SelectionDAG.cpp revision 28f02fdd76f4efc05d14649e0eec90ce8e71e17e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/ManagedStatic.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/System/Mutex.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/StringExtras.h"
45#include <algorithm>
46#include <cmath>
47using namespace llvm;
48
49/// makeVTList - Return an instance of the SDVTList struct initialized with the
50/// specified members.
51static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
52  SDVTList Res = {VTs, NumVTs};
53  return Res;
54}
55
56static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
57  switch (VT.getSimpleVT().SimpleTy) {
58  default: llvm_unreachable("Unknown FP format");
59  case MVT::f32:     return &APFloat::IEEEsingle;
60  case MVT::f64:     return &APFloat::IEEEdouble;
61  case MVT::f80:     return &APFloat::x87DoubleExtended;
62  case MVT::f128:    return &APFloat::IEEEquad;
63  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
64  }
65}
66
67SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
68
69//===----------------------------------------------------------------------===//
70//                              ConstantFPSDNode Class
71//===----------------------------------------------------------------------===//
72
73/// isExactlyValue - We don't rely on operator== working on double values, as
74/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75/// As such, this method can be used to do an exact bit-for-bit comparison of
76/// two floating point values.
77bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
78  return getValueAPF().bitwiseIsEqual(V);
79}
80
81bool ConstantFPSDNode::isValueValidForType(EVT VT,
82                                           const APFloat& Val) {
83  assert(VT.isFloatingPoint() && "Can only convert between FP types");
84
85  // PPC long double cannot be converted to any other type.
86  if (VT == MVT::ppcf128 ||
87      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
88    return false;
89
90  // convert modifies in place, so make a copy.
91  APFloat Val2 = APFloat(Val);
92  bool losesInfo;
93  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
94                      &losesInfo);
95  return !losesInfo;
96}
97
98//===----------------------------------------------------------------------===//
99//                              ISD Namespace
100//===----------------------------------------------------------------------===//
101
102/// isBuildVectorAllOnes - Return true if the specified node is a
103/// BUILD_VECTOR where all of the elements are ~0 or undef.
104bool ISD::isBuildVectorAllOnes(const SDNode *N) {
105  // Look through a bit convert.
106  if (N->getOpcode() == ISD::BIT_CONVERT)
107    N = N->getOperand(0).getNode();
108
109  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
110
111  unsigned i = 0, e = N->getNumOperands();
112
113  // Skip over all of the undef values.
114  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
115    ++i;
116
117  // Do not accept an all-undef vector.
118  if (i == e) return false;
119
120  // Do not accept build_vectors that aren't all constants or which have non-~0
121  // elements.
122  SDValue NotZero = N->getOperand(i);
123  if (isa<ConstantSDNode>(NotZero)) {
124    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
125      return false;
126  } else if (isa<ConstantFPSDNode>(NotZero)) {
127    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
128                bitcastToAPInt().isAllOnesValue())
129      return false;
130  } else
131    return false;
132
133  // Okay, we have at least one ~0 value, check to see if the rest match or are
134  // undefs.
135  for (++i; i != e; ++i)
136    if (N->getOperand(i) != NotZero &&
137        N->getOperand(i).getOpcode() != ISD::UNDEF)
138      return false;
139  return true;
140}
141
142
143/// isBuildVectorAllZeros - Return true if the specified node is a
144/// BUILD_VECTOR where all of the elements are 0 or undef.
145bool ISD::isBuildVectorAllZeros(const SDNode *N) {
146  // Look through a bit convert.
147  if (N->getOpcode() == ISD::BIT_CONVERT)
148    N = N->getOperand(0).getNode();
149
150  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151
152  unsigned i = 0, e = N->getNumOperands();
153
154  // Skip over all of the undef values.
155  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
156    ++i;
157
158  // Do not accept an all-undef vector.
159  if (i == e) return false;
160
161  // Do not accept build_vectors that aren't all constants or which have non-0
162  // elements.
163  SDValue Zero = N->getOperand(i);
164  if (isa<ConstantSDNode>(Zero)) {
165    if (!cast<ConstantSDNode>(Zero)->isNullValue())
166      return false;
167  } else if (isa<ConstantFPSDNode>(Zero)) {
168    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
169      return false;
170  } else
171    return false;
172
173  // Okay, we have at least one 0 value, check to see if the rest match or are
174  // undefs.
175  for (++i; i != e; ++i)
176    if (N->getOperand(i) != Zero &&
177        N->getOperand(i).getOpcode() != ISD::UNDEF)
178      return false;
179  return true;
180}
181
182/// isScalarToVector - Return true if the specified node is a
183/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184/// element is not an undef.
185bool ISD::isScalarToVector(const SDNode *N) {
186  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
187    return true;
188
189  if (N->getOpcode() != ISD::BUILD_VECTOR)
190    return false;
191  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
192    return false;
193  unsigned NumElems = N->getNumOperands();
194  for (unsigned i = 1; i < NumElems; ++i) {
195    SDValue V = N->getOperand(i);
196    if (V.getOpcode() != ISD::UNDEF)
197      return false;
198  }
199  return true;
200}
201
202
203/// isDebugLabel - Return true if the specified node represents a debug
204/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
205bool ISD::isDebugLabel(const SDNode *N) {
206  SDValue Zero;
207  if (N->getOpcode() == ISD::DBG_LABEL)
208    return true;
209  if (N->isMachineOpcode() &&
210      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
211    return true;
212  return false;
213}
214
215/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
216/// when given the operation for (X op Y).
217ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
218  // To perform this operation, we just need to swap the L and G bits of the
219  // operation.
220  unsigned OldL = (Operation >> 2) & 1;
221  unsigned OldG = (Operation >> 1) & 1;
222  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
223                       (OldL << 1) |       // New G bit
224                       (OldG << 2));       // New L bit.
225}
226
227/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
228/// 'op' is a valid SetCC operation.
229ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
230  unsigned Operation = Op;
231  if (isInteger)
232    Operation ^= 7;   // Flip L, G, E bits, but not U.
233  else
234    Operation ^= 15;  // Flip all of the condition bits.
235
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;  // Don't let N and U bits get set.
238
239  return ISD::CondCode(Operation);
240}
241
242
243/// isSignedOp - For an integer comparison, return 1 if the comparison is a
244/// signed operation and 2 if the result is an unsigned comparison.  Return zero
245/// if the operation does not depend on the sign of the input (setne and seteq).
246static int isSignedOp(ISD::CondCode Opcode) {
247  switch (Opcode) {
248  default: llvm_unreachable("Illegal integer setcc operation!");
249  case ISD::SETEQ:
250  case ISD::SETNE: return 0;
251  case ISD::SETLT:
252  case ISD::SETLE:
253  case ISD::SETGT:
254  case ISD::SETGE: return 1;
255  case ISD::SETULT:
256  case ISD::SETULE:
257  case ISD::SETUGT:
258  case ISD::SETUGE: return 2;
259  }
260}
261
262/// getSetCCOrOperation - Return the result of a logical OR between different
263/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
264/// returns SETCC_INVALID if it is not possible to represent the resultant
265/// comparison.
266ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
267                                       bool isInteger) {
268  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
269    // Cannot fold a signed integer setcc with an unsigned integer setcc.
270    return ISD::SETCC_INVALID;
271
272  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
273
274  // If the N and U bits get set then the resultant comparison DOES suddenly
275  // care about orderedness, and is true when ordered.
276  if (Op > ISD::SETTRUE2)
277    Op &= ~16;     // Clear the U bit if the N bit is set.
278
279  // Canonicalize illegal integer setcc's.
280  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
281    Op = ISD::SETNE;
282
283  return ISD::CondCode(Op);
284}
285
286/// getSetCCAndOperation - Return the result of a logical AND between different
287/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
288/// function returns zero if it is not possible to represent the resultant
289/// comparison.
290ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
291                                        bool isInteger) {
292  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
293    // Cannot fold a signed setcc with an unsigned setcc.
294    return ISD::SETCC_INVALID;
295
296  // Combine all of the condition bits.
297  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
298
299  // Canonicalize illegal integer setcc's.
300  if (isInteger) {
301    switch (Result) {
302    default: break;
303    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
304    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
305    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
306    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
307    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
308    }
309  }
310
311  return Result;
312}
313
314const TargetMachine &SelectionDAG::getTarget() const {
315  return MF->getTarget();
316}
317
318//===----------------------------------------------------------------------===//
319//                           SDNode Profile Support
320//===----------------------------------------------------------------------===//
321
322/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
323///
324static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
325  ID.AddInteger(OpC);
326}
327
328/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
329/// solely with their pointer.
330static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
331  ID.AddPointer(VTList.VTs);
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDValue *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
345///
346static void AddNodeIDOperands(FoldingSetNodeID &ID,
347                              const SDUse *Ops, unsigned NumOps) {
348  for (; NumOps; --NumOps, ++Ops) {
349    ID.AddPointer(Ops->getNode());
350    ID.AddInteger(Ops->getResNo());
351  }
352}
353
354static void AddNodeIDNode(FoldingSetNodeID &ID,
355                          unsigned short OpC, SDVTList VTList,
356                          const SDValue *OpList, unsigned N) {
357  AddNodeIDOpcode(ID, OpC);
358  AddNodeIDValueTypes(ID, VTList);
359  AddNodeIDOperands(ID, OpList, N);
360}
361
362/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
363/// the NodeID data.
364static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
365  switch (N->getOpcode()) {
366  case ISD::TargetExternalSymbol:
367  case ISD::ExternalSymbol:
368    llvm_unreachable("Should only be used on nodes with operands");
369  default: break;  // Normal nodes don't need extra info.
370  case ISD::TargetConstant:
371  case ISD::Constant:
372    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
373    break;
374  case ISD::TargetConstantFP:
375  case ISD::ConstantFP: {
376    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
377    break;
378  }
379  case ISD::TargetGlobalAddress:
380  case ISD::GlobalAddress:
381  case ISD::TargetGlobalTLSAddress:
382  case ISD::GlobalTLSAddress: {
383    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
384    ID.AddPointer(GA->getGlobal());
385    ID.AddInteger(GA->getOffset());
386    ID.AddInteger(GA->getTargetFlags());
387    break;
388  }
389  case ISD::BasicBlock:
390    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
391    break;
392  case ISD::Register:
393    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
394    break;
395  case ISD::DBG_STOPPOINT: {
396    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
397    ID.AddInteger(DSP->getLine());
398    ID.AddInteger(DSP->getColumn());
399    ID.AddPointer(DSP->getCompileUnit());
400    break;
401  }
402  case ISD::SRCVALUE:
403    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
404    break;
405  case ISD::MEMOPERAND: {
406    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
407    MO.Profile(ID);
408    break;
409  }
410  case ISD::FrameIndex:
411  case ISD::TargetFrameIndex:
412    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
413    break;
414  case ISD::JumpTable:
415  case ISD::TargetJumpTable:
416    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
417    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
418    break;
419  case ISD::ConstantPool:
420  case ISD::TargetConstantPool: {
421    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
422    ID.AddInteger(CP->getAlignment());
423    ID.AddInteger(CP->getOffset());
424    if (CP->isMachineConstantPoolEntry())
425      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
426    else
427      ID.AddPointer(CP->getConstVal());
428    ID.AddInteger(CP->getTargetFlags());
429    break;
430  }
431  case ISD::LOAD: {
432    const LoadSDNode *LD = cast<LoadSDNode>(N);
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawSubclassData());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getMemoryVT().getRawBits());
440    ID.AddInteger(ST->getRawSubclassData());
441    break;
442  }
443  case ISD::ATOMIC_CMP_SWAP:
444  case ISD::ATOMIC_SWAP:
445  case ISD::ATOMIC_LOAD_ADD:
446  case ISD::ATOMIC_LOAD_SUB:
447  case ISD::ATOMIC_LOAD_AND:
448  case ISD::ATOMIC_LOAD_OR:
449  case ISD::ATOMIC_LOAD_XOR:
450  case ISD::ATOMIC_LOAD_NAND:
451  case ISD::ATOMIC_LOAD_MIN:
452  case ISD::ATOMIC_LOAD_MAX:
453  case ISD::ATOMIC_LOAD_UMIN:
454  case ISD::ATOMIC_LOAD_UMAX: {
455    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
456    ID.AddInteger(AT->getMemoryVT().getRawBits());
457    ID.AddInteger(AT->getRawSubclassData());
458    break;
459  }
460  case ISD::VECTOR_SHUFFLE: {
461    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
462    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
463         i != e; ++i)
464      ID.AddInteger(SVN->getMaskElt(i));
465    break;
466  }
467  } // end switch (N->getOpcode())
468}
469
470/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
471/// data.
472static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
473  AddNodeIDOpcode(ID, N->getOpcode());
474  // Add the return value info.
475  AddNodeIDValueTypes(ID, N->getVTList());
476  // Add the operand info.
477  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
478
479  // Handle SDNode leafs with special info.
480  AddNodeIDCustom(ID, N);
481}
482
483/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
484/// the CSE map that carries alignment, volatility, indexing mode, and
485/// extension/truncation information.
486///
487static inline unsigned
488encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
489                     bool isVolatile, unsigned Alignment) {
490  assert((ConvType & 3) == ConvType &&
491         "ConvType may not require more than 2 bits!");
492  assert((AM & 7) == AM &&
493         "AM may not require more than 3 bits!");
494  return ConvType |
495         (AM << 2) |
496         (isVolatile << 5) |
497         ((Log2_32(Alignment) + 1) << 6);
498}
499
500//===----------------------------------------------------------------------===//
501//                              SelectionDAG Class
502//===----------------------------------------------------------------------===//
503
504/// doNotCSE - Return true if CSE should not be performed for this node.
505static bool doNotCSE(SDNode *N) {
506  if (N->getValueType(0) == MVT::Flag)
507    return true; // Never CSE anything that produces a flag.
508
509  switch (N->getOpcode()) {
510  default: break;
511  case ISD::HANDLENODE:
512  case ISD::DBG_LABEL:
513  case ISD::DBG_STOPPOINT:
514  case ISD::EH_LABEL:
515    return true;   // Never CSE these nodes.
516  }
517
518  // Check that remaining values produced are not flags.
519  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
520    if (N->getValueType(i) == MVT::Flag)
521      return true; // Never CSE anything that produces a flag.
522
523  return false;
524}
525
526/// RemoveDeadNodes - This method deletes all unreachable nodes in the
527/// SelectionDAG.
528void SelectionDAG::RemoveDeadNodes() {
529  // Create a dummy node (which is not added to allnodes), that adds a reference
530  // to the root node, preventing it from being deleted.
531  HandleSDNode Dummy(getRoot());
532
533  SmallVector<SDNode*, 128> DeadNodes;
534
535  // Add all obviously-dead nodes to the DeadNodes worklist.
536  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
537    if (I->use_empty())
538      DeadNodes.push_back(I);
539
540  RemoveDeadNodes(DeadNodes);
541
542  // If the root changed (e.g. it was a dead load, update the root).
543  setRoot(Dummy.getValue());
544}
545
546/// RemoveDeadNodes - This method deletes the unreachable nodes in the
547/// given list, and any nodes that become unreachable as a result.
548void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
549                                   DAGUpdateListener *UpdateListener) {
550
551  // Process the worklist, deleting the nodes and adding their uses to the
552  // worklist.
553  while (!DeadNodes.empty()) {
554    SDNode *N = DeadNodes.pop_back_val();
555
556    if (UpdateListener)
557      UpdateListener->NodeDeleted(N, 0);
558
559    // Take the node out of the appropriate CSE map.
560    RemoveNodeFromCSEMaps(N);
561
562    // Next, brutally remove the operand list.  This is safe to do, as there are
563    // no cycles in the graph.
564    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
565      SDUse &Use = *I++;
566      SDNode *Operand = Use.getNode();
567      Use.set(SDValue());
568
569      // Now that we removed this operand, see if there are no uses of it left.
570      if (Operand->use_empty())
571        DeadNodes.push_back(Operand);
572    }
573
574    DeallocateNode(N);
575  }
576}
577
578void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579  SmallVector<SDNode*, 16> DeadNodes(1, N);
580  RemoveDeadNodes(DeadNodes, UpdateListener);
581}
582
583void SelectionDAG::DeleteNode(SDNode *N) {
584  // First take this out of the appropriate CSE map.
585  RemoveNodeFromCSEMaps(N);
586
587  // Finally, remove uses due to operands of this node, remove from the
588  // AllNodes list, and delete the node.
589  DeleteNodeNotInCSEMaps(N);
590}
591
592void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
593  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
594  assert(N->use_empty() && "Cannot delete a node that is not dead!");
595
596  // Drop all of the operands and decrement used node's use counts.
597  N->DropOperands();
598
599  DeallocateNode(N);
600}
601
602void SelectionDAG::DeallocateNode(SDNode *N) {
603  if (N->OperandsNeedDelete)
604    delete[] N->OperandList;
605
606  // Set the opcode to DELETED_NODE to help catch bugs when node
607  // memory is reallocated.
608  N->NodeType = ISD::DELETED_NODE;
609
610  NodeAllocator.Deallocate(AllNodes.remove(N));
611}
612
613/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614/// correspond to it.  This is useful when we're about to delete or repurpose
615/// the node.  We don't want future request for structurally identical nodes
616/// to return N anymore.
617bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
618  bool Erased = false;
619  switch (N->getOpcode()) {
620  case ISD::EntryToken:
621    llvm_unreachable("EntryToken should not be in CSEMaps!");
622    return false;
623  case ISD::HANDLENODE: return false;  // noop.
624  case ISD::CONDCODE:
625    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
626           "Cond code doesn't exist!");
627    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
628    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
629    break;
630  case ISD::ExternalSymbol:
631    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632    break;
633  case ISD::TargetExternalSymbol: {
634    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
635    Erased = TargetExternalSymbols.erase(
636               std::pair<std::string,unsigned char>(ESN->getSymbol(),
637                                                    ESN->getTargetFlags()));
638    break;
639  }
640  case ISD::VALUETYPE: {
641    EVT VT = cast<VTSDNode>(N)->getVT();
642    if (VT.isExtended()) {
643      Erased = ExtendedValueTypeNodes.erase(VT);
644    } else {
645      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
646      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
647    }
648    break;
649  }
650  default:
651    // Remove it from the CSE Map.
652    Erased = CSEMap.RemoveNode(N);
653    break;
654  }
655#ifndef NDEBUG
656  // Verify that the node was actually in one of the CSE maps, unless it has a
657  // flag result (which cannot be CSE'd) or is one of the special cases that are
658  // not subject to CSE.
659  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
660      !N->isMachineOpcode() && !doNotCSE(N)) {
661    N->dump(this);
662    errs() << "\n";
663    llvm_unreachable("Node is not in map!");
664  }
665#endif
666  return Erased;
667}
668
669/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
670/// maps and modified in place. Add it back to the CSE maps, unless an identical
671/// node already exists, in which case transfer all its users to the existing
672/// node. This transfer can potentially trigger recursive merging.
673///
674void
675SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
676                                       DAGUpdateListener *UpdateListener) {
677  // For node types that aren't CSE'd, just act as if no identical node
678  // already exists.
679  if (!doNotCSE(N)) {
680    SDNode *Existing = CSEMap.GetOrInsertNode(N);
681    if (Existing != N) {
682      // If there was already an existing matching node, use ReplaceAllUsesWith
683      // to replace the dead one with the existing one.  This can cause
684      // recursive merging of other unrelated nodes down the line.
685      ReplaceAllUsesWith(N, Existing, UpdateListener);
686
687      // N is now dead.  Inform the listener if it exists and delete it.
688      if (UpdateListener)
689        UpdateListener->NodeDeleted(N, Existing);
690      DeleteNodeNotInCSEMaps(N);
691      return;
692    }
693  }
694
695  // If the node doesn't already exist, we updated it.  Inform a listener if
696  // it exists.
697  if (UpdateListener)
698    UpdateListener->NodeUpdated(N);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
706                                           void *&InsertPos) {
707  if (doNotCSE(N))
708    return 0;
709
710  SDValue Ops[] = { Op };
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
713  AddNodeIDCustom(ID, N);
714  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
715}
716
717/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
718/// were replaced with those specified.  If this node is never memoized,
719/// return null, otherwise return a pointer to the slot it would take.  If a
720/// node already exists with these operands, the slot will be non-null.
721SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
722                                           SDValue Op1, SDValue Op2,
723                                           void *&InsertPos) {
724  if (doNotCSE(N))
725    return 0;
726
727  SDValue Ops[] = { Op1, Op2 };
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
730  AddNodeIDCustom(ID, N);
731  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
732}
733
734
735/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
736/// were replaced with those specified.  If this node is never memoized,
737/// return null, otherwise return a pointer to the slot it would take.  If a
738/// node already exists with these operands, the slot will be non-null.
739SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
740                                           const SDValue *Ops,unsigned NumOps,
741                                           void *&InsertPos) {
742  if (doNotCSE(N))
743    return 0;
744
745  FoldingSetNodeID ID;
746  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
747  AddNodeIDCustom(ID, N);
748  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
749}
750
751/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
752void SelectionDAG::VerifyNode(SDNode *N) {
753  switch (N->getOpcode()) {
754  default:
755    break;
756  case ISD::BUILD_PAIR: {
757    EVT VT = N->getValueType(0);
758    assert(N->getNumValues() == 1 && "Too many results!");
759    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
760           "Wrong return type!");
761    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
762    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
763           "Mismatched operand types!");
764    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
765           "Wrong operand type!");
766    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
767           "Wrong return type size");
768    break;
769  }
770  case ISD::BUILD_VECTOR: {
771    assert(N->getNumValues() == 1 && "Too many results!");
772    assert(N->getValueType(0).isVector() && "Wrong return type!");
773    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
774           "Wrong number of operands!");
775    EVT EltVT = N->getValueType(0).getVectorElementType();
776    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
777      assert((I->getValueType() == EltVT ||
778             (EltVT.isInteger() && I->getValueType().isInteger() &&
779              EltVT.bitsLE(I->getValueType()))) &&
780            "Wrong operand type!");
781    break;
782  }
783  }
784}
785
786/// getEVTAlignment - Compute the default alignment value for the
787/// given type.
788///
789unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
790  const Type *Ty = VT == MVT::iPTR ?
791                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
792                   VT.getTypeForEVT(*getContext());
793
794  return TLI.getTargetData()->getABITypeAlignment(Ty);
795}
796
797// EntryNode could meaningfully have debug info if we can find it...
798SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
799  : TLI(tli), FLI(fli), DW(0),
800    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
801    getVTList(MVT::Other)), Root(getEntryNode()) {
802  AllNodes.push_back(&EntryNode);
803}
804
805void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
806                        DwarfWriter *dw) {
807  MF = &mf;
808  MMI = mmi;
809  DW = dw;
810  Context = &mf.getFunction()->getContext();
811}
812
813SelectionDAG::~SelectionDAG() {
814  allnodes_clear();
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840}
841
842SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
843  if (Op.getValueType() == VT) return Op;
844  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
845                                   VT.getSizeInBits());
846  return getNode(ISD::AND, DL, Op.getValueType(), Op,
847                 getConstant(Imm, Op.getValueType()));
848}
849
850/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
851///
852SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
853  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
854  SDValue NegOne =
855    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
856  return getNode(ISD::XOR, DL, VT, Val, NegOne);
857}
858
859SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
860  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
861  assert((EltVT.getSizeInBits() >= 64 ||
862         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
863         "getConstant with a uint64_t value that doesn't fit in the type!");
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
899                     VT, &Ops[0], Ops.size());
900  }
901  return Result;
902}
903
904SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
905  return getConstant(Val, TLI.getPointerTy(), isTarget);
906}
907
908
909SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
910  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
911}
912
913SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
914  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
915
916  EVT EltVT =
917    VT.isVector() ? VT.getVectorElementType() : VT;
918
919  // Do the map lookup using the actual bit pattern for the floating point
920  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
921  // we don't have issues with SNANs.
922  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
925  ID.AddPointer(&V);
926  void *IP = 0;
927  SDNode *N = NULL;
928  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
929    if (!VT.isVector())
930      return SDValue(N, 0);
931  if (!N) {
932    N = NodeAllocator.Allocate<ConstantFPSDNode>();
933    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
934    CSEMap.InsertNode(N, IP);
935    AllNodes.push_back(N);
936  }
937
938  SDValue Result(N, 0);
939  if (VT.isVector()) {
940    SmallVector<SDValue, 8> Ops;
941    Ops.assign(VT.getVectorNumElements(), Result);
942    // FIXME DebugLoc info might be appropriate here
943    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
944                     VT, &Ops[0], Ops.size());
945  }
946  return Result;
947}
948
949SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
950  EVT EltVT =
951    VT.isVector() ? VT.getVectorElementType() : VT;
952  if (EltVT==MVT::f32)
953    return getConstantFP(APFloat((float)Val), VT, isTarget);
954  else
955    return getConstantFP(APFloat(Val), VT, isTarget);
956}
957
958SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
959                                       EVT VT, int64_t Offset,
960                                       bool isTargetGA,
961                                       unsigned char TargetFlags) {
962  assert((TargetFlags == 0 || isTargetGA) &&
963         "Cannot set target flags on target-independent globals");
964
965  // Truncate (with sign-extension) the offset value to the pointer size.
966  EVT PTy = TLI.getPointerTy();
967  unsigned BitWidth = PTy.getSizeInBits();
968  if (BitWidth < 64)
969    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
970
971  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
972  if (!GVar) {
973    // If GV is an alias then use the aliasee for determining thread-localness.
974    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
975      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
976  }
977
978  unsigned Opc;
979  if (GVar && GVar->isThreadLocal())
980    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
981  else
982    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
983
984  FoldingSetNodeID ID;
985  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
986  ID.AddPointer(GV);
987  ID.AddInteger(Offset);
988  ID.AddInteger(TargetFlags);
989  void *IP = 0;
990  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
991    return SDValue(E, 0);
992  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
993  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
994  CSEMap.InsertNode(N, IP);
995  AllNodes.push_back(N);
996  return SDValue(N, 0);
997}
998
999SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1000  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1001  FoldingSetNodeID ID;
1002  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1003  ID.AddInteger(FI);
1004  void *IP = 0;
1005  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1006    return SDValue(E, 0);
1007  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1008  new (N) FrameIndexSDNode(FI, VT, isTarget);
1009  CSEMap.InsertNode(N, IP);
1010  AllNodes.push_back(N);
1011  return SDValue(N, 0);
1012}
1013
1014SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1015                                   unsigned char TargetFlags) {
1016  assert((TargetFlags == 0 || isTarget) &&
1017         "Cannot set target flags on target-independent jump tables");
1018  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021  ID.AddInteger(JTI);
1022  ID.AddInteger(TargetFlags);
1023  void *IP = 0;
1024  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1025    return SDValue(E, 0);
1026  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1027  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1028  CSEMap.InsertNode(N, IP);
1029  AllNodes.push_back(N);
1030  return SDValue(N, 0);
1031}
1032
1033SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1034                                      unsigned Alignment, int Offset,
1035                                      bool isTarget,
1036                                      unsigned char TargetFlags) {
1037  assert((TargetFlags == 0 || isTarget) &&
1038         "Cannot set target flags on target-independent globals");
1039  if (Alignment == 0)
1040    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1041  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1042  FoldingSetNodeID ID;
1043  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1044  ID.AddInteger(Alignment);
1045  ID.AddInteger(Offset);
1046  ID.AddPointer(C);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1052  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1053  CSEMap.InsertNode(N, IP);
1054  AllNodes.push_back(N);
1055  return SDValue(N, 0);
1056}
1057
1058
1059SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1060                                      unsigned Alignment, int Offset,
1061                                      bool isTarget,
1062                                      unsigned char TargetFlags) {
1063  assert((TargetFlags == 0 || isTarget) &&
1064         "Cannot set target flags on target-independent globals");
1065  if (Alignment == 0)
1066    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1067  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1070  ID.AddInteger(Alignment);
1071  ID.AddInteger(Offset);
1072  C->AddSelectionDAGCSEId(ID);
1073  ID.AddInteger(TargetFlags);
1074  void *IP = 0;
1075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076    return SDValue(E, 0);
1077  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1078  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1079  CSEMap.InsertNode(N, IP);
1080  AllNodes.push_back(N);
1081  return SDValue(N, 0);
1082}
1083
1084SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1085  FoldingSetNodeID ID;
1086  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1087  ID.AddPointer(MBB);
1088  void *IP = 0;
1089  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1090    return SDValue(E, 0);
1091  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1092  new (N) BasicBlockSDNode(MBB);
1093  CSEMap.InsertNode(N, IP);
1094  AllNodes.push_back(N);
1095  return SDValue(N, 0);
1096}
1097
1098SDValue SelectionDAG::getValueType(EVT VT) {
1099  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1100      ValueTypeNodes.size())
1101    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1102
1103  SDNode *&N = VT.isExtended() ?
1104    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1105
1106  if (N) return SDValue(N, 0);
1107  N = NodeAllocator.Allocate<VTSDNode>();
1108  new (N) VTSDNode(VT);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1114  SDNode *&N = ExternalSymbols[Sym];
1115  if (N) return SDValue(N, 0);
1116  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1117  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1123                                              unsigned char TargetFlags) {
1124  SDNode *&N =
1125    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1126                                                               TargetFlags)];
1127  if (N) return SDValue(N, 0);
1128  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1129  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1135  if ((unsigned)Cond >= CondCodeNodes.size())
1136    CondCodeNodes.resize(Cond+1);
1137
1138  if (CondCodeNodes[Cond] == 0) {
1139    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1140    new (N) CondCodeSDNode(Cond);
1141    CondCodeNodes[Cond] = N;
1142    AllNodes.push_back(N);
1143  }
1144  return SDValue(CondCodeNodes[Cond], 0);
1145}
1146
1147// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1148// the shuffle mask M that point at N1 to point at N2, and indices that point
1149// N2 to point at N1.
1150static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1151  std::swap(N1, N2);
1152  int NElts = M.size();
1153  for (int i = 0; i != NElts; ++i) {
1154    if (M[i] >= NElts)
1155      M[i] -= NElts;
1156    else if (M[i] >= 0)
1157      M[i] += NElts;
1158  }
1159}
1160
1161SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1162                                       SDValue N2, const int *Mask) {
1163  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1164  assert(VT.isVector() && N1.getValueType().isVector() &&
1165         "Vector Shuffle VTs must be a vectors");
1166  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1167         && "Vector Shuffle VTs must have same element type");
1168
1169  // Canonicalize shuffle undef, undef -> undef
1170  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1171    return getUNDEF(VT);
1172
1173  // Validate that all indices in Mask are within the range of the elements
1174  // input to the shuffle.
1175  unsigned NElts = VT.getVectorNumElements();
1176  SmallVector<int, 8> MaskVec;
1177  for (unsigned i = 0; i != NElts; ++i) {
1178    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1179    MaskVec.push_back(Mask[i]);
1180  }
1181
1182  // Canonicalize shuffle v, v -> v, undef
1183  if (N1 == N2) {
1184    N2 = getUNDEF(VT);
1185    for (unsigned i = 0; i != NElts; ++i)
1186      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1187  }
1188
1189  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1190  if (N1.getOpcode() == ISD::UNDEF)
1191    commuteShuffle(N1, N2, MaskVec);
1192
1193  // Canonicalize all index into lhs, -> shuffle lhs, undef
1194  // Canonicalize all index into rhs, -> shuffle rhs, undef
1195  bool AllLHS = true, AllRHS = true;
1196  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1197  for (unsigned i = 0; i != NElts; ++i) {
1198    if (MaskVec[i] >= (int)NElts) {
1199      if (N2Undef)
1200        MaskVec[i] = -1;
1201      else
1202        AllLHS = false;
1203    } else if (MaskVec[i] >= 0) {
1204      AllRHS = false;
1205    }
1206  }
1207  if (AllLHS && AllRHS)
1208    return getUNDEF(VT);
1209  if (AllLHS && !N2Undef)
1210    N2 = getUNDEF(VT);
1211  if (AllRHS) {
1212    N1 = getUNDEF(VT);
1213    commuteShuffle(N1, N2, MaskVec);
1214  }
1215
1216  // If Identity shuffle, or all shuffle in to undef, return that node.
1217  bool AllUndef = true;
1218  bool Identity = true;
1219  for (unsigned i = 0; i != NElts; ++i) {
1220    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1221    if (MaskVec[i] >= 0) AllUndef = false;
1222  }
1223  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1224    return N1;
1225  if (AllUndef)
1226    return getUNDEF(VT);
1227
1228  FoldingSetNodeID ID;
1229  SDValue Ops[2] = { N1, N2 };
1230  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1231  for (unsigned i = 0; i != NElts; ++i)
1232    ID.AddInteger(MaskVec[i]);
1233
1234  void* IP = 0;
1235  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1236    return SDValue(E, 0);
1237
1238  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1239  // SDNode doesn't have access to it.  This memory will be "leaked" when
1240  // the node is deallocated, but recovered when the NodeAllocator is released.
1241  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1242  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1243
1244  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1245  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1246  CSEMap.InsertNode(N, IP);
1247  AllNodes.push_back(N);
1248  return SDValue(N, 0);
1249}
1250
1251SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1252                                       SDValue Val, SDValue DTy,
1253                                       SDValue STy, SDValue Rnd, SDValue Sat,
1254                                       ISD::CvtCode Code) {
1255  // If the src and dest types are the same and the conversion is between
1256  // integer types of the same sign or two floats, no conversion is necessary.
1257  if (DTy == STy &&
1258      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1259    return Val;
1260
1261  FoldingSetNodeID ID;
1262  void* IP = 0;
1263  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1264    return SDValue(E, 0);
1265  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1266  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1267  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1268  CSEMap.InsertNode(N, IP);
1269  AllNodes.push_back(N);
1270  return SDValue(N, 0);
1271}
1272
1273SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1274  FoldingSetNodeID ID;
1275  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1276  ID.AddInteger(RegNo);
1277  void *IP = 0;
1278  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1279    return SDValue(E, 0);
1280  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1281  new (N) RegisterSDNode(RegNo, VT);
1282  CSEMap.InsertNode(N, IP);
1283  AllNodes.push_back(N);
1284  return SDValue(N, 0);
1285}
1286
1287SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1288                                      unsigned Line, unsigned Col,
1289                                      MDNode *CU) {
1290  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1291  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1292  N->setDebugLoc(DL);
1293  AllNodes.push_back(N);
1294  return SDValue(N, 0);
1295}
1296
1297SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1298                               SDValue Root,
1299                               unsigned LabelID) {
1300  FoldingSetNodeID ID;
1301  SDValue Ops[] = { Root };
1302  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1303  ID.AddInteger(LabelID);
1304  void *IP = 0;
1305  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1306    return SDValue(E, 0);
1307  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1308  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1309  CSEMap.InsertNode(N, IP);
1310  AllNodes.push_back(N);
1311  return SDValue(N, 0);
1312}
1313
1314SDValue SelectionDAG::getSrcValue(const Value *V) {
1315  assert((!V || isa<PointerType>(V->getType())) &&
1316         "SrcValue is not a pointer?");
1317
1318  FoldingSetNodeID ID;
1319  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1320  ID.AddPointer(V);
1321
1322  void *IP = 0;
1323  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1324    return SDValue(E, 0);
1325
1326  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1327  new (N) SrcValueSDNode(V);
1328  CSEMap.InsertNode(N, IP);
1329  AllNodes.push_back(N);
1330  return SDValue(N, 0);
1331}
1332
1333SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1334#ifndef NDEBUG
1335  const Value *v = MO.getValue();
1336  assert((!v || isa<PointerType>(v->getType())) &&
1337         "SrcValue is not a pointer?");
1338#endif
1339
1340  FoldingSetNodeID ID;
1341  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1342  MO.Profile(ID);
1343
1344  void *IP = 0;
1345  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1346    return SDValue(E, 0);
1347
1348  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1349  new (N) MemOperandSDNode(MO);
1350  CSEMap.InsertNode(N, IP);
1351  AllNodes.push_back(N);
1352  return SDValue(N, 0);
1353}
1354
1355/// getShiftAmountOperand - Return the specified value casted to
1356/// the target's desired shift amount type.
1357SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1358  EVT OpTy = Op.getValueType();
1359  MVT ShTy = TLI.getShiftAmountTy();
1360  if (OpTy == ShTy || OpTy.isVector()) return Op;
1361
1362  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1363  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1364}
1365
1366/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1367/// specified value type.
1368SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1369  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1370  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1371  const Type *Ty = VT.getTypeForEVT(*getContext());
1372  unsigned StackAlign =
1373  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1374
1375  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1376  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1377}
1378
1379/// CreateStackTemporary - Create a stack temporary suitable for holding
1380/// either of the specified value types.
1381SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1382  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1383                            VT2.getStoreSizeInBits())/8;
1384  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1385  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1386  const TargetData *TD = TLI.getTargetData();
1387  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1388                            TD->getPrefTypeAlignment(Ty2));
1389
1390  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1391  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1392  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1393}
1394
1395SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1396                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1397  // These setcc operations always fold.
1398  switch (Cond) {
1399  default: break;
1400  case ISD::SETFALSE:
1401  case ISD::SETFALSE2: return getConstant(0, VT);
1402  case ISD::SETTRUE:
1403  case ISD::SETTRUE2:  return getConstant(1, VT);
1404
1405  case ISD::SETOEQ:
1406  case ISD::SETOGT:
1407  case ISD::SETOGE:
1408  case ISD::SETOLT:
1409  case ISD::SETOLE:
1410  case ISD::SETONE:
1411  case ISD::SETO:
1412  case ISD::SETUO:
1413  case ISD::SETUEQ:
1414  case ISD::SETUNE:
1415    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1416    break;
1417  }
1418
1419  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1420    const APInt &C2 = N2C->getAPIntValue();
1421    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1422      const APInt &C1 = N1C->getAPIntValue();
1423
1424      switch (Cond) {
1425      default: llvm_unreachable("Unknown integer setcc!");
1426      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1427      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1428      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1429      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1430      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1431      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1432      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1433      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1434      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1435      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1436      }
1437    }
1438  }
1439  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1440    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1441      // No compile time operations on this type yet.
1442      if (N1C->getValueType(0) == MVT::ppcf128)
1443        return SDValue();
1444
1445      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1446      switch (Cond) {
1447      default: break;
1448      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1449                          return getUNDEF(VT);
1450                        // fall through
1451      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1452      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1453                          return getUNDEF(VT);
1454                        // fall through
1455      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1456                                           R==APFloat::cmpLessThan, VT);
1457      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1458                          return getUNDEF(VT);
1459                        // fall through
1460      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1461      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1465      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1469                                           R==APFloat::cmpEqual, VT);
1470      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1474                                           R==APFloat::cmpEqual, VT);
1475      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1476      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1477      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1478                                           R==APFloat::cmpEqual, VT);
1479      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1480      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1481                                           R==APFloat::cmpLessThan, VT);
1482      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1483                                           R==APFloat::cmpUnordered, VT);
1484      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1485      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1486      }
1487    } else {
1488      // Ensure that the constant occurs on the RHS.
1489      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1490    }
1491  }
1492
1493  // Could not fold it.
1494  return SDValue();
1495}
1496
1497/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1498/// use this predicate to simplify operations downstream.
1499bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1500  // This predicate is not safe for vector operations.
1501  if (Op.getValueType().isVector())
1502    return false;
1503
1504  unsigned BitWidth = Op.getValueSizeInBits();
1505  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1506}
1507
1508/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1509/// this predicate to simplify operations downstream.  Mask is known to be zero
1510/// for bits that V cannot have.
1511bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1512                                     unsigned Depth) const {
1513  APInt KnownZero, KnownOne;
1514  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1515  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516  return (KnownZero & Mask) == Mask;
1517}
1518
1519/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1520/// known to be either zero or one and return them in the KnownZero/KnownOne
1521/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1522/// processing.
1523void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1524                                     APInt &KnownZero, APInt &KnownOne,
1525                                     unsigned Depth) const {
1526  unsigned BitWidth = Mask.getBitWidth();
1527  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1528         "Mask size mismatches value type size!");
1529
1530  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1531  if (Depth == 6 || Mask == 0)
1532    return;  // Limit search depth.
1533
1534  APInt KnownZero2, KnownOne2;
1535
1536  switch (Op.getOpcode()) {
1537  case ISD::Constant:
1538    // We know all of the bits for a constant!
1539    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1540    KnownZero = ~KnownOne & Mask;
1541    return;
1542  case ISD::AND:
1543    // If either the LHS or the RHS are Zero, the result is zero.
1544    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1545    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1546                      KnownZero2, KnownOne2, Depth+1);
1547    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1548    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1549
1550    // Output known-1 bits are only known if set in both the LHS & RHS.
1551    KnownOne &= KnownOne2;
1552    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1553    KnownZero |= KnownZero2;
1554    return;
1555  case ISD::OR:
1556    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1557    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1558                      KnownZero2, KnownOne2, Depth+1);
1559    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1561
1562    // Output known-0 bits are only known if clear in both the LHS & RHS.
1563    KnownZero &= KnownZero2;
1564    // Output known-1 are known to be set if set in either the LHS | RHS.
1565    KnownOne |= KnownOne2;
1566    return;
1567  case ISD::XOR: {
1568    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1569    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1570    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1572
1573    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1574    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1575    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1576    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1577    KnownZero = KnownZeroOut;
1578    return;
1579  }
1580  case ISD::MUL: {
1581    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1582    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1583    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1584    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1585    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1586
1587    // If low bits are zero in either operand, output low known-0 bits.
1588    // Also compute a conserative estimate for high known-0 bits.
1589    // More trickiness is possible, but this is sufficient for the
1590    // interesting case of alignment computation.
1591    KnownOne.clear();
1592    unsigned TrailZ = KnownZero.countTrailingOnes() +
1593                      KnownZero2.countTrailingOnes();
1594    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1595                               KnownZero2.countLeadingOnes(),
1596                               BitWidth) - BitWidth;
1597
1598    TrailZ = std::min(TrailZ, BitWidth);
1599    LeadZ = std::min(LeadZ, BitWidth);
1600    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1601                APInt::getHighBitsSet(BitWidth, LeadZ);
1602    KnownZero &= Mask;
1603    return;
1604  }
1605  case ISD::UDIV: {
1606    // For the purposes of computing leading zeros we can conservatively
1607    // treat a udiv as a logical right shift by the power of 2 known to
1608    // be less than the denominator.
1609    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1610    ComputeMaskedBits(Op.getOperand(0),
1611                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1612    unsigned LeadZ = KnownZero2.countLeadingOnes();
1613
1614    KnownOne2.clear();
1615    KnownZero2.clear();
1616    ComputeMaskedBits(Op.getOperand(1),
1617                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1618    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1619    if (RHSUnknownLeadingOnes != BitWidth)
1620      LeadZ = std::min(BitWidth,
1621                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1622
1623    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1624    return;
1625  }
1626  case ISD::SELECT:
1627    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1628    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1629    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1630    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1631
1632    // Only known if known in both the LHS and RHS.
1633    KnownOne &= KnownOne2;
1634    KnownZero &= KnownZero2;
1635    return;
1636  case ISD::SELECT_CC:
1637    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SADDO:
1647  case ISD::UADDO:
1648  case ISD::SSUBO:
1649  case ISD::USUBO:
1650  case ISD::SMULO:
1651  case ISD::UMULO:
1652    if (Op.getResNo() != 1)
1653      return;
1654    // The boolean result conforms to getBooleanContents.  Fall through.
1655  case ISD::SETCC:
1656    // If we know the result of a setcc has the top bits zero, use this info.
1657    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1658        BitWidth > 1)
1659      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1660    return;
1661  case ISD::SHL:
1662    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1663    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1664      unsigned ShAmt = SA->getZExtValue();
1665
1666      // If the shift count is an invalid immediate, don't do anything.
1667      if (ShAmt >= BitWidth)
1668        return;
1669
1670      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1671                        KnownZero, KnownOne, Depth+1);
1672      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1673      KnownZero <<= ShAmt;
1674      KnownOne  <<= ShAmt;
1675      // low bits known zero.
1676      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1677    }
1678    return;
1679  case ISD::SRL:
1680    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1681    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1682      unsigned ShAmt = SA->getZExtValue();
1683
1684      // If the shift count is an invalid immediate, don't do anything.
1685      if (ShAmt >= BitWidth)
1686        return;
1687
1688      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1689                        KnownZero, KnownOne, Depth+1);
1690      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1691      KnownZero = KnownZero.lshr(ShAmt);
1692      KnownOne  = KnownOne.lshr(ShAmt);
1693
1694      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1695      KnownZero |= HighBits;  // High bits known zero.
1696    }
1697    return;
1698  case ISD::SRA:
1699    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1700      unsigned ShAmt = SA->getZExtValue();
1701
1702      // If the shift count is an invalid immediate, don't do anything.
1703      if (ShAmt >= BitWidth)
1704        return;
1705
1706      APInt InDemandedMask = (Mask << ShAmt);
1707      // If any of the demanded bits are produced by the sign extension, we also
1708      // demand the input sign bit.
1709      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1710      if (HighBits.getBoolValue())
1711        InDemandedMask |= APInt::getSignBit(BitWidth);
1712
1713      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1714                        Depth+1);
1715      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1716      KnownZero = KnownZero.lshr(ShAmt);
1717      KnownOne  = KnownOne.lshr(ShAmt);
1718
1719      // Handle the sign bits.
1720      APInt SignBit = APInt::getSignBit(BitWidth);
1721      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1722
1723      if (KnownZero.intersects(SignBit)) {
1724        KnownZero |= HighBits;  // New bits are known zero.
1725      } else if (KnownOne.intersects(SignBit)) {
1726        KnownOne  |= HighBits;  // New bits are known one.
1727      }
1728    }
1729    return;
1730  case ISD::SIGN_EXTEND_INREG: {
1731    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1732    unsigned EBits = EVT.getSizeInBits();
1733
1734    // Sign extension.  Compute the demanded bits in the result that are not
1735    // present in the input.
1736    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1737
1738    APInt InSignBit = APInt::getSignBit(EBits);
1739    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1740
1741    // If the sign extended bits are demanded, we know that the sign
1742    // bit is demanded.
1743    InSignBit.zext(BitWidth);
1744    if (NewBits.getBoolValue())
1745      InputDemandedBits |= InSignBit;
1746
1747    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1748                      KnownZero, KnownOne, Depth+1);
1749    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1750
1751    // If the sign bit of the input is known set or clear, then we know the
1752    // top bits of the result.
1753    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1754      KnownZero |= NewBits;
1755      KnownOne  &= ~NewBits;
1756    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1757      KnownOne  |= NewBits;
1758      KnownZero &= ~NewBits;
1759    } else {                              // Input sign bit unknown
1760      KnownZero &= ~NewBits;
1761      KnownOne  &= ~NewBits;
1762    }
1763    return;
1764  }
1765  case ISD::CTTZ:
1766  case ISD::CTLZ:
1767  case ISD::CTPOP: {
1768    unsigned LowBits = Log2_32(BitWidth)+1;
1769    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1770    KnownOne.clear();
1771    return;
1772  }
1773  case ISD::LOAD: {
1774    if (ISD::isZEXTLoad(Op.getNode())) {
1775      LoadSDNode *LD = cast<LoadSDNode>(Op);
1776      EVT VT = LD->getMemoryVT();
1777      unsigned MemBits = VT.getSizeInBits();
1778      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1779    }
1780    return;
1781  }
1782  case ISD::ZERO_EXTEND: {
1783    EVT InVT = Op.getOperand(0).getValueType();
1784    unsigned InBits = InVT.getSizeInBits();
1785    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1786    APInt InMask    = Mask;
1787    InMask.trunc(InBits);
1788    KnownZero.trunc(InBits);
1789    KnownOne.trunc(InBits);
1790    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1791    KnownZero.zext(BitWidth);
1792    KnownOne.zext(BitWidth);
1793    KnownZero |= NewBits;
1794    return;
1795  }
1796  case ISD::SIGN_EXTEND: {
1797    EVT InVT = Op.getOperand(0).getValueType();
1798    unsigned InBits = InVT.getSizeInBits();
1799    APInt InSignBit = APInt::getSignBit(InBits);
1800    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1801    APInt InMask = Mask;
1802    InMask.trunc(InBits);
1803
1804    // If any of the sign extended bits are demanded, we know that the sign
1805    // bit is demanded. Temporarily set this bit in the mask for our callee.
1806    if (NewBits.getBoolValue())
1807      InMask |= InSignBit;
1808
1809    KnownZero.trunc(InBits);
1810    KnownOne.trunc(InBits);
1811    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1812
1813    // Note if the sign bit is known to be zero or one.
1814    bool SignBitKnownZero = KnownZero.isNegative();
1815    bool SignBitKnownOne  = KnownOne.isNegative();
1816    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1817           "Sign bit can't be known to be both zero and one!");
1818
1819    // If the sign bit wasn't actually demanded by our caller, we don't
1820    // want it set in the KnownZero and KnownOne result values. Reset the
1821    // mask and reapply it to the result values.
1822    InMask = Mask;
1823    InMask.trunc(InBits);
1824    KnownZero &= InMask;
1825    KnownOne  &= InMask;
1826
1827    KnownZero.zext(BitWidth);
1828    KnownOne.zext(BitWidth);
1829
1830    // If the sign bit is known zero or one, the top bits match.
1831    if (SignBitKnownZero)
1832      KnownZero |= NewBits;
1833    else if (SignBitKnownOne)
1834      KnownOne  |= NewBits;
1835    return;
1836  }
1837  case ISD::ANY_EXTEND: {
1838    EVT InVT = Op.getOperand(0).getValueType();
1839    unsigned InBits = InVT.getSizeInBits();
1840    APInt InMask = Mask;
1841    InMask.trunc(InBits);
1842    KnownZero.trunc(InBits);
1843    KnownOne.trunc(InBits);
1844    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1845    KnownZero.zext(BitWidth);
1846    KnownOne.zext(BitWidth);
1847    return;
1848  }
1849  case ISD::TRUNCATE: {
1850    EVT InVT = Op.getOperand(0).getValueType();
1851    unsigned InBits = InVT.getSizeInBits();
1852    APInt InMask = Mask;
1853    InMask.zext(InBits);
1854    KnownZero.zext(InBits);
1855    KnownOne.zext(InBits);
1856    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1857    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1858    KnownZero.trunc(BitWidth);
1859    KnownOne.trunc(BitWidth);
1860    break;
1861  }
1862  case ISD::AssertZext: {
1863    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1864    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1865    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1866                      KnownOne, Depth+1);
1867    KnownZero |= (~InMask) & Mask;
1868    return;
1869  }
1870  case ISD::FGETSIGN:
1871    // All bits are zero except the low bit.
1872    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1873    return;
1874
1875  case ISD::SUB: {
1876    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1877      // We know that the top bits of C-X are clear if X contains less bits
1878      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1879      // positive if we can prove that X is >= 0 and < 16.
1880      if (CLHS->getAPIntValue().isNonNegative()) {
1881        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1882        // NLZ can't be BitWidth with no sign bit
1883        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1884        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1885                          Depth+1);
1886
1887        // If all of the MaskV bits are known to be zero, then we know the
1888        // output top bits are zero, because we now know that the output is
1889        // from [0-C].
1890        if ((KnownZero2 & MaskV) == MaskV) {
1891          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1892          // Top bits known zero.
1893          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1894        }
1895      }
1896    }
1897  }
1898  // fall through
1899  case ISD::ADD: {
1900    // Output known-0 bits are known if clear or set in both the low clear bits
1901    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1902    // low 3 bits clear.
1903    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1904    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1905    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1906    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1907
1908    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1909    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1910    KnownZeroOut = std::min(KnownZeroOut,
1911                            KnownZero2.countTrailingOnes());
1912
1913    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1914    return;
1915  }
1916  case ISD::SREM:
1917    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1918      const APInt &RA = Rem->getAPIntValue();
1919      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1920        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1921        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1922        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1923
1924        // If the sign bit of the first operand is zero, the sign bit of
1925        // the result is zero. If the first operand has no one bits below
1926        // the second operand's single 1 bit, its sign will be zero.
1927        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1928          KnownZero2 |= ~LowBits;
1929
1930        KnownZero |= KnownZero2 & Mask;
1931
1932        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1933      }
1934    }
1935    return;
1936  case ISD::UREM: {
1937    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1938      const APInt &RA = Rem->getAPIntValue();
1939      if (RA.isPowerOf2()) {
1940        APInt LowBits = (RA - 1);
1941        APInt Mask2 = LowBits & Mask;
1942        KnownZero |= ~LowBits & Mask;
1943        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1944        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1945        break;
1946      }
1947    }
1948
1949    // Since the result is less than or equal to either operand, any leading
1950    // zero bits in either operand must also exist in the result.
1951    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1952    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1953                      Depth+1);
1954    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1955                      Depth+1);
1956
1957    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1958                                KnownZero2.countLeadingOnes());
1959    KnownOne.clear();
1960    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1961    return;
1962  }
1963  default:
1964    // Allow the target to implement this method for its nodes.
1965    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1966  case ISD::INTRINSIC_WO_CHAIN:
1967  case ISD::INTRINSIC_W_CHAIN:
1968  case ISD::INTRINSIC_VOID:
1969      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1970                                         Depth);
1971    }
1972    return;
1973  }
1974}
1975
1976/// ComputeNumSignBits - Return the number of times the sign bit of the
1977/// register is replicated into the other bits.  We know that at least 1 bit
1978/// is always equal to the sign bit (itself), but other cases can give us
1979/// information.  For example, immediately after an "SRA X, 2", we know that
1980/// the top 3 bits are all equal to each other, so we return 3.
1981unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1982  EVT VT = Op.getValueType();
1983  assert(VT.isInteger() && "Invalid VT!");
1984  unsigned VTBits = VT.getSizeInBits();
1985  unsigned Tmp, Tmp2;
1986  unsigned FirstAnswer = 1;
1987
1988  if (Depth == 6)
1989    return 1;  // Limit search depth.
1990
1991  switch (Op.getOpcode()) {
1992  default: break;
1993  case ISD::AssertSext:
1994    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1995    return VTBits-Tmp+1;
1996  case ISD::AssertZext:
1997    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1998    return VTBits-Tmp;
1999
2000  case ISD::Constant: {
2001    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2002    // If negative, return # leading ones.
2003    if (Val.isNegative())
2004      return Val.countLeadingOnes();
2005
2006    // Return # leading zeros.
2007    return Val.countLeadingZeros();
2008  }
2009
2010  case ISD::SIGN_EXTEND:
2011    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2012    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2013
2014  case ISD::SIGN_EXTEND_INREG:
2015    // Max of the input and what this extends.
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    Tmp = VTBits-Tmp+1;
2018
2019    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2020    return std::max(Tmp, Tmp2);
2021
2022  case ISD::SRA:
2023    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2024    // SRA X, C   -> adds C sign bits.
2025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2026      Tmp += C->getZExtValue();
2027      if (Tmp > VTBits) Tmp = VTBits;
2028    }
2029    return Tmp;
2030  case ISD::SHL:
2031    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2032      // shl destroys sign bits.
2033      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2035          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2036      return Tmp - C->getZExtValue();
2037    }
2038    break;
2039  case ISD::AND:
2040  case ISD::OR:
2041  case ISD::XOR:    // NOT is handled here.
2042    // Logical binary ops preserve the number of sign bits at the worst.
2043    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044    if (Tmp != 1) {
2045      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2046      FirstAnswer = std::min(Tmp, Tmp2);
2047      // We computed what we know about the sign bits as our first
2048      // answer. Now proceed to the generic code that uses
2049      // ComputeMaskedBits, and pick whichever answer is better.
2050    }
2051    break;
2052
2053  case ISD::SELECT:
2054    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2055    if (Tmp == 1) return 1;  // Early out.
2056    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2057    return std::min(Tmp, Tmp2);
2058
2059  case ISD::SADDO:
2060  case ISD::UADDO:
2061  case ISD::SSUBO:
2062  case ISD::USUBO:
2063  case ISD::SMULO:
2064  case ISD::UMULO:
2065    if (Op.getResNo() != 1)
2066      break;
2067    // The boolean result conforms to getBooleanContents.  Fall through.
2068  case ISD::SETCC:
2069    // If setcc returns 0/-1, all bits are sign bits.
2070    if (TLI.getBooleanContents() ==
2071        TargetLowering::ZeroOrNegativeOneBooleanContent)
2072      return VTBits;
2073    break;
2074  case ISD::ROTL:
2075  case ISD::ROTR:
2076    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2077      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2078
2079      // Handle rotate right by N like a rotate left by 32-N.
2080      if (Op.getOpcode() == ISD::ROTR)
2081        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2082
2083      // If we aren't rotating out all of the known-in sign bits, return the
2084      // number that are left.  This handles rotl(sext(x), 1) for example.
2085      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2086      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2087    }
2088    break;
2089  case ISD::ADD:
2090    // Add can have at most one carry bit.  Thus we know that the output
2091    // is, at worst, one more bit than the inputs.
2092    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2093    if (Tmp == 1) return 1;  // Early out.
2094
2095    // Special case decrementing a value (ADD X, -1):
2096    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2097      if (CRHS->isAllOnesValue()) {
2098        APInt KnownZero, KnownOne;
2099        APInt Mask = APInt::getAllOnesValue(VTBits);
2100        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2101
2102        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2103        // sign bits set.
2104        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2105          return VTBits;
2106
2107        // If we are subtracting one from a positive number, there is no carry
2108        // out of the result.
2109        if (KnownZero.isNegative())
2110          return Tmp;
2111      }
2112
2113    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2114    if (Tmp2 == 1) return 1;
2115      return std::min(Tmp, Tmp2)-1;
2116    break;
2117
2118  case ISD::SUB:
2119    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2120    if (Tmp2 == 1) return 1;
2121
2122    // Handle NEG.
2123    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2124      if (CLHS->isNullValue()) {
2125        APInt KnownZero, KnownOne;
2126        APInt Mask = APInt::getAllOnesValue(VTBits);
2127        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2128        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2129        // sign bits set.
2130        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2131          return VTBits;
2132
2133        // If the input is known to be positive (the sign bit is known clear),
2134        // the output of the NEG has the same number of sign bits as the input.
2135        if (KnownZero.isNegative())
2136          return Tmp2;
2137
2138        // Otherwise, we treat this like a SUB.
2139      }
2140
2141    // Sub can have at most one carry bit.  Thus we know that the output
2142    // is, at worst, one more bit than the inputs.
2143    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2144    if (Tmp == 1) return 1;  // Early out.
2145      return std::min(Tmp, Tmp2)-1;
2146    break;
2147  case ISD::TRUNCATE:
2148    // FIXME: it's tricky to do anything useful for this, but it is an important
2149    // case for targets like X86.
2150    break;
2151  }
2152
2153  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2154  if (Op.getOpcode() == ISD::LOAD) {
2155    LoadSDNode *LD = cast<LoadSDNode>(Op);
2156    unsigned ExtType = LD->getExtensionType();
2157    switch (ExtType) {
2158    default: break;
2159    case ISD::SEXTLOAD:    // '17' bits known
2160      Tmp = LD->getMemoryVT().getSizeInBits();
2161      return VTBits-Tmp+1;
2162    case ISD::ZEXTLOAD:    // '16' bits known
2163      Tmp = LD->getMemoryVT().getSizeInBits();
2164      return VTBits-Tmp;
2165    }
2166  }
2167
2168  // Allow the target to implement this method for its nodes.
2169  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2170      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2171      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2172      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2173    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2174    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2175  }
2176
2177  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2178  // use this information.
2179  APInt KnownZero, KnownOne;
2180  APInt Mask = APInt::getAllOnesValue(VTBits);
2181  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2182
2183  if (KnownZero.isNegative()) {        // sign bit is 0
2184    Mask = KnownZero;
2185  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2186    Mask = KnownOne;
2187  } else {
2188    // Nothing known.
2189    return FirstAnswer;
2190  }
2191
2192  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2193  // the number of identical bits in the top of the input value.
2194  Mask = ~Mask;
2195  Mask <<= Mask.getBitWidth()-VTBits;
2196  // Return # leading zeros.  We use 'min' here in case Val was zero before
2197  // shifting.  We don't want to return '64' as for an i32 "0".
2198  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2199}
2200
2201bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2202  // If we're told that NaNs won't happen, assume they won't.
2203  if (FiniteOnlyFPMath())
2204    return true;
2205
2206  // If the value is a constant, we can obviously see if it is a NaN or not.
2207  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2208    return !C->getValueAPF().isNaN();
2209
2210  // TODO: Recognize more cases here.
2211
2212  return false;
2213}
2214
2215bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2216  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2217  if (!GA) return false;
2218  if (GA->getOffset() != 0) return false;
2219  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2220  if (!GV) return false;
2221  MachineModuleInfo *MMI = getMachineModuleInfo();
2222  return MMI && MMI->hasDebugInfo();
2223}
2224
2225
2226/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2227/// element of the result of the vector shuffle.
2228SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2229                                          unsigned i) {
2230  EVT VT = N->getValueType(0);
2231  DebugLoc dl = N->getDebugLoc();
2232  if (N->getMaskElt(i) < 0)
2233    return getUNDEF(VT.getVectorElementType());
2234  unsigned Index = N->getMaskElt(i);
2235  unsigned NumElems = VT.getVectorNumElements();
2236  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2237  Index %= NumElems;
2238
2239  if (V.getOpcode() == ISD::BIT_CONVERT) {
2240    V = V.getOperand(0);
2241    EVT VVT = V.getValueType();
2242    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2243      return SDValue();
2244  }
2245  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2246    return (Index == 0) ? V.getOperand(0)
2247                      : getUNDEF(VT.getVectorElementType());
2248  if (V.getOpcode() == ISD::BUILD_VECTOR)
2249    return V.getOperand(Index);
2250  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2251    return getShuffleScalarElt(SVN, Index);
2252  return SDValue();
2253}
2254
2255
2256/// getNode - Gets or creates the specified node.
2257///
2258SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2259  FoldingSetNodeID ID;
2260  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2261  void *IP = 0;
2262  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2263    return SDValue(E, 0);
2264  SDNode *N = NodeAllocator.Allocate<SDNode>();
2265  new (N) SDNode(Opcode, DL, getVTList(VT));
2266  CSEMap.InsertNode(N, IP);
2267
2268  AllNodes.push_back(N);
2269#ifndef NDEBUG
2270  VerifyNode(N);
2271#endif
2272  return SDValue(N, 0);
2273}
2274
2275SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2276                              EVT VT, SDValue Operand) {
2277  // Constant fold unary operations with an integer constant operand.
2278  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2279    const APInt &Val = C->getAPIntValue();
2280    unsigned BitWidth = VT.getSizeInBits();
2281    switch (Opcode) {
2282    default: break;
2283    case ISD::SIGN_EXTEND:
2284      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2285    case ISD::ANY_EXTEND:
2286    case ISD::ZERO_EXTEND:
2287    case ISD::TRUNCATE:
2288      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2289    case ISD::UINT_TO_FP:
2290    case ISD::SINT_TO_FP: {
2291      const uint64_t zero[] = {0, 0};
2292      // No compile time operations on this type.
2293      if (VT==MVT::ppcf128)
2294        break;
2295      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2296      (void)apf.convertFromAPInt(Val,
2297                                 Opcode==ISD::SINT_TO_FP,
2298                                 APFloat::rmNearestTiesToEven);
2299      return getConstantFP(apf, VT);
2300    }
2301    case ISD::BIT_CONVERT:
2302      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2303        return getConstantFP(Val.bitsToFloat(), VT);
2304      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2305        return getConstantFP(Val.bitsToDouble(), VT);
2306      break;
2307    case ISD::BSWAP:
2308      return getConstant(Val.byteSwap(), VT);
2309    case ISD::CTPOP:
2310      return getConstant(Val.countPopulation(), VT);
2311    case ISD::CTLZ:
2312      return getConstant(Val.countLeadingZeros(), VT);
2313    case ISD::CTTZ:
2314      return getConstant(Val.countTrailingZeros(), VT);
2315    }
2316  }
2317
2318  // Constant fold unary operations with a floating point constant operand.
2319  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2320    APFloat V = C->getValueAPF();    // make copy
2321    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2322      switch (Opcode) {
2323      case ISD::FNEG:
2324        V.changeSign();
2325        return getConstantFP(V, VT);
2326      case ISD::FABS:
2327        V.clearSign();
2328        return getConstantFP(V, VT);
2329      case ISD::FP_ROUND:
2330      case ISD::FP_EXTEND: {
2331        bool ignored;
2332        // This can return overflow, underflow, or inexact; we don't care.
2333        // FIXME need to be more flexible about rounding mode.
2334        (void)V.convert(*EVTToAPFloatSemantics(VT),
2335                        APFloat::rmNearestTiesToEven, &ignored);
2336        return getConstantFP(V, VT);
2337      }
2338      case ISD::FP_TO_SINT:
2339      case ISD::FP_TO_UINT: {
2340        integerPart x[2];
2341        bool ignored;
2342        assert(integerPartWidth >= 64);
2343        // FIXME need to be more flexible about rounding mode.
2344        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2345                              Opcode==ISD::FP_TO_SINT,
2346                              APFloat::rmTowardZero, &ignored);
2347        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2348          break;
2349        APInt api(VT.getSizeInBits(), 2, x);
2350        return getConstant(api, VT);
2351      }
2352      case ISD::BIT_CONVERT:
2353        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2354          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2355        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2356          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2357        break;
2358      }
2359    }
2360  }
2361
2362  unsigned OpOpcode = Operand.getNode()->getOpcode();
2363  switch (Opcode) {
2364  case ISD::TokenFactor:
2365  case ISD::MERGE_VALUES:
2366  case ISD::CONCAT_VECTORS:
2367    return Operand;         // Factor, merge or concat of one node?  No need.
2368  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2369  case ISD::FP_EXTEND:
2370    assert(VT.isFloatingPoint() &&
2371           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2372    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2373    if (Operand.getOpcode() == ISD::UNDEF)
2374      return getUNDEF(VT);
2375    break;
2376  case ISD::SIGN_EXTEND:
2377    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2378           "Invalid SIGN_EXTEND!");
2379    if (Operand.getValueType() == VT) return Operand;   // noop extension
2380    assert(Operand.getValueType().bitsLT(VT)
2381           && "Invalid sext node, dst < src!");
2382    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2383      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2384    break;
2385  case ISD::ZERO_EXTEND:
2386    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2387           "Invalid ZERO_EXTEND!");
2388    if (Operand.getValueType() == VT) return Operand;   // noop extension
2389    assert(Operand.getValueType().bitsLT(VT)
2390           && "Invalid zext node, dst < src!");
2391    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2392      return getNode(ISD::ZERO_EXTEND, DL, VT,
2393                     Operand.getNode()->getOperand(0));
2394    break;
2395  case ISD::ANY_EXTEND:
2396    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2397           "Invalid ANY_EXTEND!");
2398    if (Operand.getValueType() == VT) return Operand;   // noop extension
2399    assert(Operand.getValueType().bitsLT(VT)
2400           && "Invalid anyext node, dst < src!");
2401    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2402      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2403      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2404    break;
2405  case ISD::TRUNCATE:
2406    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2407           "Invalid TRUNCATE!");
2408    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2409    assert(Operand.getValueType().bitsGT(VT)
2410           && "Invalid truncate node, src < dst!");
2411    if (OpOpcode == ISD::TRUNCATE)
2412      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2413    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2414             OpOpcode == ISD::ANY_EXTEND) {
2415      // If the source is smaller than the dest, we still need an extend.
2416      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2417        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2418      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2419        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2420      else
2421        return Operand.getNode()->getOperand(0);
2422    }
2423    break;
2424  case ISD::BIT_CONVERT:
2425    // Basic sanity checking.
2426    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2427           && "Cannot BIT_CONVERT between types of different sizes!");
2428    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2429    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2430      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2431    if (OpOpcode == ISD::UNDEF)
2432      return getUNDEF(VT);
2433    break;
2434  case ISD::SCALAR_TO_VECTOR:
2435    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2436           (VT.getVectorElementType() == Operand.getValueType() ||
2437            (VT.getVectorElementType().isInteger() &&
2438             Operand.getValueType().isInteger() &&
2439             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2440           "Illegal SCALAR_TO_VECTOR node!");
2441    if (OpOpcode == ISD::UNDEF)
2442      return getUNDEF(VT);
2443    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2444    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2445        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2446        Operand.getConstantOperandVal(1) == 0 &&
2447        Operand.getOperand(0).getValueType() == VT)
2448      return Operand.getOperand(0);
2449    break;
2450  case ISD::FNEG:
2451    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2452    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2453      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2454                     Operand.getNode()->getOperand(0));
2455    if (OpOpcode == ISD::FNEG)  // --X -> X
2456      return Operand.getNode()->getOperand(0);
2457    break;
2458  case ISD::FABS:
2459    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2460      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2461    break;
2462  }
2463
2464  SDNode *N;
2465  SDVTList VTs = getVTList(VT);
2466  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2467    FoldingSetNodeID ID;
2468    SDValue Ops[1] = { Operand };
2469    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2470    void *IP = 0;
2471    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2472      return SDValue(E, 0);
2473    N = NodeAllocator.Allocate<UnarySDNode>();
2474    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2475    CSEMap.InsertNode(N, IP);
2476  } else {
2477    N = NodeAllocator.Allocate<UnarySDNode>();
2478    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2479  }
2480
2481  AllNodes.push_back(N);
2482#ifndef NDEBUG
2483  VerifyNode(N);
2484#endif
2485  return SDValue(N, 0);
2486}
2487
2488SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2489                                             EVT VT,
2490                                             ConstantSDNode *Cst1,
2491                                             ConstantSDNode *Cst2) {
2492  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2493
2494  switch (Opcode) {
2495  case ISD::ADD:  return getConstant(C1 + C2, VT);
2496  case ISD::SUB:  return getConstant(C1 - C2, VT);
2497  case ISD::MUL:  return getConstant(C1 * C2, VT);
2498  case ISD::UDIV:
2499    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2500    break;
2501  case ISD::UREM:
2502    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2503    break;
2504  case ISD::SDIV:
2505    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2506    break;
2507  case ISD::SREM:
2508    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2509    break;
2510  case ISD::AND:  return getConstant(C1 & C2, VT);
2511  case ISD::OR:   return getConstant(C1 | C2, VT);
2512  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2513  case ISD::SHL:  return getConstant(C1 << C2, VT);
2514  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2515  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2516  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2517  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2518  default: break;
2519  }
2520
2521  return SDValue();
2522}
2523
2524SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2525                              SDValue N1, SDValue N2) {
2526  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2527  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2528  switch (Opcode) {
2529  default: break;
2530  case ISD::TokenFactor:
2531    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2532           N2.getValueType() == MVT::Other && "Invalid token factor!");
2533    // Fold trivial token factors.
2534    if (N1.getOpcode() == ISD::EntryToken) return N2;
2535    if (N2.getOpcode() == ISD::EntryToken) return N1;
2536    if (N1 == N2) return N1;
2537    break;
2538  case ISD::CONCAT_VECTORS:
2539    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2540    // one big BUILD_VECTOR.
2541    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2542        N2.getOpcode() == ISD::BUILD_VECTOR) {
2543      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2544      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2545      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2546    }
2547    break;
2548  case ISD::AND:
2549    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2550           N1.getValueType() == VT && "Binary operator types must match!");
2551    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2552    // worth handling here.
2553    if (N2C && N2C->isNullValue())
2554      return N2;
2555    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2556      return N1;
2557    break;
2558  case ISD::OR:
2559  case ISD::XOR:
2560  case ISD::ADD:
2561  case ISD::SUB:
2562    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2563           N1.getValueType() == VT && "Binary operator types must match!");
2564    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2565    // it's worth handling here.
2566    if (N2C && N2C->isNullValue())
2567      return N1;
2568    break;
2569  case ISD::UDIV:
2570  case ISD::UREM:
2571  case ISD::MULHU:
2572  case ISD::MULHS:
2573  case ISD::MUL:
2574  case ISD::SDIV:
2575  case ISD::SREM:
2576    assert(VT.isInteger() && "This operator does not apply to FP types!");
2577    // fall through
2578  case ISD::FADD:
2579  case ISD::FSUB:
2580  case ISD::FMUL:
2581  case ISD::FDIV:
2582  case ISD::FREM:
2583    if (UnsafeFPMath) {
2584      if (Opcode == ISD::FADD) {
2585        // 0+x --> x
2586        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2587          if (CFP->getValueAPF().isZero())
2588            return N2;
2589        // x+0 --> x
2590        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2591          if (CFP->getValueAPF().isZero())
2592            return N1;
2593      } else if (Opcode == ISD::FSUB) {
2594        // x-0 --> x
2595        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2596          if (CFP->getValueAPF().isZero())
2597            return N1;
2598      }
2599    }
2600    assert(N1.getValueType() == N2.getValueType() &&
2601           N1.getValueType() == VT && "Binary operator types must match!");
2602    break;
2603  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2604    assert(N1.getValueType() == VT &&
2605           N1.getValueType().isFloatingPoint() &&
2606           N2.getValueType().isFloatingPoint() &&
2607           "Invalid FCOPYSIGN!");
2608    break;
2609  case ISD::SHL:
2610  case ISD::SRA:
2611  case ISD::SRL:
2612  case ISD::ROTL:
2613  case ISD::ROTR:
2614    assert(VT == N1.getValueType() &&
2615           "Shift operators return type must be the same as their first arg");
2616    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2617           "Shifts only work on integers");
2618
2619    // Always fold shifts of i1 values so the code generator doesn't need to
2620    // handle them.  Since we know the size of the shift has to be less than the
2621    // size of the value, the shift/rotate count is guaranteed to be zero.
2622    if (VT == MVT::i1)
2623      return N1;
2624    break;
2625  case ISD::FP_ROUND_INREG: {
2626    EVT EVT = cast<VTSDNode>(N2)->getVT();
2627    assert(VT == N1.getValueType() && "Not an inreg round!");
2628    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2629           "Cannot FP_ROUND_INREG integer types");
2630    assert(EVT.bitsLE(VT) && "Not rounding down!");
2631    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2632    break;
2633  }
2634  case ISD::FP_ROUND:
2635    assert(VT.isFloatingPoint() &&
2636           N1.getValueType().isFloatingPoint() &&
2637           VT.bitsLE(N1.getValueType()) &&
2638           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2639    if (N1.getValueType() == VT) return N1;  // noop conversion.
2640    break;
2641  case ISD::AssertSext:
2642  case ISD::AssertZext: {
2643    EVT EVT = cast<VTSDNode>(N2)->getVT();
2644    assert(VT == N1.getValueType() && "Not an inreg extend!");
2645    assert(VT.isInteger() && EVT.isInteger() &&
2646           "Cannot *_EXTEND_INREG FP types");
2647    assert(EVT.bitsLE(VT) && "Not extending!");
2648    if (VT == EVT) return N1; // noop assertion.
2649    break;
2650  }
2651  case ISD::SIGN_EXTEND_INREG: {
2652    EVT EVT = cast<VTSDNode>(N2)->getVT();
2653    assert(VT == N1.getValueType() && "Not an inreg extend!");
2654    assert(VT.isInteger() && EVT.isInteger() &&
2655           "Cannot *_EXTEND_INREG FP types");
2656    assert(EVT.bitsLE(VT) && "Not extending!");
2657    if (EVT == VT) return N1;  // Not actually extending
2658
2659    if (N1C) {
2660      APInt Val = N1C->getAPIntValue();
2661      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2662      Val <<= Val.getBitWidth()-FromBits;
2663      Val = Val.ashr(Val.getBitWidth()-FromBits);
2664      return getConstant(Val, VT);
2665    }
2666    break;
2667  }
2668  case ISD::EXTRACT_VECTOR_ELT:
2669    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2670    if (N1.getOpcode() == ISD::UNDEF)
2671      return getUNDEF(VT);
2672
2673    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2674    // expanding copies of large vectors from registers.
2675    if (N2C &&
2676        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2677        N1.getNumOperands() > 0) {
2678      unsigned Factor =
2679        N1.getOperand(0).getValueType().getVectorNumElements();
2680      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2681                     N1.getOperand(N2C->getZExtValue() / Factor),
2682                     getConstant(N2C->getZExtValue() % Factor,
2683                                 N2.getValueType()));
2684    }
2685
2686    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2687    // expanding large vector constants.
2688    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2689      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2690      EVT VEltTy = N1.getValueType().getVectorElementType();
2691      if (Elt.getValueType() != VEltTy) {
2692        // If the vector element type is not legal, the BUILD_VECTOR operands
2693        // are promoted and implicitly truncated.  Make that explicit here.
2694        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2695      }
2696      if (VT != VEltTy) {
2697        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2698        // result is implicitly extended.
2699        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2700      }
2701      return Elt;
2702    }
2703
2704    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2705    // operations are lowered to scalars.
2706    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2707      // If the indices are the same, return the inserted element.
2708      if (N1.getOperand(2) == N2)
2709        return N1.getOperand(1);
2710      // If the indices are known different, extract the element from
2711      // the original vector.
2712      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2713               isa<ConstantSDNode>(N2))
2714        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2715    }
2716    break;
2717  case ISD::EXTRACT_ELEMENT:
2718    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2719    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2720           (N1.getValueType().isInteger() == VT.isInteger()) &&
2721           "Wrong types for EXTRACT_ELEMENT!");
2722
2723    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2724    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2725    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2726    if (N1.getOpcode() == ISD::BUILD_PAIR)
2727      return N1.getOperand(N2C->getZExtValue());
2728
2729    // EXTRACT_ELEMENT of a constant int is also very common.
2730    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2731      unsigned ElementSize = VT.getSizeInBits();
2732      unsigned Shift = ElementSize * N2C->getZExtValue();
2733      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2734      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2735    }
2736    break;
2737  case ISD::EXTRACT_SUBVECTOR:
2738    if (N1.getValueType() == VT) // Trivial extraction.
2739      return N1;
2740    break;
2741  }
2742
2743  if (N1C) {
2744    if (N2C) {
2745      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2746      if (SV.getNode()) return SV;
2747    } else {      // Cannonicalize constant to RHS if commutative
2748      if (isCommutativeBinOp(Opcode)) {
2749        std::swap(N1C, N2C);
2750        std::swap(N1, N2);
2751      }
2752    }
2753  }
2754
2755  // Constant fold FP operations.
2756  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2757  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2758  if (N1CFP) {
2759    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2760      // Cannonicalize constant to RHS if commutative
2761      std::swap(N1CFP, N2CFP);
2762      std::swap(N1, N2);
2763    } else if (N2CFP && VT != MVT::ppcf128) {
2764      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2765      APFloat::opStatus s;
2766      switch (Opcode) {
2767      case ISD::FADD:
2768        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2769        if (s != APFloat::opInvalidOp)
2770          return getConstantFP(V1, VT);
2771        break;
2772      case ISD::FSUB:
2773        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2774        if (s!=APFloat::opInvalidOp)
2775          return getConstantFP(V1, VT);
2776        break;
2777      case ISD::FMUL:
2778        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2779        if (s!=APFloat::opInvalidOp)
2780          return getConstantFP(V1, VT);
2781        break;
2782      case ISD::FDIV:
2783        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2784        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2785          return getConstantFP(V1, VT);
2786        break;
2787      case ISD::FREM :
2788        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2789        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2790          return getConstantFP(V1, VT);
2791        break;
2792      case ISD::FCOPYSIGN:
2793        V1.copySign(V2);
2794        return getConstantFP(V1, VT);
2795      default: break;
2796      }
2797    }
2798  }
2799
2800  // Canonicalize an UNDEF to the RHS, even over a constant.
2801  if (N1.getOpcode() == ISD::UNDEF) {
2802    if (isCommutativeBinOp(Opcode)) {
2803      std::swap(N1, N2);
2804    } else {
2805      switch (Opcode) {
2806      case ISD::FP_ROUND_INREG:
2807      case ISD::SIGN_EXTEND_INREG:
2808      case ISD::SUB:
2809      case ISD::FSUB:
2810      case ISD::FDIV:
2811      case ISD::FREM:
2812      case ISD::SRA:
2813        return N1;     // fold op(undef, arg2) -> undef
2814      case ISD::UDIV:
2815      case ISD::SDIV:
2816      case ISD::UREM:
2817      case ISD::SREM:
2818      case ISD::SRL:
2819      case ISD::SHL:
2820        if (!VT.isVector())
2821          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2822        // For vectors, we can't easily build an all zero vector, just return
2823        // the LHS.
2824        return N2;
2825      }
2826    }
2827  }
2828
2829  // Fold a bunch of operators when the RHS is undef.
2830  if (N2.getOpcode() == ISD::UNDEF) {
2831    switch (Opcode) {
2832    case ISD::XOR:
2833      if (N1.getOpcode() == ISD::UNDEF)
2834        // Handle undef ^ undef -> 0 special case. This is a common
2835        // idiom (misuse).
2836        return getConstant(0, VT);
2837      // fallthrough
2838    case ISD::ADD:
2839    case ISD::ADDC:
2840    case ISD::ADDE:
2841    case ISD::SUB:
2842    case ISD::UDIV:
2843    case ISD::SDIV:
2844    case ISD::UREM:
2845    case ISD::SREM:
2846      return N2;       // fold op(arg1, undef) -> undef
2847    case ISD::FADD:
2848    case ISD::FSUB:
2849    case ISD::FMUL:
2850    case ISD::FDIV:
2851    case ISD::FREM:
2852      if (UnsafeFPMath)
2853        return N2;
2854      break;
2855    case ISD::MUL:
2856    case ISD::AND:
2857    case ISD::SRL:
2858    case ISD::SHL:
2859      if (!VT.isVector())
2860        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2861      // For vectors, we can't easily build an all zero vector, just return
2862      // the LHS.
2863      return N1;
2864    case ISD::OR:
2865      if (!VT.isVector())
2866        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2867      // For vectors, we can't easily build an all one vector, just return
2868      // the LHS.
2869      return N1;
2870    case ISD::SRA:
2871      return N1;
2872    }
2873  }
2874
2875  // Memoize this node if possible.
2876  SDNode *N;
2877  SDVTList VTs = getVTList(VT);
2878  if (VT != MVT::Flag) {
2879    SDValue Ops[] = { N1, N2 };
2880    FoldingSetNodeID ID;
2881    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2882    void *IP = 0;
2883    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2884      return SDValue(E, 0);
2885    N = NodeAllocator.Allocate<BinarySDNode>();
2886    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2887    CSEMap.InsertNode(N, IP);
2888  } else {
2889    N = NodeAllocator.Allocate<BinarySDNode>();
2890    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2891  }
2892
2893  AllNodes.push_back(N);
2894#ifndef NDEBUG
2895  VerifyNode(N);
2896#endif
2897  return SDValue(N, 0);
2898}
2899
2900SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2901                              SDValue N1, SDValue N2, SDValue N3) {
2902  // Perform various simplifications.
2903  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2904  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2905  switch (Opcode) {
2906  case ISD::CONCAT_VECTORS:
2907    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2908    // one big BUILD_VECTOR.
2909    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2910        N2.getOpcode() == ISD::BUILD_VECTOR &&
2911        N3.getOpcode() == ISD::BUILD_VECTOR) {
2912      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2913      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2914      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2915      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2916    }
2917    break;
2918  case ISD::SETCC: {
2919    // Use FoldSetCC to simplify SETCC's.
2920    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2921    if (Simp.getNode()) return Simp;
2922    break;
2923  }
2924  case ISD::SELECT:
2925    if (N1C) {
2926     if (N1C->getZExtValue())
2927        return N2;             // select true, X, Y -> X
2928      else
2929        return N3;             // select false, X, Y -> Y
2930    }
2931
2932    if (N2 == N3) return N2;   // select C, X, X -> X
2933    break;
2934  case ISD::BRCOND:
2935    if (N2C) {
2936      if (N2C->getZExtValue()) // Unconditional branch
2937        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2938      else
2939        return N1;         // Never-taken branch
2940    }
2941    break;
2942  case ISD::VECTOR_SHUFFLE:
2943    llvm_unreachable("should use getVectorShuffle constructor!");
2944    break;
2945  case ISD::BIT_CONVERT:
2946    // Fold bit_convert nodes from a type to themselves.
2947    if (N1.getValueType() == VT)
2948      return N1;
2949    break;
2950  }
2951
2952  // Memoize node if it doesn't produce a flag.
2953  SDNode *N;
2954  SDVTList VTs = getVTList(VT);
2955  if (VT != MVT::Flag) {
2956    SDValue Ops[] = { N1, N2, N3 };
2957    FoldingSetNodeID ID;
2958    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2959    void *IP = 0;
2960    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2961      return SDValue(E, 0);
2962    N = NodeAllocator.Allocate<TernarySDNode>();
2963    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2964    CSEMap.InsertNode(N, IP);
2965  } else {
2966    N = NodeAllocator.Allocate<TernarySDNode>();
2967    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2968  }
2969  AllNodes.push_back(N);
2970#ifndef NDEBUG
2971  VerifyNode(N);
2972#endif
2973  return SDValue(N, 0);
2974}
2975
2976SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2977                              SDValue N1, SDValue N2, SDValue N3,
2978                              SDValue N4) {
2979  SDValue Ops[] = { N1, N2, N3, N4 };
2980  return getNode(Opcode, DL, VT, Ops, 4);
2981}
2982
2983SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2984                              SDValue N1, SDValue N2, SDValue N3,
2985                              SDValue N4, SDValue N5) {
2986  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2987  return getNode(Opcode, DL, VT, Ops, 5);
2988}
2989
2990/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2991/// the incoming stack arguments to be loaded from the stack.
2992SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2993  SmallVector<SDValue, 8> ArgChains;
2994
2995  // Include the original chain at the beginning of the list. When this is
2996  // used by target LowerCall hooks, this helps legalize find the
2997  // CALLSEQ_BEGIN node.
2998  ArgChains.push_back(Chain);
2999
3000  // Add a chain value for each stack argument.
3001  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3002       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3003    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3004      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3005        if (FI->getIndex() < 0)
3006          ArgChains.push_back(SDValue(L, 1));
3007
3008  // Build a tokenfactor for all the chains.
3009  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3010                 &ArgChains[0], ArgChains.size());
3011}
3012
3013/// getMemsetValue - Vectorized representation of the memset value
3014/// operand.
3015static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3016                              DebugLoc dl) {
3017  unsigned NumBits = VT.isVector() ?
3018    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3019  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3020    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3021    unsigned Shift = 8;
3022    for (unsigned i = NumBits; i > 8; i >>= 1) {
3023      Val = (Val << Shift) | Val;
3024      Shift <<= 1;
3025    }
3026    if (VT.isInteger())
3027      return DAG.getConstant(Val, VT);
3028    return DAG.getConstantFP(APFloat(Val), VT);
3029  }
3030
3031  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3032  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3033  unsigned Shift = 8;
3034  for (unsigned i = NumBits; i > 8; i >>= 1) {
3035    Value = DAG.getNode(ISD::OR, dl, VT,
3036                        DAG.getNode(ISD::SHL, dl, VT, Value,
3037                                    DAG.getConstant(Shift,
3038                                                    TLI.getShiftAmountTy())),
3039                        Value);
3040    Shift <<= 1;
3041  }
3042
3043  return Value;
3044}
3045
3046/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3047/// used when a memcpy is turned into a memset when the source is a constant
3048/// string ptr.
3049static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3050                                  const TargetLowering &TLI,
3051                                  std::string &Str, unsigned Offset) {
3052  // Handle vector with all elements zero.
3053  if (Str.empty()) {
3054    if (VT.isInteger())
3055      return DAG.getConstant(0, VT);
3056    unsigned NumElts = VT.getVectorNumElements();
3057    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3058    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3059                       DAG.getConstant(0,
3060                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3061  }
3062
3063  assert(!VT.isVector() && "Can't handle vector type here!");
3064  unsigned NumBits = VT.getSizeInBits();
3065  unsigned MSB = NumBits / 8;
3066  uint64_t Val = 0;
3067  if (TLI.isLittleEndian())
3068    Offset = Offset + MSB - 1;
3069  for (unsigned i = 0; i != MSB; ++i) {
3070    Val = (Val << 8) | (unsigned char)Str[Offset];
3071    Offset += TLI.isLittleEndian() ? -1 : 1;
3072  }
3073  return DAG.getConstant(Val, VT);
3074}
3075
3076/// getMemBasePlusOffset - Returns base and offset node for the
3077///
3078static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3079                                      SelectionDAG &DAG) {
3080  EVT VT = Base.getValueType();
3081  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3082                     VT, Base, DAG.getConstant(Offset, VT));
3083}
3084
3085/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3086///
3087static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3088  unsigned SrcDelta = 0;
3089  GlobalAddressSDNode *G = NULL;
3090  if (Src.getOpcode() == ISD::GlobalAddress)
3091    G = cast<GlobalAddressSDNode>(Src);
3092  else if (Src.getOpcode() == ISD::ADD &&
3093           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3094           Src.getOperand(1).getOpcode() == ISD::Constant) {
3095    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3096    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3097  }
3098  if (!G)
3099    return false;
3100
3101  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3102  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3103    return true;
3104
3105  return false;
3106}
3107
3108/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3109/// to replace the memset / memcpy is below the threshold. It also returns the
3110/// types of the sequence of memory ops to perform memset / memcpy.
3111static
3112bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3113                              SDValue Dst, SDValue Src,
3114                              unsigned Limit, uint64_t Size, unsigned &Align,
3115                              std::string &Str, bool &isSrcStr,
3116                              SelectionDAG &DAG,
3117                              const TargetLowering &TLI) {
3118  isSrcStr = isMemSrcFromString(Src, Str);
3119  bool isSrcConst = isa<ConstantSDNode>(Src);
3120  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3121  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3122  if (VT != MVT::iAny) {
3123    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3124    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3125    // If source is a string constant, this will require an unaligned load.
3126    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3127      if (Dst.getOpcode() != ISD::FrameIndex) {
3128        // Can't change destination alignment. It requires a unaligned store.
3129        if (AllowUnalign)
3130          VT = MVT::iAny;
3131      } else {
3132        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3133        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3134        if (MFI->isFixedObjectIndex(FI)) {
3135          // Can't change destination alignment. It requires a unaligned store.
3136          if (AllowUnalign)
3137            VT = MVT::iAny;
3138        } else {
3139          // Give the stack frame object a larger alignment if needed.
3140          if (MFI->getObjectAlignment(FI) < NewAlign)
3141            MFI->setObjectAlignment(FI, NewAlign);
3142          Align = NewAlign;
3143        }
3144      }
3145    }
3146  }
3147
3148  if (VT == MVT::iAny) {
3149    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3150      VT = MVT::i64;
3151    } else {
3152      switch (Align & 7) {
3153      case 0:  VT = MVT::i64; break;
3154      case 4:  VT = MVT::i32; break;
3155      case 2:  VT = MVT::i16; break;
3156      default: VT = MVT::i8;  break;
3157      }
3158    }
3159
3160    MVT LVT = MVT::i64;
3161    while (!TLI.isTypeLegal(LVT))
3162      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3163    assert(LVT.isInteger());
3164
3165    if (VT.bitsGT(LVT))
3166      VT = LVT;
3167  }
3168
3169  unsigned NumMemOps = 0;
3170  while (Size != 0) {
3171    unsigned VTSize = VT.getSizeInBits() / 8;
3172    while (VTSize > Size) {
3173      // For now, only use non-vector load / store's for the left-over pieces.
3174      if (VT.isVector()) {
3175        VT = MVT::i64;
3176        while (!TLI.isTypeLegal(VT))
3177          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3178        VTSize = VT.getSizeInBits() / 8;
3179      } else {
3180        // This can result in a type that is not legal on the target, e.g.
3181        // 1 or 2 bytes on PPC.
3182        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3183        VTSize >>= 1;
3184      }
3185    }
3186
3187    if (++NumMemOps > Limit)
3188      return false;
3189    MemOps.push_back(VT);
3190    Size -= VTSize;
3191  }
3192
3193  return true;
3194}
3195
3196static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3197                                         SDValue Chain, SDValue Dst,
3198                                         SDValue Src, uint64_t Size,
3199                                         unsigned Align, bool AlwaysInline,
3200                                         const Value *DstSV, uint64_t DstSVOff,
3201                                         const Value *SrcSV, uint64_t SrcSVOff){
3202  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3203
3204  // Expand memcpy to a series of load and store ops if the size operand falls
3205  // below a certain threshold.
3206  std::vector<EVT> MemOps;
3207  uint64_t Limit = -1ULL;
3208  if (!AlwaysInline)
3209    Limit = TLI.getMaxStoresPerMemcpy();
3210  unsigned DstAlign = Align;  // Destination alignment can change.
3211  std::string Str;
3212  bool CopyFromStr;
3213  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3214                                Str, CopyFromStr, DAG, TLI))
3215    return SDValue();
3216
3217
3218  bool isZeroStr = CopyFromStr && Str.empty();
3219  SmallVector<SDValue, 8> OutChains;
3220  unsigned NumMemOps = MemOps.size();
3221  uint64_t SrcOff = 0, DstOff = 0;
3222  for (unsigned i = 0; i != NumMemOps; ++i) {
3223    EVT VT = MemOps[i];
3224    unsigned VTSize = VT.getSizeInBits() / 8;
3225    SDValue Value, Store;
3226
3227    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3228      // It's unlikely a store of a vector immediate can be done in a single
3229      // instruction. It would require a load from a constantpool first.
3230      // We also handle store a vector with all zero's.
3231      // FIXME: Handle other cases where store of vector immediate is done in
3232      // a single instruction.
3233      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3234      Store = DAG.getStore(Chain, dl, Value,
3235                           getMemBasePlusOffset(Dst, DstOff, DAG),
3236                           DstSV, DstSVOff + DstOff, false, DstAlign);
3237    } else {
3238      // The type might not be legal for the target.  This should only happen
3239      // if the type is smaller than a legal type, as on PPC, so the right
3240      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3241      // to Load/Store if NVT==VT.
3242      // FIXME does the case above also need this?
3243      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3244      assert(NVT.bitsGE(VT));
3245      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3246                             getMemBasePlusOffset(Src, SrcOff, DAG),
3247                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3248      Store = DAG.getTruncStore(Chain, dl, Value,
3249                             getMemBasePlusOffset(Dst, DstOff, DAG),
3250                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3251    }
3252    OutChains.push_back(Store);
3253    SrcOff += VTSize;
3254    DstOff += VTSize;
3255  }
3256
3257  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3258                     &OutChains[0], OutChains.size());
3259}
3260
3261static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3262                                          SDValue Chain, SDValue Dst,
3263                                          SDValue Src, uint64_t Size,
3264                                          unsigned Align, bool AlwaysInline,
3265                                          const Value *DstSV, uint64_t DstSVOff,
3266                                          const Value *SrcSV, uint64_t SrcSVOff){
3267  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3268
3269  // Expand memmove to a series of load and store ops if the size operand falls
3270  // below a certain threshold.
3271  std::vector<EVT> MemOps;
3272  uint64_t Limit = -1ULL;
3273  if (!AlwaysInline)
3274    Limit = TLI.getMaxStoresPerMemmove();
3275  unsigned DstAlign = Align;  // Destination alignment can change.
3276  std::string Str;
3277  bool CopyFromStr;
3278  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3279                                Str, CopyFromStr, DAG, TLI))
3280    return SDValue();
3281
3282  uint64_t SrcOff = 0, DstOff = 0;
3283
3284  SmallVector<SDValue, 8> LoadValues;
3285  SmallVector<SDValue, 8> LoadChains;
3286  SmallVector<SDValue, 8> OutChains;
3287  unsigned NumMemOps = MemOps.size();
3288  for (unsigned i = 0; i < NumMemOps; i++) {
3289    EVT VT = MemOps[i];
3290    unsigned VTSize = VT.getSizeInBits() / 8;
3291    SDValue Value, Store;
3292
3293    Value = DAG.getLoad(VT, dl, Chain,
3294                        getMemBasePlusOffset(Src, SrcOff, DAG),
3295                        SrcSV, SrcSVOff + SrcOff, false, Align);
3296    LoadValues.push_back(Value);
3297    LoadChains.push_back(Value.getValue(1));
3298    SrcOff += VTSize;
3299  }
3300  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3301                      &LoadChains[0], LoadChains.size());
3302  OutChains.clear();
3303  for (unsigned i = 0; i < NumMemOps; i++) {
3304    EVT VT = MemOps[i];
3305    unsigned VTSize = VT.getSizeInBits() / 8;
3306    SDValue Value, Store;
3307
3308    Store = DAG.getStore(Chain, dl, LoadValues[i],
3309                         getMemBasePlusOffset(Dst, DstOff, DAG),
3310                         DstSV, DstSVOff + DstOff, false, DstAlign);
3311    OutChains.push_back(Store);
3312    DstOff += VTSize;
3313  }
3314
3315  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3316                     &OutChains[0], OutChains.size());
3317}
3318
3319static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3320                                 SDValue Chain, SDValue Dst,
3321                                 SDValue Src, uint64_t Size,
3322                                 unsigned Align,
3323                                 const Value *DstSV, uint64_t DstSVOff) {
3324  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3325
3326  // Expand memset to a series of load/store ops if the size operand
3327  // falls below a certain threshold.
3328  std::vector<EVT> MemOps;
3329  std::string Str;
3330  bool CopyFromStr;
3331  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3332                                Size, Align, Str, CopyFromStr, DAG, TLI))
3333    return SDValue();
3334
3335  SmallVector<SDValue, 8> OutChains;
3336  uint64_t DstOff = 0;
3337
3338  unsigned NumMemOps = MemOps.size();
3339  for (unsigned i = 0; i < NumMemOps; i++) {
3340    EVT VT = MemOps[i];
3341    unsigned VTSize = VT.getSizeInBits() / 8;
3342    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3343    SDValue Store = DAG.getStore(Chain, dl, Value,
3344                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3345                                 DstSV, DstSVOff + DstOff);
3346    OutChains.push_back(Store);
3347    DstOff += VTSize;
3348  }
3349
3350  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3351                     &OutChains[0], OutChains.size());
3352}
3353
3354SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3355                                SDValue Src, SDValue Size,
3356                                unsigned Align, bool AlwaysInline,
3357                                const Value *DstSV, uint64_t DstSVOff,
3358                                const Value *SrcSV, uint64_t SrcSVOff) {
3359
3360  // Check to see if we should lower the memcpy to loads and stores first.
3361  // For cases within the target-specified limits, this is the best choice.
3362  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3363  if (ConstantSize) {
3364    // Memcpy with size zero? Just return the original chain.
3365    if (ConstantSize->isNullValue())
3366      return Chain;
3367
3368    SDValue Result =
3369      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3370                              ConstantSize->getZExtValue(),
3371                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3372    if (Result.getNode())
3373      return Result;
3374  }
3375
3376  // Then check to see if we should lower the memcpy with target-specific
3377  // code. If the target chooses to do this, this is the next best.
3378  SDValue Result =
3379    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3380                                AlwaysInline,
3381                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3382  if (Result.getNode())
3383    return Result;
3384
3385  // If we really need inline code and the target declined to provide it,
3386  // use a (potentially long) sequence of loads and stores.
3387  if (AlwaysInline) {
3388    assert(ConstantSize && "AlwaysInline requires a constant size!");
3389    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3390                                   ConstantSize->getZExtValue(), Align, true,
3391                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3392  }
3393
3394  // Emit a library call.
3395  TargetLowering::ArgListTy Args;
3396  TargetLowering::ArgListEntry Entry;
3397  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3398  Entry.Node = Dst; Args.push_back(Entry);
3399  Entry.Node = Src; Args.push_back(Entry);
3400  Entry.Node = Size; Args.push_back(Entry);
3401  // FIXME: pass in DebugLoc
3402  std::pair<SDValue,SDValue> CallResult =
3403    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3404                    false, false, false, false, 0,
3405                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3406                    /*isReturnValueUsed=*/false,
3407                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3408                                      TLI.getPointerTy()),
3409                    Args, *this, dl);
3410  return CallResult.second;
3411}
3412
3413SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3414                                 SDValue Src, SDValue Size,
3415                                 unsigned Align,
3416                                 const Value *DstSV, uint64_t DstSVOff,
3417                                 const Value *SrcSV, uint64_t SrcSVOff) {
3418
3419  // Check to see if we should lower the memmove to loads and stores first.
3420  // For cases within the target-specified limits, this is the best choice.
3421  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3422  if (ConstantSize) {
3423    // Memmove with size zero? Just return the original chain.
3424    if (ConstantSize->isNullValue())
3425      return Chain;
3426
3427    SDValue Result =
3428      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3429                               ConstantSize->getZExtValue(),
3430                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3431    if (Result.getNode())
3432      return Result;
3433  }
3434
3435  // Then check to see if we should lower the memmove with target-specific
3436  // code. If the target chooses to do this, this is the next best.
3437  SDValue Result =
3438    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3439                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3440  if (Result.getNode())
3441    return Result;
3442
3443  // Emit a library call.
3444  TargetLowering::ArgListTy Args;
3445  TargetLowering::ArgListEntry Entry;
3446  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3447  Entry.Node = Dst; Args.push_back(Entry);
3448  Entry.Node = Src; Args.push_back(Entry);
3449  Entry.Node = Size; Args.push_back(Entry);
3450  // FIXME:  pass in DebugLoc
3451  std::pair<SDValue,SDValue> CallResult =
3452    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3453                    false, false, false, false, 0,
3454                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3455                    /*isReturnValueUsed=*/false,
3456                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3457                                      TLI.getPointerTy()),
3458                    Args, *this, dl);
3459  return CallResult.second;
3460}
3461
3462SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3463                                SDValue Src, SDValue Size,
3464                                unsigned Align,
3465                                const Value *DstSV, uint64_t DstSVOff) {
3466
3467  // Check to see if we should lower the memset to stores first.
3468  // For cases within the target-specified limits, this is the best choice.
3469  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3470  if (ConstantSize) {
3471    // Memset with size zero? Just return the original chain.
3472    if (ConstantSize->isNullValue())
3473      return Chain;
3474
3475    SDValue Result =
3476      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3477                      Align, DstSV, DstSVOff);
3478    if (Result.getNode())
3479      return Result;
3480  }
3481
3482  // Then check to see if we should lower the memset with target-specific
3483  // code. If the target chooses to do this, this is the next best.
3484  SDValue Result =
3485    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3486                                DstSV, DstSVOff);
3487  if (Result.getNode())
3488    return Result;
3489
3490  // Emit a library call.
3491  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3492  TargetLowering::ArgListTy Args;
3493  TargetLowering::ArgListEntry Entry;
3494  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3495  Args.push_back(Entry);
3496  // Extend or truncate the argument to be an i32 value for the call.
3497  if (Src.getValueType().bitsGT(MVT::i32))
3498    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3499  else
3500    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3501  Entry.Node = Src;
3502  Entry.Ty = Type::getInt32Ty(*getContext());
3503  Entry.isSExt = true;
3504  Args.push_back(Entry);
3505  Entry.Node = Size;
3506  Entry.Ty = IntPtrTy;
3507  Entry.isSExt = false;
3508  Args.push_back(Entry);
3509  // FIXME: pass in DebugLoc
3510  std::pair<SDValue,SDValue> CallResult =
3511    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3512                    false, false, false, false, 0,
3513                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3514                    /*isReturnValueUsed=*/false,
3515                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3516                                      TLI.getPointerTy()),
3517                    Args, *this, dl);
3518  return CallResult.second;
3519}
3520
3521SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3522                                SDValue Chain,
3523                                SDValue Ptr, SDValue Cmp,
3524                                SDValue Swp, const Value* PtrVal,
3525                                unsigned Alignment) {
3526  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3527  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3528
3529  EVT VT = Cmp.getValueType();
3530
3531  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3532    Alignment = getEVTAlignment(MemVT);
3533
3534  SDVTList VTs = getVTList(VT, MVT::Other);
3535  FoldingSetNodeID ID;
3536  ID.AddInteger(MemVT.getRawBits());
3537  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3538  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3539  void* IP = 0;
3540  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3541    return SDValue(E, 0);
3542  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3543  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3544                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3545  CSEMap.InsertNode(N, IP);
3546  AllNodes.push_back(N);
3547  return SDValue(N, 0);
3548}
3549
3550SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3551                                SDValue Chain,
3552                                SDValue Ptr, SDValue Val,
3553                                const Value* PtrVal,
3554                                unsigned Alignment) {
3555  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3556          Opcode == ISD::ATOMIC_LOAD_SUB ||
3557          Opcode == ISD::ATOMIC_LOAD_AND ||
3558          Opcode == ISD::ATOMIC_LOAD_OR ||
3559          Opcode == ISD::ATOMIC_LOAD_XOR ||
3560          Opcode == ISD::ATOMIC_LOAD_NAND ||
3561          Opcode == ISD::ATOMIC_LOAD_MIN ||
3562          Opcode == ISD::ATOMIC_LOAD_MAX ||
3563          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3564          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3565          Opcode == ISD::ATOMIC_SWAP) &&
3566         "Invalid Atomic Op");
3567
3568  EVT VT = Val.getValueType();
3569
3570  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3571    Alignment = getEVTAlignment(MemVT);
3572
3573  SDVTList VTs = getVTList(VT, MVT::Other);
3574  FoldingSetNodeID ID;
3575  ID.AddInteger(MemVT.getRawBits());
3576  SDValue Ops[] = {Chain, Ptr, Val};
3577  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3578  void* IP = 0;
3579  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3580    return SDValue(E, 0);
3581  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3582  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3583                       Chain, Ptr, Val, PtrVal, Alignment);
3584  CSEMap.InsertNode(N, IP);
3585  AllNodes.push_back(N);
3586  return SDValue(N, 0);
3587}
3588
3589/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3590/// Allowed to return something different (and simpler) if Simplify is true.
3591SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3592                                     DebugLoc dl) {
3593  if (NumOps == 1)
3594    return Ops[0];
3595
3596  SmallVector<EVT, 4> VTs;
3597  VTs.reserve(NumOps);
3598  for (unsigned i = 0; i < NumOps; ++i)
3599    VTs.push_back(Ops[i].getValueType());
3600  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3601                 Ops, NumOps);
3602}
3603
3604SDValue
3605SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3606                                  const EVT *VTs, unsigned NumVTs,
3607                                  const SDValue *Ops, unsigned NumOps,
3608                                  EVT MemVT, const Value *srcValue, int SVOff,
3609                                  unsigned Align, bool Vol,
3610                                  bool ReadMem, bool WriteMem) {
3611  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3612                             MemVT, srcValue, SVOff, Align, Vol,
3613                             ReadMem, WriteMem);
3614}
3615
3616SDValue
3617SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3618                                  const SDValue *Ops, unsigned NumOps,
3619                                  EVT MemVT, const Value *srcValue, int SVOff,
3620                                  unsigned Align, bool Vol,
3621                                  bool ReadMem, bool WriteMem) {
3622  // Memoize the node unless it returns a flag.
3623  MemIntrinsicSDNode *N;
3624  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3625    FoldingSetNodeID ID;
3626    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3627    void *IP = 0;
3628    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3629      return SDValue(E, 0);
3630
3631    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3632    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3633                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3634    CSEMap.InsertNode(N, IP);
3635  } else {
3636    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3637    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3638                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3639  }
3640  AllNodes.push_back(N);
3641  return SDValue(N, 0);
3642}
3643
3644SDValue
3645SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3646                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3647                      SDValue Ptr, SDValue Offset,
3648                      const Value *SV, int SVOffset, EVT EVT,
3649                      bool isVolatile, unsigned Alignment) {
3650  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3651    Alignment = getEVTAlignment(VT);
3652
3653  if (VT == EVT) {
3654    ExtType = ISD::NON_EXTLOAD;
3655  } else if (ExtType == ISD::NON_EXTLOAD) {
3656    assert(VT == EVT && "Non-extending load from different memory type!");
3657  } else {
3658    // Extending load.
3659    if (VT.isVector())
3660      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3661             "Invalid vector extload!");
3662    else
3663      assert(EVT.bitsLT(VT) &&
3664             "Should only be an extending load, not truncating!");
3665    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3666           "Cannot sign/zero extend a FP/Vector load!");
3667    assert(VT.isInteger() == EVT.isInteger() &&
3668           "Cannot convert from FP to Int or Int -> FP!");
3669  }
3670
3671  bool Indexed = AM != ISD::UNINDEXED;
3672  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3673         "Unindexed load with an offset!");
3674
3675  SDVTList VTs = Indexed ?
3676    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3677  SDValue Ops[] = { Chain, Ptr, Offset };
3678  FoldingSetNodeID ID;
3679  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3680  ID.AddInteger(EVT.getRawBits());
3681  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3682  void *IP = 0;
3683  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3684    return SDValue(E, 0);
3685  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3686  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3687                     Alignment, isVolatile);
3688  CSEMap.InsertNode(N, IP);
3689  AllNodes.push_back(N);
3690  return SDValue(N, 0);
3691}
3692
3693SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3694                              SDValue Chain, SDValue Ptr,
3695                              const Value *SV, int SVOffset,
3696                              bool isVolatile, unsigned Alignment) {
3697  SDValue Undef = getUNDEF(Ptr.getValueType());
3698  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3699                 SV, SVOffset, VT, isVolatile, Alignment);
3700}
3701
3702SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3703                                 SDValue Chain, SDValue Ptr,
3704                                 const Value *SV,
3705                                 int SVOffset, EVT EVT,
3706                                 bool isVolatile, unsigned Alignment) {
3707  SDValue Undef = getUNDEF(Ptr.getValueType());
3708  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3709                 SV, SVOffset, EVT, isVolatile, Alignment);
3710}
3711
3712SDValue
3713SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3714                             SDValue Offset, ISD::MemIndexedMode AM) {
3715  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3716  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3717         "Load is already a indexed load!");
3718  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3719                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3720                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3721                 LD->isVolatile(), LD->getAlignment());
3722}
3723
3724SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3725                               SDValue Ptr, const Value *SV, int SVOffset,
3726                               bool isVolatile, unsigned Alignment) {
3727  EVT VT = Val.getValueType();
3728
3729  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3730    Alignment = getEVTAlignment(VT);
3731
3732  SDVTList VTs = getVTList(MVT::Other);
3733  SDValue Undef = getUNDEF(Ptr.getValueType());
3734  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3735  FoldingSetNodeID ID;
3736  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3737  ID.AddInteger(VT.getRawBits());
3738  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3739                                     isVolatile, Alignment));
3740  void *IP = 0;
3741  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3742    return SDValue(E, 0);
3743  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3744  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3745                      VT, SV, SVOffset, Alignment, isVolatile);
3746  CSEMap.InsertNode(N, IP);
3747  AllNodes.push_back(N);
3748  return SDValue(N, 0);
3749}
3750
3751SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3752                                    SDValue Ptr, const Value *SV,
3753                                    int SVOffset, EVT SVT,
3754                                    bool isVolatile, unsigned Alignment) {
3755  EVT VT = Val.getValueType();
3756
3757  if (VT == SVT)
3758    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3759
3760  assert(VT.bitsGT(SVT) && "Not a truncation?");
3761  assert(VT.isInteger() == SVT.isInteger() &&
3762         "Can't do FP-INT conversion!");
3763
3764  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3765    Alignment = getEVTAlignment(VT);
3766
3767  SDVTList VTs = getVTList(MVT::Other);
3768  SDValue Undef = getUNDEF(Ptr.getValueType());
3769  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3770  FoldingSetNodeID ID;
3771  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3772  ID.AddInteger(SVT.getRawBits());
3773  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3774                                     isVolatile, Alignment));
3775  void *IP = 0;
3776  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3777    return SDValue(E, 0);
3778  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3779  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3780                      SVT, SV, SVOffset, Alignment, isVolatile);
3781  CSEMap.InsertNode(N, IP);
3782  AllNodes.push_back(N);
3783  return SDValue(N, 0);
3784}
3785
3786SDValue
3787SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3788                              SDValue Offset, ISD::MemIndexedMode AM) {
3789  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3790  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3791         "Store is already a indexed store!");
3792  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3793  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3794  FoldingSetNodeID ID;
3795  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3796  ID.AddInteger(ST->getMemoryVT().getRawBits());
3797  ID.AddInteger(ST->getRawSubclassData());
3798  void *IP = 0;
3799  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3800    return SDValue(E, 0);
3801  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3802  new (N) StoreSDNode(Ops, dl, VTs, AM,
3803                      ST->isTruncatingStore(), ST->getMemoryVT(),
3804                      ST->getSrcValue(), ST->getSrcValueOffset(),
3805                      ST->getAlignment(), ST->isVolatile());
3806  CSEMap.InsertNode(N, IP);
3807  AllNodes.push_back(N);
3808  return SDValue(N, 0);
3809}
3810
3811SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3812                               SDValue Chain, SDValue Ptr,
3813                               SDValue SV) {
3814  SDValue Ops[] = { Chain, Ptr, SV };
3815  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3816}
3817
3818SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3819                              const SDUse *Ops, unsigned NumOps) {
3820  switch (NumOps) {
3821  case 0: return getNode(Opcode, DL, VT);
3822  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3823  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3824  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3825  default: break;
3826  }
3827
3828  // Copy from an SDUse array into an SDValue array for use with
3829  // the regular getNode logic.
3830  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3831  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3832}
3833
3834SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3835                              const SDValue *Ops, unsigned NumOps) {
3836  switch (NumOps) {
3837  case 0: return getNode(Opcode, DL, VT);
3838  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3839  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3840  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3841  default: break;
3842  }
3843
3844  switch (Opcode) {
3845  default: break;
3846  case ISD::SELECT_CC: {
3847    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3848    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3849           "LHS and RHS of condition must have same type!");
3850    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3851           "True and False arms of SelectCC must have same type!");
3852    assert(Ops[2].getValueType() == VT &&
3853           "select_cc node must be of same type as true and false value!");
3854    break;
3855  }
3856  case ISD::BR_CC: {
3857    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3858    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3859           "LHS/RHS of comparison should match types!");
3860    break;
3861  }
3862  }
3863
3864  // Memoize nodes.
3865  SDNode *N;
3866  SDVTList VTs = getVTList(VT);
3867
3868  if (VT != MVT::Flag) {
3869    FoldingSetNodeID ID;
3870    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3871    void *IP = 0;
3872
3873    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3874      return SDValue(E, 0);
3875
3876    N = NodeAllocator.Allocate<SDNode>();
3877    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3878    CSEMap.InsertNode(N, IP);
3879  } else {
3880    N = NodeAllocator.Allocate<SDNode>();
3881    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3882  }
3883
3884  AllNodes.push_back(N);
3885#ifndef NDEBUG
3886  VerifyNode(N);
3887#endif
3888  return SDValue(N, 0);
3889}
3890
3891SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3892                              const std::vector<EVT> &ResultTys,
3893                              const SDValue *Ops, unsigned NumOps) {
3894  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3895                 Ops, NumOps);
3896}
3897
3898SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3899                              const EVT *VTs, unsigned NumVTs,
3900                              const SDValue *Ops, unsigned NumOps) {
3901  if (NumVTs == 1)
3902    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3903  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3904}
3905
3906SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3907                              const SDValue *Ops, unsigned NumOps) {
3908  if (VTList.NumVTs == 1)
3909    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3910
3911#if 0
3912  switch (Opcode) {
3913  // FIXME: figure out how to safely handle things like
3914  // int foo(int x) { return 1 << (x & 255); }
3915  // int bar() { return foo(256); }
3916  case ISD::SRA_PARTS:
3917  case ISD::SRL_PARTS:
3918  case ISD::SHL_PARTS:
3919    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3920        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3921      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3922    else if (N3.getOpcode() == ISD::AND)
3923      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3924        // If the and is only masking out bits that cannot effect the shift,
3925        // eliminate the and.
3926        unsigned NumBits = VT.getSizeInBits()*2;
3927        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3928          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3929      }
3930    break;
3931  }
3932#endif
3933
3934  // Memoize the node unless it returns a flag.
3935  SDNode *N;
3936  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3937    FoldingSetNodeID ID;
3938    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3939    void *IP = 0;
3940    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3941      return SDValue(E, 0);
3942    if (NumOps == 1) {
3943      N = NodeAllocator.Allocate<UnarySDNode>();
3944      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3945    } else if (NumOps == 2) {
3946      N = NodeAllocator.Allocate<BinarySDNode>();
3947      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3948    } else if (NumOps == 3) {
3949      N = NodeAllocator.Allocate<TernarySDNode>();
3950      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3951    } else {
3952      N = NodeAllocator.Allocate<SDNode>();
3953      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3954    }
3955    CSEMap.InsertNode(N, IP);
3956  } else {
3957    if (NumOps == 1) {
3958      N = NodeAllocator.Allocate<UnarySDNode>();
3959      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3960    } else if (NumOps == 2) {
3961      N = NodeAllocator.Allocate<BinarySDNode>();
3962      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3963    } else if (NumOps == 3) {
3964      N = NodeAllocator.Allocate<TernarySDNode>();
3965      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3966    } else {
3967      N = NodeAllocator.Allocate<SDNode>();
3968      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3969    }
3970  }
3971  AllNodes.push_back(N);
3972#ifndef NDEBUG
3973  VerifyNode(N);
3974#endif
3975  return SDValue(N, 0);
3976}
3977
3978SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3979  return getNode(Opcode, DL, VTList, 0, 0);
3980}
3981
3982SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3983                              SDValue N1) {
3984  SDValue Ops[] = { N1 };
3985  return getNode(Opcode, DL, VTList, Ops, 1);
3986}
3987
3988SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3989                              SDValue N1, SDValue N2) {
3990  SDValue Ops[] = { N1, N2 };
3991  return getNode(Opcode, DL, VTList, Ops, 2);
3992}
3993
3994SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3995                              SDValue N1, SDValue N2, SDValue N3) {
3996  SDValue Ops[] = { N1, N2, N3 };
3997  return getNode(Opcode, DL, VTList, Ops, 3);
3998}
3999
4000SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4001                              SDValue N1, SDValue N2, SDValue N3,
4002                              SDValue N4) {
4003  SDValue Ops[] = { N1, N2, N3, N4 };
4004  return getNode(Opcode, DL, VTList, Ops, 4);
4005}
4006
4007SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4008                              SDValue N1, SDValue N2, SDValue N3,
4009                              SDValue N4, SDValue N5) {
4010  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4011  return getNode(Opcode, DL, VTList, Ops, 5);
4012}
4013
4014SDVTList SelectionDAG::getVTList(EVT VT) {
4015  return makeVTList(SDNode::getValueTypeList(VT), 1);
4016}
4017
4018SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4019  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4020       E = VTList.rend(); I != E; ++I)
4021    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4022      return *I;
4023
4024  EVT *Array = Allocator.Allocate<EVT>(2);
4025  Array[0] = VT1;
4026  Array[1] = VT2;
4027  SDVTList Result = makeVTList(Array, 2);
4028  VTList.push_back(Result);
4029  return Result;
4030}
4031
4032SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4033  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4034       E = VTList.rend(); I != E; ++I)
4035    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4036                          I->VTs[2] == VT3)
4037      return *I;
4038
4039  EVT *Array = Allocator.Allocate<EVT>(3);
4040  Array[0] = VT1;
4041  Array[1] = VT2;
4042  Array[2] = VT3;
4043  SDVTList Result = makeVTList(Array, 3);
4044  VTList.push_back(Result);
4045  return Result;
4046}
4047
4048SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4049  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4050       E = VTList.rend(); I != E; ++I)
4051    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4052                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4053      return *I;
4054
4055  EVT *Array = Allocator.Allocate<EVT>(3);
4056  Array[0] = VT1;
4057  Array[1] = VT2;
4058  Array[2] = VT3;
4059  Array[3] = VT4;
4060  SDVTList Result = makeVTList(Array, 4);
4061  VTList.push_back(Result);
4062  return Result;
4063}
4064
4065SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4066  switch (NumVTs) {
4067    case 0: llvm_unreachable("Cannot have nodes without results!");
4068    case 1: return getVTList(VTs[0]);
4069    case 2: return getVTList(VTs[0], VTs[1]);
4070    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4071    default: break;
4072  }
4073
4074  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4075       E = VTList.rend(); I != E; ++I) {
4076    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4077      continue;
4078
4079    bool NoMatch = false;
4080    for (unsigned i = 2; i != NumVTs; ++i)
4081      if (VTs[i] != I->VTs[i]) {
4082        NoMatch = true;
4083        break;
4084      }
4085    if (!NoMatch)
4086      return *I;
4087  }
4088
4089  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4090  std::copy(VTs, VTs+NumVTs, Array);
4091  SDVTList Result = makeVTList(Array, NumVTs);
4092  VTList.push_back(Result);
4093  return Result;
4094}
4095
4096
4097/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4098/// specified operands.  If the resultant node already exists in the DAG,
4099/// this does not modify the specified node, instead it returns the node that
4100/// already exists.  If the resultant node does not exist in the DAG, the
4101/// input node is returned.  As a degenerate case, if you specify the same
4102/// input operands as the node already has, the input node is returned.
4103SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4104  SDNode *N = InN.getNode();
4105  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4106
4107  // Check to see if there is no change.
4108  if (Op == N->getOperand(0)) return InN;
4109
4110  // See if the modified node already exists.
4111  void *InsertPos = 0;
4112  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4113    return SDValue(Existing, InN.getResNo());
4114
4115  // Nope it doesn't.  Remove the node from its current place in the maps.
4116  if (InsertPos)
4117    if (!RemoveNodeFromCSEMaps(N))
4118      InsertPos = 0;
4119
4120  // Now we update the operands.
4121  N->OperandList[0].set(Op);
4122
4123  // If this gets put into a CSE map, add it.
4124  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4125  return InN;
4126}
4127
4128SDValue SelectionDAG::
4129UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4130  SDNode *N = InN.getNode();
4131  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4132
4133  // Check to see if there is no change.
4134  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4135    return InN;   // No operands changed, just return the input node.
4136
4137  // See if the modified node already exists.
4138  void *InsertPos = 0;
4139  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4140    return SDValue(Existing, InN.getResNo());
4141
4142  // Nope it doesn't.  Remove the node from its current place in the maps.
4143  if (InsertPos)
4144    if (!RemoveNodeFromCSEMaps(N))
4145      InsertPos = 0;
4146
4147  // Now we update the operands.
4148  if (N->OperandList[0] != Op1)
4149    N->OperandList[0].set(Op1);
4150  if (N->OperandList[1] != Op2)
4151    N->OperandList[1].set(Op2);
4152
4153  // If this gets put into a CSE map, add it.
4154  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4155  return InN;
4156}
4157
4158SDValue SelectionDAG::
4159UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4160  SDValue Ops[] = { Op1, Op2, Op3 };
4161  return UpdateNodeOperands(N, Ops, 3);
4162}
4163
4164SDValue SelectionDAG::
4165UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4166                   SDValue Op3, SDValue Op4) {
4167  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4168  return UpdateNodeOperands(N, Ops, 4);
4169}
4170
4171SDValue SelectionDAG::
4172UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4173                   SDValue Op3, SDValue Op4, SDValue Op5) {
4174  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4175  return UpdateNodeOperands(N, Ops, 5);
4176}
4177
4178SDValue SelectionDAG::
4179UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4180  SDNode *N = InN.getNode();
4181  assert(N->getNumOperands() == NumOps &&
4182         "Update with wrong number of operands");
4183
4184  // Check to see if there is no change.
4185  bool AnyChange = false;
4186  for (unsigned i = 0; i != NumOps; ++i) {
4187    if (Ops[i] != N->getOperand(i)) {
4188      AnyChange = true;
4189      break;
4190    }
4191  }
4192
4193  // No operands changed, just return the input node.
4194  if (!AnyChange) return InN;
4195
4196  // See if the modified node already exists.
4197  void *InsertPos = 0;
4198  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4199    return SDValue(Existing, InN.getResNo());
4200
4201  // Nope it doesn't.  Remove the node from its current place in the maps.
4202  if (InsertPos)
4203    if (!RemoveNodeFromCSEMaps(N))
4204      InsertPos = 0;
4205
4206  // Now we update the operands.
4207  for (unsigned i = 0; i != NumOps; ++i)
4208    if (N->OperandList[i] != Ops[i])
4209      N->OperandList[i].set(Ops[i]);
4210
4211  // If this gets put into a CSE map, add it.
4212  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4213  return InN;
4214}
4215
4216/// DropOperands - Release the operands and set this node to have
4217/// zero operands.
4218void SDNode::DropOperands() {
4219  // Unlike the code in MorphNodeTo that does this, we don't need to
4220  // watch for dead nodes here.
4221  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4222    SDUse &Use = *I++;
4223    Use.set(SDValue());
4224  }
4225}
4226
4227/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4228/// machine opcode.
4229///
4230SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4231                                   EVT VT) {
4232  SDVTList VTs = getVTList(VT);
4233  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4234}
4235
4236SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4237                                   EVT VT, SDValue Op1) {
4238  SDVTList VTs = getVTList(VT);
4239  SDValue Ops[] = { Op1 };
4240  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4241}
4242
4243SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4244                                   EVT VT, SDValue Op1,
4245                                   SDValue Op2) {
4246  SDVTList VTs = getVTList(VT);
4247  SDValue Ops[] = { Op1, Op2 };
4248  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4249}
4250
4251SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4252                                   EVT VT, SDValue Op1,
4253                                   SDValue Op2, SDValue Op3) {
4254  SDVTList VTs = getVTList(VT);
4255  SDValue Ops[] = { Op1, Op2, Op3 };
4256  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4257}
4258
4259SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4260                                   EVT VT, const SDValue *Ops,
4261                                   unsigned NumOps) {
4262  SDVTList VTs = getVTList(VT);
4263  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4264}
4265
4266SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4267                                   EVT VT1, EVT VT2, const SDValue *Ops,
4268                                   unsigned NumOps) {
4269  SDVTList VTs = getVTList(VT1, VT2);
4270  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4271}
4272
4273SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4274                                   EVT VT1, EVT VT2) {
4275  SDVTList VTs = getVTList(VT1, VT2);
4276  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4277}
4278
4279SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4280                                   EVT VT1, EVT VT2, EVT VT3,
4281                                   const SDValue *Ops, unsigned NumOps) {
4282  SDVTList VTs = getVTList(VT1, VT2, VT3);
4283  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4284}
4285
4286SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4287                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4288                                   const SDValue *Ops, unsigned NumOps) {
4289  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4290  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4291}
4292
4293SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4294                                   EVT VT1, EVT VT2,
4295                                   SDValue Op1) {
4296  SDVTList VTs = getVTList(VT1, VT2);
4297  SDValue Ops[] = { Op1 };
4298  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4299}
4300
4301SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4302                                   EVT VT1, EVT VT2,
4303                                   SDValue Op1, SDValue Op2) {
4304  SDVTList VTs = getVTList(VT1, VT2);
4305  SDValue Ops[] = { Op1, Op2 };
4306  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4307}
4308
4309SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4310                                   EVT VT1, EVT VT2,
4311                                   SDValue Op1, SDValue Op2,
4312                                   SDValue Op3) {
4313  SDVTList VTs = getVTList(VT1, VT2);
4314  SDValue Ops[] = { Op1, Op2, Op3 };
4315  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4316}
4317
4318SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4319                                   EVT VT1, EVT VT2, EVT VT3,
4320                                   SDValue Op1, SDValue Op2,
4321                                   SDValue Op3) {
4322  SDVTList VTs = getVTList(VT1, VT2, VT3);
4323  SDValue Ops[] = { Op1, Op2, Op3 };
4324  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4325}
4326
4327SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4328                                   SDVTList VTs, const SDValue *Ops,
4329                                   unsigned NumOps) {
4330  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4331}
4332
4333SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4334                                  EVT VT) {
4335  SDVTList VTs = getVTList(VT);
4336  return MorphNodeTo(N, Opc, VTs, 0, 0);
4337}
4338
4339SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4340                                  EVT VT, SDValue Op1) {
4341  SDVTList VTs = getVTList(VT);
4342  SDValue Ops[] = { Op1 };
4343  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4344}
4345
4346SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4347                                  EVT VT, SDValue Op1,
4348                                  SDValue Op2) {
4349  SDVTList VTs = getVTList(VT);
4350  SDValue Ops[] = { Op1, Op2 };
4351  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4352}
4353
4354SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4355                                  EVT VT, SDValue Op1,
4356                                  SDValue Op2, SDValue Op3) {
4357  SDVTList VTs = getVTList(VT);
4358  SDValue Ops[] = { Op1, Op2, Op3 };
4359  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4360}
4361
4362SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4363                                  EVT VT, const SDValue *Ops,
4364                                  unsigned NumOps) {
4365  SDVTList VTs = getVTList(VT);
4366  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4367}
4368
4369SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4370                                  EVT VT1, EVT VT2, const SDValue *Ops,
4371                                  unsigned NumOps) {
4372  SDVTList VTs = getVTList(VT1, VT2);
4373  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4374}
4375
4376SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4377                                  EVT VT1, EVT VT2) {
4378  SDVTList VTs = getVTList(VT1, VT2);
4379  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4380}
4381
4382SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4383                                  EVT VT1, EVT VT2, EVT VT3,
4384                                  const SDValue *Ops, unsigned NumOps) {
4385  SDVTList VTs = getVTList(VT1, VT2, VT3);
4386  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4387}
4388
4389SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4390                                  EVT VT1, EVT VT2,
4391                                  SDValue Op1) {
4392  SDVTList VTs = getVTList(VT1, VT2);
4393  SDValue Ops[] = { Op1 };
4394  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4395}
4396
4397SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4398                                  EVT VT1, EVT VT2,
4399                                  SDValue Op1, SDValue Op2) {
4400  SDVTList VTs = getVTList(VT1, VT2);
4401  SDValue Ops[] = { Op1, Op2 };
4402  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4403}
4404
4405SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4406                                  EVT VT1, EVT VT2,
4407                                  SDValue Op1, SDValue Op2,
4408                                  SDValue Op3) {
4409  SDVTList VTs = getVTList(VT1, VT2);
4410  SDValue Ops[] = { Op1, Op2, Op3 };
4411  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4412}
4413
4414/// MorphNodeTo - These *mutate* the specified node to have the specified
4415/// return type, opcode, and operands.
4416///
4417/// Note that MorphNodeTo returns the resultant node.  If there is already a
4418/// node of the specified opcode and operands, it returns that node instead of
4419/// the current one.  Note that the DebugLoc need not be the same.
4420///
4421/// Using MorphNodeTo is faster than creating a new node and swapping it in
4422/// with ReplaceAllUsesWith both because it often avoids allocating a new
4423/// node, and because it doesn't require CSE recalculation for any of
4424/// the node's users.
4425///
4426SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4427                                  SDVTList VTs, const SDValue *Ops,
4428                                  unsigned NumOps) {
4429  // If an identical node already exists, use it.
4430  void *IP = 0;
4431  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4432    FoldingSetNodeID ID;
4433    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4434    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4435      return ON;
4436  }
4437
4438  if (!RemoveNodeFromCSEMaps(N))
4439    IP = 0;
4440
4441  // Start the morphing.
4442  N->NodeType = Opc;
4443  N->ValueList = VTs.VTs;
4444  N->NumValues = VTs.NumVTs;
4445
4446  // Clear the operands list, updating used nodes to remove this from their
4447  // use list.  Keep track of any operands that become dead as a result.
4448  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4449  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4450    SDUse &Use = *I++;
4451    SDNode *Used = Use.getNode();
4452    Use.set(SDValue());
4453    if (Used->use_empty())
4454      DeadNodeSet.insert(Used);
4455  }
4456
4457  // If NumOps is larger than the # of operands we currently have, reallocate
4458  // the operand list.
4459  if (NumOps > N->NumOperands) {
4460    if (N->OperandsNeedDelete)
4461      delete[] N->OperandList;
4462
4463    if (N->isMachineOpcode()) {
4464      // We're creating a final node that will live unmorphed for the
4465      // remainder of the current SelectionDAG iteration, so we can allocate
4466      // the operands directly out of a pool with no recycling metadata.
4467      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4468      N->OperandsNeedDelete = false;
4469    } else {
4470      N->OperandList = new SDUse[NumOps];
4471      N->OperandsNeedDelete = true;
4472    }
4473  }
4474
4475  // Assign the new operands.
4476  N->NumOperands = NumOps;
4477  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4478    N->OperandList[i].setUser(N);
4479    N->OperandList[i].setInitial(Ops[i]);
4480  }
4481
4482  // Delete any nodes that are still dead after adding the uses for the
4483  // new operands.
4484  SmallVector<SDNode *, 16> DeadNodes;
4485  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4486       E = DeadNodeSet.end(); I != E; ++I)
4487    if ((*I)->use_empty())
4488      DeadNodes.push_back(*I);
4489  RemoveDeadNodes(DeadNodes);
4490
4491  if (IP)
4492    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4493  return N;
4494}
4495
4496
4497/// getTargetNode - These are used for target selectors to create a new node
4498/// with specified return type(s), target opcode, and operands.
4499///
4500/// Note that getTargetNode returns the resultant node.  If there is already a
4501/// node of the specified opcode and operands, it returns that node instead of
4502/// the current one.
4503SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4504  return getNode(~Opcode, dl, VT).getNode();
4505}
4506
4507SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4508                                    SDValue Op1) {
4509  return getNode(~Opcode, dl, VT, Op1).getNode();
4510}
4511
4512SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4513                                    SDValue Op1, SDValue Op2) {
4514  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4515}
4516
4517SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4518                                    SDValue Op1, SDValue Op2,
4519                                    SDValue Op3) {
4520  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4521}
4522
4523SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4524                                    const SDValue *Ops, unsigned NumOps) {
4525  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4526}
4527
4528SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4529                                    EVT VT1, EVT VT2) {
4530  SDVTList VTs = getVTList(VT1, VT2);
4531  SDValue Op;
4532  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4533}
4534
4535SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4536                                    EVT VT2, SDValue Op1) {
4537  SDVTList VTs = getVTList(VT1, VT2);
4538  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4539}
4540
4541SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4542                                    EVT VT2, SDValue Op1,
4543                                    SDValue Op2) {
4544  SDVTList VTs = getVTList(VT1, VT2);
4545  SDValue Ops[] = { Op1, Op2 };
4546  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4547}
4548
4549SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4550                                    EVT VT2, SDValue Op1,
4551                                    SDValue Op2, SDValue Op3) {
4552  SDVTList VTs = getVTList(VT1, VT2);
4553  SDValue Ops[] = { Op1, Op2, Op3 };
4554  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4555}
4556
4557SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4558                                    EVT VT1, EVT VT2,
4559                                    const SDValue *Ops, unsigned NumOps) {
4560  SDVTList VTs = getVTList(VT1, VT2);
4561  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4562}
4563
4564SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4565                                    EVT VT1, EVT VT2, EVT VT3,
4566                                    SDValue Op1, SDValue Op2) {
4567  SDVTList VTs = getVTList(VT1, VT2, VT3);
4568  SDValue Ops[] = { Op1, Op2 };
4569  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4570}
4571
4572SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4573                                    EVT VT1, EVT VT2, EVT VT3,
4574                                    SDValue Op1, SDValue Op2,
4575                                    SDValue Op3) {
4576  SDVTList VTs = getVTList(VT1, VT2, VT3);
4577  SDValue Ops[] = { Op1, Op2, Op3 };
4578  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4579}
4580
4581SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4582                                    EVT VT1, EVT VT2, EVT VT3,
4583                                    const SDValue *Ops, unsigned NumOps) {
4584  SDVTList VTs = getVTList(VT1, VT2, VT3);
4585  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4586}
4587
4588SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4589                                    EVT VT2, EVT VT3, EVT VT4,
4590                                    const SDValue *Ops, unsigned NumOps) {
4591  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4592  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4593}
4594
4595SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4596                                    const std::vector<EVT> &ResultTys,
4597                                    const SDValue *Ops, unsigned NumOps) {
4598  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4599}
4600
4601/// getTargetExtractSubreg - A convenience function for creating
4602/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4603SDValue
4604SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4605                                     SDValue Operand) {
4606  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4607  SDNode *Subreg = getTargetNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4608                                 VT, Operand, SRIdxVal);
4609  return SDValue(Subreg, 0);
4610}
4611
4612/// getNodeIfExists - Get the specified node if it's already available, or
4613/// else return NULL.
4614SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4615                                      const SDValue *Ops, unsigned NumOps) {
4616  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4617    FoldingSetNodeID ID;
4618    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4619    void *IP = 0;
4620    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4621      return E;
4622  }
4623  return NULL;
4624}
4625
4626/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4627/// This can cause recursive merging of nodes in the DAG.
4628///
4629/// This version assumes From has a single result value.
4630///
4631void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4632                                      DAGUpdateListener *UpdateListener) {
4633  SDNode *From = FromN.getNode();
4634  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4635         "Cannot replace with this method!");
4636  assert(From != To.getNode() && "Cannot replace uses of with self");
4637
4638  // Iterate over all the existing uses of From. New uses will be added
4639  // to the beginning of the use list, which we avoid visiting.
4640  // This specifically avoids visiting uses of From that arise while the
4641  // replacement is happening, because any such uses would be the result
4642  // of CSE: If an existing node looks like From after one of its operands
4643  // is replaced by To, we don't want to replace of all its users with To
4644  // too. See PR3018 for more info.
4645  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4646  while (UI != UE) {
4647    SDNode *User = *UI;
4648
4649    // This node is about to morph, remove its old self from the CSE maps.
4650    RemoveNodeFromCSEMaps(User);
4651
4652    // A user can appear in a use list multiple times, and when this
4653    // happens the uses are usually next to each other in the list.
4654    // To help reduce the number of CSE recomputations, process all
4655    // the uses of this user that we can find this way.
4656    do {
4657      SDUse &Use = UI.getUse();
4658      ++UI;
4659      Use.set(To);
4660    } while (UI != UE && *UI == User);
4661
4662    // Now that we have modified User, add it back to the CSE maps.  If it
4663    // already exists there, recursively merge the results together.
4664    AddModifiedNodeToCSEMaps(User, UpdateListener);
4665  }
4666}
4667
4668/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4669/// This can cause recursive merging of nodes in the DAG.
4670///
4671/// This version assumes that for each value of From, there is a
4672/// corresponding value in To in the same position with the same type.
4673///
4674void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4675                                      DAGUpdateListener *UpdateListener) {
4676#ifndef NDEBUG
4677  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4678    assert((!From->hasAnyUseOfValue(i) ||
4679            From->getValueType(i) == To->getValueType(i)) &&
4680           "Cannot use this version of ReplaceAllUsesWith!");
4681#endif
4682
4683  // Handle the trivial case.
4684  if (From == To)
4685    return;
4686
4687  // Iterate over just the existing users of From. See the comments in
4688  // the ReplaceAllUsesWith above.
4689  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4690  while (UI != UE) {
4691    SDNode *User = *UI;
4692
4693    // This node is about to morph, remove its old self from the CSE maps.
4694    RemoveNodeFromCSEMaps(User);
4695
4696    // A user can appear in a use list multiple times, and when this
4697    // happens the uses are usually next to each other in the list.
4698    // To help reduce the number of CSE recomputations, process all
4699    // the uses of this user that we can find this way.
4700    do {
4701      SDUse &Use = UI.getUse();
4702      ++UI;
4703      Use.setNode(To);
4704    } while (UI != UE && *UI == User);
4705
4706    // Now that we have modified User, add it back to the CSE maps.  If it
4707    // already exists there, recursively merge the results together.
4708    AddModifiedNodeToCSEMaps(User, UpdateListener);
4709  }
4710}
4711
4712/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4713/// This can cause recursive merging of nodes in the DAG.
4714///
4715/// This version can replace From with any result values.  To must match the
4716/// number and types of values returned by From.
4717void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4718                                      const SDValue *To,
4719                                      DAGUpdateListener *UpdateListener) {
4720  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4721    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4722
4723  // Iterate over just the existing users of From. See the comments in
4724  // the ReplaceAllUsesWith above.
4725  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4726  while (UI != UE) {
4727    SDNode *User = *UI;
4728
4729    // This node is about to morph, remove its old self from the CSE maps.
4730    RemoveNodeFromCSEMaps(User);
4731
4732    // A user can appear in a use list multiple times, and when this
4733    // happens the uses are usually next to each other in the list.
4734    // To help reduce the number of CSE recomputations, process all
4735    // the uses of this user that we can find this way.
4736    do {
4737      SDUse &Use = UI.getUse();
4738      const SDValue &ToOp = To[Use.getResNo()];
4739      ++UI;
4740      Use.set(ToOp);
4741    } while (UI != UE && *UI == User);
4742
4743    // Now that we have modified User, add it back to the CSE maps.  If it
4744    // already exists there, recursively merge the results together.
4745    AddModifiedNodeToCSEMaps(User, UpdateListener);
4746  }
4747}
4748
4749/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4750/// uses of other values produced by From.getNode() alone.  The Deleted
4751/// vector is handled the same way as for ReplaceAllUsesWith.
4752void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4753                                             DAGUpdateListener *UpdateListener){
4754  // Handle the really simple, really trivial case efficiently.
4755  if (From == To) return;
4756
4757  // Handle the simple, trivial, case efficiently.
4758  if (From.getNode()->getNumValues() == 1) {
4759    ReplaceAllUsesWith(From, To, UpdateListener);
4760    return;
4761  }
4762
4763  // Iterate over just the existing users of From. See the comments in
4764  // the ReplaceAllUsesWith above.
4765  SDNode::use_iterator UI = From.getNode()->use_begin(),
4766                       UE = From.getNode()->use_end();
4767  while (UI != UE) {
4768    SDNode *User = *UI;
4769    bool UserRemovedFromCSEMaps = false;
4770
4771    // A user can appear in a use list multiple times, and when this
4772    // happens the uses are usually next to each other in the list.
4773    // To help reduce the number of CSE recomputations, process all
4774    // the uses of this user that we can find this way.
4775    do {
4776      SDUse &Use = UI.getUse();
4777
4778      // Skip uses of different values from the same node.
4779      if (Use.getResNo() != From.getResNo()) {
4780        ++UI;
4781        continue;
4782      }
4783
4784      // If this node hasn't been modified yet, it's still in the CSE maps,
4785      // so remove its old self from the CSE maps.
4786      if (!UserRemovedFromCSEMaps) {
4787        RemoveNodeFromCSEMaps(User);
4788        UserRemovedFromCSEMaps = true;
4789      }
4790
4791      ++UI;
4792      Use.set(To);
4793    } while (UI != UE && *UI == User);
4794
4795    // We are iterating over all uses of the From node, so if a use
4796    // doesn't use the specific value, no changes are made.
4797    if (!UserRemovedFromCSEMaps)
4798      continue;
4799
4800    // Now that we have modified User, add it back to the CSE maps.  If it
4801    // already exists there, recursively merge the results together.
4802    AddModifiedNodeToCSEMaps(User, UpdateListener);
4803  }
4804}
4805
4806namespace {
4807  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4808  /// to record information about a use.
4809  struct UseMemo {
4810    SDNode *User;
4811    unsigned Index;
4812    SDUse *Use;
4813  };
4814
4815  /// operator< - Sort Memos by User.
4816  bool operator<(const UseMemo &L, const UseMemo &R) {
4817    return (intptr_t)L.User < (intptr_t)R.User;
4818  }
4819}
4820
4821/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4822/// uses of other values produced by From.getNode() alone.  The same value
4823/// may appear in both the From and To list.  The Deleted vector is
4824/// handled the same way as for ReplaceAllUsesWith.
4825void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4826                                              const SDValue *To,
4827                                              unsigned Num,
4828                                              DAGUpdateListener *UpdateListener){
4829  // Handle the simple, trivial case efficiently.
4830  if (Num == 1)
4831    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4832
4833  // Read up all the uses and make records of them. This helps
4834  // processing new uses that are introduced during the
4835  // replacement process.
4836  SmallVector<UseMemo, 4> Uses;
4837  for (unsigned i = 0; i != Num; ++i) {
4838    unsigned FromResNo = From[i].getResNo();
4839    SDNode *FromNode = From[i].getNode();
4840    for (SDNode::use_iterator UI = FromNode->use_begin(),
4841         E = FromNode->use_end(); UI != E; ++UI) {
4842      SDUse &Use = UI.getUse();
4843      if (Use.getResNo() == FromResNo) {
4844        UseMemo Memo = { *UI, i, &Use };
4845        Uses.push_back(Memo);
4846      }
4847    }
4848  }
4849
4850  // Sort the uses, so that all the uses from a given User are together.
4851  std::sort(Uses.begin(), Uses.end());
4852
4853  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4854       UseIndex != UseIndexEnd; ) {
4855    // We know that this user uses some value of From.  If it is the right
4856    // value, update it.
4857    SDNode *User = Uses[UseIndex].User;
4858
4859    // This node is about to morph, remove its old self from the CSE maps.
4860    RemoveNodeFromCSEMaps(User);
4861
4862    // The Uses array is sorted, so all the uses for a given User
4863    // are next to each other in the list.
4864    // To help reduce the number of CSE recomputations, process all
4865    // the uses of this user that we can find this way.
4866    do {
4867      unsigned i = Uses[UseIndex].Index;
4868      SDUse &Use = *Uses[UseIndex].Use;
4869      ++UseIndex;
4870
4871      Use.set(To[i]);
4872    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4873
4874    // Now that we have modified User, add it back to the CSE maps.  If it
4875    // already exists there, recursively merge the results together.
4876    AddModifiedNodeToCSEMaps(User, UpdateListener);
4877  }
4878}
4879
4880/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4881/// based on their topological order. It returns the maximum id and a vector
4882/// of the SDNodes* in assigned order by reference.
4883unsigned SelectionDAG::AssignTopologicalOrder() {
4884
4885  unsigned DAGSize = 0;
4886
4887  // SortedPos tracks the progress of the algorithm. Nodes before it are
4888  // sorted, nodes after it are unsorted. When the algorithm completes
4889  // it is at the end of the list.
4890  allnodes_iterator SortedPos = allnodes_begin();
4891
4892  // Visit all the nodes. Move nodes with no operands to the front of
4893  // the list immediately. Annotate nodes that do have operands with their
4894  // operand count. Before we do this, the Node Id fields of the nodes
4895  // may contain arbitrary values. After, the Node Id fields for nodes
4896  // before SortedPos will contain the topological sort index, and the
4897  // Node Id fields for nodes At SortedPos and after will contain the
4898  // count of outstanding operands.
4899  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4900    SDNode *N = I++;
4901    unsigned Degree = N->getNumOperands();
4902    if (Degree == 0) {
4903      // A node with no uses, add it to the result array immediately.
4904      N->setNodeId(DAGSize++);
4905      allnodes_iterator Q = N;
4906      if (Q != SortedPos)
4907        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4908      ++SortedPos;
4909    } else {
4910      // Temporarily use the Node Id as scratch space for the degree count.
4911      N->setNodeId(Degree);
4912    }
4913  }
4914
4915  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4916  // such that by the time the end is reached all nodes will be sorted.
4917  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4918    SDNode *N = I;
4919    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4920         UI != UE; ++UI) {
4921      SDNode *P = *UI;
4922      unsigned Degree = P->getNodeId();
4923      --Degree;
4924      if (Degree == 0) {
4925        // All of P's operands are sorted, so P may sorted now.
4926        P->setNodeId(DAGSize++);
4927        if (P != SortedPos)
4928          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4929        ++SortedPos;
4930      } else {
4931        // Update P's outstanding operand count.
4932        P->setNodeId(Degree);
4933      }
4934    }
4935  }
4936
4937  assert(SortedPos == AllNodes.end() &&
4938         "Topological sort incomplete!");
4939  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4940         "First node in topological sort is not the entry token!");
4941  assert(AllNodes.front().getNodeId() == 0 &&
4942         "First node in topological sort has non-zero id!");
4943  assert(AllNodes.front().getNumOperands() == 0 &&
4944         "First node in topological sort has operands!");
4945  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4946         "Last node in topologic sort has unexpected id!");
4947  assert(AllNodes.back().use_empty() &&
4948         "Last node in topologic sort has users!");
4949  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4950  return DAGSize;
4951}
4952
4953
4954
4955//===----------------------------------------------------------------------===//
4956//                              SDNode Class
4957//===----------------------------------------------------------------------===//
4958
4959HandleSDNode::~HandleSDNode() {
4960  DropOperands();
4961}
4962
4963GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4964                                         EVT VT, int64_t o, unsigned char TF)
4965  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4966    Offset(o), TargetFlags(TF) {
4967  TheGlobal = const_cast<GlobalValue*>(GA);
4968}
4969
4970MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
4971                     const Value *srcValue, int SVO, unsigned alignment,
4972                     bool vol)
4973 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4974  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4975  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4976  assert(getOriginalAlignment() == alignment && "Alignment encoding error!");
4977  assert(isVolatile() == vol && "Volatile encoding error!");
4978}
4979
4980MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4981                     const SDValue *Ops, unsigned NumOps, EVT memvt,
4982                     const Value *srcValue, int SVO, unsigned alignment,
4983                     bool vol)
4984   : SDNode(Opc, dl, VTs, Ops, NumOps),
4985     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4986  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4987  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4988  assert(getOriginalAlignment() == alignment && "Alignment encoding error!");
4989  assert(isVolatile() == vol && "Volatile encoding error!");
4990}
4991
4992/// getMemOperand - Return a MachineMemOperand object describing the memory
4993/// reference performed by this memory reference.
4994MachineMemOperand MemSDNode::getMemOperand() const {
4995  int Flags = 0;
4996  if (isa<LoadSDNode>(this))
4997    Flags = MachineMemOperand::MOLoad;
4998  else if (isa<StoreSDNode>(this))
4999    Flags = MachineMemOperand::MOStore;
5000  else if (isa<AtomicSDNode>(this)) {
5001    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5002  }
5003  else {
5004    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5005    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5006    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5007    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5008  }
5009
5010  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5011  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5012
5013  // Check if the memory reference references a frame index
5014  const FrameIndexSDNode *FI =
5015  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5016  if (!getSrcValue() && FI)
5017    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5018                             Flags, 0, Size, getOriginalAlignment());
5019  else
5020    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5021                             Size, getOriginalAlignment());
5022}
5023
5024/// Profile - Gather unique data for the node.
5025///
5026void SDNode::Profile(FoldingSetNodeID &ID) const {
5027  AddNodeIDNode(ID, this);
5028}
5029
5030namespace {
5031  struct EVTArray {
5032    std::vector<EVT> VTs;
5033
5034    EVTArray() {
5035      VTs.reserve(MVT::LAST_VALUETYPE);
5036      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5037        VTs.push_back(MVT((MVT::SimpleValueType)i));
5038    }
5039  };
5040}
5041
5042static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5043static ManagedStatic<EVTArray> SimpleVTArray;
5044static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5045
5046/// getValueTypeList - Return a pointer to the specified value type.
5047///
5048const EVT *SDNode::getValueTypeList(EVT VT) {
5049  if (VT.isExtended()) {
5050    sys::SmartScopedLock<true> Lock(*VTMutex);
5051    return &(*EVTs->insert(VT).first);
5052  } else {
5053    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5054  }
5055}
5056
5057/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5058/// indicated value.  This method ignores uses of other values defined by this
5059/// operation.
5060bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5061  assert(Value < getNumValues() && "Bad value!");
5062
5063  // TODO: Only iterate over uses of a given value of the node
5064  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5065    if (UI.getUse().getResNo() == Value) {
5066      if (NUses == 0)
5067        return false;
5068      --NUses;
5069    }
5070  }
5071
5072  // Found exactly the right number of uses?
5073  return NUses == 0;
5074}
5075
5076
5077/// hasAnyUseOfValue - Return true if there are any use of the indicated
5078/// value. This method ignores uses of other values defined by this operation.
5079bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5080  assert(Value < getNumValues() && "Bad value!");
5081
5082  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5083    if (UI.getUse().getResNo() == Value)
5084      return true;
5085
5086  return false;
5087}
5088
5089
5090/// isOnlyUserOf - Return true if this node is the only use of N.
5091///
5092bool SDNode::isOnlyUserOf(SDNode *N) const {
5093  bool Seen = false;
5094  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5095    SDNode *User = *I;
5096    if (User == this)
5097      Seen = true;
5098    else
5099      return false;
5100  }
5101
5102  return Seen;
5103}
5104
5105/// isOperand - Return true if this node is an operand of N.
5106///
5107bool SDValue::isOperandOf(SDNode *N) const {
5108  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5109    if (*this == N->getOperand(i))
5110      return true;
5111  return false;
5112}
5113
5114bool SDNode::isOperandOf(SDNode *N) const {
5115  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5116    if (this == N->OperandList[i].getNode())
5117      return true;
5118  return false;
5119}
5120
5121/// reachesChainWithoutSideEffects - Return true if this operand (which must
5122/// be a chain) reaches the specified operand without crossing any
5123/// side-effecting instructions.  In practice, this looks through token
5124/// factors and non-volatile loads.  In order to remain efficient, this only
5125/// looks a couple of nodes in, it does not do an exhaustive search.
5126bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5127                                               unsigned Depth) const {
5128  if (*this == Dest) return true;
5129
5130  // Don't search too deeply, we just want to be able to see through
5131  // TokenFactor's etc.
5132  if (Depth == 0) return false;
5133
5134  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5135  // of the operands of the TF reach dest, then we can do the xform.
5136  if (getOpcode() == ISD::TokenFactor) {
5137    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5138      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5139        return true;
5140    return false;
5141  }
5142
5143  // Loads don't have side effects, look through them.
5144  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5145    if (!Ld->isVolatile())
5146      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5147  }
5148  return false;
5149}
5150
5151
5152static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5153                            SmallPtrSet<SDNode *, 32> &Visited) {
5154  if (found || !Visited.insert(N))
5155    return;
5156
5157  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5158    SDNode *Op = N->getOperand(i).getNode();
5159    if (Op == P) {
5160      found = true;
5161      return;
5162    }
5163    findPredecessor(Op, P, found, Visited);
5164  }
5165}
5166
5167/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5168/// is either an operand of N or it can be reached by recursively traversing
5169/// up the operands.
5170/// NOTE: this is an expensive method. Use it carefully.
5171bool SDNode::isPredecessorOf(SDNode *N) const {
5172  SmallPtrSet<SDNode *, 32> Visited;
5173  bool found = false;
5174  findPredecessor(N, this, found, Visited);
5175  return found;
5176}
5177
5178uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5179  assert(Num < NumOperands && "Invalid child # of SDNode!");
5180  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5181}
5182
5183std::string SDNode::getOperationName(const SelectionDAG *G) const {
5184  switch (getOpcode()) {
5185  default:
5186    if (getOpcode() < ISD::BUILTIN_OP_END)
5187      return "<<Unknown DAG Node>>";
5188    if (isMachineOpcode()) {
5189      if (G)
5190        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5191          if (getMachineOpcode() < TII->getNumOpcodes())
5192            return TII->get(getMachineOpcode()).getName();
5193      return "<<Unknown Machine Node>>";
5194    }
5195    if (G) {
5196      const TargetLowering &TLI = G->getTargetLoweringInfo();
5197      const char *Name = TLI.getTargetNodeName(getOpcode());
5198      if (Name) return Name;
5199      return "<<Unknown Target Node>>";
5200    }
5201    return "<<Unknown Node>>";
5202
5203#ifndef NDEBUG
5204  case ISD::DELETED_NODE:
5205    return "<<Deleted Node!>>";
5206#endif
5207  case ISD::PREFETCH:      return "Prefetch";
5208  case ISD::MEMBARRIER:    return "MemBarrier";
5209  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5210  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5211  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5212  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5213  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5214  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5215  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5216  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5217  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5218  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5219  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5220  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5221  case ISD::PCMARKER:      return "PCMarker";
5222  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5223  case ISD::SRCVALUE:      return "SrcValue";
5224  case ISD::MEMOPERAND:    return "MemOperand";
5225  case ISD::EntryToken:    return "EntryToken";
5226  case ISD::TokenFactor:   return "TokenFactor";
5227  case ISD::AssertSext:    return "AssertSext";
5228  case ISD::AssertZext:    return "AssertZext";
5229
5230  case ISD::BasicBlock:    return "BasicBlock";
5231  case ISD::VALUETYPE:     return "ValueType";
5232  case ISD::Register:      return "Register";
5233
5234  case ISD::Constant:      return "Constant";
5235  case ISD::ConstantFP:    return "ConstantFP";
5236  case ISD::GlobalAddress: return "GlobalAddress";
5237  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5238  case ISD::FrameIndex:    return "FrameIndex";
5239  case ISD::JumpTable:     return "JumpTable";
5240  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5241  case ISD::RETURNADDR: return "RETURNADDR";
5242  case ISD::FRAMEADDR: return "FRAMEADDR";
5243  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5244  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5245  case ISD::LSDAADDR: return "LSDAADDR";
5246  case ISD::EHSELECTION: return "EHSELECTION";
5247  case ISD::EH_RETURN: return "EH_RETURN";
5248  case ISD::ConstantPool:  return "ConstantPool";
5249  case ISD::ExternalSymbol: return "ExternalSymbol";
5250  case ISD::INTRINSIC_WO_CHAIN: {
5251    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5252    return Intrinsic::getName((Intrinsic::ID)IID);
5253  }
5254  case ISD::INTRINSIC_VOID:
5255  case ISD::INTRINSIC_W_CHAIN: {
5256    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5257    return Intrinsic::getName((Intrinsic::ID)IID);
5258  }
5259
5260  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5261  case ISD::TargetConstant: return "TargetConstant";
5262  case ISD::TargetConstantFP:return "TargetConstantFP";
5263  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5264  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5265  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5266  case ISD::TargetJumpTable:  return "TargetJumpTable";
5267  case ISD::TargetConstantPool:  return "TargetConstantPool";
5268  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5269
5270  case ISD::CopyToReg:     return "CopyToReg";
5271  case ISD::CopyFromReg:   return "CopyFromReg";
5272  case ISD::UNDEF:         return "undef";
5273  case ISD::MERGE_VALUES:  return "merge_values";
5274  case ISD::INLINEASM:     return "inlineasm";
5275  case ISD::DBG_LABEL:     return "dbg_label";
5276  case ISD::EH_LABEL:      return "eh_label";
5277  case ISD::HANDLENODE:    return "handlenode";
5278
5279  // Unary operators
5280  case ISD::FABS:   return "fabs";
5281  case ISD::FNEG:   return "fneg";
5282  case ISD::FSQRT:  return "fsqrt";
5283  case ISD::FSIN:   return "fsin";
5284  case ISD::FCOS:   return "fcos";
5285  case ISD::FPOWI:  return "fpowi";
5286  case ISD::FPOW:   return "fpow";
5287  case ISD::FTRUNC: return "ftrunc";
5288  case ISD::FFLOOR: return "ffloor";
5289  case ISD::FCEIL:  return "fceil";
5290  case ISD::FRINT:  return "frint";
5291  case ISD::FNEARBYINT: return "fnearbyint";
5292
5293  // Binary operators
5294  case ISD::ADD:    return "add";
5295  case ISD::SUB:    return "sub";
5296  case ISD::MUL:    return "mul";
5297  case ISD::MULHU:  return "mulhu";
5298  case ISD::MULHS:  return "mulhs";
5299  case ISD::SDIV:   return "sdiv";
5300  case ISD::UDIV:   return "udiv";
5301  case ISD::SREM:   return "srem";
5302  case ISD::UREM:   return "urem";
5303  case ISD::SMUL_LOHI:  return "smul_lohi";
5304  case ISD::UMUL_LOHI:  return "umul_lohi";
5305  case ISD::SDIVREM:    return "sdivrem";
5306  case ISD::UDIVREM:    return "udivrem";
5307  case ISD::AND:    return "and";
5308  case ISD::OR:     return "or";
5309  case ISD::XOR:    return "xor";
5310  case ISD::SHL:    return "shl";
5311  case ISD::SRA:    return "sra";
5312  case ISD::SRL:    return "srl";
5313  case ISD::ROTL:   return "rotl";
5314  case ISD::ROTR:   return "rotr";
5315  case ISD::FADD:   return "fadd";
5316  case ISD::FSUB:   return "fsub";
5317  case ISD::FMUL:   return "fmul";
5318  case ISD::FDIV:   return "fdiv";
5319  case ISD::FREM:   return "frem";
5320  case ISD::FCOPYSIGN: return "fcopysign";
5321  case ISD::FGETSIGN:  return "fgetsign";
5322
5323  case ISD::SETCC:       return "setcc";
5324  case ISD::VSETCC:      return "vsetcc";
5325  case ISD::SELECT:      return "select";
5326  case ISD::SELECT_CC:   return "select_cc";
5327  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5328  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5329  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5330  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5331  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5332  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5333  case ISD::CARRY_FALSE:         return "carry_false";
5334  case ISD::ADDC:        return "addc";
5335  case ISD::ADDE:        return "adde";
5336  case ISD::SADDO:       return "saddo";
5337  case ISD::UADDO:       return "uaddo";
5338  case ISD::SSUBO:       return "ssubo";
5339  case ISD::USUBO:       return "usubo";
5340  case ISD::SMULO:       return "smulo";
5341  case ISD::UMULO:       return "umulo";
5342  case ISD::SUBC:        return "subc";
5343  case ISD::SUBE:        return "sube";
5344  case ISD::SHL_PARTS:   return "shl_parts";
5345  case ISD::SRA_PARTS:   return "sra_parts";
5346  case ISD::SRL_PARTS:   return "srl_parts";
5347
5348  // Conversion operators.
5349  case ISD::SIGN_EXTEND: return "sign_extend";
5350  case ISD::ZERO_EXTEND: return "zero_extend";
5351  case ISD::ANY_EXTEND:  return "any_extend";
5352  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5353  case ISD::TRUNCATE:    return "truncate";
5354  case ISD::FP_ROUND:    return "fp_round";
5355  case ISD::FLT_ROUNDS_: return "flt_rounds";
5356  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5357  case ISD::FP_EXTEND:   return "fp_extend";
5358
5359  case ISD::SINT_TO_FP:  return "sint_to_fp";
5360  case ISD::UINT_TO_FP:  return "uint_to_fp";
5361  case ISD::FP_TO_SINT:  return "fp_to_sint";
5362  case ISD::FP_TO_UINT:  return "fp_to_uint";
5363  case ISD::BIT_CONVERT: return "bit_convert";
5364
5365  case ISD::CONVERT_RNDSAT: {
5366    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5367    default: llvm_unreachable("Unknown cvt code!");
5368    case ISD::CVT_FF:  return "cvt_ff";
5369    case ISD::CVT_FS:  return "cvt_fs";
5370    case ISD::CVT_FU:  return "cvt_fu";
5371    case ISD::CVT_SF:  return "cvt_sf";
5372    case ISD::CVT_UF:  return "cvt_uf";
5373    case ISD::CVT_SS:  return "cvt_ss";
5374    case ISD::CVT_SU:  return "cvt_su";
5375    case ISD::CVT_US:  return "cvt_us";
5376    case ISD::CVT_UU:  return "cvt_uu";
5377    }
5378  }
5379
5380    // Control flow instructions
5381  case ISD::BR:      return "br";
5382  case ISD::BRIND:   return "brind";
5383  case ISD::BR_JT:   return "br_jt";
5384  case ISD::BRCOND:  return "brcond";
5385  case ISD::BR_CC:   return "br_cc";
5386  case ISD::CALLSEQ_START:  return "callseq_start";
5387  case ISD::CALLSEQ_END:    return "callseq_end";
5388
5389    // Other operators
5390  case ISD::LOAD:               return "load";
5391  case ISD::STORE:              return "store";
5392  case ISD::VAARG:              return "vaarg";
5393  case ISD::VACOPY:             return "vacopy";
5394  case ISD::VAEND:              return "vaend";
5395  case ISD::VASTART:            return "vastart";
5396  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5397  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5398  case ISD::BUILD_PAIR:         return "build_pair";
5399  case ISD::STACKSAVE:          return "stacksave";
5400  case ISD::STACKRESTORE:       return "stackrestore";
5401  case ISD::TRAP:               return "trap";
5402
5403  // Bit manipulation
5404  case ISD::BSWAP:   return "bswap";
5405  case ISD::CTPOP:   return "ctpop";
5406  case ISD::CTTZ:    return "cttz";
5407  case ISD::CTLZ:    return "ctlz";
5408
5409  // Debug info
5410  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5411  case ISD::DEBUG_LOC: return "debug_loc";
5412
5413  // Trampolines
5414  case ISD::TRAMPOLINE: return "trampoline";
5415
5416  case ISD::CONDCODE:
5417    switch (cast<CondCodeSDNode>(this)->get()) {
5418    default: llvm_unreachable("Unknown setcc condition!");
5419    case ISD::SETOEQ:  return "setoeq";
5420    case ISD::SETOGT:  return "setogt";
5421    case ISD::SETOGE:  return "setoge";
5422    case ISD::SETOLT:  return "setolt";
5423    case ISD::SETOLE:  return "setole";
5424    case ISD::SETONE:  return "setone";
5425
5426    case ISD::SETO:    return "seto";
5427    case ISD::SETUO:   return "setuo";
5428    case ISD::SETUEQ:  return "setue";
5429    case ISD::SETUGT:  return "setugt";
5430    case ISD::SETUGE:  return "setuge";
5431    case ISD::SETULT:  return "setult";
5432    case ISD::SETULE:  return "setule";
5433    case ISD::SETUNE:  return "setune";
5434
5435    case ISD::SETEQ:   return "seteq";
5436    case ISD::SETGT:   return "setgt";
5437    case ISD::SETGE:   return "setge";
5438    case ISD::SETLT:   return "setlt";
5439    case ISD::SETLE:   return "setle";
5440    case ISD::SETNE:   return "setne";
5441    }
5442  }
5443}
5444
5445const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5446  switch (AM) {
5447  default:
5448    return "";
5449  case ISD::PRE_INC:
5450    return "<pre-inc>";
5451  case ISD::PRE_DEC:
5452    return "<pre-dec>";
5453  case ISD::POST_INC:
5454    return "<post-inc>";
5455  case ISD::POST_DEC:
5456    return "<post-dec>";
5457  }
5458}
5459
5460std::string ISD::ArgFlagsTy::getArgFlagsString() {
5461  std::string S = "< ";
5462
5463  if (isZExt())
5464    S += "zext ";
5465  if (isSExt())
5466    S += "sext ";
5467  if (isInReg())
5468    S += "inreg ";
5469  if (isSRet())
5470    S += "sret ";
5471  if (isByVal())
5472    S += "byval ";
5473  if (isNest())
5474    S += "nest ";
5475  if (getByValAlign())
5476    S += "byval-align:" + utostr(getByValAlign()) + " ";
5477  if (getOrigAlign())
5478    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5479  if (getByValSize())
5480    S += "byval-size:" + utostr(getByValSize()) + " ";
5481  return S + ">";
5482}
5483
5484void SDNode::dump() const { dump(0); }
5485void SDNode::dump(const SelectionDAG *G) const {
5486  print(errs(), G);
5487}
5488
5489void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5490  OS << (void*)this << ": ";
5491
5492  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5493    if (i) OS << ",";
5494    if (getValueType(i) == MVT::Other)
5495      OS << "ch";
5496    else
5497      OS << getValueType(i).getEVTString();
5498  }
5499  OS << " = " << getOperationName(G);
5500}
5501
5502void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5503  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5504    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5505    OS << "<";
5506    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5507      int Idx = SVN->getMaskElt(i);
5508      if (i) OS << ",";
5509      if (Idx < 0)
5510        OS << "u";
5511      else
5512        OS << Idx;
5513    }
5514    OS << ">";
5515  }
5516
5517  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5518    OS << '<' << CSDN->getAPIntValue() << '>';
5519  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5520    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5521      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5522    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5523      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5524    else {
5525      OS << "<APFloat(";
5526      CSDN->getValueAPF().bitcastToAPInt().dump();
5527      OS << ")>";
5528    }
5529  } else if (const GlobalAddressSDNode *GADN =
5530             dyn_cast<GlobalAddressSDNode>(this)) {
5531    int64_t offset = GADN->getOffset();
5532    OS << '<';
5533    WriteAsOperand(OS, GADN->getGlobal());
5534    OS << '>';
5535    if (offset > 0)
5536      OS << " + " << offset;
5537    else
5538      OS << " " << offset;
5539    if (unsigned int TF = GADN->getTargetFlags())
5540      OS << " [TF=" << TF << ']';
5541  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5542    OS << "<" << FIDN->getIndex() << ">";
5543  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5544    OS << "<" << JTDN->getIndex() << ">";
5545    if (unsigned int TF = JTDN->getTargetFlags())
5546      OS << " [TF=" << TF << ']';
5547  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5548    int offset = CP->getOffset();
5549    if (CP->isMachineConstantPoolEntry())
5550      OS << "<" << *CP->getMachineCPVal() << ">";
5551    else
5552      OS << "<" << *CP->getConstVal() << ">";
5553    if (offset > 0)
5554      OS << " + " << offset;
5555    else
5556      OS << " " << offset;
5557    if (unsigned int TF = CP->getTargetFlags())
5558      OS << " [TF=" << TF << ']';
5559  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5560    OS << "<";
5561    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5562    if (LBB)
5563      OS << LBB->getName() << " ";
5564    OS << (const void*)BBDN->getBasicBlock() << ">";
5565  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5566    if (G && R->getReg() &&
5567        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5568      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5569    } else {
5570      OS << " #" << R->getReg();
5571    }
5572  } else if (const ExternalSymbolSDNode *ES =
5573             dyn_cast<ExternalSymbolSDNode>(this)) {
5574    OS << "'" << ES->getSymbol() << "'";
5575    if (unsigned int TF = ES->getTargetFlags())
5576      OS << " [TF=" << TF << ']';
5577  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5578    if (M->getValue())
5579      OS << "<" << M->getValue() << ">";
5580    else
5581      OS << "<null>";
5582  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5583    if (M->MO.getValue())
5584      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5585    else
5586      OS << "<null:" << M->MO.getOffset() << ">";
5587  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5588    OS << ":" << N->getVT().getEVTString();
5589  }
5590  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5591    const Value *SrcValue = LD->getSrcValue();
5592    int SrcOffset = LD->getSrcValueOffset();
5593    OS << " <";
5594    if (SrcValue)
5595      OS << SrcValue;
5596    else
5597      OS << "null";
5598    OS << ":" << SrcOffset << ">";
5599
5600    bool doExt = true;
5601    switch (LD->getExtensionType()) {
5602    default: doExt = false; break;
5603    case ISD::EXTLOAD: OS << " <anyext "; break;
5604    case ISD::SEXTLOAD: OS << " <sext "; break;
5605    case ISD::ZEXTLOAD: OS << " <zext "; break;
5606    }
5607    if (doExt)
5608      OS << LD->getMemoryVT().getEVTString() << ">";
5609
5610    const char *AM = getIndexedModeName(LD->getAddressingMode());
5611    if (*AM)
5612      OS << " " << AM;
5613    if (LD->isVolatile())
5614      OS << " <volatile>";
5615    OS << " alignment=" << LD->getAlignment();
5616  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5617    const Value *SrcValue = ST->getSrcValue();
5618    int SrcOffset = ST->getSrcValueOffset();
5619    OS << " <";
5620    if (SrcValue)
5621      OS << SrcValue;
5622    else
5623      OS << "null";
5624    OS << ":" << SrcOffset << ">";
5625
5626    if (ST->isTruncatingStore())
5627      OS << " <trunc " << ST->getMemoryVT().getEVTString() << ">";
5628
5629    const char *AM = getIndexedModeName(ST->getAddressingMode());
5630    if (*AM)
5631      OS << " " << AM;
5632    if (ST->isVolatile())
5633      OS << " <volatile>";
5634    OS << " alignment=" << ST->getAlignment();
5635  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5636    const Value *SrcValue = AT->getSrcValue();
5637    int SrcOffset = AT->getSrcValueOffset();
5638    OS << " <";
5639    if (SrcValue)
5640      OS << SrcValue;
5641    else
5642      OS << "null";
5643    OS << ":" << SrcOffset << ">";
5644    if (AT->isVolatile())
5645      OS << " <volatile>";
5646    OS << " alignment=" << AT->getAlignment();
5647  }
5648}
5649
5650void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5651  print_types(OS, G);
5652  OS << " ";
5653  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5654    if (i) OS << ", ";
5655    OS << (void*)getOperand(i).getNode();
5656    if (unsigned RN = getOperand(i).getResNo())
5657      OS << ":" << RN;
5658  }
5659  print_details(OS, G);
5660}
5661
5662static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5663  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5664    if (N->getOperand(i).getNode()->hasOneUse())
5665      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5666    else
5667      errs() << "\n" << std::string(indent+2, ' ')
5668             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5669
5670
5671  errs() << "\n";
5672  errs().indent(indent);
5673  N->dump(G);
5674}
5675
5676void SelectionDAG::dump() const {
5677  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
5678
5679  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5680       I != E; ++I) {
5681    const SDNode *N = I;
5682    if (!N->hasOneUse() && N != getRoot().getNode())
5683      DumpNodes(N, 2, this);
5684  }
5685
5686  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5687
5688  errs() << "\n\n";
5689}
5690
5691void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5692  print_types(OS, G);
5693  print_details(OS, G);
5694}
5695
5696typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5697static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5698                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5699  if (!once.insert(N))          // If we've been here before, return now.
5700    return;
5701  // Dump the current SDNode, but don't end the line yet.
5702  OS << std::string(indent, ' ');
5703  N->printr(OS, G);
5704  // Having printed this SDNode, walk the children:
5705  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5706    const SDNode *child = N->getOperand(i).getNode();
5707    if (i) OS << ",";
5708    OS << " ";
5709    if (child->getNumOperands() == 0) {
5710      // This child has no grandchildren; print it inline right here.
5711      child->printr(OS, G);
5712      once.insert(child);
5713    } else {          // Just the address.  FIXME: also print the child's opcode
5714      OS << (void*)child;
5715      if (unsigned RN = N->getOperand(i).getResNo())
5716        OS << ":" << RN;
5717    }
5718  }
5719  OS << "\n";
5720  // Dump children that have grandchildren on their own line(s).
5721  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5722    const SDNode *child = N->getOperand(i).getNode();
5723    DumpNodesr(OS, child, indent+2, G, once);
5724  }
5725}
5726
5727void SDNode::dumpr() const {
5728  VisitedSDNodeSet once;
5729  DumpNodesr(errs(), this, 0, 0, once);
5730}
5731
5732
5733// getAddressSpace - Return the address space this GlobalAddress belongs to.
5734unsigned GlobalAddressSDNode::getAddressSpace() const {
5735  return getGlobal()->getType()->getAddressSpace();
5736}
5737
5738
5739const Type *ConstantPoolSDNode::getType() const {
5740  if (isMachineConstantPoolEntry())
5741    return Val.MachineCPVal->getType();
5742  return Val.ConstVal->getType();
5743}
5744
5745bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5746                                        APInt &SplatUndef,
5747                                        unsigned &SplatBitSize,
5748                                        bool &HasAnyUndefs,
5749                                        unsigned MinSplatBits) {
5750  EVT VT = getValueType(0);
5751  assert(VT.isVector() && "Expected a vector type");
5752  unsigned sz = VT.getSizeInBits();
5753  if (MinSplatBits > sz)
5754    return false;
5755
5756  SplatValue = APInt(sz, 0);
5757  SplatUndef = APInt(sz, 0);
5758
5759  // Get the bits.  Bits with undefined values (when the corresponding element
5760  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5761  // in SplatValue.  If any of the values are not constant, give up and return
5762  // false.
5763  unsigned int nOps = getNumOperands();
5764  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5765  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5766  for (unsigned i = 0; i < nOps; ++i) {
5767    SDValue OpVal = getOperand(i);
5768    unsigned BitPos = i * EltBitSize;
5769
5770    if (OpVal.getOpcode() == ISD::UNDEF)
5771      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5772    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5773      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5774                     zextOrTrunc(sz) << BitPos);
5775    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5776      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5777     else
5778      return false;
5779  }
5780
5781  // The build_vector is all constants or undefs.  Find the smallest element
5782  // size that splats the vector.
5783
5784  HasAnyUndefs = (SplatUndef != 0);
5785  while (sz > 8) {
5786
5787    unsigned HalfSize = sz / 2;
5788    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5789    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5790    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5791    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5792
5793    // If the two halves do not match (ignoring undef bits), stop here.
5794    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5795        MinSplatBits > HalfSize)
5796      break;
5797
5798    SplatValue = HighValue | LowValue;
5799    SplatUndef = HighUndef & LowUndef;
5800
5801    sz = HalfSize;
5802  }
5803
5804  SplatBitSize = sz;
5805  return true;
5806}
5807
5808bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5809  // Find the first non-undef value in the shuffle mask.
5810  unsigned i, e;
5811  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5812    /* search */;
5813
5814  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5815
5816  // Make sure all remaining elements are either undef or the same as the first
5817  // non-undef value.
5818  for (int Idx = Mask[i]; i != e; ++i)
5819    if (Mask[i] >= 0 && Mask[i] != Idx)
5820      return false;
5821  return true;
5822}
5823