SelectionDAG.cpp revision 28307418668f68e055688922ff8394d8a1ba8f15
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // PPC long double cannot be converted to any other type.
78  if (VT == MVT::ppcf128 ||
79      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80    return false;
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  return Val2.convert(*MVTToAPFloatSemantics(VT),
85                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86}
87
88//===----------------------------------------------------------------------===//
89//                              ISD Namespace
90//===----------------------------------------------------------------------===//
91
92/// isBuildVectorAllOnes - Return true if the specified node is a
93/// BUILD_VECTOR where all of the elements are ~0 or undef.
94bool ISD::isBuildVectorAllOnes(const SDNode *N) {
95  // Look through a bit convert.
96  if (N->getOpcode() == ISD::BIT_CONVERT)
97    N = N->getOperand(0).Val;
98
99  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100
101  unsigned i = 0, e = N->getNumOperands();
102
103  // Skip over all of the undef values.
104  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105    ++i;
106
107  // Do not accept an all-undef vector.
108  if (i == e) return false;
109
110  // Do not accept build_vectors that aren't all constants or which have non-~0
111  // elements.
112  SDOperand NotZero = N->getOperand(i);
113  if (isa<ConstantSDNode>(NotZero)) {
114    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115      return false;
116  } else if (isa<ConstantFPSDNode>(NotZero)) {
117    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118                convertToAPInt().isAllOnesValue())
119      return false;
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return TLI.getTargetMachine();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              SDOperandPtr Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->Val);
332    ID.AddInteger(Ops->ResNo);
333  }
334}
335
336static void AddNodeIDNode(FoldingSetNodeID &ID,
337                          unsigned short OpC, SDVTList VTList,
338                          SDOperandPtr OpList, unsigned N) {
339  AddNodeIDOpcode(ID, OpC);
340  AddNodeIDValueTypes(ID, VTList);
341  AddNodeIDOperands(ID, OpList, N);
342}
343
344
345/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
346/// data.
347static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
348  AddNodeIDOpcode(ID, N->getOpcode());
349  // Add the return value info.
350  AddNodeIDValueTypes(ID, N->getVTList());
351  // Add the operand info.
352  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
353
354  // Handle SDNode leafs with special info.
355  switch (N->getOpcode()) {
356  default: break;  // Normal nodes don't need extra info.
357  case ISD::ARG_FLAGS:
358    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
359    break;
360  case ISD::TargetConstant:
361  case ISD::Constant:
362    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
363    break;
364  case ISD::TargetConstantFP:
365  case ISD::ConstantFP: {
366    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
367    break;
368  }
369  case ISD::TargetGlobalAddress:
370  case ISD::GlobalAddress:
371  case ISD::TargetGlobalTLSAddress:
372  case ISD::GlobalTLSAddress: {
373    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
374    ID.AddPointer(GA->getGlobal());
375    ID.AddInteger(GA->getOffset());
376    break;
377  }
378  case ISD::BasicBlock:
379    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380    break;
381  case ISD::Register:
382    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383    break;
384  case ISD::SRCVALUE:
385    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
386    break;
387  case ISD::MEMOPERAND: {
388    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
389    ID.AddPointer(MO.getValue());
390    ID.AddInteger(MO.getFlags());
391    ID.AddInteger(MO.getOffset());
392    ID.AddInteger(MO.getSize());
393    ID.AddInteger(MO.getAlignment());
394    break;
395  }
396  case ISD::FrameIndex:
397  case ISD::TargetFrameIndex:
398    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
399    break;
400  case ISD::JumpTable:
401  case ISD::TargetJumpTable:
402    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
403    break;
404  case ISD::ConstantPool:
405  case ISD::TargetConstantPool: {
406    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
407    ID.AddInteger(CP->getAlignment());
408    ID.AddInteger(CP->getOffset());
409    if (CP->isMachineConstantPoolEntry())
410      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
411    else
412      ID.AddPointer(CP->getConstVal());
413    break;
414  }
415  case ISD::LOAD: {
416    LoadSDNode *LD = cast<LoadSDNode>(N);
417    ID.AddInteger(LD->getAddressingMode());
418    ID.AddInteger(LD->getExtensionType());
419    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
420    ID.AddInteger(LD->getAlignment());
421    ID.AddInteger(LD->isVolatile());
422    break;
423  }
424  case ISD::STORE: {
425    StoreSDNode *ST = cast<StoreSDNode>(N);
426    ID.AddInteger(ST->getAddressingMode());
427    ID.AddInteger(ST->isTruncatingStore());
428    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
429    ID.AddInteger(ST->getAlignment());
430    ID.AddInteger(ST->isVolatile());
431    break;
432  }
433  }
434}
435
436//===----------------------------------------------------------------------===//
437//                              SelectionDAG Class
438//===----------------------------------------------------------------------===//
439
440/// RemoveDeadNodes - This method deletes all unreachable nodes in the
441/// SelectionDAG.
442void SelectionDAG::RemoveDeadNodes() {
443  // Create a dummy node (which is not added to allnodes), that adds a reference
444  // to the root node, preventing it from being deleted.
445  HandleSDNode Dummy(getRoot());
446
447  SmallVector<SDNode*, 128> DeadNodes;
448
449  // Add all obviously-dead nodes to the DeadNodes worklist.
450  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
451    if (I->use_empty())
452      DeadNodes.push_back(I);
453
454  // Process the worklist, deleting the nodes and adding their uses to the
455  // worklist.
456  while (!DeadNodes.empty()) {
457    SDNode *N = DeadNodes.back();
458    DeadNodes.pop_back();
459
460    // Take the node out of the appropriate CSE map.
461    RemoveNodeFromCSEMaps(N);
462
463    // Next, brutally remove the operand list.  This is safe to do, as there are
464    // no cycles in the graph.
465    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
466      SDNode *Operand = I->getVal();
467      Operand->removeUser(std::distance(N->op_begin(), I), N);
468
469      // Now that we removed this operand, see if there are no uses of it left.
470      if (Operand->use_empty())
471        DeadNodes.push_back(Operand);
472    }
473    if (N->OperandsNeedDelete) {
474      delete[] N->OperandList;
475    }
476    N->OperandList = 0;
477    N->NumOperands = 0;
478
479    // Finally, remove N itself.
480    AllNodes.erase(N);
481  }
482
483  // If the root changed (e.g. it was a dead load, update the root).
484  setRoot(Dummy.getValue());
485}
486
487void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
488  SmallVector<SDNode*, 16> DeadNodes;
489  DeadNodes.push_back(N);
490
491  // Process the worklist, deleting the nodes and adding their uses to the
492  // worklist.
493  while (!DeadNodes.empty()) {
494    SDNode *N = DeadNodes.back();
495    DeadNodes.pop_back();
496
497    if (UpdateListener)
498      UpdateListener->NodeDeleted(N);
499
500    // Take the node out of the appropriate CSE map.
501    RemoveNodeFromCSEMaps(N);
502
503    // Next, brutally remove the operand list.  This is safe to do, as there are
504    // no cycles in the graph.
505    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
506      SDNode *Operand = I->getVal();
507      Operand->removeUser(std::distance(N->op_begin(), I), N);
508
509      // Now that we removed this operand, see if there are no uses of it left.
510      if (Operand->use_empty())
511        DeadNodes.push_back(Operand);
512    }
513    if (N->OperandsNeedDelete) {
514      delete[] N->OperandList;
515    }
516    N->OperandList = 0;
517    N->NumOperands = 0;
518
519    // Finally, remove N itself.
520    AllNodes.erase(N);
521  }
522}
523
524void SelectionDAG::DeleteNode(SDNode *N) {
525  assert(N->use_empty() && "Cannot delete a node that is not dead!");
526
527  // First take this out of the appropriate CSE map.
528  RemoveNodeFromCSEMaps(N);
529
530  // Finally, remove uses due to operands of this node, remove from the
531  // AllNodes list, and delete the node.
532  DeleteNodeNotInCSEMaps(N);
533}
534
535void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
536
537  // Remove it from the AllNodes list.
538  AllNodes.remove(N);
539
540  // Drop all of the operands and decrement used nodes use counts.
541  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
542    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
543  if (N->OperandsNeedDelete) {
544    delete[] N->OperandList;
545  }
546  N->OperandList = 0;
547  N->NumOperands = 0;
548
549  delete N;
550}
551
552/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
553/// correspond to it.  This is useful when we're about to delete or repurpose
554/// the node.  We don't want future request for structurally identical nodes
555/// to return N anymore.
556void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
557  bool Erased = false;
558  switch (N->getOpcode()) {
559  case ISD::HANDLENODE: return;  // noop.
560  case ISD::STRING:
561    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
562    break;
563  case ISD::CONDCODE:
564    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
565           "Cond code doesn't exist!");
566    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
567    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
568    break;
569  case ISD::ExternalSymbol:
570    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
571    break;
572  case ISD::TargetExternalSymbol:
573    Erased =
574      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
575    break;
576  case ISD::VALUETYPE: {
577    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
578    if (MVT::isExtendedVT(VT)) {
579      Erased = ExtendedValueTypeNodes.erase(VT);
580    } else {
581      Erased = ValueTypeNodes[VT] != 0;
582      ValueTypeNodes[VT] = 0;
583    }
584    break;
585  }
586  default:
587    // Remove it from the CSE Map.
588    Erased = CSEMap.RemoveNode(N);
589    break;
590  }
591#ifndef NDEBUG
592  // Verify that the node was actually in one of the CSE maps, unless it has a
593  // flag result (which cannot be CSE'd) or is one of the special cases that are
594  // not subject to CSE.
595  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
596      !N->isTargetOpcode()) {
597    N->dump(this);
598    cerr << "\n";
599    assert(0 && "Node is not in map!");
600  }
601#endif
602}
603
604/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
605/// has been taken out and modified in some way.  If the specified node already
606/// exists in the CSE maps, do not modify the maps, but return the existing node
607/// instead.  If it doesn't exist, add it and return null.
608///
609SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
610  assert(N->getNumOperands() && "This is a leaf node!");
611  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
612    return 0;    // Never add these nodes.
613
614  // Check that remaining values produced are not flags.
615  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
616    if (N->getValueType(i) == MVT::Flag)
617      return 0;   // Never CSE anything that produces a flag.
618
619  SDNode *New = CSEMap.GetOrInsertNode(N);
620  if (New != N) return New;  // Node already existed.
621  return 0;
622}
623
624/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
625/// were replaced with those specified.  If this node is never memoized,
626/// return null, otherwise return a pointer to the slot it would take.  If a
627/// node already exists with these operands, the slot will be non-null.
628SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
629                                           void *&InsertPos) {
630  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
631    return 0;    // Never add these nodes.
632
633  // Check that remaining values produced are not flags.
634  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
635    if (N->getValueType(i) == MVT::Flag)
636      return 0;   // Never CSE anything that produces a flag.
637
638  SDOperand Ops[] = { Op };
639  FoldingSetNodeID ID;
640  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
641  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
642}
643
644/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
645/// were replaced with those specified.  If this node is never memoized,
646/// return null, otherwise return a pointer to the slot it would take.  If a
647/// node already exists with these operands, the slot will be non-null.
648SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
649                                           SDOperand Op1, SDOperand Op2,
650                                           void *&InsertPos) {
651  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
652    return 0;    // Never add these nodes.
653
654  // Check that remaining values produced are not flags.
655  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
656    if (N->getValueType(i) == MVT::Flag)
657      return 0;   // Never CSE anything that produces a flag.
658
659  SDOperand Ops[] = { Op1, Op2 };
660  FoldingSetNodeID ID;
661  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
662  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
663}
664
665
666/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
667/// were replaced with those specified.  If this node is never memoized,
668/// return null, otherwise return a pointer to the slot it would take.  If a
669/// node already exists with these operands, the slot will be non-null.
670SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
671                                           SDOperandPtr Ops,unsigned NumOps,
672                                           void *&InsertPos) {
673  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
674    return 0;    // Never add these nodes.
675
676  // Check that remaining values produced are not flags.
677  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
678    if (N->getValueType(i) == MVT::Flag)
679      return 0;   // Never CSE anything that produces a flag.
680
681  FoldingSetNodeID ID;
682  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
683
684  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
685    ID.AddInteger(LD->getAddressingMode());
686    ID.AddInteger(LD->getExtensionType());
687    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
688    ID.AddInteger(LD->getAlignment());
689    ID.AddInteger(LD->isVolatile());
690  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
691    ID.AddInteger(ST->getAddressingMode());
692    ID.AddInteger(ST->isTruncatingStore());
693    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
694    ID.AddInteger(ST->getAlignment());
695    ID.AddInteger(ST->isVolatile());
696  }
697
698  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699}
700
701
702SelectionDAG::~SelectionDAG() {
703  while (!AllNodes.empty()) {
704    SDNode *N = AllNodes.begin();
705    N->SetNextInBucket(0);
706    if (N->OperandsNeedDelete) {
707      delete [] N->OperandList;
708    }
709    N->OperandList = 0;
710    N->NumOperands = 0;
711    AllNodes.pop_front();
712  }
713}
714
715SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
716  if (Op.getValueType() == VT) return Op;
717  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
718                                   MVT::getSizeInBits(VT));
719  return getNode(ISD::AND, Op.getValueType(), Op,
720                 getConstant(Imm, Op.getValueType()));
721}
722
723SDOperand SelectionDAG::getString(const std::string &Val) {
724  StringSDNode *&N = StringNodes[Val];
725  if (!N) {
726    N = new StringSDNode(Val);
727    AllNodes.push_back(N);
728  }
729  return SDOperand(N, 0);
730}
731
732SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
733  MVT::ValueType EltVT =
734    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
735
736  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
737}
738
739SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
740  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
741
742  MVT::ValueType EltVT =
743    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
744
745  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
746         "APInt size does not match type size!");
747
748  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
749  FoldingSetNodeID ID;
750  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
751  ID.Add(Val);
752  void *IP = 0;
753  SDNode *N = NULL;
754  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
755    if (!MVT::isVector(VT))
756      return SDOperand(N, 0);
757  if (!N) {
758    N = new ConstantSDNode(isT, Val, EltVT);
759    CSEMap.InsertNode(N, IP);
760    AllNodes.push_back(N);
761  }
762
763  SDOperand Result(N, 0);
764  if (MVT::isVector(VT)) {
765    SmallVector<SDOperand, 8> Ops;
766    Ops.assign(MVT::getVectorNumElements(VT), Result);
767    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
768  }
769  return Result;
770}
771
772SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
773  return getConstant(Val, TLI.getPointerTy(), isTarget);
774}
775
776
777SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
778                                      bool isTarget) {
779  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
780
781  MVT::ValueType EltVT =
782    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
783
784  // Do the map lookup using the actual bit pattern for the floating point
785  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
786  // we don't have issues with SNANs.
787  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
788  FoldingSetNodeID ID;
789  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
790  ID.Add(V);
791  void *IP = 0;
792  SDNode *N = NULL;
793  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
794    if (!MVT::isVector(VT))
795      return SDOperand(N, 0);
796  if (!N) {
797    N = new ConstantFPSDNode(isTarget, V, EltVT);
798    CSEMap.InsertNode(N, IP);
799    AllNodes.push_back(N);
800  }
801
802  SDOperand Result(N, 0);
803  if (MVT::isVector(VT)) {
804    SmallVector<SDOperand, 8> Ops;
805    Ops.assign(MVT::getVectorNumElements(VT), Result);
806    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
807  }
808  return Result;
809}
810
811SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
812                                      bool isTarget) {
813  MVT::ValueType EltVT =
814    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
815  if (EltVT==MVT::f32)
816    return getConstantFP(APFloat((float)Val), VT, isTarget);
817  else
818    return getConstantFP(APFloat(Val), VT, isTarget);
819}
820
821SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
822                                         MVT::ValueType VT, int Offset,
823                                         bool isTargetGA) {
824  unsigned Opc;
825
826  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
827  if (!GVar) {
828    // If GV is an alias then use the aliasee for determining thread-localness.
829    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
830      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
831  }
832
833  if (GVar && GVar->isThreadLocal())
834    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
835  else
836    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
837
838  FoldingSetNodeID ID;
839  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
840  ID.AddPointer(GV);
841  ID.AddInteger(Offset);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844   return SDOperand(E, 0);
845  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
852                                      bool isTarget) {
853  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
854  FoldingSetNodeID ID;
855  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
856  ID.AddInteger(FI);
857  void *IP = 0;
858  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
859    return SDOperand(E, 0);
860  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
861  CSEMap.InsertNode(N, IP);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
867  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
868  FoldingSetNodeID ID;
869  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
870  ID.AddInteger(JTI);
871  void *IP = 0;
872  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
873    return SDOperand(E, 0);
874  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
875  CSEMap.InsertNode(N, IP);
876  AllNodes.push_back(N);
877  return SDOperand(N, 0);
878}
879
880SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
881                                        unsigned Alignment, int Offset,
882                                        bool isTarget) {
883  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
884  FoldingSetNodeID ID;
885  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
886  ID.AddInteger(Alignment);
887  ID.AddInteger(Offset);
888  ID.AddPointer(C);
889  void *IP = 0;
890  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
891    return SDOperand(E, 0);
892  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
893  CSEMap.InsertNode(N, IP);
894  AllNodes.push_back(N);
895  return SDOperand(N, 0);
896}
897
898
899SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
900                                        MVT::ValueType VT,
901                                        unsigned Alignment, int Offset,
902                                        bool isTarget) {
903  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
904  FoldingSetNodeID ID;
905  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
906  ID.AddInteger(Alignment);
907  ID.AddInteger(Offset);
908  C->AddSelectionDAGCSEId(ID);
909  void *IP = 0;
910  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
911    return SDOperand(E, 0);
912  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
913  CSEMap.InsertNode(N, IP);
914  AllNodes.push_back(N);
915  return SDOperand(N, 0);
916}
917
918
919SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
920  FoldingSetNodeID ID;
921  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
922  ID.AddPointer(MBB);
923  void *IP = 0;
924  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
925    return SDOperand(E, 0);
926  SDNode *N = new BasicBlockSDNode(MBB);
927  CSEMap.InsertNode(N, IP);
928  AllNodes.push_back(N);
929  return SDOperand(N, 0);
930}
931
932SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
933  FoldingSetNodeID ID;
934  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
935  ID.AddInteger(Flags.getRawBits());
936  void *IP = 0;
937  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
938    return SDOperand(E, 0);
939  SDNode *N = new ARG_FLAGSSDNode(Flags);
940  CSEMap.InsertNode(N, IP);
941  AllNodes.push_back(N);
942  return SDOperand(N, 0);
943}
944
945SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
946  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
947    ValueTypeNodes.resize(VT+1);
948
949  SDNode *&N = MVT::isExtendedVT(VT) ?
950    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
951
952  if (N) return SDOperand(N, 0);
953  N = new VTSDNode(VT);
954  AllNodes.push_back(N);
955  return SDOperand(N, 0);
956}
957
958SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
959  SDNode *&N = ExternalSymbols[Sym];
960  if (N) return SDOperand(N, 0);
961  N = new ExternalSymbolSDNode(false, Sym, VT);
962  AllNodes.push_back(N);
963  return SDOperand(N, 0);
964}
965
966SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
967                                                MVT::ValueType VT) {
968  SDNode *&N = TargetExternalSymbols[Sym];
969  if (N) return SDOperand(N, 0);
970  N = new ExternalSymbolSDNode(true, Sym, VT);
971  AllNodes.push_back(N);
972  return SDOperand(N, 0);
973}
974
975SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
976  if ((unsigned)Cond >= CondCodeNodes.size())
977    CondCodeNodes.resize(Cond+1);
978
979  if (CondCodeNodes[Cond] == 0) {
980    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
981    AllNodes.push_back(CondCodeNodes[Cond]);
982  }
983  return SDOperand(CondCodeNodes[Cond], 0);
984}
985
986SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
987  FoldingSetNodeID ID;
988  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
989  ID.AddInteger(RegNo);
990  void *IP = 0;
991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
992    return SDOperand(E, 0);
993  SDNode *N = new RegisterSDNode(RegNo, VT);
994  CSEMap.InsertNode(N, IP);
995  AllNodes.push_back(N);
996  return SDOperand(N, 0);
997}
998
999SDOperand SelectionDAG::getSrcValue(const Value *V) {
1000  assert((!V || isa<PointerType>(V->getType())) &&
1001         "SrcValue is not a pointer?");
1002
1003  FoldingSetNodeID ID;
1004  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1005  ID.AddPointer(V);
1006
1007  void *IP = 0;
1008  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1009    return SDOperand(E, 0);
1010
1011  SDNode *N = new SrcValueSDNode(V);
1012  CSEMap.InsertNode(N, IP);
1013  AllNodes.push_back(N);
1014  return SDOperand(N, 0);
1015}
1016
1017SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1018  const Value *v = MO.getValue();
1019  assert((!v || isa<PointerType>(v->getType())) &&
1020         "SrcValue is not a pointer?");
1021
1022  FoldingSetNodeID ID;
1023  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1024  ID.AddPointer(v);
1025  ID.AddInteger(MO.getFlags());
1026  ID.AddInteger(MO.getOffset());
1027  ID.AddInteger(MO.getSize());
1028  ID.AddInteger(MO.getAlignment());
1029
1030  void *IP = 0;
1031  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1032    return SDOperand(E, 0);
1033
1034  SDNode *N = new MemOperandSDNode(MO);
1035  CSEMap.InsertNode(N, IP);
1036  AllNodes.push_back(N);
1037  return SDOperand(N, 0);
1038}
1039
1040/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1041/// specified value type.
1042SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1043  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1044  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1045  const Type *Ty = MVT::getTypeForValueType(VT);
1046  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1047  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1048  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1049}
1050
1051
1052SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1053                                  SDOperand N2, ISD::CondCode Cond) {
1054  // These setcc operations always fold.
1055  switch (Cond) {
1056  default: break;
1057  case ISD::SETFALSE:
1058  case ISD::SETFALSE2: return getConstant(0, VT);
1059  case ISD::SETTRUE:
1060  case ISD::SETTRUE2:  return getConstant(1, VT);
1061
1062  case ISD::SETOEQ:
1063  case ISD::SETOGT:
1064  case ISD::SETOGE:
1065  case ISD::SETOLT:
1066  case ISD::SETOLE:
1067  case ISD::SETONE:
1068  case ISD::SETO:
1069  case ISD::SETUO:
1070  case ISD::SETUEQ:
1071  case ISD::SETUNE:
1072    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1073    break;
1074  }
1075
1076  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1077    const APInt &C2 = N2C->getAPIntValue();
1078    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1079      const APInt &C1 = N1C->getAPIntValue();
1080
1081      switch (Cond) {
1082      default: assert(0 && "Unknown integer setcc!");
1083      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1084      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1085      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1086      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1087      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1088      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1089      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1090      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1091      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1092      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1093      }
1094    }
1095  }
1096  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1097    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1098      // No compile time operations on this type yet.
1099      if (N1C->getValueType(0) == MVT::ppcf128)
1100        return SDOperand();
1101
1102      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1103      switch (Cond) {
1104      default: break;
1105      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1106                          return getNode(ISD::UNDEF, VT);
1107                        // fall through
1108      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1109      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1110                          return getNode(ISD::UNDEF, VT);
1111                        // fall through
1112      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1113                                           R==APFloat::cmpLessThan, VT);
1114      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1115                          return getNode(ISD::UNDEF, VT);
1116                        // fall through
1117      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1118      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1119                          return getNode(ISD::UNDEF, VT);
1120                        // fall through
1121      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1122      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1123                          return getNode(ISD::UNDEF, VT);
1124                        // fall through
1125      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1126                                           R==APFloat::cmpEqual, VT);
1127      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1128                          return getNode(ISD::UNDEF, VT);
1129                        // fall through
1130      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1131                                           R==APFloat::cmpEqual, VT);
1132      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1133      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1134      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1135                                           R==APFloat::cmpEqual, VT);
1136      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1137      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1138                                           R==APFloat::cmpLessThan, VT);
1139      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1140                                           R==APFloat::cmpUnordered, VT);
1141      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1142      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1143      }
1144    } else {
1145      // Ensure that the constant occurs on the RHS.
1146      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1147    }
1148  }
1149
1150  // Could not fold it.
1151  return SDOperand();
1152}
1153
1154/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1155/// use this predicate to simplify operations downstream.
1156bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1157  unsigned BitWidth = Op.getValueSizeInBits();
1158  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1159}
1160
1161/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1162/// this predicate to simplify operations downstream.  Mask is known to be zero
1163/// for bits that V cannot have.
1164bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1165                                     unsigned Depth) const {
1166  APInt KnownZero, KnownOne;
1167  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1168  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1169  return (KnownZero & Mask) == Mask;
1170}
1171
1172/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1173/// known to be either zero or one and return them in the KnownZero/KnownOne
1174/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1175/// processing.
1176void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1177                                     APInt &KnownZero, APInt &KnownOne,
1178                                     unsigned Depth) const {
1179  unsigned BitWidth = Mask.getBitWidth();
1180  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1181         "Mask size mismatches value type size!");
1182
1183  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1184  if (Depth == 6 || Mask == 0)
1185    return;  // Limit search depth.
1186
1187  APInt KnownZero2, KnownOne2;
1188
1189  switch (Op.getOpcode()) {
1190  case ISD::Constant:
1191    // We know all of the bits for a constant!
1192    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1193    KnownZero = ~KnownOne & Mask;
1194    return;
1195  case ISD::AND:
1196    // If either the LHS or the RHS are Zero, the result is zero.
1197    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1198    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1199                      KnownZero2, KnownOne2, Depth+1);
1200    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1201    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1202
1203    // Output known-1 bits are only known if set in both the LHS & RHS.
1204    KnownOne &= KnownOne2;
1205    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1206    KnownZero |= KnownZero2;
1207    return;
1208  case ISD::OR:
1209    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1210    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1211                      KnownZero2, KnownOne2, Depth+1);
1212    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1213    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1214
1215    // Output known-0 bits are only known if clear in both the LHS & RHS.
1216    KnownZero &= KnownZero2;
1217    // Output known-1 are known to be set if set in either the LHS | RHS.
1218    KnownOne |= KnownOne2;
1219    return;
1220  case ISD::XOR: {
1221    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1222    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1223    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1224    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1225
1226    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1227    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1228    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1229    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1230    KnownZero = KnownZeroOut;
1231    return;
1232  }
1233  case ISD::MUL: {
1234    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1235    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1236    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1237    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1238    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1239
1240    // If low bits are zero in either operand, output low known-0 bits.
1241    // Also compute a conserative estimate for high known-0 bits.
1242    // More trickiness is possible, but this is sufficient for the
1243    // interesting case of alignment computation.
1244    KnownOne.clear();
1245    unsigned TrailZ = KnownZero.countTrailingOnes() +
1246                      KnownZero2.countTrailingOnes();
1247    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1248                               KnownZero2.countLeadingOnes(),
1249                               BitWidth) - BitWidth;
1250
1251    TrailZ = std::min(TrailZ, BitWidth);
1252    LeadZ = std::min(LeadZ, BitWidth);
1253    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1254                APInt::getHighBitsSet(BitWidth, LeadZ);
1255    KnownZero &= Mask;
1256    return;
1257  }
1258  case ISD::UDIV: {
1259    // For the purposes of computing leading zeros we can conservatively
1260    // treat a udiv as a logical right shift by the power of 2 known to
1261    // be less than the denominator.
1262    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1263    ComputeMaskedBits(Op.getOperand(0),
1264                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1265    unsigned LeadZ = KnownZero2.countLeadingOnes();
1266
1267    KnownOne2.clear();
1268    KnownZero2.clear();
1269    ComputeMaskedBits(Op.getOperand(1),
1270                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1271    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1272    if (RHSUnknownLeadingOnes != BitWidth)
1273      LeadZ = std::min(BitWidth,
1274                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1275
1276    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1277    return;
1278  }
1279  case ISD::SELECT:
1280    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1281    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1282    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1283    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1284
1285    // Only known if known in both the LHS and RHS.
1286    KnownOne &= KnownOne2;
1287    KnownZero &= KnownZero2;
1288    return;
1289  case ISD::SELECT_CC:
1290    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1291    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1292    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1293    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1294
1295    // Only known if known in both the LHS and RHS.
1296    KnownOne &= KnownOne2;
1297    KnownZero &= KnownZero2;
1298    return;
1299  case ISD::SETCC:
1300    // If we know the result of a setcc has the top bits zero, use this info.
1301    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1302        BitWidth > 1)
1303      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1304    return;
1305  case ISD::SHL:
1306    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1307    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1308      unsigned ShAmt = SA->getValue();
1309
1310      // If the shift count is an invalid immediate, don't do anything.
1311      if (ShAmt >= BitWidth)
1312        return;
1313
1314      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1315                        KnownZero, KnownOne, Depth+1);
1316      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1317      KnownZero <<= ShAmt;
1318      KnownOne  <<= ShAmt;
1319      // low bits known zero.
1320      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1321    }
1322    return;
1323  case ISD::SRL:
1324    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1325    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1326      unsigned ShAmt = SA->getValue();
1327
1328      // If the shift count is an invalid immediate, don't do anything.
1329      if (ShAmt >= BitWidth)
1330        return;
1331
1332      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1333                        KnownZero, KnownOne, Depth+1);
1334      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1335      KnownZero = KnownZero.lshr(ShAmt);
1336      KnownOne  = KnownOne.lshr(ShAmt);
1337
1338      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1339      KnownZero |= HighBits;  // High bits known zero.
1340    }
1341    return;
1342  case ISD::SRA:
1343    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1344      unsigned ShAmt = SA->getValue();
1345
1346      // If the shift count is an invalid immediate, don't do anything.
1347      if (ShAmt >= BitWidth)
1348        return;
1349
1350      APInt InDemandedMask = (Mask << ShAmt);
1351      // If any of the demanded bits are produced by the sign extension, we also
1352      // demand the input sign bit.
1353      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1354      if (HighBits.getBoolValue())
1355        InDemandedMask |= APInt::getSignBit(BitWidth);
1356
1357      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1358                        Depth+1);
1359      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1360      KnownZero = KnownZero.lshr(ShAmt);
1361      KnownOne  = KnownOne.lshr(ShAmt);
1362
1363      // Handle the sign bits.
1364      APInt SignBit = APInt::getSignBit(BitWidth);
1365      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1366
1367      if (KnownZero.intersects(SignBit)) {
1368        KnownZero |= HighBits;  // New bits are known zero.
1369      } else if (KnownOne.intersects(SignBit)) {
1370        KnownOne  |= HighBits;  // New bits are known one.
1371      }
1372    }
1373    return;
1374  case ISD::SIGN_EXTEND_INREG: {
1375    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1376    unsigned EBits = MVT::getSizeInBits(EVT);
1377
1378    // Sign extension.  Compute the demanded bits in the result that are not
1379    // present in the input.
1380    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1381
1382    APInt InSignBit = APInt::getSignBit(EBits);
1383    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1384
1385    // If the sign extended bits are demanded, we know that the sign
1386    // bit is demanded.
1387    InSignBit.zext(BitWidth);
1388    if (NewBits.getBoolValue())
1389      InputDemandedBits |= InSignBit;
1390
1391    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1392                      KnownZero, KnownOne, Depth+1);
1393    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1394
1395    // If the sign bit of the input is known set or clear, then we know the
1396    // top bits of the result.
1397    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1398      KnownZero |= NewBits;
1399      KnownOne  &= ~NewBits;
1400    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1401      KnownOne  |= NewBits;
1402      KnownZero &= ~NewBits;
1403    } else {                              // Input sign bit unknown
1404      KnownZero &= ~NewBits;
1405      KnownOne  &= ~NewBits;
1406    }
1407    return;
1408  }
1409  case ISD::CTTZ:
1410  case ISD::CTLZ:
1411  case ISD::CTPOP: {
1412    unsigned LowBits = Log2_32(BitWidth)+1;
1413    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1414    KnownOne  = APInt(BitWidth, 0);
1415    return;
1416  }
1417  case ISD::LOAD: {
1418    if (ISD::isZEXTLoad(Op.Val)) {
1419      LoadSDNode *LD = cast<LoadSDNode>(Op);
1420      MVT::ValueType VT = LD->getMemoryVT();
1421      unsigned MemBits = MVT::getSizeInBits(VT);
1422      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1423    }
1424    return;
1425  }
1426  case ISD::ZERO_EXTEND: {
1427    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1428    unsigned InBits = MVT::getSizeInBits(InVT);
1429    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1430    APInt InMask    = Mask;
1431    InMask.trunc(InBits);
1432    KnownZero.trunc(InBits);
1433    KnownOne.trunc(InBits);
1434    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1435    KnownZero.zext(BitWidth);
1436    KnownOne.zext(BitWidth);
1437    KnownZero |= NewBits;
1438    return;
1439  }
1440  case ISD::SIGN_EXTEND: {
1441    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1442    unsigned InBits = MVT::getSizeInBits(InVT);
1443    APInt InSignBit = APInt::getSignBit(InBits);
1444    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1445    APInt InMask = Mask;
1446    InMask.trunc(InBits);
1447
1448    // If any of the sign extended bits are demanded, we know that the sign
1449    // bit is demanded. Temporarily set this bit in the mask for our callee.
1450    if (NewBits.getBoolValue())
1451      InMask |= InSignBit;
1452
1453    KnownZero.trunc(InBits);
1454    KnownOne.trunc(InBits);
1455    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1456
1457    // Note if the sign bit is known to be zero or one.
1458    bool SignBitKnownZero = KnownZero.isNegative();
1459    bool SignBitKnownOne  = KnownOne.isNegative();
1460    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1461           "Sign bit can't be known to be both zero and one!");
1462
1463    // If the sign bit wasn't actually demanded by our caller, we don't
1464    // want it set in the KnownZero and KnownOne result values. Reset the
1465    // mask and reapply it to the result values.
1466    InMask = Mask;
1467    InMask.trunc(InBits);
1468    KnownZero &= InMask;
1469    KnownOne  &= InMask;
1470
1471    KnownZero.zext(BitWidth);
1472    KnownOne.zext(BitWidth);
1473
1474    // If the sign bit is known zero or one, the top bits match.
1475    if (SignBitKnownZero)
1476      KnownZero |= NewBits;
1477    else if (SignBitKnownOne)
1478      KnownOne  |= NewBits;
1479    return;
1480  }
1481  case ISD::ANY_EXTEND: {
1482    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1483    unsigned InBits = MVT::getSizeInBits(InVT);
1484    APInt InMask = Mask;
1485    InMask.trunc(InBits);
1486    KnownZero.trunc(InBits);
1487    KnownOne.trunc(InBits);
1488    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1489    KnownZero.zext(BitWidth);
1490    KnownOne.zext(BitWidth);
1491    return;
1492  }
1493  case ISD::TRUNCATE: {
1494    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1495    unsigned InBits = MVT::getSizeInBits(InVT);
1496    APInt InMask = Mask;
1497    InMask.zext(InBits);
1498    KnownZero.zext(InBits);
1499    KnownOne.zext(InBits);
1500    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1501    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1502    KnownZero.trunc(BitWidth);
1503    KnownOne.trunc(BitWidth);
1504    break;
1505  }
1506  case ISD::AssertZext: {
1507    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1508    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1509    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1510                      KnownOne, Depth+1);
1511    KnownZero |= (~InMask) & Mask;
1512    return;
1513  }
1514  case ISD::FGETSIGN:
1515    // All bits are zero except the low bit.
1516    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1517    return;
1518
1519  case ISD::SUB: {
1520    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1521      // We know that the top bits of C-X are clear if X contains less bits
1522      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1523      // positive if we can prove that X is >= 0 and < 16.
1524      if (CLHS->getAPIntValue().isNonNegative()) {
1525        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1526        // NLZ can't be BitWidth with no sign bit
1527        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1528        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1529                          Depth+1);
1530
1531        // If all of the MaskV bits are known to be zero, then we know the
1532        // output top bits are zero, because we now know that the output is
1533        // from [0-C].
1534        if ((KnownZero2 & MaskV) == MaskV) {
1535          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1536          // Top bits known zero.
1537          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1538        }
1539      }
1540    }
1541  }
1542  // fall through
1543  case ISD::ADD: {
1544    // Output known-0 bits are known if clear or set in both the low clear bits
1545    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1546    // low 3 bits clear.
1547    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1548    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1549    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1550    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1551
1552    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1553    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1554    KnownZeroOut = std::min(KnownZeroOut,
1555                            KnownZero2.countTrailingOnes());
1556
1557    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1558    return;
1559  }
1560  case ISD::SREM:
1561    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1562      APInt RA = Rem->getAPIntValue();
1563      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1564        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1565        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1566        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1567
1568        // The sign of a remainder is equal to the sign of the first
1569        // operand (zero being positive).
1570        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1571          KnownZero2 |= ~LowBits;
1572        else if (KnownOne2[BitWidth-1])
1573          KnownOne2 |= ~LowBits;
1574
1575        KnownZero |= KnownZero2 & Mask;
1576        KnownOne |= KnownOne2 & Mask;
1577
1578        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1579      }
1580    }
1581    return;
1582  case ISD::UREM: {
1583    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1584      APInt RA = Rem->getAPIntValue();
1585      if (RA.isPowerOf2()) {
1586        APInt LowBits = (RA - 1);
1587        APInt Mask2 = LowBits & Mask;
1588        KnownZero |= ~LowBits & Mask;
1589        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1590        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1591        break;
1592      }
1593    }
1594
1595    // Since the result is less than or equal to either operand, any leading
1596    // zero bits in either operand must also exist in the result.
1597    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1598    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1599                      Depth+1);
1600    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1601                      Depth+1);
1602
1603    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1604                                KnownZero2.countLeadingOnes());
1605    KnownOne.clear();
1606    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1607    return;
1608  }
1609  default:
1610    // Allow the target to implement this method for its nodes.
1611    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1612  case ISD::INTRINSIC_WO_CHAIN:
1613  case ISD::INTRINSIC_W_CHAIN:
1614  case ISD::INTRINSIC_VOID:
1615      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1616    }
1617    return;
1618  }
1619}
1620
1621/// ComputeNumSignBits - Return the number of times the sign bit of the
1622/// register is replicated into the other bits.  We know that at least 1 bit
1623/// is always equal to the sign bit (itself), but other cases can give us
1624/// information.  For example, immediately after an "SRA X, 2", we know that
1625/// the top 3 bits are all equal to each other, so we return 3.
1626unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1627  MVT::ValueType VT = Op.getValueType();
1628  assert(MVT::isInteger(VT) && "Invalid VT!");
1629  unsigned VTBits = MVT::getSizeInBits(VT);
1630  unsigned Tmp, Tmp2;
1631  unsigned FirstAnswer = 1;
1632
1633  if (Depth == 6)
1634    return 1;  // Limit search depth.
1635
1636  switch (Op.getOpcode()) {
1637  default: break;
1638  case ISD::AssertSext:
1639    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1640    return VTBits-Tmp+1;
1641  case ISD::AssertZext:
1642    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1643    return VTBits-Tmp;
1644
1645  case ISD::Constant: {
1646    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1647    // If negative, return # leading ones.
1648    if (Val.isNegative())
1649      return Val.countLeadingOnes();
1650
1651    // Return # leading zeros.
1652    return Val.countLeadingZeros();
1653  }
1654
1655  case ISD::SIGN_EXTEND:
1656    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1657    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1658
1659  case ISD::SIGN_EXTEND_INREG:
1660    // Max of the input and what this extends.
1661    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1662    Tmp = VTBits-Tmp+1;
1663
1664    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1665    return std::max(Tmp, Tmp2);
1666
1667  case ISD::SRA:
1668    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1669    // SRA X, C   -> adds C sign bits.
1670    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1671      Tmp += C->getValue();
1672      if (Tmp > VTBits) Tmp = VTBits;
1673    }
1674    return Tmp;
1675  case ISD::SHL:
1676    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1677      // shl destroys sign bits.
1678      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1679      if (C->getValue() >= VTBits ||      // Bad shift.
1680          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1681      return Tmp - C->getValue();
1682    }
1683    break;
1684  case ISD::AND:
1685  case ISD::OR:
1686  case ISD::XOR:    // NOT is handled here.
1687    // Logical binary ops preserve the number of sign bits at the worst.
1688    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1689    if (Tmp != 1) {
1690      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1691      FirstAnswer = std::min(Tmp, Tmp2);
1692      // We computed what we know about the sign bits as our first
1693      // answer. Now proceed to the generic code that uses
1694      // ComputeMaskedBits, and pick whichever answer is better.
1695    }
1696    break;
1697
1698  case ISD::SELECT:
1699    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1700    if (Tmp == 1) return 1;  // Early out.
1701    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1702    return std::min(Tmp, Tmp2);
1703
1704  case ISD::SETCC:
1705    // If setcc returns 0/-1, all bits are sign bits.
1706    if (TLI.getSetCCResultContents() ==
1707        TargetLowering::ZeroOrNegativeOneSetCCResult)
1708      return VTBits;
1709    break;
1710  case ISD::ROTL:
1711  case ISD::ROTR:
1712    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1713      unsigned RotAmt = C->getValue() & (VTBits-1);
1714
1715      // Handle rotate right by N like a rotate left by 32-N.
1716      if (Op.getOpcode() == ISD::ROTR)
1717        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1718
1719      // If we aren't rotating out all of the known-in sign bits, return the
1720      // number that are left.  This handles rotl(sext(x), 1) for example.
1721      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1722      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1723    }
1724    break;
1725  case ISD::ADD:
1726    // Add can have at most one carry bit.  Thus we know that the output
1727    // is, at worst, one more bit than the inputs.
1728    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1729    if (Tmp == 1) return 1;  // Early out.
1730
1731    // Special case decrementing a value (ADD X, -1):
1732    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1733      if (CRHS->isAllOnesValue()) {
1734        APInt KnownZero, KnownOne;
1735        APInt Mask = APInt::getAllOnesValue(VTBits);
1736        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1737
1738        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1739        // sign bits set.
1740        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1741          return VTBits;
1742
1743        // If we are subtracting one from a positive number, there is no carry
1744        // out of the result.
1745        if (KnownZero.isNegative())
1746          return Tmp;
1747      }
1748
1749    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1750    if (Tmp2 == 1) return 1;
1751      return std::min(Tmp, Tmp2)-1;
1752    break;
1753
1754  case ISD::SUB:
1755    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1756    if (Tmp2 == 1) return 1;
1757
1758    // Handle NEG.
1759    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1760      if (CLHS->isNullValue()) {
1761        APInt KnownZero, KnownOne;
1762        APInt Mask = APInt::getAllOnesValue(VTBits);
1763        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1764        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1765        // sign bits set.
1766        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1767          return VTBits;
1768
1769        // If the input is known to be positive (the sign bit is known clear),
1770        // the output of the NEG has the same number of sign bits as the input.
1771        if (KnownZero.isNegative())
1772          return Tmp2;
1773
1774        // Otherwise, we treat this like a SUB.
1775      }
1776
1777    // Sub can have at most one carry bit.  Thus we know that the output
1778    // is, at worst, one more bit than the inputs.
1779    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1780    if (Tmp == 1) return 1;  // Early out.
1781      return std::min(Tmp, Tmp2)-1;
1782    break;
1783  case ISD::TRUNCATE:
1784    // FIXME: it's tricky to do anything useful for this, but it is an important
1785    // case for targets like X86.
1786    break;
1787  }
1788
1789  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1790  if (Op.getOpcode() == ISD::LOAD) {
1791    LoadSDNode *LD = cast<LoadSDNode>(Op);
1792    unsigned ExtType = LD->getExtensionType();
1793    switch (ExtType) {
1794    default: break;
1795    case ISD::SEXTLOAD:    // '17' bits known
1796      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1797      return VTBits-Tmp+1;
1798    case ISD::ZEXTLOAD:    // '16' bits known
1799      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1800      return VTBits-Tmp;
1801    }
1802  }
1803
1804  // Allow the target to implement this method for its nodes.
1805  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1806      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1807      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1808      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1809    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1810    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1811  }
1812
1813  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1814  // use this information.
1815  APInt KnownZero, KnownOne;
1816  APInt Mask = APInt::getAllOnesValue(VTBits);
1817  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1818
1819  if (KnownZero.isNegative()) {        // sign bit is 0
1820    Mask = KnownZero;
1821  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1822    Mask = KnownOne;
1823  } else {
1824    // Nothing known.
1825    return FirstAnswer;
1826  }
1827
1828  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1829  // the number of identical bits in the top of the input value.
1830  Mask = ~Mask;
1831  Mask <<= Mask.getBitWidth()-VTBits;
1832  // Return # leading zeros.  We use 'min' here in case Val was zero before
1833  // shifting.  We don't want to return '64' as for an i32 "0".
1834  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1835}
1836
1837
1838bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1839  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1840  if (!GA) return false;
1841  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1842  if (!GV) return false;
1843  MachineModuleInfo *MMI = getMachineModuleInfo();
1844  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1845}
1846
1847
1848/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1849/// element of the result of the vector shuffle.
1850SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned Idx) {
1851  MVT::ValueType VT = N->getValueType(0);
1852  SDOperand PermMask = N->getOperand(2);
1853  unsigned NumElems = PermMask.getNumOperands();
1854  SDOperand V = (Idx < NumElems) ? N->getOperand(0) : N->getOperand(1);
1855  Idx %= NumElems;
1856
1857  if (V.getOpcode() == ISD::BIT_CONVERT) {
1858    V = V.getOperand(0);
1859    if (MVT::getVectorNumElements(V.getValueType()) != NumElems)
1860      return SDOperand();
1861  }
1862  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1863    return (Idx == 0) ? V.getOperand(0)
1864                      : getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
1865  if (V.getOpcode() == ISD::BUILD_VECTOR)
1866    return V.getOperand(Idx);
1867  if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
1868    SDOperand Elt = PermMask.getOperand(Idx);
1869    if (Elt.getOpcode() == ISD::UNDEF)
1870      return getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
1871    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Elt)->getValue());
1872  }
1873  return SDOperand();
1874}
1875
1876
1877/// getNode - Gets or creates the specified node.
1878///
1879SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1880  FoldingSetNodeID ID;
1881  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1882  void *IP = 0;
1883  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1884    return SDOperand(E, 0);
1885  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1886  CSEMap.InsertNode(N, IP);
1887
1888  AllNodes.push_back(N);
1889  return SDOperand(N, 0);
1890}
1891
1892SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1893                                SDOperand Operand) {
1894  // Constant fold unary operations with an integer constant operand.
1895  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1896    const APInt &Val = C->getAPIntValue();
1897    unsigned BitWidth = MVT::getSizeInBits(VT);
1898    switch (Opcode) {
1899    default: break;
1900    case ISD::SIGN_EXTEND:
1901      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1902    case ISD::ANY_EXTEND:
1903    case ISD::ZERO_EXTEND:
1904    case ISD::TRUNCATE:
1905      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1906    case ISD::UINT_TO_FP:
1907    case ISD::SINT_TO_FP: {
1908      const uint64_t zero[] = {0, 0};
1909      // No compile time operations on this type.
1910      if (VT==MVT::ppcf128)
1911        break;
1912      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1913      (void)apf.convertFromAPInt(Val,
1914                                 Opcode==ISD::SINT_TO_FP,
1915                                 APFloat::rmNearestTiesToEven);
1916      return getConstantFP(apf, VT);
1917    }
1918    case ISD::BIT_CONVERT:
1919      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1920        return getConstantFP(Val.bitsToFloat(), VT);
1921      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1922        return getConstantFP(Val.bitsToDouble(), VT);
1923      break;
1924    case ISD::BSWAP:
1925      return getConstant(Val.byteSwap(), VT);
1926    case ISD::CTPOP:
1927      return getConstant(Val.countPopulation(), VT);
1928    case ISD::CTLZ:
1929      return getConstant(Val.countLeadingZeros(), VT);
1930    case ISD::CTTZ:
1931      return getConstant(Val.countTrailingZeros(), VT);
1932    }
1933  }
1934
1935  // Constant fold unary operations with a floating point constant operand.
1936  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1937    APFloat V = C->getValueAPF();    // make copy
1938    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1939      switch (Opcode) {
1940      case ISD::FNEG:
1941        V.changeSign();
1942        return getConstantFP(V, VT);
1943      case ISD::FABS:
1944        V.clearSign();
1945        return getConstantFP(V, VT);
1946      case ISD::FP_ROUND:
1947      case ISD::FP_EXTEND:
1948        // This can return overflow, underflow, or inexact; we don't care.
1949        // FIXME need to be more flexible about rounding mode.
1950        (void)V.convert(*MVTToAPFloatSemantics(VT),
1951                        APFloat::rmNearestTiesToEven);
1952        return getConstantFP(V, VT);
1953      case ISD::FP_TO_SINT:
1954      case ISD::FP_TO_UINT: {
1955        integerPart x;
1956        assert(integerPartWidth >= 64);
1957        // FIXME need to be more flexible about rounding mode.
1958        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1959                              Opcode==ISD::FP_TO_SINT,
1960                              APFloat::rmTowardZero);
1961        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1962          break;
1963        return getConstant(x, VT);
1964      }
1965      case ISD::BIT_CONVERT:
1966        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1967          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1968        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1969          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1970        break;
1971      }
1972    }
1973  }
1974
1975  unsigned OpOpcode = Operand.Val->getOpcode();
1976  switch (Opcode) {
1977  case ISD::TokenFactor:
1978  case ISD::MERGE_VALUES:
1979    return Operand;         // Factor or merge of one node?  No need.
1980  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1981  case ISD::FP_EXTEND:
1982    assert(MVT::isFloatingPoint(VT) &&
1983           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1984    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1985    if (Operand.getOpcode() == ISD::UNDEF)
1986      return getNode(ISD::UNDEF, VT);
1987    break;
1988  case ISD::SIGN_EXTEND:
1989    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1990           "Invalid SIGN_EXTEND!");
1991    if (Operand.getValueType() == VT) return Operand;   // noop extension
1992    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1993           && "Invalid sext node, dst < src!");
1994    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1995      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1996    break;
1997  case ISD::ZERO_EXTEND:
1998    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1999           "Invalid ZERO_EXTEND!");
2000    if (Operand.getValueType() == VT) return Operand;   // noop extension
2001    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
2002           && "Invalid zext node, dst < src!");
2003    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2004      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2005    break;
2006  case ISD::ANY_EXTEND:
2007    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
2008           "Invalid ANY_EXTEND!");
2009    if (Operand.getValueType() == VT) return Operand;   // noop extension
2010    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
2011           && "Invalid anyext node, dst < src!");
2012    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2013      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2014      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2015    break;
2016  case ISD::TRUNCATE:
2017    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
2018           "Invalid TRUNCATE!");
2019    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2020    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
2021           && "Invalid truncate node, src < dst!");
2022    if (OpOpcode == ISD::TRUNCATE)
2023      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2024    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2025             OpOpcode == ISD::ANY_EXTEND) {
2026      // If the source is smaller than the dest, we still need an extend.
2027      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
2028          < MVT::getSizeInBits(VT))
2029        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2030      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
2031               > MVT::getSizeInBits(VT))
2032        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2033      else
2034        return Operand.Val->getOperand(0);
2035    }
2036    break;
2037  case ISD::BIT_CONVERT:
2038    // Basic sanity checking.
2039    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
2040           && "Cannot BIT_CONVERT between types of different sizes!");
2041    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2042    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2043      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2044    if (OpOpcode == ISD::UNDEF)
2045      return getNode(ISD::UNDEF, VT);
2046    break;
2047  case ISD::SCALAR_TO_VECTOR:
2048    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
2049           MVT::getVectorElementType(VT) == Operand.getValueType() &&
2050           "Illegal SCALAR_TO_VECTOR node!");
2051    if (OpOpcode == ISD::UNDEF)
2052      return getNode(ISD::UNDEF, VT);
2053    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2054    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2055        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2056        Operand.getConstantOperandVal(1) == 0 &&
2057        Operand.getOperand(0).getValueType() == VT)
2058      return Operand.getOperand(0);
2059    break;
2060  case ISD::FNEG:
2061    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2062      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2063                     Operand.Val->getOperand(0));
2064    if (OpOpcode == ISD::FNEG)  // --X -> X
2065      return Operand.Val->getOperand(0);
2066    break;
2067  case ISD::FABS:
2068    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2069      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2070    break;
2071  }
2072
2073  SDNode *N;
2074  SDVTList VTs = getVTList(VT);
2075  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2076    FoldingSetNodeID ID;
2077    SDOperand Ops[1] = { Operand };
2078    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2079    void *IP = 0;
2080    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2081      return SDOperand(E, 0);
2082    N = new UnarySDNode(Opcode, VTs, Operand);
2083    CSEMap.InsertNode(N, IP);
2084  } else {
2085    N = new UnarySDNode(Opcode, VTs, Operand);
2086  }
2087  AllNodes.push_back(N);
2088  return SDOperand(N, 0);
2089}
2090
2091
2092
2093SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2094                                SDOperand N1, SDOperand N2) {
2095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2096  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2097  switch (Opcode) {
2098  default: break;
2099  case ISD::TokenFactor:
2100    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2101           N2.getValueType() == MVT::Other && "Invalid token factor!");
2102    // Fold trivial token factors.
2103    if (N1.getOpcode() == ISD::EntryToken) return N2;
2104    if (N2.getOpcode() == ISD::EntryToken) return N1;
2105    break;
2106  case ISD::AND:
2107    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2108           N1.getValueType() == VT && "Binary operator types must match!");
2109    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2110    // worth handling here.
2111    if (N2C && N2C->isNullValue())
2112      return N2;
2113    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2114      return N1;
2115    break;
2116  case ISD::OR:
2117  case ISD::XOR:
2118    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2119           N1.getValueType() == VT && "Binary operator types must match!");
2120    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2121    // worth handling here.
2122    if (N2C && N2C->isNullValue())
2123      return N1;
2124    break;
2125  case ISD::UDIV:
2126  case ISD::UREM:
2127  case ISD::MULHU:
2128  case ISD::MULHS:
2129    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2130    // fall through
2131  case ISD::ADD:
2132  case ISD::SUB:
2133  case ISD::MUL:
2134  case ISD::SDIV:
2135  case ISD::SREM:
2136  case ISD::FADD:
2137  case ISD::FSUB:
2138  case ISD::FMUL:
2139  case ISD::FDIV:
2140  case ISD::FREM:
2141    assert(N1.getValueType() == N2.getValueType() &&
2142           N1.getValueType() == VT && "Binary operator types must match!");
2143    break;
2144  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2145    assert(N1.getValueType() == VT &&
2146           MVT::isFloatingPoint(N1.getValueType()) &&
2147           MVT::isFloatingPoint(N2.getValueType()) &&
2148           "Invalid FCOPYSIGN!");
2149    break;
2150  case ISD::SHL:
2151  case ISD::SRA:
2152  case ISD::SRL:
2153  case ISD::ROTL:
2154  case ISD::ROTR:
2155    assert(VT == N1.getValueType() &&
2156           "Shift operators return type must be the same as their first arg");
2157    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2158           VT != MVT::i1 && "Shifts only work on integers");
2159    break;
2160  case ISD::FP_ROUND_INREG: {
2161    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2162    assert(VT == N1.getValueType() && "Not an inreg round!");
2163    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2164           "Cannot FP_ROUND_INREG integer types");
2165    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2166           "Not rounding down!");
2167    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2168    break;
2169  }
2170  case ISD::FP_ROUND:
2171    assert(MVT::isFloatingPoint(VT) &&
2172           MVT::isFloatingPoint(N1.getValueType()) &&
2173           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2174           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2175    if (N1.getValueType() == VT) return N1;  // noop conversion.
2176    break;
2177  case ISD::AssertSext:
2178  case ISD::AssertZext: {
2179    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2180    assert(VT == N1.getValueType() && "Not an inreg extend!");
2181    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2182           "Cannot *_EXTEND_INREG FP types");
2183    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2184           "Not extending!");
2185    if (VT == EVT) return N1; // noop assertion.
2186    break;
2187  }
2188  case ISD::SIGN_EXTEND_INREG: {
2189    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2190    assert(VT == N1.getValueType() && "Not an inreg extend!");
2191    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2192           "Cannot *_EXTEND_INREG FP types");
2193    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2194           "Not extending!");
2195    if (EVT == VT) return N1;  // Not actually extending
2196
2197    if (N1C) {
2198      APInt Val = N1C->getAPIntValue();
2199      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2200      Val <<= Val.getBitWidth()-FromBits;
2201      Val = Val.ashr(Val.getBitWidth()-FromBits);
2202      return getConstant(Val, VT);
2203    }
2204    break;
2205  }
2206  case ISD::EXTRACT_VECTOR_ELT:
2207    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2208
2209    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2210    if (N1.getOpcode() == ISD::UNDEF)
2211      return getNode(ISD::UNDEF, VT);
2212
2213    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2214    // expanding copies of large vectors from registers.
2215    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2216        N1.getNumOperands() > 0) {
2217      unsigned Factor =
2218        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2219      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2220                     N1.getOperand(N2C->getValue() / Factor),
2221                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2222    }
2223
2224    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2225    // expanding large vector constants.
2226    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2227      return N1.getOperand(N2C->getValue());
2228
2229    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2230    // operations are lowered to scalars.
2231    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2232      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2233        if (IEC == N2C)
2234          return N1.getOperand(1);
2235        else
2236          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2237      }
2238    break;
2239  case ISD::EXTRACT_ELEMENT:
2240    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2241    assert(!MVT::isVector(N1.getValueType()) &&
2242           MVT::isInteger(N1.getValueType()) &&
2243           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2244           "EXTRACT_ELEMENT only applies to integers!");
2245
2246    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2247    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2248    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2249    if (N1.getOpcode() == ISD::BUILD_PAIR)
2250      return N1.getOperand(N2C->getValue());
2251
2252    // EXTRACT_ELEMENT of a constant int is also very common.
2253    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2254      unsigned ElementSize = MVT::getSizeInBits(VT);
2255      unsigned Shift = ElementSize * N2C->getValue();
2256      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2257      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2258    }
2259    break;
2260  case ISD::EXTRACT_SUBVECTOR:
2261    if (N1.getValueType() == VT) // Trivial extraction.
2262      return N1;
2263    break;
2264  }
2265
2266  if (N1C) {
2267    if (N2C) {
2268      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2269      switch (Opcode) {
2270      case ISD::ADD: return getConstant(C1 + C2, VT);
2271      case ISD::SUB: return getConstant(C1 - C2, VT);
2272      case ISD::MUL: return getConstant(C1 * C2, VT);
2273      case ISD::UDIV:
2274        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2275        break;
2276      case ISD::UREM :
2277        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2278        break;
2279      case ISD::SDIV :
2280        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2281        break;
2282      case ISD::SREM :
2283        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2284        break;
2285      case ISD::AND  : return getConstant(C1 & C2, VT);
2286      case ISD::OR   : return getConstant(C1 | C2, VT);
2287      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2288      case ISD::SHL  : return getConstant(C1 << C2, VT);
2289      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2290      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2291      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2292      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2293      default: break;
2294      }
2295    } else {      // Cannonicalize constant to RHS if commutative
2296      if (isCommutativeBinOp(Opcode)) {
2297        std::swap(N1C, N2C);
2298        std::swap(N1, N2);
2299      }
2300    }
2301  }
2302
2303  // Constant fold FP operations.
2304  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2305  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2306  if (N1CFP) {
2307    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2308      // Cannonicalize constant to RHS if commutative
2309      std::swap(N1CFP, N2CFP);
2310      std::swap(N1, N2);
2311    } else if (N2CFP && VT != MVT::ppcf128) {
2312      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2313      APFloat::opStatus s;
2314      switch (Opcode) {
2315      case ISD::FADD:
2316        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2317        if (s != APFloat::opInvalidOp)
2318          return getConstantFP(V1, VT);
2319        break;
2320      case ISD::FSUB:
2321        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2322        if (s!=APFloat::opInvalidOp)
2323          return getConstantFP(V1, VT);
2324        break;
2325      case ISD::FMUL:
2326        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2327        if (s!=APFloat::opInvalidOp)
2328          return getConstantFP(V1, VT);
2329        break;
2330      case ISD::FDIV:
2331        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2332        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2333          return getConstantFP(V1, VT);
2334        break;
2335      case ISD::FREM :
2336        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2337        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2338          return getConstantFP(V1, VT);
2339        break;
2340      case ISD::FCOPYSIGN:
2341        V1.copySign(V2);
2342        return getConstantFP(V1, VT);
2343      default: break;
2344      }
2345    }
2346  }
2347
2348  // Canonicalize an UNDEF to the RHS, even over a constant.
2349  if (N1.getOpcode() == ISD::UNDEF) {
2350    if (isCommutativeBinOp(Opcode)) {
2351      std::swap(N1, N2);
2352    } else {
2353      switch (Opcode) {
2354      case ISD::FP_ROUND_INREG:
2355      case ISD::SIGN_EXTEND_INREG:
2356      case ISD::SUB:
2357      case ISD::FSUB:
2358      case ISD::FDIV:
2359      case ISD::FREM:
2360      case ISD::SRA:
2361        return N1;     // fold op(undef, arg2) -> undef
2362      case ISD::UDIV:
2363      case ISD::SDIV:
2364      case ISD::UREM:
2365      case ISD::SREM:
2366      case ISD::SRL:
2367      case ISD::SHL:
2368        if (!MVT::isVector(VT))
2369          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2370        // For vectors, we can't easily build an all zero vector, just return
2371        // the LHS.
2372        return N2;
2373      }
2374    }
2375  }
2376
2377  // Fold a bunch of operators when the RHS is undef.
2378  if (N2.getOpcode() == ISD::UNDEF) {
2379    switch (Opcode) {
2380    case ISD::XOR:
2381      if (N1.getOpcode() == ISD::UNDEF)
2382        // Handle undef ^ undef -> 0 special case. This is a common
2383        // idiom (misuse).
2384        return getConstant(0, VT);
2385      // fallthrough
2386    case ISD::ADD:
2387    case ISD::ADDC:
2388    case ISD::ADDE:
2389    case ISD::SUB:
2390    case ISD::FADD:
2391    case ISD::FSUB:
2392    case ISD::FMUL:
2393    case ISD::FDIV:
2394    case ISD::FREM:
2395    case ISD::UDIV:
2396    case ISD::SDIV:
2397    case ISD::UREM:
2398    case ISD::SREM:
2399      return N2;       // fold op(arg1, undef) -> undef
2400    case ISD::MUL:
2401    case ISD::AND:
2402    case ISD::SRL:
2403    case ISD::SHL:
2404      if (!MVT::isVector(VT))
2405        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2406      // For vectors, we can't easily build an all zero vector, just return
2407      // the LHS.
2408      return N1;
2409    case ISD::OR:
2410      if (!MVT::isVector(VT))
2411        return getConstant(MVT::getIntVTBitMask(VT), VT);
2412      // For vectors, we can't easily build an all one vector, just return
2413      // the LHS.
2414      return N1;
2415    case ISD::SRA:
2416      return N1;
2417    }
2418  }
2419
2420  // Memoize this node if possible.
2421  SDNode *N;
2422  SDVTList VTs = getVTList(VT);
2423  if (VT != MVT::Flag) {
2424    SDOperand Ops[] = { N1, N2 };
2425    FoldingSetNodeID ID;
2426    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2427    void *IP = 0;
2428    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2429      return SDOperand(E, 0);
2430    N = new BinarySDNode(Opcode, VTs, N1, N2);
2431    CSEMap.InsertNode(N, IP);
2432  } else {
2433    N = new BinarySDNode(Opcode, VTs, N1, N2);
2434  }
2435
2436  AllNodes.push_back(N);
2437  return SDOperand(N, 0);
2438}
2439
2440SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2441                                SDOperand N1, SDOperand N2, SDOperand N3) {
2442  // Perform various simplifications.
2443  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2444  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2445  switch (Opcode) {
2446  case ISD::SETCC: {
2447    // Use FoldSetCC to simplify SETCC's.
2448    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2449    if (Simp.Val) return Simp;
2450    break;
2451  }
2452  case ISD::SELECT:
2453    if (N1C) {
2454     if (N1C->getValue())
2455        return N2;             // select true, X, Y -> X
2456      else
2457        return N3;             // select false, X, Y -> Y
2458    }
2459
2460    if (N2 == N3) return N2;   // select C, X, X -> X
2461    break;
2462  case ISD::BRCOND:
2463    if (N2C) {
2464      if (N2C->getValue()) // Unconditional branch
2465        return getNode(ISD::BR, MVT::Other, N1, N3);
2466      else
2467        return N1;         // Never-taken branch
2468    }
2469    break;
2470  case ISD::VECTOR_SHUFFLE:
2471    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2472           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2473           N3.getOpcode() == ISD::BUILD_VECTOR &&
2474           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2475           "Illegal VECTOR_SHUFFLE node!");
2476    break;
2477  case ISD::BIT_CONVERT:
2478    // Fold bit_convert nodes from a type to themselves.
2479    if (N1.getValueType() == VT)
2480      return N1;
2481    break;
2482  }
2483
2484  // Memoize node if it doesn't produce a flag.
2485  SDNode *N;
2486  SDVTList VTs = getVTList(VT);
2487  if (VT != MVT::Flag) {
2488    SDOperand Ops[] = { N1, N2, N3 };
2489    FoldingSetNodeID ID;
2490    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2491    void *IP = 0;
2492    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2493      return SDOperand(E, 0);
2494    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2495    CSEMap.InsertNode(N, IP);
2496  } else {
2497    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2498  }
2499  AllNodes.push_back(N);
2500  return SDOperand(N, 0);
2501}
2502
2503SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2504                                SDOperand N1, SDOperand N2, SDOperand N3,
2505                                SDOperand N4) {
2506  SDOperand Ops[] = { N1, N2, N3, N4 };
2507  return getNode(Opcode, VT, Ops, 4);
2508}
2509
2510SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2511                                SDOperand N1, SDOperand N2, SDOperand N3,
2512                                SDOperand N4, SDOperand N5) {
2513  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2514  return getNode(Opcode, VT, Ops, 5);
2515}
2516
2517/// getMemsetValue - Vectorized representation of the memset value
2518/// operand.
2519static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2520                                SelectionDAG &DAG) {
2521  unsigned NumBits = MVT::isVector(VT) ?
2522    MVT::getSizeInBits(MVT::getVectorElementType(VT)) : MVT::getSizeInBits(VT);
2523  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2524    APInt Val = APInt(NumBits, C->getValue() & 255);
2525    unsigned Shift = 8;
2526    for (unsigned i = NumBits; i > 8; i >>= 1) {
2527      Val = (Val << Shift) | Val;
2528      Shift <<= 1;
2529    }
2530    if (MVT::isInteger(VT))
2531      return DAG.getConstant(Val, VT);
2532    return DAG.getConstantFP(APFloat(Val), VT);
2533  }
2534
2535  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2536  unsigned Shift = 8;
2537  for (unsigned i = NumBits; i > 8; i >>= 1) {
2538    Value = DAG.getNode(ISD::OR, VT,
2539                        DAG.getNode(ISD::SHL, VT, Value,
2540                                    DAG.getConstant(Shift, MVT::i8)), Value);
2541    Shift <<= 1;
2542  }
2543
2544  return Value;
2545}
2546
2547/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2548/// used when a memcpy is turned into a memset when the source is a constant
2549/// string ptr.
2550static SDOperand getMemsetStringVal(MVT::ValueType VT, SelectionDAG &DAG,
2551                                    const TargetLowering &TLI,
2552                                    std::string &Str, unsigned Offset) {
2553  assert(!MVT::isVector(VT) && "Can't handle vector type here!");
2554  unsigned NumBits = MVT::getSizeInBits(VT);
2555  unsigned MSB = NumBits / 8;
2556  uint64_t Val = 0;
2557  if (TLI.isLittleEndian())
2558    Offset = Offset + MSB - 1;
2559  for (unsigned i = 0; i != MSB; ++i) {
2560    Val = (Val << 8) | (unsigned char)Str[Offset];
2561    Offset += TLI.isLittleEndian() ? -1 : 1;
2562  }
2563  return DAG.getConstant(Val, VT);
2564}
2565
2566/// getMemBasePlusOffset - Returns base and offset node for the
2567///
2568static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2569                                      SelectionDAG &DAG) {
2570  MVT::ValueType VT = Base.getValueType();
2571  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2572}
2573
2574/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2575///
2576static bool isMemSrcFromString(SDOperand Src, std::string &Str,
2577                               uint64_t &SrcOff) {
2578  unsigned SrcDelta = 0;
2579  GlobalAddressSDNode *G = NULL;
2580  if (Src.getOpcode() == ISD::GlobalAddress)
2581    G = cast<GlobalAddressSDNode>(Src);
2582  else if (Src.getOpcode() == ISD::ADD &&
2583           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2584           Src.getOperand(1).getOpcode() == ISD::Constant) {
2585    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2586    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2587  }
2588  if (!G)
2589    return false;
2590
2591  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2592  if (GV && GV->isConstant()) {
2593    Str = GV->getStringValue(false);
2594    if (!Str.empty()) {
2595      SrcOff += SrcDelta;
2596      return true;
2597    }
2598  }
2599
2600  return false;
2601}
2602
2603/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2604/// to replace the memset / memcpy is below the threshold. It also returns the
2605/// types of the sequence of memory ops to perform memset / memcpy.
2606static
2607bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2608                              SDOperand Dst, SDOperand Src,
2609                              unsigned Limit, uint64_t Size, unsigned &Align,
2610                              SelectionDAG &DAG,
2611                              const TargetLowering &TLI) {
2612  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2613
2614  std::string Str;
2615  uint64_t SrcOff = 0;
2616  bool isSrcStr = isMemSrcFromString(Src, Str, SrcOff);
2617  bool isSrcConst = isa<ConstantSDNode>(Src);
2618  MVT::ValueType VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2619  if (VT != MVT::iAny) {
2620    unsigned NewAlign = (unsigned)
2621      TLI.getTargetData()->getABITypeAlignment(MVT::getTypeForValueType(VT));
2622    // If source is a string constant, this will require an unaligned load.
2623    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2624      if (Dst.getOpcode() != ISD::FrameIndex) {
2625        // Can't change destination alignment. It requires a unaligned store.
2626        if (AllowUnalign)
2627          VT = MVT::iAny;
2628      } else {
2629        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2630        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2631        if (MFI->isFixedObjectIndex(FI)) {
2632          // Can't change destination alignment. It requires a unaligned store.
2633          if (AllowUnalign)
2634            VT = MVT::iAny;
2635        } else {
2636          // Give the stack frame object a larger alignment.
2637          MFI->setObjectAlignment(FI, NewAlign);
2638          Align = NewAlign;
2639        }
2640      }
2641    }
2642  }
2643
2644  if (VT == MVT::iAny) {
2645    if (AllowUnalign) {
2646      VT = MVT::i64;
2647    } else {
2648      switch (Align & 7) {
2649      case 0:  VT = MVT::i64; break;
2650      case 4:  VT = MVT::i32; break;
2651      case 2:  VT = MVT::i16; break;
2652      default: VT = MVT::i8;  break;
2653      }
2654    }
2655
2656    MVT::ValueType LVT = MVT::i64;
2657    while (!TLI.isTypeLegal(LVT))
2658      LVT = (MVT::ValueType)((unsigned)LVT - 1);
2659    assert(MVT::isInteger(LVT));
2660
2661    if (VT > LVT)
2662      VT = LVT;
2663  }
2664
2665  unsigned NumMemOps = 0;
2666  while (Size != 0) {
2667    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2668    while (VTSize > Size) {
2669      // For now, only use non-vector load / store's for the left-over pieces.
2670      if (MVT::isVector(VT)) {
2671        VT = MVT::i64;
2672        while (!TLI.isTypeLegal(VT))
2673          VT = (MVT::ValueType)((unsigned)VT - 1);
2674        VTSize = MVT::getSizeInBits(VT) / 8;
2675      } else {
2676        VT = (MVT::ValueType)((unsigned)VT - 1);
2677        VTSize >>= 1;
2678      }
2679    }
2680
2681    if (++NumMemOps > Limit)
2682      return false;
2683    MemOps.push_back(VT);
2684    Size -= VTSize;
2685  }
2686
2687  return true;
2688}
2689
2690static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2691                                         SDOperand Chain, SDOperand Dst,
2692                                         SDOperand Src, uint64_t Size,
2693                                         unsigned Align, bool AlwaysInline,
2694                                         const Value *DstSV, uint64_t DstSVOff,
2695                                         const Value *SrcSV, uint64_t SrcSVOff){
2696  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2697
2698  // Expand memcpy to a series of load and store ops if the size operand falls
2699  // below a certain threshold.
2700  std::vector<MVT::ValueType> MemOps;
2701  uint64_t Limit = -1;
2702  if (!AlwaysInline)
2703    Limit = TLI.getMaxStoresPerMemcpy();
2704  unsigned DstAlign = Align;  // Destination alignment can change.
2705  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2706                                DAG, TLI))
2707    return SDOperand();
2708
2709  std::string Str;
2710  uint64_t SrcOff = 0, DstOff = 0;
2711  bool CopyFromStr = isMemSrcFromString(Src, Str, SrcOff);
2712
2713  SmallVector<SDOperand, 8> OutChains;
2714  unsigned NumMemOps = MemOps.size();
2715  for (unsigned i = 0; i < NumMemOps; i++) {
2716    MVT::ValueType VT = MemOps[i];
2717    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2718    SDOperand Value, Store;
2719
2720    if (CopyFromStr && !MVT::isVector(VT)) {
2721      // It's unlikely a store of a vector immediate can be done in a single
2722      // instruction. It would require a load from a constantpool first.
2723      // FIXME: Handle cases where store of vector immediate is done in a
2724      // single instruction.
2725      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2726      Store = DAG.getStore(Chain, Value,
2727                           getMemBasePlusOffset(Dst, DstOff, DAG),
2728                           DstSV, DstSVOff + DstOff);
2729    } else {
2730      Value = DAG.getLoad(VT, Chain,
2731                          getMemBasePlusOffset(Src, SrcOff, DAG),
2732                          SrcSV, SrcSVOff + SrcOff, false, Align);
2733      Store = DAG.getStore(Chain, Value,
2734                           getMemBasePlusOffset(Dst, DstOff, DAG),
2735                           DstSV, DstSVOff + DstOff, false, DstAlign);
2736    }
2737    OutChains.push_back(Store);
2738    SrcOff += VTSize;
2739    DstOff += VTSize;
2740  }
2741
2742  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2743                     &OutChains[0], OutChains.size());
2744}
2745
2746static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2747                                          SDOperand Chain, SDOperand Dst,
2748                                          SDOperand Src, uint64_t Size,
2749                                          unsigned Align, bool AlwaysInline,
2750                                          const Value *DstSV, uint64_t DstSVOff,
2751                                          const Value *SrcSV, uint64_t SrcSVOff){
2752  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2753
2754  // Expand memmove to a series of load and store ops if the size operand falls
2755  // below a certain threshold.
2756  std::vector<MVT::ValueType> MemOps;
2757  uint64_t Limit = -1;
2758  if (!AlwaysInline)
2759    Limit = TLI.getMaxStoresPerMemmove();
2760  unsigned DstAlign = Align;  // Destination alignment can change.
2761  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2762                                DAG, TLI))
2763    return SDOperand();
2764
2765  uint64_t SrcOff = 0, DstOff = 0;
2766
2767  SmallVector<SDOperand, 8> LoadValues;
2768  SmallVector<SDOperand, 8> LoadChains;
2769  SmallVector<SDOperand, 8> OutChains;
2770  unsigned NumMemOps = MemOps.size();
2771  for (unsigned i = 0; i < NumMemOps; i++) {
2772    MVT::ValueType VT = MemOps[i];
2773    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2774    SDOperand Value, Store;
2775
2776    Value = DAG.getLoad(VT, Chain,
2777                        getMemBasePlusOffset(Src, SrcOff, DAG),
2778                        SrcSV, SrcSVOff + SrcOff, false, Align);
2779    LoadValues.push_back(Value);
2780    LoadChains.push_back(Value.getValue(1));
2781    SrcOff += VTSize;
2782  }
2783  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2784                      &LoadChains[0], LoadChains.size());
2785  OutChains.clear();
2786  for (unsigned i = 0; i < NumMemOps; i++) {
2787    MVT::ValueType VT = MemOps[i];
2788    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2789    SDOperand Value, Store;
2790
2791    Store = DAG.getStore(Chain, LoadValues[i],
2792                         getMemBasePlusOffset(Dst, DstOff, DAG),
2793                         DstSV, DstSVOff + DstOff, false, DstAlign);
2794    OutChains.push_back(Store);
2795    DstOff += VTSize;
2796  }
2797
2798  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2799                     &OutChains[0], OutChains.size());
2800}
2801
2802static SDOperand getMemsetStores(SelectionDAG &DAG,
2803                                 SDOperand Chain, SDOperand Dst,
2804                                 SDOperand Src, uint64_t Size,
2805                                 unsigned Align,
2806                                 const Value *DstSV, uint64_t DstSVOff) {
2807  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2808
2809  // Expand memset to a series of load/store ops if the size operand
2810  // falls below a certain threshold.
2811  std::vector<MVT::ValueType> MemOps;
2812  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2813                                Size, Align, DAG, TLI))
2814    return SDOperand();
2815
2816  SmallVector<SDOperand, 8> OutChains;
2817  uint64_t DstOff = 0;
2818
2819  unsigned NumMemOps = MemOps.size();
2820  for (unsigned i = 0; i < NumMemOps; i++) {
2821    MVT::ValueType VT = MemOps[i];
2822    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2823    SDOperand Value = getMemsetValue(Src, VT, DAG);
2824    SDOperand Store = DAG.getStore(Chain, Value,
2825                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2826                                   DstSV, DstSVOff + DstOff);
2827    OutChains.push_back(Store);
2828    DstOff += VTSize;
2829  }
2830
2831  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2832                     &OutChains[0], OutChains.size());
2833}
2834
2835SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2836                                  SDOperand Src, SDOperand Size,
2837                                  unsigned Align, bool AlwaysInline,
2838                                  const Value *DstSV, uint64_t DstSVOff,
2839                                  const Value *SrcSV, uint64_t SrcSVOff) {
2840
2841  // Check to see if we should lower the memcpy to loads and stores first.
2842  // For cases within the target-specified limits, this is the best choice.
2843  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2844  if (ConstantSize) {
2845    // Memcpy with size zero? Just return the original chain.
2846    if (ConstantSize->isNullValue())
2847      return Chain;
2848
2849    SDOperand Result =
2850      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2851                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2852    if (Result.Val)
2853      return Result;
2854  }
2855
2856  // Then check to see if we should lower the memcpy with target-specific
2857  // code. If the target chooses to do this, this is the next best.
2858  SDOperand Result =
2859    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2860                                AlwaysInline,
2861                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2862  if (Result.Val)
2863    return Result;
2864
2865  // If we really need inline code and the target declined to provide it,
2866  // use a (potentially long) sequence of loads and stores.
2867  if (AlwaysInline) {
2868    assert(ConstantSize && "AlwaysInline requires a constant size!");
2869    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2870                                   ConstantSize->getValue(), Align, true,
2871                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2872  }
2873
2874  // Emit a library call.
2875  TargetLowering::ArgListTy Args;
2876  TargetLowering::ArgListEntry Entry;
2877  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2878  Entry.Node = Dst; Args.push_back(Entry);
2879  Entry.Node = Src; Args.push_back(Entry);
2880  Entry.Node = Size; Args.push_back(Entry);
2881  std::pair<SDOperand,SDOperand> CallResult =
2882    TLI.LowerCallTo(Chain, Type::VoidTy,
2883                    false, false, false, CallingConv::C, false,
2884                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2885                    Args, *this);
2886  return CallResult.second;
2887}
2888
2889SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2890                                   SDOperand Src, SDOperand Size,
2891                                   unsigned Align,
2892                                   const Value *DstSV, uint64_t DstSVOff,
2893                                   const Value *SrcSV, uint64_t SrcSVOff) {
2894
2895  // Check to see if we should lower the memmove to loads and stores first.
2896  // For cases within the target-specified limits, this is the best choice.
2897  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2898  if (ConstantSize) {
2899    // Memmove with size zero? Just return the original chain.
2900    if (ConstantSize->isNullValue())
2901      return Chain;
2902
2903    SDOperand Result =
2904      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2905                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2906    if (Result.Val)
2907      return Result;
2908  }
2909
2910  // Then check to see if we should lower the memmove with target-specific
2911  // code. If the target chooses to do this, this is the next best.
2912  SDOperand Result =
2913    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2914                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2915  if (Result.Val)
2916    return Result;
2917
2918  // Emit a library call.
2919  TargetLowering::ArgListTy Args;
2920  TargetLowering::ArgListEntry Entry;
2921  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2922  Entry.Node = Dst; Args.push_back(Entry);
2923  Entry.Node = Src; Args.push_back(Entry);
2924  Entry.Node = Size; Args.push_back(Entry);
2925  std::pair<SDOperand,SDOperand> CallResult =
2926    TLI.LowerCallTo(Chain, Type::VoidTy,
2927                    false, false, false, CallingConv::C, false,
2928                    getExternalSymbol("memmove", TLI.getPointerTy()),
2929                    Args, *this);
2930  return CallResult.second;
2931}
2932
2933SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2934                                  SDOperand Src, SDOperand Size,
2935                                  unsigned Align,
2936                                  const Value *DstSV, uint64_t DstSVOff) {
2937
2938  // Check to see if we should lower the memset to stores first.
2939  // For cases within the target-specified limits, this is the best choice.
2940  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2941  if (ConstantSize) {
2942    // Memset with size zero? Just return the original chain.
2943    if (ConstantSize->isNullValue())
2944      return Chain;
2945
2946    SDOperand Result =
2947      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2948                      DstSV, DstSVOff);
2949    if (Result.Val)
2950      return Result;
2951  }
2952
2953  // Then check to see if we should lower the memset with target-specific
2954  // code. If the target chooses to do this, this is the next best.
2955  SDOperand Result =
2956    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2957                                DstSV, DstSVOff);
2958  if (Result.Val)
2959    return Result;
2960
2961  // Emit a library call.
2962  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2963  TargetLowering::ArgListTy Args;
2964  TargetLowering::ArgListEntry Entry;
2965  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2966  Args.push_back(Entry);
2967  // Extend or truncate the argument to be an i32 value for the call.
2968  if (Src.getValueType() > MVT::i32)
2969    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2970  else
2971    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2972  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2973  Args.push_back(Entry);
2974  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2975  Args.push_back(Entry);
2976  std::pair<SDOperand,SDOperand> CallResult =
2977    TLI.LowerCallTo(Chain, Type::VoidTy,
2978                    false, false, false, CallingConv::C, false,
2979                    getExternalSymbol("memset", TLI.getPointerTy()),
2980                    Args, *this);
2981  return CallResult.second;
2982}
2983
2984SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2985                                  SDOperand Ptr, SDOperand Cmp,
2986                                  SDOperand Swp, MVT::ValueType VT) {
2987  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2988  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2989  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2990  FoldingSetNodeID ID;
2991  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2992  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2993  ID.AddInteger((unsigned int)VT);
2994  void* IP = 0;
2995  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2996    return SDOperand(E, 0);
2997  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2998  CSEMap.InsertNode(N, IP);
2999  AllNodes.push_back(N);
3000  return SDOperand(N, 0);
3001}
3002
3003SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3004                                  SDOperand Ptr, SDOperand Val,
3005                                  MVT::ValueType VT) {
3006  assert((   Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_LSS
3007          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3008          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3009          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3010          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3011         && "Invalid Atomic Op");
3012  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3013  FoldingSetNodeID ID;
3014  SDOperand Ops[] = {Chain, Ptr, Val};
3015  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3016  ID.AddInteger((unsigned int)VT);
3017  void* IP = 0;
3018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3019    return SDOperand(E, 0);
3020  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
3021  CSEMap.InsertNode(N, IP);
3022  AllNodes.push_back(N);
3023  return SDOperand(N, 0);
3024}
3025
3026SDOperand
3027SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3028                      MVT::ValueType VT, SDOperand Chain,
3029                      SDOperand Ptr, SDOperand Offset,
3030                      const Value *SV, int SVOffset, MVT::ValueType EVT,
3031                      bool isVolatile, unsigned Alignment) {
3032  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3033    const Type *Ty = 0;
3034    if (VT != MVT::iPTR) {
3035      Ty = MVT::getTypeForValueType(VT);
3036    } else if (SV) {
3037      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3038      assert(PT && "Value for load must be a pointer");
3039      Ty = PT->getElementType();
3040    }
3041    assert(Ty && "Could not get type information for load");
3042    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3043  }
3044
3045  if (VT == EVT) {
3046    ExtType = ISD::NON_EXTLOAD;
3047  } else if (ExtType == ISD::NON_EXTLOAD) {
3048    assert(VT == EVT && "Non-extending load from different memory type!");
3049  } else {
3050    // Extending load.
3051    if (MVT::isVector(VT))
3052      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
3053    else
3054      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
3055             "Should only be an extending load, not truncating!");
3056    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
3057           "Cannot sign/zero extend a FP/Vector load!");
3058    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
3059           "Cannot convert from FP to Int or Int -> FP!");
3060  }
3061
3062  bool Indexed = AM != ISD::UNINDEXED;
3063  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3064         "Unindexed load with an offset!");
3065
3066  SDVTList VTs = Indexed ?
3067    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3068  SDOperand Ops[] = { Chain, Ptr, Offset };
3069  FoldingSetNodeID ID;
3070  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3071  ID.AddInteger(AM);
3072  ID.AddInteger(ExtType);
3073  ID.AddInteger((unsigned int)EVT);
3074  ID.AddInteger(Alignment);
3075  ID.AddInteger(isVolatile);
3076  void *IP = 0;
3077  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3078    return SDOperand(E, 0);
3079  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3080                             Alignment, isVolatile);
3081  CSEMap.InsertNode(N, IP);
3082  AllNodes.push_back(N);
3083  return SDOperand(N, 0);
3084}
3085
3086SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
3087                                SDOperand Chain, SDOperand Ptr,
3088                                const Value *SV, int SVOffset,
3089                                bool isVolatile, unsigned Alignment) {
3090  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3091  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3092                 SV, SVOffset, VT, isVolatile, Alignment);
3093}
3094
3095SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
3096                                   SDOperand Chain, SDOperand Ptr,
3097                                   const Value *SV,
3098                                   int SVOffset, MVT::ValueType EVT,
3099                                   bool isVolatile, unsigned Alignment) {
3100  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3101  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3102                 SV, SVOffset, EVT, isVolatile, Alignment);
3103}
3104
3105SDOperand
3106SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3107                             SDOperand Offset, ISD::MemIndexedMode AM) {
3108  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3109  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3110         "Load is already a indexed load!");
3111  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3112                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3113                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3114                 LD->isVolatile(), LD->getAlignment());
3115}
3116
3117SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3118                                 SDOperand Ptr, const Value *SV, int SVOffset,
3119                                 bool isVolatile, unsigned Alignment) {
3120  MVT::ValueType VT = Val.getValueType();
3121
3122  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3123    const Type *Ty = 0;
3124    if (VT != MVT::iPTR) {
3125      Ty = MVT::getTypeForValueType(VT);
3126    } else if (SV) {
3127      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3128      assert(PT && "Value for store must be a pointer");
3129      Ty = PT->getElementType();
3130    }
3131    assert(Ty && "Could not get type information for store");
3132    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3133  }
3134  SDVTList VTs = getVTList(MVT::Other);
3135  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3136  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3137  FoldingSetNodeID ID;
3138  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3139  ID.AddInteger(ISD::UNINDEXED);
3140  ID.AddInteger(false);
3141  ID.AddInteger((unsigned int)VT);
3142  ID.AddInteger(Alignment);
3143  ID.AddInteger(isVolatile);
3144  void *IP = 0;
3145  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3146    return SDOperand(E, 0);
3147  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3148                              VT, SV, SVOffset, Alignment, isVolatile);
3149  CSEMap.InsertNode(N, IP);
3150  AllNodes.push_back(N);
3151  return SDOperand(N, 0);
3152}
3153
3154SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3155                                      SDOperand Ptr, const Value *SV,
3156                                      int SVOffset, MVT::ValueType SVT,
3157                                      bool isVolatile, unsigned Alignment) {
3158  MVT::ValueType VT = Val.getValueType();
3159
3160  if (VT == SVT)
3161    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3162
3163  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
3164         "Not a truncation?");
3165  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
3166         "Can't do FP-INT conversion!");
3167
3168  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3169    const Type *Ty = 0;
3170    if (VT != MVT::iPTR) {
3171      Ty = MVT::getTypeForValueType(VT);
3172    } else if (SV) {
3173      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3174      assert(PT && "Value for store must be a pointer");
3175      Ty = PT->getElementType();
3176    }
3177    assert(Ty && "Could not get type information for store");
3178    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3179  }
3180  SDVTList VTs = getVTList(MVT::Other);
3181  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3182  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3183  FoldingSetNodeID ID;
3184  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3185  ID.AddInteger(ISD::UNINDEXED);
3186  ID.AddInteger(1);
3187  ID.AddInteger((unsigned int)SVT);
3188  ID.AddInteger(Alignment);
3189  ID.AddInteger(isVolatile);
3190  void *IP = 0;
3191  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3192    return SDOperand(E, 0);
3193  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3194                              SVT, SV, SVOffset, Alignment, isVolatile);
3195  CSEMap.InsertNode(N, IP);
3196  AllNodes.push_back(N);
3197  return SDOperand(N, 0);
3198}
3199
3200SDOperand
3201SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3202                              SDOperand Offset, ISD::MemIndexedMode AM) {
3203  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3204  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3205         "Store is already a indexed store!");
3206  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3207  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3208  FoldingSetNodeID ID;
3209  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3210  ID.AddInteger(AM);
3211  ID.AddInteger(ST->isTruncatingStore());
3212  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
3213  ID.AddInteger(ST->getAlignment());
3214  ID.AddInteger(ST->isVolatile());
3215  void *IP = 0;
3216  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3217    return SDOperand(E, 0);
3218  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3219                              ST->isTruncatingStore(), ST->getMemoryVT(),
3220                              ST->getSrcValue(), ST->getSrcValueOffset(),
3221                              ST->getAlignment(), ST->isVolatile());
3222  CSEMap.InsertNode(N, IP);
3223  AllNodes.push_back(N);
3224  return SDOperand(N, 0);
3225}
3226
3227SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
3228                                 SDOperand Chain, SDOperand Ptr,
3229                                 SDOperand SV) {
3230  SDOperand Ops[] = { Chain, Ptr, SV };
3231  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3232}
3233
3234SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
3235                                SDOperandPtr Ops, unsigned NumOps) {
3236  switch (NumOps) {
3237  case 0: return getNode(Opcode, VT);
3238  case 1: return getNode(Opcode, VT, Ops[0]);
3239  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3240  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3241  default: break;
3242  }
3243
3244  switch (Opcode) {
3245  default: break;
3246  case ISD::SELECT_CC: {
3247    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3248    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3249           "LHS and RHS of condition must have same type!");
3250    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3251           "True and False arms of SelectCC must have same type!");
3252    assert(Ops[2].getValueType() == VT &&
3253           "select_cc node must be of same type as true and false value!");
3254    break;
3255  }
3256  case ISD::BR_CC: {
3257    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3258    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3259           "LHS/RHS of comparison should match types!");
3260    break;
3261  }
3262  }
3263
3264  // Memoize nodes.
3265  SDNode *N;
3266  SDVTList VTs = getVTList(VT);
3267  if (VT != MVT::Flag) {
3268    FoldingSetNodeID ID;
3269    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3270    void *IP = 0;
3271    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3272      return SDOperand(E, 0);
3273    N = new SDNode(Opcode, VTs, Ops, NumOps);
3274    CSEMap.InsertNode(N, IP);
3275  } else {
3276    N = new SDNode(Opcode, VTs, Ops, NumOps);
3277  }
3278  AllNodes.push_back(N);
3279  return SDOperand(N, 0);
3280}
3281
3282SDOperand SelectionDAG::getNode(unsigned Opcode,
3283                                std::vector<MVT::ValueType> &ResultTys,
3284                                SDOperandPtr Ops, unsigned NumOps) {
3285  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3286                 Ops, NumOps);
3287}
3288
3289SDOperand SelectionDAG::getNode(unsigned Opcode,
3290                                const MVT::ValueType *VTs, unsigned NumVTs,
3291                                SDOperandPtr Ops, unsigned NumOps) {
3292  if (NumVTs == 1)
3293    return getNode(Opcode, VTs[0], Ops, NumOps);
3294  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3295}
3296
3297SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3298                                SDOperandPtr Ops, unsigned NumOps) {
3299  if (VTList.NumVTs == 1)
3300    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3301
3302  switch (Opcode) {
3303  // FIXME: figure out how to safely handle things like
3304  // int foo(int x) { return 1 << (x & 255); }
3305  // int bar() { return foo(256); }
3306#if 0
3307  case ISD::SRA_PARTS:
3308  case ISD::SRL_PARTS:
3309  case ISD::SHL_PARTS:
3310    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3311        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3312      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3313    else if (N3.getOpcode() == ISD::AND)
3314      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3315        // If the and is only masking out bits that cannot effect the shift,
3316        // eliminate the and.
3317        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3318        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3319          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3320      }
3321    break;
3322#endif
3323  }
3324
3325  // Memoize the node unless it returns a flag.
3326  SDNode *N;
3327  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3328    FoldingSetNodeID ID;
3329    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3330    void *IP = 0;
3331    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3332      return SDOperand(E, 0);
3333    if (NumOps == 1)
3334      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3335    else if (NumOps == 2)
3336      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3337    else if (NumOps == 3)
3338      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3339    else
3340      N = new SDNode(Opcode, VTList, Ops, NumOps);
3341    CSEMap.InsertNode(N, IP);
3342  } else {
3343    if (NumOps == 1)
3344      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3345    else if (NumOps == 2)
3346      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3347    else if (NumOps == 3)
3348      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3349    else
3350      N = new SDNode(Opcode, VTList, Ops, NumOps);
3351  }
3352  AllNodes.push_back(N);
3353  return SDOperand(N, 0);
3354}
3355
3356SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3357  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3358}
3359
3360SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3361                                SDOperand N1) {
3362  SDOperand Ops[] = { N1 };
3363  return getNode(Opcode, VTList, Ops, 1);
3364}
3365
3366SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3367                                SDOperand N1, SDOperand N2) {
3368  SDOperand Ops[] = { N1, N2 };
3369  return getNode(Opcode, VTList, Ops, 2);
3370}
3371
3372SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3373                                SDOperand N1, SDOperand N2, SDOperand N3) {
3374  SDOperand Ops[] = { N1, N2, N3 };
3375  return getNode(Opcode, VTList, Ops, 3);
3376}
3377
3378SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3379                                SDOperand N1, SDOperand N2, SDOperand N3,
3380                                SDOperand N4) {
3381  SDOperand Ops[] = { N1, N2, N3, N4 };
3382  return getNode(Opcode, VTList, Ops, 4);
3383}
3384
3385SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3386                                SDOperand N1, SDOperand N2, SDOperand N3,
3387                                SDOperand N4, SDOperand N5) {
3388  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3389  return getNode(Opcode, VTList, Ops, 5);
3390}
3391
3392SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3393  return makeVTList(SDNode::getValueTypeList(VT), 1);
3394}
3395
3396SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3397  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3398       E = VTList.end(); I != E; ++I) {
3399    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3400      return makeVTList(&(*I)[0], 2);
3401  }
3402  std::vector<MVT::ValueType> V;
3403  V.push_back(VT1);
3404  V.push_back(VT2);
3405  VTList.push_front(V);
3406  return makeVTList(&(*VTList.begin())[0], 2);
3407}
3408SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3409                                 MVT::ValueType VT3) {
3410  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3411       E = VTList.end(); I != E; ++I) {
3412    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3413        (*I)[2] == VT3)
3414      return makeVTList(&(*I)[0], 3);
3415  }
3416  std::vector<MVT::ValueType> V;
3417  V.push_back(VT1);
3418  V.push_back(VT2);
3419  V.push_back(VT3);
3420  VTList.push_front(V);
3421  return makeVTList(&(*VTList.begin())[0], 3);
3422}
3423
3424SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3425  switch (NumVTs) {
3426    case 0: assert(0 && "Cannot have nodes without results!");
3427    case 1: return getVTList(VTs[0]);
3428    case 2: return getVTList(VTs[0], VTs[1]);
3429    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3430    default: break;
3431  }
3432
3433  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3434       E = VTList.end(); I != E; ++I) {
3435    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3436
3437    bool NoMatch = false;
3438    for (unsigned i = 2; i != NumVTs; ++i)
3439      if (VTs[i] != (*I)[i]) {
3440        NoMatch = true;
3441        break;
3442      }
3443    if (!NoMatch)
3444      return makeVTList(&*I->begin(), NumVTs);
3445  }
3446
3447  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3448  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3449}
3450
3451
3452/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3453/// specified operands.  If the resultant node already exists in the DAG,
3454/// this does not modify the specified node, instead it returns the node that
3455/// already exists.  If the resultant node does not exist in the DAG, the
3456/// input node is returned.  As a degenerate case, if you specify the same
3457/// input operands as the node already has, the input node is returned.
3458SDOperand SelectionDAG::
3459UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3460  SDNode *N = InN.Val;
3461  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3462
3463  // Check to see if there is no change.
3464  if (Op == N->getOperand(0)) return InN;
3465
3466  // See if the modified node already exists.
3467  void *InsertPos = 0;
3468  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3469    return SDOperand(Existing, InN.ResNo);
3470
3471  // Nope it doesn't.  Remove the node from it's current place in the maps.
3472  if (InsertPos)
3473    RemoveNodeFromCSEMaps(N);
3474
3475  // Now we update the operands.
3476  N->OperandList[0].getVal()->removeUser(0, N);
3477  N->OperandList[0] = Op;
3478  N->OperandList[0].setUser(N);
3479  Op.Val->addUser(0, N);
3480
3481  // If this gets put into a CSE map, add it.
3482  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3483  return InN;
3484}
3485
3486SDOperand SelectionDAG::
3487UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3488  SDNode *N = InN.Val;
3489  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3490
3491  // Check to see if there is no change.
3492  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3493    return InN;   // No operands changed, just return the input node.
3494
3495  // See if the modified node already exists.
3496  void *InsertPos = 0;
3497  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3498    return SDOperand(Existing, InN.ResNo);
3499
3500  // Nope it doesn't.  Remove the node from it's current place in the maps.
3501  if (InsertPos)
3502    RemoveNodeFromCSEMaps(N);
3503
3504  // Now we update the operands.
3505  if (N->OperandList[0] != Op1) {
3506    N->OperandList[0].getVal()->removeUser(0, N);
3507    N->OperandList[0] = Op1;
3508    N->OperandList[0].setUser(N);
3509    Op1.Val->addUser(0, N);
3510  }
3511  if (N->OperandList[1] != Op2) {
3512    N->OperandList[1].getVal()->removeUser(1, N);
3513    N->OperandList[1] = Op2;
3514    N->OperandList[1].setUser(N);
3515    Op2.Val->addUser(1, N);
3516  }
3517
3518  // If this gets put into a CSE map, add it.
3519  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3520  return InN;
3521}
3522
3523SDOperand SelectionDAG::
3524UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3525  SDOperand Ops[] = { Op1, Op2, Op3 };
3526  return UpdateNodeOperands(N, Ops, 3);
3527}
3528
3529SDOperand SelectionDAG::
3530UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3531                   SDOperand Op3, SDOperand Op4) {
3532  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3533  return UpdateNodeOperands(N, Ops, 4);
3534}
3535
3536SDOperand SelectionDAG::
3537UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3538                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3539  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3540  return UpdateNodeOperands(N, Ops, 5);
3541}
3542
3543SDOperand SelectionDAG::
3544UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3545  SDNode *N = InN.Val;
3546  assert(N->getNumOperands() == NumOps &&
3547         "Update with wrong number of operands");
3548
3549  // Check to see if there is no change.
3550  bool AnyChange = false;
3551  for (unsigned i = 0; i != NumOps; ++i) {
3552    if (Ops[i] != N->getOperand(i)) {
3553      AnyChange = true;
3554      break;
3555    }
3556  }
3557
3558  // No operands changed, just return the input node.
3559  if (!AnyChange) return InN;
3560
3561  // See if the modified node already exists.
3562  void *InsertPos = 0;
3563  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3564    return SDOperand(Existing, InN.ResNo);
3565
3566  // Nope it doesn't.  Remove the node from its current place in the maps.
3567  if (InsertPos)
3568    RemoveNodeFromCSEMaps(N);
3569
3570  // Now we update the operands.
3571  for (unsigned i = 0; i != NumOps; ++i) {
3572    if (N->OperandList[i] != Ops[i]) {
3573      N->OperandList[i].getVal()->removeUser(i, N);
3574      N->OperandList[i] = Ops[i];
3575      N->OperandList[i].setUser(N);
3576      Ops[i].Val->addUser(i, N);
3577    }
3578  }
3579
3580  // If this gets put into a CSE map, add it.
3581  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3582  return InN;
3583}
3584
3585/// MorphNodeTo - This frees the operands of the current node, resets the
3586/// opcode, types, and operands to the specified value.  This should only be
3587/// used by the SelectionDAG class.
3588void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3589                         SDOperandPtr Ops, unsigned NumOps) {
3590  NodeType = Opc;
3591  ValueList = L.VTs;
3592  NumValues = L.NumVTs;
3593
3594  // Clear the operands list, updating used nodes to remove this from their
3595  // use list.
3596  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3597    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3598
3599  // If NumOps is larger than the # of operands we currently have, reallocate
3600  // the operand list.
3601  if (NumOps > NumOperands) {
3602    if (OperandsNeedDelete) {
3603      delete [] OperandList;
3604    }
3605    OperandList = new SDUse[NumOps];
3606    OperandsNeedDelete = true;
3607  }
3608
3609  // Assign the new operands.
3610  NumOperands = NumOps;
3611
3612  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3613    OperandList[i] = Ops[i];
3614    OperandList[i].setUser(this);
3615    SDNode *N = OperandList[i].getVal();
3616    N->addUser(i, this);
3617    ++N->UsesSize;
3618  }
3619}
3620
3621/// SelectNodeTo - These are used for target selectors to *mutate* the
3622/// specified node to have the specified return type, Target opcode, and
3623/// operands.  Note that target opcodes are stored as
3624/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3625///
3626/// Note that SelectNodeTo returns the resultant node.  If there is already a
3627/// node of the specified opcode and operands, it returns that node instead of
3628/// the current one.
3629SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3630                                   MVT::ValueType VT) {
3631  SDVTList VTs = getVTList(VT);
3632  FoldingSetNodeID ID;
3633  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3634  void *IP = 0;
3635  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3636    return ON;
3637
3638  RemoveNodeFromCSEMaps(N);
3639
3640  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3641
3642  CSEMap.InsertNode(N, IP);
3643  return N;
3644}
3645
3646SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3647                                   MVT::ValueType VT, SDOperand Op1) {
3648  // If an identical node already exists, use it.
3649  SDVTList VTs = getVTList(VT);
3650  SDOperand Ops[] = { Op1 };
3651
3652  FoldingSetNodeID ID;
3653  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3654  void *IP = 0;
3655  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3656    return ON;
3657
3658  RemoveNodeFromCSEMaps(N);
3659  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3660  CSEMap.InsertNode(N, IP);
3661  return N;
3662}
3663
3664SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3665                                   MVT::ValueType VT, SDOperand Op1,
3666                                   SDOperand Op2) {
3667  // If an identical node already exists, use it.
3668  SDVTList VTs = getVTList(VT);
3669  SDOperand Ops[] = { Op1, Op2 };
3670
3671  FoldingSetNodeID ID;
3672  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3673  void *IP = 0;
3674  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3675    return ON;
3676
3677  RemoveNodeFromCSEMaps(N);
3678
3679  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3680
3681  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3682  return N;
3683}
3684
3685SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3686                                   MVT::ValueType VT, SDOperand Op1,
3687                                   SDOperand Op2, SDOperand Op3) {
3688  // If an identical node already exists, use it.
3689  SDVTList VTs = getVTList(VT);
3690  SDOperand Ops[] = { Op1, Op2, Op3 };
3691  FoldingSetNodeID ID;
3692  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3693  void *IP = 0;
3694  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3695    return ON;
3696
3697  RemoveNodeFromCSEMaps(N);
3698
3699  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3700
3701  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3702  return N;
3703}
3704
3705SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3706                                   MVT::ValueType VT, SDOperandPtr Ops,
3707                                   unsigned NumOps) {
3708  // If an identical node already exists, use it.
3709  SDVTList VTs = getVTList(VT);
3710  FoldingSetNodeID ID;
3711  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3712  void *IP = 0;
3713  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3714    return ON;
3715
3716  RemoveNodeFromCSEMaps(N);
3717  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3718
3719  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3720  return N;
3721}
3722
3723SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3724                                   MVT::ValueType VT1, MVT::ValueType VT2,
3725                                   SDOperand Op1, SDOperand Op2) {
3726  SDVTList VTs = getVTList(VT1, VT2);
3727  FoldingSetNodeID ID;
3728  SDOperand Ops[] = { Op1, Op2 };
3729  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3730  void *IP = 0;
3731  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3732    return ON;
3733
3734  RemoveNodeFromCSEMaps(N);
3735  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3736  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3737  return N;
3738}
3739
3740SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3741                                   MVT::ValueType VT1, MVT::ValueType VT2,
3742                                   SDOperand Op1, SDOperand Op2,
3743                                   SDOperand Op3) {
3744  // If an identical node already exists, use it.
3745  SDVTList VTs = getVTList(VT1, VT2);
3746  SDOperand Ops[] = { Op1, Op2, Op3 };
3747  FoldingSetNodeID ID;
3748  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3749  void *IP = 0;
3750  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3751    return ON;
3752
3753  RemoveNodeFromCSEMaps(N);
3754
3755  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3756  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3757  return N;
3758}
3759
3760
3761/// getTargetNode - These are used for target selectors to create a new node
3762/// with specified return type(s), target opcode, and operands.
3763///
3764/// Note that getTargetNode returns the resultant node.  If there is already a
3765/// node of the specified opcode and operands, it returns that node instead of
3766/// the current one.
3767SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3768  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3769}
3770SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3771                                    SDOperand Op1) {
3772  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3773}
3774SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3775                                    SDOperand Op1, SDOperand Op2) {
3776  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3777}
3778SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3779                                    SDOperand Op1, SDOperand Op2,
3780                                    SDOperand Op3) {
3781  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3782}
3783SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3784                                    SDOperandPtr Ops, unsigned NumOps) {
3785  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3786}
3787SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3788                                    MVT::ValueType VT2) {
3789  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3790  SDOperand Op;
3791  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3792}
3793SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3794                                    MVT::ValueType VT2, SDOperand Op1) {
3795  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3796  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3797}
3798SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3799                                    MVT::ValueType VT2, SDOperand Op1,
3800                                    SDOperand Op2) {
3801  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3802  SDOperand Ops[] = { Op1, Op2 };
3803  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3804}
3805SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3806                                    MVT::ValueType VT2, SDOperand Op1,
3807                                    SDOperand Op2, SDOperand Op3) {
3808  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3809  SDOperand Ops[] = { Op1, Op2, Op3 };
3810  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3811}
3812SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3813                                    MVT::ValueType VT2,
3814                                    SDOperandPtr Ops, unsigned NumOps) {
3815  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3816  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3817}
3818SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3819                                    MVT::ValueType VT2, MVT::ValueType VT3,
3820                                    SDOperand Op1, SDOperand Op2) {
3821  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3822  SDOperand Ops[] = { Op1, Op2 };
3823  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3824}
3825SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3826                                    MVT::ValueType VT2, MVT::ValueType VT3,
3827                                    SDOperand Op1, SDOperand Op2,
3828                                    SDOperand Op3) {
3829  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3830  SDOperand Ops[] = { Op1, Op2, Op3 };
3831  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3832}
3833SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3834                                    MVT::ValueType VT2, MVT::ValueType VT3,
3835                                    SDOperandPtr Ops, unsigned NumOps) {
3836  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3837  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3838}
3839SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3840                                    MVT::ValueType VT2, MVT::ValueType VT3,
3841                                    MVT::ValueType VT4,
3842                                    SDOperandPtr Ops, unsigned NumOps) {
3843  std::vector<MVT::ValueType> VTList;
3844  VTList.push_back(VT1);
3845  VTList.push_back(VT2);
3846  VTList.push_back(VT3);
3847  VTList.push_back(VT4);
3848  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3849  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3850}
3851SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3852                                    std::vector<MVT::ValueType> &ResultTys,
3853                                    SDOperandPtr Ops, unsigned NumOps) {
3854  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3855  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3856                 Ops, NumOps).Val;
3857}
3858
3859/// getNodeIfExists - Get the specified node if it's already available, or
3860/// else return NULL.
3861SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3862                                      SDOperandPtr Ops, unsigned NumOps) {
3863  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3864    FoldingSetNodeID ID;
3865    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3866    void *IP = 0;
3867    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3868      return E;
3869  }
3870  return NULL;
3871}
3872
3873
3874/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3875/// This can cause recursive merging of nodes in the DAG.
3876///
3877/// This version assumes From has a single result value.
3878///
3879void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3880                                      DAGUpdateListener *UpdateListener) {
3881  SDNode *From = FromN.Val;
3882  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3883         "Cannot replace with this method!");
3884  assert(From != To.Val && "Cannot replace uses of with self");
3885
3886  while (!From->use_empty()) {
3887    SDNode::use_iterator UI = From->use_begin();
3888    SDNode *U = UI->getUser();
3889
3890    // This node is about to morph, remove its old self from the CSE maps.
3891    RemoveNodeFromCSEMaps(U);
3892    int operandNum = 0;
3893    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3894         I != E; ++I, ++operandNum)
3895      if (I->getVal() == From) {
3896        From->removeUser(operandNum, U);
3897        *I = To;
3898        I->setUser(U);
3899        To.Val->addUser(operandNum, U);
3900      }
3901
3902    // Now that we have modified U, add it back to the CSE maps.  If it already
3903    // exists there, recursively merge the results together.
3904    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3905      ReplaceAllUsesWith(U, Existing, UpdateListener);
3906      // U is now dead.  Inform the listener if it exists and delete it.
3907      if (UpdateListener)
3908        UpdateListener->NodeDeleted(U);
3909      DeleteNodeNotInCSEMaps(U);
3910    } else {
3911      // If the node doesn't already exist, we updated it.  Inform a listener if
3912      // it exists.
3913      if (UpdateListener)
3914        UpdateListener->NodeUpdated(U);
3915    }
3916  }
3917}
3918
3919/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3920/// This can cause recursive merging of nodes in the DAG.
3921///
3922/// This version assumes From/To have matching types and numbers of result
3923/// values.
3924///
3925void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3926                                      DAGUpdateListener *UpdateListener) {
3927  assert(From != To && "Cannot replace uses of with self");
3928  assert(From->getNumValues() == To->getNumValues() &&
3929         "Cannot use this version of ReplaceAllUsesWith!");
3930  if (From->getNumValues() == 1)   // If possible, use the faster version.
3931    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3932                              UpdateListener);
3933
3934  while (!From->use_empty()) {
3935    SDNode::use_iterator UI = From->use_begin();
3936    SDNode *U = UI->getUser();
3937
3938    // This node is about to morph, remove its old self from the CSE maps.
3939    RemoveNodeFromCSEMaps(U);
3940    int operandNum = 0;
3941    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3942         I != E; ++I, ++operandNum)
3943      if (I->getVal() == From) {
3944        From->removeUser(operandNum, U);
3945        I->getVal() = To;
3946        To->addUser(operandNum, U);
3947      }
3948
3949    // Now that we have modified U, add it back to the CSE maps.  If it already
3950    // exists there, recursively merge the results together.
3951    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3952      ReplaceAllUsesWith(U, Existing, UpdateListener);
3953      // U is now dead.  Inform the listener if it exists and delete it.
3954      if (UpdateListener)
3955        UpdateListener->NodeDeleted(U);
3956      DeleteNodeNotInCSEMaps(U);
3957    } else {
3958      // If the node doesn't already exist, we updated it.  Inform a listener if
3959      // it exists.
3960      if (UpdateListener)
3961        UpdateListener->NodeUpdated(U);
3962    }
3963  }
3964}
3965
3966/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3967/// This can cause recursive merging of nodes in the DAG.
3968///
3969/// This version can replace From with any result values.  To must match the
3970/// number and types of values returned by From.
3971void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3972                                      SDOperandPtr To,
3973                                      DAGUpdateListener *UpdateListener) {
3974  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3975    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3976
3977  while (!From->use_empty()) {
3978    SDNode::use_iterator UI = From->use_begin();
3979    SDNode *U = UI->getUser();
3980
3981    // This node is about to morph, remove its old self from the CSE maps.
3982    RemoveNodeFromCSEMaps(U);
3983    int operandNum = 0;
3984    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3985         I != E; ++I, ++operandNum)
3986      if (I->getVal() == From) {
3987        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3988        From->removeUser(operandNum, U);
3989        *I = ToOp;
3990        I->setUser(U);
3991        ToOp.Val->addUser(operandNum, U);
3992      }
3993
3994    // Now that we have modified U, add it back to the CSE maps.  If it already
3995    // exists there, recursively merge the results together.
3996    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3997      ReplaceAllUsesWith(U, Existing, UpdateListener);
3998      // U is now dead.  Inform the listener if it exists and delete it.
3999      if (UpdateListener)
4000        UpdateListener->NodeDeleted(U);
4001      DeleteNodeNotInCSEMaps(U);
4002    } else {
4003      // If the node doesn't already exist, we updated it.  Inform a listener if
4004      // it exists.
4005      if (UpdateListener)
4006        UpdateListener->NodeUpdated(U);
4007    }
4008  }
4009}
4010
4011namespace {
4012  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4013  /// any deleted nodes from the set passed into its constructor and recursively
4014  /// notifies another update listener if specified.
4015  class ChainedSetUpdaterListener :
4016  public SelectionDAG::DAGUpdateListener {
4017    SmallSetVector<SDNode*, 16> &Set;
4018    SelectionDAG::DAGUpdateListener *Chain;
4019  public:
4020    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4021                              SelectionDAG::DAGUpdateListener *chain)
4022      : Set(set), Chain(chain) {}
4023
4024    virtual void NodeDeleted(SDNode *N) {
4025      Set.remove(N);
4026      if (Chain) Chain->NodeDeleted(N);
4027    }
4028    virtual void NodeUpdated(SDNode *N) {
4029      if (Chain) Chain->NodeUpdated(N);
4030    }
4031  };
4032}
4033
4034/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4035/// uses of other values produced by From.Val alone.  The Deleted vector is
4036/// handled the same way as for ReplaceAllUsesWith.
4037void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4038                                             DAGUpdateListener *UpdateListener){
4039  assert(From != To && "Cannot replace a value with itself");
4040
4041  // Handle the simple, trivial, case efficiently.
4042  if (From.Val->getNumValues() == 1) {
4043    ReplaceAllUsesWith(From, To, UpdateListener);
4044    return;
4045  }
4046
4047  if (From.use_empty()) return;
4048
4049  // Get all of the users of From.Val.  We want these in a nice,
4050  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4051  SmallSetVector<SDNode*, 16> Users;
4052  for (SDNode::use_iterator UI = From.Val->use_begin(),
4053      E = From.Val->use_end(); UI != E; ++UI) {
4054    SDNode *User = UI->getUser();
4055    if (!Users.count(User))
4056      Users.insert(User);
4057  }
4058
4059  // When one of the recursive merges deletes nodes from the graph, we need to
4060  // make sure that UpdateListener is notified *and* that the node is removed
4061  // from Users if present.  CSUL does this.
4062  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4063
4064  while (!Users.empty()) {
4065    // We know that this user uses some value of From.  If it is the right
4066    // value, update it.
4067    SDNode *User = Users.back();
4068    Users.pop_back();
4069
4070    // Scan for an operand that matches From.
4071    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4072    for (; Op != E; ++Op)
4073      if (*Op == From) break;
4074
4075    // If there are no matches, the user must use some other result of From.
4076    if (Op == E) continue;
4077
4078    // Okay, we know this user needs to be updated.  Remove its old self
4079    // from the CSE maps.
4080    RemoveNodeFromCSEMaps(User);
4081
4082    // Update all operands that match "From" in case there are multiple uses.
4083    for (; Op != E; ++Op) {
4084      if (*Op == From) {
4085        From.Val->removeUser(Op-User->op_begin(), User);
4086        *Op = To;
4087        Op->setUser(User);
4088        To.Val->addUser(Op-User->op_begin(), User);
4089      }
4090    }
4091
4092    // Now that we have modified User, add it back to the CSE maps.  If it
4093    // already exists there, recursively merge the results together.
4094    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4095    if (!Existing) {
4096      if (UpdateListener) UpdateListener->NodeUpdated(User);
4097      continue;  // Continue on to next user.
4098    }
4099
4100    // If there was already an existing matching node, use ReplaceAllUsesWith
4101    // to replace the dead one with the existing one.  This can cause
4102    // recursive merging of other unrelated nodes down the line.  The merging
4103    // can cause deletion of nodes that used the old value.  To handle this, we
4104    // use CSUL to remove them from the Users set.
4105    ReplaceAllUsesWith(User, Existing, &CSUL);
4106
4107    // User is now dead.  Notify a listener if present.
4108    if (UpdateListener) UpdateListener->NodeDeleted(User);
4109    DeleteNodeNotInCSEMaps(User);
4110  }
4111}
4112
4113/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4114/// their allnodes order. It returns the maximum id.
4115unsigned SelectionDAG::AssignNodeIds() {
4116  unsigned Id = 0;
4117  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4118    SDNode *N = I;
4119    N->setNodeId(Id++);
4120  }
4121  return Id;
4122}
4123
4124/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4125/// based on their topological order. It returns the maximum id and a vector
4126/// of the SDNodes* in assigned order by reference.
4127unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4128  unsigned DAGSize = AllNodes.size();
4129  std::vector<unsigned> InDegree(DAGSize);
4130  std::vector<SDNode*> Sources;
4131
4132  // Use a two pass approach to avoid using a std::map which is slow.
4133  unsigned Id = 0;
4134  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4135    SDNode *N = I;
4136    N->setNodeId(Id++);
4137    unsigned Degree = N->use_size();
4138    InDegree[N->getNodeId()] = Degree;
4139    if (Degree == 0)
4140      Sources.push_back(N);
4141  }
4142
4143  TopOrder.clear();
4144  while (!Sources.empty()) {
4145    SDNode *N = Sources.back();
4146    Sources.pop_back();
4147    TopOrder.push_back(N);
4148    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4149      SDNode *P = I->getVal();
4150      unsigned Degree = --InDegree[P->getNodeId()];
4151      if (Degree == 0)
4152        Sources.push_back(P);
4153    }
4154  }
4155
4156  // Second pass, assign the actual topological order as node ids.
4157  Id = 0;
4158  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4159       TI != TE; ++TI)
4160    (*TI)->setNodeId(Id++);
4161
4162  return Id;
4163}
4164
4165
4166
4167//===----------------------------------------------------------------------===//
4168//                              SDNode Class
4169//===----------------------------------------------------------------------===//
4170
4171// Out-of-line virtual method to give class a home.
4172void SDNode::ANCHOR() {}
4173void UnarySDNode::ANCHOR() {}
4174void BinarySDNode::ANCHOR() {}
4175void TernarySDNode::ANCHOR() {}
4176void HandleSDNode::ANCHOR() {}
4177void StringSDNode::ANCHOR() {}
4178void ConstantSDNode::ANCHOR() {}
4179void ConstantFPSDNode::ANCHOR() {}
4180void GlobalAddressSDNode::ANCHOR() {}
4181void FrameIndexSDNode::ANCHOR() {}
4182void JumpTableSDNode::ANCHOR() {}
4183void ConstantPoolSDNode::ANCHOR() {}
4184void BasicBlockSDNode::ANCHOR() {}
4185void SrcValueSDNode::ANCHOR() {}
4186void MemOperandSDNode::ANCHOR() {}
4187void RegisterSDNode::ANCHOR() {}
4188void ExternalSymbolSDNode::ANCHOR() {}
4189void CondCodeSDNode::ANCHOR() {}
4190void ARG_FLAGSSDNode::ANCHOR() {}
4191void VTSDNode::ANCHOR() {}
4192void LoadSDNode::ANCHOR() {}
4193void StoreSDNode::ANCHOR() {}
4194void AtomicSDNode::ANCHOR() {}
4195
4196HandleSDNode::~HandleSDNode() {
4197  SDVTList VTs = { 0, 0 };
4198  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4199}
4200
4201GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4202                                         MVT::ValueType VT, int o)
4203  : SDNode(isa<GlobalVariable>(GA) &&
4204           cast<GlobalVariable>(GA)->isThreadLocal() ?
4205           // Thread Local
4206           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4207           // Non Thread Local
4208           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4209           getSDVTList(VT)), Offset(o) {
4210  TheGlobal = const_cast<GlobalValue*>(GA);
4211}
4212
4213/// getMemOperand - Return a MachineMemOperand object describing the memory
4214/// reference performed by this load or store.
4215MachineMemOperand LSBaseSDNode::getMemOperand() const {
4216  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
4217  int Flags =
4218    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4219                               MachineMemOperand::MOStore;
4220  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
4221
4222  // Check if the load references a frame index, and does not have
4223  // an SV attached.
4224  const FrameIndexSDNode *FI =
4225    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4226  if (!getSrcValue() && FI)
4227    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4228                             FI->getIndex(), Size, Alignment);
4229  else
4230    return MachineMemOperand(getSrcValue(), Flags,
4231                             getSrcValueOffset(), Size, Alignment);
4232}
4233
4234/// Profile - Gather unique data for the node.
4235///
4236void SDNode::Profile(FoldingSetNodeID &ID) {
4237  AddNodeIDNode(ID, this);
4238}
4239
4240/// getValueTypeList - Return a pointer to the specified value type.
4241///
4242const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
4243  if (MVT::isExtendedVT(VT)) {
4244    static std::set<MVT::ValueType> EVTs;
4245    return &(*EVTs.insert(VT).first);
4246  } else {
4247    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4248    VTs[VT] = VT;
4249    return &VTs[VT];
4250  }
4251}
4252
4253/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4254/// indicated value.  This method ignores uses of other values defined by this
4255/// operation.
4256bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4257  assert(Value < getNumValues() && "Bad value!");
4258
4259  // If there is only one value, this is easy.
4260  if (getNumValues() == 1)
4261    return use_size() == NUses;
4262  if (use_size() < NUses) return false;
4263
4264  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4265
4266  SmallPtrSet<SDNode*, 32> UsersHandled;
4267
4268  // TODO: Only iterate over uses of a given value of the node
4269  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4270    if (*UI == TheValue) {
4271      if (NUses == 0)
4272        return false;
4273      --NUses;
4274    }
4275  }
4276
4277  // Found exactly the right number of uses?
4278  return NUses == 0;
4279}
4280
4281
4282/// hasAnyUseOfValue - Return true if there are any use of the indicated
4283/// value. This method ignores uses of other values defined by this operation.
4284bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4285  assert(Value < getNumValues() && "Bad value!");
4286
4287  if (use_empty()) return false;
4288
4289  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4290
4291  SmallPtrSet<SDNode*, 32> UsersHandled;
4292
4293  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4294    SDNode *User = UI->getUser();
4295    if (User->getNumOperands() == 1 ||
4296        UsersHandled.insert(User))     // First time we've seen this?
4297      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4298        if (User->getOperand(i) == TheValue) {
4299          return true;
4300        }
4301  }
4302
4303  return false;
4304}
4305
4306
4307/// isOnlyUseOf - Return true if this node is the only use of N.
4308///
4309bool SDNode::isOnlyUseOf(SDNode *N) const {
4310  bool Seen = false;
4311  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4312    SDNode *User = I->getUser();
4313    if (User == this)
4314      Seen = true;
4315    else
4316      return false;
4317  }
4318
4319  return Seen;
4320}
4321
4322/// isOperand - Return true if this node is an operand of N.
4323///
4324bool SDOperand::isOperandOf(SDNode *N) const {
4325  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4326    if (*this == N->getOperand(i))
4327      return true;
4328  return false;
4329}
4330
4331bool SDNode::isOperandOf(SDNode *N) const {
4332  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4333    if (this == N->OperandList[i].getVal())
4334      return true;
4335  return false;
4336}
4337
4338/// reachesChainWithoutSideEffects - Return true if this operand (which must
4339/// be a chain) reaches the specified operand without crossing any
4340/// side-effecting instructions.  In practice, this looks through token
4341/// factors and non-volatile loads.  In order to remain efficient, this only
4342/// looks a couple of nodes in, it does not do an exhaustive search.
4343bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4344                                               unsigned Depth) const {
4345  if (*this == Dest) return true;
4346
4347  // Don't search too deeply, we just want to be able to see through
4348  // TokenFactor's etc.
4349  if (Depth == 0) return false;
4350
4351  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4352  // of the operands of the TF reach dest, then we can do the xform.
4353  if (getOpcode() == ISD::TokenFactor) {
4354    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4355      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4356        return true;
4357    return false;
4358  }
4359
4360  // Loads don't have side effects, look through them.
4361  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4362    if (!Ld->isVolatile())
4363      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4364  }
4365  return false;
4366}
4367
4368
4369static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4370                            SmallPtrSet<SDNode *, 32> &Visited) {
4371  if (found || !Visited.insert(N))
4372    return;
4373
4374  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4375    SDNode *Op = N->getOperand(i).Val;
4376    if (Op == P) {
4377      found = true;
4378      return;
4379    }
4380    findPredecessor(Op, P, found, Visited);
4381  }
4382}
4383
4384/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4385/// is either an operand of N or it can be reached by recursively traversing
4386/// up the operands.
4387/// NOTE: this is an expensive method. Use it carefully.
4388bool SDNode::isPredecessorOf(SDNode *N) const {
4389  SmallPtrSet<SDNode *, 32> Visited;
4390  bool found = false;
4391  findPredecessor(N, this, found, Visited);
4392  return found;
4393}
4394
4395uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4396  assert(Num < NumOperands && "Invalid child # of SDNode!");
4397  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4398}
4399
4400std::string SDNode::getOperationName(const SelectionDAG *G) const {
4401  switch (getOpcode()) {
4402  default:
4403    if (getOpcode() < ISD::BUILTIN_OP_END)
4404      return "<<Unknown DAG Node>>";
4405    else {
4406      if (G) {
4407        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4408          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4409            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4410
4411        TargetLowering &TLI = G->getTargetLoweringInfo();
4412        const char *Name =
4413          TLI.getTargetNodeName(getOpcode());
4414        if (Name) return Name;
4415      }
4416
4417      return "<<Unknown Target Node>>";
4418    }
4419
4420  case ISD::PREFETCH:      return "Prefetch";
4421  case ISD::MEMBARRIER:    return "MemBarrier";
4422  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4423  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4424  case ISD::ATOMIC_LSS:    return "AtomicLSS";
4425  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4426  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4427  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4428  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4429  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4430  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4431  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4432  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4433  case ISD::PCMARKER:      return "PCMarker";
4434  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4435  case ISD::SRCVALUE:      return "SrcValue";
4436  case ISD::MEMOPERAND:    return "MemOperand";
4437  case ISD::EntryToken:    return "EntryToken";
4438  case ISD::TokenFactor:   return "TokenFactor";
4439  case ISD::AssertSext:    return "AssertSext";
4440  case ISD::AssertZext:    return "AssertZext";
4441
4442  case ISD::STRING:        return "String";
4443  case ISD::BasicBlock:    return "BasicBlock";
4444  case ISD::ARG_FLAGS:     return "ArgFlags";
4445  case ISD::VALUETYPE:     return "ValueType";
4446  case ISD::Register:      return "Register";
4447
4448  case ISD::Constant:      return "Constant";
4449  case ISD::ConstantFP:    return "ConstantFP";
4450  case ISD::GlobalAddress: return "GlobalAddress";
4451  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4452  case ISD::FrameIndex:    return "FrameIndex";
4453  case ISD::JumpTable:     return "JumpTable";
4454  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4455  case ISD::RETURNADDR: return "RETURNADDR";
4456  case ISD::FRAMEADDR: return "FRAMEADDR";
4457  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4458  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4459  case ISD::EHSELECTION: return "EHSELECTION";
4460  case ISD::EH_RETURN: return "EH_RETURN";
4461  case ISD::ConstantPool:  return "ConstantPool";
4462  case ISD::ExternalSymbol: return "ExternalSymbol";
4463  case ISD::INTRINSIC_WO_CHAIN: {
4464    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4465    return Intrinsic::getName((Intrinsic::ID)IID);
4466  }
4467  case ISD::INTRINSIC_VOID:
4468  case ISD::INTRINSIC_W_CHAIN: {
4469    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4470    return Intrinsic::getName((Intrinsic::ID)IID);
4471  }
4472
4473  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4474  case ISD::TargetConstant: return "TargetConstant";
4475  case ISD::TargetConstantFP:return "TargetConstantFP";
4476  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4477  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4478  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4479  case ISD::TargetJumpTable:  return "TargetJumpTable";
4480  case ISD::TargetConstantPool:  return "TargetConstantPool";
4481  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4482
4483  case ISD::CopyToReg:     return "CopyToReg";
4484  case ISD::CopyFromReg:   return "CopyFromReg";
4485  case ISD::UNDEF:         return "undef";
4486  case ISD::MERGE_VALUES:  return "merge_values";
4487  case ISD::INLINEASM:     return "inlineasm";
4488  case ISD::LABEL:         return "label";
4489  case ISD::DECLARE:       return "declare";
4490  case ISD::HANDLENODE:    return "handlenode";
4491  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4492  case ISD::CALL:          return "call";
4493
4494  // Unary operators
4495  case ISD::FABS:   return "fabs";
4496  case ISD::FNEG:   return "fneg";
4497  case ISD::FSQRT:  return "fsqrt";
4498  case ISD::FSIN:   return "fsin";
4499  case ISD::FCOS:   return "fcos";
4500  case ISD::FPOWI:  return "fpowi";
4501  case ISD::FPOW:   return "fpow";
4502
4503  // Binary operators
4504  case ISD::ADD:    return "add";
4505  case ISD::SUB:    return "sub";
4506  case ISD::MUL:    return "mul";
4507  case ISD::MULHU:  return "mulhu";
4508  case ISD::MULHS:  return "mulhs";
4509  case ISD::SDIV:   return "sdiv";
4510  case ISD::UDIV:   return "udiv";
4511  case ISD::SREM:   return "srem";
4512  case ISD::UREM:   return "urem";
4513  case ISD::SMUL_LOHI:  return "smul_lohi";
4514  case ISD::UMUL_LOHI:  return "umul_lohi";
4515  case ISD::SDIVREM:    return "sdivrem";
4516  case ISD::UDIVREM:    return "divrem";
4517  case ISD::AND:    return "and";
4518  case ISD::OR:     return "or";
4519  case ISD::XOR:    return "xor";
4520  case ISD::SHL:    return "shl";
4521  case ISD::SRA:    return "sra";
4522  case ISD::SRL:    return "srl";
4523  case ISD::ROTL:   return "rotl";
4524  case ISD::ROTR:   return "rotr";
4525  case ISD::FADD:   return "fadd";
4526  case ISD::FSUB:   return "fsub";
4527  case ISD::FMUL:   return "fmul";
4528  case ISD::FDIV:   return "fdiv";
4529  case ISD::FREM:   return "frem";
4530  case ISD::FCOPYSIGN: return "fcopysign";
4531  case ISD::FGETSIGN:  return "fgetsign";
4532
4533  case ISD::SETCC:       return "setcc";
4534  case ISD::VSETCC:      return "vsetcc";
4535  case ISD::SELECT:      return "select";
4536  case ISD::SELECT_CC:   return "select_cc";
4537  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4538  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4539  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4540  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4541  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4542  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4543  case ISD::CARRY_FALSE:         return "carry_false";
4544  case ISD::ADDC:        return "addc";
4545  case ISD::ADDE:        return "adde";
4546  case ISD::SUBC:        return "subc";
4547  case ISD::SUBE:        return "sube";
4548  case ISD::SHL_PARTS:   return "shl_parts";
4549  case ISD::SRA_PARTS:   return "sra_parts";
4550  case ISD::SRL_PARTS:   return "srl_parts";
4551
4552  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4553  case ISD::INSERT_SUBREG:      return "insert_subreg";
4554
4555  // Conversion operators.
4556  case ISD::SIGN_EXTEND: return "sign_extend";
4557  case ISD::ZERO_EXTEND: return "zero_extend";
4558  case ISD::ANY_EXTEND:  return "any_extend";
4559  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4560  case ISD::TRUNCATE:    return "truncate";
4561  case ISD::FP_ROUND:    return "fp_round";
4562  case ISD::FLT_ROUNDS_: return "flt_rounds";
4563  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4564  case ISD::FP_EXTEND:   return "fp_extend";
4565
4566  case ISD::SINT_TO_FP:  return "sint_to_fp";
4567  case ISD::UINT_TO_FP:  return "uint_to_fp";
4568  case ISD::FP_TO_SINT:  return "fp_to_sint";
4569  case ISD::FP_TO_UINT:  return "fp_to_uint";
4570  case ISD::BIT_CONVERT: return "bit_convert";
4571
4572    // Control flow instructions
4573  case ISD::BR:      return "br";
4574  case ISD::BRIND:   return "brind";
4575  case ISD::BR_JT:   return "br_jt";
4576  case ISD::BRCOND:  return "brcond";
4577  case ISD::BR_CC:   return "br_cc";
4578  case ISD::RET:     return "ret";
4579  case ISD::CALLSEQ_START:  return "callseq_start";
4580  case ISD::CALLSEQ_END:    return "callseq_end";
4581
4582    // Other operators
4583  case ISD::LOAD:               return "load";
4584  case ISD::STORE:              return "store";
4585  case ISD::VAARG:              return "vaarg";
4586  case ISD::VACOPY:             return "vacopy";
4587  case ISD::VAEND:              return "vaend";
4588  case ISD::VASTART:            return "vastart";
4589  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4590  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4591  case ISD::BUILD_PAIR:         return "build_pair";
4592  case ISD::STACKSAVE:          return "stacksave";
4593  case ISD::STACKRESTORE:       return "stackrestore";
4594  case ISD::TRAP:               return "trap";
4595
4596  // Bit manipulation
4597  case ISD::BSWAP:   return "bswap";
4598  case ISD::CTPOP:   return "ctpop";
4599  case ISD::CTTZ:    return "cttz";
4600  case ISD::CTLZ:    return "ctlz";
4601
4602  // Debug info
4603  case ISD::LOCATION: return "location";
4604  case ISD::DEBUG_LOC: return "debug_loc";
4605
4606  // Trampolines
4607  case ISD::TRAMPOLINE: return "trampoline";
4608
4609  case ISD::CONDCODE:
4610    switch (cast<CondCodeSDNode>(this)->get()) {
4611    default: assert(0 && "Unknown setcc condition!");
4612    case ISD::SETOEQ:  return "setoeq";
4613    case ISD::SETOGT:  return "setogt";
4614    case ISD::SETOGE:  return "setoge";
4615    case ISD::SETOLT:  return "setolt";
4616    case ISD::SETOLE:  return "setole";
4617    case ISD::SETONE:  return "setone";
4618
4619    case ISD::SETO:    return "seto";
4620    case ISD::SETUO:   return "setuo";
4621    case ISD::SETUEQ:  return "setue";
4622    case ISD::SETUGT:  return "setugt";
4623    case ISD::SETUGE:  return "setuge";
4624    case ISD::SETULT:  return "setult";
4625    case ISD::SETULE:  return "setule";
4626    case ISD::SETUNE:  return "setune";
4627
4628    case ISD::SETEQ:   return "seteq";
4629    case ISD::SETGT:   return "setgt";
4630    case ISD::SETGE:   return "setge";
4631    case ISD::SETLT:   return "setlt";
4632    case ISD::SETLE:   return "setle";
4633    case ISD::SETNE:   return "setne";
4634    }
4635  }
4636}
4637
4638const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4639  switch (AM) {
4640  default:
4641    return "";
4642  case ISD::PRE_INC:
4643    return "<pre-inc>";
4644  case ISD::PRE_DEC:
4645    return "<pre-dec>";
4646  case ISD::POST_INC:
4647    return "<post-inc>";
4648  case ISD::POST_DEC:
4649    return "<post-dec>";
4650  }
4651}
4652
4653std::string ISD::ArgFlagsTy::getArgFlagsString() {
4654  std::string S = "< ";
4655
4656  if (isZExt())
4657    S += "zext ";
4658  if (isSExt())
4659    S += "sext ";
4660  if (isInReg())
4661    S += "inreg ";
4662  if (isSRet())
4663    S += "sret ";
4664  if (isByVal())
4665    S += "byval ";
4666  if (isNest())
4667    S += "nest ";
4668  if (getByValAlign())
4669    S += "byval-align:" + utostr(getByValAlign()) + " ";
4670  if (getOrigAlign())
4671    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4672  if (getByValSize())
4673    S += "byval-size:" + utostr(getByValSize()) + " ";
4674  return S + ">";
4675}
4676
4677void SDNode::dump() const { dump(0); }
4678void SDNode::dump(const SelectionDAG *G) const {
4679  cerr << (void*)this << ": ";
4680
4681  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4682    if (i) cerr << ",";
4683    if (getValueType(i) == MVT::Other)
4684      cerr << "ch";
4685    else
4686      cerr << MVT::getValueTypeString(getValueType(i));
4687  }
4688  cerr << " = " << getOperationName(G);
4689
4690  cerr << " ";
4691  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4692    if (i) cerr << ", ";
4693    cerr << (void*)getOperand(i).Val;
4694    if (unsigned RN = getOperand(i).ResNo)
4695      cerr << ":" << RN;
4696  }
4697
4698  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4699    SDNode *Mask = getOperand(2).Val;
4700    cerr << "<";
4701    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4702      if (i) cerr << ",";
4703      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4704        cerr << "u";
4705      else
4706        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4707    }
4708    cerr << ">";
4709  }
4710
4711  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4712    cerr << "<" << CSDN->getValue() << ">";
4713  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4714    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4715      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4716    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4717      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4718    else {
4719      cerr << "<APFloat(";
4720      CSDN->getValueAPF().convertToAPInt().dump();
4721      cerr << ")>";
4722    }
4723  } else if (const GlobalAddressSDNode *GADN =
4724             dyn_cast<GlobalAddressSDNode>(this)) {
4725    int offset = GADN->getOffset();
4726    cerr << "<";
4727    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4728    if (offset > 0)
4729      cerr << " + " << offset;
4730    else
4731      cerr << " " << offset;
4732  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4733    cerr << "<" << FIDN->getIndex() << ">";
4734  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4735    cerr << "<" << JTDN->getIndex() << ">";
4736  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4737    int offset = CP->getOffset();
4738    if (CP->isMachineConstantPoolEntry())
4739      cerr << "<" << *CP->getMachineCPVal() << ">";
4740    else
4741      cerr << "<" << *CP->getConstVal() << ">";
4742    if (offset > 0)
4743      cerr << " + " << offset;
4744    else
4745      cerr << " " << offset;
4746  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4747    cerr << "<";
4748    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4749    if (LBB)
4750      cerr << LBB->getName() << " ";
4751    cerr << (const void*)BBDN->getBasicBlock() << ">";
4752  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4753    if (G && R->getReg() &&
4754        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4755      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4756    } else {
4757      cerr << " #" << R->getReg();
4758    }
4759  } else if (const ExternalSymbolSDNode *ES =
4760             dyn_cast<ExternalSymbolSDNode>(this)) {
4761    cerr << "'" << ES->getSymbol() << "'";
4762  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4763    if (M->getValue())
4764      cerr << "<" << M->getValue() << ">";
4765    else
4766      cerr << "<null>";
4767  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4768    if (M->MO.getValue())
4769      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4770    else
4771      cerr << "<null:" << M->MO.getOffset() << ">";
4772  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4773    cerr << N->getArgFlags().getArgFlagsString();
4774  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4775    cerr << ":" << MVT::getValueTypeString(N->getVT());
4776  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4777    const Value *SrcValue = LD->getSrcValue();
4778    int SrcOffset = LD->getSrcValueOffset();
4779    cerr << " <";
4780    if (SrcValue)
4781      cerr << SrcValue;
4782    else
4783      cerr << "null";
4784    cerr << ":" << SrcOffset << ">";
4785
4786    bool doExt = true;
4787    switch (LD->getExtensionType()) {
4788    default: doExt = false; break;
4789    case ISD::EXTLOAD:
4790      cerr << " <anyext ";
4791      break;
4792    case ISD::SEXTLOAD:
4793      cerr << " <sext ";
4794      break;
4795    case ISD::ZEXTLOAD:
4796      cerr << " <zext ";
4797      break;
4798    }
4799    if (doExt)
4800      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4801
4802    const char *AM = getIndexedModeName(LD->getAddressingMode());
4803    if (*AM)
4804      cerr << " " << AM;
4805    if (LD->isVolatile())
4806      cerr << " <volatile>";
4807    cerr << " alignment=" << LD->getAlignment();
4808  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4809    const Value *SrcValue = ST->getSrcValue();
4810    int SrcOffset = ST->getSrcValueOffset();
4811    cerr << " <";
4812    if (SrcValue)
4813      cerr << SrcValue;
4814    else
4815      cerr << "null";
4816    cerr << ":" << SrcOffset << ">";
4817
4818    if (ST->isTruncatingStore())
4819      cerr << " <trunc "
4820           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4821
4822    const char *AM = getIndexedModeName(ST->getAddressingMode());
4823    if (*AM)
4824      cerr << " " << AM;
4825    if (ST->isVolatile())
4826      cerr << " <volatile>";
4827    cerr << " alignment=" << ST->getAlignment();
4828  }
4829}
4830
4831static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4832  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4833    if (N->getOperand(i).Val->hasOneUse())
4834      DumpNodes(N->getOperand(i).Val, indent+2, G);
4835    else
4836      cerr << "\n" << std::string(indent+2, ' ')
4837           << (void*)N->getOperand(i).Val << ": <multiple use>";
4838
4839
4840  cerr << "\n" << std::string(indent, ' ');
4841  N->dump(G);
4842}
4843
4844void SelectionDAG::dump() const {
4845  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4846  std::vector<const SDNode*> Nodes;
4847  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4848       I != E; ++I)
4849    Nodes.push_back(I);
4850
4851  std::sort(Nodes.begin(), Nodes.end());
4852
4853  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4854    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4855      DumpNodes(Nodes[i], 2, this);
4856  }
4857
4858  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4859
4860  cerr << "\n\n";
4861}
4862
4863const Type *ConstantPoolSDNode::getType() const {
4864  if (isMachineConstantPoolEntry())
4865    return Val.MachineCPVal->getType();
4866  return Val.ConstVal->getType();
4867}
4868