679  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
680    ID.AddInteger(LD->getAddressingMode());
681    ID.AddInteger(LD->getExtensionType());
682    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
683    ID.AddInteger(LD->getAlignment());
684    ID.AddInteger(LD->isVolatile());
685  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
686    ID.AddInteger(ST->getAddressingMode());
687    ID.AddInteger(ST->isTruncatingStore());
688    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
689    ID.AddInteger(ST->getAlignment());
690    ID.AddInteger(ST->isVolatile());
691  }
692
693  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
694}
695
696
697SelectionDAG::~SelectionDAG() {
698  while (!AllNodes.empty()) {
699    SDNode *N = AllNodes.begin();
700    N->SetNextInBucket(0);
701    if (N->OperandsNeedDelete)
702      delete [] N->OperandList;
703    N->OperandList = 0;
704    N->NumOperands = 0;
705    AllNodes.pop_front();
706  }
707}
708
709SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
710  if (Op.getValueType() == VT) return Op;
711  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
712                                   MVT::getSizeInBits(VT));
713  return getNode(ISD::AND, Op.getValueType(), Op,
714                 getConstant(Imm, Op.getValueType()));
715}
716
717SDOperand SelectionDAG::getString(const std::string &Val) {
718  StringSDNode *&N = StringNodes[Val];
719  if (!N) {
720    N = new StringSDNode(Val);
721    AllNodes.push_back(N);
722  }
723  return SDOperand(N, 0);
724}
725
726SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
727  MVT::ValueType EltVT =
728    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
729
730  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
731}
732
733SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
734  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
735
736  MVT::ValueType EltVT =
737    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
738
739  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
740         "APInt size does not match type size!");
741
742  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
743  FoldingSetNodeID ID;
744  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
745  ID.Add(Val);
746  void *IP = 0;
747  SDNode *N = NULL;
748  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
749    if (!MVT::isVector(VT))
750      return SDOperand(N, 0);
751  if (!N) {
752    N = new ConstantSDNode(isT, Val, EltVT);
753    CSEMap.InsertNode(N, IP);
754    AllNodes.push_back(N);
755  }
756
757  SDOperand Result(N, 0);
758  if (MVT::isVector(VT)) {
759    SmallVector<SDOperand, 8> Ops;
760    Ops.assign(MVT::getVectorNumElements(VT), Result);
761    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
762  }
763  return Result;
764}
765
766SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
767  return getConstant(Val, TLI.getPointerTy(), isTarget);
768}
769
770
771SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
772                                      bool isTarget) {
773  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
774
775  MVT::ValueType EltVT =
776    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
777
778  // Do the map lookup using the actual bit pattern for the floating point
779  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
780  // we don't have issues with SNANs.
781  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
782  FoldingSetNodeID ID;
783  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
784  ID.Add(V);
785  void *IP = 0;
786  SDNode *N = NULL;
787  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
788    if (!MVT::isVector(VT))
789      return SDOperand(N, 0);
790  if (!N) {
791    N = new ConstantFPSDNode(isTarget, V, EltVT);
792    CSEMap.InsertNode(N, IP);
793    AllNodes.push_back(N);
794  }
795
796  SDOperand Result(N, 0);
797  if (MVT::isVector(VT)) {
798    SmallVector<SDOperand, 8> Ops;
799    Ops.assign(MVT::getVectorNumElements(VT), Result);
800    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
801  }
802  return Result;
803}
804
805SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
806                                      bool isTarget) {
807  MVT::ValueType EltVT =
808    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
809  if (EltVT==MVT::f32)
810    return getConstantFP(APFloat((float)Val), VT, isTarget);
811  else
812    return getConstantFP(APFloat(Val), VT, isTarget);
813}
814
815SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
816                                         MVT::ValueType VT, int Offset,
817                                         bool isTargetGA) {
818  unsigned Opc;
819
820  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
821  if (!GVar) {
822    // If GV is an alias - use aliasee for determing thread-localness
823    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
824      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
825  }
826
827  if (GVar && GVar->isThreadLocal())
828    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
829  else
830    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
831
832  FoldingSetNodeID ID;
833  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
834  ID.AddPointer(GV);
835  ID.AddInteger(Offset);
836  void *IP = 0;
837  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
838   return SDOperand(E, 0);
839  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
840  CSEMap.InsertNode(N, IP);
841  AllNodes.push_back(N);
842  return SDOperand(N, 0);
843}
844
845SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
846                                      bool isTarget) {
847  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
848  FoldingSetNodeID ID;
849  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
850  ID.AddInteger(FI);
851  void *IP = 0;
852  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
853    return SDOperand(E, 0);
854  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
855  CSEMap.InsertNode(N, IP);
856  AllNodes.push_back(N);
857  return SDOperand(N, 0);
858}
859
860SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
861  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
862  FoldingSetNodeID ID;
863  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
864  ID.AddInteger(JTI);
865  void *IP = 0;
866  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
867    return SDOperand(E, 0);
868  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
869  CSEMap.InsertNode(N, IP);
870  AllNodes.push_back(N);
871  return SDOperand(N, 0);
872}
873
874SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
875                                        unsigned Alignment, int Offset,
876                                        bool isTarget) {
877  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
878  FoldingSetNodeID ID;
879  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
880  ID.AddInteger(Alignment);
881  ID.AddInteger(Offset);
882  ID.AddPointer(C);
883  void *IP = 0;
884  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
885    return SDOperand(E, 0);
886  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
887  CSEMap.InsertNode(N, IP);
888  AllNodes.push_back(N);
889  return SDOperand(N, 0);
890}
891
892
893SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
894                                        MVT::ValueType VT,
895                                        unsigned Alignment, int Offset,
896                                        bool isTarget) {
897  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
898  FoldingSetNodeID ID;
899  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
900  ID.AddInteger(Alignment);
901  ID.AddInteger(Offset);
902  C->AddSelectionDAGCSEId(ID);
903  void *IP = 0;
904  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
905    return SDOperand(E, 0);
906  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
907  CSEMap.InsertNode(N, IP);
908  AllNodes.push_back(N);
909  return SDOperand(N, 0);
910}
911
912
913SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
914  FoldingSetNodeID ID;
915  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
916  ID.AddPointer(MBB);
917  void *IP = 0;
918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
919    return SDOperand(E, 0);
920  SDNode *N = new BasicBlockSDNode(MBB);
921  CSEMap.InsertNode(N, IP);
922  AllNodes.push_back(N);
923  return SDOperand(N, 0);
924}
925
926SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
927  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
928    ValueTypeNodes.resize(VT+1);
929
930  SDNode *&N = MVT::isExtendedVT(VT) ?
931    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
932
933  if (N) return SDOperand(N, 0);
934  N = new VTSDNode(VT);
935  AllNodes.push_back(N);
936  return SDOperand(N, 0);
937}
938
939SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
940  SDNode *&N = ExternalSymbols[Sym];
941  if (N) return SDOperand(N, 0);
942  N = new ExternalSymbolSDNode(false, Sym, VT);
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
948                                                MVT::ValueType VT) {
949  SDNode *&N = TargetExternalSymbols[Sym];
950  if (N) return SDOperand(N, 0);
951  N = new ExternalSymbolSDNode(true, Sym, VT);
952  AllNodes.push_back(N);
953  return SDOperand(N, 0);
954}
955
956SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
957  if ((unsigned)Cond >= CondCodeNodes.size())
958    CondCodeNodes.resize(Cond+1);
959
960  if (CondCodeNodes[Cond] == 0) {
961    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
962    AllNodes.push_back(CondCodeNodes[Cond]);
963  }
964  return SDOperand(CondCodeNodes[Cond], 0);
965}
966
967SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
968  FoldingSetNodeID ID;
969  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
970  ID.AddInteger(RegNo);
971  void *IP = 0;
972  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
973    return SDOperand(E, 0);
974  SDNode *N = new RegisterSDNode(RegNo, VT);
975  CSEMap.InsertNode(N, IP);
976  AllNodes.push_back(N);
977  return SDOperand(N, 0);
978}
979
980SDOperand SelectionDAG::getSrcValue(const Value *V) {
981  assert((!V || isa<PointerType>(V->getType())) &&
982         "SrcValue is not a pointer?");
983
984  FoldingSetNodeID ID;
985  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
986  ID.AddPointer(V);
987
988  void *IP = 0;
989  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
990    return SDOperand(E, 0);
991
992  SDNode *N = new SrcValueSDNode(V);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDOperand(N, 0);
996}
997
998SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
999  const Value *v = MO.getValue();
1000  assert((!v || isa<PointerType>(v->getType())) &&
1001         "SrcValue is not a pointer?");
1002
1003  FoldingSetNodeID ID;
1004  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1005  ID.AddPointer(v);
1006  ID.AddInteger(MO.getFlags());
1007  ID.AddInteger(MO.getOffset());
1008  ID.AddInteger(MO.getSize());
1009  ID.AddInteger(MO.getAlignment());
1010
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDOperand(E, 0);
1014
1015  SDNode *N = new MemOperandSDNode(MO);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDOperand(N, 0);
1019}
1020
1021/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1022/// specified value type.
1023SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1024  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1025  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1026  const Type *Ty = MVT::getTypeForValueType(VT);
1027  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1028  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1029  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1030}
1031
1032
1033SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1034                                  SDOperand N2, ISD::CondCode Cond) {
1035  // These setcc operations always fold.
1036  switch (Cond) {
1037  default: break;
1038  case ISD::SETFALSE:
1039  case ISD::SETFALSE2: return getConstant(0, VT);
1040  case ISD::SETTRUE:
1041  case ISD::SETTRUE2:  return getConstant(1, VT);
1042
1043  case ISD::SETOEQ:
1044  case ISD::SETOGT:
1045  case ISD::SETOGE:
1046  case ISD::SETOLT:
1047  case ISD::SETOLE:
1048  case ISD::SETONE:
1049  case ISD::SETO:
1050  case ISD::SETUO:
1051  case ISD::SETUEQ:
1052  case ISD::SETUNE:
1053    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1054    break;
1055  }
1056
1057  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1058    const APInt &C2 = N2C->getAPIntValue();
1059    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1060      const APInt &C1 = N1C->getAPIntValue();
1061
1062      switch (Cond) {
1063      default: assert(0 && "Unknown integer setcc!");
1064      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1065      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1066      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1067      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1068      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1069      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1070      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1071      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1072      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1073      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1074      }
1075    }
1076  }
1077  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1078    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1079      // No compile time operations on this type yet.
1080      if (N1C->getValueType(0) == MVT::ppcf128)
1081        return SDOperand();
1082
1083      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1084      switch (Cond) {
1085      default: break;
1086      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1087                          return getNode(ISD::UNDEF, VT);
1088                        // fall through
1089      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1090      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1091                          return getNode(ISD::UNDEF, VT);
1092                        // fall through
1093      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1094                                           R==APFloat::cmpLessThan, VT);
1095      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1096                          return getNode(ISD::UNDEF, VT);
1097                        // fall through
1098      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1099      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1100                          return getNode(ISD::UNDEF, VT);
1101                        // fall through
1102      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1103      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1104                          return getNode(ISD::UNDEF, VT);
1105                        // fall through
1106      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1107                                           R==APFloat::cmpEqual, VT);
1108      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1109                          return getNode(ISD::UNDEF, VT);
1110                        // fall through
1111      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpEqual, VT);
1113      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1114      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1115      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1116                                           R==APFloat::cmpEqual, VT);
1117      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1118      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1119                                           R==APFloat::cmpLessThan, VT);
1120      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1121                                           R==APFloat::cmpUnordered, VT);
1122      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1123      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1124      }
1125    } else {
1126      // Ensure that the constant occurs on the RHS.
1127      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1128    }
1129  }
1130
1131  // Could not fold it.
1132  return SDOperand();
1133}
1134
1135/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1136/// use this predicate to simplify operations downstream.
1137bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1138  unsigned BitWidth = Op.getValueSizeInBits();
1139  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1140}
1141
1142/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1143/// this predicate to simplify operations downstream.  Mask is known to be zero
1144/// for bits that V cannot have.
1145bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1146                                     unsigned Depth) const {
1147  APInt KnownZero, KnownOne;
1148  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1149  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1150  return (KnownZero & Mask) == Mask;
1151}
1152
1153/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1154/// known to be either zero or one and return them in the KnownZero/KnownOne
1155/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1156/// processing.
1157void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1158                                     APInt &KnownZero, APInt &KnownOne,
1159                                     unsigned Depth) const {
1160  unsigned BitWidth = Mask.getBitWidth();
1161  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1162         "Mask size mismatches value type size!");
1163
1164  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1165  if (Depth == 6 || Mask == 0)
1166    return;  // Limit search depth.
1167
1168  APInt KnownZero2, KnownOne2;
1169
1170  switch (Op.getOpcode()) {
1171  case ISD::Constant:
1172    // We know all of the bits for a constant!
1173    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1174    KnownZero = ~KnownOne & Mask;
1175    return;
1176  case ISD::AND:
1177    // If either the LHS or the RHS are Zero, the result is zero.
1178    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1179    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1180                      KnownZero2, KnownOne2, Depth+1);
1181    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1182    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1183
1184    // Output known-1 bits are only known if set in both the LHS & RHS.
1185    KnownOne &= KnownOne2;
1186    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1187    KnownZero |= KnownZero2;
1188    return;
1189  case ISD::OR:
1190    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1191    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1192                      KnownZero2, KnownOne2, Depth+1);
1193    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1195
1196    // Output known-0 bits are only known if clear in both the LHS & RHS.
1197    KnownZero &= KnownZero2;
1198    // Output known-1 are known to be set if set in either the LHS | RHS.
1199    KnownOne |= KnownOne2;
1200    return;
1201  case ISD::XOR: {
1202    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1203    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1204    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1206
1207    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1208    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1209    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1210    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1211    KnownZero = KnownZeroOut;
1212    return;
1213  }
1214  case ISD::SELECT:
1215    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1216    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1217    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1218    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1219
1220    // Only known if known in both the LHS and RHS.
1221    KnownOne &= KnownOne2;
1222    KnownZero &= KnownZero2;
1223    return;
1224  case ISD::SELECT_CC:
1225    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1226    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1227    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1228    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1229
1230    // Only known if known in both the LHS and RHS.
1231    KnownOne &= KnownOne2;
1232    KnownZero &= KnownZero2;
1233    return;
1234  case ISD::SETCC:
1235    // If we know the result of a setcc has the top bits zero, use this info.
1236    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1237        BitWidth > 1)
1238      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1239    return;
1240  case ISD::SHL:
1241    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1242    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1243      unsigned ShAmt = SA->getValue();
1244
1245      // If the shift count is an invalid immediate, don't do anything.
1246      if (ShAmt >= BitWidth)
1247        return;
1248
1249      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1250                        KnownZero, KnownOne, Depth+1);
1251      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1252      KnownZero <<= ShAmt;
1253      KnownOne  <<= ShAmt;
1254      // low bits known zero.
1255      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1256    }
1257    return;
1258  case ISD::SRL:
1259    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1260    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1261      unsigned ShAmt = SA->getValue();
1262
1263      // If the shift count is an invalid immediate, don't do anything.
1264      if (ShAmt >= BitWidth)
1265        return;
1266
1267      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1268                        KnownZero, KnownOne, Depth+1);
1269      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1270      KnownZero = KnownZero.lshr(ShAmt);
1271      KnownOne  = KnownOne.lshr(ShAmt);
1272
1273      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1274      KnownZero |= HighBits;  // High bits known zero.
1275    }
1276    return;
1277  case ISD::SRA:
1278    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1279      unsigned ShAmt = SA->getValue();
1280
1281      // If the shift count is an invalid immediate, don't do anything.
1282      if (ShAmt >= BitWidth)
1283        return;
1284
1285      APInt InDemandedMask = (Mask << ShAmt);
1286      // If any of the demanded bits are produced by the sign extension, we also
1287      // demand the input sign bit.
1288      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1289      if (HighBits.getBoolValue())
1290        InDemandedMask |= APInt::getSignBit(BitWidth);
1291
1292      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1293                        Depth+1);
1294      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1295      KnownZero = KnownZero.lshr(ShAmt);
1296      KnownOne  = KnownOne.lshr(ShAmt);
1297
1298      // Handle the sign bits.
1299      APInt SignBit = APInt::getSignBit(BitWidth);
1300      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1301
1302      if (KnownZero.intersects(SignBit)) {
1303        KnownZero |= HighBits;  // New bits are known zero.
1304      } else if (KnownOne.intersects(SignBit)) {
1305        KnownOne  |= HighBits;  // New bits are known one.
1306      }
1307    }
1308    return;
1309  case ISD::SIGN_EXTEND_INREG: {
1310    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1311    unsigned EBits = MVT::getSizeInBits(EVT);
1312
1313    // Sign extension.  Compute the demanded bits in the result that are not
1314    // present in the input.
1315    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1316
1317    APInt InSignBit = APInt::getSignBit(EBits);
1318    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1319
1320    // If the sign extended bits are demanded, we know that the sign
1321    // bit is demanded.
1322    InSignBit.zext(BitWidth);
1323    if (NewBits.getBoolValue())
1324      InputDemandedBits |= InSignBit;
1325
1326    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1327                      KnownZero, KnownOne, Depth+1);
1328    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1329
1330    // If the sign bit of the input is known set or clear, then we know the
1331    // top bits of the result.
1332    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1333      KnownZero |= NewBits;
1334      KnownOne  &= ~NewBits;
1335    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1336      KnownOne  |= NewBits;
1337      KnownZero &= ~NewBits;
1338    } else {                              // Input sign bit unknown
1339      KnownZero &= ~NewBits;
1340      KnownOne  &= ~NewBits;
1341    }
1342    return;
1343  }
1344  case ISD::CTTZ:
1345  case ISD::CTLZ:
1346  case ISD::CTPOP: {
1347    unsigned LowBits = Log2_32(BitWidth)+1;
1348    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1349    KnownOne  = APInt(BitWidth, 0);
1350    return;
1351  }
1352  case ISD::LOAD: {
1353    if (ISD::isZEXTLoad(Op.Val)) {
1354      LoadSDNode *LD = cast<LoadSDNode>(Op);
1355      MVT::ValueType VT = LD->getMemoryVT();
1356      unsigned MemBits = MVT::getSizeInBits(VT);
1357      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1358    }
1359    return;
1360  }
1361  case ISD::ZERO_EXTEND: {
1362    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1363    unsigned InBits = MVT::getSizeInBits(InVT);
1364    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1365    APInt InMask    = Mask;
1366    InMask.trunc(InBits);
1367    KnownZero.trunc(InBits);
1368    KnownOne.trunc(InBits);
1369    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1370    KnownZero.zext(BitWidth);
1371    KnownOne.zext(BitWidth);
1372    KnownZero |= NewBits;
1373    return;
1374  }
1375  case ISD::SIGN_EXTEND: {
1376    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1377    unsigned InBits = MVT::getSizeInBits(InVT);
1378    APInt InSignBit = APInt::getSignBit(InBits);
1379    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1380    APInt InMask = Mask;
1381    InMask.trunc(InBits);
1382
1383    // If any of the sign extended bits are demanded, we know that the sign
1384    // bit is demanded. Temporarily set this bit in the mask for our callee.
1385    if (NewBits.getBoolValue())
1386      InMask |= InSignBit;
1387
1388    KnownZero.trunc(InBits);
1389    KnownOne.trunc(InBits);
1390    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1391
1392    // Note if the sign bit is known to be zero or one.
1393    bool SignBitKnownZero = KnownZero.isNegative();
1394    bool SignBitKnownOne  = KnownOne.isNegative();
1395    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1396           "Sign bit can't be known to be both zero and one!");
1397
1398    // If the sign bit wasn't actually demanded by our caller, we don't
1399    // want it set in the KnownZero and KnownOne result values. Reset the
1400    // mask and reapply it to the result values.
1401    InMask = Mask;
1402    InMask.trunc(InBits);
1403    KnownZero &= InMask;
1404    KnownOne  &= InMask;
1405
1406    KnownZero.zext(BitWidth);
1407    KnownOne.zext(BitWidth);
1408
1409    // If the sign bit is known zero or one, the top bits match.
1410    if (SignBitKnownZero)
1411      KnownZero |= NewBits;
1412    else if (SignBitKnownOne)
1413      KnownOne  |= NewBits;
1414    return;
1415  }
1416  case ISD::ANY_EXTEND: {
1417    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1418    unsigned InBits = MVT::getSizeInBits(InVT);
1419    APInt InMask = Mask;
1420    InMask.trunc(InBits);
1421    KnownZero.trunc(InBits);
1422    KnownOne.trunc(InBits);
1423    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1424    KnownZero.zext(BitWidth);
1425    KnownOne.zext(BitWidth);
1426    return;
1427  }
1428  case ISD::TRUNCATE: {
1429    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1430    unsigned InBits = MVT::getSizeInBits(InVT);
1431    APInt InMask = Mask;
1432    InMask.zext(InBits);
1433    KnownZero.zext(InBits);
1434    KnownOne.zext(InBits);
1435    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1436    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1437    KnownZero.trunc(BitWidth);
1438    KnownOne.trunc(BitWidth);
1439    break;
1440  }
1441  case ISD::AssertZext: {
1442    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1443    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1444    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1445                      KnownOne, Depth+1);
1446    KnownZero |= (~InMask) & Mask;
1447    return;
1448  }
1449  case ISD::FGETSIGN:
1450    // All bits are zero except the low bit.
1451    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1452    return;
1453
1454  case ISD::ADD: {
1455    // If either the LHS or the RHS are Zero, the result is zero.
1456    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1457    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1458    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1459    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1460
1461    // Output known-0 bits are known if clear or set in both the low clear bits
1462    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1463    // low 3 bits clear.
1464    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1465                                     KnownZero2.countTrailingOnes());
1466
1467    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1468    KnownOne = APInt(BitWidth, 0);
1469    return;
1470  }
1471  case ISD::SUB: {
1472    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1473    if (!CLHS) return;
1474
1475    // We know that the top bits of C-X are clear if X contains less bits
1476    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1477    // positive if we can prove that X is >= 0 and < 16.
1478    if (CLHS->getAPIntValue().isNonNegative()) {
1479      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1480      // NLZ can't be BitWidth with no sign bit
1481      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1482      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1483
1484      // If all of the MaskV bits are known to be zero, then we know the output
1485      // top bits are zero, because we now know that the output is from [0-C].
1486      if ((KnownZero & MaskV) == MaskV) {
1487        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1488        // Top bits known zero.
1489        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1490        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1491      } else {
1492        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1493      }
1494    }
1495    return;
1496  }
1497  default:
1498    // Allow the target to implement this method for its nodes.
1499    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1500  case ISD::INTRINSIC_WO_CHAIN:
1501  case ISD::INTRINSIC_W_CHAIN:
1502  case ISD::INTRINSIC_VOID:
1503      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1504    }
1505    return;
1506  }
1507}
1508
1509/// ComputeNumSignBits - Return the number of times the sign bit of the
1510/// register is replicated into the other bits.  We know that at least 1 bit
1511/// is always equal to the sign bit (itself), but other cases can give us
1512/// information.  For example, immediately after an "SRA X, 2", we know that
1513/// the top 3 bits are all equal to each other, so we return 3.
1514unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1515  MVT::ValueType VT = Op.getValueType();
1516  assert(MVT::isInteger(VT) && "Invalid VT!");
1517  unsigned VTBits = MVT::getSizeInBits(VT);
1518  unsigned Tmp, Tmp2;
1519
1520  if (Depth == 6)
1521    return 1;  // Limit search depth.
1522
1523  switch (Op.getOpcode()) {
1524  default: break;
1525  case ISD::AssertSext:
1526    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1527    return VTBits-Tmp+1;
1528  case ISD::AssertZext:
1529    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1530    return VTBits-Tmp;
1531
1532  case ISD::Constant: {
1533    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1534    // If negative, return # leading ones.
1535    if (Val.isNegative())
1536      return Val.countLeadingOnes();
1537
1538    // Return # leading zeros.
1539    return Val.countLeadingZeros();
1540  }
1541
1542  case ISD::SIGN_EXTEND:
1543    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1544    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1545
1546  case ISD::SIGN_EXTEND_INREG:
1547    // Max of the input and what this extends.
1548    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1549    Tmp = VTBits-Tmp+1;
1550
1551    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1552    return std::max(Tmp, Tmp2);
1553
1554  case ISD::SRA:
1555    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1556    // SRA X, C   -> adds C sign bits.
1557    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1558      Tmp += C->getValue();
1559      if (Tmp > VTBits) Tmp = VTBits;
1560    }
1561    return Tmp;
1562  case ISD::SHL:
1563    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1564      // shl destroys sign bits.
1565      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1566      if (C->getValue() >= VTBits ||      // Bad shift.
1567          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1568      return Tmp - C->getValue();
1569    }
1570    break;
1571  case ISD::AND:
1572  case ISD::OR:
1573  case ISD::XOR:    // NOT is handled here.
1574    // Logical binary ops preserve the number of sign bits.
1575    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1576    if (Tmp == 1) return 1;  // Early out.
1577    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1578    return std::min(Tmp, Tmp2);
1579
1580  case ISD::SELECT:
1581    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1582    if (Tmp == 1) return 1;  // Early out.
1583    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1584    return std::min(Tmp, Tmp2);
1585
1586  case ISD::SETCC:
1587    // If setcc returns 0/-1, all bits are sign bits.
1588    if (TLI.getSetCCResultContents() ==
1589        TargetLowering::ZeroOrNegativeOneSetCCResult)
1590      return VTBits;
1591    break;
1592  case ISD::ROTL:
1593  case ISD::ROTR:
1594    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1595      unsigned RotAmt = C->getValue() & (VTBits-1);
1596
1597      // Handle rotate right by N like a rotate left by 32-N.
1598      if (Op.getOpcode() == ISD::ROTR)
1599        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1600
1601      // If we aren't rotating out all of the known-in sign bits, return the
1602      // number that are left.  This handles rotl(sext(x), 1) for example.
1603      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1604      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1605    }
1606    break;
1607  case ISD::ADD:
1608    // Add can have at most one carry bit.  Thus we know that the output
1609    // is, at worst, one more bit than the inputs.
1610    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1611    if (Tmp == 1) return 1;  // Early out.
1612
1613    // Special case decrementing a value (ADD X, -1):
1614    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1615      if (CRHS->isAllOnesValue()) {
1616        APInt KnownZero, KnownOne;
1617        APInt Mask = APInt::getAllOnesValue(VTBits);
1618        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1619
1620        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1621        // sign bits set.
1622        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1623          return VTBits;
1624
1625        // If we are subtracting one from a positive number, there is no carry
1626        // out of the result.
1627        if (KnownZero.isNegative())
1628          return Tmp;
1629      }
1630
1631    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1632    if (Tmp2 == 1) return 1;
1633      return std::min(Tmp, Tmp2)-1;
1634    break;
1635
1636  case ISD::SUB:
1637    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1638    if (Tmp2 == 1) return 1;
1639
1640    // Handle NEG.
1641    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1642      if (CLHS->getValue() == 0) {
1643        APInt KnownZero, KnownOne;
1644        APInt Mask = APInt::getAllOnesValue(VTBits);
1645        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1646        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1647        // sign bits set.
1648        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1649          return VTBits;
1650
1651        // If the input is known to be positive (the sign bit is known clear),
1652        // the output of the NEG has the same number of sign bits as the input.
1653        if (KnownZero.isNegative())
1654          return Tmp2;
1655
1656        // Otherwise, we treat this like a SUB.
1657      }
1658
1659    // Sub can have at most one carry bit.  Thus we know that the output
1660    // is, at worst, one more bit than the inputs.
1661    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1662    if (Tmp == 1) return 1;  // Early out.
1663      return std::min(Tmp, Tmp2)-1;
1664    break;
1665  case ISD::TRUNCATE:
1666    // FIXME: it's tricky to do anything useful for this, but it is an important
1667    // case for targets like X86.
1668    break;
1669  }
1670
1671  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1672  if (Op.getOpcode() == ISD::LOAD) {
1673    LoadSDNode *LD = cast<LoadSDNode>(Op);
1674    unsigned ExtType = LD->getExtensionType();
1675    switch (ExtType) {
1676    default: break;
1677    case ISD::SEXTLOAD:    // '17' bits known
1678      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1679      return VTBits-Tmp+1;
1680    case ISD::ZEXTLOAD:    // '16' bits known
1681      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1682      return VTBits-Tmp;
1683    }
1684  }
1685
1686  // Allow the target to implement this method for its nodes.
1687  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1688      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1689      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1690      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1691    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1692    if (NumBits > 1) return NumBits;
1693  }
1694
1695  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1696  // use this information.
1697  APInt KnownZero, KnownOne;
1698  APInt Mask = APInt::getAllOnesValue(VTBits);
1699  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1700
1701  if (KnownZero.isNegative()) {        // sign bit is 0
1702    Mask = KnownZero;
1703  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1704    Mask = KnownOne;
1705  } else {
1706    // Nothing known.
1707    return 1;
1708  }
1709
1710  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1711  // the number of identical bits in the top of the input value.
1712  Mask = ~Mask;
1713  Mask <<= Mask.getBitWidth()-VTBits;
1714  // Return # leading zeros.  We use 'min' here in case Val was zero before
1715  // shifting.  We don't want to return '64' as for an i32 "0".
1716  return std::min(VTBits, Mask.countLeadingZeros());
1717}
1718
1719
1720bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1721  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1722  if (!GA) return false;
1723  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1724  if (!GV) return false;
1725  MachineModuleInfo *MMI = getMachineModuleInfo();
1726  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1727}
1728
1729
1730/// getNode - Gets or creates the specified node.
1731///
1732SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1733  FoldingSetNodeID ID;
1734  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1735  void *IP = 0;
1736  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1737    return SDOperand(E, 0);
1738  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1739  CSEMap.InsertNode(N, IP);
1740
1741  AllNodes.push_back(N);
1742  return SDOperand(N, 0);
1743}
1744
1745SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1746                                SDOperand Operand) {
1747  // Constant fold unary operations with an integer constant operand.
1748  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1749    const APInt &Val = C->getAPIntValue();
1750    unsigned BitWidth = MVT::getSizeInBits(VT);
1751    switch (Opcode) {
1752    default: break;
1753    case ISD::SIGN_EXTEND:
1754      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1755    case ISD::ANY_EXTEND:
1756    case ISD::ZERO_EXTEND:
1757    case ISD::TRUNCATE:
1758      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1759    case ISD::UINT_TO_FP:
1760    case ISD::SINT_TO_FP: {
1761      const uint64_t zero[] = {0, 0};
1762      // No compile time operations on this type.
1763      if (VT==MVT::ppcf128)
1764        break;
1765      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1766      (void)apf.convertFromAPInt(Val,
1767                                 Opcode==ISD::SINT_TO_FP,
1768                                 APFloat::rmNearestTiesToEven);
1769      return getConstantFP(apf, VT);
1770    }
1771    case ISD::BIT_CONVERT:
1772      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1773        return getConstantFP(Val.bitsToFloat(), VT);
1774      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1775        return getConstantFP(Val.bitsToDouble(), VT);
1776      break;
1777    case ISD::BSWAP:
1778      return getConstant(Val.byteSwap(), VT);
1779    case ISD::CTPOP:
1780      return getConstant(Val.countPopulation(), VT);
1781    case ISD::CTLZ:
1782      return getConstant(Val.countLeadingZeros(), VT);
1783    case ISD::CTTZ:
1784      return getConstant(Val.countTrailingZeros(), VT);
1785    }
1786  }
1787
1788  // Constant fold unary operations with a floating point constant operand.
1789  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1790    APFloat V = C->getValueAPF();    // make copy
1791    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1792      switch (Opcode) {
1793      case ISD::FNEG:
1794        V.changeSign();
1795        return getConstantFP(V, VT);
1796      case ISD::FABS:
1797        V.clearSign();
1798        return getConstantFP(V, VT);
1799      case ISD::FP_ROUND:
1800      case ISD::FP_EXTEND:
1801        // This can return overflow, underflow, or inexact; we don't care.
1802        // FIXME need to be more flexible about rounding mode.
1803        (void)V.convert(*MVTToAPFloatSemantics(VT),
1804                        APFloat::rmNearestTiesToEven);
1805        return getConstantFP(V, VT);
1806      case ISD::FP_TO_SINT:
1807      case ISD::FP_TO_UINT: {
1808        integerPart x;
1809        assert(integerPartWidth >= 64);
1810        // FIXME need to be more flexible about rounding mode.
1811        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1812                              Opcode==ISD::FP_TO_SINT,
1813                              APFloat::rmTowardZero);
1814        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1815          break;
1816        return getConstant(x, VT);
1817      }
1818      case ISD::BIT_CONVERT:
1819        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1820          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1821        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1822          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1823        break;
1824      }
1825    }
1826  }
1827
1828  unsigned OpOpcode = Operand.Val->getOpcode();
1829  switch (Opcode) {
1830  case ISD::TokenFactor:
1831    return Operand;         // Factor of one node?  No factor.
1832  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1833  case ISD::FP_EXTEND:
1834    assert(MVT::isFloatingPoint(VT) &&
1835           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1836    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1837    if (Operand.getOpcode() == ISD::UNDEF)
1838      return getNode(ISD::UNDEF, VT);
1839    break;
1840  case ISD::SIGN_EXTEND:
1841    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1842           "Invalid SIGN_EXTEND!");
1843    if (Operand.getValueType() == VT) return Operand;   // noop extension
1844    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1845           && "Invalid sext node, dst < src!");
1846    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1847      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1848    break;
1849  case ISD::ZERO_EXTEND:
1850    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1851           "Invalid ZERO_EXTEND!");
1852    if (Operand.getValueType() == VT) return Operand;   // noop extension
1853    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1854           && "Invalid zext node, dst < src!");
1855    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1856      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1857    break;
1858  case ISD::ANY_EXTEND:
1859    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1860           "Invalid ANY_EXTEND!");
1861    if (Operand.getValueType() == VT) return Operand;   // noop extension
1862    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1863           && "Invalid anyext node, dst < src!");
1864    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1865      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1866      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1867    break;
1868  case ISD::TRUNCATE:
1869    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1870           "Invalid TRUNCATE!");
1871    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1872    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1873           && "Invalid truncate node, src < dst!");
1874    if (OpOpcode == ISD::TRUNCATE)
1875      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1876    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1877             OpOpcode == ISD::ANY_EXTEND) {
1878      // If the source is smaller than the dest, we still need an extend.
1879      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1880          < MVT::getSizeInBits(VT))
1881        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1882      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1883               > MVT::getSizeInBits(VT))
1884        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1885      else
1886        return Operand.Val->getOperand(0);
1887    }
1888    break;
1889  case ISD::BIT_CONVERT:
1890    // Basic sanity checking.
1891    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1892           && "Cannot BIT_CONVERT between types of different sizes!");
1893    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1894    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1895      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1896    if (OpOpcode == ISD::UNDEF)
1897      return getNode(ISD::UNDEF, VT);
1898    break;
1899  case ISD::SCALAR_TO_VECTOR:
1900    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1901           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1902           "Illegal SCALAR_TO_VECTOR node!");
1903    if (OpOpcode == ISD::UNDEF)
1904      return getNode(ISD::UNDEF, VT);
1905    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
1906    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
1907        isa<ConstantSDNode>(Operand.getOperand(1)) &&
1908        Operand.getConstantOperandVal(1) == 0 &&
1909        Operand.getOperand(0).getValueType() == VT)
1910      return Operand.getOperand(0);
1911    break;
1912  case ISD::FNEG:
1913    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1914      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1915                     Operand.Val->getOperand(0));
1916    if (OpOpcode == ISD::FNEG)  // --X -> X
1917      return Operand.Val->getOperand(0);
1918    break;
1919  case ISD::FABS:
1920    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1921      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1922    break;
1923  }
1924
1925  SDNode *N;
1926  SDVTList VTs = getVTList(VT);
1927  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1928    FoldingSetNodeID ID;
1929    SDOperand Ops[1] = { Operand };
1930    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1931    void *IP = 0;
1932    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1933      return SDOperand(E, 0);
1934    N = new UnarySDNode(Opcode, VTs, Operand);
1935    CSEMap.InsertNode(N, IP);
1936  } else {
1937    N = new UnarySDNode(Opcode, VTs, Operand);
1938  }
1939  AllNodes.push_back(N);
1940  return SDOperand(N, 0);
1941}
1942
1943
1944
1945SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1946                                SDOperand N1, SDOperand N2) {
1947  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1948  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1949  switch (Opcode) {
1950  default: break;
1951  case ISD::TokenFactor:
1952    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1953           N2.getValueType() == MVT::Other && "Invalid token factor!");
1954    // Fold trivial token factors.
1955    if (N1.getOpcode() == ISD::EntryToken) return N2;
1956    if (N2.getOpcode() == ISD::EntryToken) return N1;
1957    break;
1958  case ISD::AND:
1959    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1960           N1.getValueType() == VT && "Binary operator types must match!");
1961    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1962    // worth handling here.
1963    if (N2C && N2C->getValue() == 0)
1964      return N2;
1965    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1966      return N1;
1967    break;
1968  case ISD::OR:
1969  case ISD::XOR:
1970    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1971           N1.getValueType() == VT && "Binary operator types must match!");
1972    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1973    // worth handling here.
1974    if (N2C && N2C->getValue() == 0)
1975      return N1;
1976    break;
1977  case ISD::UDIV:
1978  case ISD::UREM:
1979  case ISD::MULHU:
1980  case ISD::MULHS:
1981    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1982    // fall through
1983  case ISD::ADD:
1984  case ISD::SUB:
1985  case ISD::MUL:
1986  case ISD::SDIV:
1987  case ISD::SREM:
1988  case ISD::FADD:
1989  case ISD::FSUB:
1990  case ISD::FMUL:
1991  case ISD::FDIV:
1992  case ISD::FREM:
1993    assert(N1.getValueType() == N2.getValueType() &&
1994           N1.getValueType() == VT && "Binary operator types must match!");
1995    break;
1996  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1997    assert(N1.getValueType() == VT &&
1998           MVT::isFloatingPoint(N1.getValueType()) &&
1999           MVT::isFloatingPoint(N2.getValueType()) &&
2000           "Invalid FCOPYSIGN!");
2001    break;
2002  case ISD::SHL:
2003  case ISD::SRA:
2004  case ISD::SRL:
2005  case ISD::ROTL:
2006  case ISD::ROTR:
2007    assert(VT == N1.getValueType() &&
2008           "Shift operators return type must be the same as their first arg");
2009    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2010           VT != MVT::i1 && "Shifts only work on integers");
2011    break;
2012  case ISD::FP_ROUND_INREG: {
2013    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2014    assert(VT == N1.getValueType() && "Not an inreg round!");
2015    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2016           "Cannot FP_ROUND_INREG integer types");
2017    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2018           "Not rounding down!");
2019    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2020    break;
2021  }
2022  case ISD::FP_ROUND:
2023    assert(MVT::isFloatingPoint(VT) &&
2024           MVT::isFloatingPoint(N1.getValueType()) &&
2025           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2026           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2027    if (N1.getValueType() == VT) return N1;  // noop conversion.
2028    break;
2029  case ISD::AssertSext:
2030  case ISD::AssertZext: {
2031    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2032    assert(VT == N1.getValueType() && "Not an inreg extend!");
2033    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2034           "Cannot *_EXTEND_INREG FP types");
2035    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2036           "Not extending!");
2037    if (VT == EVT) return N1; // noop assertion.
2038    break;
2039  }
2040  case ISD::SIGN_EXTEND_INREG: {
2041    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2042    assert(VT == N1.getValueType() && "Not an inreg extend!");
2043    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2044           "Cannot *_EXTEND_INREG FP types");
2045    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2046           "Not extending!");
2047    if (EVT == VT) return N1;  // Not actually extending
2048
2049    if (N1C) {
2050      APInt Val = N1C->getAPIntValue();
2051      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2052      Val <<= Val.getBitWidth()-FromBits;
2053      Val = Val.ashr(Val.getBitWidth()-FromBits);
2054      return getConstant(Val, VT);
2055    }
2056    break;
2057  }
2058  case ISD::EXTRACT_VECTOR_ELT:
2059    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2060
2061    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2062    if (N1.getOpcode() == ISD::UNDEF)
2063      return getNode(ISD::UNDEF, VT);
2064
2065    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2066    // expanding copies of large vectors from registers.
2067    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2068        N1.getNumOperands() > 0) {
2069      unsigned Factor =
2070        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2071      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2072                     N1.getOperand(N2C->getValue() / Factor),
2073                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2074    }
2075
2076    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2077    // expanding large vector constants.
2078    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2079      return N1.getOperand(N2C->getValue());
2080
2081    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2082    // operations are lowered to scalars.
2083    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2084      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2085        if (IEC == N2C)
2086          return N1.getOperand(1);
2087        else
2088          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2089      }
2090    break;
2091  case ISD::EXTRACT_ELEMENT:
2092    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2093    assert(!MVT::isVector(N1.getValueType()) &&
2094           MVT::isInteger(N1.getValueType()) &&
2095           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2096           "EXTRACT_ELEMENT only applies to integers!");
2097
2098    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2099    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2100    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2101    if (N1.getOpcode() == ISD::BUILD_PAIR)
2102      return N1.getOperand(N2C->getValue());
2103
2104    // EXTRACT_ELEMENT of a constant int is also very common.
2105    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2106      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2107      return getConstant(C->getValue() >> Shift, VT);
2108    }
2109    break;
2110  case ISD::EXTRACT_SUBVECTOR:
2111    if (N1.getValueType() == VT) // Trivial extraction.
2112      return N1;
2113    break;
2114  }
2115
2116  if (N1C) {
2117    if (N2C) {
2118      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2119      switch (Opcode) {
2120      case ISD::ADD: return getConstant(C1 + C2, VT);
2121      case ISD::SUB: return getConstant(C1 - C2, VT);
2122      case ISD::MUL: return getConstant(C1 * C2, VT);
2123      case ISD::UDIV:
2124        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2125        break;
2126      case ISD::UREM :
2127        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2128        break;
2129      case ISD::SDIV :
2130        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2131        break;
2132      case ISD::SREM :
2133        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2134        break;
2135      case ISD::AND  : return getConstant(C1 & C2, VT);
2136      case ISD::OR   : return getConstant(C1 | C2, VT);
2137      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2138      case ISD::SHL  : return getConstant(C1 << C2, VT);
2139      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2140      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2141      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2142      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2143      default: break;
2144      }
2145    } else {      // Cannonicalize constant to RHS if commutative
2146      if (isCommutativeBinOp(Opcode)) {
2147        std::swap(N1C, N2C);
2148        std::swap(N1, N2);
2149      }
2150    }
2151  }
2152
2153  // Constant fold FP operations.
2154  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2155  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2156  if (N1CFP) {
2157    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2158      // Cannonicalize constant to RHS if commutative
2159      std::swap(N1CFP, N2CFP);
2160      std::swap(N1, N2);
2161    } else if (N2CFP && VT != MVT::ppcf128) {
2162      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2163      APFloat::opStatus s;
2164      switch (Opcode) {
2165      case ISD::FADD:
2166        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2167        if (s != APFloat::opInvalidOp)
2168          return getConstantFP(V1, VT);
2169        break;
2170      case ISD::FSUB:
2171        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2172        if (s!=APFloat::opInvalidOp)
2173          return getConstantFP(V1, VT);
2174        break;
2175      case ISD::FMUL:
2176        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2177        if (s!=APFloat::opInvalidOp)
2178          return getConstantFP(V1, VT);
2179        break;
2180      case ISD::FDIV:
2181        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2182        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2183          return getConstantFP(V1, VT);
2184        break;
2185      case ISD::FREM :
2186        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2187        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2188          return getConstantFP(V1, VT);
2189        break;
2190      case ISD::FCOPYSIGN:
2191        V1.copySign(V2);
2192        return getConstantFP(V1, VT);
2193      default: break;
2194      }
2195    }
2196  }
2197
2198  // Canonicalize an UNDEF to the RHS, even over a constant.
2199  if (N1.getOpcode() == ISD::UNDEF) {
2200    if (isCommutativeBinOp(Opcode)) {
2201      std::swap(N1, N2);
2202    } else {
2203      switch (Opcode) {
2204      case ISD::FP_ROUND_INREG:
2205      case ISD::SIGN_EXTEND_INREG:
2206      case ISD::SUB:
2207      case ISD::FSUB:
2208      case ISD::FDIV:
2209      case ISD::FREM:
2210      case ISD::SRA:
2211        return N1;     // fold op(undef, arg2) -> undef
2212      case ISD::UDIV:
2213      case ISD::SDIV:
2214      case ISD::UREM:
2215      case ISD::SREM:
2216      case ISD::SRL:
2217      case ISD::SHL:
2218        if (!MVT::isVector(VT))
2219          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2220        // For vectors, we can't easily build an all zero vector, just return
2221        // the LHS.
2222        return N2;
2223      }
2224    }
2225  }
2226
2227  // Fold a bunch of operators when the RHS is undef.
2228  if (N2.getOpcode() == ISD::UNDEF) {
2229    switch (Opcode) {
2230    case ISD::ADD:
2231    case ISD::ADDC:
2232    case ISD::ADDE:
2233    case ISD::SUB:
2234    case ISD::FADD:
2235    case ISD::FSUB:
2236    case ISD::FMUL:
2237    case ISD::FDIV:
2238    case ISD::FREM:
2239    case ISD::UDIV:
2240    case ISD::SDIV:
2241    case ISD::UREM:
2242    case ISD::SREM:
2243    case ISD::XOR:
2244      return N2;       // fold op(arg1, undef) -> undef
2245    case ISD::MUL:
2246    case ISD::AND:
2247    case ISD::SRL:
2248    case ISD::SHL:
2249      if (!MVT::isVector(VT))
2250        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2251      // For vectors, we can't easily build an all zero vector, just return
2252      // the LHS.
2253      return N1;
2254    case ISD::OR:
2255      if (!MVT::isVector(VT))
2256        return getConstant(MVT::getIntVTBitMask(VT), VT);
2257      // For vectors, we can't easily build an all one vector, just return
2258      // the LHS.
2259      return N1;
2260    case ISD::SRA:
2261      return N1;
2262    }
2263  }
2264
2265  // Memoize this node if possible.
2266  SDNode *N;
2267  SDVTList VTs = getVTList(VT);
2268  if (VT != MVT::Flag) {
2269    SDOperand Ops[] = { N1, N2 };
2270    FoldingSetNodeID ID;
2271    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2272    void *IP = 0;
2273    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2274      return SDOperand(E, 0);
2275    N = new BinarySDNode(Opcode, VTs, N1, N2);
2276    CSEMap.InsertNode(N, IP);
2277  } else {
2278    N = new BinarySDNode(Opcode, VTs, N1, N2);
2279  }
2280
2281  AllNodes.push_back(N);
2282  return SDOperand(N, 0);
2283}
2284
2285SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2286                                SDOperand N1, SDOperand N2, SDOperand N3) {
2287  // Perform various simplifications.
2288  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2289  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2290  switch (Opcode) {
2291  case ISD::SETCC: {
2292    // Use FoldSetCC to simplify SETCC's.
2293    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2294    if (Simp.Val) return Simp;
2295    break;
2296  }
2297  case ISD::SELECT:
2298    if (N1C) {
2299     if (N1C->getValue())
2300        return N2;             // select true, X, Y -> X
2301      else
2302        return N3;             // select false, X, Y -> Y
2303    }
2304
2305    if (N2 == N3) return N2;   // select C, X, X -> X
2306    break;
2307  case ISD::BRCOND:
2308    if (N2C) {
2309      if (N2C->getValue()) // Unconditional branch
2310        return getNode(ISD::BR, MVT::Other, N1, N3);
2311      else
2312        return N1;         // Never-taken branch
2313    }
2314    break;
2315  case ISD::VECTOR_SHUFFLE:
2316    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2317           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2318           N3.getOpcode() == ISD::BUILD_VECTOR &&
2319           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2320           "Illegal VECTOR_SHUFFLE node!");
2321    break;
2322  case ISD::BIT_CONVERT:
2323    // Fold bit_convert nodes from a type to themselves.
2324    if (N1.getValueType() == VT)
2325      return N1;
2326    break;
2327  }
2328
2329  // Memoize node if it doesn't produce a flag.
2330  SDNode *N;
2331  SDVTList VTs = getVTList(VT);
2332  if (VT != MVT::Flag) {
2333    SDOperand Ops[] = { N1, N2, N3 };
2334    FoldingSetNodeID ID;
2335    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2336    void *IP = 0;
2337    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2338      return SDOperand(E, 0);
2339    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2340    CSEMap.InsertNode(N, IP);
2341  } else {
2342    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2343  }
2344  AllNodes.push_back(N);
2345  return SDOperand(N, 0);
2346}
2347
2348SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2349                                SDOperand N1, SDOperand N2, SDOperand N3,
2350                                SDOperand N4) {
2351  SDOperand Ops[] = { N1, N2, N3, N4 };
2352  return getNode(Opcode, VT, Ops, 4);
2353}
2354
2355SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2356                                SDOperand N1, SDOperand N2, SDOperand N3,
2357                                SDOperand N4, SDOperand N5) {
2358  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2359  return getNode(Opcode, VT, Ops, 5);
2360}
2361
2362SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2363                                  SDOperand Src, SDOperand Size,
2364                                  SDOperand Align,
2365                                  SDOperand AlwaysInline) {
2366  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2367  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2368}
2369
2370SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2371                                  SDOperand Src, SDOperand Size,
2372                                  SDOperand Align,
2373                                  SDOperand AlwaysInline) {
2374  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2375  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2376}
2377
2378SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2379                                  SDOperand Src, SDOperand Size,
2380                                  SDOperand Align,
2381                                  SDOperand AlwaysInline) {
2382  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2383  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2384}
2385
2386SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2387                                  SDOperand Ptr, SDOperand Cmp,
2388                                  SDOperand Swp, MVT::ValueType VT) {
2389  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2390  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2391  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2392  FoldingSetNodeID ID;
2393  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2394  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2395  ID.AddInteger((unsigned int)VT);
2396  void* IP = 0;
2397  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2398    return SDOperand(E, 0);
2399  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2400  CSEMap.InsertNode(N, IP);
2401  AllNodes.push_back(N);
2402  return SDOperand(N, 0);
2403}
2404
2405SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2406                                  SDOperand Ptr, SDOperand Val,
2407                                  MVT::ValueType VT) {
2408  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2409         && "Invalid Atomic Op");
2410  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2411  FoldingSetNodeID ID;
2412  SDOperand Ops[] = {Chain, Ptr, Val};
2413  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2414  ID.AddInteger((unsigned int)VT);
2415  void* IP = 0;
2416  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2417    return SDOperand(E, 0);
2418  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2419  CSEMap.InsertNode(N, IP);
2420  AllNodes.push_back(N);
2421  return SDOperand(N, 0);
2422}
2423
2424SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2425                                SDOperand Chain, SDOperand Ptr,
2426                                const Value *SV, int SVOffset,
2427                                bool isVolatile, unsigned Alignment) {
2428  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2429    const Type *Ty = 0;
2430    if (VT != MVT::iPTR) {
2431      Ty = MVT::getTypeForValueType(VT);
2432    } else if (SV) {
2433      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2434      assert(PT && "Value for load must be a pointer");
2435      Ty = PT->getElementType();
2436    }
2437    assert(Ty && "Could not get type information for load");
2438    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2439  }
2440  SDVTList VTs = getVTList(VT, MVT::Other);
2441  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2442  SDOperand Ops[] = { Chain, Ptr, Undef };
2443  FoldingSetNodeID ID;
2444  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2445  ID.AddInteger(ISD::UNINDEXED);
2446  ID.AddInteger(ISD::NON_EXTLOAD);
2447  ID.AddInteger((unsigned int)VT);
2448  ID.AddInteger(Alignment);
2449  ID.AddInteger(isVolatile);
2450  void *IP = 0;
2451  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2452    return SDOperand(E, 0);
2453  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2454                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2455                             isVolatile);
2456  CSEMap.InsertNode(N, IP);
2457  AllNodes.push_back(N);
2458  return SDOperand(N, 0);
2459}
2460
2461SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2462                                   SDOperand Chain, SDOperand Ptr,
2463                                   const Value *SV,
2464                                   int SVOffset, MVT::ValueType EVT,
2465                                   bool isVolatile, unsigned Alignment) {
2466  // If they are asking for an extending load from/to the same thing, return a
2467  // normal load.
2468  if (VT == EVT)
2469    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2470
2471  if (MVT::isVector(VT))
2472    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2473  else
2474    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2475           "Should only be an extending load, not truncating!");
2476  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2477         "Cannot sign/zero extend a FP/Vector load!");
2478  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2479         "Cannot convert from FP to Int or Int -> FP!");
2480
2481  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2482    const Type *Ty = 0;
2483    if (VT != MVT::iPTR) {
2484      Ty = MVT::getTypeForValueType(VT);
2485    } else if (SV) {
2486      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2487      assert(PT && "Value for load must be a pointer");
2488      Ty = PT->getElementType();
2489    }
2490    assert(Ty && "Could not get type information for load");
2491    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2492  }
2493  SDVTList VTs = getVTList(VT, MVT::Other);
2494  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2495  SDOperand Ops[] = { Chain, Ptr, Undef };
2496  FoldingSetNodeID ID;
2497  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2498  ID.AddInteger(ISD::UNINDEXED);
2499  ID.AddInteger(ExtType);
2500  ID.AddInteger((unsigned int)EVT);
2501  ID.AddInteger(Alignment);
2502  ID.AddInteger(isVolatile);
2503  void *IP = 0;
2504  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2505    return SDOperand(E, 0);
2506  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2507                             SV, SVOffset, Alignment, isVolatile);
2508  CSEMap.InsertNode(N, IP);
2509  AllNodes.push_back(N);
2510  return SDOperand(N, 0);
2511}
2512
2513SDOperand
2514SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2515                             SDOperand Offset, ISD::MemIndexedMode AM) {
2516  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2517  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2518         "Load is already a indexed load!");
2519  MVT::ValueType VT = OrigLoad.getValueType();
2520  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2521  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2522  FoldingSetNodeID ID;
2523  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2524  ID.AddInteger(AM);
2525  ID.AddInteger(LD->getExtensionType());
2526  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2527  ID.AddInteger(LD->getAlignment());
2528  ID.AddInteger(LD->isVolatile());
2529  void *IP = 0;
2530  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2531    return SDOperand(E, 0);
2532  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2533                             LD->getExtensionType(), LD->getMemoryVT(),
2534                             LD->getSrcValue(), LD->getSrcValueOffset(),
2535                             LD->getAlignment(), LD->isVolatile());
2536  CSEMap.InsertNode(N, IP);
2537  AllNodes.push_back(N);
2538  return SDOperand(N, 0);
2539}
2540
2541SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2542                                 SDOperand Ptr, const Value *SV, int SVOffset,
2543                                 bool isVolatile, unsigned Alignment) {
2544  MVT::ValueType VT = Val.getValueType();
2545
2546  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2547    const Type *Ty = 0;
2548    if (VT != MVT::iPTR) {
2549      Ty = MVT::getTypeForValueType(VT);
2550    } else if (SV) {
2551      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2552      assert(PT && "Value for store must be a pointer");
2553      Ty = PT->getElementType();
2554    }
2555    assert(Ty && "Could not get type information for store");
2556    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2557  }
2558  SDVTList VTs = getVTList(MVT::Other);
2559  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2560  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2561  FoldingSetNodeID ID;
2562  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2563  ID.AddInteger(ISD::UNINDEXED);
2564  ID.AddInteger(false);
2565  ID.AddInteger((unsigned int)VT);
2566  ID.AddInteger(Alignment);
2567  ID.AddInteger(isVolatile);
2568  void *IP = 0;
2569  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2570    return SDOperand(E, 0);
2571  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2572                              VT, SV, SVOffset, Alignment, isVolatile);
2573  CSEMap.InsertNode(N, IP);
2574  AllNodes.push_back(N);
2575  return SDOperand(N, 0);
2576}
2577
2578SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2579                                      SDOperand Ptr, const Value *SV,
2580                                      int SVOffset, MVT::ValueType SVT,
2581                                      bool isVolatile, unsigned Alignment) {
2582  MVT::ValueType VT = Val.getValueType();
2583
2584  if (VT == SVT)
2585    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2586
2587  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2588         "Not a truncation?");
2589  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2590         "Can't do FP-INT conversion!");
2591
2592  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2593    const Type *Ty = 0;
2594    if (VT != MVT::iPTR) {
2595      Ty = MVT::getTypeForValueType(VT);
2596    } else if (SV) {
2597      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2598      assert(PT && "Value for store must be a pointer");
2599      Ty = PT->getElementType();
2600    }
2601    assert(Ty && "Could not get type information for store");
2602    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2603  }
2604  SDVTList VTs = getVTList(MVT::Other);
2605  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2606  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2607  FoldingSetNodeID ID;
2608  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2609  ID.AddInteger(ISD::UNINDEXED);
2610  ID.AddInteger(1);
2611  ID.AddInteger((unsigned int)SVT);
2612  ID.AddInteger(Alignment);
2613  ID.AddInteger(isVolatile);
2614  void *IP = 0;
2615  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2616    return SDOperand(E, 0);
2617  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2618                              SVT, SV, SVOffset, Alignment, isVolatile);
2619  CSEMap.InsertNode(N, IP);
2620  AllNodes.push_back(N);
2621  return SDOperand(N, 0);
2622}
2623
2624SDOperand
2625SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2626                              SDOperand Offset, ISD::MemIndexedMode AM) {
2627  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2628  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2629         "Store is already a indexed store!");
2630  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2631  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2632  FoldingSetNodeID ID;
2633  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2634  ID.AddInteger(AM);
2635  ID.AddInteger(ST->isTruncatingStore());
2636  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2637  ID.AddInteger(ST->getAlignment());
2638  ID.AddInteger(ST->isVolatile());
2639  void *IP = 0;
2640  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2641    return SDOperand(E, 0);
2642  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2643                              ST->isTruncatingStore(), ST->getMemoryVT(),
2644                              ST->getSrcValue(), ST->getSrcValueOffset(),
2645                              ST->getAlignment(), ST->isVolatile());
2646  CSEMap.InsertNode(N, IP);
2647  AllNodes.push_back(N);
2648  return SDOperand(N, 0);
2649}
2650
2651SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2652                                 SDOperand Chain, SDOperand Ptr,
2653                                 SDOperand SV) {
2654  SDOperand Ops[] = { Chain, Ptr, SV };
2655  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2656}
2657
2658SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2659                                const SDOperand *Ops, unsigned NumOps) {
2660  switch (NumOps) {
2661  case 0: return getNode(Opcode, VT);
2662  case 1: return getNode(Opcode, VT, Ops[0]);
2663  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2664  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2665  default: break;
2666  }
2667
2668  switch (Opcode) {
2669  default: break;
2670  case ISD::SELECT_CC: {
2671    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2672    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2673           "LHS and RHS of condition must have same type!");
2674    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2675           "True and False arms of SelectCC must have same type!");
2676    assert(Ops[2].getValueType() == VT &&
2677           "select_cc node must be of same type as true and false value!");
2678    break;
2679  }
2680  case ISD::BR_CC: {
2681    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2682    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2683           "LHS/RHS of comparison should match types!");
2684    break;
2685  }
2686  }
2687
2688  // Memoize nodes.
2689  SDNode *N;
2690  SDVTList VTs = getVTList(VT);
2691  if (VT != MVT::Flag) {
2692    FoldingSetNodeID ID;
2693    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2694    void *IP = 0;
2695    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2696      return SDOperand(E, 0);
2697    N = new SDNode(Opcode, VTs, Ops, NumOps);
2698    CSEMap.InsertNode(N, IP);
2699  } else {
2700    N = new SDNode(Opcode, VTs, Ops, NumOps);
2701  }
2702  AllNodes.push_back(N);
2703  return SDOperand(N, 0);
2704}
2705
2706SDOperand SelectionDAG::getNode(unsigned Opcode,
2707                                std::vector<MVT::ValueType> &ResultTys,
2708                                const SDOperand *Ops, unsigned NumOps) {
2709  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2710                 Ops, NumOps);
2711}
2712
2713SDOperand SelectionDAG::getNode(unsigned Opcode,
2714                                const MVT::ValueType *VTs, unsigned NumVTs,
2715                                const SDOperand *Ops, unsigned NumOps) {
2716  if (NumVTs == 1)
2717    return getNode(Opcode, VTs[0], Ops, NumOps);
2718  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2719}
2720
2721SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2722                                const SDOperand *Ops, unsigned NumOps) {
2723  if (VTList.NumVTs == 1)
2724    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2725
2726  switch (Opcode) {
2727  // FIXME: figure out how to safely handle things like
2728  // int foo(int x) { return 1 << (x & 255); }
2729  // int bar() { return foo(256); }
2730#if 0
2731  case ISD::SRA_PARTS:
2732  case ISD::SRL_PARTS:
2733  case ISD::SHL_PARTS:
2734    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2735        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2736      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2737    else if (N3.getOpcode() == ISD::AND)
2738      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2739        // If the and is only masking out bits that cannot effect the shift,
2740        // eliminate the and.
2741        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2742        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2743          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2744      }
2745    break;
2746#endif
2747  }
2748
2749  // Memoize the node unless it returns a flag.
2750  SDNode *N;
2751  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2752    FoldingSetNodeID ID;
2753    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2754    void *IP = 0;
2755    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2756      return SDOperand(E, 0);
2757    if (NumOps == 1)
2758      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2759    else if (NumOps == 2)
2760      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2761    else if (NumOps == 3)
2762      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2763    else
2764      N = new SDNode(Opcode, VTList, Ops, NumOps);
2765    CSEMap.InsertNode(N, IP);
2766  } else {
2767    if (NumOps == 1)
2768      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2769    else if (NumOps == 2)
2770      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2771    else if (NumOps == 3)
2772      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2773    else
2774      N = new SDNode(Opcode, VTList, Ops, NumOps);
2775  }
2776  AllNodes.push_back(N);
2777  return SDOperand(N, 0);
2778}
2779
2780SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2781  return getNode(Opcode, VTList, 0, 0);
2782}
2783
2784SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2785                                SDOperand N1) {
2786  SDOperand Ops[] = { N1 };
2787  return getNode(Opcode, VTList, Ops, 1);
2788}
2789
2790SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2791                                SDOperand N1, SDOperand N2) {
2792  SDOperand Ops[] = { N1, N2 };
2793  return getNode(Opcode, VTList, Ops, 2);
2794}
2795
2796SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2797                                SDOperand N1, SDOperand N2, SDOperand N3) {
2798  SDOperand Ops[] = { N1, N2, N3 };
2799  return getNode(Opcode, VTList, Ops, 3);
2800}
2801
2802SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2803                                SDOperand N1, SDOperand N2, SDOperand N3,
2804                                SDOperand N4) {
2805  SDOperand Ops[] = { N1, N2, N3, N4 };
2806  return getNode(Opcode, VTList, Ops, 4);
2807}
2808
2809SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2810                                SDOperand N1, SDOperand N2, SDOperand N3,
2811                                SDOperand N4, SDOperand N5) {
2812  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2813  return getNode(Opcode, VTList, Ops, 5);
2814}
2815
2816SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2817  return makeVTList(SDNode::getValueTypeList(VT), 1);
2818}
2819
2820SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2821  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2822       E = VTList.end(); I != E; ++I) {
2823    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2824      return makeVTList(&(*I)[0], 2);
2825  }
2826  std::vector<MVT::ValueType> V;
2827  V.push_back(VT1);
2828  V.push_back(VT2);
2829  VTList.push_front(V);
2830  return makeVTList(&(*VTList.begin())[0], 2);
2831}
2832SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2833                                 MVT::ValueType VT3) {
2834  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2835       E = VTList.end(); I != E; ++I) {
2836    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2837        (*I)[2] == VT3)
2838      return makeVTList(&(*I)[0], 3);
2839  }
2840  std::vector<MVT::ValueType> V;
2841  V.push_back(VT1);
2842  V.push_back(VT2);
2843  V.push_back(VT3);
2844  VTList.push_front(V);
2845  return makeVTList(&(*VTList.begin())[0], 3);
2846}
2847
2848SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2849  switch (NumVTs) {
2850    case 0: assert(0 && "Cannot have nodes without results!");
2851    case 1: return getVTList(VTs[0]);
2852    case 2: return getVTList(VTs[0], VTs[1]);
2853    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2854    default: break;
2855  }
2856
2857  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2858       E = VTList.end(); I != E; ++I) {
2859    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2860
2861    bool NoMatch = false;
2862    for (unsigned i = 2; i != NumVTs; ++i)
2863      if (VTs[i] != (*I)[i]) {
2864        NoMatch = true;
2865        break;
2866      }
2867    if (!NoMatch)
2868      return makeVTList(&*I->begin(), NumVTs);
2869  }
2870
2871  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2872  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2873}
2874
2875
2876/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2877/// specified operands.  If the resultant node already exists in the DAG,
2878/// this does not modify the specified node, instead it returns the node that
2879/// already exists.  If the resultant node does not exist in the DAG, the
2880/// input node is returned.  As a degenerate case, if you specify the same
2881/// input operands as the node already has, the input node is returned.
2882SDOperand SelectionDAG::
2883UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2884  SDNode *N = InN.Val;
2885  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2886
2887  // Check to see if there is no change.
2888  if (Op == N->getOperand(0)) return InN;
2889
2890  // See if the modified node already exists.
2891  void *InsertPos = 0;
2892  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2893    return SDOperand(Existing, InN.ResNo);
2894
2895  // Nope it doesn't.  Remove the node from it's current place in the maps.
2896  if (InsertPos)
2897    RemoveNodeFromCSEMaps(N);
2898
2899  // Now we update the operands.
2900  N->OperandList[0].Val->removeUser(N);
2901  Op.Val->addUser(N);
2902  N->OperandList[0] = Op;
2903
2904  // If this gets put into a CSE map, add it.
2905  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2906  return InN;
2907}
2908
2909SDOperand SelectionDAG::
2910UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2911  SDNode *N = InN.Val;
2912  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2913
2914  // Check to see if there is no change.
2915  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2916    return InN;   // No operands changed, just return the input node.
2917
2918  // See if the modified node already exists.
2919  void *InsertPos = 0;
2920  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2921    return SDOperand(Existing, InN.ResNo);
2922
2923  // Nope it doesn't.  Remove the node from it's current place in the maps.
2924  if (InsertPos)
2925    RemoveNodeFromCSEMaps(N);
2926
2927  // Now we update the operands.
2928  if (N->OperandList[0] != Op1) {
2929    N->OperandList[0].Val->removeUser(N);
2930    Op1.Val->addUser(N);
2931    N->OperandList[0] = Op1;
2932  }
2933  if (N->OperandList[1] != Op2) {
2934    N->OperandList[1].Val->removeUser(N);
2935    Op2.Val->addUser(N);
2936    N->OperandList[1] = Op2;
2937  }
2938
2939  // If this gets put into a CSE map, add it.
2940  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2941  return InN;
2942}
2943
2944SDOperand SelectionDAG::
2945UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2946  SDOperand Ops[] = { Op1, Op2, Op3 };
2947  return UpdateNodeOperands(N, Ops, 3);
2948}
2949
2950SDOperand SelectionDAG::
2951UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2952                   SDOperand Op3, SDOperand Op4) {
2953  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2954  return UpdateNodeOperands(N, Ops, 4);
2955}
2956
2957SDOperand SelectionDAG::
2958UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2959                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2960  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2961  return UpdateNodeOperands(N, Ops, 5);
2962}
2963
2964
2965SDOperand SelectionDAG::
2966UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2967  SDNode *N = InN.Val;
2968  assert(N->getNumOperands() == NumOps &&
2969         "Update with wrong number of operands");
2970
2971  // Check to see if there is no change.
2972  bool AnyChange = false;
2973  for (unsigned i = 0; i != NumOps; ++i) {
2974    if (Ops[i] != N->getOperand(i)) {
2975      AnyChange = true;
2976      break;
2977    }
2978  }
2979
2980  // No operands changed, just return the input node.
2981  if (!AnyChange) return InN;
2982
2983  // See if the modified node already exists.
2984  void *InsertPos = 0;
2985  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2986    return SDOperand(Existing, InN.ResNo);
2987
2988  // Nope it doesn't.  Remove the node from it's current place in the maps.
2989  if (InsertPos)
2990    RemoveNodeFromCSEMaps(N);
2991
2992  // Now we update the operands.
2993  for (unsigned i = 0; i != NumOps; ++i) {
2994    if (N->OperandList[i] != Ops[i]) {
2995      N->OperandList[i].Val->removeUser(N);
2996      Ops[i].Val->addUser(N);
2997      N->OperandList[i] = Ops[i];
2998    }
2999  }
3000
3001  // If this gets put into a CSE map, add it.
3002  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3003  return InN;
3004}
3005
3006
3007/// MorphNodeTo - This frees the operands of the current node, resets the
3008/// opcode, types, and operands to the specified value.  This should only be
3009/// used by the SelectionDAG class.
3010void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3011                         const SDOperand *Ops, unsigned NumOps) {
3012  NodeType = Opc;
3013  ValueList = L.VTs;
3014  NumValues = L.NumVTs;
3015
3016  // Clear the operands list, updating used nodes to remove this from their
3017  // use list.
3018  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3019    I->Val->removeUser(this);
3020
3021  // If NumOps is larger than the # of operands we currently have, reallocate
3022  // the operand list.
3023  if (NumOps > NumOperands) {
3024    if (OperandsNeedDelete)
3025      delete [] OperandList;
3026    OperandList = new SDOperand[NumOps];
3027    OperandsNeedDelete = true;
3028  }
3029
3030  // Assign the new operands.
3031  NumOperands = NumOps;
3032
3033  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3034    OperandList[i] = Ops[i];
3035    SDNode *N = OperandList[i].Val;
3036    N->Uses.push_back(this);
3037  }
3038}
3039
3040/// SelectNodeTo - These are used for target selectors to *mutate* the
3041/// specified node to have the specified return type, Target opcode, and
3042/// operands.  Note that target opcodes are stored as
3043/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3044///
3045/// Note that SelectNodeTo returns the resultant node.  If there is already a
3046/// node of the specified opcode and operands, it returns that node instead of
3047/// the current one.
3048SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3049                                   MVT::ValueType VT) {
3050  SDVTList VTs = getVTList(VT);
3051  FoldingSetNodeID ID;
3052  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3053  void *IP = 0;
3054  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3055    return ON;
3056
3057  RemoveNodeFromCSEMaps(N);
3058
3059  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3060
3061  CSEMap.InsertNode(N, IP);
3062  return N;
3063}
3064
3065SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3066                                   MVT::ValueType VT, SDOperand Op1) {
3067  // If an identical node already exists, use it.
3068  SDVTList VTs = getVTList(VT);
3069  SDOperand Ops[] = { Op1 };
3070
3071  FoldingSetNodeID ID;
3072  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3073  void *IP = 0;
3074  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3075    return ON;
3076
3077  RemoveNodeFromCSEMaps(N);
3078  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3079  CSEMap.InsertNode(N, IP);
3080  return N;
3081}
3082
3083SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3084                                   MVT::ValueType VT, SDOperand Op1,
3085                                   SDOperand Op2) {
3086  // If an identical node already exists, use it.
3087  SDVTList VTs = getVTList(VT);
3088  SDOperand Ops[] = { Op1, Op2 };
3089
3090  FoldingSetNodeID ID;
3091  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3092  void *IP = 0;
3093  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3094    return ON;
3095
3096  RemoveNodeFromCSEMaps(N);
3097
3098  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3099
3100  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3101  return N;
3102}
3103
3104SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3105                                   MVT::ValueType VT, SDOperand Op1,
3106                                   SDOperand Op2, SDOperand Op3) {
3107  // If an identical node already exists, use it.
3108  SDVTList VTs = getVTList(VT);
3109  SDOperand Ops[] = { Op1, Op2, Op3 };
3110  FoldingSetNodeID ID;
3111  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3112  void *IP = 0;
3113  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3114    return ON;
3115
3116  RemoveNodeFromCSEMaps(N);
3117
3118  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3119
3120  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3121  return N;
3122}
3123
3124SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3125                                   MVT::ValueType VT, const SDOperand *Ops,
3126                                   unsigned NumOps) {
3127  // If an identical node already exists, use it.
3128  SDVTList VTs = getVTList(VT);
3129  FoldingSetNodeID ID;
3130  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3131  void *IP = 0;
3132  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3133    return ON;
3134
3135  RemoveNodeFromCSEMaps(N);
3136  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3137
3138  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3139  return N;
3140}
3141
3142SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3143                                   MVT::ValueType VT1, MVT::ValueType VT2,
3144                                   SDOperand Op1, SDOperand Op2) {
3145  SDVTList VTs = getVTList(VT1, VT2);
3146  FoldingSetNodeID ID;
3147  SDOperand Ops[] = { Op1, Op2 };
3148  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3149  void *IP = 0;
3150  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3151    return ON;
3152
3153  RemoveNodeFromCSEMaps(N);
3154  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3155  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3156  return N;
3157}
3158
3159SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3160                                   MVT::ValueType VT1, MVT::ValueType VT2,
3161                                   SDOperand Op1, SDOperand Op2,
3162                                   SDOperand Op3) {
3163  // If an identical node already exists, use it.
3164  SDVTList VTs = getVTList(VT1, VT2);
3165  SDOperand Ops[] = { Op1, Op2, Op3 };
3166  FoldingSetNodeID ID;
3167  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3168  void *IP = 0;
3169  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3170    return ON;
3171
3172  RemoveNodeFromCSEMaps(N);
3173
3174  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3175  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3176  return N;
3177}
3178
3179
3180/// getTargetNode - These are used for target selectors to create a new node
3181/// with specified return type(s), target opcode, and operands.
3182///
3183/// Note that getTargetNode returns the resultant node.  If there is already a
3184/// node of the specified opcode and operands, it returns that node instead of
3185/// the current one.
3186SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3187  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3188}
3189SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3190                                    SDOperand Op1) {
3191  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3192}
3193SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3194                                    SDOperand Op1, SDOperand Op2) {
3195  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3196}
3197SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3198                                    SDOperand Op1, SDOperand Op2,
3199                                    SDOperand Op3) {
3200  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3201}
3202SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3203                                    const SDOperand *Ops, unsigned NumOps) {
3204  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3205}
3206SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3207                                    MVT::ValueType VT2) {
3208  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3209  SDOperand Op;
3210  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3211}
3212SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3213                                    MVT::ValueType VT2, SDOperand Op1) {
3214  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3215  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3216}
3217SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3218                                    MVT::ValueType VT2, SDOperand Op1,
3219                                    SDOperand Op2) {
3220  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3221  SDOperand Ops[] = { Op1, Op2 };
3222  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3223}
3224SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3225                                    MVT::ValueType VT2, SDOperand Op1,
3226                                    SDOperand Op2, SDOperand Op3) {
3227  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3228  SDOperand Ops[] = { Op1, Op2, Op3 };
3229  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3230}
3231SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3232                                    MVT::ValueType VT2,
3233                                    const SDOperand *Ops, unsigned NumOps) {
3234  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3235  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3236}
3237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3238                                    MVT::ValueType VT2, MVT::ValueType VT3,
3239                                    SDOperand Op1, SDOperand Op2) {
3240  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3241  SDOperand Ops[] = { Op1, Op2 };
3242  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3243}
3244SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3245                                    MVT::ValueType VT2, MVT::ValueType VT3,
3246                                    SDOperand Op1, SDOperand Op2,
3247                                    SDOperand Op3) {
3248  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3249  SDOperand Ops[] = { Op1, Op2, Op3 };
3250  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3251}
3252SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3253                                    MVT::ValueType VT2, MVT::ValueType VT3,
3254                                    const SDOperand *Ops, unsigned NumOps) {
3255  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3256  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3257}
3258SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3259                                    MVT::ValueType VT2, MVT::ValueType VT3,
3260                                    MVT::ValueType VT4,
3261                                    const SDOperand *Ops, unsigned NumOps) {
3262  std::vector<MVT::ValueType> VTList;
3263  VTList.push_back(VT1);
3264  VTList.push_back(VT2);
3265  VTList.push_back(VT3);
3266  VTList.push_back(VT4);
3267  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3268  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3269}
3270SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3271                                    std::vector<MVT::ValueType> &ResultTys,
3272                                    const SDOperand *Ops, unsigned NumOps) {
3273  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3274  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3275                 Ops, NumOps).Val;
3276}
3277
3278
3279/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3280/// This can cause recursive merging of nodes in the DAG.
3281///
3282/// This version assumes From has a single result value.
3283///
3284void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3285                                      DAGUpdateListener *UpdateListener) {
3286  SDNode *From = FromN.Val;
3287  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3288         "Cannot replace with this method!");
3289  assert(From != To.Val && "Cannot replace uses of with self");
3290
3291  while (!From->use_empty()) {
3292    // Process users until they are all gone.
3293    SDNode *U = *From->use_begin();
3294
3295    // This node is about to morph, remove its old self from the CSE maps.
3296    RemoveNodeFromCSEMaps(U);
3297
3298    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3299         I != E; ++I)
3300      if (I->Val == From) {
3301        From->removeUser(U);
3302        *I = To;
3303        To.Val->addUser(U);
3304      }
3305
3306    // Now that we have modified U, add it back to the CSE maps.  If it already
3307    // exists there, recursively merge the results together.
3308    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3309      ReplaceAllUsesWith(U, Existing, UpdateListener);
3310      // U is now dead.  Inform the listener if it exists and delete it.
3311      if (UpdateListener)
3312        UpdateListener->NodeDeleted(U);
3313      DeleteNodeNotInCSEMaps(U);
3314    } else {
3315      // If the node doesn't already exist, we updated it.  Inform a listener if
3316      // it exists.
3317      if (UpdateListener)
3318        UpdateListener->NodeUpdated(U);
3319    }
3320  }
3321}
3322
3323/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3324/// This can cause recursive merging of nodes in the DAG.
3325///
3326/// This version assumes From/To have matching types and numbers of result
3327/// values.
3328///
3329void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3330                                      DAGUpdateListener *UpdateListener) {
3331  assert(From != To && "Cannot replace uses of with self");
3332  assert(From->getNumValues() == To->getNumValues() &&
3333         "Cannot use this version of ReplaceAllUsesWith!");
3334  if (From->getNumValues() == 1)   // If possible, use the faster version.
3335    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3336                              UpdateListener);
3337
3338  while (!From->use_empty()) {
3339    // Process users until they are all gone.
3340    SDNode *U = *From->use_begin();
3341
3342    // This node is about to morph, remove its old self from the CSE maps.
3343    RemoveNodeFromCSEMaps(U);
3344
3345    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3346         I != E; ++I)
3347      if (I->Val == From) {
3348        From->removeUser(U);
3349        I->Val = To;
3350        To->addUser(U);
3351      }
3352
3353    // Now that we have modified U, add it back to the CSE maps.  If it already
3354    // exists there, recursively merge the results together.
3355    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3356      ReplaceAllUsesWith(U, Existing, UpdateListener);
3357      // U is now dead.  Inform the listener if it exists and delete it.
3358      if (UpdateListener)
3359        UpdateListener->NodeDeleted(U);
3360      DeleteNodeNotInCSEMaps(U);
3361    } else {
3362      // If the node doesn't already exist, we updated it.  Inform a listener if
3363      // it exists.
3364      if (UpdateListener)
3365        UpdateListener->NodeUpdated(U);
3366    }
3367  }
3368}
3369
3370/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3371/// This can cause recursive merging of nodes in the DAG.
3372///
3373/// This version can replace From with any result values.  To must match the
3374/// number and types of values returned by From.
3375void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3376                                      const SDOperand *To,
3377                                      DAGUpdateListener *UpdateListener) {
3378  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3379    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3380
3381  while (!From->use_empty()) {
3382    // Process users until they are all gone.
3383    SDNode *U = *From->use_begin();
3384
3385    // This node is about to morph, remove its old self from the CSE maps.
3386    RemoveNodeFromCSEMaps(U);
3387
3388    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3389         I != E; ++I)
3390      if (I->Val == From) {
3391        const SDOperand &ToOp = To[I->ResNo];
3392        From->removeUser(U);
3393        *I = ToOp;
3394        ToOp.Val->addUser(U);
3395      }
3396
3397    // Now that we have modified U, add it back to the CSE maps.  If it already
3398    // exists there, recursively merge the results together.
3399    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3400      ReplaceAllUsesWith(U, Existing, UpdateListener);
3401      // U is now dead.  Inform the listener if it exists and delete it.
3402      if (UpdateListener)
3403        UpdateListener->NodeDeleted(U);
3404      DeleteNodeNotInCSEMaps(U);
3405    } else {
3406      // If the node doesn't already exist, we updated it.  Inform a listener if
3407      // it exists.
3408      if (UpdateListener)
3409        UpdateListener->NodeUpdated(U);
3410    }
3411  }
3412}
3413
3414namespace {
3415  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3416  /// any deleted nodes from the set passed into its constructor and recursively
3417  /// notifies another update listener if specified.
3418  class ChainedSetUpdaterListener :
3419  public SelectionDAG::DAGUpdateListener {
3420    SmallSetVector<SDNode*, 16> &Set;
3421    SelectionDAG::DAGUpdateListener *Chain;
3422  public:
3423    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3424                              SelectionDAG::DAGUpdateListener *chain)
3425      : Set(set), Chain(chain) {}
3426
3427    virtual void NodeDeleted(SDNode *N) {
3428      Set.remove(N);
3429      if (Chain) Chain->NodeDeleted(N);
3430    }
3431    virtual void NodeUpdated(SDNode *N) {
3432      if (Chain) Chain->NodeUpdated(N);
3433    }
3434  };
3435}
3436
3437/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3438/// uses of other values produced by From.Val alone.  The Deleted vector is
3439/// handled the same way as for ReplaceAllUsesWith.
3440void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3441                                             DAGUpdateListener *UpdateListener){
3442  assert(From != To && "Cannot replace a value with itself");
3443
3444  // Handle the simple, trivial, case efficiently.
3445  if (From.Val->getNumValues() == 1) {
3446    ReplaceAllUsesWith(From, To, UpdateListener);
3447    return;
3448  }
3449
3450  if (From.use_empty()) return;
3451
3452  // Get all of the users of From.Val.  We want these in a nice,
3453  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3454  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3455
3456  // When one of the recursive merges deletes nodes from the graph, we need to
3457  // make sure that UpdateListener is notified *and* that the node is removed
3458  // from Users if present.  CSUL does this.
3459  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3460
3461  while (!Users.empty()) {
3462    // We know that this user uses some value of From.  If it is the right
3463    // value, update it.
3464    SDNode *User = Users.back();
3465    Users.pop_back();
3466
3467    // Scan for an operand that matches From.
3468    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3469    for (; Op != E; ++Op)
3470      if (*Op == From) break;
3471
3472    // If there are no matches, the user must use some other result of From.
3473    if (Op == E) continue;
3474
3475    // Okay, we know this user needs to be updated.  Remove its old self
3476    // from the CSE maps.
3477    RemoveNodeFromCSEMaps(User);
3478
3479    // Update all operands that match "From" in case there are multiple uses.
3480    for (; Op != E; ++Op) {
3481      if (*Op == From) {
3482        From.Val->removeUser(User);
3483        *Op = To;
3484        To.Val->addUser(User);
3485      }
3486    }
3487
3488    // Now that we have modified User, add it back to the CSE maps.  If it
3489    // already exists there, recursively merge the results together.
3490    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3491    if (!Existing) {
3492      if (UpdateListener) UpdateListener->NodeUpdated(User);
3493      continue;  // Continue on to next user.
3494    }
3495
3496    // If there was already an existing matching node, use ReplaceAllUsesWith
3497    // to replace the dead one with the existing one.  This can cause
3498    // recursive merging of other unrelated nodes down the line.  The merging
3499    // can cause deletion of nodes that used the old value.  To handle this, we
3500    // use CSUL to remove them from the Users set.
3501    ReplaceAllUsesWith(User, Existing, &CSUL);
3502
3503    // User is now dead.  Notify a listener if present.
3504    if (UpdateListener) UpdateListener->NodeDeleted(User);
3505    DeleteNodeNotInCSEMaps(User);
3506  }
3507}
3508
3509
3510/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3511/// their allnodes order. It returns the maximum id.
3512unsigned SelectionDAG::AssignNodeIds() {
3513  unsigned Id = 0;
3514  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3515    SDNode *N = I;
3516    N->setNodeId(Id++);
3517  }
3518  return Id;
3519}
3520
3521/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3522/// based on their topological order. It returns the maximum id and a vector
3523/// of the SDNodes* in assigned order by reference.
3524unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3525  unsigned DAGSize = AllNodes.size();
3526  std::vector<unsigned> InDegree(DAGSize);
3527  std::vector<SDNode*> Sources;
3528
3529  // Use a two pass approach to avoid using a std::map which is slow.
3530  unsigned Id = 0;
3531  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3532    SDNode *N = I;
3533    N->setNodeId(Id++);
3534    unsigned Degree = N->use_size();
3535    InDegree[N->getNodeId()] = Degree;
3536    if (Degree == 0)
3537      Sources.push_back(N);
3538  }
3539
3540  TopOrder.clear();
3541  while (!Sources.empty()) {
3542    SDNode *N = Sources.back();
3543    Sources.pop_back();
3544    TopOrder.push_back(N);
3545    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3546      SDNode *P = I->Val;
3547      unsigned Degree = --InDegree[P->getNodeId()];
3548      if (Degree == 0)
3549        Sources.push_back(P);
3550    }
3551  }
3552
3553  // Second pass, assign the actual topological order as node ids.
3554  Id = 0;
3555  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3556       TI != TE; ++TI)
3557    (*TI)->setNodeId(Id++);
3558
3559  return Id;
3560}
3561
3562
3563
3564//===----------------------------------------------------------------------===//
3565//                              SDNode Class
3566//===----------------------------------------------------------------------===//
3567
3568// Out-of-line virtual method to give class a home.
3569void SDNode::ANCHOR() {}
3570void UnarySDNode::ANCHOR() {}
3571void BinarySDNode::ANCHOR() {}
3572void TernarySDNode::ANCHOR() {}
3573void HandleSDNode::ANCHOR() {}
3574void StringSDNode::ANCHOR() {}
3575void ConstantSDNode::ANCHOR() {}
3576void ConstantFPSDNode::ANCHOR() {}
3577void GlobalAddressSDNode::ANCHOR() {}
3578void FrameIndexSDNode::ANCHOR() {}
3579void JumpTableSDNode::ANCHOR() {}
3580void ConstantPoolSDNode::ANCHOR() {}
3581void BasicBlockSDNode::ANCHOR() {}
3582void SrcValueSDNode::ANCHOR() {}
3583void MemOperandSDNode::ANCHOR() {}
3584void RegisterSDNode::ANCHOR() {}
3585void ExternalSymbolSDNode::ANCHOR() {}
3586void CondCodeSDNode::ANCHOR() {}
3587void VTSDNode::ANCHOR() {}
3588void LoadSDNode::ANCHOR() {}
3589void StoreSDNode::ANCHOR() {}
3590void AtomicSDNode::ANCHOR() {}
3591
3592HandleSDNode::~HandleSDNode() {
3593  SDVTList VTs = { 0, 0 };
3594  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3595}
3596
3597GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3598                                         MVT::ValueType VT, int o)
3599  : SDNode(isa<GlobalVariable>(GA) &&
3600           cast<GlobalVariable>(GA)->isThreadLocal() ?
3601           // Thread Local
3602           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3603           // Non Thread Local
3604           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3605           getSDVTList(VT)), Offset(o) {
3606  TheGlobal = const_cast<GlobalValue*>(GA);
3607}
3608
3609/// getMemOperand - Return a MemOperand object describing the memory
3610/// reference performed by this load or store.
3611MemOperand LSBaseSDNode::getMemOperand() const {
3612  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3613  int Flags =
3614    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3615  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3616
3617  // Check if the load references a frame index, and does not have
3618  // an SV attached.
3619  const FrameIndexSDNode *FI =
3620    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3621  if (!getSrcValue() && FI)
3622    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3623                      FI->getIndex(), Size, Alignment);
3624  else
3625    return MemOperand(getSrcValue(), Flags,
3626                      getSrcValueOffset(), Size, Alignment);
3627}
3628
3629/// Profile - Gather unique data for the node.
3630///
3631void SDNode::Profile(FoldingSetNodeID &ID) {
3632  AddNodeIDNode(ID, this);
3633}
3634
3635/// getValueTypeList - Return a pointer to the specified value type.
3636///
3637const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3638  if (MVT::isExtendedVT(VT)) {
3639    static std::set<MVT::ValueType> EVTs;
3640    return &(*EVTs.insert(VT).first);
3641  } else {
3642    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3643    VTs[VT] = VT;
3644    return &VTs[VT];
3645  }
3646}
3647
3648/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3649/// indicated value.  This method ignores uses of other values defined by this
3650/// operation.
3651bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3652  assert(Value < getNumValues() && "Bad value!");
3653
3654  // If there is only one value, this is easy.
3655  if (getNumValues() == 1)
3656    return use_size() == NUses;
3657  if (use_size() < NUses) return false;
3658
3659  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3660
3661  SmallPtrSet<SDNode*, 32> UsersHandled;
3662
3663  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3664    SDNode *User = *UI;
3665    if (User->getNumOperands() == 1 ||
3666        UsersHandled.insert(User))     // First time we've seen this?
3667      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3668        if (User->getOperand(i) == TheValue) {
3669          if (NUses == 0)
3670            return false;   // too many uses
3671          --NUses;
3672        }
3673  }
3674
3675  // Found exactly the right number of uses?
3676  return NUses == 0;
3677}
3678
3679
3680/// hasAnyUseOfValue - Return true if there are any use of the indicated
3681/// value. This method ignores uses of other values defined by this operation.
3682bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3683  assert(Value < getNumValues() && "Bad value!");
3684
3685  if (use_empty()) return false;
3686
3687  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3688
3689  SmallPtrSet<SDNode*, 32> UsersHandled;
3690
3691  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3692    SDNode *User = *UI;
3693    if (User->getNumOperands() == 1 ||
3694        UsersHandled.insert(User))     // First time we've seen this?
3695      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3696        if (User->getOperand(i) == TheValue) {
3697          return true;
3698        }
3699  }
3700
3701  return false;
3702}
3703
3704
3705/// isOnlyUseOf - Return true if this node is the only use of N.
3706///
3707bool SDNode::isOnlyUseOf(SDNode *N) const {
3708  bool Seen = false;
3709  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3710    SDNode *User = *I;
3711    if (User == this)
3712      Seen = true;
3713    else
3714      return false;
3715  }
3716
3717  return Seen;
3718}
3719
3720/// isOperand - Return true if this node is an operand of N.
3721///
3722bool SDOperand::isOperandOf(SDNode *N) const {
3723  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3724    if (*this == N->getOperand(i))
3725      return true;
3726  return false;
3727}
3728
3729bool SDNode::isOperandOf(SDNode *N) const {
3730  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3731    if (this == N->OperandList[i].Val)
3732      return true;
3733  return false;
3734}
3735
3736/// reachesChainWithoutSideEffects - Return true if this operand (which must
3737/// be a chain) reaches the specified operand without crossing any
3738/// side-effecting instructions.  In practice, this looks through token
3739/// factors and non-volatile loads.  In order to remain efficient, this only
3740/// looks a couple of nodes in, it does not do an exhaustive search.
3741bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3742                                               unsigned Depth) const {
3743  if (*this == Dest) return true;
3744
3745  // Don't search too deeply, we just want to be able to see through
3746  // TokenFactor's etc.
3747  if (Depth == 0) return false;
3748
3749  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3750  // of the operands of the TF reach dest, then we can do the xform.
3751  if (getOpcode() == ISD::TokenFactor) {
3752    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3753      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3754        return true;
3755    return false;
3756  }
3757
3758  // Loads don't have side effects, look through them.
3759  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3760    if (!Ld->isVolatile())
3761      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3762  }
3763  return false;
3764}
3765
3766
3767static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3768                            SmallPtrSet<SDNode *, 32> &Visited) {
3769  if (found || !Visited.insert(N))
3770    return;
3771
3772  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3773    SDNode *Op = N->getOperand(i).Val;
3774    if (Op == P) {
3775      found = true;
3776      return;
3777    }
3778    findPredecessor(Op, P, found, Visited);
3779  }
3780}
3781
3782/// isPredecessorOf - Return true if this node is a predecessor of N. This node
3783/// is either an operand of N or it can be reached by recursively traversing
3784/// up the operands.
3785/// NOTE: this is an expensive method. Use it carefully.
3786bool SDNode::isPredecessorOf(SDNode *N) const {
3787  SmallPtrSet<SDNode *, 32> Visited;
3788  bool found = false;
3789  findPredecessor(N, this, found, Visited);
3790  return found;
3791}
3792
3793uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3794  assert(Num < NumOperands && "Invalid child # of SDNode!");
3795  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3796}
3797
3798std::string SDNode::getOperationName(const SelectionDAG *G) const {
3799  switch (getOpcode()) {
3800  default:
3801    if (getOpcode() < ISD::BUILTIN_OP_END)
3802      return "<<Unknown DAG Node>>";
3803    else {
3804      if (G) {
3805        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3806          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3807            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3808
3809        TargetLowering &TLI = G->getTargetLoweringInfo();
3810        const char *Name =
3811          TLI.getTargetNodeName(getOpcode());
3812        if (Name) return Name;
3813      }
3814
3815      return "<<Unknown Target Node>>";
3816    }
3817
3818  case ISD::PREFETCH:      return "Prefetch";
3819  case ISD::MEMBARRIER:    return "MemBarrier";
3820  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3821  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3822  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3823  case ISD::PCMARKER:      return "PCMarker";
3824  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3825  case ISD::SRCVALUE:      return "SrcValue";
3826  case ISD::MEMOPERAND:    return "MemOperand";
3827  case ISD::EntryToken:    return "EntryToken";
3828  case ISD::TokenFactor:   return "TokenFactor";
3829  case ISD::AssertSext:    return "AssertSext";
3830  case ISD::AssertZext:    return "AssertZext";
3831
3832  case ISD::STRING:        return "String";
3833  case ISD::BasicBlock:    return "BasicBlock";
3834  case ISD::VALUETYPE:     return "ValueType";
3835  case ISD::Register:      return "Register";
3836
3837  case ISD::Constant:      return "Constant";
3838  case ISD::ConstantFP:    return "ConstantFP";
3839  case ISD::GlobalAddress: return "GlobalAddress";
3840  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3841  case ISD::FrameIndex:    return "FrameIndex";
3842  case ISD::JumpTable:     return "JumpTable";
3843  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3844  case ISD::RETURNADDR: return "RETURNADDR";
3845  case ISD::FRAMEADDR: return "FRAMEADDR";
3846  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3847  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3848  case ISD::EHSELECTION: return "EHSELECTION";
3849  case ISD::EH_RETURN: return "EH_RETURN";
3850  case ISD::ConstantPool:  return "ConstantPool";
3851  case ISD::ExternalSymbol: return "ExternalSymbol";
3852  case ISD::INTRINSIC_WO_CHAIN: {
3853    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3854    return Intrinsic::getName((Intrinsic::ID)IID);
3855  }
3856  case ISD::INTRINSIC_VOID:
3857  case ISD::INTRINSIC_W_CHAIN: {
3858    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3859    return Intrinsic::getName((Intrinsic::ID)IID);
3860  }
3861
3862  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3863  case ISD::TargetConstant: return "TargetConstant";
3864  case ISD::TargetConstantFP:return "TargetConstantFP";
3865  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3866  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3867  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3868  case ISD::TargetJumpTable:  return "TargetJumpTable";
3869  case ISD::TargetConstantPool:  return "TargetConstantPool";
3870  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3871
3872  case ISD::CopyToReg:     return "CopyToReg";
3873  case ISD::CopyFromReg:   return "CopyFromReg";
3874  case ISD::UNDEF:         return "undef";
3875  case ISD::MERGE_VALUES:  return "merge_values";
3876  case ISD::INLINEASM:     return "inlineasm";
3877  case ISD::LABEL:         return "label";
3878  case ISD::DECLARE:       return "declare";
3879  case ISD::HANDLENODE:    return "handlenode";
3880  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3881  case ISD::CALL:          return "call";
3882
3883  // Unary operators
3884  case ISD::FABS:   return "fabs";
3885  case ISD::FNEG:   return "fneg";
3886  case ISD::FSQRT:  return "fsqrt";
3887  case ISD::FSIN:   return "fsin";
3888  case ISD::FCOS:   return "fcos";
3889  case ISD::FPOWI:  return "fpowi";
3890  case ISD::FPOW:   return "fpow";
3891
3892  // Binary operators
3893  case ISD::ADD:    return "add";
3894  case ISD::SUB:    return "sub";
3895  case ISD::MUL:    return "mul";
3896  case ISD::MULHU:  return "mulhu";
3897  case ISD::MULHS:  return "mulhs";
3898  case ISD::SDIV:   return "sdiv";
3899  case ISD::UDIV:   return "udiv";
3900  case ISD::SREM:   return "srem";
3901  case ISD::UREM:   return "urem";
3902  case ISD::SMUL_LOHI:  return "smul_lohi";
3903  case ISD::UMUL_LOHI:  return "umul_lohi";
3904  case ISD::SDIVREM:    return "sdivrem";
3905  case ISD::UDIVREM:    return "divrem";
3906  case ISD::AND:    return "and";
3907  case ISD::OR:     return "or";
3908  case ISD::XOR:    return "xor";
3909  case ISD::SHL:    return "shl";
3910  case ISD::SRA:    return "sra";
3911  case ISD::SRL:    return "srl";
3912  case ISD::ROTL:   return "rotl";
3913  case ISD::ROTR:   return "rotr";
3914  case ISD::FADD:   return "fadd";
3915  case ISD::FSUB:   return "fsub";
3916  case ISD::FMUL:   return "fmul";
3917  case ISD::FDIV:   return "fdiv";
3918  case ISD::FREM:   return "frem";
3919  case ISD::FCOPYSIGN: return "fcopysign";
3920  case ISD::FGETSIGN:  return "fgetsign";
3921
3922  case ISD::SETCC:       return "setcc";
3923  case ISD::SELECT:      return "select";
3924  case ISD::SELECT_CC:   return "select_cc";
3925  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3926  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3927  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3928  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3929  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3930  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3931  case ISD::CARRY_FALSE:         return "carry_false";
3932  case ISD::ADDC:        return "addc";
3933  case ISD::ADDE:        return "adde";
3934  case ISD::SUBC:        return "subc";
3935  case ISD::SUBE:        return "sube";
3936  case ISD::SHL_PARTS:   return "shl_parts";
3937  case ISD::SRA_PARTS:   return "sra_parts";
3938  case ISD::SRL_PARTS:   return "srl_parts";
3939
3940  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3941  case ISD::INSERT_SUBREG:      return "insert_subreg";
3942
3943  // Conversion operators.
3944  case ISD::SIGN_EXTEND: return "sign_extend";
3945  case ISD::ZERO_EXTEND: return "zero_extend";
3946  case ISD::ANY_EXTEND:  return "any_extend";
3947  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3948  case ISD::TRUNCATE:    return "truncate";
3949  case ISD::FP_ROUND:    return "fp_round";
3950  case ISD::FLT_ROUNDS_: return "flt_rounds";
3951  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3952  case ISD::FP_EXTEND:   return "fp_extend";
3953
3954  case ISD::SINT_TO_FP:  return "sint_to_fp";
3955  case ISD::UINT_TO_FP:  return "uint_to_fp";
3956  case ISD::FP_TO_SINT:  return "fp_to_sint";
3957  case ISD::FP_TO_UINT:  return "fp_to_uint";
3958  case ISD::BIT_CONVERT: return "bit_convert";
3959
3960    // Control flow instructions
3961  case ISD::BR:      return "br";
3962  case ISD::BRIND:   return "brind";
3963  case ISD::BR_JT:   return "br_jt";
3964  case ISD::BRCOND:  return "brcond";
3965  case ISD::BR_CC:   return "br_cc";
3966  case ISD::RET:     return "ret";
3967  case ISD::CALLSEQ_START:  return "callseq_start";
3968  case ISD::CALLSEQ_END:    return "callseq_end";
3969
3970    // Other operators
3971  case ISD::LOAD:               return "load";
3972  case ISD::STORE:              return "store";
3973  case ISD::VAARG:              return "vaarg";
3974  case ISD::VACOPY:             return "vacopy";
3975  case ISD::VAEND:              return "vaend";
3976  case ISD::VASTART:            return "vastart";
3977  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3978  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3979  case ISD::BUILD_PAIR:         return "build_pair";
3980  case ISD::STACKSAVE:          return "stacksave";
3981  case ISD::STACKRESTORE:       return "stackrestore";
3982  case ISD::TRAP:               return "trap";
3983
3984  // Block memory operations.
3985  case ISD::MEMSET:  return "memset";
3986  case ISD::MEMCPY:  return "memcpy";
3987  case ISD::MEMMOVE: return "memmove";
3988
3989  // Bit manipulation
3990  case ISD::BSWAP:   return "bswap";
3991  case ISD::CTPOP:   return "ctpop";
3992  case ISD::CTTZ:    return "cttz";
3993  case ISD::CTLZ:    return "ctlz";
3994
3995  // Debug info
3996  case ISD::LOCATION: return "location";
3997  case ISD::DEBUG_LOC: return "debug_loc";
3998
3999  // Trampolines
4000  case ISD::TRAMPOLINE: return "trampoline";
4001
4002  case ISD::CONDCODE:
4003    switch (cast<CondCodeSDNode>(this)->get()) {
4004    default: assert(0 && "Unknown setcc condition!");
4005    case ISD::SETOEQ:  return "setoeq";
4006    case ISD::SETOGT:  return "setogt";
4007    case ISD::SETOGE:  return "setoge";
4008    case ISD::SETOLT:  return "setolt";
4009    case ISD::SETOLE:  return "setole";
4010    case ISD::SETONE:  return "setone";
4011
4012    case ISD::SETO:    return "seto";
4013    case ISD::SETUO:   return "setuo";
4014    case ISD::SETUEQ:  return "setue";
4015    case ISD::SETUGT:  return "setugt";
4016    case ISD::SETUGE:  return "setuge";
4017    case ISD::SETULT:  return "setult";
4018    case ISD::SETULE:  return "setule";
4019    case ISD::SETUNE:  return "setune";
4020
4021    case ISD::SETEQ:   return "seteq";
4022    case ISD::SETGT:   return "setgt";
4023    case ISD::SETGE:   return "setge";
4024    case ISD::SETLT:   return "setlt";
4025    case ISD::SETLE:   return "setle";
4026    case ISD::SETNE:   return "setne";
4027    }
4028  }
4029}
4030
4031const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4032  switch (AM) {
4033  default:
4034    return "";
4035  case ISD::PRE_INC:
4036    return "<pre-inc>";
4037  case ISD::PRE_DEC:
4038    return "<pre-dec>";
4039  case ISD::POST_INC:
4040    return "<post-inc>";
4041  case ISD::POST_DEC:
4042    return "<post-dec>";
4043  }
4044}
4045
4046void SDNode::dump() const { dump(0); }
4047void SDNode::dump(const SelectionDAG *G) const {
4048  cerr << (void*)this << ": ";
4049
4050  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4051    if (i) cerr << ",";
4052    if (getValueType(i) == MVT::Other)
4053      cerr << "ch";
4054    else
4055      cerr << MVT::getValueTypeString(getValueType(i));
4056  }
4057  cerr << " = " << getOperationName(G);
4058
4059  cerr << " ";
4060  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4061    if (i) cerr << ", ";
4062    cerr << (void*)getOperand(i).Val;
4063    if (unsigned RN = getOperand(i).ResNo)
4064      cerr << ":" << RN;
4065  }
4066
4067  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4068    SDNode *Mask = getOperand(2).Val;
4069    cerr << "<";
4070    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4071      if (i) cerr << ",";
4072      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4073        cerr << "u";
4074      else
4075        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4076    }
4077    cerr << ">";
4078  }
4079
4080  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4081    cerr << "<" << CSDN->getValue() << ">";
4082  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4083    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4084      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4085    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4086      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4087    else {
4088      cerr << "<APFloat(";
4089      CSDN->getValueAPF().convertToAPInt().dump();
4090      cerr << ")>";
4091    }
4092  } else if (const GlobalAddressSDNode *GADN =
4093             dyn_cast<GlobalAddressSDNode>(this)) {
4094    int offset = GADN->getOffset();
4095    cerr << "<";
4096    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4097    if (offset > 0)
4098      cerr << " + " << offset;
4099    else
4100      cerr << " " << offset;
4101  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4102    cerr << "<" << FIDN->getIndex() << ">";
4103  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4104    cerr << "<" << JTDN->getIndex() << ">";
4105  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4106    int offset = CP->getOffset();
4107    if (CP->isMachineConstantPoolEntry())
4108      cerr << "<" << *CP->getMachineCPVal() << ">";
4109    else
4110      cerr << "<" << *CP->getConstVal() << ">";
4111    if (offset > 0)
4112      cerr << " + " << offset;
4113    else
4114      cerr << " " << offset;
4115  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4116    cerr << "<";
4117    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4118    if (LBB)
4119      cerr << LBB->getName() << " ";
4120    cerr << (const void*)BBDN->getBasicBlock() << ">";
4121  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4122    if (G && R->getReg() &&
4123        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4124      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4125    } else {
4126      cerr << " #" << R->getReg();
4127    }
4128  } else if (const ExternalSymbolSDNode *ES =
4129             dyn_cast<ExternalSymbolSDNode>(this)) {
4130    cerr << "'" << ES->getSymbol() << "'";
4131  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4132    if (M->getValue())
4133      cerr << "<" << M->getValue() << ">";
4134    else
4135      cerr << "<null>";
4136  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4137    if (M->MO.getValue())
4138      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4139    else
4140      cerr << "<null:" << M->MO.getOffset() << ">";
4141  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4142    cerr << ":" << MVT::getValueTypeString(N->getVT());
4143  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4144    const Value *SrcValue = LD->getSrcValue();
4145    int SrcOffset = LD->getSrcValueOffset();
4146    cerr << " <";
4147    if (SrcValue)
4148      cerr << SrcValue;
4149    else
4150      cerr << "null";
4151    cerr << ":" << SrcOffset << ">";
4152
4153    bool doExt = true;
4154    switch (LD->getExtensionType()) {
4155    default: doExt = false; break;
4156    case ISD::EXTLOAD:
4157      cerr << " <anyext ";
4158      break;
4159    case ISD::SEXTLOAD:
4160      cerr << " <sext ";
4161      break;
4162    case ISD::ZEXTLOAD:
4163      cerr << " <zext ";
4164      break;
4165    }
4166    if (doExt)
4167      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4168
4169    const char *AM = getIndexedModeName(LD->getAddressingMode());
4170    if (*AM)
4171      cerr << " " << AM;
4172    if (LD->isVolatile())
4173      cerr << " <volatile>";
4174    cerr << " alignment=" << LD->getAlignment();
4175  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4176    const Value *SrcValue = ST->getSrcValue();
4177    int SrcOffset = ST->getSrcValueOffset();
4178    cerr << " <";
4179    if (SrcValue)
4180      cerr << SrcValue;
4181    else
4182      cerr << "null";
4183    cerr << ":" << SrcOffset << ">";
4184
4185    if (ST->isTruncatingStore())
4186      cerr << " <trunc "
4187           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4188
4189    const char *AM = getIndexedModeName(ST->getAddressingMode());
4190    if (*AM)
4191      cerr << " " << AM;
4192    if (ST->isVolatile())
4193      cerr << " <volatile>";
4194    cerr << " alignment=" << ST->getAlignment();
4195  }
4196}
4197
4198static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4199  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4200    if (N->getOperand(i).Val->hasOneUse())
4201      DumpNodes(N->getOperand(i).Val, indent+2, G);
4202    else
4203      cerr << "\n" << std::string(indent+2, ' ')
4204           << (void*)N->getOperand(i).Val << ": <multiple use>";
4205
4206
4207  cerr << "\n" << std::string(indent, ' ');
4208  N->dump(G);
4209}
4210
4211void SelectionDAG::dump() const {
4212  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4213  std::vector<const SDNode*> Nodes;
4214  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4215       I != E; ++I)
4216    Nodes.push_back(I);
4217
4218  std::sort(Nodes.begin(), Nodes.end());
4219
4220  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4221    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4222      DumpNodes(Nodes[i], 2, this);
4223  }
4224
4225  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4226
4227  cerr << "\n\n";
4228}
4229
4230const Type *ConstantPoolSDNode::getType() const {
4231  if (isMachineConstantPoolEntry())
4232    return Val.MachineCPVal->getType();
4233  return Val.ConstVal->getType();
4234}
4235