SelectionDAG.cpp revision 2e4284de53fb70686c5c135387006d033171da2e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ManagedStatic.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/System/Mutex.h"
38#include "llvm/ADT/SetVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/StringExtras.h"
43#include <algorithm>
44#include <cmath>
45using namespace llvm;
46
47/// makeVTList - Return an instance of the SDVTList struct initialized with the
48/// specified members.
49static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
50  SDVTList Res = {VTs, NumVTs};
51  return Res;
52}
53
54static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
55  switch (VT.getSimpleVT()) {
56  default: assert(0 && "Unknown FP format");
57  case MVT::f32:     return &APFloat::IEEEsingle;
58  case MVT::f64:     return &APFloat::IEEEdouble;
59  case MVT::f80:     return &APFloat::x87DoubleExtended;
60  case MVT::f128:    return &APFloat::IEEEquad;
61  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
62  }
63}
64
65SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
66
67//===----------------------------------------------------------------------===//
68//                              ConstantFPSDNode Class
69//===----------------------------------------------------------------------===//
70
71/// isExactlyValue - We don't rely on operator== working on double values, as
72/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73/// As such, this method can be used to do an exact bit-for-bit comparison of
74/// two floating point values.
75bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76  return getValueAPF().bitwiseIsEqual(V);
77}
78
79bool ConstantFPSDNode::isValueValidForType(MVT VT,
80                                           const APFloat& Val) {
81  assert(VT.isFloatingPoint() && "Can only convert between FP types");
82
83  // PPC long double cannot be converted to any other type.
84  if (VT == MVT::ppcf128 ||
85      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
86    return false;
87
88  // convert modifies in place, so make a copy.
89  APFloat Val2 = APFloat(Val);
90  bool losesInfo;
91  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
92                      &losesInfo);
93  return !losesInfo;
94}
95
96//===----------------------------------------------------------------------===//
97//                              ISD Namespace
98//===----------------------------------------------------------------------===//
99
100/// isBuildVectorAllOnes - Return true if the specified node is a
101/// BUILD_VECTOR where all of the elements are ~0 or undef.
102bool ISD::isBuildVectorAllOnes(const SDNode *N) {
103  // Look through a bit convert.
104  if (N->getOpcode() == ISD::BIT_CONVERT)
105    N = N->getOperand(0).getNode();
106
107  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
108
109  unsigned i = 0, e = N->getNumOperands();
110
111  // Skip over all of the undef values.
112  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
113    ++i;
114
115  // Do not accept an all-undef vector.
116  if (i == e) return false;
117
118  // Do not accept build_vectors that aren't all constants or which have non-~0
119  // elements.
120  SDValue NotZero = N->getOperand(i);
121  if (isa<ConstantSDNode>(NotZero)) {
122    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
123      return false;
124  } else if (isa<ConstantFPSDNode>(NotZero)) {
125    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
126                bitcastToAPInt().isAllOnesValue())
127      return false;
128  } else
129    return false;
130
131  // Okay, we have at least one ~0 value, check to see if the rest match or are
132  // undefs.
133  for (++i; i != e; ++i)
134    if (N->getOperand(i) != NotZero &&
135        N->getOperand(i).getOpcode() != ISD::UNDEF)
136      return false;
137  return true;
138}
139
140
141/// isBuildVectorAllZeros - Return true if the specified node is a
142/// BUILD_VECTOR where all of the elements are 0 or undef.
143bool ISD::isBuildVectorAllZeros(const SDNode *N) {
144  // Look through a bit convert.
145  if (N->getOpcode() == ISD::BIT_CONVERT)
146    N = N->getOperand(0).getNode();
147
148  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
149
150  unsigned i = 0, e = N->getNumOperands();
151
152  // Skip over all of the undef values.
153  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
154    ++i;
155
156  // Do not accept an all-undef vector.
157  if (i == e) return false;
158
159  // Do not accept build_vectors that aren't all constants or which have non-0
160  // elements.
161  SDValue Zero = N->getOperand(i);
162  if (isa<ConstantSDNode>(Zero)) {
163    if (!cast<ConstantSDNode>(Zero)->isNullValue())
164      return false;
165  } else if (isa<ConstantFPSDNode>(Zero)) {
166    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
167      return false;
168  } else
169    return false;
170
171  // Okay, we have at least one 0 value, check to see if the rest match or are
172  // undefs.
173  for (++i; i != e; ++i)
174    if (N->getOperand(i) != Zero &&
175        N->getOperand(i).getOpcode() != ISD::UNDEF)
176      return false;
177  return true;
178}
179
180/// isScalarToVector - Return true if the specified node is a
181/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
182/// element is not an undef.
183bool ISD::isScalarToVector(const SDNode *N) {
184  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
185    return true;
186
187  if (N->getOpcode() != ISD::BUILD_VECTOR)
188    return false;
189  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
190    return false;
191  unsigned NumElems = N->getNumOperands();
192  for (unsigned i = 1; i < NumElems; ++i) {
193    SDValue V = N->getOperand(i);
194    if (V.getOpcode() != ISD::UNDEF)
195      return false;
196  }
197  return true;
198}
199
200
201/// isDebugLabel - Return true if the specified node represents a debug
202/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDValue Zero;
205  if (N->getOpcode() == ISD::DBG_LABEL)
206    return true;
207  if (N->isMachineOpcode() &&
208      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
209    return true;
210  return false;
211}
212
213/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
214/// when given the operation for (X op Y).
215ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
216  // To perform this operation, we just need to swap the L and G bits of the
217  // operation.
218  unsigned OldL = (Operation >> 2) & 1;
219  unsigned OldG = (Operation >> 1) & 1;
220  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
221                       (OldL << 1) |       // New G bit
222                       (OldG << 2));       // New L bit.
223}
224
225/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
226/// 'op' is a valid SetCC operation.
227ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
228  unsigned Operation = Op;
229  if (isInteger)
230    Operation ^= 7;   // Flip L, G, E bits, but not U.
231  else
232    Operation ^= 15;  // Flip all of the condition bits.
233
234  if (Operation > ISD::SETTRUE2)
235    Operation &= ~8;  // Don't let N and U bits get set.
236
237  return ISD::CondCode(Operation);
238}
239
240
241/// isSignedOp - For an integer comparison, return 1 if the comparison is a
242/// signed operation and 2 if the result is an unsigned comparison.  Return zero
243/// if the operation does not depend on the sign of the input (setne and seteq).
244static int isSignedOp(ISD::CondCode Opcode) {
245  switch (Opcode) {
246  default: assert(0 && "Illegal integer setcc operation!");
247  case ISD::SETEQ:
248  case ISD::SETNE: return 0;
249  case ISD::SETLT:
250  case ISD::SETLE:
251  case ISD::SETGT:
252  case ISD::SETGE: return 1;
253  case ISD::SETULT:
254  case ISD::SETULE:
255  case ISD::SETUGT:
256  case ISD::SETUGE: return 2;
257  }
258}
259
260/// getSetCCOrOperation - Return the result of a logical OR between different
261/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
262/// returns SETCC_INVALID if it is not possible to represent the resultant
263/// comparison.
264ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
265                                       bool isInteger) {
266  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
267    // Cannot fold a signed integer setcc with an unsigned integer setcc.
268    return ISD::SETCC_INVALID;
269
270  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
271
272  // If the N and U bits get set then the resultant comparison DOES suddenly
273  // care about orderedness, and is true when ordered.
274  if (Op > ISD::SETTRUE2)
275    Op &= ~16;     // Clear the U bit if the N bit is set.
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
279    Op = ISD::SETNE;
280
281  return ISD::CondCode(Op);
282}
283
284/// getSetCCAndOperation - Return the result of a logical AND between different
285/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
286/// function returns zero if it is not possible to represent the resultant
287/// comparison.
288ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
289                                        bool isInteger) {
290  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
291    // Cannot fold a signed setcc with an unsigned setcc.
292    return ISD::SETCC_INVALID;
293
294  // Combine all of the condition bits.
295  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
296
297  // Canonicalize illegal integer setcc's.
298  if (isInteger) {
299    switch (Result) {
300    default: break;
301    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
302    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return MF->getTarget();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDValue *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->getNode());
338    ID.AddInteger(Ops->getResNo());
339  }
340}
341
342/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
343///
344static void AddNodeIDOperands(FoldingSetNodeID &ID,
345                              const SDUse *Ops, unsigned NumOps) {
346  for (; NumOps; --NumOps, ++Ops) {
347    ID.AddPointer(Ops->getNode());
348    ID.AddInteger(Ops->getResNo());
349  }
350}
351
352static void AddNodeIDNode(FoldingSetNodeID &ID,
353                          unsigned short OpC, SDVTList VTList,
354                          const SDValue *OpList, unsigned N) {
355  AddNodeIDOpcode(ID, OpC);
356  AddNodeIDValueTypes(ID, VTList);
357  AddNodeIDOperands(ID, OpList, N);
358}
359
360/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
361/// the NodeID data.
362static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
363  switch (N->getOpcode()) {
364  case ISD::TargetExternalSymbol:
365  case ISD::ExternalSymbol:
366    assert(0 && "Should only be used on nodes with operands");
367  default: break;  // Normal nodes don't need extra info.
368  case ISD::ARG_FLAGS:
369    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
370    break;
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    ID.AddInteger(GA->getTargetFlags());
388    break;
389  }
390  case ISD::BasicBlock:
391    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
392    break;
393  case ISD::Register:
394    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
395    break;
396  case ISD::DBG_STOPPOINT: {
397    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
398    ID.AddInteger(DSP->getLine());
399    ID.AddInteger(DSP->getColumn());
400    ID.AddPointer(DSP->getCompileUnit());
401    break;
402  }
403  case ISD::SRCVALUE:
404    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
405    break;
406  case ISD::MEMOPERAND: {
407    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
408    MO.Profile(ID);
409    break;
410  }
411  case ISD::FrameIndex:
412  case ISD::TargetFrameIndex:
413    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
414    break;
415  case ISD::JumpTable:
416  case ISD::TargetJumpTable:
417    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
418    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
419    break;
420  case ISD::ConstantPool:
421  case ISD::TargetConstantPool: {
422    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
423    ID.AddInteger(CP->getAlignment());
424    ID.AddInteger(CP->getOffset());
425    if (CP->isMachineConstantPoolEntry())
426      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
427    else
428      ID.AddPointer(CP->getConstVal());
429    ID.AddInteger(CP->getTargetFlags());
430    break;
431  }
432  case ISD::CALL: {
433    const CallSDNode *Call = cast<CallSDNode>(N);
434    ID.AddInteger(Call->getCallingConv());
435    ID.AddInteger(Call->isVarArg());
436    break;
437  }
438  case ISD::LOAD: {
439    const LoadSDNode *LD = cast<LoadSDNode>(N);
440    ID.AddInteger(LD->getMemoryVT().getRawBits());
441    ID.AddInteger(LD->getRawSubclassData());
442    break;
443  }
444  case ISD::STORE: {
445    const StoreSDNode *ST = cast<StoreSDNode>(N);
446    ID.AddInteger(ST->getMemoryVT().getRawBits());
447    ID.AddInteger(ST->getRawSubclassData());
448    break;
449  }
450  case ISD::ATOMIC_CMP_SWAP:
451  case ISD::ATOMIC_SWAP:
452  case ISD::ATOMIC_LOAD_ADD:
453  case ISD::ATOMIC_LOAD_SUB:
454  case ISD::ATOMIC_LOAD_AND:
455  case ISD::ATOMIC_LOAD_OR:
456  case ISD::ATOMIC_LOAD_XOR:
457  case ISD::ATOMIC_LOAD_NAND:
458  case ISD::ATOMIC_LOAD_MIN:
459  case ISD::ATOMIC_LOAD_MAX:
460  case ISD::ATOMIC_LOAD_UMIN:
461  case ISD::ATOMIC_LOAD_UMAX: {
462    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
463    ID.AddInteger(AT->getMemoryVT().getRawBits());
464    ID.AddInteger(AT->getRawSubclassData());
465    break;
466  }
467  case ISD::VECTOR_SHUFFLE: {
468    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
469    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
470         i != e; ++i)
471      ID.AddInteger(SVN->getMaskElt(i));
472    break;
473  }
474  } // end switch (N->getOpcode())
475}
476
477/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
478/// data.
479static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
480  AddNodeIDOpcode(ID, N->getOpcode());
481  // Add the return value info.
482  AddNodeIDValueTypes(ID, N->getVTList());
483  // Add the operand info.
484  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
485
486  // Handle SDNode leafs with special info.
487  AddNodeIDCustom(ID, N);
488}
489
490/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
491/// the CSE map that carries alignment, volatility, indexing mode, and
492/// extension/truncation information.
493///
494static inline unsigned
495encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
496                     bool isVolatile, unsigned Alignment) {
497  assert((ConvType & 3) == ConvType &&
498         "ConvType may not require more than 2 bits!");
499  assert((AM & 7) == AM &&
500         "AM may not require more than 3 bits!");
501  return ConvType |
502         (AM << 2) |
503         (isVolatile << 5) |
504         ((Log2_32(Alignment) + 1) << 6);
505}
506
507//===----------------------------------------------------------------------===//
508//                              SelectionDAG Class
509//===----------------------------------------------------------------------===//
510
511/// doNotCSE - Return true if CSE should not be performed for this node.
512static bool doNotCSE(SDNode *N) {
513  if (N->getValueType(0) == MVT::Flag)
514    return true; // Never CSE anything that produces a flag.
515
516  switch (N->getOpcode()) {
517  default: break;
518  case ISD::HANDLENODE:
519  case ISD::DBG_LABEL:
520  case ISD::DBG_STOPPOINT:
521  case ISD::EH_LABEL:
522  case ISD::DECLARE:
523    return true;   // Never CSE these nodes.
524  }
525
526  // Check that remaining values produced are not flags.
527  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
528    if (N->getValueType(i) == MVT::Flag)
529      return true; // Never CSE anything that produces a flag.
530
531  return false;
532}
533
534/// RemoveDeadNodes - This method deletes all unreachable nodes in the
535/// SelectionDAG.
536void SelectionDAG::RemoveDeadNodes() {
537  // Create a dummy node (which is not added to allnodes), that adds a reference
538  // to the root node, preventing it from being deleted.
539  HandleSDNode Dummy(getRoot());
540
541  SmallVector<SDNode*, 128> DeadNodes;
542
543  // Add all obviously-dead nodes to the DeadNodes worklist.
544  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
545    if (I->use_empty())
546      DeadNodes.push_back(I);
547
548  RemoveDeadNodes(DeadNodes);
549
550  // If the root changed (e.g. it was a dead load, update the root).
551  setRoot(Dummy.getValue());
552}
553
554/// RemoveDeadNodes - This method deletes the unreachable nodes in the
555/// given list, and any nodes that become unreachable as a result.
556void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
557                                   DAGUpdateListener *UpdateListener) {
558
559  // Process the worklist, deleting the nodes and adding their uses to the
560  // worklist.
561  while (!DeadNodes.empty()) {
562    SDNode *N = DeadNodes.pop_back_val();
563
564    if (UpdateListener)
565      UpdateListener->NodeDeleted(N, 0);
566
567    // Take the node out of the appropriate CSE map.
568    RemoveNodeFromCSEMaps(N);
569
570    // Next, brutally remove the operand list.  This is safe to do, as there are
571    // no cycles in the graph.
572    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
573      SDUse &Use = *I++;
574      SDNode *Operand = Use.getNode();
575      Use.set(SDValue());
576
577      // Now that we removed this operand, see if there are no uses of it left.
578      if (Operand->use_empty())
579        DeadNodes.push_back(Operand);
580    }
581
582    DeallocateNode(N);
583  }
584}
585
586void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
587  SmallVector<SDNode*, 16> DeadNodes(1, N);
588  RemoveDeadNodes(DeadNodes, UpdateListener);
589}
590
591void SelectionDAG::DeleteNode(SDNode *N) {
592  // First take this out of the appropriate CSE map.
593  RemoveNodeFromCSEMaps(N);
594
595  // Finally, remove uses due to operands of this node, remove from the
596  // AllNodes list, and delete the node.
597  DeleteNodeNotInCSEMaps(N);
598}
599
600void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
601  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
602  assert(N->use_empty() && "Cannot delete a node that is not dead!");
603
604  // Drop all of the operands and decrement used node's use counts.
605  N->DropOperands();
606
607  DeallocateNode(N);
608}
609
610void SelectionDAG::DeallocateNode(SDNode *N) {
611  if (N->OperandsNeedDelete)
612    delete[] N->OperandList;
613
614  // Set the opcode to DELETED_NODE to help catch bugs when node
615  // memory is reallocated.
616  N->NodeType = ISD::DELETED_NODE;
617
618  NodeAllocator.Deallocate(AllNodes.remove(N));
619}
620
621/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
622/// correspond to it.  This is useful when we're about to delete or repurpose
623/// the node.  We don't want future request for structurally identical nodes
624/// to return N anymore.
625bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
626  bool Erased = false;
627  switch (N->getOpcode()) {
628  case ISD::EntryToken:
629    assert(0 && "EntryToken should not be in CSEMaps!");
630    return false;
631  case ISD::HANDLENODE: return false;  // noop.
632  case ISD::CONDCODE:
633    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
634           "Cond code doesn't exist!");
635    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
636    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
637    break;
638  case ISD::ExternalSymbol:
639    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
640    break;
641  case ISD::TargetExternalSymbol: {
642    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
643    Erased = TargetExternalSymbols.erase(
644               std::pair<std::string,unsigned char>(ESN->getSymbol(),
645                                                    ESN->getTargetFlags()));
646    break;
647  }
648  case ISD::VALUETYPE: {
649    MVT VT = cast<VTSDNode>(N)->getVT();
650    if (VT.isExtended()) {
651      Erased = ExtendedValueTypeNodes.erase(VT);
652    } else {
653      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
654      ValueTypeNodes[VT.getSimpleVT()] = 0;
655    }
656    break;
657  }
658  default:
659    // Remove it from the CSE Map.
660    Erased = CSEMap.RemoveNode(N);
661    break;
662  }
663#ifndef NDEBUG
664  // Verify that the node was actually in one of the CSE maps, unless it has a
665  // flag result (which cannot be CSE'd) or is one of the special cases that are
666  // not subject to CSE.
667  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
668      !N->isMachineOpcode() && !doNotCSE(N)) {
669    N->dump(this);
670    cerr << "\n";
671    assert(0 && "Node is not in map!");
672  }
673#endif
674  return Erased;
675}
676
677/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
678/// maps and modified in place. Add it back to the CSE maps, unless an identical
679/// node already exists, in which case transfer all its users to the existing
680/// node. This transfer can potentially trigger recursive merging.
681///
682void
683SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
684                                       DAGUpdateListener *UpdateListener) {
685  // For node types that aren't CSE'd, just act as if no identical node
686  // already exists.
687  if (!doNotCSE(N)) {
688    SDNode *Existing = CSEMap.GetOrInsertNode(N);
689    if (Existing != N) {
690      // If there was already an existing matching node, use ReplaceAllUsesWith
691      // to replace the dead one with the existing one.  This can cause
692      // recursive merging of other unrelated nodes down the line.
693      ReplaceAllUsesWith(N, Existing, UpdateListener);
694
695      // N is now dead.  Inform the listener if it exists and delete it.
696      if (UpdateListener)
697        UpdateListener->NodeDeleted(N, Existing);
698      DeleteNodeNotInCSEMaps(N);
699      return;
700    }
701  }
702
703  // If the node doesn't already exist, we updated it.  Inform a listener if
704  // it exists.
705  if (UpdateListener)
706    UpdateListener->NodeUpdated(N);
707}
708
709/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
710/// were replaced with those specified.  If this node is never memoized,
711/// return null, otherwise return a pointer to the slot it would take.  If a
712/// node already exists with these operands, the slot will be non-null.
713SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
714                                           void *&InsertPos) {
715  if (doNotCSE(N))
716    return 0;
717
718  SDValue Ops[] = { Op };
719  FoldingSetNodeID ID;
720  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
721  AddNodeIDCustom(ID, N);
722  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
723}
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           SDValue Op1, SDValue Op2,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  SDValue Ops[] = { Op1, Op2 };
736  FoldingSetNodeID ID;
737  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
738  AddNodeIDCustom(ID, N);
739  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
740}
741
742
743/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
744/// were replaced with those specified.  If this node is never memoized,
745/// return null, otherwise return a pointer to the slot it would take.  If a
746/// node already exists with these operands, the slot will be non-null.
747SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
748                                           const SDValue *Ops,unsigned NumOps,
749                                           void *&InsertPos) {
750  if (doNotCSE(N))
751    return 0;
752
753  FoldingSetNodeID ID;
754  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
755  AddNodeIDCustom(ID, N);
756  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
757}
758
759/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
760void SelectionDAG::VerifyNode(SDNode *N) {
761  switch (N->getOpcode()) {
762  default:
763    break;
764  case ISD::BUILD_PAIR: {
765    MVT VT = N->getValueType(0);
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
768           "Wrong return type!");
769    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
770    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
771           "Mismatched operand types!");
772    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
773           "Wrong operand type!");
774    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
775           "Wrong return type size");
776    break;
777  }
778  case ISD::BUILD_VECTOR: {
779    assert(N->getNumValues() == 1 && "Too many results!");
780    assert(N->getValueType(0).isVector() && "Wrong return type!");
781    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
782           "Wrong number of operands!");
783    MVT EltVT = N->getValueType(0).getVectorElementType();
784    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
785      assert((I->getValueType() == EltVT ||
786             (EltVT.isInteger() && I->getValueType().isInteger() &&
787              EltVT.bitsLE(I->getValueType()))) &&
788            "Wrong operand type!");
789    break;
790  }
791  }
792}
793
794/// getMVTAlignment - Compute the default alignment value for the
795/// given type.
796///
797unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
798  const Type *Ty = VT == MVT::iPTR ?
799                   PointerType::get(Type::Int8Ty, 0) :
800                   VT.getTypeForMVT();
801
802  return TLI.getTargetData()->getABITypeAlignment(Ty);
803}
804
805// EntryNode could meaningfully have debug info if we can find it...
806SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
807  : TLI(tli), FLI(fli), DW(0),
808    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
809    getVTList(MVT::Other)), Root(getEntryNode()) {
810  AllNodes.push_back(&EntryNode);
811}
812
813void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
814                        DwarfWriter *dw) {
815  MF = &mf;
816  MMI = mmi;
817  DW = dw;
818}
819
820SelectionDAG::~SelectionDAG() {
821  allnodes_clear();
822}
823
824void SelectionDAG::allnodes_clear() {
825  assert(&*AllNodes.begin() == &EntryNode);
826  AllNodes.remove(AllNodes.begin());
827  while (!AllNodes.empty())
828    DeallocateNode(AllNodes.begin());
829}
830
831void SelectionDAG::clear() {
832  allnodes_clear();
833  OperandAllocator.Reset();
834  CSEMap.clear();
835
836  ExtendedValueTypeNodes.clear();
837  ExternalSymbols.clear();
838  TargetExternalSymbols.clear();
839  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
840            static_cast<CondCodeSDNode*>(0));
841  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
842            static_cast<SDNode*>(0));
843
844  EntryNode.UseList = 0;
845  AllNodes.push_back(&EntryNode);
846  Root = getEntryNode();
847}
848
849SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
850  if (Op.getValueType() == VT) return Op;
851  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
852                                   VT.getSizeInBits());
853  return getNode(ISD::AND, DL, Op.getValueType(), Op,
854                 getConstant(Imm, Op.getValueType()));
855}
856
857/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
858///
859SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
860  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
861  SDValue NegOne =
862    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
863  return getNode(ISD::XOR, DL, VT, Val, NegOne);
864}
865
866SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
867  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
868  assert((EltVT.getSizeInBits() >= 64 ||
869         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
870         "getConstant with a uint64_t value that doesn't fit in the type!");
871  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
872}
873
874SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
875  return getConstant(*ConstantInt::get(Val), VT, isT);
876}
877
878SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
879  assert(VT.isInteger() && "Cannot create FP integer constant!");
880
881  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
882  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
883         "APInt size does not match type size!");
884
885  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
886  FoldingSetNodeID ID;
887  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
888  ID.AddPointer(&Val);
889  void *IP = 0;
890  SDNode *N = NULL;
891  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
892    if (!VT.isVector())
893      return SDValue(N, 0);
894  if (!N) {
895    N = NodeAllocator.Allocate<ConstantSDNode>();
896    new (N) ConstantSDNode(isT, &Val, EltVT);
897    CSEMap.InsertNode(N, IP);
898    AllNodes.push_back(N);
899  }
900
901  SDValue Result(N, 0);
902  if (VT.isVector()) {
903    SmallVector<SDValue, 8> Ops;
904    Ops.assign(VT.getVectorNumElements(), Result);
905    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
906                     VT, &Ops[0], Ops.size());
907  }
908  return Result;
909}
910
911SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
912  return getConstant(Val, TLI.getPointerTy(), isTarget);
913}
914
915
916SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
917  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
918}
919
920SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
921  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
922
923  MVT EltVT =
924    VT.isVector() ? VT.getVectorElementType() : VT;
925
926  // Do the map lookup using the actual bit pattern for the floating point
927  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
928  // we don't have issues with SNANs.
929  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
930  FoldingSetNodeID ID;
931  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
932  ID.AddPointer(&V);
933  void *IP = 0;
934  SDNode *N = NULL;
935  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
936    if (!VT.isVector())
937      return SDValue(N, 0);
938  if (!N) {
939    N = NodeAllocator.Allocate<ConstantFPSDNode>();
940    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
941    CSEMap.InsertNode(N, IP);
942    AllNodes.push_back(N);
943  }
944
945  SDValue Result(N, 0);
946  if (VT.isVector()) {
947    SmallVector<SDValue, 8> Ops;
948    Ops.assign(VT.getVectorNumElements(), Result);
949    // FIXME DebugLoc info might be appropriate here
950    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
951                     VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
957  MVT EltVT =
958    VT.isVector() ? VT.getVectorElementType() : VT;
959  if (EltVT==MVT::f32)
960    return getConstantFP(APFloat((float)Val), VT, isTarget);
961  else
962    return getConstantFP(APFloat(Val), VT, isTarget);
963}
964
965SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
966                                       MVT VT, int64_t Offset,
967                                       bool isTargetGA,
968                                       unsigned char TargetFlags) {
969  assert((TargetFlags == 0 || isTargetGA) &&
970         "Cannot set target flags on target-independent globals");
971
972  // Truncate (with sign-extension) the offset value to the pointer size.
973  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
974  if (BitWidth < 64)
975    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
976
977  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
978  if (!GVar) {
979    // If GV is an alias then use the aliasee for determining thread-localness.
980    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
981      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
982  }
983
984  unsigned Opc;
985  if (GVar && GVar->isThreadLocal())
986    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
987  else
988    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
989
990  FoldingSetNodeID ID;
991  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
992  ID.AddPointer(GV);
993  ID.AddInteger(Offset);
994  ID.AddInteger(TargetFlags);
995  void *IP = 0;
996  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997    return SDValue(E, 0);
998  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
999  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1000  CSEMap.InsertNode(N, IP);
1001  AllNodes.push_back(N);
1002  return SDValue(N, 0);
1003}
1004
1005SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1006  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1007  FoldingSetNodeID ID;
1008  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009  ID.AddInteger(FI);
1010  void *IP = 0;
1011  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012    return SDValue(E, 0);
1013  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1014  new (N) FrameIndexSDNode(FI, VT, isTarget);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget,
1021                                   unsigned char TargetFlags) {
1022  assert((TargetFlags == 0 || isTarget) &&
1023         "Cannot set target flags on target-independent jump tables");
1024  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1025  FoldingSetNodeID ID;
1026  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1027  ID.AddInteger(JTI);
1028  ID.AddInteger(TargetFlags);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1033  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1040                                      unsigned Alignment, int Offset,
1041                                      bool isTarget,
1042                                      unsigned char TargetFlags) {
1043  assert((TargetFlags == 0 || isTarget) &&
1044         "Cannot set target flags on target-independent globals");
1045  if (Alignment == 0)
1046    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1047  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050  ID.AddInteger(Alignment);
1051  ID.AddInteger(Offset);
1052  ID.AddPointer(C);
1053  ID.AddInteger(TargetFlags);
1054  void *IP = 0;
1055  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1056    return SDValue(E, 0);
1057  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1058  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1059  CSEMap.InsertNode(N, IP);
1060  AllNodes.push_back(N);
1061  return SDValue(N, 0);
1062}
1063
1064
1065SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1066                                      unsigned Alignment, int Offset,
1067                                      bool isTarget,
1068                                      unsigned char TargetFlags) {
1069  assert((TargetFlags == 0 || isTarget) &&
1070         "Cannot set target flags on target-independent globals");
1071  if (Alignment == 0)
1072    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1073  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1074  FoldingSetNodeID ID;
1075  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1076  ID.AddInteger(Alignment);
1077  ID.AddInteger(Offset);
1078  C->AddSelectionDAGCSEId(ID);
1079  ID.AddInteger(TargetFlags);
1080  void *IP = 0;
1081  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1082    return SDValue(E, 0);
1083  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1084  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1085  CSEMap.InsertNode(N, IP);
1086  AllNodes.push_back(N);
1087  return SDValue(N, 0);
1088}
1089
1090SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1091  FoldingSetNodeID ID;
1092  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1093  ID.AddPointer(MBB);
1094  void *IP = 0;
1095  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1096    return SDValue(E, 0);
1097  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1098  new (N) BasicBlockSDNode(MBB);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1107  ID.AddInteger(Flags.getRawBits());
1108  void *IP = 0;
1109  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1110    return SDValue(E, 0);
1111  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1112  new (N) ARG_FLAGSSDNode(Flags);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(MVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1120    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1121
1122  SDNode *&N = VT.isExtended() ?
1123    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1124
1125  if (N) return SDValue(N, 0);
1126  N = NodeAllocator.Allocate<VTSDNode>();
1127  new (N) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1136  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1137  AllNodes.push_back(N);
1138  return SDValue(N, 0);
1139}
1140
1141SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT,
1142                                              unsigned char TargetFlags) {
1143  SDNode *&N =
1144    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1145                                                               TargetFlags)];
1146  if (N) return SDValue(N, 0);
1147  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1148  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1149  AllNodes.push_back(N);
1150  return SDValue(N, 0);
1151}
1152
1153SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1154  if ((unsigned)Cond >= CondCodeNodes.size())
1155    CondCodeNodes.resize(Cond+1);
1156
1157  if (CondCodeNodes[Cond] == 0) {
1158    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1159    new (N) CondCodeSDNode(Cond);
1160    CondCodeNodes[Cond] = N;
1161    AllNodes.push_back(N);
1162  }
1163  return SDValue(CondCodeNodes[Cond], 0);
1164}
1165
1166// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1167// the shuffle mask M that point at N1 to point at N2, and indices that point
1168// N2 to point at N1.
1169static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1170  std::swap(N1, N2);
1171  int NElts = M.size();
1172  for (int i = 0; i != NElts; ++i) {
1173    if (M[i] >= NElts)
1174      M[i] -= NElts;
1175    else if (M[i] >= 0)
1176      M[i] += NElts;
1177  }
1178}
1179
1180SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1181                                       SDValue N2, const int *Mask) {
1182  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1183  assert(VT.isVector() && N1.getValueType().isVector() &&
1184         "Vector Shuffle VTs must be a vectors");
1185  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1186         && "Vector Shuffle VTs must have same element type");
1187
1188  // Canonicalize shuffle undef, undef -> undef
1189  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1190    return getUNDEF(VT);
1191
1192  // Validate that all indices in Mask are within the range of the elements
1193  // input to the shuffle.
1194  unsigned NElts = VT.getVectorNumElements();
1195  SmallVector<int, 8> MaskVec;
1196  for (unsigned i = 0; i != NElts; ++i) {
1197    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1198    MaskVec.push_back(Mask[i]);
1199  }
1200
1201  // Canonicalize shuffle v, v -> v, undef
1202  if (N1 == N2) {
1203    N2 = getUNDEF(VT);
1204    for (unsigned i = 0; i != NElts; ++i)
1205      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1206  }
1207
1208  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1209  if (N1.getOpcode() == ISD::UNDEF)
1210    commuteShuffle(N1, N2, MaskVec);
1211
1212  // Canonicalize all index into lhs, -> shuffle lhs, undef
1213  // Canonicalize all index into rhs, -> shuffle rhs, undef
1214  bool AllLHS = true, AllRHS = true;
1215  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1216  for (unsigned i = 0; i != NElts; ++i) {
1217    if (MaskVec[i] >= (int)NElts) {
1218      if (N2Undef)
1219        MaskVec[i] = -1;
1220      else
1221        AllLHS = false;
1222    } else if (MaskVec[i] >= 0) {
1223      AllRHS = false;
1224    }
1225  }
1226  if (AllLHS && AllRHS)
1227    return getUNDEF(VT);
1228  if (AllLHS && !N2Undef)
1229    N2 = getUNDEF(VT);
1230  if (AllRHS) {
1231    N1 = getUNDEF(VT);
1232    commuteShuffle(N1, N2, MaskVec);
1233  }
1234
1235  // If Identity shuffle, or all shuffle in to undef, return that node.
1236  bool AllUndef = true;
1237  bool Identity = true;
1238  for (unsigned i = 0; i != NElts; ++i) {
1239    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1240    if (MaskVec[i] >= 0) AllUndef = false;
1241  }
1242  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1243    return N1;
1244  if (AllUndef)
1245    return getUNDEF(VT);
1246
1247  FoldingSetNodeID ID;
1248  SDValue Ops[2] = { N1, N2 };
1249  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1250  for (unsigned i = 0; i != NElts; ++i)
1251    ID.AddInteger(MaskVec[i]);
1252
1253  void* IP = 0;
1254  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1255    return SDValue(E, 0);
1256
1257  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1258  // SDNode doesn't have access to it.  This memory will be "leaked" when
1259  // the node is deallocated, but recovered when the NodeAllocator is released.
1260  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1261  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1262
1263  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1264  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1265  CSEMap.InsertNode(N, IP);
1266  AllNodes.push_back(N);
1267  return SDValue(N, 0);
1268}
1269
1270SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1271                                       SDValue Val, SDValue DTy,
1272                                       SDValue STy, SDValue Rnd, SDValue Sat,
1273                                       ISD::CvtCode Code) {
1274  // If the src and dest types are the same and the conversion is between
1275  // integer types of the same sign or two floats, no conversion is necessary.
1276  if (DTy == STy &&
1277      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1278    return Val;
1279
1280  FoldingSetNodeID ID;
1281  void* IP = 0;
1282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1283    return SDValue(E, 0);
1284  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1285  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1286  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1293  FoldingSetNodeID ID;
1294  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1295  ID.AddInteger(RegNo);
1296  void *IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1300  new (N) RegisterSDNode(RegNo, VT);
1301  CSEMap.InsertNode(N, IP);
1302  AllNodes.push_back(N);
1303  return SDValue(N, 0);
1304}
1305
1306SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1307                                      unsigned Line, unsigned Col,
1308                                      Value *CU) {
1309  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1310  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1311  N->setDebugLoc(DL);
1312  AllNodes.push_back(N);
1313  return SDValue(N, 0);
1314}
1315
1316SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1317                               SDValue Root,
1318                               unsigned LabelID) {
1319  FoldingSetNodeID ID;
1320  SDValue Ops[] = { Root };
1321  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1322  ID.AddInteger(LabelID);
1323  void *IP = 0;
1324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1325    return SDValue(E, 0);
1326  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1327  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1328  CSEMap.InsertNode(N, IP);
1329  AllNodes.push_back(N);
1330  return SDValue(N, 0);
1331}
1332
1333SDValue SelectionDAG::getSrcValue(const Value *V) {
1334  assert((!V || isa<PointerType>(V->getType())) &&
1335         "SrcValue is not a pointer?");
1336
1337  FoldingSetNodeID ID;
1338  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1339  ID.AddPointer(V);
1340
1341  void *IP = 0;
1342  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1343    return SDValue(E, 0);
1344
1345  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1346  new (N) SrcValueSDNode(V);
1347  CSEMap.InsertNode(N, IP);
1348  AllNodes.push_back(N);
1349  return SDValue(N, 0);
1350}
1351
1352SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1353#ifndef NDEBUG
1354  const Value *v = MO.getValue();
1355  assert((!v || isa<PointerType>(v->getType())) &&
1356         "SrcValue is not a pointer?");
1357#endif
1358
1359  FoldingSetNodeID ID;
1360  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1361  MO.Profile(ID);
1362
1363  void *IP = 0;
1364  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1365    return SDValue(E, 0);
1366
1367  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1368  new (N) MemOperandSDNode(MO);
1369  CSEMap.InsertNode(N, IP);
1370  AllNodes.push_back(N);
1371  return SDValue(N, 0);
1372}
1373
1374/// getShiftAmountOperand - Return the specified value casted to
1375/// the target's desired shift amount type.
1376SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1377  MVT OpTy = Op.getValueType();
1378  MVT ShTy = TLI.getShiftAmountTy();
1379  if (OpTy == ShTy || OpTy.isVector()) return Op;
1380
1381  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1382  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1383}
1384
1385/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1386/// specified value type.
1387SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1388  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1389  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1390  const Type *Ty = VT.getTypeForMVT();
1391  unsigned StackAlign =
1392  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1393
1394  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1395  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1396}
1397
1398/// CreateStackTemporary - Create a stack temporary suitable for holding
1399/// either of the specified value types.
1400SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1401  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1402                            VT2.getStoreSizeInBits())/8;
1403  const Type *Ty1 = VT1.getTypeForMVT();
1404  const Type *Ty2 = VT2.getTypeForMVT();
1405  const TargetData *TD = TLI.getTargetData();
1406  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1407                            TD->getPrefTypeAlignment(Ty2));
1408
1409  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1410  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1411  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1412}
1413
1414SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1415                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1416  // These setcc operations always fold.
1417  switch (Cond) {
1418  default: break;
1419  case ISD::SETFALSE:
1420  case ISD::SETFALSE2: return getConstant(0, VT);
1421  case ISD::SETTRUE:
1422  case ISD::SETTRUE2:  return getConstant(1, VT);
1423
1424  case ISD::SETOEQ:
1425  case ISD::SETOGT:
1426  case ISD::SETOGE:
1427  case ISD::SETOLT:
1428  case ISD::SETOLE:
1429  case ISD::SETONE:
1430  case ISD::SETO:
1431  case ISD::SETUO:
1432  case ISD::SETUEQ:
1433  case ISD::SETUNE:
1434    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1435    break;
1436  }
1437
1438  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1439    const APInt &C2 = N2C->getAPIntValue();
1440    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1441      const APInt &C1 = N1C->getAPIntValue();
1442
1443      switch (Cond) {
1444      default: assert(0 && "Unknown integer setcc!");
1445      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1446      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1447      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1448      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1449      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1450      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1451      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1452      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1453      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1454      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1455      }
1456    }
1457  }
1458  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1459    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1460      // No compile time operations on this type yet.
1461      if (N1C->getValueType(0) == MVT::ppcf128)
1462        return SDValue();
1463
1464      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1465      switch (Cond) {
1466      default: break;
1467      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1471      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1475                                           R==APFloat::cmpLessThan, VT);
1476      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1477                          return getUNDEF(VT);
1478                        // fall through
1479      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1480      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1484      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1485                          return getUNDEF(VT);
1486                        // fall through
1487      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1490                          return getUNDEF(VT);
1491                        // fall through
1492      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpEqual, VT);
1494      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1495      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1496      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1497                                           R==APFloat::cmpEqual, VT);
1498      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1499      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1500                                           R==APFloat::cmpLessThan, VT);
1501      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1502                                           R==APFloat::cmpUnordered, VT);
1503      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1504      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1505      }
1506    } else {
1507      // Ensure that the constant occurs on the RHS.
1508      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1509    }
1510  }
1511
1512  // Could not fold it.
1513  return SDValue();
1514}
1515
1516/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1517/// use this predicate to simplify operations downstream.
1518bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1519  // This predicate is not safe for vector operations.
1520  if (Op.getValueType().isVector())
1521    return false;
1522
1523  unsigned BitWidth = Op.getValueSizeInBits();
1524  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1525}
1526
1527/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1528/// this predicate to simplify operations downstream.  Mask is known to be zero
1529/// for bits that V cannot have.
1530bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1531                                     unsigned Depth) const {
1532  APInt KnownZero, KnownOne;
1533  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1534  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1535  return (KnownZero & Mask) == Mask;
1536}
1537
1538/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1539/// known to be either zero or one and return them in the KnownZero/KnownOne
1540/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1541/// processing.
1542void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1543                                     APInt &KnownZero, APInt &KnownOne,
1544                                     unsigned Depth) const {
1545  unsigned BitWidth = Mask.getBitWidth();
1546  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1547         "Mask size mismatches value type size!");
1548
1549  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1550  if (Depth == 6 || Mask == 0)
1551    return;  // Limit search depth.
1552
1553  APInt KnownZero2, KnownOne2;
1554
1555  switch (Op.getOpcode()) {
1556  case ISD::Constant:
1557    // We know all of the bits for a constant!
1558    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1559    KnownZero = ~KnownOne & Mask;
1560    return;
1561  case ISD::AND:
1562    // If either the LHS or the RHS are Zero, the result is zero.
1563    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1564    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1565                      KnownZero2, KnownOne2, Depth+1);
1566    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1567    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1568
1569    // Output known-1 bits are only known if set in both the LHS & RHS.
1570    KnownOne &= KnownOne2;
1571    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1572    KnownZero |= KnownZero2;
1573    return;
1574  case ISD::OR:
1575    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1576    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1577                      KnownZero2, KnownOne2, Depth+1);
1578    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1579    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1580
1581    // Output known-0 bits are only known if clear in both the LHS & RHS.
1582    KnownZero &= KnownZero2;
1583    // Output known-1 are known to be set if set in either the LHS | RHS.
1584    KnownOne |= KnownOne2;
1585    return;
1586  case ISD::XOR: {
1587    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1588    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591
1592    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1593    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1594    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1595    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1596    KnownZero = KnownZeroOut;
1597    return;
1598  }
1599  case ISD::MUL: {
1600    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1601    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1602    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1603    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1604    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1605
1606    // If low bits are zero in either operand, output low known-0 bits.
1607    // Also compute a conserative estimate for high known-0 bits.
1608    // More trickiness is possible, but this is sufficient for the
1609    // interesting case of alignment computation.
1610    KnownOne.clear();
1611    unsigned TrailZ = KnownZero.countTrailingOnes() +
1612                      KnownZero2.countTrailingOnes();
1613    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1614                               KnownZero2.countLeadingOnes(),
1615                               BitWidth) - BitWidth;
1616
1617    TrailZ = std::min(TrailZ, BitWidth);
1618    LeadZ = std::min(LeadZ, BitWidth);
1619    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1620                APInt::getHighBitsSet(BitWidth, LeadZ);
1621    KnownZero &= Mask;
1622    return;
1623  }
1624  case ISD::UDIV: {
1625    // For the purposes of computing leading zeros we can conservatively
1626    // treat a udiv as a logical right shift by the power of 2 known to
1627    // be less than the denominator.
1628    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1629    ComputeMaskedBits(Op.getOperand(0),
1630                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1631    unsigned LeadZ = KnownZero2.countLeadingOnes();
1632
1633    KnownOne2.clear();
1634    KnownZero2.clear();
1635    ComputeMaskedBits(Op.getOperand(1),
1636                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1637    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1638    if (RHSUnknownLeadingOnes != BitWidth)
1639      LeadZ = std::min(BitWidth,
1640                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1641
1642    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1643    return;
1644  }
1645  case ISD::SELECT:
1646    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // Only known if known in both the LHS and RHS.
1652    KnownOne &= KnownOne2;
1653    KnownZero &= KnownZero2;
1654    return;
1655  case ISD::SELECT_CC:
1656    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1657    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1658    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1659    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1660
1661    // Only known if known in both the LHS and RHS.
1662    KnownOne &= KnownOne2;
1663    KnownZero &= KnownZero2;
1664    return;
1665  case ISD::SADDO:
1666  case ISD::UADDO:
1667  case ISD::SSUBO:
1668  case ISD::USUBO:
1669  case ISD::SMULO:
1670  case ISD::UMULO:
1671    if (Op.getResNo() != 1)
1672      return;
1673    // The boolean result conforms to getBooleanContents.  Fall through.
1674  case ISD::SETCC:
1675    // If we know the result of a setcc has the top bits zero, use this info.
1676    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1677        BitWidth > 1)
1678      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1679    return;
1680  case ISD::SHL:
1681    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1682    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1683      unsigned ShAmt = SA->getZExtValue();
1684
1685      // If the shift count is an invalid immediate, don't do anything.
1686      if (ShAmt >= BitWidth)
1687        return;
1688
1689      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1690                        KnownZero, KnownOne, Depth+1);
1691      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1692      KnownZero <<= ShAmt;
1693      KnownOne  <<= ShAmt;
1694      // low bits known zero.
1695      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1696    }
1697    return;
1698  case ISD::SRL:
1699    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1700    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1701      unsigned ShAmt = SA->getZExtValue();
1702
1703      // If the shift count is an invalid immediate, don't do anything.
1704      if (ShAmt >= BitWidth)
1705        return;
1706
1707      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1708                        KnownZero, KnownOne, Depth+1);
1709      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1710      KnownZero = KnownZero.lshr(ShAmt);
1711      KnownOne  = KnownOne.lshr(ShAmt);
1712
1713      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1714      KnownZero |= HighBits;  // High bits known zero.
1715    }
1716    return;
1717  case ISD::SRA:
1718    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1719      unsigned ShAmt = SA->getZExtValue();
1720
1721      // If the shift count is an invalid immediate, don't do anything.
1722      if (ShAmt >= BitWidth)
1723        return;
1724
1725      APInt InDemandedMask = (Mask << ShAmt);
1726      // If any of the demanded bits are produced by the sign extension, we also
1727      // demand the input sign bit.
1728      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1729      if (HighBits.getBoolValue())
1730        InDemandedMask |= APInt::getSignBit(BitWidth);
1731
1732      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1733                        Depth+1);
1734      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1735      KnownZero = KnownZero.lshr(ShAmt);
1736      KnownOne  = KnownOne.lshr(ShAmt);
1737
1738      // Handle the sign bits.
1739      APInt SignBit = APInt::getSignBit(BitWidth);
1740      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1741
1742      if (KnownZero.intersects(SignBit)) {
1743        KnownZero |= HighBits;  // New bits are known zero.
1744      } else if (KnownOne.intersects(SignBit)) {
1745        KnownOne  |= HighBits;  // New bits are known one.
1746      }
1747    }
1748    return;
1749  case ISD::SIGN_EXTEND_INREG: {
1750    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1751    unsigned EBits = EVT.getSizeInBits();
1752
1753    // Sign extension.  Compute the demanded bits in the result that are not
1754    // present in the input.
1755    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1756
1757    APInt InSignBit = APInt::getSignBit(EBits);
1758    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1759
1760    // If the sign extended bits are demanded, we know that the sign
1761    // bit is demanded.
1762    InSignBit.zext(BitWidth);
1763    if (NewBits.getBoolValue())
1764      InputDemandedBits |= InSignBit;
1765
1766    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1767                      KnownZero, KnownOne, Depth+1);
1768    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1769
1770    // If the sign bit of the input is known set or clear, then we know the
1771    // top bits of the result.
1772    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1773      KnownZero |= NewBits;
1774      KnownOne  &= ~NewBits;
1775    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1776      KnownOne  |= NewBits;
1777      KnownZero &= ~NewBits;
1778    } else {                              // Input sign bit unknown
1779      KnownZero &= ~NewBits;
1780      KnownOne  &= ~NewBits;
1781    }
1782    return;
1783  }
1784  case ISD::CTTZ:
1785  case ISD::CTLZ:
1786  case ISD::CTPOP: {
1787    unsigned LowBits = Log2_32(BitWidth)+1;
1788    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1789    KnownOne.clear();
1790    return;
1791  }
1792  case ISD::LOAD: {
1793    if (ISD::isZEXTLoad(Op.getNode())) {
1794      LoadSDNode *LD = cast<LoadSDNode>(Op);
1795      MVT VT = LD->getMemoryVT();
1796      unsigned MemBits = VT.getSizeInBits();
1797      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1798    }
1799    return;
1800  }
1801  case ISD::ZERO_EXTEND: {
1802    MVT InVT = Op.getOperand(0).getValueType();
1803    unsigned InBits = InVT.getSizeInBits();
1804    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1805    APInt InMask    = Mask;
1806    InMask.trunc(InBits);
1807    KnownZero.trunc(InBits);
1808    KnownOne.trunc(InBits);
1809    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1810    KnownZero.zext(BitWidth);
1811    KnownOne.zext(BitWidth);
1812    KnownZero |= NewBits;
1813    return;
1814  }
1815  case ISD::SIGN_EXTEND: {
1816    MVT InVT = Op.getOperand(0).getValueType();
1817    unsigned InBits = InVT.getSizeInBits();
1818    APInt InSignBit = APInt::getSignBit(InBits);
1819    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1820    APInt InMask = Mask;
1821    InMask.trunc(InBits);
1822
1823    // If any of the sign extended bits are demanded, we know that the sign
1824    // bit is demanded. Temporarily set this bit in the mask for our callee.
1825    if (NewBits.getBoolValue())
1826      InMask |= InSignBit;
1827
1828    KnownZero.trunc(InBits);
1829    KnownOne.trunc(InBits);
1830    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1831
1832    // Note if the sign bit is known to be zero or one.
1833    bool SignBitKnownZero = KnownZero.isNegative();
1834    bool SignBitKnownOne  = KnownOne.isNegative();
1835    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1836           "Sign bit can't be known to be both zero and one!");
1837
1838    // If the sign bit wasn't actually demanded by our caller, we don't
1839    // want it set in the KnownZero and KnownOne result values. Reset the
1840    // mask and reapply it to the result values.
1841    InMask = Mask;
1842    InMask.trunc(InBits);
1843    KnownZero &= InMask;
1844    KnownOne  &= InMask;
1845
1846    KnownZero.zext(BitWidth);
1847    KnownOne.zext(BitWidth);
1848
1849    // If the sign bit is known zero or one, the top bits match.
1850    if (SignBitKnownZero)
1851      KnownZero |= NewBits;
1852    else if (SignBitKnownOne)
1853      KnownOne  |= NewBits;
1854    return;
1855  }
1856  case ISD::ANY_EXTEND: {
1857    MVT InVT = Op.getOperand(0).getValueType();
1858    unsigned InBits = InVT.getSizeInBits();
1859    APInt InMask = Mask;
1860    InMask.trunc(InBits);
1861    KnownZero.trunc(InBits);
1862    KnownOne.trunc(InBits);
1863    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1864    KnownZero.zext(BitWidth);
1865    KnownOne.zext(BitWidth);
1866    return;
1867  }
1868  case ISD::TRUNCATE: {
1869    MVT InVT = Op.getOperand(0).getValueType();
1870    unsigned InBits = InVT.getSizeInBits();
1871    APInt InMask = Mask;
1872    InMask.zext(InBits);
1873    KnownZero.zext(InBits);
1874    KnownOne.zext(InBits);
1875    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1876    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1877    KnownZero.trunc(BitWidth);
1878    KnownOne.trunc(BitWidth);
1879    break;
1880  }
1881  case ISD::AssertZext: {
1882    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1883    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1884    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1885                      KnownOne, Depth+1);
1886    KnownZero |= (~InMask) & Mask;
1887    return;
1888  }
1889  case ISD::FGETSIGN:
1890    // All bits are zero except the low bit.
1891    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1892    return;
1893
1894  case ISD::SUB: {
1895    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1896      // We know that the top bits of C-X are clear if X contains less bits
1897      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1898      // positive if we can prove that X is >= 0 and < 16.
1899      if (CLHS->getAPIntValue().isNonNegative()) {
1900        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1901        // NLZ can't be BitWidth with no sign bit
1902        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1903        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1904                          Depth+1);
1905
1906        // If all of the MaskV bits are known to be zero, then we know the
1907        // output top bits are zero, because we now know that the output is
1908        // from [0-C].
1909        if ((KnownZero2 & MaskV) == MaskV) {
1910          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1911          // Top bits known zero.
1912          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1913        }
1914      }
1915    }
1916  }
1917  // fall through
1918  case ISD::ADD: {
1919    // Output known-0 bits are known if clear or set in both the low clear bits
1920    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1921    // low 3 bits clear.
1922    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1923    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1924    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1925    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1926
1927    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1928    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1929    KnownZeroOut = std::min(KnownZeroOut,
1930                            KnownZero2.countTrailingOnes());
1931
1932    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1933    return;
1934  }
1935  case ISD::SREM:
1936    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1937      const APInt &RA = Rem->getAPIntValue();
1938      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1939        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1940        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1941        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1942
1943        // If the sign bit of the first operand is zero, the sign bit of
1944        // the result is zero. If the first operand has no one bits below
1945        // the second operand's single 1 bit, its sign will be zero.
1946        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1947          KnownZero2 |= ~LowBits;
1948
1949        KnownZero |= KnownZero2 & Mask;
1950
1951        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1952      }
1953    }
1954    return;
1955  case ISD::UREM: {
1956    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1957      const APInt &RA = Rem->getAPIntValue();
1958      if (RA.isPowerOf2()) {
1959        APInt LowBits = (RA - 1);
1960        APInt Mask2 = LowBits & Mask;
1961        KnownZero |= ~LowBits & Mask;
1962        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1963        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1964        break;
1965      }
1966    }
1967
1968    // Since the result is less than or equal to either operand, any leading
1969    // zero bits in either operand must also exist in the result.
1970    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1971    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1972                      Depth+1);
1973    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1974                      Depth+1);
1975
1976    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1977                                KnownZero2.countLeadingOnes());
1978    KnownOne.clear();
1979    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1980    return;
1981  }
1982  default:
1983    // Allow the target to implement this method for its nodes.
1984    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1985  case ISD::INTRINSIC_WO_CHAIN:
1986  case ISD::INTRINSIC_W_CHAIN:
1987  case ISD::INTRINSIC_VOID:
1988      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1989    }
1990    return;
1991  }
1992}
1993
1994/// ComputeNumSignBits - Return the number of times the sign bit of the
1995/// register is replicated into the other bits.  We know that at least 1 bit
1996/// is always equal to the sign bit (itself), but other cases can give us
1997/// information.  For example, immediately after an "SRA X, 2", we know that
1998/// the top 3 bits are all equal to each other, so we return 3.
1999unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2000  MVT VT = Op.getValueType();
2001  assert(VT.isInteger() && "Invalid VT!");
2002  unsigned VTBits = VT.getSizeInBits();
2003  unsigned Tmp, Tmp2;
2004  unsigned FirstAnswer = 1;
2005
2006  if (Depth == 6)
2007    return 1;  // Limit search depth.
2008
2009  switch (Op.getOpcode()) {
2010  default: break;
2011  case ISD::AssertSext:
2012    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2013    return VTBits-Tmp+1;
2014  case ISD::AssertZext:
2015    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2016    return VTBits-Tmp;
2017
2018  case ISD::Constant: {
2019    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2020    // If negative, return # leading ones.
2021    if (Val.isNegative())
2022      return Val.countLeadingOnes();
2023
2024    // Return # leading zeros.
2025    return Val.countLeadingZeros();
2026  }
2027
2028  case ISD::SIGN_EXTEND:
2029    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2030    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2031
2032  case ISD::SIGN_EXTEND_INREG:
2033    // Max of the input and what this extends.
2034    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2035    Tmp = VTBits-Tmp+1;
2036
2037    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2038    return std::max(Tmp, Tmp2);
2039
2040  case ISD::SRA:
2041    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2042    // SRA X, C   -> adds C sign bits.
2043    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2044      Tmp += C->getZExtValue();
2045      if (Tmp > VTBits) Tmp = VTBits;
2046    }
2047    return Tmp;
2048  case ISD::SHL:
2049    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2050      // shl destroys sign bits.
2051      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2052      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2053          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2054      return Tmp - C->getZExtValue();
2055    }
2056    break;
2057  case ISD::AND:
2058  case ISD::OR:
2059  case ISD::XOR:    // NOT is handled here.
2060    // Logical binary ops preserve the number of sign bits at the worst.
2061    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2062    if (Tmp != 1) {
2063      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2064      FirstAnswer = std::min(Tmp, Tmp2);
2065      // We computed what we know about the sign bits as our first
2066      // answer. Now proceed to the generic code that uses
2067      // ComputeMaskedBits, and pick whichever answer is better.
2068    }
2069    break;
2070
2071  case ISD::SELECT:
2072    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2073    if (Tmp == 1) return 1;  // Early out.
2074    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2075    return std::min(Tmp, Tmp2);
2076
2077  case ISD::SADDO:
2078  case ISD::UADDO:
2079  case ISD::SSUBO:
2080  case ISD::USUBO:
2081  case ISD::SMULO:
2082  case ISD::UMULO:
2083    if (Op.getResNo() != 1)
2084      break;
2085    // The boolean result conforms to getBooleanContents.  Fall through.
2086  case ISD::SETCC:
2087    // If setcc returns 0/-1, all bits are sign bits.
2088    if (TLI.getBooleanContents() ==
2089        TargetLowering::ZeroOrNegativeOneBooleanContent)
2090      return VTBits;
2091    break;
2092  case ISD::ROTL:
2093  case ISD::ROTR:
2094    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2095      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2096
2097      // Handle rotate right by N like a rotate left by 32-N.
2098      if (Op.getOpcode() == ISD::ROTR)
2099        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2100
2101      // If we aren't rotating out all of the known-in sign bits, return the
2102      // number that are left.  This handles rotl(sext(x), 1) for example.
2103      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2104      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2105    }
2106    break;
2107  case ISD::ADD:
2108    // Add can have at most one carry bit.  Thus we know that the output
2109    // is, at worst, one more bit than the inputs.
2110    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2111    if (Tmp == 1) return 1;  // Early out.
2112
2113    // Special case decrementing a value (ADD X, -1):
2114    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2115      if (CRHS->isAllOnesValue()) {
2116        APInt KnownZero, KnownOne;
2117        APInt Mask = APInt::getAllOnesValue(VTBits);
2118        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2119
2120        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2121        // sign bits set.
2122        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2123          return VTBits;
2124
2125        // If we are subtracting one from a positive number, there is no carry
2126        // out of the result.
2127        if (KnownZero.isNegative())
2128          return Tmp;
2129      }
2130
2131    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2132    if (Tmp2 == 1) return 1;
2133      return std::min(Tmp, Tmp2)-1;
2134    break;
2135
2136  case ISD::SUB:
2137    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2138    if (Tmp2 == 1) return 1;
2139
2140    // Handle NEG.
2141    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2142      if (CLHS->isNullValue()) {
2143        APInt KnownZero, KnownOne;
2144        APInt Mask = APInt::getAllOnesValue(VTBits);
2145        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2146        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2147        // sign bits set.
2148        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2149          return VTBits;
2150
2151        // If the input is known to be positive (the sign bit is known clear),
2152        // the output of the NEG has the same number of sign bits as the input.
2153        if (KnownZero.isNegative())
2154          return Tmp2;
2155
2156        // Otherwise, we treat this like a SUB.
2157      }
2158
2159    // Sub can have at most one carry bit.  Thus we know that the output
2160    // is, at worst, one more bit than the inputs.
2161    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2162    if (Tmp == 1) return 1;  // Early out.
2163      return std::min(Tmp, Tmp2)-1;
2164    break;
2165  case ISD::TRUNCATE:
2166    // FIXME: it's tricky to do anything useful for this, but it is an important
2167    // case for targets like X86.
2168    break;
2169  }
2170
2171  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2172  if (Op.getOpcode() == ISD::LOAD) {
2173    LoadSDNode *LD = cast<LoadSDNode>(Op);
2174    unsigned ExtType = LD->getExtensionType();
2175    switch (ExtType) {
2176    default: break;
2177    case ISD::SEXTLOAD:    // '17' bits known
2178      Tmp = LD->getMemoryVT().getSizeInBits();
2179      return VTBits-Tmp+1;
2180    case ISD::ZEXTLOAD:    // '16' bits known
2181      Tmp = LD->getMemoryVT().getSizeInBits();
2182      return VTBits-Tmp;
2183    }
2184  }
2185
2186  // Allow the target to implement this method for its nodes.
2187  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2188      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2189      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2190      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2191    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2192    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2193  }
2194
2195  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2196  // use this information.
2197  APInt KnownZero, KnownOne;
2198  APInt Mask = APInt::getAllOnesValue(VTBits);
2199  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2200
2201  if (KnownZero.isNegative()) {        // sign bit is 0
2202    Mask = KnownZero;
2203  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2204    Mask = KnownOne;
2205  } else {
2206    // Nothing known.
2207    return FirstAnswer;
2208  }
2209
2210  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2211  // the number of identical bits in the top of the input value.
2212  Mask = ~Mask;
2213  Mask <<= Mask.getBitWidth()-VTBits;
2214  // Return # leading zeros.  We use 'min' here in case Val was zero before
2215  // shifting.  We don't want to return '64' as for an i32 "0".
2216  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2217}
2218
2219
2220bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2221  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2222  if (!GA) return false;
2223  if (GA->getOffset() != 0) return false;
2224  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2225  if (!GV) return false;
2226  MachineModuleInfo *MMI = getMachineModuleInfo();
2227  return MMI && MMI->hasDebugInfo();
2228}
2229
2230
2231/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2232/// element of the result of the vector shuffle.
2233SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2234                                          unsigned i) {
2235  MVT VT = N->getValueType(0);
2236  DebugLoc dl = N->getDebugLoc();
2237  if (N->getMaskElt(i) < 0)
2238    return getUNDEF(VT.getVectorElementType());
2239  unsigned Index = N->getMaskElt(i);
2240  unsigned NumElems = VT.getVectorNumElements();
2241  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2242  Index %= NumElems;
2243
2244  if (V.getOpcode() == ISD::BIT_CONVERT) {
2245    V = V.getOperand(0);
2246    MVT VVT = V.getValueType();
2247    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2248      return SDValue();
2249  }
2250  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2251    return (Index == 0) ? V.getOperand(0)
2252                      : getUNDEF(VT.getVectorElementType());
2253  if (V.getOpcode() == ISD::BUILD_VECTOR)
2254    return V.getOperand(Index);
2255  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2256    return getShuffleScalarElt(SVN, Index);
2257  return SDValue();
2258}
2259
2260
2261/// getNode - Gets or creates the specified node.
2262///
2263SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2264  FoldingSetNodeID ID;
2265  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2266  void *IP = 0;
2267  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2268    return SDValue(E, 0);
2269  SDNode *N = NodeAllocator.Allocate<SDNode>();
2270  new (N) SDNode(Opcode, DL, getVTList(VT));
2271  CSEMap.InsertNode(N, IP);
2272
2273  AllNodes.push_back(N);
2274#ifndef NDEBUG
2275  VerifyNode(N);
2276#endif
2277  return SDValue(N, 0);
2278}
2279
2280SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2281                              MVT VT, SDValue Operand) {
2282  // Constant fold unary operations with an integer constant operand.
2283  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2284    const APInt &Val = C->getAPIntValue();
2285    unsigned BitWidth = VT.getSizeInBits();
2286    switch (Opcode) {
2287    default: break;
2288    case ISD::SIGN_EXTEND:
2289      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2290    case ISD::ANY_EXTEND:
2291    case ISD::ZERO_EXTEND:
2292    case ISD::TRUNCATE:
2293      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2294    case ISD::UINT_TO_FP:
2295    case ISD::SINT_TO_FP: {
2296      const uint64_t zero[] = {0, 0};
2297      // No compile time operations on this type.
2298      if (VT==MVT::ppcf128)
2299        break;
2300      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2301      (void)apf.convertFromAPInt(Val,
2302                                 Opcode==ISD::SINT_TO_FP,
2303                                 APFloat::rmNearestTiesToEven);
2304      return getConstantFP(apf, VT);
2305    }
2306    case ISD::BIT_CONVERT:
2307      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2308        return getConstantFP(Val.bitsToFloat(), VT);
2309      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2310        return getConstantFP(Val.bitsToDouble(), VT);
2311      break;
2312    case ISD::BSWAP:
2313      return getConstant(Val.byteSwap(), VT);
2314    case ISD::CTPOP:
2315      return getConstant(Val.countPopulation(), VT);
2316    case ISD::CTLZ:
2317      return getConstant(Val.countLeadingZeros(), VT);
2318    case ISD::CTTZ:
2319      return getConstant(Val.countTrailingZeros(), VT);
2320    }
2321  }
2322
2323  // Constant fold unary operations with a floating point constant operand.
2324  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2325    APFloat V = C->getValueAPF();    // make copy
2326    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2327      switch (Opcode) {
2328      case ISD::FNEG:
2329        V.changeSign();
2330        return getConstantFP(V, VT);
2331      case ISD::FABS:
2332        V.clearSign();
2333        return getConstantFP(V, VT);
2334      case ISD::FP_ROUND:
2335      case ISD::FP_EXTEND: {
2336        bool ignored;
2337        // This can return overflow, underflow, or inexact; we don't care.
2338        // FIXME need to be more flexible about rounding mode.
2339        (void)V.convert(*MVTToAPFloatSemantics(VT),
2340                        APFloat::rmNearestTiesToEven, &ignored);
2341        return getConstantFP(V, VT);
2342      }
2343      case ISD::FP_TO_SINT:
2344      case ISD::FP_TO_UINT: {
2345        integerPart x[2];
2346        bool ignored;
2347        assert(integerPartWidth >= 64);
2348        // FIXME need to be more flexible about rounding mode.
2349        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2350                              Opcode==ISD::FP_TO_SINT,
2351                              APFloat::rmTowardZero, &ignored);
2352        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2353          break;
2354        APInt api(VT.getSizeInBits(), 2, x);
2355        return getConstant(api, VT);
2356      }
2357      case ISD::BIT_CONVERT:
2358        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2359          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2360        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2361          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2362        break;
2363      }
2364    }
2365  }
2366
2367  unsigned OpOpcode = Operand.getNode()->getOpcode();
2368  switch (Opcode) {
2369  case ISD::TokenFactor:
2370  case ISD::MERGE_VALUES:
2371  case ISD::CONCAT_VECTORS:
2372    return Operand;         // Factor, merge or concat of one node?  No need.
2373  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2374  case ISD::FP_EXTEND:
2375    assert(VT.isFloatingPoint() &&
2376           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2377    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2378    if (Operand.getOpcode() == ISD::UNDEF)
2379      return getUNDEF(VT);
2380    break;
2381  case ISD::SIGN_EXTEND:
2382    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2383           "Invalid SIGN_EXTEND!");
2384    if (Operand.getValueType() == VT) return Operand;   // noop extension
2385    assert(Operand.getValueType().bitsLT(VT)
2386           && "Invalid sext node, dst < src!");
2387    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2388      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2389    break;
2390  case ISD::ZERO_EXTEND:
2391    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2392           "Invalid ZERO_EXTEND!");
2393    if (Operand.getValueType() == VT) return Operand;   // noop extension
2394    assert(Operand.getValueType().bitsLT(VT)
2395           && "Invalid zext node, dst < src!");
2396    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2397      return getNode(ISD::ZERO_EXTEND, DL, VT,
2398                     Operand.getNode()->getOperand(0));
2399    break;
2400  case ISD::ANY_EXTEND:
2401    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2402           "Invalid ANY_EXTEND!");
2403    if (Operand.getValueType() == VT) return Operand;   // noop extension
2404    assert(Operand.getValueType().bitsLT(VT)
2405           && "Invalid anyext node, dst < src!");
2406    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2407      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2408      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2409    break;
2410  case ISD::TRUNCATE:
2411    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2412           "Invalid TRUNCATE!");
2413    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2414    assert(Operand.getValueType().bitsGT(VT)
2415           && "Invalid truncate node, src < dst!");
2416    if (OpOpcode == ISD::TRUNCATE)
2417      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2418    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2419             OpOpcode == ISD::ANY_EXTEND) {
2420      // If the source is smaller than the dest, we still need an extend.
2421      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2422        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2423      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2424        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2425      else
2426        return Operand.getNode()->getOperand(0);
2427    }
2428    break;
2429  case ISD::BIT_CONVERT:
2430    // Basic sanity checking.
2431    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2432           && "Cannot BIT_CONVERT between types of different sizes!");
2433    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2434    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2435      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2436    if (OpOpcode == ISD::UNDEF)
2437      return getUNDEF(VT);
2438    break;
2439  case ISD::SCALAR_TO_VECTOR:
2440    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2441           (VT.getVectorElementType() == Operand.getValueType() ||
2442            (VT.getVectorElementType().isInteger() &&
2443             Operand.getValueType().isInteger() &&
2444             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2445           "Illegal SCALAR_TO_VECTOR node!");
2446    if (OpOpcode == ISD::UNDEF)
2447      return getUNDEF(VT);
2448    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2449    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2450        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2451        Operand.getConstantOperandVal(1) == 0 &&
2452        Operand.getOperand(0).getValueType() == VT)
2453      return Operand.getOperand(0);
2454    break;
2455  case ISD::FNEG:
2456    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2457    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2458      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2459                     Operand.getNode()->getOperand(0));
2460    if (OpOpcode == ISD::FNEG)  // --X -> X
2461      return Operand.getNode()->getOperand(0);
2462    break;
2463  case ISD::FABS:
2464    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2465      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2466    break;
2467  }
2468
2469  SDNode *N;
2470  SDVTList VTs = getVTList(VT);
2471  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2472    FoldingSetNodeID ID;
2473    SDValue Ops[1] = { Operand };
2474    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2475    void *IP = 0;
2476    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2477      return SDValue(E, 0);
2478    N = NodeAllocator.Allocate<UnarySDNode>();
2479    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2480    CSEMap.InsertNode(N, IP);
2481  } else {
2482    N = NodeAllocator.Allocate<UnarySDNode>();
2483    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2484  }
2485
2486  AllNodes.push_back(N);
2487#ifndef NDEBUG
2488  VerifyNode(N);
2489#endif
2490  return SDValue(N, 0);
2491}
2492
2493SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2494                                             MVT VT,
2495                                             ConstantSDNode *Cst1,
2496                                             ConstantSDNode *Cst2) {
2497  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2498
2499  switch (Opcode) {
2500  case ISD::ADD:  return getConstant(C1 + C2, VT);
2501  case ISD::SUB:  return getConstant(C1 - C2, VT);
2502  case ISD::MUL:  return getConstant(C1 * C2, VT);
2503  case ISD::UDIV:
2504    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2505    break;
2506  case ISD::UREM:
2507    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2508    break;
2509  case ISD::SDIV:
2510    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2511    break;
2512  case ISD::SREM:
2513    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2514    break;
2515  case ISD::AND:  return getConstant(C1 & C2, VT);
2516  case ISD::OR:   return getConstant(C1 | C2, VT);
2517  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2518  case ISD::SHL:  return getConstant(C1 << C2, VT);
2519  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2520  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2521  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2522  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2523  default: break;
2524  }
2525
2526  return SDValue();
2527}
2528
2529SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2530                              SDValue N1, SDValue N2) {
2531  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2532  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2533  switch (Opcode) {
2534  default: break;
2535  case ISD::TokenFactor:
2536    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2537           N2.getValueType() == MVT::Other && "Invalid token factor!");
2538    // Fold trivial token factors.
2539    if (N1.getOpcode() == ISD::EntryToken) return N2;
2540    if (N2.getOpcode() == ISD::EntryToken) return N1;
2541    if (N1 == N2) return N1;
2542    break;
2543  case ISD::CONCAT_VECTORS:
2544    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2545    // one big BUILD_VECTOR.
2546    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2547        N2.getOpcode() == ISD::BUILD_VECTOR) {
2548      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2549      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2550      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2551    }
2552    break;
2553  case ISD::AND:
2554    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2555           N1.getValueType() == VT && "Binary operator types must match!");
2556    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2557    // worth handling here.
2558    if (N2C && N2C->isNullValue())
2559      return N2;
2560    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2561      return N1;
2562    break;
2563  case ISD::OR:
2564  case ISD::XOR:
2565  case ISD::ADD:
2566  case ISD::SUB:
2567    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2568           N1.getValueType() == VT && "Binary operator types must match!");
2569    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2570    // it's worth handling here.
2571    if (N2C && N2C->isNullValue())
2572      return N1;
2573    break;
2574  case ISD::UDIV:
2575  case ISD::UREM:
2576  case ISD::MULHU:
2577  case ISD::MULHS:
2578  case ISD::MUL:
2579  case ISD::SDIV:
2580  case ISD::SREM:
2581    assert(VT.isInteger() && "This operator does not apply to FP types!");
2582    // fall through
2583  case ISD::FADD:
2584  case ISD::FSUB:
2585  case ISD::FMUL:
2586  case ISD::FDIV:
2587  case ISD::FREM:
2588    if (UnsafeFPMath) {
2589      if (Opcode == ISD::FADD) {
2590        // 0+x --> x
2591        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2592          if (CFP->getValueAPF().isZero())
2593            return N2;
2594        // x+0 --> x
2595        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2596          if (CFP->getValueAPF().isZero())
2597            return N1;
2598      } else if (Opcode == ISD::FSUB) {
2599        // x-0 --> x
2600        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2601          if (CFP->getValueAPF().isZero())
2602            return N1;
2603      }
2604    }
2605    assert(N1.getValueType() == N2.getValueType() &&
2606           N1.getValueType() == VT && "Binary operator types must match!");
2607    break;
2608  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2609    assert(N1.getValueType() == VT &&
2610           N1.getValueType().isFloatingPoint() &&
2611           N2.getValueType().isFloatingPoint() &&
2612           "Invalid FCOPYSIGN!");
2613    break;
2614  case ISD::SHL:
2615  case ISD::SRA:
2616  case ISD::SRL:
2617  case ISD::ROTL:
2618  case ISD::ROTR:
2619    assert(VT == N1.getValueType() &&
2620           "Shift operators return type must be the same as their first arg");
2621    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2622           "Shifts only work on integers");
2623
2624    // Always fold shifts of i1 values so the code generator doesn't need to
2625    // handle them.  Since we know the size of the shift has to be less than the
2626    // size of the value, the shift/rotate count is guaranteed to be zero.
2627    if (VT == MVT::i1)
2628      return N1;
2629    break;
2630  case ISD::FP_ROUND_INREG: {
2631    MVT EVT = cast<VTSDNode>(N2)->getVT();
2632    assert(VT == N1.getValueType() && "Not an inreg round!");
2633    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2634           "Cannot FP_ROUND_INREG integer types");
2635    assert(EVT.bitsLE(VT) && "Not rounding down!");
2636    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2637    break;
2638  }
2639  case ISD::FP_ROUND:
2640    assert(VT.isFloatingPoint() &&
2641           N1.getValueType().isFloatingPoint() &&
2642           VT.bitsLE(N1.getValueType()) &&
2643           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2644    if (N1.getValueType() == VT) return N1;  // noop conversion.
2645    break;
2646  case ISD::AssertSext:
2647  case ISD::AssertZext: {
2648    MVT EVT = cast<VTSDNode>(N2)->getVT();
2649    assert(VT == N1.getValueType() && "Not an inreg extend!");
2650    assert(VT.isInteger() && EVT.isInteger() &&
2651           "Cannot *_EXTEND_INREG FP types");
2652    assert(EVT.bitsLE(VT) && "Not extending!");
2653    if (VT == EVT) return N1; // noop assertion.
2654    break;
2655  }
2656  case ISD::SIGN_EXTEND_INREG: {
2657    MVT EVT = cast<VTSDNode>(N2)->getVT();
2658    assert(VT == N1.getValueType() && "Not an inreg extend!");
2659    assert(VT.isInteger() && EVT.isInteger() &&
2660           "Cannot *_EXTEND_INREG FP types");
2661    assert(EVT.bitsLE(VT) && "Not extending!");
2662    if (EVT == VT) return N1;  // Not actually extending
2663
2664    if (N1C) {
2665      APInt Val = N1C->getAPIntValue();
2666      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2667      Val <<= Val.getBitWidth()-FromBits;
2668      Val = Val.ashr(Val.getBitWidth()-FromBits);
2669      return getConstant(Val, VT);
2670    }
2671    break;
2672  }
2673  case ISD::EXTRACT_VECTOR_ELT:
2674    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2675    if (N1.getOpcode() == ISD::UNDEF)
2676      return getUNDEF(VT);
2677
2678    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2679    // expanding copies of large vectors from registers.
2680    if (N2C &&
2681        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2682        N1.getNumOperands() > 0) {
2683      unsigned Factor =
2684        N1.getOperand(0).getValueType().getVectorNumElements();
2685      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2686                     N1.getOperand(N2C->getZExtValue() / Factor),
2687                     getConstant(N2C->getZExtValue() % Factor,
2688                                 N2.getValueType()));
2689    }
2690
2691    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2692    // expanding large vector constants.
2693    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2694      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2695      if (Elt.getValueType() != VT) {
2696        // If the vector element type is not legal, the BUILD_VECTOR operands
2697        // are promoted and implicitly truncated.  Make that explicit here.
2698        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2699               VT.bitsLE(Elt.getValueType()) &&
2700               "Bad type for BUILD_VECTOR operand");
2701        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2702      }
2703      return Elt;
2704    }
2705
2706    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2707    // operations are lowered to scalars.
2708    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2709      // If the indices are the same, return the inserted element.
2710      if (N1.getOperand(2) == N2)
2711        return N1.getOperand(1);
2712      // If the indices are known different, extract the element from
2713      // the original vector.
2714      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2715               isa<ConstantSDNode>(N2))
2716        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2717    }
2718    break;
2719  case ISD::EXTRACT_ELEMENT:
2720    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2721    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2722           (N1.getValueType().isInteger() == VT.isInteger()) &&
2723           "Wrong types for EXTRACT_ELEMENT!");
2724
2725    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2726    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2727    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2728    if (N1.getOpcode() == ISD::BUILD_PAIR)
2729      return N1.getOperand(N2C->getZExtValue());
2730
2731    // EXTRACT_ELEMENT of a constant int is also very common.
2732    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2733      unsigned ElementSize = VT.getSizeInBits();
2734      unsigned Shift = ElementSize * N2C->getZExtValue();
2735      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2736      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2737    }
2738    break;
2739  case ISD::EXTRACT_SUBVECTOR:
2740    if (N1.getValueType() == VT) // Trivial extraction.
2741      return N1;
2742    break;
2743  }
2744
2745  if (N1C) {
2746    if (N2C) {
2747      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2748      if (SV.getNode()) return SV;
2749    } else {      // Cannonicalize constant to RHS if commutative
2750      if (isCommutativeBinOp(Opcode)) {
2751        std::swap(N1C, N2C);
2752        std::swap(N1, N2);
2753      }
2754    }
2755  }
2756
2757  // Constant fold FP operations.
2758  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2759  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2760  if (N1CFP) {
2761    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2762      // Cannonicalize constant to RHS if commutative
2763      std::swap(N1CFP, N2CFP);
2764      std::swap(N1, N2);
2765    } else if (N2CFP && VT != MVT::ppcf128) {
2766      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2767      APFloat::opStatus s;
2768      switch (Opcode) {
2769      case ISD::FADD:
2770        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2771        if (s != APFloat::opInvalidOp)
2772          return getConstantFP(V1, VT);
2773        break;
2774      case ISD::FSUB:
2775        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2776        if (s!=APFloat::opInvalidOp)
2777          return getConstantFP(V1, VT);
2778        break;
2779      case ISD::FMUL:
2780        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2781        if (s!=APFloat::opInvalidOp)
2782          return getConstantFP(V1, VT);
2783        break;
2784      case ISD::FDIV:
2785        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2786        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2787          return getConstantFP(V1, VT);
2788        break;
2789      case ISD::FREM :
2790        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2791        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2792          return getConstantFP(V1, VT);
2793        break;
2794      case ISD::FCOPYSIGN:
2795        V1.copySign(V2);
2796        return getConstantFP(V1, VT);
2797      default: break;
2798      }
2799    }
2800  }
2801
2802  // Canonicalize an UNDEF to the RHS, even over a constant.
2803  if (N1.getOpcode() == ISD::UNDEF) {
2804    if (isCommutativeBinOp(Opcode)) {
2805      std::swap(N1, N2);
2806    } else {
2807      switch (Opcode) {
2808      case ISD::FP_ROUND_INREG:
2809      case ISD::SIGN_EXTEND_INREG:
2810      case ISD::SUB:
2811      case ISD::FSUB:
2812      case ISD::FDIV:
2813      case ISD::FREM:
2814      case ISD::SRA:
2815        return N1;     // fold op(undef, arg2) -> undef
2816      case ISD::UDIV:
2817      case ISD::SDIV:
2818      case ISD::UREM:
2819      case ISD::SREM:
2820      case ISD::SRL:
2821      case ISD::SHL:
2822        if (!VT.isVector())
2823          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2824        // For vectors, we can't easily build an all zero vector, just return
2825        // the LHS.
2826        return N2;
2827      }
2828    }
2829  }
2830
2831  // Fold a bunch of operators when the RHS is undef.
2832  if (N2.getOpcode() == ISD::UNDEF) {
2833    switch (Opcode) {
2834    case ISD::XOR:
2835      if (N1.getOpcode() == ISD::UNDEF)
2836        // Handle undef ^ undef -> 0 special case. This is a common
2837        // idiom (misuse).
2838        return getConstant(0, VT);
2839      // fallthrough
2840    case ISD::ADD:
2841    case ISD::ADDC:
2842    case ISD::ADDE:
2843    case ISD::SUB:
2844    case ISD::UDIV:
2845    case ISD::SDIV:
2846    case ISD::UREM:
2847    case ISD::SREM:
2848      return N2;       // fold op(arg1, undef) -> undef
2849    case ISD::FADD:
2850    case ISD::FSUB:
2851    case ISD::FMUL:
2852    case ISD::FDIV:
2853    case ISD::FREM:
2854      if (UnsafeFPMath)
2855        return N2;
2856      break;
2857    case ISD::MUL:
2858    case ISD::AND:
2859    case ISD::SRL:
2860    case ISD::SHL:
2861      if (!VT.isVector())
2862        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2863      // For vectors, we can't easily build an all zero vector, just return
2864      // the LHS.
2865      return N1;
2866    case ISD::OR:
2867      if (!VT.isVector())
2868        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2869      // For vectors, we can't easily build an all one vector, just return
2870      // the LHS.
2871      return N1;
2872    case ISD::SRA:
2873      return N1;
2874    }
2875  }
2876
2877  // Memoize this node if possible.
2878  SDNode *N;
2879  SDVTList VTs = getVTList(VT);
2880  if (VT != MVT::Flag) {
2881    SDValue Ops[] = { N1, N2 };
2882    FoldingSetNodeID ID;
2883    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2884    void *IP = 0;
2885    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2886      return SDValue(E, 0);
2887    N = NodeAllocator.Allocate<BinarySDNode>();
2888    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2889    CSEMap.InsertNode(N, IP);
2890  } else {
2891    N = NodeAllocator.Allocate<BinarySDNode>();
2892    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2893  }
2894
2895  AllNodes.push_back(N);
2896#ifndef NDEBUG
2897  VerifyNode(N);
2898#endif
2899  return SDValue(N, 0);
2900}
2901
2902SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2903                              SDValue N1, SDValue N2, SDValue N3) {
2904  // Perform various simplifications.
2905  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2906  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2907  switch (Opcode) {
2908  case ISD::CONCAT_VECTORS:
2909    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2910    // one big BUILD_VECTOR.
2911    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2912        N2.getOpcode() == ISD::BUILD_VECTOR &&
2913        N3.getOpcode() == ISD::BUILD_VECTOR) {
2914      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2915      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2916      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2917      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2918    }
2919    break;
2920  case ISD::SETCC: {
2921    // Use FoldSetCC to simplify SETCC's.
2922    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2923    if (Simp.getNode()) return Simp;
2924    break;
2925  }
2926  case ISD::SELECT:
2927    if (N1C) {
2928     if (N1C->getZExtValue())
2929        return N2;             // select true, X, Y -> X
2930      else
2931        return N3;             // select false, X, Y -> Y
2932    }
2933
2934    if (N2 == N3) return N2;   // select C, X, X -> X
2935    break;
2936  case ISD::BRCOND:
2937    if (N2C) {
2938      if (N2C->getZExtValue()) // Unconditional branch
2939        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2940      else
2941        return N1;         // Never-taken branch
2942    }
2943    break;
2944  case ISD::VECTOR_SHUFFLE:
2945    assert(0 && "should use getVectorShuffle constructor!");
2946    break;
2947  case ISD::BIT_CONVERT:
2948    // Fold bit_convert nodes from a type to themselves.
2949    if (N1.getValueType() == VT)
2950      return N1;
2951    break;
2952  }
2953
2954  // Memoize node if it doesn't produce a flag.
2955  SDNode *N;
2956  SDVTList VTs = getVTList(VT);
2957  if (VT != MVT::Flag) {
2958    SDValue Ops[] = { N1, N2, N3 };
2959    FoldingSetNodeID ID;
2960    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2961    void *IP = 0;
2962    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2963      return SDValue(E, 0);
2964    N = NodeAllocator.Allocate<TernarySDNode>();
2965    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2966    CSEMap.InsertNode(N, IP);
2967  } else {
2968    N = NodeAllocator.Allocate<TernarySDNode>();
2969    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2970  }
2971  AllNodes.push_back(N);
2972#ifndef NDEBUG
2973  VerifyNode(N);
2974#endif
2975  return SDValue(N, 0);
2976}
2977
2978SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2979                              SDValue N1, SDValue N2, SDValue N3,
2980                              SDValue N4) {
2981  SDValue Ops[] = { N1, N2, N3, N4 };
2982  return getNode(Opcode, DL, VT, Ops, 4);
2983}
2984
2985SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2986                              SDValue N1, SDValue N2, SDValue N3,
2987                              SDValue N4, SDValue N5) {
2988  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2989  return getNode(Opcode, DL, VT, Ops, 5);
2990}
2991
2992/// getMemsetValue - Vectorized representation of the memset value
2993/// operand.
2994static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2995                              DebugLoc dl) {
2996  unsigned NumBits = VT.isVector() ?
2997    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2998  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2999    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3000    unsigned Shift = 8;
3001    for (unsigned i = NumBits; i > 8; i >>= 1) {
3002      Val = (Val << Shift) | Val;
3003      Shift <<= 1;
3004    }
3005    if (VT.isInteger())
3006      return DAG.getConstant(Val, VT);
3007    return DAG.getConstantFP(APFloat(Val), VT);
3008  }
3009
3010  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3011  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3012  unsigned Shift = 8;
3013  for (unsigned i = NumBits; i > 8; i >>= 1) {
3014    Value = DAG.getNode(ISD::OR, dl, VT,
3015                        DAG.getNode(ISD::SHL, dl, VT, Value,
3016                                    DAG.getConstant(Shift,
3017                                                    TLI.getShiftAmountTy())),
3018                        Value);
3019    Shift <<= 1;
3020  }
3021
3022  return Value;
3023}
3024
3025/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3026/// used when a memcpy is turned into a memset when the source is a constant
3027/// string ptr.
3028static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
3029                                    const TargetLowering &TLI,
3030                                    std::string &Str, unsigned Offset) {
3031  // Handle vector with all elements zero.
3032  if (Str.empty()) {
3033    if (VT.isInteger())
3034      return DAG.getConstant(0, VT);
3035    unsigned NumElts = VT.getVectorNumElements();
3036    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3037    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3038                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3039  }
3040
3041  assert(!VT.isVector() && "Can't handle vector type here!");
3042  unsigned NumBits = VT.getSizeInBits();
3043  unsigned MSB = NumBits / 8;
3044  uint64_t Val = 0;
3045  if (TLI.isLittleEndian())
3046    Offset = Offset + MSB - 1;
3047  for (unsigned i = 0; i != MSB; ++i) {
3048    Val = (Val << 8) | (unsigned char)Str[Offset];
3049    Offset += TLI.isLittleEndian() ? -1 : 1;
3050  }
3051  return DAG.getConstant(Val, VT);
3052}
3053
3054/// getMemBasePlusOffset - Returns base and offset node for the
3055///
3056static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3057                                      SelectionDAG &DAG) {
3058  MVT VT = Base.getValueType();
3059  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3060                     VT, Base, DAG.getConstant(Offset, VT));
3061}
3062
3063/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3064///
3065static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3066  unsigned SrcDelta = 0;
3067  GlobalAddressSDNode *G = NULL;
3068  if (Src.getOpcode() == ISD::GlobalAddress)
3069    G = cast<GlobalAddressSDNode>(Src);
3070  else if (Src.getOpcode() == ISD::ADD &&
3071           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3072           Src.getOperand(1).getOpcode() == ISD::Constant) {
3073    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3074    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3075  }
3076  if (!G)
3077    return false;
3078
3079  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3080  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3081    return true;
3082
3083  return false;
3084}
3085
3086/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3087/// to replace the memset / memcpy is below the threshold. It also returns the
3088/// types of the sequence of memory ops to perform memset / memcpy.
3089static
3090bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3091                              SDValue Dst, SDValue Src,
3092                              unsigned Limit, uint64_t Size, unsigned &Align,
3093                              std::string &Str, bool &isSrcStr,
3094                              SelectionDAG &DAG,
3095                              const TargetLowering &TLI) {
3096  isSrcStr = isMemSrcFromString(Src, Str);
3097  bool isSrcConst = isa<ConstantSDNode>(Src);
3098  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3099  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3100  if (VT != MVT::iAny) {
3101    unsigned NewAlign = (unsigned)
3102      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3103    // If source is a string constant, this will require an unaligned load.
3104    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3105      if (Dst.getOpcode() != ISD::FrameIndex) {
3106        // Can't change destination alignment. It requires a unaligned store.
3107        if (AllowUnalign)
3108          VT = MVT::iAny;
3109      } else {
3110        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3111        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3112        if (MFI->isFixedObjectIndex(FI)) {
3113          // Can't change destination alignment. It requires a unaligned store.
3114          if (AllowUnalign)
3115            VT = MVT::iAny;
3116        } else {
3117          // Give the stack frame object a larger alignment if needed.
3118          if (MFI->getObjectAlignment(FI) < NewAlign)
3119            MFI->setObjectAlignment(FI, NewAlign);
3120          Align = NewAlign;
3121        }
3122      }
3123    }
3124  }
3125
3126  if (VT == MVT::iAny) {
3127    if (AllowUnalign) {
3128      VT = MVT::i64;
3129    } else {
3130      switch (Align & 7) {
3131      case 0:  VT = MVT::i64; break;
3132      case 4:  VT = MVT::i32; break;
3133      case 2:  VT = MVT::i16; break;
3134      default: VT = MVT::i8;  break;
3135      }
3136    }
3137
3138    MVT LVT = MVT::i64;
3139    while (!TLI.isTypeLegal(LVT))
3140      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3141    assert(LVT.isInteger());
3142
3143    if (VT.bitsGT(LVT))
3144      VT = LVT;
3145  }
3146
3147  unsigned NumMemOps = 0;
3148  while (Size != 0) {
3149    unsigned VTSize = VT.getSizeInBits() / 8;
3150    while (VTSize > Size) {
3151      // For now, only use non-vector load / store's for the left-over pieces.
3152      if (VT.isVector()) {
3153        VT = MVT::i64;
3154        while (!TLI.isTypeLegal(VT))
3155          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3156        VTSize = VT.getSizeInBits() / 8;
3157      } else {
3158        // This can result in a type that is not legal on the target, e.g.
3159        // 1 or 2 bytes on PPC.
3160        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3161        VTSize >>= 1;
3162      }
3163    }
3164
3165    if (++NumMemOps > Limit)
3166      return false;
3167    MemOps.push_back(VT);
3168    Size -= VTSize;
3169  }
3170
3171  return true;
3172}
3173
3174static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3175                                         SDValue Chain, SDValue Dst,
3176                                         SDValue Src, uint64_t Size,
3177                                         unsigned Align, bool AlwaysInline,
3178                                         const Value *DstSV, uint64_t DstSVOff,
3179                                         const Value *SrcSV, uint64_t SrcSVOff){
3180  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3181
3182  // Expand memcpy to a series of load and store ops if the size operand falls
3183  // below a certain threshold.
3184  std::vector<MVT> MemOps;
3185  uint64_t Limit = -1ULL;
3186  if (!AlwaysInline)
3187    Limit = TLI.getMaxStoresPerMemcpy();
3188  unsigned DstAlign = Align;  // Destination alignment can change.
3189  std::string Str;
3190  bool CopyFromStr;
3191  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3192                                Str, CopyFromStr, DAG, TLI))
3193    return SDValue();
3194
3195
3196  bool isZeroStr = CopyFromStr && Str.empty();
3197  SmallVector<SDValue, 8> OutChains;
3198  unsigned NumMemOps = MemOps.size();
3199  uint64_t SrcOff = 0, DstOff = 0;
3200  for (unsigned i = 0; i < NumMemOps; i++) {
3201    MVT VT = MemOps[i];
3202    unsigned VTSize = VT.getSizeInBits() / 8;
3203    SDValue Value, Store;
3204
3205    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3206      // It's unlikely a store of a vector immediate can be done in a single
3207      // instruction. It would require a load from a constantpool first.
3208      // We also handle store a vector with all zero's.
3209      // FIXME: Handle other cases where store of vector immediate is done in
3210      // a single instruction.
3211      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3212      Store = DAG.getStore(Chain, dl, Value,
3213                           getMemBasePlusOffset(Dst, DstOff, DAG),
3214                           DstSV, DstSVOff + DstOff, false, DstAlign);
3215    } else {
3216      // The type might not be legal for the target.  This should only happen
3217      // if the type is smaller than a legal type, as on PPC, so the right
3218      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3219      // to Load/Store if NVT==VT.
3220      // FIXME does the case above also need this?
3221      MVT NVT = TLI.getTypeToTransformTo(VT);
3222      assert(NVT.bitsGE(VT));
3223      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3224                             getMemBasePlusOffset(Src, SrcOff, DAG),
3225                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3226      Store = DAG.getTruncStore(Chain, dl, Value,
3227                             getMemBasePlusOffset(Dst, DstOff, DAG),
3228                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3229    }
3230    OutChains.push_back(Store);
3231    SrcOff += VTSize;
3232    DstOff += VTSize;
3233  }
3234
3235  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3236                     &OutChains[0], OutChains.size());
3237}
3238
3239static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3240                                          SDValue Chain, SDValue Dst,
3241                                          SDValue Src, uint64_t Size,
3242                                          unsigned Align, bool AlwaysInline,
3243                                          const Value *DstSV, uint64_t DstSVOff,
3244                                          const Value *SrcSV, uint64_t SrcSVOff){
3245  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3246
3247  // Expand memmove to a series of load and store ops if the size operand falls
3248  // below a certain threshold.
3249  std::vector<MVT> MemOps;
3250  uint64_t Limit = -1ULL;
3251  if (!AlwaysInline)
3252    Limit = TLI.getMaxStoresPerMemmove();
3253  unsigned DstAlign = Align;  // Destination alignment can change.
3254  std::string Str;
3255  bool CopyFromStr;
3256  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3257                                Str, CopyFromStr, DAG, TLI))
3258    return SDValue();
3259
3260  uint64_t SrcOff = 0, DstOff = 0;
3261
3262  SmallVector<SDValue, 8> LoadValues;
3263  SmallVector<SDValue, 8> LoadChains;
3264  SmallVector<SDValue, 8> OutChains;
3265  unsigned NumMemOps = MemOps.size();
3266  for (unsigned i = 0; i < NumMemOps; i++) {
3267    MVT VT = MemOps[i];
3268    unsigned VTSize = VT.getSizeInBits() / 8;
3269    SDValue Value, Store;
3270
3271    Value = DAG.getLoad(VT, dl, Chain,
3272                        getMemBasePlusOffset(Src, SrcOff, DAG),
3273                        SrcSV, SrcSVOff + SrcOff, false, Align);
3274    LoadValues.push_back(Value);
3275    LoadChains.push_back(Value.getValue(1));
3276    SrcOff += VTSize;
3277  }
3278  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3279                      &LoadChains[0], LoadChains.size());
3280  OutChains.clear();
3281  for (unsigned i = 0; i < NumMemOps; i++) {
3282    MVT VT = MemOps[i];
3283    unsigned VTSize = VT.getSizeInBits() / 8;
3284    SDValue Value, Store;
3285
3286    Store = DAG.getStore(Chain, dl, LoadValues[i],
3287                         getMemBasePlusOffset(Dst, DstOff, DAG),
3288                         DstSV, DstSVOff + DstOff, false, DstAlign);
3289    OutChains.push_back(Store);
3290    DstOff += VTSize;
3291  }
3292
3293  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3294                     &OutChains[0], OutChains.size());
3295}
3296
3297static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3298                                 SDValue Chain, SDValue Dst,
3299                                 SDValue Src, uint64_t Size,
3300                                 unsigned Align,
3301                                 const Value *DstSV, uint64_t DstSVOff) {
3302  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3303
3304  // Expand memset to a series of load/store ops if the size operand
3305  // falls below a certain threshold.
3306  std::vector<MVT> MemOps;
3307  std::string Str;
3308  bool CopyFromStr;
3309  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3310                                Size, Align, Str, CopyFromStr, DAG, TLI))
3311    return SDValue();
3312
3313  SmallVector<SDValue, 8> OutChains;
3314  uint64_t DstOff = 0;
3315
3316  unsigned NumMemOps = MemOps.size();
3317  for (unsigned i = 0; i < NumMemOps; i++) {
3318    MVT VT = MemOps[i];
3319    unsigned VTSize = VT.getSizeInBits() / 8;
3320    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3321    SDValue Store = DAG.getStore(Chain, dl, Value,
3322                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3323                                 DstSV, DstSVOff + DstOff);
3324    OutChains.push_back(Store);
3325    DstOff += VTSize;
3326  }
3327
3328  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3329                     &OutChains[0], OutChains.size());
3330}
3331
3332SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3333                                SDValue Src, SDValue Size,
3334                                unsigned Align, bool AlwaysInline,
3335                                const Value *DstSV, uint64_t DstSVOff,
3336                                const Value *SrcSV, uint64_t SrcSVOff) {
3337
3338  // Check to see if we should lower the memcpy to loads and stores first.
3339  // For cases within the target-specified limits, this is the best choice.
3340  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3341  if (ConstantSize) {
3342    // Memcpy with size zero? Just return the original chain.
3343    if (ConstantSize->isNullValue())
3344      return Chain;
3345
3346    SDValue Result =
3347      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3348                              ConstantSize->getZExtValue(),
3349                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3350    if (Result.getNode())
3351      return Result;
3352  }
3353
3354  // Then check to see if we should lower the memcpy with target-specific
3355  // code. If the target chooses to do this, this is the next best.
3356  SDValue Result =
3357    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3358                                AlwaysInline,
3359                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3360  if (Result.getNode())
3361    return Result;
3362
3363  // If we really need inline code and the target declined to provide it,
3364  // use a (potentially long) sequence of loads and stores.
3365  if (AlwaysInline) {
3366    assert(ConstantSize && "AlwaysInline requires a constant size!");
3367    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3368                                   ConstantSize->getZExtValue(), Align, true,
3369                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3370  }
3371
3372  // Emit a library call.
3373  TargetLowering::ArgListTy Args;
3374  TargetLowering::ArgListEntry Entry;
3375  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3376  Entry.Node = Dst; Args.push_back(Entry);
3377  Entry.Node = Src; Args.push_back(Entry);
3378  Entry.Node = Size; Args.push_back(Entry);
3379  // FIXME: pass in DebugLoc
3380  std::pair<SDValue,SDValue> CallResult =
3381    TLI.LowerCallTo(Chain, Type::VoidTy,
3382                    false, false, false, false, 0, CallingConv::C, false,
3383                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3384                    Args, *this, dl);
3385  return CallResult.second;
3386}
3387
3388SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3389                                 SDValue Src, SDValue Size,
3390                                 unsigned Align,
3391                                 const Value *DstSV, uint64_t DstSVOff,
3392                                 const Value *SrcSV, uint64_t SrcSVOff) {
3393
3394  // Check to see if we should lower the memmove to loads and stores first.
3395  // For cases within the target-specified limits, this is the best choice.
3396  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3397  if (ConstantSize) {
3398    // Memmove with size zero? Just return the original chain.
3399    if (ConstantSize->isNullValue())
3400      return Chain;
3401
3402    SDValue Result =
3403      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3404                               ConstantSize->getZExtValue(),
3405                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3406    if (Result.getNode())
3407      return Result;
3408  }
3409
3410  // Then check to see if we should lower the memmove with target-specific
3411  // code. If the target chooses to do this, this is the next best.
3412  SDValue Result =
3413    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3414                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3415  if (Result.getNode())
3416    return Result;
3417
3418  // Emit a library call.
3419  TargetLowering::ArgListTy Args;
3420  TargetLowering::ArgListEntry Entry;
3421  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3422  Entry.Node = Dst; Args.push_back(Entry);
3423  Entry.Node = Src; Args.push_back(Entry);
3424  Entry.Node = Size; Args.push_back(Entry);
3425  // FIXME:  pass in DebugLoc
3426  std::pair<SDValue,SDValue> CallResult =
3427    TLI.LowerCallTo(Chain, Type::VoidTy,
3428                    false, false, false, false, 0, CallingConv::C, false,
3429                    getExternalSymbol("memmove", TLI.getPointerTy()),
3430                    Args, *this, dl);
3431  return CallResult.second;
3432}
3433
3434SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3435                                SDValue Src, SDValue Size,
3436                                unsigned Align,
3437                                const Value *DstSV, uint64_t DstSVOff) {
3438
3439  // Check to see if we should lower the memset to stores first.
3440  // For cases within the target-specified limits, this is the best choice.
3441  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3442  if (ConstantSize) {
3443    // Memset with size zero? Just return the original chain.
3444    if (ConstantSize->isNullValue())
3445      return Chain;
3446
3447    SDValue Result =
3448      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3449                      Align, DstSV, DstSVOff);
3450    if (Result.getNode())
3451      return Result;
3452  }
3453
3454  // Then check to see if we should lower the memset with target-specific
3455  // code. If the target chooses to do this, this is the next best.
3456  SDValue Result =
3457    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3458                                DstSV, DstSVOff);
3459  if (Result.getNode())
3460    return Result;
3461
3462  // Emit a library call.
3463  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3464  TargetLowering::ArgListTy Args;
3465  TargetLowering::ArgListEntry Entry;
3466  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3467  Args.push_back(Entry);
3468  // Extend or truncate the argument to be an i32 value for the call.
3469  if (Src.getValueType().bitsGT(MVT::i32))
3470    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3471  else
3472    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3473  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3474  Args.push_back(Entry);
3475  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3476  Args.push_back(Entry);
3477  // FIXME: pass in DebugLoc
3478  std::pair<SDValue,SDValue> CallResult =
3479    TLI.LowerCallTo(Chain, Type::VoidTy,
3480                    false, false, false, false, 0, CallingConv::C, false,
3481                    getExternalSymbol("memset", TLI.getPointerTy()),
3482                    Args, *this, dl);
3483  return CallResult.second;
3484}
3485
3486SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3487                                SDValue Chain,
3488                                SDValue Ptr, SDValue Cmp,
3489                                SDValue Swp, const Value* PtrVal,
3490                                unsigned Alignment) {
3491  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3492  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3493
3494  MVT VT = Cmp.getValueType();
3495
3496  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3497    Alignment = getMVTAlignment(MemVT);
3498
3499  SDVTList VTs = getVTList(VT, MVT::Other);
3500  FoldingSetNodeID ID;
3501  ID.AddInteger(MemVT.getRawBits());
3502  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3503  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3504  void* IP = 0;
3505  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3506    return SDValue(E, 0);
3507  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3508  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3509                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3510  CSEMap.InsertNode(N, IP);
3511  AllNodes.push_back(N);
3512  return SDValue(N, 0);
3513}
3514
3515SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3516                                SDValue Chain,
3517                                SDValue Ptr, SDValue Val,
3518                                const Value* PtrVal,
3519                                unsigned Alignment) {
3520  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3521          Opcode == ISD::ATOMIC_LOAD_SUB ||
3522          Opcode == ISD::ATOMIC_LOAD_AND ||
3523          Opcode == ISD::ATOMIC_LOAD_OR ||
3524          Opcode == ISD::ATOMIC_LOAD_XOR ||
3525          Opcode == ISD::ATOMIC_LOAD_NAND ||
3526          Opcode == ISD::ATOMIC_LOAD_MIN ||
3527          Opcode == ISD::ATOMIC_LOAD_MAX ||
3528          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3529          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3530          Opcode == ISD::ATOMIC_SWAP) &&
3531         "Invalid Atomic Op");
3532
3533  MVT VT = Val.getValueType();
3534
3535  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3536    Alignment = getMVTAlignment(MemVT);
3537
3538  SDVTList VTs = getVTList(VT, MVT::Other);
3539  FoldingSetNodeID ID;
3540  ID.AddInteger(MemVT.getRawBits());
3541  SDValue Ops[] = {Chain, Ptr, Val};
3542  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3543  void* IP = 0;
3544  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3545    return SDValue(E, 0);
3546  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3547  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3548                       Chain, Ptr, Val, PtrVal, Alignment);
3549  CSEMap.InsertNode(N, IP);
3550  AllNodes.push_back(N);
3551  return SDValue(N, 0);
3552}
3553
3554/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3555/// Allowed to return something different (and simpler) if Simplify is true.
3556SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3557                                     DebugLoc dl) {
3558  if (NumOps == 1)
3559    return Ops[0];
3560
3561  SmallVector<MVT, 4> VTs;
3562  VTs.reserve(NumOps);
3563  for (unsigned i = 0; i < NumOps; ++i)
3564    VTs.push_back(Ops[i].getValueType());
3565  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3566                 Ops, NumOps);
3567}
3568
3569SDValue
3570SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3571                                  const MVT *VTs, unsigned NumVTs,
3572                                  const SDValue *Ops, unsigned NumOps,
3573                                  MVT MemVT, const Value *srcValue, int SVOff,
3574                                  unsigned Align, bool Vol,
3575                                  bool ReadMem, bool WriteMem) {
3576  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3577                             MemVT, srcValue, SVOff, Align, Vol,
3578                             ReadMem, WriteMem);
3579}
3580
3581SDValue
3582SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3583                                  const SDValue *Ops, unsigned NumOps,
3584                                  MVT MemVT, const Value *srcValue, int SVOff,
3585                                  unsigned Align, bool Vol,
3586                                  bool ReadMem, bool WriteMem) {
3587  // Memoize the node unless it returns a flag.
3588  MemIntrinsicSDNode *N;
3589  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3590    FoldingSetNodeID ID;
3591    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3592    void *IP = 0;
3593    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3594      return SDValue(E, 0);
3595
3596    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3597    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3598                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3599    CSEMap.InsertNode(N, IP);
3600  } else {
3601    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3602    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3603                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3604  }
3605  AllNodes.push_back(N);
3606  return SDValue(N, 0);
3607}
3608
3609SDValue
3610SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3611                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3612                      const SDValue *Operands, unsigned NumOperands,
3613                      unsigned NumFixedArgs) {
3614  // Do not include isTailCall in the folding set profile.
3615  FoldingSetNodeID ID;
3616  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3617  ID.AddInteger(CallingConv);
3618  ID.AddInteger(IsVarArgs);
3619  void *IP = 0;
3620  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3621    // Instead of including isTailCall in the folding set, we just
3622    // set the flag of the existing node.
3623    if (!IsTailCall)
3624      cast<CallSDNode>(E)->setNotTailCall();
3625    return SDValue(E, 0);
3626  }
3627  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3628  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3629                     VTs, Operands, NumOperands, NumFixedArgs);
3630  CSEMap.InsertNode(N, IP);
3631  AllNodes.push_back(N);
3632  return SDValue(N, 0);
3633}
3634
3635SDValue
3636SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3637                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3638                      SDValue Ptr, SDValue Offset,
3639                      const Value *SV, int SVOffset, MVT EVT,
3640                      bool isVolatile, unsigned Alignment) {
3641  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3642    Alignment = getMVTAlignment(VT);
3643
3644  if (VT == EVT) {
3645    ExtType = ISD::NON_EXTLOAD;
3646  } else if (ExtType == ISD::NON_EXTLOAD) {
3647    assert(VT == EVT && "Non-extending load from different memory type!");
3648  } else {
3649    // Extending load.
3650    if (VT.isVector())
3651      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3652             "Invalid vector extload!");
3653    else
3654      assert(EVT.bitsLT(VT) &&
3655             "Should only be an extending load, not truncating!");
3656    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3657           "Cannot sign/zero extend a FP/Vector load!");
3658    assert(VT.isInteger() == EVT.isInteger() &&
3659           "Cannot convert from FP to Int or Int -> FP!");
3660  }
3661
3662  bool Indexed = AM != ISD::UNINDEXED;
3663  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3664         "Unindexed load with an offset!");
3665
3666  SDVTList VTs = Indexed ?
3667    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3668  SDValue Ops[] = { Chain, Ptr, Offset };
3669  FoldingSetNodeID ID;
3670  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3671  ID.AddInteger(EVT.getRawBits());
3672  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3673  void *IP = 0;
3674  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3675    return SDValue(E, 0);
3676  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3677  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3678                     Alignment, isVolatile);
3679  CSEMap.InsertNode(N, IP);
3680  AllNodes.push_back(N);
3681  return SDValue(N, 0);
3682}
3683
3684SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3685                              SDValue Chain, SDValue Ptr,
3686                              const Value *SV, int SVOffset,
3687                              bool isVolatile, unsigned Alignment) {
3688  SDValue Undef = getUNDEF(Ptr.getValueType());
3689  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3690                 SV, SVOffset, VT, isVolatile, Alignment);
3691}
3692
3693SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3694                                 SDValue Chain, SDValue Ptr,
3695                                 const Value *SV,
3696                                 int SVOffset, MVT EVT,
3697                                 bool isVolatile, unsigned Alignment) {
3698  SDValue Undef = getUNDEF(Ptr.getValueType());
3699  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3700                 SV, SVOffset, EVT, isVolatile, Alignment);
3701}
3702
3703SDValue
3704SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3705                             SDValue Offset, ISD::MemIndexedMode AM) {
3706  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3707  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3708         "Load is already a indexed load!");
3709  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3710                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3711                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3712                 LD->isVolatile(), LD->getAlignment());
3713}
3714
3715SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3716                               SDValue Ptr, const Value *SV, int SVOffset,
3717                               bool isVolatile, unsigned Alignment) {
3718  MVT VT = Val.getValueType();
3719
3720  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3721    Alignment = getMVTAlignment(VT);
3722
3723  SDVTList VTs = getVTList(MVT::Other);
3724  SDValue Undef = getUNDEF(Ptr.getValueType());
3725  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3726  FoldingSetNodeID ID;
3727  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3728  ID.AddInteger(VT.getRawBits());
3729  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3730                                     isVolatile, Alignment));
3731  void *IP = 0;
3732  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3733    return SDValue(E, 0);
3734  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3735  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3736                      VT, SV, SVOffset, Alignment, isVolatile);
3737  CSEMap.InsertNode(N, IP);
3738  AllNodes.push_back(N);
3739  return SDValue(N, 0);
3740}
3741
3742SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3743                                    SDValue Ptr, const Value *SV,
3744                                    int SVOffset, MVT SVT,
3745                                    bool isVolatile, unsigned Alignment) {
3746  MVT VT = Val.getValueType();
3747
3748  if (VT == SVT)
3749    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3750
3751  assert(VT.bitsGT(SVT) && "Not a truncation?");
3752  assert(VT.isInteger() == SVT.isInteger() &&
3753         "Can't do FP-INT conversion!");
3754
3755  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3756    Alignment = getMVTAlignment(VT);
3757
3758  SDVTList VTs = getVTList(MVT::Other);
3759  SDValue Undef = getUNDEF(Ptr.getValueType());
3760  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3761  FoldingSetNodeID ID;
3762  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3763  ID.AddInteger(SVT.getRawBits());
3764  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3765                                     isVolatile, Alignment));
3766  void *IP = 0;
3767  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3768    return SDValue(E, 0);
3769  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3770  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3771                      SVT, SV, SVOffset, Alignment, isVolatile);
3772  CSEMap.InsertNode(N, IP);
3773  AllNodes.push_back(N);
3774  return SDValue(N, 0);
3775}
3776
3777SDValue
3778SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3779                              SDValue Offset, ISD::MemIndexedMode AM) {
3780  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3781  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3782         "Store is already a indexed store!");
3783  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3784  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3785  FoldingSetNodeID ID;
3786  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3787  ID.AddInteger(ST->getMemoryVT().getRawBits());
3788  ID.AddInteger(ST->getRawSubclassData());
3789  void *IP = 0;
3790  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3791    return SDValue(E, 0);
3792  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3793  new (N) StoreSDNode(Ops, dl, VTs, AM,
3794                      ST->isTruncatingStore(), ST->getMemoryVT(),
3795                      ST->getSrcValue(), ST->getSrcValueOffset(),
3796                      ST->getAlignment(), ST->isVolatile());
3797  CSEMap.InsertNode(N, IP);
3798  AllNodes.push_back(N);
3799  return SDValue(N, 0);
3800}
3801
3802SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3803                               SDValue Chain, SDValue Ptr,
3804                               SDValue SV) {
3805  SDValue Ops[] = { Chain, Ptr, SV };
3806  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3807}
3808
3809SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3810                              const SDUse *Ops, unsigned NumOps) {
3811  switch (NumOps) {
3812  case 0: return getNode(Opcode, DL, VT);
3813  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3814  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3815  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3816  default: break;
3817  }
3818
3819  // Copy from an SDUse array into an SDValue array for use with
3820  // the regular getNode logic.
3821  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3822  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3823}
3824
3825SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3826                              const SDValue *Ops, unsigned NumOps) {
3827  switch (NumOps) {
3828  case 0: return getNode(Opcode, DL, VT);
3829  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3830  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3831  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3832  default: break;
3833  }
3834
3835  switch (Opcode) {
3836  default: break;
3837  case ISD::SELECT_CC: {
3838    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3839    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3840           "LHS and RHS of condition must have same type!");
3841    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3842           "True and False arms of SelectCC must have same type!");
3843    assert(Ops[2].getValueType() == VT &&
3844           "select_cc node must be of same type as true and false value!");
3845    break;
3846  }
3847  case ISD::BR_CC: {
3848    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3849    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3850           "LHS/RHS of comparison should match types!");
3851    break;
3852  }
3853  }
3854
3855  // Memoize nodes.
3856  SDNode *N;
3857  SDVTList VTs = getVTList(VT);
3858
3859  if (VT != MVT::Flag) {
3860    FoldingSetNodeID ID;
3861    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3862    void *IP = 0;
3863
3864    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3865      return SDValue(E, 0);
3866
3867    N = NodeAllocator.Allocate<SDNode>();
3868    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3869    CSEMap.InsertNode(N, IP);
3870  } else {
3871    N = NodeAllocator.Allocate<SDNode>();
3872    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3873  }
3874
3875  AllNodes.push_back(N);
3876#ifndef NDEBUG
3877  VerifyNode(N);
3878#endif
3879  return SDValue(N, 0);
3880}
3881
3882SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3883                              const std::vector<MVT> &ResultTys,
3884                              const SDValue *Ops, unsigned NumOps) {
3885  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3886                 Ops, NumOps);
3887}
3888
3889SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3890                              const MVT *VTs, unsigned NumVTs,
3891                              const SDValue *Ops, unsigned NumOps) {
3892  if (NumVTs == 1)
3893    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3894  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3895}
3896
3897SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3898                              const SDValue *Ops, unsigned NumOps) {
3899  if (VTList.NumVTs == 1)
3900    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3901
3902  switch (Opcode) {
3903  // FIXME: figure out how to safely handle things like
3904  // int foo(int x) { return 1 << (x & 255); }
3905  // int bar() { return foo(256); }
3906#if 0
3907  case ISD::SRA_PARTS:
3908  case ISD::SRL_PARTS:
3909  case ISD::SHL_PARTS:
3910    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3911        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3912      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3913    else if (N3.getOpcode() == ISD::AND)
3914      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3915        // If the and is only masking out bits that cannot effect the shift,
3916        // eliminate the and.
3917        unsigned NumBits = VT.getSizeInBits()*2;
3918        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3919          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3920      }
3921    break;
3922#endif
3923  }
3924
3925  // Memoize the node unless it returns a flag.
3926  SDNode *N;
3927  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3928    FoldingSetNodeID ID;
3929    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3930    void *IP = 0;
3931    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3932      return SDValue(E, 0);
3933    if (NumOps == 1) {
3934      N = NodeAllocator.Allocate<UnarySDNode>();
3935      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3936    } else if (NumOps == 2) {
3937      N = NodeAllocator.Allocate<BinarySDNode>();
3938      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3939    } else if (NumOps == 3) {
3940      N = NodeAllocator.Allocate<TernarySDNode>();
3941      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3942    } else {
3943      N = NodeAllocator.Allocate<SDNode>();
3944      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3945    }
3946    CSEMap.InsertNode(N, IP);
3947  } else {
3948    if (NumOps == 1) {
3949      N = NodeAllocator.Allocate<UnarySDNode>();
3950      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3951    } else if (NumOps == 2) {
3952      N = NodeAllocator.Allocate<BinarySDNode>();
3953      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3954    } else if (NumOps == 3) {
3955      N = NodeAllocator.Allocate<TernarySDNode>();
3956      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3957    } else {
3958      N = NodeAllocator.Allocate<SDNode>();
3959      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3960    }
3961  }
3962  AllNodes.push_back(N);
3963#ifndef NDEBUG
3964  VerifyNode(N);
3965#endif
3966  return SDValue(N, 0);
3967}
3968
3969SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3970  return getNode(Opcode, DL, VTList, 0, 0);
3971}
3972
3973SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3974                              SDValue N1) {
3975  SDValue Ops[] = { N1 };
3976  return getNode(Opcode, DL, VTList, Ops, 1);
3977}
3978
3979SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3980                              SDValue N1, SDValue N2) {
3981  SDValue Ops[] = { N1, N2 };
3982  return getNode(Opcode, DL, VTList, Ops, 2);
3983}
3984
3985SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3986                              SDValue N1, SDValue N2, SDValue N3) {
3987  SDValue Ops[] = { N1, N2, N3 };
3988  return getNode(Opcode, DL, VTList, Ops, 3);
3989}
3990
3991SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3992                              SDValue N1, SDValue N2, SDValue N3,
3993                              SDValue N4) {
3994  SDValue Ops[] = { N1, N2, N3, N4 };
3995  return getNode(Opcode, DL, VTList, Ops, 4);
3996}
3997
3998SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3999                              SDValue N1, SDValue N2, SDValue N3,
4000                              SDValue N4, SDValue N5) {
4001  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4002  return getNode(Opcode, DL, VTList, Ops, 5);
4003}
4004
4005SDVTList SelectionDAG::getVTList(MVT VT) {
4006  return makeVTList(SDNode::getValueTypeList(VT), 1);
4007}
4008
4009SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4010  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4011       E = VTList.rend(); I != E; ++I)
4012    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4013      return *I;
4014
4015  MVT *Array = Allocator.Allocate<MVT>(2);
4016  Array[0] = VT1;
4017  Array[1] = VT2;
4018  SDVTList Result = makeVTList(Array, 2);
4019  VTList.push_back(Result);
4020  return Result;
4021}
4022
4023SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4024  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4025       E = VTList.rend(); I != E; ++I)
4026    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4027                          I->VTs[2] == VT3)
4028      return *I;
4029
4030  MVT *Array = Allocator.Allocate<MVT>(3);
4031  Array[0] = VT1;
4032  Array[1] = VT2;
4033  Array[2] = VT3;
4034  SDVTList Result = makeVTList(Array, 3);
4035  VTList.push_back(Result);
4036  return Result;
4037}
4038
4039SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4040  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4041       E = VTList.rend(); I != E; ++I)
4042    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4043                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4044      return *I;
4045
4046  MVT *Array = Allocator.Allocate<MVT>(3);
4047  Array[0] = VT1;
4048  Array[1] = VT2;
4049  Array[2] = VT3;
4050  Array[3] = VT4;
4051  SDVTList Result = makeVTList(Array, 4);
4052  VTList.push_back(Result);
4053  return Result;
4054}
4055
4056SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4057  switch (NumVTs) {
4058    case 0: assert(0 && "Cannot have nodes without results!");
4059    case 1: return getVTList(VTs[0]);
4060    case 2: return getVTList(VTs[0], VTs[1]);
4061    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4062    default: break;
4063  }
4064
4065  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4066       E = VTList.rend(); I != E; ++I) {
4067    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4068      continue;
4069
4070    bool NoMatch = false;
4071    for (unsigned i = 2; i != NumVTs; ++i)
4072      if (VTs[i] != I->VTs[i]) {
4073        NoMatch = true;
4074        break;
4075      }
4076    if (!NoMatch)
4077      return *I;
4078  }
4079
4080  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4081  std::copy(VTs, VTs+NumVTs, Array);
4082  SDVTList Result = makeVTList(Array, NumVTs);
4083  VTList.push_back(Result);
4084  return Result;
4085}
4086
4087
4088/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4089/// specified operands.  If the resultant node already exists in the DAG,
4090/// this does not modify the specified node, instead it returns the node that
4091/// already exists.  If the resultant node does not exist in the DAG, the
4092/// input node is returned.  As a degenerate case, if you specify the same
4093/// input operands as the node already has, the input node is returned.
4094SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4095  SDNode *N = InN.getNode();
4096  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4097
4098  // Check to see if there is no change.
4099  if (Op == N->getOperand(0)) return InN;
4100
4101  // See if the modified node already exists.
4102  void *InsertPos = 0;
4103  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4104    return SDValue(Existing, InN.getResNo());
4105
4106  // Nope it doesn't.  Remove the node from its current place in the maps.
4107  if (InsertPos)
4108    if (!RemoveNodeFromCSEMaps(N))
4109      InsertPos = 0;
4110
4111  // Now we update the operands.
4112  N->OperandList[0].set(Op);
4113
4114  // If this gets put into a CSE map, add it.
4115  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4116  return InN;
4117}
4118
4119SDValue SelectionDAG::
4120UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4121  SDNode *N = InN.getNode();
4122  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4123
4124  // Check to see if there is no change.
4125  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4126    return InN;   // No operands changed, just return the input node.
4127
4128  // See if the modified node already exists.
4129  void *InsertPos = 0;
4130  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4131    return SDValue(Existing, InN.getResNo());
4132
4133  // Nope it doesn't.  Remove the node from its current place in the maps.
4134  if (InsertPos)
4135    if (!RemoveNodeFromCSEMaps(N))
4136      InsertPos = 0;
4137
4138  // Now we update the operands.
4139  if (N->OperandList[0] != Op1)
4140    N->OperandList[0].set(Op1);
4141  if (N->OperandList[1] != Op2)
4142    N->OperandList[1].set(Op2);
4143
4144  // If this gets put into a CSE map, add it.
4145  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4146  return InN;
4147}
4148
4149SDValue SelectionDAG::
4150UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4151  SDValue Ops[] = { Op1, Op2, Op3 };
4152  return UpdateNodeOperands(N, Ops, 3);
4153}
4154
4155SDValue SelectionDAG::
4156UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4157                   SDValue Op3, SDValue Op4) {
4158  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4159  return UpdateNodeOperands(N, Ops, 4);
4160}
4161
4162SDValue SelectionDAG::
4163UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4164                   SDValue Op3, SDValue Op4, SDValue Op5) {
4165  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4166  return UpdateNodeOperands(N, Ops, 5);
4167}
4168
4169SDValue SelectionDAG::
4170UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4171  SDNode *N = InN.getNode();
4172  assert(N->getNumOperands() == NumOps &&
4173         "Update with wrong number of operands");
4174
4175  // Check to see if there is no change.
4176  bool AnyChange = false;
4177  for (unsigned i = 0; i != NumOps; ++i) {
4178    if (Ops[i] != N->getOperand(i)) {
4179      AnyChange = true;
4180      break;
4181    }
4182  }
4183
4184  // No operands changed, just return the input node.
4185  if (!AnyChange) return InN;
4186
4187  // See if the modified node already exists.
4188  void *InsertPos = 0;
4189  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4190    return SDValue(Existing, InN.getResNo());
4191
4192  // Nope it doesn't.  Remove the node from its current place in the maps.
4193  if (InsertPos)
4194    if (!RemoveNodeFromCSEMaps(N))
4195      InsertPos = 0;
4196
4197  // Now we update the operands.
4198  for (unsigned i = 0; i != NumOps; ++i)
4199    if (N->OperandList[i] != Ops[i])
4200      N->OperandList[i].set(Ops[i]);
4201
4202  // If this gets put into a CSE map, add it.
4203  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4204  return InN;
4205}
4206
4207/// DropOperands - Release the operands and set this node to have
4208/// zero operands.
4209void SDNode::DropOperands() {
4210  // Unlike the code in MorphNodeTo that does this, we don't need to
4211  // watch for dead nodes here.
4212  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4213    SDUse &Use = *I++;
4214    Use.set(SDValue());
4215  }
4216}
4217
4218/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4219/// machine opcode.
4220///
4221SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4222                                   MVT VT) {
4223  SDVTList VTs = getVTList(VT);
4224  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4225}
4226
4227SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4228                                   MVT VT, SDValue Op1) {
4229  SDVTList VTs = getVTList(VT);
4230  SDValue Ops[] = { Op1 };
4231  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4232}
4233
4234SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4235                                   MVT VT, SDValue Op1,
4236                                   SDValue Op2) {
4237  SDVTList VTs = getVTList(VT);
4238  SDValue Ops[] = { Op1, Op2 };
4239  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4240}
4241
4242SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4243                                   MVT VT, SDValue Op1,
4244                                   SDValue Op2, SDValue Op3) {
4245  SDVTList VTs = getVTList(VT);
4246  SDValue Ops[] = { Op1, Op2, Op3 };
4247  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4248}
4249
4250SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4251                                   MVT VT, const SDValue *Ops,
4252                                   unsigned NumOps) {
4253  SDVTList VTs = getVTList(VT);
4254  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4255}
4256
4257SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4258                                   MVT VT1, MVT VT2, const SDValue *Ops,
4259                                   unsigned NumOps) {
4260  SDVTList VTs = getVTList(VT1, VT2);
4261  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4262}
4263
4264SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4265                                   MVT VT1, MVT VT2) {
4266  SDVTList VTs = getVTList(VT1, VT2);
4267  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4268}
4269
4270SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4271                                   MVT VT1, MVT VT2, MVT VT3,
4272                                   const SDValue *Ops, unsigned NumOps) {
4273  SDVTList VTs = getVTList(VT1, VT2, VT3);
4274  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4275}
4276
4277SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4278                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4279                                   const SDValue *Ops, unsigned NumOps) {
4280  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4281  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4282}
4283
4284SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4285                                   MVT VT1, MVT VT2,
4286                                   SDValue Op1) {
4287  SDVTList VTs = getVTList(VT1, VT2);
4288  SDValue Ops[] = { Op1 };
4289  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4290}
4291
4292SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4293                                   MVT VT1, MVT VT2,
4294                                   SDValue Op1, SDValue Op2) {
4295  SDVTList VTs = getVTList(VT1, VT2);
4296  SDValue Ops[] = { Op1, Op2 };
4297  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4298}
4299
4300SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4301                                   MVT VT1, MVT VT2,
4302                                   SDValue Op1, SDValue Op2,
4303                                   SDValue Op3) {
4304  SDVTList VTs = getVTList(VT1, VT2);
4305  SDValue Ops[] = { Op1, Op2, Op3 };
4306  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4307}
4308
4309SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4310                                   MVT VT1, MVT VT2, MVT VT3,
4311                                   SDValue Op1, SDValue Op2,
4312                                   SDValue Op3) {
4313  SDVTList VTs = getVTList(VT1, VT2, VT3);
4314  SDValue Ops[] = { Op1, Op2, Op3 };
4315  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4316}
4317
4318SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4319                                   SDVTList VTs, const SDValue *Ops,
4320                                   unsigned NumOps) {
4321  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4322}
4323
4324SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4325                                  MVT VT) {
4326  SDVTList VTs = getVTList(VT);
4327  return MorphNodeTo(N, Opc, VTs, 0, 0);
4328}
4329
4330SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4331                                  MVT VT, SDValue Op1) {
4332  SDVTList VTs = getVTList(VT);
4333  SDValue Ops[] = { Op1 };
4334  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4335}
4336
4337SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4338                                  MVT VT, SDValue Op1,
4339                                  SDValue Op2) {
4340  SDVTList VTs = getVTList(VT);
4341  SDValue Ops[] = { Op1, Op2 };
4342  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4343}
4344
4345SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4346                                  MVT VT, SDValue Op1,
4347                                  SDValue Op2, SDValue Op3) {
4348  SDVTList VTs = getVTList(VT);
4349  SDValue Ops[] = { Op1, Op2, Op3 };
4350  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4351}
4352
4353SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4354                                  MVT VT, const SDValue *Ops,
4355                                  unsigned NumOps) {
4356  SDVTList VTs = getVTList(VT);
4357  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4358}
4359
4360SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4361                                  MVT VT1, MVT VT2, const SDValue *Ops,
4362                                  unsigned NumOps) {
4363  SDVTList VTs = getVTList(VT1, VT2);
4364  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4365}
4366
4367SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4368                                  MVT VT1, MVT VT2) {
4369  SDVTList VTs = getVTList(VT1, VT2);
4370  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4371}
4372
4373SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4374                                  MVT VT1, MVT VT2, MVT VT3,
4375                                  const SDValue *Ops, unsigned NumOps) {
4376  SDVTList VTs = getVTList(VT1, VT2, VT3);
4377  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4378}
4379
4380SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4381                                  MVT VT1, MVT VT2,
4382                                  SDValue Op1) {
4383  SDVTList VTs = getVTList(VT1, VT2);
4384  SDValue Ops[] = { Op1 };
4385  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4386}
4387
4388SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4389                                  MVT VT1, MVT VT2,
4390                                  SDValue Op1, SDValue Op2) {
4391  SDVTList VTs = getVTList(VT1, VT2);
4392  SDValue Ops[] = { Op1, Op2 };
4393  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4394}
4395
4396SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4397                                  MVT VT1, MVT VT2,
4398                                  SDValue Op1, SDValue Op2,
4399                                  SDValue Op3) {
4400  SDVTList VTs = getVTList(VT1, VT2);
4401  SDValue Ops[] = { Op1, Op2, Op3 };
4402  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4403}
4404
4405/// MorphNodeTo - These *mutate* the specified node to have the specified
4406/// return type, opcode, and operands.
4407///
4408/// Note that MorphNodeTo returns the resultant node.  If there is already a
4409/// node of the specified opcode and operands, it returns that node instead of
4410/// the current one.  Note that the DebugLoc need not be the same.
4411///
4412/// Using MorphNodeTo is faster than creating a new node and swapping it in
4413/// with ReplaceAllUsesWith both because it often avoids allocating a new
4414/// node, and because it doesn't require CSE recalculation for any of
4415/// the node's users.
4416///
4417SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4418                                  SDVTList VTs, const SDValue *Ops,
4419                                  unsigned NumOps) {
4420  // If an identical node already exists, use it.
4421  void *IP = 0;
4422  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4423    FoldingSetNodeID ID;
4424    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4425    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4426      return ON;
4427  }
4428
4429  if (!RemoveNodeFromCSEMaps(N))
4430    IP = 0;
4431
4432  // Start the morphing.
4433  N->NodeType = Opc;
4434  N->ValueList = VTs.VTs;
4435  N->NumValues = VTs.NumVTs;
4436
4437  // Clear the operands list, updating used nodes to remove this from their
4438  // use list.  Keep track of any operands that become dead as a result.
4439  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4440  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4441    SDUse &Use = *I++;
4442    SDNode *Used = Use.getNode();
4443    Use.set(SDValue());
4444    if (Used->use_empty())
4445      DeadNodeSet.insert(Used);
4446  }
4447
4448  // If NumOps is larger than the # of operands we currently have, reallocate
4449  // the operand list.
4450  if (NumOps > N->NumOperands) {
4451    if (N->OperandsNeedDelete)
4452      delete[] N->OperandList;
4453
4454    if (N->isMachineOpcode()) {
4455      // We're creating a final node that will live unmorphed for the
4456      // remainder of the current SelectionDAG iteration, so we can allocate
4457      // the operands directly out of a pool with no recycling metadata.
4458      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4459      N->OperandsNeedDelete = false;
4460    } else {
4461      N->OperandList = new SDUse[NumOps];
4462      N->OperandsNeedDelete = true;
4463    }
4464  }
4465
4466  // Assign the new operands.
4467  N->NumOperands = NumOps;
4468  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4469    N->OperandList[i].setUser(N);
4470    N->OperandList[i].setInitial(Ops[i]);
4471  }
4472
4473  // Delete any nodes that are still dead after adding the uses for the
4474  // new operands.
4475  SmallVector<SDNode *, 16> DeadNodes;
4476  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4477       E = DeadNodeSet.end(); I != E; ++I)
4478    if ((*I)->use_empty())
4479      DeadNodes.push_back(*I);
4480  RemoveDeadNodes(DeadNodes);
4481
4482  if (IP)
4483    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4484  return N;
4485}
4486
4487
4488/// getTargetNode - These are used for target selectors to create a new node
4489/// with specified return type(s), target opcode, and operands.
4490///
4491/// Note that getTargetNode returns the resultant node.  If there is already a
4492/// node of the specified opcode and operands, it returns that node instead of
4493/// the current one.
4494SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4495  return getNode(~Opcode, dl, VT).getNode();
4496}
4497
4498SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4499                                    SDValue Op1) {
4500  return getNode(~Opcode, dl, VT, Op1).getNode();
4501}
4502
4503SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4504                                    SDValue Op1, SDValue Op2) {
4505  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4506}
4507
4508SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4509                                    SDValue Op1, SDValue Op2,
4510                                    SDValue Op3) {
4511  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4512}
4513
4514SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4515                                    const SDValue *Ops, unsigned NumOps) {
4516  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4517}
4518
4519SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4520                                    MVT VT1, MVT VT2) {
4521  SDVTList VTs = getVTList(VT1, VT2);
4522  SDValue Op;
4523  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4524}
4525
4526SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4527                                    MVT VT2, SDValue Op1) {
4528  SDVTList VTs = getVTList(VT1, VT2);
4529  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4530}
4531
4532SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4533                                    MVT VT2, SDValue Op1,
4534                                    SDValue Op2) {
4535  SDVTList VTs = getVTList(VT1, VT2);
4536  SDValue Ops[] = { Op1, Op2 };
4537  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4538}
4539
4540SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4541                                    MVT VT2, SDValue Op1,
4542                                    SDValue Op2, SDValue Op3) {
4543  SDVTList VTs = getVTList(VT1, VT2);
4544  SDValue Ops[] = { Op1, Op2, Op3 };
4545  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4546}
4547
4548SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4549                                    MVT VT1, MVT VT2,
4550                                    const SDValue *Ops, unsigned NumOps) {
4551  SDVTList VTs = getVTList(VT1, VT2);
4552  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4553}
4554
4555SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4556                                    MVT VT1, MVT VT2, MVT VT3,
4557                                    SDValue Op1, SDValue Op2) {
4558  SDVTList VTs = getVTList(VT1, VT2, VT3);
4559  SDValue Ops[] = { Op1, Op2 };
4560  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4561}
4562
4563SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4564                                    MVT VT1, MVT VT2, MVT VT3,
4565                                    SDValue Op1, SDValue Op2,
4566                                    SDValue Op3) {
4567  SDVTList VTs = getVTList(VT1, VT2, VT3);
4568  SDValue Ops[] = { Op1, Op2, Op3 };
4569  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4570}
4571
4572SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4573                                    MVT VT1, MVT VT2, MVT VT3,
4574                                    const SDValue *Ops, unsigned NumOps) {
4575  SDVTList VTs = getVTList(VT1, VT2, VT3);
4576  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4577}
4578
4579SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4580                                    MVT VT2, MVT VT3, MVT VT4,
4581                                    const SDValue *Ops, unsigned NumOps) {
4582  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4583  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4584}
4585
4586SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4587                                    const std::vector<MVT> &ResultTys,
4588                                    const SDValue *Ops, unsigned NumOps) {
4589  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4590}
4591
4592/// getNodeIfExists - Get the specified node if it's already available, or
4593/// else return NULL.
4594SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4595                                      const SDValue *Ops, unsigned NumOps) {
4596  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4597    FoldingSetNodeID ID;
4598    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4599    void *IP = 0;
4600    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4601      return E;
4602  }
4603  return NULL;
4604}
4605
4606/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4607/// This can cause recursive merging of nodes in the DAG.
4608///
4609/// This version assumes From has a single result value.
4610///
4611void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4612                                      DAGUpdateListener *UpdateListener) {
4613  SDNode *From = FromN.getNode();
4614  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4615         "Cannot replace with this method!");
4616  assert(From != To.getNode() && "Cannot replace uses of with self");
4617
4618  // Iterate over all the existing uses of From. New uses will be added
4619  // to the beginning of the use list, which we avoid visiting.
4620  // This specifically avoids visiting uses of From that arise while the
4621  // replacement is happening, because any such uses would be the result
4622  // of CSE: If an existing node looks like From after one of its operands
4623  // is replaced by To, we don't want to replace of all its users with To
4624  // too. See PR3018 for more info.
4625  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4626  while (UI != UE) {
4627    SDNode *User = *UI;
4628
4629    // This node is about to morph, remove its old self from the CSE maps.
4630    RemoveNodeFromCSEMaps(User);
4631
4632    // A user can appear in a use list multiple times, and when this
4633    // happens the uses are usually next to each other in the list.
4634    // To help reduce the number of CSE recomputations, process all
4635    // the uses of this user that we can find this way.
4636    do {
4637      SDUse &Use = UI.getUse();
4638      ++UI;
4639      Use.set(To);
4640    } while (UI != UE && *UI == User);
4641
4642    // Now that we have modified User, add it back to the CSE maps.  If it
4643    // already exists there, recursively merge the results together.
4644    AddModifiedNodeToCSEMaps(User, UpdateListener);
4645  }
4646}
4647
4648/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4649/// This can cause recursive merging of nodes in the DAG.
4650///
4651/// This version assumes that for each value of From, there is a
4652/// corresponding value in To in the same position with the same type.
4653///
4654void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4655                                      DAGUpdateListener *UpdateListener) {
4656#ifndef NDEBUG
4657  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4658    assert((!From->hasAnyUseOfValue(i) ||
4659            From->getValueType(i) == To->getValueType(i)) &&
4660           "Cannot use this version of ReplaceAllUsesWith!");
4661#endif
4662
4663  // Handle the trivial case.
4664  if (From == To)
4665    return;
4666
4667  // Iterate over just the existing users of From. See the comments in
4668  // the ReplaceAllUsesWith above.
4669  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4670  while (UI != UE) {
4671    SDNode *User = *UI;
4672
4673    // This node is about to morph, remove its old self from the CSE maps.
4674    RemoveNodeFromCSEMaps(User);
4675
4676    // A user can appear in a use list multiple times, and when this
4677    // happens the uses are usually next to each other in the list.
4678    // To help reduce the number of CSE recomputations, process all
4679    // the uses of this user that we can find this way.
4680    do {
4681      SDUse &Use = UI.getUse();
4682      ++UI;
4683      Use.setNode(To);
4684    } while (UI != UE && *UI == User);
4685
4686    // Now that we have modified User, add it back to the CSE maps.  If it
4687    // already exists there, recursively merge the results together.
4688    AddModifiedNodeToCSEMaps(User, UpdateListener);
4689  }
4690}
4691
4692/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4693/// This can cause recursive merging of nodes in the DAG.
4694///
4695/// This version can replace From with any result values.  To must match the
4696/// number and types of values returned by From.
4697void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4698                                      const SDValue *To,
4699                                      DAGUpdateListener *UpdateListener) {
4700  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4701    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4702
4703  // Iterate over just the existing users of From. See the comments in
4704  // the ReplaceAllUsesWith above.
4705  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4706  while (UI != UE) {
4707    SDNode *User = *UI;
4708
4709    // This node is about to morph, remove its old self from the CSE maps.
4710    RemoveNodeFromCSEMaps(User);
4711
4712    // A user can appear in a use list multiple times, and when this
4713    // happens the uses are usually next to each other in the list.
4714    // To help reduce the number of CSE recomputations, process all
4715    // the uses of this user that we can find this way.
4716    do {
4717      SDUse &Use = UI.getUse();
4718      const SDValue &ToOp = To[Use.getResNo()];
4719      ++UI;
4720      Use.set(ToOp);
4721    } while (UI != UE && *UI == User);
4722
4723    // Now that we have modified User, add it back to the CSE maps.  If it
4724    // already exists there, recursively merge the results together.
4725    AddModifiedNodeToCSEMaps(User, UpdateListener);
4726  }
4727}
4728
4729/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4730/// uses of other values produced by From.getNode() alone.  The Deleted
4731/// vector is handled the same way as for ReplaceAllUsesWith.
4732void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4733                                             DAGUpdateListener *UpdateListener){
4734  // Handle the really simple, really trivial case efficiently.
4735  if (From == To) return;
4736
4737  // Handle the simple, trivial, case efficiently.
4738  if (From.getNode()->getNumValues() == 1) {
4739    ReplaceAllUsesWith(From, To, UpdateListener);
4740    return;
4741  }
4742
4743  // Iterate over just the existing users of From. See the comments in
4744  // the ReplaceAllUsesWith above.
4745  SDNode::use_iterator UI = From.getNode()->use_begin(),
4746                       UE = From.getNode()->use_end();
4747  while (UI != UE) {
4748    SDNode *User = *UI;
4749    bool UserRemovedFromCSEMaps = false;
4750
4751    // A user can appear in a use list multiple times, and when this
4752    // happens the uses are usually next to each other in the list.
4753    // To help reduce the number of CSE recomputations, process all
4754    // the uses of this user that we can find this way.
4755    do {
4756      SDUse &Use = UI.getUse();
4757
4758      // Skip uses of different values from the same node.
4759      if (Use.getResNo() != From.getResNo()) {
4760        ++UI;
4761        continue;
4762      }
4763
4764      // If this node hasn't been modified yet, it's still in the CSE maps,
4765      // so remove its old self from the CSE maps.
4766      if (!UserRemovedFromCSEMaps) {
4767        RemoveNodeFromCSEMaps(User);
4768        UserRemovedFromCSEMaps = true;
4769      }
4770
4771      ++UI;
4772      Use.set(To);
4773    } while (UI != UE && *UI == User);
4774
4775    // We are iterating over all uses of the From node, so if a use
4776    // doesn't use the specific value, no changes are made.
4777    if (!UserRemovedFromCSEMaps)
4778      continue;
4779
4780    // Now that we have modified User, add it back to the CSE maps.  If it
4781    // already exists there, recursively merge the results together.
4782    AddModifiedNodeToCSEMaps(User, UpdateListener);
4783  }
4784}
4785
4786namespace {
4787  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4788  /// to record information about a use.
4789  struct UseMemo {
4790    SDNode *User;
4791    unsigned Index;
4792    SDUse *Use;
4793  };
4794
4795  /// operator< - Sort Memos by User.
4796  bool operator<(const UseMemo &L, const UseMemo &R) {
4797    return (intptr_t)L.User < (intptr_t)R.User;
4798  }
4799}
4800
4801/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4802/// uses of other values produced by From.getNode() alone.  The same value
4803/// may appear in both the From and To list.  The Deleted vector is
4804/// handled the same way as for ReplaceAllUsesWith.
4805void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4806                                              const SDValue *To,
4807                                              unsigned Num,
4808                                              DAGUpdateListener *UpdateListener){
4809  // Handle the simple, trivial case efficiently.
4810  if (Num == 1)
4811    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4812
4813  // Read up all the uses and make records of them. This helps
4814  // processing new uses that are introduced during the
4815  // replacement process.
4816  SmallVector<UseMemo, 4> Uses;
4817  for (unsigned i = 0; i != Num; ++i) {
4818    unsigned FromResNo = From[i].getResNo();
4819    SDNode *FromNode = From[i].getNode();
4820    for (SDNode::use_iterator UI = FromNode->use_begin(),
4821         E = FromNode->use_end(); UI != E; ++UI) {
4822      SDUse &Use = UI.getUse();
4823      if (Use.getResNo() == FromResNo) {
4824        UseMemo Memo = { *UI, i, &Use };
4825        Uses.push_back(Memo);
4826      }
4827    }
4828  }
4829
4830  // Sort the uses, so that all the uses from a given User are together.
4831  std::sort(Uses.begin(), Uses.end());
4832
4833  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4834       UseIndex != UseIndexEnd; ) {
4835    // We know that this user uses some value of From.  If it is the right
4836    // value, update it.
4837    SDNode *User = Uses[UseIndex].User;
4838
4839    // This node is about to morph, remove its old self from the CSE maps.
4840    RemoveNodeFromCSEMaps(User);
4841
4842    // The Uses array is sorted, so all the uses for a given User
4843    // are next to each other in the list.
4844    // To help reduce the number of CSE recomputations, process all
4845    // the uses of this user that we can find this way.
4846    do {
4847      unsigned i = Uses[UseIndex].Index;
4848      SDUse &Use = *Uses[UseIndex].Use;
4849      ++UseIndex;
4850
4851      Use.set(To[i]);
4852    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4853
4854    // Now that we have modified User, add it back to the CSE maps.  If it
4855    // already exists there, recursively merge the results together.
4856    AddModifiedNodeToCSEMaps(User, UpdateListener);
4857  }
4858}
4859
4860/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4861/// based on their topological order. It returns the maximum id and a vector
4862/// of the SDNodes* in assigned order by reference.
4863unsigned SelectionDAG::AssignTopologicalOrder() {
4864
4865  unsigned DAGSize = 0;
4866
4867  // SortedPos tracks the progress of the algorithm. Nodes before it are
4868  // sorted, nodes after it are unsorted. When the algorithm completes
4869  // it is at the end of the list.
4870  allnodes_iterator SortedPos = allnodes_begin();
4871
4872  // Visit all the nodes. Move nodes with no operands to the front of
4873  // the list immediately. Annotate nodes that do have operands with their
4874  // operand count. Before we do this, the Node Id fields of the nodes
4875  // may contain arbitrary values. After, the Node Id fields for nodes
4876  // before SortedPos will contain the topological sort index, and the
4877  // Node Id fields for nodes At SortedPos and after will contain the
4878  // count of outstanding operands.
4879  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4880    SDNode *N = I++;
4881    unsigned Degree = N->getNumOperands();
4882    if (Degree == 0) {
4883      // A node with no uses, add it to the result array immediately.
4884      N->setNodeId(DAGSize++);
4885      allnodes_iterator Q = N;
4886      if (Q != SortedPos)
4887        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4888      ++SortedPos;
4889    } else {
4890      // Temporarily use the Node Id as scratch space for the degree count.
4891      N->setNodeId(Degree);
4892    }
4893  }
4894
4895  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4896  // such that by the time the end is reached all nodes will be sorted.
4897  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4898    SDNode *N = I;
4899    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4900         UI != UE; ++UI) {
4901      SDNode *P = *UI;
4902      unsigned Degree = P->getNodeId();
4903      --Degree;
4904      if (Degree == 0) {
4905        // All of P's operands are sorted, so P may sorted now.
4906        P->setNodeId(DAGSize++);
4907        if (P != SortedPos)
4908          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4909        ++SortedPos;
4910      } else {
4911        // Update P's outstanding operand count.
4912        P->setNodeId(Degree);
4913      }
4914    }
4915  }
4916
4917  assert(SortedPos == AllNodes.end() &&
4918         "Topological sort incomplete!");
4919  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4920         "First node in topological sort is not the entry token!");
4921  assert(AllNodes.front().getNodeId() == 0 &&
4922         "First node in topological sort has non-zero id!");
4923  assert(AllNodes.front().getNumOperands() == 0 &&
4924         "First node in topological sort has operands!");
4925  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4926         "Last node in topologic sort has unexpected id!");
4927  assert(AllNodes.back().use_empty() &&
4928         "Last node in topologic sort has users!");
4929  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4930  return DAGSize;
4931}
4932
4933
4934
4935//===----------------------------------------------------------------------===//
4936//                              SDNode Class
4937//===----------------------------------------------------------------------===//
4938
4939HandleSDNode::~HandleSDNode() {
4940  DropOperands();
4941}
4942
4943GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4944                                         MVT VT, int64_t o, unsigned char TF)
4945  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4946    Offset(o), TargetFlags(TF) {
4947  TheGlobal = const_cast<GlobalValue*>(GA);
4948}
4949
4950MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4951                     const Value *srcValue, int SVO,
4952                     unsigned alignment, bool vol)
4953 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4954  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4955  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4956  assert(getAlignment() == alignment && "Alignment representation error!");
4957  assert(isVolatile() == vol && "Volatile representation error!");
4958}
4959
4960MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4961                     const SDValue *Ops,
4962                     unsigned NumOps, MVT memvt, const Value *srcValue,
4963                     int SVO, unsigned alignment, bool vol)
4964   : SDNode(Opc, dl, VTs, Ops, NumOps),
4965     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4966  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4967  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4968  assert(getAlignment() == alignment && "Alignment representation error!");
4969  assert(isVolatile() == vol && "Volatile representation error!");
4970}
4971
4972/// getMemOperand - Return a MachineMemOperand object describing the memory
4973/// reference performed by this memory reference.
4974MachineMemOperand MemSDNode::getMemOperand() const {
4975  int Flags = 0;
4976  if (isa<LoadSDNode>(this))
4977    Flags = MachineMemOperand::MOLoad;
4978  else if (isa<StoreSDNode>(this))
4979    Flags = MachineMemOperand::MOStore;
4980  else if (isa<AtomicSDNode>(this)) {
4981    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4982  }
4983  else {
4984    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4985    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4986    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4987    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4988  }
4989
4990  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4991  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4992
4993  // Check if the memory reference references a frame index
4994  const FrameIndexSDNode *FI =
4995  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4996  if (!getSrcValue() && FI)
4997    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4998                             Flags, 0, Size, getAlignment());
4999  else
5000    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5001                             Size, getAlignment());
5002}
5003
5004/// Profile - Gather unique data for the node.
5005///
5006void SDNode::Profile(FoldingSetNodeID &ID) const {
5007  AddNodeIDNode(ID, this);
5008}
5009
5010static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
5011static MVT VTs[MVT::LAST_VALUETYPE];
5012static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5013
5014/// getValueTypeList - Return a pointer to the specified value type.
5015///
5016const MVT *SDNode::getValueTypeList(MVT VT) {
5017  sys::SmartScopedLock<true> Lock(*VTMutex);
5018  if (VT.isExtended()) {
5019    return &(*EVTs->insert(VT).first);
5020  } else {
5021    VTs[VT.getSimpleVT()] = VT;
5022    return &VTs[VT.getSimpleVT()];
5023  }
5024}
5025
5026/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5027/// indicated value.  This method ignores uses of other values defined by this
5028/// operation.
5029bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5030  assert(Value < getNumValues() && "Bad value!");
5031
5032  // TODO: Only iterate over uses of a given value of the node
5033  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5034    if (UI.getUse().getResNo() == Value) {
5035      if (NUses == 0)
5036        return false;
5037      --NUses;
5038    }
5039  }
5040
5041  // Found exactly the right number of uses?
5042  return NUses == 0;
5043}
5044
5045
5046/// hasAnyUseOfValue - Return true if there are any use of the indicated
5047/// value. This method ignores uses of other values defined by this operation.
5048bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5049  assert(Value < getNumValues() && "Bad value!");
5050
5051  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5052    if (UI.getUse().getResNo() == Value)
5053      return true;
5054
5055  return false;
5056}
5057
5058
5059/// isOnlyUserOf - Return true if this node is the only use of N.
5060///
5061bool SDNode::isOnlyUserOf(SDNode *N) const {
5062  bool Seen = false;
5063  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5064    SDNode *User = *I;
5065    if (User == this)
5066      Seen = true;
5067    else
5068      return false;
5069  }
5070
5071  return Seen;
5072}
5073
5074/// isOperand - Return true if this node is an operand of N.
5075///
5076bool SDValue::isOperandOf(SDNode *N) const {
5077  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5078    if (*this == N->getOperand(i))
5079      return true;
5080  return false;
5081}
5082
5083bool SDNode::isOperandOf(SDNode *N) const {
5084  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5085    if (this == N->OperandList[i].getNode())
5086      return true;
5087  return false;
5088}
5089
5090/// reachesChainWithoutSideEffects - Return true if this operand (which must
5091/// be a chain) reaches the specified operand without crossing any
5092/// side-effecting instructions.  In practice, this looks through token
5093/// factors and non-volatile loads.  In order to remain efficient, this only
5094/// looks a couple of nodes in, it does not do an exhaustive search.
5095bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5096                                               unsigned Depth) const {
5097  if (*this == Dest) return true;
5098
5099  // Don't search too deeply, we just want to be able to see through
5100  // TokenFactor's etc.
5101  if (Depth == 0) return false;
5102
5103  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5104  // of the operands of the TF reach dest, then we can do the xform.
5105  if (getOpcode() == ISD::TokenFactor) {
5106    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5107      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5108        return true;
5109    return false;
5110  }
5111
5112  // Loads don't have side effects, look through them.
5113  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5114    if (!Ld->isVolatile())
5115      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5116  }
5117  return false;
5118}
5119
5120
5121static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5122                            SmallPtrSet<SDNode *, 32> &Visited) {
5123  if (found || !Visited.insert(N))
5124    return;
5125
5126  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5127    SDNode *Op = N->getOperand(i).getNode();
5128    if (Op == P) {
5129      found = true;
5130      return;
5131    }
5132    findPredecessor(Op, P, found, Visited);
5133  }
5134}
5135
5136/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5137/// is either an operand of N or it can be reached by recursively traversing
5138/// up the operands.
5139/// NOTE: this is an expensive method. Use it carefully.
5140bool SDNode::isPredecessorOf(SDNode *N) const {
5141  SmallPtrSet<SDNode *, 32> Visited;
5142  bool found = false;
5143  findPredecessor(N, this, found, Visited);
5144  return found;
5145}
5146
5147uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5148  assert(Num < NumOperands && "Invalid child # of SDNode!");
5149  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5150}
5151
5152std::string SDNode::getOperationName(const SelectionDAG *G) const {
5153  switch (getOpcode()) {
5154  default:
5155    if (getOpcode() < ISD::BUILTIN_OP_END)
5156      return "<<Unknown DAG Node>>";
5157    if (isMachineOpcode()) {
5158      if (G)
5159        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5160          if (getMachineOpcode() < TII->getNumOpcodes())
5161            return TII->get(getMachineOpcode()).getName();
5162      return "<<Unknown Machine Node>>";
5163    }
5164    if (G) {
5165      const TargetLowering &TLI = G->getTargetLoweringInfo();
5166      const char *Name = TLI.getTargetNodeName(getOpcode());
5167      if (Name) return Name;
5168      return "<<Unknown Target Node>>";
5169    }
5170    return "<<Unknown Node>>";
5171
5172#ifndef NDEBUG
5173  case ISD::DELETED_NODE:
5174    return "<<Deleted Node!>>";
5175#endif
5176  case ISD::PREFETCH:      return "Prefetch";
5177  case ISD::MEMBARRIER:    return "MemBarrier";
5178  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5179  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5180  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5181  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5182  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5183  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5184  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5185  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5186  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5187  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5188  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5189  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5190  case ISD::PCMARKER:      return "PCMarker";
5191  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5192  case ISD::SRCVALUE:      return "SrcValue";
5193  case ISD::MEMOPERAND:    return "MemOperand";
5194  case ISD::EntryToken:    return "EntryToken";
5195  case ISD::TokenFactor:   return "TokenFactor";
5196  case ISD::AssertSext:    return "AssertSext";
5197  case ISD::AssertZext:    return "AssertZext";
5198
5199  case ISD::BasicBlock:    return "BasicBlock";
5200  case ISD::ARG_FLAGS:     return "ArgFlags";
5201  case ISD::VALUETYPE:     return "ValueType";
5202  case ISD::Register:      return "Register";
5203
5204  case ISD::Constant:      return "Constant";
5205  case ISD::ConstantFP:    return "ConstantFP";
5206  case ISD::GlobalAddress: return "GlobalAddress";
5207  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5208  case ISD::FrameIndex:    return "FrameIndex";
5209  case ISD::JumpTable:     return "JumpTable";
5210  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5211  case ISD::RETURNADDR: return "RETURNADDR";
5212  case ISD::FRAMEADDR: return "FRAMEADDR";
5213  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5214  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5215  case ISD::EHSELECTION: return "EHSELECTION";
5216  case ISD::EH_RETURN: return "EH_RETURN";
5217  case ISD::ConstantPool:  return "ConstantPool";
5218  case ISD::ExternalSymbol: return "ExternalSymbol";
5219  case ISD::INTRINSIC_WO_CHAIN: {
5220    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5221    return Intrinsic::getName((Intrinsic::ID)IID);
5222  }
5223  case ISD::INTRINSIC_VOID:
5224  case ISD::INTRINSIC_W_CHAIN: {
5225    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5226    return Intrinsic::getName((Intrinsic::ID)IID);
5227  }
5228
5229  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5230  case ISD::TargetConstant: return "TargetConstant";
5231  case ISD::TargetConstantFP:return "TargetConstantFP";
5232  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5233  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5234  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5235  case ISD::TargetJumpTable:  return "TargetJumpTable";
5236  case ISD::TargetConstantPool:  return "TargetConstantPool";
5237  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5238
5239  case ISD::CopyToReg:     return "CopyToReg";
5240  case ISD::CopyFromReg:   return "CopyFromReg";
5241  case ISD::UNDEF:         return "undef";
5242  case ISD::MERGE_VALUES:  return "merge_values";
5243  case ISD::INLINEASM:     return "inlineasm";
5244  case ISD::DBG_LABEL:     return "dbg_label";
5245  case ISD::EH_LABEL:      return "eh_label";
5246  case ISD::DECLARE:       return "declare";
5247  case ISD::HANDLENODE:    return "handlenode";
5248  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5249  case ISD::CALL:          return "call";
5250
5251  // Unary operators
5252  case ISD::FABS:   return "fabs";
5253  case ISD::FNEG:   return "fneg";
5254  case ISD::FSQRT:  return "fsqrt";
5255  case ISD::FSIN:   return "fsin";
5256  case ISD::FCOS:   return "fcos";
5257  case ISD::FPOWI:  return "fpowi";
5258  case ISD::FPOW:   return "fpow";
5259  case ISD::FTRUNC: return "ftrunc";
5260  case ISD::FFLOOR: return "ffloor";
5261  case ISD::FCEIL:  return "fceil";
5262  case ISD::FRINT:  return "frint";
5263  case ISD::FNEARBYINT: return "fnearbyint";
5264
5265  // Binary operators
5266  case ISD::ADD:    return "add";
5267  case ISD::SUB:    return "sub";
5268  case ISD::MUL:    return "mul";
5269  case ISD::MULHU:  return "mulhu";
5270  case ISD::MULHS:  return "mulhs";
5271  case ISD::SDIV:   return "sdiv";
5272  case ISD::UDIV:   return "udiv";
5273  case ISD::SREM:   return "srem";
5274  case ISD::UREM:   return "urem";
5275  case ISD::SMUL_LOHI:  return "smul_lohi";
5276  case ISD::UMUL_LOHI:  return "umul_lohi";
5277  case ISD::SDIVREM:    return "sdivrem";
5278  case ISD::UDIVREM:    return "udivrem";
5279  case ISD::AND:    return "and";
5280  case ISD::OR:     return "or";
5281  case ISD::XOR:    return "xor";
5282  case ISD::SHL:    return "shl";
5283  case ISD::SRA:    return "sra";
5284  case ISD::SRL:    return "srl";
5285  case ISD::ROTL:   return "rotl";
5286  case ISD::ROTR:   return "rotr";
5287  case ISD::FADD:   return "fadd";
5288  case ISD::FSUB:   return "fsub";
5289  case ISD::FMUL:   return "fmul";
5290  case ISD::FDIV:   return "fdiv";
5291  case ISD::FREM:   return "frem";
5292  case ISD::FCOPYSIGN: return "fcopysign";
5293  case ISD::FGETSIGN:  return "fgetsign";
5294
5295  case ISD::SETCC:       return "setcc";
5296  case ISD::VSETCC:      return "vsetcc";
5297  case ISD::SELECT:      return "select";
5298  case ISD::SELECT_CC:   return "select_cc";
5299  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5300  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5301  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5302  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5303  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5304  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5305  case ISD::CARRY_FALSE:         return "carry_false";
5306  case ISD::ADDC:        return "addc";
5307  case ISD::ADDE:        return "adde";
5308  case ISD::SADDO:       return "saddo";
5309  case ISD::UADDO:       return "uaddo";
5310  case ISD::SSUBO:       return "ssubo";
5311  case ISD::USUBO:       return "usubo";
5312  case ISD::SMULO:       return "smulo";
5313  case ISD::UMULO:       return "umulo";
5314  case ISD::SUBC:        return "subc";
5315  case ISD::SUBE:        return "sube";
5316  case ISD::SHL_PARTS:   return "shl_parts";
5317  case ISD::SRA_PARTS:   return "sra_parts";
5318  case ISD::SRL_PARTS:   return "srl_parts";
5319
5320  // Conversion operators.
5321  case ISD::SIGN_EXTEND: return "sign_extend";
5322  case ISD::ZERO_EXTEND: return "zero_extend";
5323  case ISD::ANY_EXTEND:  return "any_extend";
5324  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5325  case ISD::TRUNCATE:    return "truncate";
5326  case ISD::FP_ROUND:    return "fp_round";
5327  case ISD::FLT_ROUNDS_: return "flt_rounds";
5328  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5329  case ISD::FP_EXTEND:   return "fp_extend";
5330
5331  case ISD::SINT_TO_FP:  return "sint_to_fp";
5332  case ISD::UINT_TO_FP:  return "uint_to_fp";
5333  case ISD::FP_TO_SINT:  return "fp_to_sint";
5334  case ISD::FP_TO_UINT:  return "fp_to_uint";
5335  case ISD::BIT_CONVERT: return "bit_convert";
5336
5337  case ISD::CONVERT_RNDSAT: {
5338    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5339    default: assert(0 && "Unknown cvt code!");
5340    case ISD::CVT_FF:  return "cvt_ff";
5341    case ISD::CVT_FS:  return "cvt_fs";
5342    case ISD::CVT_FU:  return "cvt_fu";
5343    case ISD::CVT_SF:  return "cvt_sf";
5344    case ISD::CVT_UF:  return "cvt_uf";
5345    case ISD::CVT_SS:  return "cvt_ss";
5346    case ISD::CVT_SU:  return "cvt_su";
5347    case ISD::CVT_US:  return "cvt_us";
5348    case ISD::CVT_UU:  return "cvt_uu";
5349    }
5350  }
5351
5352    // Control flow instructions
5353  case ISD::BR:      return "br";
5354  case ISD::BRIND:   return "brind";
5355  case ISD::BR_JT:   return "br_jt";
5356  case ISD::BRCOND:  return "brcond";
5357  case ISD::BR_CC:   return "br_cc";
5358  case ISD::RET:     return "ret";
5359  case ISD::CALLSEQ_START:  return "callseq_start";
5360  case ISD::CALLSEQ_END:    return "callseq_end";
5361
5362    // Other operators
5363  case ISD::LOAD:               return "load";
5364  case ISD::STORE:              return "store";
5365  case ISD::VAARG:              return "vaarg";
5366  case ISD::VACOPY:             return "vacopy";
5367  case ISD::VAEND:              return "vaend";
5368  case ISD::VASTART:            return "vastart";
5369  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5370  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5371  case ISD::BUILD_PAIR:         return "build_pair";
5372  case ISD::STACKSAVE:          return "stacksave";
5373  case ISD::STACKRESTORE:       return "stackrestore";
5374  case ISD::TRAP:               return "trap";
5375
5376  // Bit manipulation
5377  case ISD::BSWAP:   return "bswap";
5378  case ISD::CTPOP:   return "ctpop";
5379  case ISD::CTTZ:    return "cttz";
5380  case ISD::CTLZ:    return "ctlz";
5381
5382  // Debug info
5383  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5384  case ISD::DEBUG_LOC: return "debug_loc";
5385
5386  // Trampolines
5387  case ISD::TRAMPOLINE: return "trampoline";
5388
5389  case ISD::CONDCODE:
5390    switch (cast<CondCodeSDNode>(this)->get()) {
5391    default: assert(0 && "Unknown setcc condition!");
5392    case ISD::SETOEQ:  return "setoeq";
5393    case ISD::SETOGT:  return "setogt";
5394    case ISD::SETOGE:  return "setoge";
5395    case ISD::SETOLT:  return "setolt";
5396    case ISD::SETOLE:  return "setole";
5397    case ISD::SETONE:  return "setone";
5398
5399    case ISD::SETO:    return "seto";
5400    case ISD::SETUO:   return "setuo";
5401    case ISD::SETUEQ:  return "setue";
5402    case ISD::SETUGT:  return "setugt";
5403    case ISD::SETUGE:  return "setuge";
5404    case ISD::SETULT:  return "setult";
5405    case ISD::SETULE:  return "setule";
5406    case ISD::SETUNE:  return "setune";
5407
5408    case ISD::SETEQ:   return "seteq";
5409    case ISD::SETGT:   return "setgt";
5410    case ISD::SETGE:   return "setge";
5411    case ISD::SETLT:   return "setlt";
5412    case ISD::SETLE:   return "setle";
5413    case ISD::SETNE:   return "setne";
5414    }
5415  }
5416}
5417
5418const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5419  switch (AM) {
5420  default:
5421    return "";
5422  case ISD::PRE_INC:
5423    return "<pre-inc>";
5424  case ISD::PRE_DEC:
5425    return "<pre-dec>";
5426  case ISD::POST_INC:
5427    return "<post-inc>";
5428  case ISD::POST_DEC:
5429    return "<post-dec>";
5430  }
5431}
5432
5433std::string ISD::ArgFlagsTy::getArgFlagsString() {
5434  std::string S = "< ";
5435
5436  if (isZExt())
5437    S += "zext ";
5438  if (isSExt())
5439    S += "sext ";
5440  if (isInReg())
5441    S += "inreg ";
5442  if (isSRet())
5443    S += "sret ";
5444  if (isByVal())
5445    S += "byval ";
5446  if (isNest())
5447    S += "nest ";
5448  if (getByValAlign())
5449    S += "byval-align:" + utostr(getByValAlign()) + " ";
5450  if (getOrigAlign())
5451    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5452  if (getByValSize())
5453    S += "byval-size:" + utostr(getByValSize()) + " ";
5454  return S + ">";
5455}
5456
5457void SDNode::dump() const { dump(0); }
5458void SDNode::dump(const SelectionDAG *G) const {
5459  print(errs(), G);
5460}
5461
5462void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5463  OS << (void*)this << ": ";
5464
5465  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5466    if (i) OS << ",";
5467    if (getValueType(i) == MVT::Other)
5468      OS << "ch";
5469    else
5470      OS << getValueType(i).getMVTString();
5471  }
5472  OS << " = " << getOperationName(G);
5473}
5474
5475void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5476  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5477    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5478    OS << "<";
5479    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5480      int Idx = SVN->getMaskElt(i);
5481      if (i) OS << ",";
5482      if (Idx < 0)
5483        OS << "u";
5484      else
5485        OS << Idx;
5486    }
5487    OS << ">";
5488  }
5489
5490  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5491    OS << '<' << CSDN->getAPIntValue() << '>';
5492  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5493    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5494      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5495    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5496      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5497    else {
5498      OS << "<APFloat(";
5499      CSDN->getValueAPF().bitcastToAPInt().dump();
5500      OS << ")>";
5501    }
5502  } else if (const GlobalAddressSDNode *GADN =
5503             dyn_cast<GlobalAddressSDNode>(this)) {
5504    int64_t offset = GADN->getOffset();
5505    OS << '<';
5506    WriteAsOperand(OS, GADN->getGlobal());
5507    OS << '>';
5508    if (offset > 0)
5509      OS << " + " << offset;
5510    else
5511      OS << " " << offset;
5512    if (unsigned char TF = GADN->getTargetFlags())
5513      OS << " [TF=" << TF << ']';
5514  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5515    OS << "<" << FIDN->getIndex() << ">";
5516  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5517    OS << "<" << JTDN->getIndex() << ">";
5518    if (unsigned char TF = JTDN->getTargetFlags())
5519      OS << " [TF=" << TF << ']';
5520  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5521    int offset = CP->getOffset();
5522    if (CP->isMachineConstantPoolEntry())
5523      OS << "<" << *CP->getMachineCPVal() << ">";
5524    else
5525      OS << "<" << *CP->getConstVal() << ">";
5526    if (offset > 0)
5527      OS << " + " << offset;
5528    else
5529      OS << " " << offset;
5530    if (unsigned char TF = CP->getTargetFlags())
5531      OS << " [TF=" << TF << ']';
5532  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5533    OS << "<";
5534    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5535    if (LBB)
5536      OS << LBB->getName() << " ";
5537    OS << (const void*)BBDN->getBasicBlock() << ">";
5538  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5539    if (G && R->getReg() &&
5540        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5541      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5542    } else {
5543      OS << " #" << R->getReg();
5544    }
5545  } else if (const ExternalSymbolSDNode *ES =
5546             dyn_cast<ExternalSymbolSDNode>(this)) {
5547    OS << "'" << ES->getSymbol() << "'";
5548    if (unsigned char TF = ES->getTargetFlags())
5549      OS << " [TF=" << TF << ']';
5550  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5551    if (M->getValue())
5552      OS << "<" << M->getValue() << ">";
5553    else
5554      OS << "<null>";
5555  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5556    if (M->MO.getValue())
5557      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5558    else
5559      OS << "<null:" << M->MO.getOffset() << ">";
5560  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5561    OS << N->getArgFlags().getArgFlagsString();
5562  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5563    OS << ":" << N->getVT().getMVTString();
5564  }
5565  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5566    const Value *SrcValue = LD->getSrcValue();
5567    int SrcOffset = LD->getSrcValueOffset();
5568    OS << " <";
5569    if (SrcValue)
5570      OS << SrcValue;
5571    else
5572      OS << "null";
5573    OS << ":" << SrcOffset << ">";
5574
5575    bool doExt = true;
5576    switch (LD->getExtensionType()) {
5577    default: doExt = false; break;
5578    case ISD::EXTLOAD: OS << " <anyext "; break;
5579    case ISD::SEXTLOAD: OS << " <sext "; break;
5580    case ISD::ZEXTLOAD: OS << " <zext "; break;
5581    }
5582    if (doExt)
5583      OS << LD->getMemoryVT().getMVTString() << ">";
5584
5585    const char *AM = getIndexedModeName(LD->getAddressingMode());
5586    if (*AM)
5587      OS << " " << AM;
5588    if (LD->isVolatile())
5589      OS << " <volatile>";
5590    OS << " alignment=" << LD->getAlignment();
5591  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5592    const Value *SrcValue = ST->getSrcValue();
5593    int SrcOffset = ST->getSrcValueOffset();
5594    OS << " <";
5595    if (SrcValue)
5596      OS << SrcValue;
5597    else
5598      OS << "null";
5599    OS << ":" << SrcOffset << ">";
5600
5601    if (ST->isTruncatingStore())
5602      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5603
5604    const char *AM = getIndexedModeName(ST->getAddressingMode());
5605    if (*AM)
5606      OS << " " << AM;
5607    if (ST->isVolatile())
5608      OS << " <volatile>";
5609    OS << " alignment=" << ST->getAlignment();
5610  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5611    const Value *SrcValue = AT->getSrcValue();
5612    int SrcOffset = AT->getSrcValueOffset();
5613    OS << " <";
5614    if (SrcValue)
5615      OS << SrcValue;
5616    else
5617      OS << "null";
5618    OS << ":" << SrcOffset << ">";
5619    if (AT->isVolatile())
5620      OS << " <volatile>";
5621    OS << " alignment=" << AT->getAlignment();
5622  }
5623}
5624
5625void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5626  print_types(OS, G);
5627  OS << " ";
5628  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5629    if (i) OS << ", ";
5630    OS << (void*)getOperand(i).getNode();
5631    if (unsigned RN = getOperand(i).getResNo())
5632      OS << ":" << RN;
5633  }
5634  print_details(OS, G);
5635}
5636
5637static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5638  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5639    if (N->getOperand(i).getNode()->hasOneUse())
5640      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5641    else
5642      cerr << "\n" << std::string(indent+2, ' ')
5643           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5644
5645
5646  cerr << "\n" << std::string(indent, ' ');
5647  N->dump(G);
5648}
5649
5650void SelectionDAG::dump() const {
5651  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5652
5653  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5654       I != E; ++I) {
5655    const SDNode *N = I;
5656    if (!N->hasOneUse() && N != getRoot().getNode())
5657      DumpNodes(N, 2, this);
5658  }
5659
5660  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5661
5662  cerr << "\n\n";
5663}
5664
5665void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5666  print_types(OS, G);
5667  print_details(OS, G);
5668}
5669
5670typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5671static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5672                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5673  if (!once.insert(N))          // If we've been here before, return now.
5674    return;
5675  // Dump the current SDNode, but don't end the line yet.
5676  OS << std::string(indent, ' ');
5677  N->printr(OS, G);
5678  // Having printed this SDNode, walk the children:
5679  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5680    const SDNode *child = N->getOperand(i).getNode();
5681    if (i) OS << ",";
5682    OS << " ";
5683    if (child->getNumOperands() == 0) {
5684      // This child has no grandchildren; print it inline right here.
5685      child->printr(OS, G);
5686      once.insert(child);
5687    } else {          // Just the address.  FIXME: also print the child's opcode
5688      OS << (void*)child;
5689      if (unsigned RN = N->getOperand(i).getResNo())
5690        OS << ":" << RN;
5691    }
5692  }
5693  OS << "\n";
5694  // Dump children that have grandchildren on their own line(s).
5695  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5696    const SDNode *child = N->getOperand(i).getNode();
5697    DumpNodesr(OS, child, indent+2, G, once);
5698  }
5699}
5700
5701void SDNode::dumpr() const {
5702  VisitedSDNodeSet once;
5703  DumpNodesr(errs(), this, 0, 0, once);
5704}
5705
5706
5707// getAddressSpace - Return the address space this GlobalAddress belongs to.
5708unsigned GlobalAddressSDNode::getAddressSpace() const {
5709  return getGlobal()->getType()->getAddressSpace();
5710}
5711
5712
5713const Type *ConstantPoolSDNode::getType() const {
5714  if (isMachineConstantPoolEntry())
5715    return Val.MachineCPVal->getType();
5716  return Val.ConstVal->getType();
5717}
5718
5719bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5720                                        APInt &SplatUndef,
5721                                        unsigned &SplatBitSize,
5722                                        bool &HasAnyUndefs,
5723                                        unsigned MinSplatBits) {
5724  MVT VT = getValueType(0);
5725  assert(VT.isVector() && "Expected a vector type");
5726  unsigned sz = VT.getSizeInBits();
5727  if (MinSplatBits > sz)
5728    return false;
5729
5730  SplatValue = APInt(sz, 0);
5731  SplatUndef = APInt(sz, 0);
5732
5733  // Get the bits.  Bits with undefined values (when the corresponding element
5734  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5735  // in SplatValue.  If any of the values are not constant, give up and return
5736  // false.
5737  unsigned int nOps = getNumOperands();
5738  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5739  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5740  for (unsigned i = 0; i < nOps; ++i) {
5741    SDValue OpVal = getOperand(i);
5742    unsigned BitPos = i * EltBitSize;
5743
5744    if (OpVal.getOpcode() == ISD::UNDEF)
5745      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5746    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5747      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5748                     zextOrTrunc(sz) << BitPos);
5749    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5750      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5751     else
5752      return false;
5753  }
5754
5755  // The build_vector is all constants or undefs.  Find the smallest element
5756  // size that splats the vector.
5757
5758  HasAnyUndefs = (SplatUndef != 0);
5759  while (sz > 8) {
5760
5761    unsigned HalfSize = sz / 2;
5762    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5763    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5764    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5765    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5766
5767    // If the two halves do not match (ignoring undef bits), stop here.
5768    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5769        MinSplatBits > HalfSize)
5770      break;
5771
5772    SplatValue = HighValue | LowValue;
5773    SplatUndef = HighUndef & LowUndef;
5774
5775    sz = HalfSize;
5776  }
5777
5778  SplatBitSize = sz;
5779  return true;
5780}
5781
5782bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5783  // Find the first non-undef value in the shuffle mask.
5784  unsigned i, e;
5785  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5786    /* search */;
5787
5788  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5789
5790  // Make sure all remaining elements are either undef or the same as the first
5791  // non-undef value.
5792  for (int Idx = Mask[i]; i != e; ++i)
5793    if (Mask[i] >= 0 && Mask[i] != Idx)
5794      return false;
5795  return true;
5796}
5797