SelectionDAG.cpp revision 29e4bdbf27c5f03b12dd2bc41d9ccb0d5f3dfdf4
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // Anything can be extended to ppc long double.
78  if (VT == MVT::ppcf128)
79    return true;
80
81  // PPC long double cannot be shrunk to anything though.
82  if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  return Val2.convert(*MVTToAPFloatSemantics(VT),
88                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
89}
90
91//===----------------------------------------------------------------------===//
92//                              ISD Namespace
93//===----------------------------------------------------------------------===//
94
95/// isBuildVectorAllOnes - Return true if the specified node is a
96/// BUILD_VECTOR where all of the elements are ~0 or undef.
97bool ISD::isBuildVectorAllOnes(const SDNode *N) {
98  // Look through a bit convert.
99  if (N->getOpcode() == ISD::BIT_CONVERT)
100    N = N->getOperand(0).Val;
101
102  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
103
104  unsigned i = 0, e = N->getNumOperands();
105
106  // Skip over all of the undef values.
107  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
108    ++i;
109
110  // Do not accept an all-undef vector.
111  if (i == e) return false;
112
113  // Do not accept build_vectors that aren't all constants or which have non-~0
114  // elements.
115  SDOperand NotZero = N->getOperand(i);
116  if (isa<ConstantSDNode>(NotZero)) {
117    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
118      return false;
119  } else if (isa<ConstantFPSDNode>(NotZero)) {
120    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
121                convertToAPInt().isAllOnesValue())
122      return false;
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// isScalarToVector - Return true if the specified node is a
176/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
177/// element is not an undef.
178bool ISD::isScalarToVector(const SDNode *N) {
179  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
180    return true;
181
182  if (N->getOpcode() != ISD::BUILD_VECTOR)
183    return false;
184  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
185    return false;
186  unsigned NumElems = N->getNumOperands();
187  for (unsigned i = 1; i < NumElems; ++i) {
188    SDOperand V = N->getOperand(i);
189    if (V.getOpcode() != ISD::UNDEF)
190      return false;
191  }
192  return true;
193}
194
195
196/// isDebugLabel - Return true if the specified node represents a debug
197/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
198/// is 0).
199bool ISD::isDebugLabel(const SDNode *N) {
200  SDOperand Zero;
201  if (N->getOpcode() == ISD::LABEL)
202    Zero = N->getOperand(2);
203  else if (N->isTargetOpcode() &&
204           N->getTargetOpcode() == TargetInstrInfo::LABEL)
205    // Chain moved to last operand.
206    Zero = N->getOperand(1);
207  else
208    return false;
209  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
210}
211
212/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
213/// when given the operation for (X op Y).
214ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
215  // To perform this operation, we just need to swap the L and G bits of the
216  // operation.
217  unsigned OldL = (Operation >> 2) & 1;
218  unsigned OldG = (Operation >> 1) & 1;
219  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
220                       (OldL << 1) |       // New G bit
221                       (OldG << 2));        // New L bit.
222}
223
224/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
225/// 'op' is a valid SetCC operation.
226ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
227  unsigned Operation = Op;
228  if (isInteger)
229    Operation ^= 7;   // Flip L, G, E bits, but not U.
230  else
231    Operation ^= 15;  // Flip all of the condition bits.
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;     // Don't let N and U bits get set.
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
300    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
301    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
302    }
303  }
304
305  return Result;
306}
307
308const TargetMachine &SelectionDAG::getTarget() const {
309  return TLI.getTargetMachine();
310}
311
312//===----------------------------------------------------------------------===//
313//                           SDNode Profile Support
314//===----------------------------------------------------------------------===//
315
316/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
317///
318static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
319  ID.AddInteger(OpC);
320}
321
322/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
323/// solely with their pointer.
324void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
325  ID.AddPointer(VTList.VTs);
326}
327
328/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
329///
330static void AddNodeIDOperands(FoldingSetNodeID &ID,
331                              const SDOperand *Ops, unsigned NumOps) {
332  for (; NumOps; --NumOps, ++Ops) {
333    ID.AddPointer(Ops->Val);
334    ID.AddInteger(Ops->ResNo);
335  }
336}
337
338static void AddNodeIDNode(FoldingSetNodeID &ID,
339                          unsigned short OpC, SDVTList VTList,
340                          const SDOperand *OpList, unsigned N) {
341  AddNodeIDOpcode(ID, OpC);
342  AddNodeIDValueTypes(ID, VTList);
343  AddNodeIDOperands(ID, OpList, N);
344}
345
346/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
347/// data.
348static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
349  AddNodeIDOpcode(ID, N->getOpcode());
350  // Add the return value info.
351  AddNodeIDValueTypes(ID, N->getVTList());
352  // Add the operand info.
353  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
354
355  // Handle SDNode leafs with special info.
356  switch (N->getOpcode()) {
357  default: break;  // Normal nodes don't need extra info.
358  case ISD::ARG_FLAGS:
359    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
360    break;
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    break;
378  }
379  case ISD::BasicBlock:
380    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
381    break;
382  case ISD::Register:
383    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
384    break;
385  case ISD::SRCVALUE:
386    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387    break;
388  case ISD::MEMOPERAND: {
389    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
390    ID.AddPointer(MO.getValue());
391    ID.AddInteger(MO.getFlags());
392    ID.AddInteger(MO.getOffset());
393    ID.AddInteger(MO.getSize());
394    ID.AddInteger(MO.getAlignment());
395    break;
396  }
397  case ISD::FrameIndex:
398  case ISD::TargetFrameIndex:
399    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
400    break;
401  case ISD::JumpTable:
402  case ISD::TargetJumpTable:
403    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
404    break;
405  case ISD::ConstantPool:
406  case ISD::TargetConstantPool: {
407    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
408    ID.AddInteger(CP->getAlignment());
409    ID.AddInteger(CP->getOffset());
410    if (CP->isMachineConstantPoolEntry())
411      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
412    else
413      ID.AddPointer(CP->getConstVal());
414    break;
415  }
416  case ISD::LOAD: {
417    LoadSDNode *LD = cast<LoadSDNode>(N);
418    ID.AddInteger(LD->getAddressingMode());
419    ID.AddInteger(LD->getExtensionType());
420    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
421    ID.AddInteger(LD->getAlignment());
422    ID.AddInteger(LD->isVolatile());
423    break;
424  }
425  case ISD::STORE: {
426    StoreSDNode *ST = cast<StoreSDNode>(N);
427    ID.AddInteger(ST->getAddressingMode());
428    ID.AddInteger(ST->isTruncatingStore());
429    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
430    ID.AddInteger(ST->getAlignment());
431    ID.AddInteger(ST->isVolatile());
432    break;
433  }
434  }
435}
436
437//===----------------------------------------------------------------------===//
438//                              SelectionDAG Class
439//===----------------------------------------------------------------------===//
440
441/// RemoveDeadNodes - This method deletes all unreachable nodes in the
442/// SelectionDAG.
443void SelectionDAG::RemoveDeadNodes() {
444  // Create a dummy node (which is not added to allnodes), that adds a reference
445  // to the root node, preventing it from being deleted.
446  HandleSDNode Dummy(getRoot());
447
448  SmallVector<SDNode*, 128> DeadNodes;
449
450  // Add all obviously-dead nodes to the DeadNodes worklist.
451  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
452    if (I->use_empty())
453      DeadNodes.push_back(I);
454
455  // Process the worklist, deleting the nodes and adding their uses to the
456  // worklist.
457  while (!DeadNodes.empty()) {
458    SDNode *N = DeadNodes.back();
459    DeadNodes.pop_back();
460
461    // Take the node out of the appropriate CSE map.
462    RemoveNodeFromCSEMaps(N);
463
464    // Next, brutally remove the operand list.  This is safe to do, as there are
465    // no cycles in the graph.
466    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
467      SDNode *Operand = I->Val;
468      Operand->removeUser(std::distance(N->op_begin(), I), N);
469
470      // Now that we removed this operand, see if there are no uses of it left.
471      if (Operand->use_empty())
472        DeadNodes.push_back(Operand);
473    }
474    if (N->OperandsNeedDelete) {
475      delete[] N->OperandList;
476    }
477    N->OperandList = 0;
478    N->NumOperands = 0;
479
480    // Finally, remove N itself.
481    AllNodes.erase(N);
482  }
483
484  // If the root changed (e.g. it was a dead load, update the root).
485  setRoot(Dummy.getValue());
486}
487
488void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
489  SmallVector<SDNode*, 16> DeadNodes;
490  DeadNodes.push_back(N);
491
492  // Process the worklist, deleting the nodes and adding their uses to the
493  // worklist.
494  while (!DeadNodes.empty()) {
495    SDNode *N = DeadNodes.back();
496    DeadNodes.pop_back();
497
498    if (UpdateListener)
499      UpdateListener->NodeDeleted(N);
500
501    // Take the node out of the appropriate CSE map.
502    RemoveNodeFromCSEMaps(N);
503
504    // Next, brutally remove the operand list.  This is safe to do, as there are
505    // no cycles in the graph.
506    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
507      SDNode *Operand = I->Val;
508      Operand->removeUser(std::distance(N->op_begin(), I), N);
509
510      // Now that we removed this operand, see if there are no uses of it left.
511      if (Operand->use_empty())
512        DeadNodes.push_back(Operand);
513    }
514    if (N->OperandsNeedDelete) {
515      delete[] N->OperandList;
516    }
517    N->OperandList = 0;
518    N->NumOperands = 0;
519
520    // Finally, remove N itself.
521    AllNodes.erase(N);
522  }
523}
524
525void SelectionDAG::DeleteNode(SDNode *N) {
526  assert(N->use_empty() && "Cannot delete a node that is not dead!");
527
528  // First take this out of the appropriate CSE map.
529  RemoveNodeFromCSEMaps(N);
530
531  // Finally, remove uses due to operands of this node, remove from the
532  // AllNodes list, and delete the node.
533  DeleteNodeNotInCSEMaps(N);
534}
535
536void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
537
538  // Remove it from the AllNodes list.
539  AllNodes.remove(N);
540
541  // Drop all of the operands and decrement used nodes use counts.
542  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
543    I->Val->removeUser(std::distance(N->op_begin(), I), N);
544  if (N->OperandsNeedDelete) {
545    delete[] N->OperandList;
546  }
547  N->OperandList = 0;
548  N->NumOperands = 0;
549
550  delete N;
551}
552
553/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
554/// correspond to it.  This is useful when we're about to delete or repurpose
555/// the node.  We don't want future request for structurally identical nodes
556/// to return N anymore.
557void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
558  bool Erased = false;
559  switch (N->getOpcode()) {
560  case ISD::HANDLENODE: return;  // noop.
561  case ISD::STRING:
562    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
563    break;
564  case ISD::CONDCODE:
565    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
566           "Cond code doesn't exist!");
567    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
568    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
569    break;
570  case ISD::ExternalSymbol:
571    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
572    break;
573  case ISD::TargetExternalSymbol:
574    Erased =
575      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
576    break;
577  case ISD::VALUETYPE: {
578    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
579    if (MVT::isExtendedVT(VT)) {
580      Erased = ExtendedValueTypeNodes.erase(VT);
581    } else {
582      Erased = ValueTypeNodes[VT] != 0;
583      ValueTypeNodes[VT] = 0;
584    }
585    break;
586  }
587  default:
588    // Remove it from the CSE Map.
589    Erased = CSEMap.RemoveNode(N);
590    break;
591  }
592#ifndef NDEBUG
593  // Verify that the node was actually in one of the CSE maps, unless it has a
594  // flag result (which cannot be CSE'd) or is one of the special cases that are
595  // not subject to CSE.
596  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
597      !N->isTargetOpcode()) {
598    N->dump(this);
599    cerr << "\n";
600    assert(0 && "Node is not in map!");
601  }
602#endif
603}
604
605/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
606/// has been taken out and modified in some way.  If the specified node already
607/// exists in the CSE maps, do not modify the maps, but return the existing node
608/// instead.  If it doesn't exist, add it and return null.
609///
610SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
611  assert(N->getNumOperands() && "This is a leaf node!");
612  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
613    return 0;    // Never add these nodes.
614
615  // Check that remaining values produced are not flags.
616  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
617    if (N->getValueType(i) == MVT::Flag)
618      return 0;   // Never CSE anything that produces a flag.
619
620  SDNode *New = CSEMap.GetOrInsertNode(N);
621  if (New != N) return New;  // Node already existed.
622  return 0;
623}
624
625/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
626/// were replaced with those specified.  If this node is never memoized,
627/// return null, otherwise return a pointer to the slot it would take.  If a
628/// node already exists with these operands, the slot will be non-null.
629SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
630                                           void *&InsertPos) {
631  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
632    return 0;    // Never add these nodes.
633
634  // Check that remaining values produced are not flags.
635  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
636    if (N->getValueType(i) == MVT::Flag)
637      return 0;   // Never CSE anything that produces a flag.
638
639  SDOperand Ops[] = { Op };
640  FoldingSetNodeID ID;
641  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
642  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
643}
644
645/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
646/// were replaced with those specified.  If this node is never memoized,
647/// return null, otherwise return a pointer to the slot it would take.  If a
648/// node already exists with these operands, the slot will be non-null.
649SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
650                                           SDOperand Op1, SDOperand Op2,
651                                           void *&InsertPos) {
652  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
653    return 0;    // Never add these nodes.
654
655  // Check that remaining values produced are not flags.
656  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
657    if (N->getValueType(i) == MVT::Flag)
658      return 0;   // Never CSE anything that produces a flag.
659
660  SDOperand Ops[] = { Op1, Op2 };
661  FoldingSetNodeID ID;
662  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
663  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
664}
665
666
667/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
668/// were replaced with those specified.  If this node is never memoized,
669/// return null, otherwise return a pointer to the slot it would take.  If a
670/// node already exists with these operands, the slot will be non-null.
671SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
672                                           const SDOperand *Ops,unsigned NumOps,
673                                           void *&InsertPos) {
674  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
675    return 0;    // Never add these nodes.
676
677  // Check that remaining values produced are not flags.
678  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
679    if (N->getValueType(i) == MVT::Flag)
680      return 0;   // Never CSE anything that produces a flag.
681
682  FoldingSetNodeID ID;
683  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
684
685  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
686    ID.AddInteger(LD->getAddressingMode());
687    ID.AddInteger(LD->getExtensionType());
688    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
689    ID.AddInteger(LD->getAlignment());
690    ID.AddInteger(LD->isVolatile());
691  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
692    ID.AddInteger(ST->getAddressingMode());
693    ID.AddInteger(ST->isTruncatingStore());
694    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
695    ID.AddInteger(ST->getAlignment());
696    ID.AddInteger(ST->isVolatile());
697  }
698
699  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
700}
701
702
703SelectionDAG::~SelectionDAG() {
704  while (!AllNodes.empty()) {
705    SDNode *N = AllNodes.begin();
706    N->SetNextInBucket(0);
707    if (N->OperandsNeedDelete) {
708      delete [] N->OperandList;
709    }
710    N->OperandList = 0;
711    N->NumOperands = 0;
712    AllNodes.pop_front();
713  }
714}
715
716SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
717  if (Op.getValueType() == VT) return Op;
718  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
719                                   MVT::getSizeInBits(VT));
720  return getNode(ISD::AND, Op.getValueType(), Op,
721                 getConstant(Imm, Op.getValueType()));
722}
723
724SDOperand SelectionDAG::getString(const std::string &Val) {
725  StringSDNode *&N = StringNodes[Val];
726  if (!N) {
727    N = new StringSDNode(Val);
728    AllNodes.push_back(N);
729  }
730  return SDOperand(N, 0);
731}
732
733SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
734  MVT::ValueType EltVT =
735    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
736
737  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
738}
739
740SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
741  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
742
743  MVT::ValueType EltVT =
744    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
745
746  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
747         "APInt size does not match type size!");
748
749  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
752  ID.Add(Val);
753  void *IP = 0;
754  SDNode *N = NULL;
755  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
756    if (!MVT::isVector(VT))
757      return SDOperand(N, 0);
758  if (!N) {
759    N = new ConstantSDNode(isT, Val, EltVT);
760    CSEMap.InsertNode(N, IP);
761    AllNodes.push_back(N);
762  }
763
764  SDOperand Result(N, 0);
765  if (MVT::isVector(VT)) {
766    SmallVector<SDOperand, 8> Ops;
767    Ops.assign(MVT::getVectorNumElements(VT), Result);
768    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
769  }
770  return Result;
771}
772
773SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
774  return getConstant(Val, TLI.getPointerTy(), isTarget);
775}
776
777
778SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
779                                      bool isTarget) {
780  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
781
782  MVT::ValueType EltVT =
783    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
784
785  // Do the map lookup using the actual bit pattern for the floating point
786  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
787  // we don't have issues with SNANs.
788  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
789  FoldingSetNodeID ID;
790  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
791  ID.Add(V);
792  void *IP = 0;
793  SDNode *N = NULL;
794  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
795    if (!MVT::isVector(VT))
796      return SDOperand(N, 0);
797  if (!N) {
798    N = new ConstantFPSDNode(isTarget, V, EltVT);
799    CSEMap.InsertNode(N, IP);
800    AllNodes.push_back(N);
801  }
802
803  SDOperand Result(N, 0);
804  if (MVT::isVector(VT)) {
805    SmallVector<SDOperand, 8> Ops;
806    Ops.assign(MVT::getVectorNumElements(VT), Result);
807    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
808  }
809  return Result;
810}
811
812SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
813                                      bool isTarget) {
814  MVT::ValueType EltVT =
815    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
816  if (EltVT==MVT::f32)
817    return getConstantFP(APFloat((float)Val), VT, isTarget);
818  else
819    return getConstantFP(APFloat(Val), VT, isTarget);
820}
821
822SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
823                                         MVT::ValueType VT, int Offset,
824                                         bool isTargetGA) {
825  unsigned Opc;
826
827  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
828  if (!GVar) {
829    // If GV is an alias then use the aliasee for determining thread-localness.
830    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
831      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
832  }
833
834  if (GVar && GVar->isThreadLocal())
835    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
836  else
837    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
838
839  FoldingSetNodeID ID;
840  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
841  ID.AddPointer(GV);
842  ID.AddInteger(Offset);
843  void *IP = 0;
844  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
845   return SDOperand(E, 0);
846  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
847  CSEMap.InsertNode(N, IP);
848  AllNodes.push_back(N);
849  return SDOperand(N, 0);
850}
851
852SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
853                                      bool isTarget) {
854  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
855  FoldingSetNodeID ID;
856  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
857  ID.AddInteger(FI);
858  void *IP = 0;
859  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
860    return SDOperand(E, 0);
861  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
862  CSEMap.InsertNode(N, IP);
863  AllNodes.push_back(N);
864  return SDOperand(N, 0);
865}
866
867SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
868  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
871  ID.AddInteger(JTI);
872  void *IP = 0;
873  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
874    return SDOperand(E, 0);
875  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
876  CSEMap.InsertNode(N, IP);
877  AllNodes.push_back(N);
878  return SDOperand(N, 0);
879}
880
881SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
882                                        unsigned Alignment, int Offset,
883                                        bool isTarget) {
884  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
885  FoldingSetNodeID ID;
886  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
887  ID.AddInteger(Alignment);
888  ID.AddInteger(Offset);
889  ID.AddPointer(C);
890  void *IP = 0;
891  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
892    return SDOperand(E, 0);
893  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
894  CSEMap.InsertNode(N, IP);
895  AllNodes.push_back(N);
896  return SDOperand(N, 0);
897}
898
899
900SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
901                                        MVT::ValueType VT,
902                                        unsigned Alignment, int Offset,
903                                        bool isTarget) {
904  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
905  FoldingSetNodeID ID;
906  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
907  ID.AddInteger(Alignment);
908  ID.AddInteger(Offset);
909  C->AddSelectionDAGCSEId(ID);
910  void *IP = 0;
911  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
912    return SDOperand(E, 0);
913  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
914  CSEMap.InsertNode(N, IP);
915  AllNodes.push_back(N);
916  return SDOperand(N, 0);
917}
918
919
920SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
921  FoldingSetNodeID ID;
922  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
923  ID.AddPointer(MBB);
924  void *IP = 0;
925  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
926    return SDOperand(E, 0);
927  SDNode *N = new BasicBlockSDNode(MBB);
928  CSEMap.InsertNode(N, IP);
929  AllNodes.push_back(N);
930  return SDOperand(N, 0);
931}
932
933SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
934  FoldingSetNodeID ID;
935  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
936  ID.AddInteger(Flags.getRawBits());
937  void *IP = 0;
938  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
939    return SDOperand(E, 0);
940  SDNode *N = new ARG_FLAGSSDNode(Flags);
941  CSEMap.InsertNode(N, IP);
942  AllNodes.push_back(N);
943  return SDOperand(N, 0);
944}
945
946SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
947  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
948    ValueTypeNodes.resize(VT+1);
949
950  SDNode *&N = MVT::isExtendedVT(VT) ?
951    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
952
953  if (N) return SDOperand(N, 0);
954  N = new VTSDNode(VT);
955  AllNodes.push_back(N);
956  return SDOperand(N, 0);
957}
958
959SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
960  SDNode *&N = ExternalSymbols[Sym];
961  if (N) return SDOperand(N, 0);
962  N = new ExternalSymbolSDNode(false, Sym, VT);
963  AllNodes.push_back(N);
964  return SDOperand(N, 0);
965}
966
967SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
968                                                MVT::ValueType VT) {
969  SDNode *&N = TargetExternalSymbols[Sym];
970  if (N) return SDOperand(N, 0);
971  N = new ExternalSymbolSDNode(true, Sym, VT);
972  AllNodes.push_back(N);
973  return SDOperand(N, 0);
974}
975
976SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
977  if ((unsigned)Cond >= CondCodeNodes.size())
978    CondCodeNodes.resize(Cond+1);
979
980  if (CondCodeNodes[Cond] == 0) {
981    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
982    AllNodes.push_back(CondCodeNodes[Cond]);
983  }
984  return SDOperand(CondCodeNodes[Cond], 0);
985}
986
987SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
988  FoldingSetNodeID ID;
989  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
990  ID.AddInteger(RegNo);
991  void *IP = 0;
992  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
993    return SDOperand(E, 0);
994  SDNode *N = new RegisterSDNode(RegNo, VT);
995  CSEMap.InsertNode(N, IP);
996  AllNodes.push_back(N);
997  return SDOperand(N, 0);
998}
999
1000SDOperand SelectionDAG::getSrcValue(const Value *V) {
1001  assert((!V || isa<PointerType>(V->getType())) &&
1002         "SrcValue is not a pointer?");
1003
1004  FoldingSetNodeID ID;
1005  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1006  ID.AddPointer(V);
1007
1008  void *IP = 0;
1009  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1010    return SDOperand(E, 0);
1011
1012  SDNode *N = new SrcValueSDNode(V);
1013  CSEMap.InsertNode(N, IP);
1014  AllNodes.push_back(N);
1015  return SDOperand(N, 0);
1016}
1017
1018SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1019  const Value *v = MO.getValue();
1020  assert((!v || isa<PointerType>(v->getType())) &&
1021         "SrcValue is not a pointer?");
1022
1023  FoldingSetNodeID ID;
1024  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1025  ID.AddPointer(v);
1026  ID.AddInteger(MO.getFlags());
1027  ID.AddInteger(MO.getOffset());
1028  ID.AddInteger(MO.getSize());
1029  ID.AddInteger(MO.getAlignment());
1030
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDOperand(E, 0);
1034
1035  SDNode *N = new MemOperandSDNode(MO);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDOperand(N, 0);
1039}
1040
1041/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1042/// specified value type.
1043SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1044  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1045  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1046  const Type *Ty = MVT::getTypeForValueType(VT);
1047  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1048  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1049  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1050}
1051
1052
1053SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1054                                  SDOperand N2, ISD::CondCode Cond) {
1055  // These setcc operations always fold.
1056  switch (Cond) {
1057  default: break;
1058  case ISD::SETFALSE:
1059  case ISD::SETFALSE2: return getConstant(0, VT);
1060  case ISD::SETTRUE:
1061  case ISD::SETTRUE2:  return getConstant(1, VT);
1062
1063  case ISD::SETOEQ:
1064  case ISD::SETOGT:
1065  case ISD::SETOGE:
1066  case ISD::SETOLT:
1067  case ISD::SETOLE:
1068  case ISD::SETONE:
1069  case ISD::SETO:
1070  case ISD::SETUO:
1071  case ISD::SETUEQ:
1072  case ISD::SETUNE:
1073    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1074    break;
1075  }
1076
1077  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1078    const APInt &C2 = N2C->getAPIntValue();
1079    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1080      const APInt &C1 = N1C->getAPIntValue();
1081
1082      switch (Cond) {
1083      default: assert(0 && "Unknown integer setcc!");
1084      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1085      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1086      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1087      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1088      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1089      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1090      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1091      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1092      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1093      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1094      }
1095    }
1096  }
1097  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1098    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1099      // No compile time operations on this type yet.
1100      if (N1C->getValueType(0) == MVT::ppcf128)
1101        return SDOperand();
1102
1103      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1104      switch (Cond) {
1105      default: break;
1106      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1107                          return getNode(ISD::UNDEF, VT);
1108                        // fall through
1109      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1110      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1111                          return getNode(ISD::UNDEF, VT);
1112                        // fall through
1113      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1114                                           R==APFloat::cmpLessThan, VT);
1115      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1116                          return getNode(ISD::UNDEF, VT);
1117                        // fall through
1118      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1119      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1120                          return getNode(ISD::UNDEF, VT);
1121                        // fall through
1122      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1123      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1124                          return getNode(ISD::UNDEF, VT);
1125                        // fall through
1126      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1127                                           R==APFloat::cmpEqual, VT);
1128      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1129                          return getNode(ISD::UNDEF, VT);
1130                        // fall through
1131      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1132                                           R==APFloat::cmpEqual, VT);
1133      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1134      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1135      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1136                                           R==APFloat::cmpEqual, VT);
1137      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1138      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1139                                           R==APFloat::cmpLessThan, VT);
1140      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1141                                           R==APFloat::cmpUnordered, VT);
1142      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1143      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1144      }
1145    } else {
1146      // Ensure that the constant occurs on the RHS.
1147      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1148    }
1149  }
1150
1151  // Could not fold it.
1152  return SDOperand();
1153}
1154
1155/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1156/// use this predicate to simplify operations downstream.
1157bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1158  unsigned BitWidth = Op.getValueSizeInBits();
1159  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1160}
1161
1162/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1163/// this predicate to simplify operations downstream.  Mask is known to be zero
1164/// for bits that V cannot have.
1165bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1166                                     unsigned Depth) const {
1167  APInt KnownZero, KnownOne;
1168  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1169  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1170  return (KnownZero & Mask) == Mask;
1171}
1172
1173/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1174/// known to be either zero or one and return them in the KnownZero/KnownOne
1175/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1176/// processing.
1177void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1178                                     APInt &KnownZero, APInt &KnownOne,
1179                                     unsigned Depth) const {
1180  unsigned BitWidth = Mask.getBitWidth();
1181  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1182         "Mask size mismatches value type size!");
1183
1184  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1185  if (Depth == 6 || Mask == 0)
1186    return;  // Limit search depth.
1187
1188  APInt KnownZero2, KnownOne2;
1189
1190  switch (Op.getOpcode()) {
1191  case ISD::Constant:
1192    // We know all of the bits for a constant!
1193    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1194    KnownZero = ~KnownOne & Mask;
1195    return;
1196  case ISD::AND:
1197    // If either the LHS or the RHS are Zero, the result is zero.
1198    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1199    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1200                      KnownZero2, KnownOne2, Depth+1);
1201    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1202    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1203
1204    // Output known-1 bits are only known if set in both the LHS & RHS.
1205    KnownOne &= KnownOne2;
1206    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1207    KnownZero |= KnownZero2;
1208    return;
1209  case ISD::OR:
1210    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1211    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1212                      KnownZero2, KnownOne2, Depth+1);
1213    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1214    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1215
1216    // Output known-0 bits are only known if clear in both the LHS & RHS.
1217    KnownZero &= KnownZero2;
1218    // Output known-1 are known to be set if set in either the LHS | RHS.
1219    KnownOne |= KnownOne2;
1220    return;
1221  case ISD::XOR: {
1222    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1223    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1224    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1225    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1226
1227    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1228    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1229    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1230    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1231    KnownZero = KnownZeroOut;
1232    return;
1233  }
1234  case ISD::SELECT:
1235    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1236    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1237    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1238    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1239
1240    // Only known if known in both the LHS and RHS.
1241    KnownOne &= KnownOne2;
1242    KnownZero &= KnownZero2;
1243    return;
1244  case ISD::SELECT_CC:
1245    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1246    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1247    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1248    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1249
1250    // Only known if known in both the LHS and RHS.
1251    KnownOne &= KnownOne2;
1252    KnownZero &= KnownZero2;
1253    return;
1254  case ISD::SETCC:
1255    // If we know the result of a setcc has the top bits zero, use this info.
1256    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1257        BitWidth > 1)
1258      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1259    return;
1260  case ISD::SHL:
1261    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1262    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1263      unsigned ShAmt = SA->getValue();
1264
1265      // If the shift count is an invalid immediate, don't do anything.
1266      if (ShAmt >= BitWidth)
1267        return;
1268
1269      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1270                        KnownZero, KnownOne, Depth+1);
1271      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1272      KnownZero <<= ShAmt;
1273      KnownOne  <<= ShAmt;
1274      // low bits known zero.
1275      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1276    }
1277    return;
1278  case ISD::SRL:
1279    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1280    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1281      unsigned ShAmt = SA->getValue();
1282
1283      // If the shift count is an invalid immediate, don't do anything.
1284      if (ShAmt >= BitWidth)
1285        return;
1286
1287      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1288                        KnownZero, KnownOne, Depth+1);
1289      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1290      KnownZero = KnownZero.lshr(ShAmt);
1291      KnownOne  = KnownOne.lshr(ShAmt);
1292
1293      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1294      KnownZero |= HighBits;  // High bits known zero.
1295    }
1296    return;
1297  case ISD::SRA:
1298    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1299      unsigned ShAmt = SA->getValue();
1300
1301      // If the shift count is an invalid immediate, don't do anything.
1302      if (ShAmt >= BitWidth)
1303        return;
1304
1305      APInt InDemandedMask = (Mask << ShAmt);
1306      // If any of the demanded bits are produced by the sign extension, we also
1307      // demand the input sign bit.
1308      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1309      if (HighBits.getBoolValue())
1310        InDemandedMask |= APInt::getSignBit(BitWidth);
1311
1312      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1313                        Depth+1);
1314      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1315      KnownZero = KnownZero.lshr(ShAmt);
1316      KnownOne  = KnownOne.lshr(ShAmt);
1317
1318      // Handle the sign bits.
1319      APInt SignBit = APInt::getSignBit(BitWidth);
1320      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1321
1322      if (KnownZero.intersects(SignBit)) {
1323        KnownZero |= HighBits;  // New bits are known zero.
1324      } else if (KnownOne.intersects(SignBit)) {
1325        KnownOne  |= HighBits;  // New bits are known one.
1326      }
1327    }
1328    return;
1329  case ISD::SIGN_EXTEND_INREG: {
1330    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1331    unsigned EBits = MVT::getSizeInBits(EVT);
1332
1333    // Sign extension.  Compute the demanded bits in the result that are not
1334    // present in the input.
1335    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1336
1337    APInt InSignBit = APInt::getSignBit(EBits);
1338    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1339
1340    // If the sign extended bits are demanded, we know that the sign
1341    // bit is demanded.
1342    InSignBit.zext(BitWidth);
1343    if (NewBits.getBoolValue())
1344      InputDemandedBits |= InSignBit;
1345
1346    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1347                      KnownZero, KnownOne, Depth+1);
1348    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1349
1350    // If the sign bit of the input is known set or clear, then we know the
1351    // top bits of the result.
1352    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1353      KnownZero |= NewBits;
1354      KnownOne  &= ~NewBits;
1355    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1356      KnownOne  |= NewBits;
1357      KnownZero &= ~NewBits;
1358    } else {                              // Input sign bit unknown
1359      KnownZero &= ~NewBits;
1360      KnownOne  &= ~NewBits;
1361    }
1362    return;
1363  }
1364  case ISD::CTTZ:
1365  case ISD::CTLZ:
1366  case ISD::CTPOP: {
1367    unsigned LowBits = Log2_32(BitWidth)+1;
1368    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1369    KnownOne  = APInt(BitWidth, 0);
1370    return;
1371  }
1372  case ISD::LOAD: {
1373    if (ISD::isZEXTLoad(Op.Val)) {
1374      LoadSDNode *LD = cast<LoadSDNode>(Op);
1375      MVT::ValueType VT = LD->getMemoryVT();
1376      unsigned MemBits = MVT::getSizeInBits(VT);
1377      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1378    }
1379    return;
1380  }
1381  case ISD::ZERO_EXTEND: {
1382    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1383    unsigned InBits = MVT::getSizeInBits(InVT);
1384    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1385    APInt InMask    = Mask;
1386    InMask.trunc(InBits);
1387    KnownZero.trunc(InBits);
1388    KnownOne.trunc(InBits);
1389    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1390    KnownZero.zext(BitWidth);
1391    KnownOne.zext(BitWidth);
1392    KnownZero |= NewBits;
1393    return;
1394  }
1395  case ISD::SIGN_EXTEND: {
1396    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1397    unsigned InBits = MVT::getSizeInBits(InVT);
1398    APInt InSignBit = APInt::getSignBit(InBits);
1399    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1400    APInt InMask = Mask;
1401    InMask.trunc(InBits);
1402
1403    // If any of the sign extended bits are demanded, we know that the sign
1404    // bit is demanded. Temporarily set this bit in the mask for our callee.
1405    if (NewBits.getBoolValue())
1406      InMask |= InSignBit;
1407
1408    KnownZero.trunc(InBits);
1409    KnownOne.trunc(InBits);
1410    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1411
1412    // Note if the sign bit is known to be zero or one.
1413    bool SignBitKnownZero = KnownZero.isNegative();
1414    bool SignBitKnownOne  = KnownOne.isNegative();
1415    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1416           "Sign bit can't be known to be both zero and one!");
1417
1418    // If the sign bit wasn't actually demanded by our caller, we don't
1419    // want it set in the KnownZero and KnownOne result values. Reset the
1420    // mask and reapply it to the result values.
1421    InMask = Mask;
1422    InMask.trunc(InBits);
1423    KnownZero &= InMask;
1424    KnownOne  &= InMask;
1425
1426    KnownZero.zext(BitWidth);
1427    KnownOne.zext(BitWidth);
1428
1429    // If the sign bit is known zero or one, the top bits match.
1430    if (SignBitKnownZero)
1431      KnownZero |= NewBits;
1432    else if (SignBitKnownOne)
1433      KnownOne  |= NewBits;
1434    return;
1435  }
1436  case ISD::ANY_EXTEND: {
1437    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1438    unsigned InBits = MVT::getSizeInBits(InVT);
1439    APInt InMask = Mask;
1440    InMask.trunc(InBits);
1441    KnownZero.trunc(InBits);
1442    KnownOne.trunc(InBits);
1443    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1444    KnownZero.zext(BitWidth);
1445    KnownOne.zext(BitWidth);
1446    return;
1447  }
1448  case ISD::TRUNCATE: {
1449    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1450    unsigned InBits = MVT::getSizeInBits(InVT);
1451    APInt InMask = Mask;
1452    InMask.zext(InBits);
1453    KnownZero.zext(InBits);
1454    KnownOne.zext(InBits);
1455    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1456    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1457    KnownZero.trunc(BitWidth);
1458    KnownOne.trunc(BitWidth);
1459    break;
1460  }
1461  case ISD::AssertZext: {
1462    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1463    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1464    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1465                      KnownOne, Depth+1);
1466    KnownZero |= (~InMask) & Mask;
1467    return;
1468  }
1469  case ISD::FGETSIGN:
1470    // All bits are zero except the low bit.
1471    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1472    return;
1473
1474  case ISD::ADD: {
1475    // If either the LHS or the RHS are Zero, the result is zero.
1476    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1477    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1478    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1479    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1480
1481    // Output known-0 bits are known if clear or set in both the low clear bits
1482    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1483    // low 3 bits clear.
1484    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1485                                     KnownZero2.countTrailingOnes());
1486
1487    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1488    KnownOne = APInt(BitWidth, 0);
1489    return;
1490  }
1491  case ISD::SUB: {
1492    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1493    if (!CLHS) return;
1494
1495    // We know that the top bits of C-X are clear if X contains less bits
1496    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1497    // positive if we can prove that X is >= 0 and < 16.
1498    if (CLHS->getAPIntValue().isNonNegative()) {
1499      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1500      // NLZ can't be BitWidth with no sign bit
1501      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1502      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1503
1504      // If all of the MaskV bits are known to be zero, then we know the output
1505      // top bits are zero, because we now know that the output is from [0-C].
1506      if ((KnownZero & MaskV) == MaskV) {
1507        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1508        // Top bits known zero.
1509        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1510        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1511      } else {
1512        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1513      }
1514    }
1515    return;
1516  }
1517  default:
1518    // Allow the target to implement this method for its nodes.
1519    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1520  case ISD::INTRINSIC_WO_CHAIN:
1521  case ISD::INTRINSIC_W_CHAIN:
1522  case ISD::INTRINSIC_VOID:
1523      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1524    }
1525    return;
1526  }
1527}
1528
1529/// ComputeNumSignBits - Return the number of times the sign bit of the
1530/// register is replicated into the other bits.  We know that at least 1 bit
1531/// is always equal to the sign bit (itself), but other cases can give us
1532/// information.  For example, immediately after an "SRA X, 2", we know that
1533/// the top 3 bits are all equal to each other, so we return 3.
1534unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1535  MVT::ValueType VT = Op.getValueType();
1536  assert(MVT::isInteger(VT) && "Invalid VT!");
1537  unsigned VTBits = MVT::getSizeInBits(VT);
1538  unsigned Tmp, Tmp2;
1539
1540  if (Depth == 6)
1541    return 1;  // Limit search depth.
1542
1543  switch (Op.getOpcode()) {
1544  default: break;
1545  case ISD::AssertSext:
1546    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1547    return VTBits-Tmp+1;
1548  case ISD::AssertZext:
1549    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1550    return VTBits-Tmp;
1551
1552  case ISD::Constant: {
1553    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1554    // If negative, return # leading ones.
1555    if (Val.isNegative())
1556      return Val.countLeadingOnes();
1557
1558    // Return # leading zeros.
1559    return Val.countLeadingZeros();
1560  }
1561
1562  case ISD::SIGN_EXTEND:
1563    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1564    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1565
1566  case ISD::SIGN_EXTEND_INREG:
1567    // Max of the input and what this extends.
1568    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1569    Tmp = VTBits-Tmp+1;
1570
1571    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1572    return std::max(Tmp, Tmp2);
1573
1574  case ISD::SRA:
1575    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1576    // SRA X, C   -> adds C sign bits.
1577    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1578      Tmp += C->getValue();
1579      if (Tmp > VTBits) Tmp = VTBits;
1580    }
1581    return Tmp;
1582  case ISD::SHL:
1583    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1584      // shl destroys sign bits.
1585      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1586      if (C->getValue() >= VTBits ||      // Bad shift.
1587          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1588      return Tmp - C->getValue();
1589    }
1590    break;
1591  case ISD::AND:
1592  case ISD::OR:
1593  case ISD::XOR:    // NOT is handled here.
1594    // Logical binary ops preserve the number of sign bits.
1595    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1596    if (Tmp == 1) return 1;  // Early out.
1597    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1598    return std::min(Tmp, Tmp2);
1599
1600  case ISD::SELECT:
1601    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1602    if (Tmp == 1) return 1;  // Early out.
1603    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1604    return std::min(Tmp, Tmp2);
1605
1606  case ISD::SETCC:
1607    // If setcc returns 0/-1, all bits are sign bits.
1608    if (TLI.getSetCCResultContents() ==
1609        TargetLowering::ZeroOrNegativeOneSetCCResult)
1610      return VTBits;
1611    break;
1612  case ISD::ROTL:
1613  case ISD::ROTR:
1614    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1615      unsigned RotAmt = C->getValue() & (VTBits-1);
1616
1617      // Handle rotate right by N like a rotate left by 32-N.
1618      if (Op.getOpcode() == ISD::ROTR)
1619        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1620
1621      // If we aren't rotating out all of the known-in sign bits, return the
1622      // number that are left.  This handles rotl(sext(x), 1) for example.
1623      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1624      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1625    }
1626    break;
1627  case ISD::ADD:
1628    // Add can have at most one carry bit.  Thus we know that the output
1629    // is, at worst, one more bit than the inputs.
1630    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1631    if (Tmp == 1) return 1;  // Early out.
1632
1633    // Special case decrementing a value (ADD X, -1):
1634    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1635      if (CRHS->isAllOnesValue()) {
1636        APInt KnownZero, KnownOne;
1637        APInt Mask = APInt::getAllOnesValue(VTBits);
1638        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1639
1640        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1641        // sign bits set.
1642        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1643          return VTBits;
1644
1645        // If we are subtracting one from a positive number, there is no carry
1646        // out of the result.
1647        if (KnownZero.isNegative())
1648          return Tmp;
1649      }
1650
1651    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1652    if (Tmp2 == 1) return 1;
1653      return std::min(Tmp, Tmp2)-1;
1654    break;
1655
1656  case ISD::SUB:
1657    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1658    if (Tmp2 == 1) return 1;
1659
1660    // Handle NEG.
1661    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1662      if (CLHS->isNullValue()) {
1663        APInt KnownZero, KnownOne;
1664        APInt Mask = APInt::getAllOnesValue(VTBits);
1665        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1666        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1667        // sign bits set.
1668        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1669          return VTBits;
1670
1671        // If the input is known to be positive (the sign bit is known clear),
1672        // the output of the NEG has the same number of sign bits as the input.
1673        if (KnownZero.isNegative())
1674          return Tmp2;
1675
1676        // Otherwise, we treat this like a SUB.
1677      }
1678
1679    // Sub can have at most one carry bit.  Thus we know that the output
1680    // is, at worst, one more bit than the inputs.
1681    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1682    if (Tmp == 1) return 1;  // Early out.
1683      return std::min(Tmp, Tmp2)-1;
1684    break;
1685  case ISD::TRUNCATE:
1686    // FIXME: it's tricky to do anything useful for this, but it is an important
1687    // case for targets like X86.
1688    break;
1689  }
1690
1691  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1692  if (Op.getOpcode() == ISD::LOAD) {
1693    LoadSDNode *LD = cast<LoadSDNode>(Op);
1694    unsigned ExtType = LD->getExtensionType();
1695    switch (ExtType) {
1696    default: break;
1697    case ISD::SEXTLOAD:    // '17' bits known
1698      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1699      return VTBits-Tmp+1;
1700    case ISD::ZEXTLOAD:    // '16' bits known
1701      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1702      return VTBits-Tmp;
1703    }
1704  }
1705
1706  // Allow the target to implement this method for its nodes.
1707  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1708      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1709      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1710      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1711    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1712    if (NumBits > 1) return NumBits;
1713  }
1714
1715  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1716  // use this information.
1717  APInt KnownZero, KnownOne;
1718  APInt Mask = APInt::getAllOnesValue(VTBits);
1719  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1720
1721  if (KnownZero.isNegative()) {        // sign bit is 0
1722    Mask = KnownZero;
1723  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1724    Mask = KnownOne;
1725  } else {
1726    // Nothing known.
1727    return 1;
1728  }
1729
1730  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1731  // the number of identical bits in the top of the input value.
1732  Mask = ~Mask;
1733  Mask <<= Mask.getBitWidth()-VTBits;
1734  // Return # leading zeros.  We use 'min' here in case Val was zero before
1735  // shifting.  We don't want to return '64' as for an i32 "0".
1736  return std::min(VTBits, Mask.countLeadingZeros());
1737}
1738
1739
1740bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1741  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1742  if (!GA) return false;
1743  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1744  if (!GV) return false;
1745  MachineModuleInfo *MMI = getMachineModuleInfo();
1746  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1747}
1748
1749
1750/// getNode - Gets or creates the specified node.
1751///
1752SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1753  FoldingSetNodeID ID;
1754  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1755  void *IP = 0;
1756  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1757    return SDOperand(E, 0);
1758  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1759  CSEMap.InsertNode(N, IP);
1760
1761  AllNodes.push_back(N);
1762  return SDOperand(N, 0);
1763}
1764
1765SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1766                                SDOperand Operand) {
1767  // Constant fold unary operations with an integer constant operand.
1768  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1769    const APInt &Val = C->getAPIntValue();
1770    unsigned BitWidth = MVT::getSizeInBits(VT);
1771    switch (Opcode) {
1772    default: break;
1773    case ISD::SIGN_EXTEND:
1774      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1775    case ISD::ANY_EXTEND:
1776    case ISD::ZERO_EXTEND:
1777    case ISD::TRUNCATE:
1778      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1779    case ISD::UINT_TO_FP:
1780    case ISD::SINT_TO_FP: {
1781      const uint64_t zero[] = {0, 0};
1782      // No compile time operations on this type.
1783      if (VT==MVT::ppcf128)
1784        break;
1785      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1786      (void)apf.convertFromAPInt(Val,
1787                                 Opcode==ISD::SINT_TO_FP,
1788                                 APFloat::rmNearestTiesToEven);
1789      return getConstantFP(apf, VT);
1790    }
1791    case ISD::BIT_CONVERT:
1792      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1793        return getConstantFP(Val.bitsToFloat(), VT);
1794      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1795        return getConstantFP(Val.bitsToDouble(), VT);
1796      break;
1797    case ISD::BSWAP:
1798      return getConstant(Val.byteSwap(), VT);
1799    case ISD::CTPOP:
1800      return getConstant(Val.countPopulation(), VT);
1801    case ISD::CTLZ:
1802      return getConstant(Val.countLeadingZeros(), VT);
1803    case ISD::CTTZ:
1804      return getConstant(Val.countTrailingZeros(), VT);
1805    }
1806  }
1807
1808  // Constant fold unary operations with a floating point constant operand.
1809  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1810    APFloat V = C->getValueAPF();    // make copy
1811    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1812      switch (Opcode) {
1813      case ISD::FNEG:
1814        V.changeSign();
1815        return getConstantFP(V, VT);
1816      case ISD::FABS:
1817        V.clearSign();
1818        return getConstantFP(V, VT);
1819      case ISD::FP_ROUND:
1820      case ISD::FP_EXTEND:
1821        // This can return overflow, underflow, or inexact; we don't care.
1822        // FIXME need to be more flexible about rounding mode.
1823        (void)V.convert(*MVTToAPFloatSemantics(VT),
1824                        APFloat::rmNearestTiesToEven);
1825        return getConstantFP(V, VT);
1826      case ISD::FP_TO_SINT:
1827      case ISD::FP_TO_UINT: {
1828        integerPart x;
1829        assert(integerPartWidth >= 64);
1830        // FIXME need to be more flexible about rounding mode.
1831        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1832                              Opcode==ISD::FP_TO_SINT,
1833                              APFloat::rmTowardZero);
1834        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1835          break;
1836        return getConstant(x, VT);
1837      }
1838      case ISD::BIT_CONVERT:
1839        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1840          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1841        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1842          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1843        break;
1844      }
1845    }
1846  }
1847
1848  unsigned OpOpcode = Operand.Val->getOpcode();
1849  switch (Opcode) {
1850  case ISD::TokenFactor:
1851    return Operand;         // Factor of one node?  No factor.
1852  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1853  case ISD::FP_EXTEND:
1854    assert(MVT::isFloatingPoint(VT) &&
1855           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1856    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1857    if (Operand.getOpcode() == ISD::UNDEF)
1858      return getNode(ISD::UNDEF, VT);
1859    break;
1860  case ISD::SIGN_EXTEND:
1861    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1862           "Invalid SIGN_EXTEND!");
1863    if (Operand.getValueType() == VT) return Operand;   // noop extension
1864    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1865           && "Invalid sext node, dst < src!");
1866    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1867      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1868    break;
1869  case ISD::ZERO_EXTEND:
1870    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1871           "Invalid ZERO_EXTEND!");
1872    if (Operand.getValueType() == VT) return Operand;   // noop extension
1873    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1874           && "Invalid zext node, dst < src!");
1875    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1876      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1877    break;
1878  case ISD::ANY_EXTEND:
1879    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1880           "Invalid ANY_EXTEND!");
1881    if (Operand.getValueType() == VT) return Operand;   // noop extension
1882    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1883           && "Invalid anyext node, dst < src!");
1884    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1885      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1886      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1887    break;
1888  case ISD::TRUNCATE:
1889    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1890           "Invalid TRUNCATE!");
1891    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1892    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1893           && "Invalid truncate node, src < dst!");
1894    if (OpOpcode == ISD::TRUNCATE)
1895      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1896    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1897             OpOpcode == ISD::ANY_EXTEND) {
1898      // If the source is smaller than the dest, we still need an extend.
1899      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1900          < MVT::getSizeInBits(VT))
1901        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1902      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1903               > MVT::getSizeInBits(VT))
1904        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1905      else
1906        return Operand.Val->getOperand(0);
1907    }
1908    break;
1909  case ISD::BIT_CONVERT:
1910    // Basic sanity checking.
1911    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1912           && "Cannot BIT_CONVERT between types of different sizes!");
1913    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1914    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1915      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1916    if (OpOpcode == ISD::UNDEF)
1917      return getNode(ISD::UNDEF, VT);
1918    break;
1919  case ISD::SCALAR_TO_VECTOR:
1920    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1921           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1922           "Illegal SCALAR_TO_VECTOR node!");
1923    if (OpOpcode == ISD::UNDEF)
1924      return getNode(ISD::UNDEF, VT);
1925    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
1926    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
1927        isa<ConstantSDNode>(Operand.getOperand(1)) &&
1928        Operand.getConstantOperandVal(1) == 0 &&
1929        Operand.getOperand(0).getValueType() == VT)
1930      return Operand.getOperand(0);
1931    break;
1932  case ISD::FNEG:
1933    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1934      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1935                     Operand.Val->getOperand(0));
1936    if (OpOpcode == ISD::FNEG)  // --X -> X
1937      return Operand.Val->getOperand(0);
1938    break;
1939  case ISD::FABS:
1940    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1941      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1942    break;
1943  }
1944
1945  SDNode *N;
1946  SDVTList VTs = getVTList(VT);
1947  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1948    FoldingSetNodeID ID;
1949    SDOperand Ops[1] = { Operand };
1950    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1951    void *IP = 0;
1952    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1953      return SDOperand(E, 0);
1954    N = new UnarySDNode(Opcode, VTs, Operand);
1955    CSEMap.InsertNode(N, IP);
1956  } else {
1957    N = new UnarySDNode(Opcode, VTs, Operand);
1958  }
1959  AllNodes.push_back(N);
1960  return SDOperand(N, 0);
1961}
1962
1963
1964
1965SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1966                                SDOperand N1, SDOperand N2) {
1967  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1968  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1969  switch (Opcode) {
1970  default: break;
1971  case ISD::TokenFactor:
1972    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1973           N2.getValueType() == MVT::Other && "Invalid token factor!");
1974    // Fold trivial token factors.
1975    if (N1.getOpcode() == ISD::EntryToken) return N2;
1976    if (N2.getOpcode() == ISD::EntryToken) return N1;
1977    break;
1978  case ISD::AND:
1979    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1980           N1.getValueType() == VT && "Binary operator types must match!");
1981    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1982    // worth handling here.
1983    if (N2C && N2C->isNullValue())
1984      return N2;
1985    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1986      return N1;
1987    break;
1988  case ISD::OR:
1989  case ISD::XOR:
1990    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1991           N1.getValueType() == VT && "Binary operator types must match!");
1992    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1993    // worth handling here.
1994    if (N2C && N2C->isNullValue())
1995      return N1;
1996    break;
1997  case ISD::UDIV:
1998  case ISD::UREM:
1999  case ISD::MULHU:
2000  case ISD::MULHS:
2001    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2002    // fall through
2003  case ISD::ADD:
2004  case ISD::SUB:
2005  case ISD::MUL:
2006  case ISD::SDIV:
2007  case ISD::SREM:
2008  case ISD::FADD:
2009  case ISD::FSUB:
2010  case ISD::FMUL:
2011  case ISD::FDIV:
2012  case ISD::FREM:
2013    assert(N1.getValueType() == N2.getValueType() &&
2014           N1.getValueType() == VT && "Binary operator types must match!");
2015    break;
2016  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2017    assert(N1.getValueType() == VT &&
2018           MVT::isFloatingPoint(N1.getValueType()) &&
2019           MVT::isFloatingPoint(N2.getValueType()) &&
2020           "Invalid FCOPYSIGN!");
2021    break;
2022  case ISD::SHL:
2023  case ISD::SRA:
2024  case ISD::SRL:
2025  case ISD::ROTL:
2026  case ISD::ROTR:
2027    assert(VT == N1.getValueType() &&
2028           "Shift operators return type must be the same as their first arg");
2029    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2030           VT != MVT::i1 && "Shifts only work on integers");
2031    break;
2032  case ISD::FP_ROUND_INREG: {
2033    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2034    assert(VT == N1.getValueType() && "Not an inreg round!");
2035    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2036           "Cannot FP_ROUND_INREG integer types");
2037    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2038           "Not rounding down!");
2039    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2040    break;
2041  }
2042  case ISD::FP_ROUND:
2043    assert(MVT::isFloatingPoint(VT) &&
2044           MVT::isFloatingPoint(N1.getValueType()) &&
2045           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2046           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2047    if (N1.getValueType() == VT) return N1;  // noop conversion.
2048    break;
2049  case ISD::AssertSext:
2050  case ISD::AssertZext: {
2051    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2052    assert(VT == N1.getValueType() && "Not an inreg extend!");
2053    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2054           "Cannot *_EXTEND_INREG FP types");
2055    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2056           "Not extending!");
2057    if (VT == EVT) return N1; // noop assertion.
2058    break;
2059  }
2060  case ISD::SIGN_EXTEND_INREG: {
2061    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2062    assert(VT == N1.getValueType() && "Not an inreg extend!");
2063    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2064           "Cannot *_EXTEND_INREG FP types");
2065    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2066           "Not extending!");
2067    if (EVT == VT) return N1;  // Not actually extending
2068
2069    if (N1C) {
2070      APInt Val = N1C->getAPIntValue();
2071      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2072      Val <<= Val.getBitWidth()-FromBits;
2073      Val = Val.ashr(Val.getBitWidth()-FromBits);
2074      return getConstant(Val, VT);
2075    }
2076    break;
2077  }
2078  case ISD::EXTRACT_VECTOR_ELT:
2079    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2080
2081    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2082    if (N1.getOpcode() == ISD::UNDEF)
2083      return getNode(ISD::UNDEF, VT);
2084
2085    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2086    // expanding copies of large vectors from registers.
2087    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2088        N1.getNumOperands() > 0) {
2089      unsigned Factor =
2090        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2091      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2092                     N1.getOperand(N2C->getValue() / Factor),
2093                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2094    }
2095
2096    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2097    // expanding large vector constants.
2098    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2099      return N1.getOperand(N2C->getValue());
2100
2101    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2102    // operations are lowered to scalars.
2103    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2104      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2105        if (IEC == N2C)
2106          return N1.getOperand(1);
2107        else
2108          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2109      }
2110    break;
2111  case ISD::EXTRACT_ELEMENT:
2112    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2113    assert(!MVT::isVector(N1.getValueType()) &&
2114           MVT::isInteger(N1.getValueType()) &&
2115           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2116           "EXTRACT_ELEMENT only applies to integers!");
2117
2118    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2119    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2120    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2121    if (N1.getOpcode() == ISD::BUILD_PAIR)
2122      return N1.getOperand(N2C->getValue());
2123
2124    // EXTRACT_ELEMENT of a constant int is also very common.
2125    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2126      unsigned ElementSize = MVT::getSizeInBits(VT);
2127      unsigned Shift = ElementSize * N2C->getValue();
2128      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2129      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2130    }
2131    break;
2132  case ISD::EXTRACT_SUBVECTOR:
2133    if (N1.getValueType() == VT) // Trivial extraction.
2134      return N1;
2135    break;
2136  }
2137
2138  if (N1C) {
2139    if (N2C) {
2140      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2141      switch (Opcode) {
2142      case ISD::ADD: return getConstant(C1 + C2, VT);
2143      case ISD::SUB: return getConstant(C1 - C2, VT);
2144      case ISD::MUL: return getConstant(C1 * C2, VT);
2145      case ISD::UDIV:
2146        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2147        break;
2148      case ISD::UREM :
2149        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2150        break;
2151      case ISD::SDIV :
2152        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2153        break;
2154      case ISD::SREM :
2155        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2156        break;
2157      case ISD::AND  : return getConstant(C1 & C2, VT);
2158      case ISD::OR   : return getConstant(C1 | C2, VT);
2159      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2160      case ISD::SHL  : return getConstant(C1 << C2, VT);
2161      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2162      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2163      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2164      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2165      default: break;
2166      }
2167    } else {      // Cannonicalize constant to RHS if commutative
2168      if (isCommutativeBinOp(Opcode)) {
2169        std::swap(N1C, N2C);
2170        std::swap(N1, N2);
2171      }
2172    }
2173  }
2174
2175  // Constant fold FP operations.
2176  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2177  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2178  if (N1CFP) {
2179    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2180      // Cannonicalize constant to RHS if commutative
2181      std::swap(N1CFP, N2CFP);
2182      std::swap(N1, N2);
2183    } else if (N2CFP && VT != MVT::ppcf128) {
2184      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2185      APFloat::opStatus s;
2186      switch (Opcode) {
2187      case ISD::FADD:
2188        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2189        if (s != APFloat::opInvalidOp)
2190          return getConstantFP(V1, VT);
2191        break;
2192      case ISD::FSUB:
2193        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2194        if (s!=APFloat::opInvalidOp)
2195          return getConstantFP(V1, VT);
2196        break;
2197      case ISD::FMUL:
2198        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2199        if (s!=APFloat::opInvalidOp)
2200          return getConstantFP(V1, VT);
2201        break;
2202      case ISD::FDIV:
2203        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2204        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2205          return getConstantFP(V1, VT);
2206        break;
2207      case ISD::FREM :
2208        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2209        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2210          return getConstantFP(V1, VT);
2211        break;
2212      case ISD::FCOPYSIGN:
2213        V1.copySign(V2);
2214        return getConstantFP(V1, VT);
2215      default: break;
2216      }
2217    }
2218  }
2219
2220  // Canonicalize an UNDEF to the RHS, even over a constant.
2221  if (N1.getOpcode() == ISD::UNDEF) {
2222    if (isCommutativeBinOp(Opcode)) {
2223      std::swap(N1, N2);
2224    } else {
2225      switch (Opcode) {
2226      case ISD::FP_ROUND_INREG:
2227      case ISD::SIGN_EXTEND_INREG:
2228      case ISD::SUB:
2229      case ISD::FSUB:
2230      case ISD::FDIV:
2231      case ISD::FREM:
2232      case ISD::SRA:
2233        return N1;     // fold op(undef, arg2) -> undef
2234      case ISD::UDIV:
2235      case ISD::SDIV:
2236      case ISD::UREM:
2237      case ISD::SREM:
2238      case ISD::SRL:
2239      case ISD::SHL:
2240        if (!MVT::isVector(VT))
2241          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2242        // For vectors, we can't easily build an all zero vector, just return
2243        // the LHS.
2244        return N2;
2245      }
2246    }
2247  }
2248
2249  // Fold a bunch of operators when the RHS is undef.
2250  if (N2.getOpcode() == ISD::UNDEF) {
2251    switch (Opcode) {
2252    case ISD::XOR:
2253      if (N1.getOpcode() == ISD::UNDEF)
2254        // Handle undef ^ undef -> 0 special case. This is a common
2255        // idiom (misuse).
2256        return getConstant(0, VT);
2257      // fallthrough
2258    case ISD::ADD:
2259    case ISD::ADDC:
2260    case ISD::ADDE:
2261    case ISD::SUB:
2262    case ISD::FADD:
2263    case ISD::FSUB:
2264    case ISD::FMUL:
2265    case ISD::FDIV:
2266    case ISD::FREM:
2267    case ISD::UDIV:
2268    case ISD::SDIV:
2269    case ISD::UREM:
2270    case ISD::SREM:
2271      return N2;       // fold op(arg1, undef) -> undef
2272    case ISD::MUL:
2273    case ISD::AND:
2274    case ISD::SRL:
2275    case ISD::SHL:
2276      if (!MVT::isVector(VT))
2277        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2278      // For vectors, we can't easily build an all zero vector, just return
2279      // the LHS.
2280      return N1;
2281    case ISD::OR:
2282      if (!MVT::isVector(VT))
2283        return getConstant(MVT::getIntVTBitMask(VT), VT);
2284      // For vectors, we can't easily build an all one vector, just return
2285      // the LHS.
2286      return N1;
2287    case ISD::SRA:
2288      return N1;
2289    }
2290  }
2291
2292  // Memoize this node if possible.
2293  SDNode *N;
2294  SDVTList VTs = getVTList(VT);
2295  if (VT != MVT::Flag) {
2296    SDOperand Ops[] = { N1, N2 };
2297    FoldingSetNodeID ID;
2298    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2299    void *IP = 0;
2300    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2301      return SDOperand(E, 0);
2302    N = new BinarySDNode(Opcode, VTs, N1, N2);
2303    CSEMap.InsertNode(N, IP);
2304  } else {
2305    N = new BinarySDNode(Opcode, VTs, N1, N2);
2306  }
2307
2308  AllNodes.push_back(N);
2309  return SDOperand(N, 0);
2310}
2311
2312SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2313                                SDOperand N1, SDOperand N2, SDOperand N3) {
2314  // Perform various simplifications.
2315  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2316  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2317  switch (Opcode) {
2318  case ISD::SETCC: {
2319    // Use FoldSetCC to simplify SETCC's.
2320    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2321    if (Simp.Val) return Simp;
2322    break;
2323  }
2324  case ISD::SELECT:
2325    if (N1C) {
2326     if (N1C->getValue())
2327        return N2;             // select true, X, Y -> X
2328      else
2329        return N3;             // select false, X, Y -> Y
2330    }
2331
2332    if (N2 == N3) return N2;   // select C, X, X -> X
2333    break;
2334  case ISD::BRCOND:
2335    if (N2C) {
2336      if (N2C->getValue()) // Unconditional branch
2337        return getNode(ISD::BR, MVT::Other, N1, N3);
2338      else
2339        return N1;         // Never-taken branch
2340    }
2341    break;
2342  case ISD::VECTOR_SHUFFLE:
2343    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2344           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2345           N3.getOpcode() == ISD::BUILD_VECTOR &&
2346           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2347           "Illegal VECTOR_SHUFFLE node!");
2348    break;
2349  case ISD::BIT_CONVERT:
2350    // Fold bit_convert nodes from a type to themselves.
2351    if (N1.getValueType() == VT)
2352      return N1;
2353    break;
2354  }
2355
2356  // Memoize node if it doesn't produce a flag.
2357  SDNode *N;
2358  SDVTList VTs = getVTList(VT);
2359  if (VT != MVT::Flag) {
2360    SDOperand Ops[] = { N1, N2, N3 };
2361    FoldingSetNodeID ID;
2362    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2363    void *IP = 0;
2364    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2365      return SDOperand(E, 0);
2366    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2367    CSEMap.InsertNode(N, IP);
2368  } else {
2369    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2370  }
2371  AllNodes.push_back(N);
2372  return SDOperand(N, 0);
2373}
2374
2375SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2376                                SDOperand N1, SDOperand N2, SDOperand N3,
2377                                SDOperand N4) {
2378  SDOperand Ops[] = { N1, N2, N3, N4 };
2379  return getNode(Opcode, VT, Ops, 4);
2380}
2381
2382SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2383                                SDOperand N1, SDOperand N2, SDOperand N3,
2384                                SDOperand N4, SDOperand N5) {
2385  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2386  return getNode(Opcode, VT, Ops, 5);
2387}
2388
2389/// getMemsetValue - Vectorized representation of the memset value
2390/// operand.
2391static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2392                                SelectionDAG &DAG) {
2393  MVT::ValueType CurVT = VT;
2394  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2395    uint64_t Val   = C->getValue() & 255;
2396    unsigned Shift = 8;
2397    while (CurVT != MVT::i8) {
2398      Val = (Val << Shift) | Val;
2399      Shift <<= 1;
2400      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2401    }
2402    return DAG.getConstant(Val, VT);
2403  } else {
2404    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2405    unsigned Shift = 8;
2406    while (CurVT != MVT::i8) {
2407      Value =
2408        DAG.getNode(ISD::OR, VT,
2409                    DAG.getNode(ISD::SHL, VT, Value,
2410                                DAG.getConstant(Shift, MVT::i8)), Value);
2411      Shift <<= 1;
2412      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2413    }
2414
2415    return Value;
2416  }
2417}
2418
2419/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2420/// used when a memcpy is turned into a memset when the source is a constant
2421/// string ptr.
2422static SDOperand getMemsetStringVal(MVT::ValueType VT,
2423                                    SelectionDAG &DAG,
2424                                    const TargetLowering &TLI,
2425                                    std::string &Str, unsigned Offset) {
2426  uint64_t Val = 0;
2427  unsigned MSB = MVT::getSizeInBits(VT) / 8;
2428  if (TLI.isLittleEndian())
2429    Offset = Offset + MSB - 1;
2430  for (unsigned i = 0; i != MSB; ++i) {
2431    Val = (Val << 8) | (unsigned char)Str[Offset];
2432    Offset += TLI.isLittleEndian() ? -1 : 1;
2433  }
2434  return DAG.getConstant(Val, VT);
2435}
2436
2437/// getMemBasePlusOffset - Returns base and offset node for the
2438static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2439                                      SelectionDAG &DAG) {
2440  MVT::ValueType VT = Base.getValueType();
2441  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2442}
2443
2444/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2445/// to replace the memset / memcpy is below the threshold. It also returns the
2446/// types of the sequence of memory ops to perform memset / memcpy.
2447static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2448                                     unsigned Limit, uint64_t Size,
2449                                     unsigned Align,
2450                                     const TargetLowering &TLI) {
2451  MVT::ValueType VT;
2452
2453  if (TLI.allowsUnalignedMemoryAccesses()) {
2454    VT = MVT::i64;
2455  } else {
2456    switch (Align & 7) {
2457    case 0:
2458      VT = MVT::i64;
2459      break;
2460    case 4:
2461      VT = MVT::i32;
2462      break;
2463    case 2:
2464      VT = MVT::i16;
2465      break;
2466    default:
2467      VT = MVT::i8;
2468      break;
2469    }
2470  }
2471
2472  MVT::ValueType LVT = MVT::i64;
2473  while (!TLI.isTypeLegal(LVT))
2474    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2475  assert(MVT::isInteger(LVT));
2476
2477  if (VT > LVT)
2478    VT = LVT;
2479
2480  unsigned NumMemOps = 0;
2481  while (Size != 0) {
2482    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2483    while (VTSize > Size) {
2484      VT = (MVT::ValueType)((unsigned)VT - 1);
2485      VTSize >>= 1;
2486    }
2487    assert(MVT::isInteger(VT));
2488
2489    if (++NumMemOps > Limit)
2490      return false;
2491    MemOps.push_back(VT);
2492    Size -= VTSize;
2493  }
2494
2495  return true;
2496}
2497
2498static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2499                                         SDOperand Chain, SDOperand Dst,
2500                                         SDOperand Src, uint64_t Size,
2501                                         unsigned Align,
2502                                         bool AlwaysInline,
2503                                         const Value *DstSV, uint64_t DstOff,
2504                                         const Value *SrcSV, uint64_t SrcOff) {
2505  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2506
2507  // Expand memcpy to a series of store ops if the size operand falls below
2508  // a certain threshold.
2509  std::vector<MVT::ValueType> MemOps;
2510  uint64_t Limit = -1;
2511  if (!AlwaysInline)
2512    Limit = TLI.getMaxStoresPerMemcpy();
2513  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
2514    return SDOperand();
2515
2516  SmallVector<SDOperand, 8> OutChains;
2517
2518  unsigned NumMemOps = MemOps.size();
2519  unsigned SrcDelta = 0;
2520  GlobalAddressSDNode *G = NULL;
2521  std::string Str;
2522  bool CopyFromStr = false;
2523
2524  if (Src.getOpcode() == ISD::GlobalAddress)
2525    G = cast<GlobalAddressSDNode>(Src);
2526  else if (Src.getOpcode() == ISD::ADD &&
2527           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2528           Src.getOperand(1).getOpcode() == ISD::Constant) {
2529    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2530    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2531  }
2532  if (G) {
2533    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2534    if (GV && GV->isConstant()) {
2535      Str = GV->getStringValue(false);
2536      if (!Str.empty()) {
2537        CopyFromStr = true;
2538        SrcOff += SrcDelta;
2539      }
2540    }
2541  }
2542
2543  for (unsigned i = 0; i < NumMemOps; i++) {
2544    MVT::ValueType VT = MemOps[i];
2545    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2546    SDOperand Value, Store;
2547
2548    if (CopyFromStr) {
2549      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2550      Store =
2551        DAG.getStore(Chain, Value,
2552                     getMemBasePlusOffset(Dst, DstOff, DAG),
2553                     DstSV, DstOff);
2554    } else {
2555      Value = DAG.getLoad(VT, Chain,
2556                          getMemBasePlusOffset(Src, SrcOff, DAG),
2557                          SrcSV, SrcOff, false, Align);
2558      Store =
2559        DAG.getStore(Chain, Value,
2560                     getMemBasePlusOffset(Dst, DstOff, DAG),
2561                     DstSV, DstOff, false, Align);
2562    }
2563    OutChains.push_back(Store);
2564    SrcOff += VTSize;
2565    DstOff += VTSize;
2566  }
2567
2568  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2569                     &OutChains[0], OutChains.size());
2570}
2571
2572static SDOperand getMemsetStores(SelectionDAG &DAG,
2573                                 SDOperand Chain, SDOperand Dst,
2574                                 SDOperand Src, uint64_t Size,
2575                                 unsigned Align,
2576                                 const Value *DstSV, uint64_t DstOff) {
2577  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2578
2579  // Expand memset to a series of load/store ops if the size operand
2580  // falls below a certain threshold.
2581  std::vector<MVT::ValueType> MemOps;
2582  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2583                                Size, Align, TLI))
2584    return SDOperand();
2585
2586  SmallVector<SDOperand, 8> OutChains;
2587
2588  unsigned NumMemOps = MemOps.size();
2589  for (unsigned i = 0; i < NumMemOps; i++) {
2590    MVT::ValueType VT = MemOps[i];
2591    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2592    SDOperand Value = getMemsetValue(Src, VT, DAG);
2593    SDOperand Store = DAG.getStore(Chain, Value,
2594                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2595                                   DstSV, DstOff);
2596    OutChains.push_back(Store);
2597    DstOff += VTSize;
2598  }
2599
2600  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2601                     &OutChains[0], OutChains.size());
2602}
2603
2604SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2605                                  SDOperand Src, SDOperand Size,
2606                                  unsigned Align, bool AlwaysInline,
2607                                  const Value *DstSV, uint64_t DstOff,
2608                                  const Value *SrcSV, uint64_t SrcOff) {
2609
2610  // Check to see if we should lower the memcpy to loads and stores first.
2611  // For cases within the target-specified limits, this is the best choice.
2612  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2613  if (ConstantSize) {
2614    // Memcpy with size zero? Just return the original chain.
2615    if (ConstantSize->isNullValue())
2616      return Chain;
2617
2618    SDOperand Result =
2619      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2620                              Align, false, DstSV, DstOff, SrcSV, SrcOff);
2621    if (Result.Val)
2622      return Result;
2623  }
2624
2625  // Then check to see if we should lower the memcpy with target-specific
2626  // code. If the target chooses to do this, this is the next best.
2627  SDOperand Result =
2628    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2629                                AlwaysInline,
2630                                DstSV, DstOff, SrcSV, SrcOff);
2631  if (Result.Val)
2632    return Result;
2633
2634  // If we really need inline code and the target declined to provide it,
2635  // use a (potentially long) sequence of loads and stores.
2636  if (AlwaysInline) {
2637    assert(ConstantSize && "AlwaysInline requires a constant size!");
2638    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2639                                   ConstantSize->getValue(), Align, true,
2640                                   DstSV, DstOff, SrcSV, SrcOff);
2641  }
2642
2643  // Emit a library call.
2644  TargetLowering::ArgListTy Args;
2645  TargetLowering::ArgListEntry Entry;
2646  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2647  Entry.Node = Dst; Args.push_back(Entry);
2648  Entry.Node = Src; Args.push_back(Entry);
2649  Entry.Node = Size; Args.push_back(Entry);
2650  std::pair<SDOperand,SDOperand> CallResult =
2651    TLI.LowerCallTo(Chain, Type::VoidTy,
2652                    false, false, false, CallingConv::C, false,
2653                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2654                    Args, *this);
2655  return CallResult.second;
2656}
2657
2658SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2659                                   SDOperand Src, SDOperand Size,
2660                                   unsigned Align,
2661                                   const Value *DstSV, uint64_t DstOff,
2662                                   const Value *SrcSV, uint64_t SrcOff) {
2663
2664  // TODO: Optimize small memmove cases with simple loads and stores,
2665  // ensuring that all loads precede all stores. This can cause severe
2666  // register pressure, so targets should be careful with the size limit.
2667
2668  // Then check to see if we should lower the memmove with target-specific
2669  // code. If the target chooses to do this, this is the next best.
2670  SDOperand Result =
2671    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2672                                 DstSV, DstOff, SrcSV, SrcOff);
2673  if (Result.Val)
2674    return Result;
2675
2676  // Emit a library call.
2677  TargetLowering::ArgListTy Args;
2678  TargetLowering::ArgListEntry Entry;
2679  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2680  Entry.Node = Dst; Args.push_back(Entry);
2681  Entry.Node = Src; Args.push_back(Entry);
2682  Entry.Node = Size; Args.push_back(Entry);
2683  std::pair<SDOperand,SDOperand> CallResult =
2684    TLI.LowerCallTo(Chain, Type::VoidTy,
2685                    false, false, false, CallingConv::C, false,
2686                    getExternalSymbol("memmove", TLI.getPointerTy()),
2687                    Args, *this);
2688  return CallResult.second;
2689}
2690
2691SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2692                                  SDOperand Src, SDOperand Size,
2693                                  unsigned Align,
2694                                  const Value *DstSV, uint64_t DstOff) {
2695
2696  // Check to see if we should lower the memset to stores first.
2697  // For cases within the target-specified limits, this is the best choice.
2698  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2699  if (ConstantSize) {
2700    // Memset with size zero? Just return the original chain.
2701    if (ConstantSize->isNullValue())
2702      return Chain;
2703
2704    SDOperand Result =
2705      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2706                      DstSV, DstOff);
2707    if (Result.Val)
2708      return Result;
2709  }
2710
2711  // Then check to see if we should lower the memset with target-specific
2712  // code. If the target chooses to do this, this is the next best.
2713  SDOperand Result =
2714    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2715                                DstSV, DstOff);
2716  if (Result.Val)
2717    return Result;
2718
2719  // Emit a library call.
2720  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2721  TargetLowering::ArgListTy Args;
2722  TargetLowering::ArgListEntry Entry;
2723  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2724  Args.push_back(Entry);
2725  // Extend or truncate the argument to be an i32 value for the call.
2726  if (Src.getValueType() > MVT::i32)
2727    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2728  else
2729    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2730  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2731  Args.push_back(Entry);
2732  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2733  Args.push_back(Entry);
2734  std::pair<SDOperand,SDOperand> CallResult =
2735    TLI.LowerCallTo(Chain, Type::VoidTy,
2736                    false, false, false, CallingConv::C, false,
2737                    getExternalSymbol("memset", TLI.getPointerTy()),
2738                    Args, *this);
2739  return CallResult.second;
2740}
2741
2742SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2743                                  SDOperand Ptr, SDOperand Cmp,
2744                                  SDOperand Swp, MVT::ValueType VT) {
2745  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2746  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2747  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2748  FoldingSetNodeID ID;
2749  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2750  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2751  ID.AddInteger((unsigned int)VT);
2752  void* IP = 0;
2753  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2754    return SDOperand(E, 0);
2755  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2756  CSEMap.InsertNode(N, IP);
2757  AllNodes.push_back(N);
2758  return SDOperand(N, 0);
2759}
2760
2761SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2762                                  SDOperand Ptr, SDOperand Val,
2763                                  MVT::ValueType VT) {
2764  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2765         && "Invalid Atomic Op");
2766  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2767  FoldingSetNodeID ID;
2768  SDOperand Ops[] = {Chain, Ptr, Val};
2769  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2770  ID.AddInteger((unsigned int)VT);
2771  void* IP = 0;
2772  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2773    return SDOperand(E, 0);
2774  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2775  CSEMap.InsertNode(N, IP);
2776  AllNodes.push_back(N);
2777  return SDOperand(N, 0);
2778}
2779
2780SDOperand
2781SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
2782                      MVT::ValueType VT, SDOperand Chain,
2783                      SDOperand Ptr, SDOperand Offset,
2784                      const Value *SV, int SVOffset, MVT::ValueType EVT,
2785                      bool isVolatile, unsigned Alignment) {
2786  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2787    const Type *Ty = 0;
2788    if (VT != MVT::iPTR) {
2789      Ty = MVT::getTypeForValueType(VT);
2790    } else if (SV) {
2791      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2792      assert(PT && "Value for load must be a pointer");
2793      Ty = PT->getElementType();
2794    }
2795    assert(Ty && "Could not get type information for load");
2796    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2797  }
2798
2799  if (VT == EVT) {
2800    ExtType = ISD::NON_EXTLOAD;
2801  } else if (ExtType == ISD::NON_EXTLOAD) {
2802    assert(VT == EVT && "Non-extending load from different memory type!");
2803  } else {
2804    // Extending load.
2805    if (MVT::isVector(VT))
2806      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2807    else
2808      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2809             "Should only be an extending load, not truncating!");
2810    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2811           "Cannot sign/zero extend a FP/Vector load!");
2812    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2813           "Cannot convert from FP to Int or Int -> FP!");
2814  }
2815
2816  bool Indexed = AM != ISD::UNINDEXED;
2817  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
2818         "Unindexed load with an offset!");
2819
2820  SDVTList VTs = Indexed ?
2821    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
2822  SDOperand Ops[] = { Chain, Ptr, Offset };
2823  FoldingSetNodeID ID;
2824  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2825  ID.AddInteger(AM);
2826  ID.AddInteger(ExtType);
2827  ID.AddInteger((unsigned int)EVT);
2828  ID.AddInteger(Alignment);
2829  ID.AddInteger(isVolatile);
2830  void *IP = 0;
2831  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2832    return SDOperand(E, 0);
2833  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
2834                             Alignment, isVolatile);
2835  CSEMap.InsertNode(N, IP);
2836  AllNodes.push_back(N);
2837  return SDOperand(N, 0);
2838}
2839
2840SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2841                                SDOperand Chain, SDOperand Ptr,
2842                                const Value *SV, int SVOffset,
2843                                bool isVolatile, unsigned Alignment) {
2844  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2845  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
2846                 SV, SVOffset, VT, isVolatile, Alignment);
2847}
2848
2849SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2850                                   SDOperand Chain, SDOperand Ptr,
2851                                   const Value *SV,
2852                                   int SVOffset, MVT::ValueType EVT,
2853                                   bool isVolatile, unsigned Alignment) {
2854  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2855  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
2856                 SV, SVOffset, EVT, isVolatile, Alignment);
2857}
2858
2859SDOperand
2860SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2861                             SDOperand Offset, ISD::MemIndexedMode AM) {
2862  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2863  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2864         "Load is already a indexed load!");
2865  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
2866                 LD->getChain(), Base, Offset, LD->getSrcValue(),
2867                 LD->getSrcValueOffset(), LD->getMemoryVT(),
2868                 LD->isVolatile(), LD->getAlignment());
2869}
2870
2871SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2872                                 SDOperand Ptr, const Value *SV, int SVOffset,
2873                                 bool isVolatile, unsigned Alignment) {
2874  MVT::ValueType VT = Val.getValueType();
2875
2876  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2877    const Type *Ty = 0;
2878    if (VT != MVT::iPTR) {
2879      Ty = MVT::getTypeForValueType(VT);
2880    } else if (SV) {
2881      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2882      assert(PT && "Value for store must be a pointer");
2883      Ty = PT->getElementType();
2884    }
2885    assert(Ty && "Could not get type information for store");
2886    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2887  }
2888  SDVTList VTs = getVTList(MVT::Other);
2889  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2890  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2891  FoldingSetNodeID ID;
2892  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2893  ID.AddInteger(ISD::UNINDEXED);
2894  ID.AddInteger(false);
2895  ID.AddInteger((unsigned int)VT);
2896  ID.AddInteger(Alignment);
2897  ID.AddInteger(isVolatile);
2898  void *IP = 0;
2899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2900    return SDOperand(E, 0);
2901  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2902                              VT, SV, SVOffset, Alignment, isVolatile);
2903  CSEMap.InsertNode(N, IP);
2904  AllNodes.push_back(N);
2905  return SDOperand(N, 0);
2906}
2907
2908SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2909                                      SDOperand Ptr, const Value *SV,
2910                                      int SVOffset, MVT::ValueType SVT,
2911                                      bool isVolatile, unsigned Alignment) {
2912  MVT::ValueType VT = Val.getValueType();
2913
2914  if (VT == SVT)
2915    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2916
2917  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2918         "Not a truncation?");
2919  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2920         "Can't do FP-INT conversion!");
2921
2922  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2923    const Type *Ty = 0;
2924    if (VT != MVT::iPTR) {
2925      Ty = MVT::getTypeForValueType(VT);
2926    } else if (SV) {
2927      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2928      assert(PT && "Value for store must be a pointer");
2929      Ty = PT->getElementType();
2930    }
2931    assert(Ty && "Could not get type information for store");
2932    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2933  }
2934  SDVTList VTs = getVTList(MVT::Other);
2935  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2936  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2937  FoldingSetNodeID ID;
2938  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2939  ID.AddInteger(ISD::UNINDEXED);
2940  ID.AddInteger(1);
2941  ID.AddInteger((unsigned int)SVT);
2942  ID.AddInteger(Alignment);
2943  ID.AddInteger(isVolatile);
2944  void *IP = 0;
2945  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2946    return SDOperand(E, 0);
2947  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2948                              SVT, SV, SVOffset, Alignment, isVolatile);
2949  CSEMap.InsertNode(N, IP);
2950  AllNodes.push_back(N);
2951  return SDOperand(N, 0);
2952}
2953
2954SDOperand
2955SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2956                              SDOperand Offset, ISD::MemIndexedMode AM) {
2957  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2958  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2959         "Store is already a indexed store!");
2960  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2961  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2962  FoldingSetNodeID ID;
2963  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2964  ID.AddInteger(AM);
2965  ID.AddInteger(ST->isTruncatingStore());
2966  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2967  ID.AddInteger(ST->getAlignment());
2968  ID.AddInteger(ST->isVolatile());
2969  void *IP = 0;
2970  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2971    return SDOperand(E, 0);
2972  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2973                              ST->isTruncatingStore(), ST->getMemoryVT(),
2974                              ST->getSrcValue(), ST->getSrcValueOffset(),
2975                              ST->getAlignment(), ST->isVolatile());
2976  CSEMap.InsertNode(N, IP);
2977  AllNodes.push_back(N);
2978  return SDOperand(N, 0);
2979}
2980
2981SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2982                                 SDOperand Chain, SDOperand Ptr,
2983                                 SDOperand SV) {
2984  SDOperand Ops[] = { Chain, Ptr, SV };
2985  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2986}
2987
2988SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2989                                const SDOperand *Ops, unsigned NumOps) {
2990  switch (NumOps) {
2991  case 0: return getNode(Opcode, VT);
2992  case 1: return getNode(Opcode, VT, Ops[0]);
2993  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2994  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2995  default: break;
2996  }
2997
2998  switch (Opcode) {
2999  default: break;
3000  case ISD::SELECT_CC: {
3001    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3002    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3003           "LHS and RHS of condition must have same type!");
3004    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3005           "True and False arms of SelectCC must have same type!");
3006    assert(Ops[2].getValueType() == VT &&
3007           "select_cc node must be of same type as true and false value!");
3008    break;
3009  }
3010  case ISD::BR_CC: {
3011    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3012    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3013           "LHS/RHS of comparison should match types!");
3014    break;
3015  }
3016  }
3017
3018  // Memoize nodes.
3019  SDNode *N;
3020  SDVTList VTs = getVTList(VT);
3021  if (VT != MVT::Flag) {
3022    FoldingSetNodeID ID;
3023    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3024    void *IP = 0;
3025    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3026      return SDOperand(E, 0);
3027    N = new SDNode(Opcode, VTs, Ops, NumOps);
3028    CSEMap.InsertNode(N, IP);
3029  } else {
3030    N = new SDNode(Opcode, VTs, Ops, NumOps);
3031  }
3032  AllNodes.push_back(N);
3033  return SDOperand(N, 0);
3034}
3035
3036SDOperand SelectionDAG::getNode(unsigned Opcode,
3037                                std::vector<MVT::ValueType> &ResultTys,
3038                                const SDOperand *Ops, unsigned NumOps) {
3039  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3040                 Ops, NumOps);
3041}
3042
3043SDOperand SelectionDAG::getNode(unsigned Opcode,
3044                                const MVT::ValueType *VTs, unsigned NumVTs,
3045                                const SDOperand *Ops, unsigned NumOps) {
3046  if (NumVTs == 1)
3047    return getNode(Opcode, VTs[0], Ops, NumOps);
3048  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3049}
3050
3051SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3052                                const SDOperand *Ops, unsigned NumOps) {
3053  if (VTList.NumVTs == 1)
3054    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3055
3056  switch (Opcode) {
3057  // FIXME: figure out how to safely handle things like
3058  // int foo(int x) { return 1 << (x & 255); }
3059  // int bar() { return foo(256); }
3060#if 0
3061  case ISD::SRA_PARTS:
3062  case ISD::SRL_PARTS:
3063  case ISD::SHL_PARTS:
3064    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3065        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3066      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3067    else if (N3.getOpcode() == ISD::AND)
3068      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3069        // If the and is only masking out bits that cannot effect the shift,
3070        // eliminate the and.
3071        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3072        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3073          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3074      }
3075    break;
3076#endif
3077  }
3078
3079  // Memoize the node unless it returns a flag.
3080  SDNode *N;
3081  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3082    FoldingSetNodeID ID;
3083    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3084    void *IP = 0;
3085    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3086      return SDOperand(E, 0);
3087    if (NumOps == 1)
3088      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3089    else if (NumOps == 2)
3090      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3091    else if (NumOps == 3)
3092      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3093    else
3094      N = new SDNode(Opcode, VTList, Ops, NumOps);
3095    CSEMap.InsertNode(N, IP);
3096  } else {
3097    if (NumOps == 1)
3098      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3099    else if (NumOps == 2)
3100      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3101    else if (NumOps == 3)
3102      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3103    else
3104      N = new SDNode(Opcode, VTList, Ops, NumOps);
3105  }
3106  AllNodes.push_back(N);
3107  return SDOperand(N, 0);
3108}
3109
3110SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3111  return getNode(Opcode, VTList, 0, 0);
3112}
3113
3114SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3115                                SDOperand N1) {
3116  SDOperand Ops[] = { N1 };
3117  return getNode(Opcode, VTList, Ops, 1);
3118}
3119
3120SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3121                                SDOperand N1, SDOperand N2) {
3122  SDOperand Ops[] = { N1, N2 };
3123  return getNode(Opcode, VTList, Ops, 2);
3124}
3125
3126SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3127                                SDOperand N1, SDOperand N2, SDOperand N3) {
3128  SDOperand Ops[] = { N1, N2, N3 };
3129  return getNode(Opcode, VTList, Ops, 3);
3130}
3131
3132SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3133                                SDOperand N1, SDOperand N2, SDOperand N3,
3134                                SDOperand N4) {
3135  SDOperand Ops[] = { N1, N2, N3, N4 };
3136  return getNode(Opcode, VTList, Ops, 4);
3137}
3138
3139SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3140                                SDOperand N1, SDOperand N2, SDOperand N3,
3141                                SDOperand N4, SDOperand N5) {
3142  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3143  return getNode(Opcode, VTList, Ops, 5);
3144}
3145
3146SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3147  return makeVTList(SDNode::getValueTypeList(VT), 1);
3148}
3149
3150SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3151  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3152       E = VTList.end(); I != E; ++I) {
3153    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3154      return makeVTList(&(*I)[0], 2);
3155  }
3156  std::vector<MVT::ValueType> V;
3157  V.push_back(VT1);
3158  V.push_back(VT2);
3159  VTList.push_front(V);
3160  return makeVTList(&(*VTList.begin())[0], 2);
3161}
3162SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3163                                 MVT::ValueType VT3) {
3164  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3165       E = VTList.end(); I != E; ++I) {
3166    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3167        (*I)[2] == VT3)
3168      return makeVTList(&(*I)[0], 3);
3169  }
3170  std::vector<MVT::ValueType> V;
3171  V.push_back(VT1);
3172  V.push_back(VT2);
3173  V.push_back(VT3);
3174  VTList.push_front(V);
3175  return makeVTList(&(*VTList.begin())[0], 3);
3176}
3177
3178SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3179  switch (NumVTs) {
3180    case 0: assert(0 && "Cannot have nodes without results!");
3181    case 1: return getVTList(VTs[0]);
3182    case 2: return getVTList(VTs[0], VTs[1]);
3183    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3184    default: break;
3185  }
3186
3187  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3188       E = VTList.end(); I != E; ++I) {
3189    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3190
3191    bool NoMatch = false;
3192    for (unsigned i = 2; i != NumVTs; ++i)
3193      if (VTs[i] != (*I)[i]) {
3194        NoMatch = true;
3195        break;
3196      }
3197    if (!NoMatch)
3198      return makeVTList(&*I->begin(), NumVTs);
3199  }
3200
3201  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3202  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3203}
3204
3205
3206/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3207/// specified operands.  If the resultant node already exists in the DAG,
3208/// this does not modify the specified node, instead it returns the node that
3209/// already exists.  If the resultant node does not exist in the DAG, the
3210/// input node is returned.  As a degenerate case, if you specify the same
3211/// input operands as the node already has, the input node is returned.
3212SDOperand SelectionDAG::
3213UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3214  SDNode *N = InN.Val;
3215  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3216
3217  // Check to see if there is no change.
3218  if (Op == N->getOperand(0)) return InN;
3219
3220  // See if the modified node already exists.
3221  void *InsertPos = 0;
3222  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3223    return SDOperand(Existing, InN.ResNo);
3224
3225  // Nope it doesn't.  Remove the node from it's current place in the maps.
3226  if (InsertPos)
3227    RemoveNodeFromCSEMaps(N);
3228
3229  // Now we update the operands.
3230  N->OperandList[0].Val->removeUser(0, N);
3231  N->OperandList[0] = Op;
3232  N->OperandList[0].setUser(N);
3233  Op.Val->addUser(0, N);
3234
3235  // If this gets put into a CSE map, add it.
3236  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3237  return InN;
3238}
3239
3240SDOperand SelectionDAG::
3241UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3242  SDNode *N = InN.Val;
3243  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3244
3245  // Check to see if there is no change.
3246  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3247    return InN;   // No operands changed, just return the input node.
3248
3249  // See if the modified node already exists.
3250  void *InsertPos = 0;
3251  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3252    return SDOperand(Existing, InN.ResNo);
3253
3254  // Nope it doesn't.  Remove the node from it's current place in the maps.
3255  if (InsertPos)
3256    RemoveNodeFromCSEMaps(N);
3257
3258  // Now we update the operands.
3259  if (N->OperandList[0] != Op1) {
3260    N->OperandList[0].Val->removeUser(0, N);
3261    N->OperandList[0] = Op1;
3262    N->OperandList[0].setUser(N);
3263    Op1.Val->addUser(0, N);
3264  }
3265  if (N->OperandList[1] != Op2) {
3266    N->OperandList[1].Val->removeUser(1, N);
3267    N->OperandList[1] = Op2;
3268    N->OperandList[1].setUser(N);
3269    Op2.Val->addUser(1, N);
3270  }
3271
3272  // If this gets put into a CSE map, add it.
3273  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3274  return InN;
3275}
3276
3277SDOperand SelectionDAG::
3278UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3279  SDOperand Ops[] = { Op1, Op2, Op3 };
3280  return UpdateNodeOperands(N, Ops, 3);
3281}
3282
3283SDOperand SelectionDAG::
3284UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3285                   SDOperand Op3, SDOperand Op4) {
3286  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3287  return UpdateNodeOperands(N, Ops, 4);
3288}
3289
3290SDOperand SelectionDAG::
3291UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3292                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3293  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3294  return UpdateNodeOperands(N, Ops, 5);
3295}
3296
3297SDOperand SelectionDAG::
3298UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
3299  SDNode *N = InN.Val;
3300  assert(N->getNumOperands() == NumOps &&
3301         "Update with wrong number of operands");
3302
3303  // Check to see if there is no change.
3304  bool AnyChange = false;
3305  for (unsigned i = 0; i != NumOps; ++i) {
3306    if (Ops[i] != N->getOperand(i)) {
3307      AnyChange = true;
3308      break;
3309    }
3310  }
3311
3312  // No operands changed, just return the input node.
3313  if (!AnyChange) return InN;
3314
3315  // See if the modified node already exists.
3316  void *InsertPos = 0;
3317  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3318    return SDOperand(Existing, InN.ResNo);
3319
3320  // Nope it doesn't.  Remove the node from it's current place in the maps.
3321  if (InsertPos)
3322    RemoveNodeFromCSEMaps(N);
3323
3324  // Now we update the operands.
3325  for (unsigned i = 0; i != NumOps; ++i) {
3326    if (N->OperandList[i] != Ops[i]) {
3327      N->OperandList[i].Val->removeUser(i, N);
3328      N->OperandList[i] = Ops[i];
3329      N->OperandList[i].setUser(N);
3330      Ops[i].Val->addUser(i, N);
3331    }
3332  }
3333
3334  // If this gets put into a CSE map, add it.
3335  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3336  return InN;
3337}
3338
3339/// MorphNodeTo - This frees the operands of the current node, resets the
3340/// opcode, types, and operands to the specified value.  This should only be
3341/// used by the SelectionDAG class.
3342void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3343                         const SDOperand *Ops, unsigned NumOps) {
3344  NodeType = Opc;
3345  ValueList = L.VTs;
3346  NumValues = L.NumVTs;
3347
3348  // Clear the operands list, updating used nodes to remove this from their
3349  // use list.
3350  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3351    I->Val->removeUser(std::distance(op_begin(), I), this);
3352
3353  // If NumOps is larger than the # of operands we currently have, reallocate
3354  // the operand list.
3355  if (NumOps > NumOperands) {
3356    if (OperandsNeedDelete) {
3357      delete [] OperandList;
3358    }
3359    OperandList = new SDOperand[NumOps];
3360    OperandsNeedDelete = true;
3361  }
3362
3363  // Assign the new operands.
3364  NumOperands = NumOps;
3365
3366  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3367    OperandList[i] = Ops[i];
3368    OperandList[i].setUser(this);
3369    SDNode *N = OperandList[i].Val;
3370    N->addUser(i, this);
3371    ++N->UsesSize;
3372  }
3373}
3374
3375/// SelectNodeTo - These are used for target selectors to *mutate* the
3376/// specified node to have the specified return type, Target opcode, and
3377/// operands.  Note that target opcodes are stored as
3378/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3379///
3380/// Note that SelectNodeTo returns the resultant node.  If there is already a
3381/// node of the specified opcode and operands, it returns that node instead of
3382/// the current one.
3383SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3384                                   MVT::ValueType VT) {
3385  SDVTList VTs = getVTList(VT);
3386  FoldingSetNodeID ID;
3387  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3388  void *IP = 0;
3389  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3390    return ON;
3391
3392  RemoveNodeFromCSEMaps(N);
3393
3394  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3395
3396  CSEMap.InsertNode(N, IP);
3397  return N;
3398}
3399
3400SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3401                                   MVT::ValueType VT, SDOperand Op1) {
3402  // If an identical node already exists, use it.
3403  SDVTList VTs = getVTList(VT);
3404  SDOperand Ops[] = { Op1 };
3405
3406  FoldingSetNodeID ID;
3407  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3408  void *IP = 0;
3409  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3410    return ON;
3411
3412  RemoveNodeFromCSEMaps(N);
3413  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3414  CSEMap.InsertNode(N, IP);
3415  return N;
3416}
3417
3418SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3419                                   MVT::ValueType VT, SDOperand Op1,
3420                                   SDOperand Op2) {
3421  // If an identical node already exists, use it.
3422  SDVTList VTs = getVTList(VT);
3423  SDOperand Ops[] = { Op1, Op2 };
3424
3425  FoldingSetNodeID ID;
3426  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3427  void *IP = 0;
3428  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3429    return ON;
3430
3431  RemoveNodeFromCSEMaps(N);
3432
3433  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3434
3435  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3436  return N;
3437}
3438
3439SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3440                                   MVT::ValueType VT, SDOperand Op1,
3441                                   SDOperand Op2, SDOperand Op3) {
3442  // If an identical node already exists, use it.
3443  SDVTList VTs = getVTList(VT);
3444  SDOperand Ops[] = { Op1, Op2, Op3 };
3445  FoldingSetNodeID ID;
3446  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3447  void *IP = 0;
3448  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3449    return ON;
3450
3451  RemoveNodeFromCSEMaps(N);
3452
3453  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3454
3455  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3456  return N;
3457}
3458
3459SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3460                                   MVT::ValueType VT, const SDOperand *Ops,
3461                                   unsigned NumOps) {
3462  // If an identical node already exists, use it.
3463  SDVTList VTs = getVTList(VT);
3464  FoldingSetNodeID ID;
3465  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3466  void *IP = 0;
3467  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3468    return ON;
3469
3470  RemoveNodeFromCSEMaps(N);
3471  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3472
3473  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3474  return N;
3475}
3476
3477SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3478                                   MVT::ValueType VT1, MVT::ValueType VT2,
3479                                   SDOperand Op1, SDOperand Op2) {
3480  SDVTList VTs = getVTList(VT1, VT2);
3481  FoldingSetNodeID ID;
3482  SDOperand Ops[] = { Op1, Op2 };
3483  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3484  void *IP = 0;
3485  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3486    return ON;
3487
3488  RemoveNodeFromCSEMaps(N);
3489  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3490  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3491  return N;
3492}
3493
3494SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3495                                   MVT::ValueType VT1, MVT::ValueType VT2,
3496                                   SDOperand Op1, SDOperand Op2,
3497                                   SDOperand Op3) {
3498  // If an identical node already exists, use it.
3499  SDVTList VTs = getVTList(VT1, VT2);
3500  SDOperand Ops[] = { Op1, Op2, Op3 };
3501  FoldingSetNodeID ID;
3502  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3503  void *IP = 0;
3504  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3505    return ON;
3506
3507  RemoveNodeFromCSEMaps(N);
3508
3509  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3510  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3511  return N;
3512}
3513
3514
3515/// getTargetNode - These are used for target selectors to create a new node
3516/// with specified return type(s), target opcode, and operands.
3517///
3518/// Note that getTargetNode returns the resultant node.  If there is already a
3519/// node of the specified opcode and operands, it returns that node instead of
3520/// the current one.
3521SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3522  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3523}
3524SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3525                                    SDOperand Op1) {
3526  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3527}
3528SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3529                                    SDOperand Op1, SDOperand Op2) {
3530  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3531}
3532SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3533                                    SDOperand Op1, SDOperand Op2,
3534                                    SDOperand Op3) {
3535  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3536}
3537SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3538                                    const SDOperand *Ops, unsigned NumOps) {
3539  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3540}
3541SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3542                                    MVT::ValueType VT2) {
3543  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3544  SDOperand Op;
3545  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3546}
3547SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3548                                    MVT::ValueType VT2, SDOperand Op1) {
3549  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3550  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3551}
3552SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3553                                    MVT::ValueType VT2, SDOperand Op1,
3554                                    SDOperand Op2) {
3555  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3556  SDOperand Ops[] = { Op1, Op2 };
3557  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3558}
3559SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3560                                    MVT::ValueType VT2, SDOperand Op1,
3561                                    SDOperand Op2, SDOperand Op3) {
3562  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3563  SDOperand Ops[] = { Op1, Op2, Op3 };
3564  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3565}
3566SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3567                                    MVT::ValueType VT2,
3568                                    const SDOperand *Ops, unsigned NumOps) {
3569  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3570  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3571}
3572SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3573                                    MVT::ValueType VT2, MVT::ValueType VT3,
3574                                    SDOperand Op1, SDOperand Op2) {
3575  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3576  SDOperand Ops[] = { Op1, Op2 };
3577  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3578}
3579SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3580                                    MVT::ValueType VT2, MVT::ValueType VT3,
3581                                    SDOperand Op1, SDOperand Op2,
3582                                    SDOperand Op3) {
3583  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3584  SDOperand Ops[] = { Op1, Op2, Op3 };
3585  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3586}
3587SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3588                                    MVT::ValueType VT2, MVT::ValueType VT3,
3589                                    const SDOperand *Ops, unsigned NumOps) {
3590  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3591  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3592}
3593SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3594                                    MVT::ValueType VT2, MVT::ValueType VT3,
3595                                    MVT::ValueType VT4,
3596                                    const SDOperand *Ops, unsigned NumOps) {
3597  std::vector<MVT::ValueType> VTList;
3598  VTList.push_back(VT1);
3599  VTList.push_back(VT2);
3600  VTList.push_back(VT3);
3601  VTList.push_back(VT4);
3602  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3603  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3604}
3605SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3606                                    std::vector<MVT::ValueType> &ResultTys,
3607                                    const SDOperand *Ops, unsigned NumOps) {
3608  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3609  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3610                 Ops, NumOps).Val;
3611}
3612
3613/// getNodeIfExists - Get the specified node if it's already available, or
3614/// else return NULL.
3615SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3616                                      const SDOperand *Ops, unsigned NumOps) {
3617  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3618    FoldingSetNodeID ID;
3619    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3620    void *IP = 0;
3621    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3622      return E;
3623  }
3624  return NULL;
3625}
3626
3627
3628/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3629/// This can cause recursive merging of nodes in the DAG.
3630///
3631/// This version assumes From has a single result value.
3632///
3633void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3634                                      DAGUpdateListener *UpdateListener) {
3635  SDNode *From = FromN.Val;
3636  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3637         "Cannot replace with this method!");
3638  assert(From != To.Val && "Cannot replace uses of with self");
3639
3640  while (!From->use_empty()) {
3641    SDNode::use_iterator UI = From->use_begin();
3642    SDNode *U = UI->getUser();
3643
3644    // This node is about to morph, remove its old self from the CSE maps.
3645    RemoveNodeFromCSEMaps(U);
3646    int operandNum = 0;
3647    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3648         I != E; ++I, ++operandNum)
3649      if (I->Val == From) {
3650        From->removeUser(operandNum, U);
3651        *I = To;
3652        I->setUser(U);
3653        To.Val->addUser(operandNum, U);
3654      }
3655
3656    // Now that we have modified U, add it back to the CSE maps.  If it already
3657    // exists there, recursively merge the results together.
3658    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3659      ReplaceAllUsesWith(U, Existing, UpdateListener);
3660      // U is now dead.  Inform the listener if it exists and delete it.
3661      if (UpdateListener)
3662        UpdateListener->NodeDeleted(U);
3663      DeleteNodeNotInCSEMaps(U);
3664    } else {
3665      // If the node doesn't already exist, we updated it.  Inform a listener if
3666      // it exists.
3667      if (UpdateListener)
3668        UpdateListener->NodeUpdated(U);
3669    }
3670  }
3671}
3672
3673/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3674/// This can cause recursive merging of nodes in the DAG.
3675///
3676/// This version assumes From/To have matching types and numbers of result
3677/// values.
3678///
3679void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3680                                      DAGUpdateListener *UpdateListener) {
3681  assert(From != To && "Cannot replace uses of with self");
3682  assert(From->getNumValues() == To->getNumValues() &&
3683         "Cannot use this version of ReplaceAllUsesWith!");
3684  if (From->getNumValues() == 1)   // If possible, use the faster version.
3685    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3686                              UpdateListener);
3687
3688  while (!From->use_empty()) {
3689    SDNode::use_iterator UI = From->use_begin();
3690    SDNode *U = UI->getUser();
3691
3692    // This node is about to morph, remove its old self from the CSE maps.
3693    RemoveNodeFromCSEMaps(U);
3694    int operandNum = 0;
3695    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3696         I != E; ++I, ++operandNum)
3697      if (I->Val == From) {
3698        From->removeUser(operandNum, U);
3699        I->Val = To;
3700        To->addUser(operandNum, U);
3701      }
3702
3703    // Now that we have modified U, add it back to the CSE maps.  If it already
3704    // exists there, recursively merge the results together.
3705    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3706      ReplaceAllUsesWith(U, Existing, UpdateListener);
3707      // U is now dead.  Inform the listener if it exists and delete it.
3708      if (UpdateListener)
3709        UpdateListener->NodeDeleted(U);
3710      DeleteNodeNotInCSEMaps(U);
3711    } else {
3712      // If the node doesn't already exist, we updated it.  Inform a listener if
3713      // it exists.
3714      if (UpdateListener)
3715        UpdateListener->NodeUpdated(U);
3716    }
3717  }
3718}
3719
3720/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3721/// This can cause recursive merging of nodes in the DAG.
3722///
3723/// This version can replace From with any result values.  To must match the
3724/// number and types of values returned by From.
3725void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3726                                      const SDOperand *To,
3727                                      DAGUpdateListener *UpdateListener) {
3728  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3729    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3730
3731  while (!From->use_empty()) {
3732    SDNode::use_iterator UI = From->use_begin();
3733    SDNode *U = UI->getUser();
3734
3735    // This node is about to morph, remove its old self from the CSE maps.
3736    RemoveNodeFromCSEMaps(U);
3737    int operandNum = 0;
3738    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3739         I != E; ++I, ++operandNum)
3740      if (I->Val == From) {
3741        const SDOperand &ToOp = To[I->ResNo];
3742        From->removeUser(operandNum, U);
3743        *I = ToOp;
3744        I->setUser(U);
3745        ToOp.Val->addUser(operandNum, U);
3746      }
3747
3748    // Now that we have modified U, add it back to the CSE maps.  If it already
3749    // exists there, recursively merge the results together.
3750    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3751      ReplaceAllUsesWith(U, Existing, UpdateListener);
3752      // U is now dead.  Inform the listener if it exists and delete it.
3753      if (UpdateListener)
3754        UpdateListener->NodeDeleted(U);
3755      DeleteNodeNotInCSEMaps(U);
3756    } else {
3757      // If the node doesn't already exist, we updated it.  Inform a listener if
3758      // it exists.
3759      if (UpdateListener)
3760        UpdateListener->NodeUpdated(U);
3761    }
3762  }
3763}
3764
3765namespace {
3766  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3767  /// any deleted nodes from the set passed into its constructor and recursively
3768  /// notifies another update listener if specified.
3769  class ChainedSetUpdaterListener :
3770  public SelectionDAG::DAGUpdateListener {
3771    SmallSetVector<SDNode*, 16> &Set;
3772    SelectionDAG::DAGUpdateListener *Chain;
3773  public:
3774    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3775                              SelectionDAG::DAGUpdateListener *chain)
3776      : Set(set), Chain(chain) {}
3777
3778    virtual void NodeDeleted(SDNode *N) {
3779      Set.remove(N);
3780      if (Chain) Chain->NodeDeleted(N);
3781    }
3782    virtual void NodeUpdated(SDNode *N) {
3783      if (Chain) Chain->NodeUpdated(N);
3784    }
3785  };
3786}
3787
3788/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3789/// uses of other values produced by From.Val alone.  The Deleted vector is
3790/// handled the same way as for ReplaceAllUsesWith.
3791void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3792                                             DAGUpdateListener *UpdateListener){
3793  assert(From != To && "Cannot replace a value with itself");
3794
3795  // Handle the simple, trivial, case efficiently.
3796  if (From.Val->getNumValues() == 1) {
3797    ReplaceAllUsesWith(From, To, UpdateListener);
3798    return;
3799  }
3800
3801  if (From.use_empty()) return;
3802
3803  // Get all of the users of From.Val.  We want these in a nice,
3804  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3805  SmallSetVector<SDNode*, 16> Users;
3806  for (SDNode::use_iterator UI = From.Val->use_begin(),
3807      E = From.Val->use_end(); UI != E; ++UI) {
3808    SDNode *User = UI->getUser();
3809    if (!Users.count(User))
3810      Users.insert(User);
3811  }
3812
3813  // When one of the recursive merges deletes nodes from the graph, we need to
3814  // make sure that UpdateListener is notified *and* that the node is removed
3815  // from Users if present.  CSUL does this.
3816  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3817
3818  while (!Users.empty()) {
3819    // We know that this user uses some value of From.  If it is the right
3820    // value, update it.
3821    SDNode *User = Users.back();
3822    Users.pop_back();
3823
3824    // Scan for an operand that matches From.
3825    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
3826    for (; Op != E; ++Op)
3827      if (*Op == From) break;
3828
3829    // If there are no matches, the user must use some other result of From.
3830    if (Op == E) continue;
3831
3832    // Okay, we know this user needs to be updated.  Remove its old self
3833    // from the CSE maps.
3834    RemoveNodeFromCSEMaps(User);
3835
3836    // Update all operands that match "From" in case there are multiple uses.
3837    for (; Op != E; ++Op) {
3838      if (*Op == From) {
3839        From.Val->removeUser(Op-User->op_begin(), User);
3840        *Op = To;
3841        Op->setUser(User);
3842        To.Val->addUser(Op-User->op_begin(), User);
3843      }
3844    }
3845
3846    // Now that we have modified User, add it back to the CSE maps.  If it
3847    // already exists there, recursively merge the results together.
3848    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3849    if (!Existing) {
3850      if (UpdateListener) UpdateListener->NodeUpdated(User);
3851      continue;  // Continue on to next user.
3852    }
3853
3854    // If there was already an existing matching node, use ReplaceAllUsesWith
3855    // to replace the dead one with the existing one.  This can cause
3856    // recursive merging of other unrelated nodes down the line.  The merging
3857    // can cause deletion of nodes that used the old value.  To handle this, we
3858    // use CSUL to remove them from the Users set.
3859    ReplaceAllUsesWith(User, Existing, &CSUL);
3860
3861    // User is now dead.  Notify a listener if present.
3862    if (UpdateListener) UpdateListener->NodeDeleted(User);
3863    DeleteNodeNotInCSEMaps(User);
3864  }
3865}
3866
3867
3868/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3869/// their allnodes order. It returns the maximum id.
3870unsigned SelectionDAG::AssignNodeIds() {
3871  unsigned Id = 0;
3872  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3873    SDNode *N = I;
3874    N->setNodeId(Id++);
3875  }
3876  return Id;
3877}
3878
3879/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3880/// based on their topological order. It returns the maximum id and a vector
3881/// of the SDNodes* in assigned order by reference.
3882unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3883  unsigned DAGSize = AllNodes.size();
3884  std::vector<unsigned> InDegree(DAGSize);
3885  std::vector<SDNode*> Sources;
3886
3887  // Use a two pass approach to avoid using a std::map which is slow.
3888  unsigned Id = 0;
3889  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3890    SDNode *N = I;
3891    N->setNodeId(Id++);
3892    unsigned Degree = N->use_size();
3893    InDegree[N->getNodeId()] = Degree;
3894    if (Degree == 0)
3895      Sources.push_back(N);
3896  }
3897
3898  TopOrder.clear();
3899  while (!Sources.empty()) {
3900    SDNode *N = Sources.back();
3901    Sources.pop_back();
3902    TopOrder.push_back(N);
3903    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3904      SDNode *P = I->Val;
3905      unsigned Degree = --InDegree[P->getNodeId()];
3906      if (Degree == 0)
3907        Sources.push_back(P);
3908    }
3909  }
3910
3911  // Second pass, assign the actual topological order as node ids.
3912  Id = 0;
3913  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3914       TI != TE; ++TI)
3915    (*TI)->setNodeId(Id++);
3916
3917  return Id;
3918}
3919
3920
3921
3922//===----------------------------------------------------------------------===//
3923//                              SDNode Class
3924//===----------------------------------------------------------------------===//
3925
3926// Out-of-line virtual method to give class a home.
3927void SDNode::ANCHOR() {}
3928void UnarySDNode::ANCHOR() {}
3929void BinarySDNode::ANCHOR() {}
3930void TernarySDNode::ANCHOR() {}
3931void HandleSDNode::ANCHOR() {}
3932void StringSDNode::ANCHOR() {}
3933void ConstantSDNode::ANCHOR() {}
3934void ConstantFPSDNode::ANCHOR() {}
3935void GlobalAddressSDNode::ANCHOR() {}
3936void FrameIndexSDNode::ANCHOR() {}
3937void JumpTableSDNode::ANCHOR() {}
3938void ConstantPoolSDNode::ANCHOR() {}
3939void BasicBlockSDNode::ANCHOR() {}
3940void SrcValueSDNode::ANCHOR() {}
3941void MemOperandSDNode::ANCHOR() {}
3942void RegisterSDNode::ANCHOR() {}
3943void ExternalSymbolSDNode::ANCHOR() {}
3944void CondCodeSDNode::ANCHOR() {}
3945void ARG_FLAGSSDNode::ANCHOR() {}
3946void VTSDNode::ANCHOR() {}
3947void LoadSDNode::ANCHOR() {}
3948void StoreSDNode::ANCHOR() {}
3949void AtomicSDNode::ANCHOR() {}
3950
3951HandleSDNode::~HandleSDNode() {
3952  SDVTList VTs = { 0, 0 };
3953  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3954}
3955
3956GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3957                                         MVT::ValueType VT, int o)
3958  : SDNode(isa<GlobalVariable>(GA) &&
3959           cast<GlobalVariable>(GA)->isThreadLocal() ?
3960           // Thread Local
3961           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3962           // Non Thread Local
3963           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3964           getSDVTList(VT)), Offset(o) {
3965  TheGlobal = const_cast<GlobalValue*>(GA);
3966}
3967
3968/// getMemOperand - Return a MachineMemOperand object describing the memory
3969/// reference performed by this load or store.
3970MachineMemOperand LSBaseSDNode::getMemOperand() const {
3971  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3972  int Flags =
3973    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
3974                               MachineMemOperand::MOStore;
3975  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
3976
3977  // Check if the load references a frame index, and does not have
3978  // an SV attached.
3979  const FrameIndexSDNode *FI =
3980    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3981  if (!getSrcValue() && FI)
3982    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
3983                             FI->getIndex(), Size, Alignment);
3984  else
3985    return MachineMemOperand(getSrcValue(), Flags,
3986                             getSrcValueOffset(), Size, Alignment);
3987}
3988
3989/// Profile - Gather unique data for the node.
3990///
3991void SDNode::Profile(FoldingSetNodeID &ID) {
3992  AddNodeIDNode(ID, this);
3993}
3994
3995/// getValueTypeList - Return a pointer to the specified value type.
3996///
3997const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3998  if (MVT::isExtendedVT(VT)) {
3999    static std::set<MVT::ValueType> EVTs;
4000    return &(*EVTs.insert(VT).first);
4001  } else {
4002    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4003    VTs[VT] = VT;
4004    return &VTs[VT];
4005  }
4006}
4007
4008/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4009/// indicated value.  This method ignores uses of other values defined by this
4010/// operation.
4011bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4012  assert(Value < getNumValues() && "Bad value!");
4013
4014  // If there is only one value, this is easy.
4015  if (getNumValues() == 1)
4016    return use_size() == NUses;
4017  if (use_size() < NUses) return false;
4018
4019  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4020
4021  SmallPtrSet<SDNode*, 32> UsersHandled;
4022
4023  // TODO: Only iterate over uses of a given value of the node
4024  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4025    if (*UI == TheValue) {
4026      if (NUses == 0)
4027        return false;
4028      --NUses;
4029    }
4030  }
4031
4032  // Found exactly the right number of uses?
4033  return NUses == 0;
4034}
4035
4036
4037/// hasAnyUseOfValue - Return true if there are any use of the indicated
4038/// value. This method ignores uses of other values defined by this operation.
4039bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4040  assert(Value < getNumValues() && "Bad value!");
4041
4042  if (use_empty()) return false;
4043
4044  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4045
4046  SmallPtrSet<SDNode*, 32> UsersHandled;
4047
4048  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4049    SDNode *User = UI->getUser();
4050    if (User->getNumOperands() == 1 ||
4051        UsersHandled.insert(User))     // First time we've seen this?
4052      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4053        if (User->getOperand(i) == TheValue) {
4054          return true;
4055        }
4056  }
4057
4058  return false;
4059}
4060
4061
4062/// isOnlyUseOf - Return true if this node is the only use of N.
4063///
4064bool SDNode::isOnlyUseOf(SDNode *N) const {
4065  bool Seen = false;
4066  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4067    SDNode *User = I->getUser();
4068    if (User == this)
4069      Seen = true;
4070    else
4071      return false;
4072  }
4073
4074  return Seen;
4075}
4076
4077/// isOperand - Return true if this node is an operand of N.
4078///
4079bool SDOperandImpl::isOperandOf(SDNode *N) const {
4080  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4081    if (*this == N->getOperand(i))
4082      return true;
4083  return false;
4084}
4085
4086bool SDNode::isOperandOf(SDNode *N) const {
4087  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4088    if (this == N->OperandList[i].Val)
4089      return true;
4090  return false;
4091}
4092
4093/// reachesChainWithoutSideEffects - Return true if this operand (which must
4094/// be a chain) reaches the specified operand without crossing any
4095/// side-effecting instructions.  In practice, this looks through token
4096/// factors and non-volatile loads.  In order to remain efficient, this only
4097/// looks a couple of nodes in, it does not do an exhaustive search.
4098bool SDOperandImpl::reachesChainWithoutSideEffects(SDOperandImpl Dest,
4099                                               unsigned Depth) const {
4100  if (*this == Dest) return true;
4101
4102  // Don't search too deeply, we just want to be able to see through
4103  // TokenFactor's etc.
4104  if (Depth == 0) return false;
4105
4106  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4107  // of the operands of the TF reach dest, then we can do the xform.
4108  if (getOpcode() == ISD::TokenFactor) {
4109    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4110      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4111        return true;
4112    return false;
4113  }
4114
4115  // Loads don't have side effects, look through them.
4116  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4117    if (!Ld->isVolatile())
4118      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4119  }
4120  return false;
4121}
4122
4123
4124static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4125                            SmallPtrSet<SDNode *, 32> &Visited) {
4126  if (found || !Visited.insert(N))
4127    return;
4128
4129  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4130    SDNode *Op = N->getOperand(i).Val;
4131    if (Op == P) {
4132      found = true;
4133      return;
4134    }
4135    findPredecessor(Op, P, found, Visited);
4136  }
4137}
4138
4139/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4140/// is either an operand of N or it can be reached by recursively traversing
4141/// up the operands.
4142/// NOTE: this is an expensive method. Use it carefully.
4143bool SDNode::isPredecessorOf(SDNode *N) const {
4144  SmallPtrSet<SDNode *, 32> Visited;
4145  bool found = false;
4146  findPredecessor(N, this, found, Visited);
4147  return found;
4148}
4149
4150uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4151  assert(Num < NumOperands && "Invalid child # of SDNode!");
4152  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4153}
4154
4155std::string SDNode::getOperationName(const SelectionDAG *G) const {
4156  switch (getOpcode()) {
4157  default:
4158    if (getOpcode() < ISD::BUILTIN_OP_END)
4159      return "<<Unknown DAG Node>>";
4160    else {
4161      if (G) {
4162        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4163          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4164            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4165
4166        TargetLowering &TLI = G->getTargetLoweringInfo();
4167        const char *Name =
4168          TLI.getTargetNodeName(getOpcode());
4169        if (Name) return Name;
4170      }
4171
4172      return "<<Unknown Target Node>>";
4173    }
4174
4175  case ISD::PREFETCH:      return "Prefetch";
4176  case ISD::MEMBARRIER:    return "MemBarrier";
4177  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4178  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4179  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
4180  case ISD::PCMARKER:      return "PCMarker";
4181  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4182  case ISD::SRCVALUE:      return "SrcValue";
4183  case ISD::MEMOPERAND:    return "MemOperand";
4184  case ISD::EntryToken:    return "EntryToken";
4185  case ISD::TokenFactor:   return "TokenFactor";
4186  case ISD::AssertSext:    return "AssertSext";
4187  case ISD::AssertZext:    return "AssertZext";
4188
4189  case ISD::STRING:        return "String";
4190  case ISD::BasicBlock:    return "BasicBlock";
4191  case ISD::ARG_FLAGS:     return "ArgFlags";
4192  case ISD::VALUETYPE:     return "ValueType";
4193  case ISD::Register:      return "Register";
4194
4195  case ISD::Constant:      return "Constant";
4196  case ISD::ConstantFP:    return "ConstantFP";
4197  case ISD::GlobalAddress: return "GlobalAddress";
4198  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4199  case ISD::FrameIndex:    return "FrameIndex";
4200  case ISD::JumpTable:     return "JumpTable";
4201  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4202  case ISD::RETURNADDR: return "RETURNADDR";
4203  case ISD::FRAMEADDR: return "FRAMEADDR";
4204  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4205  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4206  case ISD::EHSELECTION: return "EHSELECTION";
4207  case ISD::EH_RETURN: return "EH_RETURN";
4208  case ISD::ConstantPool:  return "ConstantPool";
4209  case ISD::ExternalSymbol: return "ExternalSymbol";
4210  case ISD::INTRINSIC_WO_CHAIN: {
4211    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4212    return Intrinsic::getName((Intrinsic::ID)IID);
4213  }
4214  case ISD::INTRINSIC_VOID:
4215  case ISD::INTRINSIC_W_CHAIN: {
4216    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4217    return Intrinsic::getName((Intrinsic::ID)IID);
4218  }
4219
4220  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4221  case ISD::TargetConstant: return "TargetConstant";
4222  case ISD::TargetConstantFP:return "TargetConstantFP";
4223  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4224  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4225  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4226  case ISD::TargetJumpTable:  return "TargetJumpTable";
4227  case ISD::TargetConstantPool:  return "TargetConstantPool";
4228  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4229
4230  case ISD::CopyToReg:     return "CopyToReg";
4231  case ISD::CopyFromReg:   return "CopyFromReg";
4232  case ISD::UNDEF:         return "undef";
4233  case ISD::MERGE_VALUES:  return "merge_values";
4234  case ISD::INLINEASM:     return "inlineasm";
4235  case ISD::LABEL:         return "label";
4236  case ISD::DECLARE:       return "declare";
4237  case ISD::HANDLENODE:    return "handlenode";
4238  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4239  case ISD::CALL:          return "call";
4240
4241  // Unary operators
4242  case ISD::FABS:   return "fabs";
4243  case ISD::FNEG:   return "fneg";
4244  case ISD::FSQRT:  return "fsqrt";
4245  case ISD::FSIN:   return "fsin";
4246  case ISD::FCOS:   return "fcos";
4247  case ISD::FPOWI:  return "fpowi";
4248  case ISD::FPOW:   return "fpow";
4249
4250  // Binary operators
4251  case ISD::ADD:    return "add";
4252  case ISD::SUB:    return "sub";
4253  case ISD::MUL:    return "mul";
4254  case ISD::MULHU:  return "mulhu";
4255  case ISD::MULHS:  return "mulhs";
4256  case ISD::SDIV:   return "sdiv";
4257  case ISD::UDIV:   return "udiv";
4258  case ISD::SREM:   return "srem";
4259  case ISD::UREM:   return "urem";
4260  case ISD::SMUL_LOHI:  return "smul_lohi";
4261  case ISD::UMUL_LOHI:  return "umul_lohi";
4262  case ISD::SDIVREM:    return "sdivrem";
4263  case ISD::UDIVREM:    return "divrem";
4264  case ISD::AND:    return "and";
4265  case ISD::OR:     return "or";
4266  case ISD::XOR:    return "xor";
4267  case ISD::SHL:    return "shl";
4268  case ISD::SRA:    return "sra";
4269  case ISD::SRL:    return "srl";
4270  case ISD::ROTL:   return "rotl";
4271  case ISD::ROTR:   return "rotr";
4272  case ISD::FADD:   return "fadd";
4273  case ISD::FSUB:   return "fsub";
4274  case ISD::FMUL:   return "fmul";
4275  case ISD::FDIV:   return "fdiv";
4276  case ISD::FREM:   return "frem";
4277  case ISD::FCOPYSIGN: return "fcopysign";
4278  case ISD::FGETSIGN:  return "fgetsign";
4279
4280  case ISD::SETCC:       return "setcc";
4281  case ISD::SELECT:      return "select";
4282  case ISD::SELECT_CC:   return "select_cc";
4283  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4284  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4285  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4286  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4287  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4288  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4289  case ISD::CARRY_FALSE:         return "carry_false";
4290  case ISD::ADDC:        return "addc";
4291  case ISD::ADDE:        return "adde";
4292  case ISD::SUBC:        return "subc";
4293  case ISD::SUBE:        return "sube";
4294  case ISD::SHL_PARTS:   return "shl_parts";
4295  case ISD::SRA_PARTS:   return "sra_parts";
4296  case ISD::SRL_PARTS:   return "srl_parts";
4297
4298  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4299  case ISD::INSERT_SUBREG:      return "insert_subreg";
4300
4301  // Conversion operators.
4302  case ISD::SIGN_EXTEND: return "sign_extend";
4303  case ISD::ZERO_EXTEND: return "zero_extend";
4304  case ISD::ANY_EXTEND:  return "any_extend";
4305  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4306  case ISD::TRUNCATE:    return "truncate";
4307  case ISD::FP_ROUND:    return "fp_round";
4308  case ISD::FLT_ROUNDS_: return "flt_rounds";
4309  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4310  case ISD::FP_EXTEND:   return "fp_extend";
4311
4312  case ISD::SINT_TO_FP:  return "sint_to_fp";
4313  case ISD::UINT_TO_FP:  return "uint_to_fp";
4314  case ISD::FP_TO_SINT:  return "fp_to_sint";
4315  case ISD::FP_TO_UINT:  return "fp_to_uint";
4316  case ISD::BIT_CONVERT: return "bit_convert";
4317
4318    // Control flow instructions
4319  case ISD::BR:      return "br";
4320  case ISD::BRIND:   return "brind";
4321  case ISD::BR_JT:   return "br_jt";
4322  case ISD::BRCOND:  return "brcond";
4323  case ISD::BR_CC:   return "br_cc";
4324  case ISD::RET:     return "ret";
4325  case ISD::CALLSEQ_START:  return "callseq_start";
4326  case ISD::CALLSEQ_END:    return "callseq_end";
4327
4328    // Other operators
4329  case ISD::LOAD:               return "load";
4330  case ISD::STORE:              return "store";
4331  case ISD::VAARG:              return "vaarg";
4332  case ISD::VACOPY:             return "vacopy";
4333  case ISD::VAEND:              return "vaend";
4334  case ISD::VASTART:            return "vastart";
4335  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4336  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4337  case ISD::BUILD_PAIR:         return "build_pair";
4338  case ISD::STACKSAVE:          return "stacksave";
4339  case ISD::STACKRESTORE:       return "stackrestore";
4340  case ISD::TRAP:               return "trap";
4341
4342  // Bit manipulation
4343  case ISD::BSWAP:   return "bswap";
4344  case ISD::CTPOP:   return "ctpop";
4345  case ISD::CTTZ:    return "cttz";
4346  case ISD::CTLZ:    return "ctlz";
4347
4348  // Debug info
4349  case ISD::LOCATION: return "location";
4350  case ISD::DEBUG_LOC: return "debug_loc";
4351
4352  // Trampolines
4353  case ISD::TRAMPOLINE: return "trampoline";
4354
4355  case ISD::CONDCODE:
4356    switch (cast<CondCodeSDNode>(this)->get()) {
4357    default: assert(0 && "Unknown setcc condition!");
4358    case ISD::SETOEQ:  return "setoeq";
4359    case ISD::SETOGT:  return "setogt";
4360    case ISD::SETOGE:  return "setoge";
4361    case ISD::SETOLT:  return "setolt";
4362    case ISD::SETOLE:  return "setole";
4363    case ISD::SETONE:  return "setone";
4364
4365    case ISD::SETO:    return "seto";
4366    case ISD::SETUO:   return "setuo";
4367    case ISD::SETUEQ:  return "setue";
4368    case ISD::SETUGT:  return "setugt";
4369    case ISD::SETUGE:  return "setuge";
4370    case ISD::SETULT:  return "setult";
4371    case ISD::SETULE:  return "setule";
4372    case ISD::SETUNE:  return "setune";
4373
4374    case ISD::SETEQ:   return "seteq";
4375    case ISD::SETGT:   return "setgt";
4376    case ISD::SETGE:   return "setge";
4377    case ISD::SETLT:   return "setlt";
4378    case ISD::SETLE:   return "setle";
4379    case ISD::SETNE:   return "setne";
4380    }
4381  }
4382}
4383
4384const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4385  switch (AM) {
4386  default:
4387    return "";
4388  case ISD::PRE_INC:
4389    return "<pre-inc>";
4390  case ISD::PRE_DEC:
4391    return "<pre-dec>";
4392  case ISD::POST_INC:
4393    return "<post-inc>";
4394  case ISD::POST_DEC:
4395    return "<post-dec>";
4396  }
4397}
4398
4399std::string ISD::ArgFlagsTy::getArgFlagsString() {
4400  std::string S = "< ";
4401
4402  if (isZExt())
4403    S += "zext ";
4404  if (isSExt())
4405    S += "sext ";
4406  if (isInReg())
4407    S += "inreg ";
4408  if (isSRet())
4409    S += "sret ";
4410  if (isByVal())
4411    S += "byval ";
4412  if (isNest())
4413    S += "nest ";
4414  if (getByValAlign())
4415    S += "byval-align:" + utostr(getByValAlign()) + " ";
4416  if (getOrigAlign())
4417    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4418  if (getByValSize())
4419    S += "byval-size:" + utostr(getByValSize()) + " ";
4420  return S + ">";
4421}
4422
4423void SDNode::dump() const { dump(0); }
4424void SDNode::dump(const SelectionDAG *G) const {
4425  cerr << (void*)this << ": ";
4426
4427  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4428    if (i) cerr << ",";
4429    if (getValueType(i) == MVT::Other)
4430      cerr << "ch";
4431    else
4432      cerr << MVT::getValueTypeString(getValueType(i));
4433  }
4434  cerr << " = " << getOperationName(G);
4435
4436  cerr << " ";
4437  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4438    if (i) cerr << ", ";
4439    cerr << (void*)getOperand(i).Val;
4440    if (unsigned RN = getOperand(i).ResNo)
4441      cerr << ":" << RN;
4442  }
4443
4444  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4445    SDNode *Mask = getOperand(2).Val;
4446    cerr << "<";
4447    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4448      if (i) cerr << ",";
4449      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4450        cerr << "u";
4451      else
4452        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4453    }
4454    cerr << ">";
4455  }
4456
4457  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4458    cerr << "<" << CSDN->getValue() << ">";
4459  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4460    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4461      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4462    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4463      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4464    else {
4465      cerr << "<APFloat(";
4466      CSDN->getValueAPF().convertToAPInt().dump();
4467      cerr << ")>";
4468    }
4469  } else if (const GlobalAddressSDNode *GADN =
4470             dyn_cast<GlobalAddressSDNode>(this)) {
4471    int offset = GADN->getOffset();
4472    cerr << "<";
4473    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4474    if (offset > 0)
4475      cerr << " + " << offset;
4476    else
4477      cerr << " " << offset;
4478  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4479    cerr << "<" << FIDN->getIndex() << ">";
4480  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4481    cerr << "<" << JTDN->getIndex() << ">";
4482  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4483    int offset = CP->getOffset();
4484    if (CP->isMachineConstantPoolEntry())
4485      cerr << "<" << *CP->getMachineCPVal() << ">";
4486    else
4487      cerr << "<" << *CP->getConstVal() << ">";
4488    if (offset > 0)
4489      cerr << " + " << offset;
4490    else
4491      cerr << " " << offset;
4492  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4493    cerr << "<";
4494    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4495    if (LBB)
4496      cerr << LBB->getName() << " ";
4497    cerr << (const void*)BBDN->getBasicBlock() << ">";
4498  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4499    if (G && R->getReg() &&
4500        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4501      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4502    } else {
4503      cerr << " #" << R->getReg();
4504    }
4505  } else if (const ExternalSymbolSDNode *ES =
4506             dyn_cast<ExternalSymbolSDNode>(this)) {
4507    cerr << "'" << ES->getSymbol() << "'";
4508  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4509    if (M->getValue())
4510      cerr << "<" << M->getValue() << ">";
4511    else
4512      cerr << "<null>";
4513  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4514    if (M->MO.getValue())
4515      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4516    else
4517      cerr << "<null:" << M->MO.getOffset() << ">";
4518  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4519    cerr << N->getArgFlags().getArgFlagsString();
4520  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4521    cerr << ":" << MVT::getValueTypeString(N->getVT());
4522  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4523    const Value *SrcValue = LD->getSrcValue();
4524    int SrcOffset = LD->getSrcValueOffset();
4525    cerr << " <";
4526    if (SrcValue)
4527      cerr << SrcValue;
4528    else
4529      cerr << "null";
4530    cerr << ":" << SrcOffset << ">";
4531
4532    bool doExt = true;
4533    switch (LD->getExtensionType()) {
4534    default: doExt = false; break;
4535    case ISD::EXTLOAD:
4536      cerr << " <anyext ";
4537      break;
4538    case ISD::SEXTLOAD:
4539      cerr << " <sext ";
4540      break;
4541    case ISD::ZEXTLOAD:
4542      cerr << " <zext ";
4543      break;
4544    }
4545    if (doExt)
4546      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4547
4548    const char *AM = getIndexedModeName(LD->getAddressingMode());
4549    if (*AM)
4550      cerr << " " << AM;
4551    if (LD->isVolatile())
4552      cerr << " <volatile>";
4553    cerr << " alignment=" << LD->getAlignment();
4554  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4555    const Value *SrcValue = ST->getSrcValue();
4556    int SrcOffset = ST->getSrcValueOffset();
4557    cerr << " <";
4558    if (SrcValue)
4559      cerr << SrcValue;
4560    else
4561      cerr << "null";
4562    cerr << ":" << SrcOffset << ">";
4563
4564    if (ST->isTruncatingStore())
4565      cerr << " <trunc "
4566           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4567
4568    const char *AM = getIndexedModeName(ST->getAddressingMode());
4569    if (*AM)
4570      cerr << " " << AM;
4571    if (ST->isVolatile())
4572      cerr << " <volatile>";
4573    cerr << " alignment=" << ST->getAlignment();
4574  }
4575}
4576
4577static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4578  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4579    if (N->getOperand(i).Val->hasOneUse())
4580      DumpNodes(N->getOperand(i).Val, indent+2, G);
4581    else
4582      cerr << "\n" << std::string(indent+2, ' ')
4583           << (void*)N->getOperand(i).Val << ": <multiple use>";
4584
4585
4586  cerr << "\n" << std::string(indent, ' ');
4587  N->dump(G);
4588}
4589
4590void SelectionDAG::dump() const {
4591  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4592  std::vector<const SDNode*> Nodes;
4593  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4594       I != E; ++I)
4595    Nodes.push_back(I);
4596
4597  std::sort(Nodes.begin(), Nodes.end());
4598
4599  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4600    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4601      DumpNodes(Nodes[i], 2, this);
4602  }
4603
4604  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4605
4606  cerr << "\n\n";
4607}
4608
4609const Type *ConstantPoolSDNode::getType() const {
4610  if (isMachineConstantPoolEntry())
4611    return Val.MachineCPVal->getType();
4612  return Val.ConstVal->getType();
4613}
4614