SelectionDAG.cpp revision 3574eca1b02600bac4e625297f4ecf745f4c4f32
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DebugInfo.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalAlias.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/DataLayout.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetSelectionDAGInfo.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f16:     return &APFloat::IEEEhalf;
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74// Default null implementations of the callbacks.
75void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
76void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
77
78//===----------------------------------------------------------------------===//
79//                              ConstantFPSDNode Class
80//===----------------------------------------------------------------------===//
81
82/// isExactlyValue - We don't rely on operator== working on double values, as
83/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
84/// As such, this method can be used to do an exact bit-for-bit comparison of
85/// two floating point values.
86bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
87  return getValueAPF().bitwiseIsEqual(V);
88}
89
90bool ConstantFPSDNode::isValueValidForType(EVT VT,
91                                           const APFloat& Val) {
92  assert(VT.isFloatingPoint() && "Can only convert between FP types");
93
94  // PPC long double cannot be converted to any other type.
95  if (VT == MVT::ppcf128 ||
96      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
97    return false;
98
99  // convert modifies in place, so make a copy.
100  APFloat Val2 = APFloat(Val);
101  bool losesInfo;
102  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
103                      &losesInfo);
104  return !losesInfo;
105}
106
107//===----------------------------------------------------------------------===//
108//                              ISD Namespace
109//===----------------------------------------------------------------------===//
110
111/// isBuildVectorAllOnes - Return true if the specified node is a
112/// BUILD_VECTOR where all of the elements are ~0 or undef.
113bool ISD::isBuildVectorAllOnes(const SDNode *N) {
114  // Look through a bit convert.
115  if (N->getOpcode() == ISD::BITCAST)
116    N = N->getOperand(0).getNode();
117
118  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
119
120  unsigned i = 0, e = N->getNumOperands();
121
122  // Skip over all of the undef values.
123  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
124    ++i;
125
126  // Do not accept an all-undef vector.
127  if (i == e) return false;
128
129  // Do not accept build_vectors that aren't all constants or which have non-~0
130  // elements. We have to be a bit careful here, as the type of the constant
131  // may not be the same as the type of the vector elements due to type
132  // legalization (the elements are promoted to a legal type for the target and
133  // a vector of a type may be legal when the base element type is not).
134  // We only want to check enough bits to cover the vector elements, because
135  // we care if the resultant vector is all ones, not whether the individual
136  // constants are.
137  SDValue NotZero = N->getOperand(i);
138  unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
139  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
140    if (CN->getAPIntValue().countTrailingOnes() < EltSize)
141      return false;
142  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
143    if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
144      return false;
145  } else
146    return false;
147
148  // Okay, we have at least one ~0 value, check to see if the rest match or are
149  // undefs. Even with the above element type twiddling, this should be OK, as
150  // the same type legalization should have applied to all the elements.
151  for (++i; i != e; ++i)
152    if (N->getOperand(i) != NotZero &&
153        N->getOperand(i).getOpcode() != ISD::UNDEF)
154      return false;
155  return true;
156}
157
158
159/// isBuildVectorAllZeros - Return true if the specified node is a
160/// BUILD_VECTOR where all of the elements are 0 or undef.
161bool ISD::isBuildVectorAllZeros(const SDNode *N) {
162  // Look through a bit convert.
163  if (N->getOpcode() == ISD::BITCAST)
164    N = N->getOperand(0).getNode();
165
166  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
167
168  unsigned i = 0, e = N->getNumOperands();
169
170  // Skip over all of the undef values.
171  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
172    ++i;
173
174  // Do not accept an all-undef vector.
175  if (i == e) return false;
176
177  // Do not accept build_vectors that aren't all constants or which have non-0
178  // elements.
179  SDValue Zero = N->getOperand(i);
180  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
181    if (!CN->isNullValue())
182      return false;
183  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
184    if (!CFPN->getValueAPF().isPosZero())
185      return false;
186  } else
187    return false;
188
189  // Okay, we have at least one 0 value, check to see if the rest match or are
190  // undefs.
191  for (++i; i != e; ++i)
192    if (N->getOperand(i) != Zero &&
193        N->getOperand(i).getOpcode() != ISD::UNDEF)
194      return false;
195  return true;
196}
197
198/// isScalarToVector - Return true if the specified node is a
199/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
200/// element is not an undef.
201bool ISD::isScalarToVector(const SDNode *N) {
202  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
203    return true;
204
205  if (N->getOpcode() != ISD::BUILD_VECTOR)
206    return false;
207  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
208    return false;
209  unsigned NumElems = N->getNumOperands();
210  if (NumElems == 1)
211    return false;
212  for (unsigned i = 1; i < NumElems; ++i) {
213    SDValue V = N->getOperand(i);
214    if (V.getOpcode() != ISD::UNDEF)
215      return false;
216  }
217  return true;
218}
219
220/// allOperandsUndef - Return true if the node has at least one operand
221/// and all operands of the specified node are ISD::UNDEF.
222bool ISD::allOperandsUndef(const SDNode *N) {
223  // Return false if the node has no operands.
224  // This is "logically inconsistent" with the definition of "all" but
225  // is probably the desired behavior.
226  if (N->getNumOperands() == 0)
227    return false;
228
229  for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
230    if (N->getOperand(i).getOpcode() != ISD::UNDEF)
231      return false;
232
233  return true;
234}
235
236/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
237/// when given the operation for (X op Y).
238ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
239  // To perform this operation, we just need to swap the L and G bits of the
240  // operation.
241  unsigned OldL = (Operation >> 2) & 1;
242  unsigned OldG = (Operation >> 1) & 1;
243  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
244                       (OldL << 1) |       // New G bit
245                       (OldG << 2));       // New L bit.
246}
247
248/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
249/// 'op' is a valid SetCC operation.
250ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
251  unsigned Operation = Op;
252  if (isInteger)
253    Operation ^= 7;   // Flip L, G, E bits, but not U.
254  else
255    Operation ^= 15;  // Flip all of the condition bits.
256
257  if (Operation > ISD::SETTRUE2)
258    Operation &= ~8;  // Don't let N and U bits get set.
259
260  return ISD::CondCode(Operation);
261}
262
263
264/// isSignedOp - For an integer comparison, return 1 if the comparison is a
265/// signed operation and 2 if the result is an unsigned comparison.  Return zero
266/// if the operation does not depend on the sign of the input (setne and seteq).
267static int isSignedOp(ISD::CondCode Opcode) {
268  switch (Opcode) {
269  default: llvm_unreachable("Illegal integer setcc operation!");
270  case ISD::SETEQ:
271  case ISD::SETNE: return 0;
272  case ISD::SETLT:
273  case ISD::SETLE:
274  case ISD::SETGT:
275  case ISD::SETGE: return 1;
276  case ISD::SETULT:
277  case ISD::SETULE:
278  case ISD::SETUGT:
279  case ISD::SETUGE: return 2;
280  }
281}
282
283/// getSetCCOrOperation - Return the result of a logical OR between different
284/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
285/// returns SETCC_INVALID if it is not possible to represent the resultant
286/// comparison.
287ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
288                                       bool isInteger) {
289  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
290    // Cannot fold a signed integer setcc with an unsigned integer setcc.
291    return ISD::SETCC_INVALID;
292
293  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
294
295  // If the N and U bits get set then the resultant comparison DOES suddenly
296  // care about orderedness, and is true when ordered.
297  if (Op > ISD::SETTRUE2)
298    Op &= ~16;     // Clear the U bit if the N bit is set.
299
300  // Canonicalize illegal integer setcc's.
301  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
302    Op = ISD::SETNE;
303
304  return ISD::CondCode(Op);
305}
306
307/// getSetCCAndOperation - Return the result of a logical AND between different
308/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
309/// function returns zero if it is not possible to represent the resultant
310/// comparison.
311ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                        bool isInteger) {
313  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314    // Cannot fold a signed setcc with an unsigned setcc.
315    return ISD::SETCC_INVALID;
316
317  // Combine all of the condition bits.
318  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319
320  // Canonicalize illegal integer setcc's.
321  if (isInteger) {
322    switch (Result) {
323    default: break;
324    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329    }
330  }
331
332  return Result;
333}
334
335//===----------------------------------------------------------------------===//
336//                           SDNode Profile Support
337//===----------------------------------------------------------------------===//
338
339/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340///
341static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342  ID.AddInteger(OpC);
343}
344
345/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346/// solely with their pointer.
347static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348  ID.AddPointer(VTList.VTs);
349}
350
351/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352///
353static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                              const SDValue *Ops, unsigned NumOps) {
355  for (; NumOps; --NumOps, ++Ops) {
356    ID.AddPointer(Ops->getNode());
357    ID.AddInteger(Ops->getResNo());
358  }
359}
360
361/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362///
363static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                              const SDUse *Ops, unsigned NumOps) {
365  for (; NumOps; --NumOps, ++Ops) {
366    ID.AddPointer(Ops->getNode());
367    ID.AddInteger(Ops->getResNo());
368  }
369}
370
371static void AddNodeIDNode(FoldingSetNodeID &ID,
372                          unsigned short OpC, SDVTList VTList,
373                          const SDValue *OpList, unsigned N) {
374  AddNodeIDOpcode(ID, OpC);
375  AddNodeIDValueTypes(ID, VTList);
376  AddNodeIDOperands(ID, OpList, N);
377}
378
379/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
380/// the NodeID data.
381static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
382  switch (N->getOpcode()) {
383  case ISD::TargetExternalSymbol:
384  case ISD::ExternalSymbol:
385    llvm_unreachable("Should only be used on nodes with operands");
386  default: break;  // Normal nodes don't need extra info.
387  case ISD::TargetConstant:
388  case ISD::Constant:
389    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
390    break;
391  case ISD::TargetConstantFP:
392  case ISD::ConstantFP: {
393    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
394    break;
395  }
396  case ISD::TargetGlobalAddress:
397  case ISD::GlobalAddress:
398  case ISD::TargetGlobalTLSAddress:
399  case ISD::GlobalTLSAddress: {
400    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
401    ID.AddPointer(GA->getGlobal());
402    ID.AddInteger(GA->getOffset());
403    ID.AddInteger(GA->getTargetFlags());
404    ID.AddInteger(GA->getAddressSpace());
405    break;
406  }
407  case ISD::BasicBlock:
408    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
409    break;
410  case ISD::Register:
411    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
412    break;
413  case ISD::RegisterMask:
414    ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
415    break;
416  case ISD::SRCVALUE:
417    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
418    break;
419  case ISD::FrameIndex:
420  case ISD::TargetFrameIndex:
421    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
422    break;
423  case ISD::JumpTable:
424  case ISD::TargetJumpTable:
425    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
426    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
427    break;
428  case ISD::ConstantPool:
429  case ISD::TargetConstantPool: {
430    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
431    ID.AddInteger(CP->getAlignment());
432    ID.AddInteger(CP->getOffset());
433    if (CP->isMachineConstantPoolEntry())
434      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
435    else
436      ID.AddPointer(CP->getConstVal());
437    ID.AddInteger(CP->getTargetFlags());
438    break;
439  }
440  case ISD::TargetIndex: {
441    const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
442    ID.AddInteger(TI->getIndex());
443    ID.AddInteger(TI->getOffset());
444    ID.AddInteger(TI->getTargetFlags());
445    break;
446  }
447  case ISD::LOAD: {
448    const LoadSDNode *LD = cast<LoadSDNode>(N);
449    ID.AddInteger(LD->getMemoryVT().getRawBits());
450    ID.AddInteger(LD->getRawSubclassData());
451    ID.AddInteger(LD->getPointerInfo().getAddrSpace());
452    break;
453  }
454  case ISD::STORE: {
455    const StoreSDNode *ST = cast<StoreSDNode>(N);
456    ID.AddInteger(ST->getMemoryVT().getRawBits());
457    ID.AddInteger(ST->getRawSubclassData());
458    ID.AddInteger(ST->getPointerInfo().getAddrSpace());
459    break;
460  }
461  case ISD::ATOMIC_CMP_SWAP:
462  case ISD::ATOMIC_SWAP:
463  case ISD::ATOMIC_LOAD_ADD:
464  case ISD::ATOMIC_LOAD_SUB:
465  case ISD::ATOMIC_LOAD_AND:
466  case ISD::ATOMIC_LOAD_OR:
467  case ISD::ATOMIC_LOAD_XOR:
468  case ISD::ATOMIC_LOAD_NAND:
469  case ISD::ATOMIC_LOAD_MIN:
470  case ISD::ATOMIC_LOAD_MAX:
471  case ISD::ATOMIC_LOAD_UMIN:
472  case ISD::ATOMIC_LOAD_UMAX:
473  case ISD::ATOMIC_LOAD:
474  case ISD::ATOMIC_STORE: {
475    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
476    ID.AddInteger(AT->getMemoryVT().getRawBits());
477    ID.AddInteger(AT->getRawSubclassData());
478    ID.AddInteger(AT->getPointerInfo().getAddrSpace());
479    break;
480  }
481  case ISD::PREFETCH: {
482    const MemSDNode *PF = cast<MemSDNode>(N);
483    ID.AddInteger(PF->getPointerInfo().getAddrSpace());
484    break;
485  }
486  case ISD::VECTOR_SHUFFLE: {
487    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
488    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
489         i != e; ++i)
490      ID.AddInteger(SVN->getMaskElt(i));
491    break;
492  }
493  case ISD::TargetBlockAddress:
494  case ISD::BlockAddress: {
495    const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
496    ID.AddPointer(BA->getBlockAddress());
497    ID.AddInteger(BA->getOffset());
498    ID.AddInteger(BA->getTargetFlags());
499    break;
500  }
501  } // end switch (N->getOpcode())
502
503  // Target specific memory nodes could also have address spaces to check.
504  if (N->isTargetMemoryOpcode())
505    ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
506}
507
508/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
509/// data.
510static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
511  AddNodeIDOpcode(ID, N->getOpcode());
512  // Add the return value info.
513  AddNodeIDValueTypes(ID, N->getVTList());
514  // Add the operand info.
515  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
516
517  // Handle SDNode leafs with special info.
518  AddNodeIDCustom(ID, N);
519}
520
521/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
522/// the CSE map that carries volatility, temporalness, indexing mode, and
523/// extension/truncation information.
524///
525static inline unsigned
526encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
527                     bool isNonTemporal, bool isInvariant) {
528  assert((ConvType & 3) == ConvType &&
529         "ConvType may not require more than 2 bits!");
530  assert((AM & 7) == AM &&
531         "AM may not require more than 3 bits!");
532  return ConvType |
533         (AM << 2) |
534         (isVolatile << 5) |
535         (isNonTemporal << 6) |
536         (isInvariant << 7);
537}
538
539//===----------------------------------------------------------------------===//
540//                              SelectionDAG Class
541//===----------------------------------------------------------------------===//
542
543/// doNotCSE - Return true if CSE should not be performed for this node.
544static bool doNotCSE(SDNode *N) {
545  if (N->getValueType(0) == MVT::Glue)
546    return true; // Never CSE anything that produces a flag.
547
548  switch (N->getOpcode()) {
549  default: break;
550  case ISD::HANDLENODE:
551  case ISD::EH_LABEL:
552    return true;   // Never CSE these nodes.
553  }
554
555  // Check that remaining values produced are not flags.
556  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
557    if (N->getValueType(i) == MVT::Glue)
558      return true; // Never CSE anything that produces a flag.
559
560  return false;
561}
562
563/// RemoveDeadNodes - This method deletes all unreachable nodes in the
564/// SelectionDAG.
565void SelectionDAG::RemoveDeadNodes() {
566  // Create a dummy node (which is not added to allnodes), that adds a reference
567  // to the root node, preventing it from being deleted.
568  HandleSDNode Dummy(getRoot());
569
570  SmallVector<SDNode*, 128> DeadNodes;
571
572  // Add all obviously-dead nodes to the DeadNodes worklist.
573  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
574    if (I->use_empty())
575      DeadNodes.push_back(I);
576
577  RemoveDeadNodes(DeadNodes);
578
579  // If the root changed (e.g. it was a dead load, update the root).
580  setRoot(Dummy.getValue());
581}
582
583/// RemoveDeadNodes - This method deletes the unreachable nodes in the
584/// given list, and any nodes that become unreachable as a result.
585void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
586
587  // Process the worklist, deleting the nodes and adding their uses to the
588  // worklist.
589  while (!DeadNodes.empty()) {
590    SDNode *N = DeadNodes.pop_back_val();
591
592    for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
593      DUL->NodeDeleted(N, 0);
594
595    // Take the node out of the appropriate CSE map.
596    RemoveNodeFromCSEMaps(N);
597
598    // Next, brutally remove the operand list.  This is safe to do, as there are
599    // no cycles in the graph.
600    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
601      SDUse &Use = *I++;
602      SDNode *Operand = Use.getNode();
603      Use.set(SDValue());
604
605      // Now that we removed this operand, see if there are no uses of it left.
606      if (Operand->use_empty())
607        DeadNodes.push_back(Operand);
608    }
609
610    DeallocateNode(N);
611  }
612}
613
614void SelectionDAG::RemoveDeadNode(SDNode *N){
615  SmallVector<SDNode*, 16> DeadNodes(1, N);
616
617  // Create a dummy node that adds a reference to the root node, preventing
618  // it from being deleted.  (This matters if the root is an operand of the
619  // dead node.)
620  HandleSDNode Dummy(getRoot());
621
622  RemoveDeadNodes(DeadNodes);
623}
624
625void SelectionDAG::DeleteNode(SDNode *N) {
626  // First take this out of the appropriate CSE map.
627  RemoveNodeFromCSEMaps(N);
628
629  // Finally, remove uses due to operands of this node, remove from the
630  // AllNodes list, and delete the node.
631  DeleteNodeNotInCSEMaps(N);
632}
633
634void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
635  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
636  assert(N->use_empty() && "Cannot delete a node that is not dead!");
637
638  // Drop all of the operands and decrement used node's use counts.
639  N->DropOperands();
640
641  DeallocateNode(N);
642}
643
644void SelectionDAG::DeallocateNode(SDNode *N) {
645  if (N->OperandsNeedDelete)
646    delete[] N->OperandList;
647
648  // Set the opcode to DELETED_NODE to help catch bugs when node
649  // memory is reallocated.
650  N->NodeType = ISD::DELETED_NODE;
651
652  NodeAllocator.Deallocate(AllNodes.remove(N));
653
654  // Remove the ordering of this node.
655  Ordering->remove(N);
656
657  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
658  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
659  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
660    DbgVals[i]->setIsInvalidated();
661}
662
663/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
664/// correspond to it.  This is useful when we're about to delete or repurpose
665/// the node.  We don't want future request for structurally identical nodes
666/// to return N anymore.
667bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
668  bool Erased = false;
669  switch (N->getOpcode()) {
670  case ISD::HANDLENODE: return false;  // noop.
671  case ISD::CONDCODE:
672    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
673           "Cond code doesn't exist!");
674    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
675    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
676    break;
677  case ISD::ExternalSymbol:
678    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
679    break;
680  case ISD::TargetExternalSymbol: {
681    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
682    Erased = TargetExternalSymbols.erase(
683               std::pair<std::string,unsigned char>(ESN->getSymbol(),
684                                                    ESN->getTargetFlags()));
685    break;
686  }
687  case ISD::VALUETYPE: {
688    EVT VT = cast<VTSDNode>(N)->getVT();
689    if (VT.isExtended()) {
690      Erased = ExtendedValueTypeNodes.erase(VT);
691    } else {
692      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
693      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
694    }
695    break;
696  }
697  default:
698    // Remove it from the CSE Map.
699    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
700    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
701    Erased = CSEMap.RemoveNode(N);
702    break;
703  }
704#ifndef NDEBUG
705  // Verify that the node was actually in one of the CSE maps, unless it has a
706  // flag result (which cannot be CSE'd) or is one of the special cases that are
707  // not subject to CSE.
708  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
709      !N->isMachineOpcode() && !doNotCSE(N)) {
710    N->dump(this);
711    dbgs() << "\n";
712    llvm_unreachable("Node is not in map!");
713  }
714#endif
715  return Erased;
716}
717
718/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
719/// maps and modified in place. Add it back to the CSE maps, unless an identical
720/// node already exists, in which case transfer all its users to the existing
721/// node. This transfer can potentially trigger recursive merging.
722///
723void
724SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
725  // For node types that aren't CSE'd, just act as if no identical node
726  // already exists.
727  if (!doNotCSE(N)) {
728    SDNode *Existing = CSEMap.GetOrInsertNode(N);
729    if (Existing != N) {
730      // If there was already an existing matching node, use ReplaceAllUsesWith
731      // to replace the dead one with the existing one.  This can cause
732      // recursive merging of other unrelated nodes down the line.
733      ReplaceAllUsesWith(N, Existing);
734
735      // N is now dead. Inform the listeners and delete it.
736      for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
737        DUL->NodeDeleted(N, Existing);
738      DeleteNodeNotInCSEMaps(N);
739      return;
740    }
741  }
742
743  // If the node doesn't already exist, we updated it.  Inform listeners.
744  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
745    DUL->NodeUpdated(N);
746}
747
748/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
749/// were replaced with those specified.  If this node is never memoized,
750/// return null, otherwise return a pointer to the slot it would take.  If a
751/// node already exists with these operands, the slot will be non-null.
752SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
753                                           void *&InsertPos) {
754  if (doNotCSE(N))
755    return 0;
756
757  SDValue Ops[] = { Op };
758  FoldingSetNodeID ID;
759  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
760  AddNodeIDCustom(ID, N);
761  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
762  return Node;
763}
764
765/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
766/// were replaced with those specified.  If this node is never memoized,
767/// return null, otherwise return a pointer to the slot it would take.  If a
768/// node already exists with these operands, the slot will be non-null.
769SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
770                                           SDValue Op1, SDValue Op2,
771                                           void *&InsertPos) {
772  if (doNotCSE(N))
773    return 0;
774
775  SDValue Ops[] = { Op1, Op2 };
776  FoldingSetNodeID ID;
777  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
778  AddNodeIDCustom(ID, N);
779  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
780  return Node;
781}
782
783
784/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
785/// were replaced with those specified.  If this node is never memoized,
786/// return null, otherwise return a pointer to the slot it would take.  If a
787/// node already exists with these operands, the slot will be non-null.
788SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
789                                           const SDValue *Ops,unsigned NumOps,
790                                           void *&InsertPos) {
791  if (doNotCSE(N))
792    return 0;
793
794  FoldingSetNodeID ID;
795  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
796  AddNodeIDCustom(ID, N);
797  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
798  return Node;
799}
800
801#ifndef NDEBUG
802/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
803static void VerifyNodeCommon(SDNode *N) {
804  switch (N->getOpcode()) {
805  default:
806    break;
807  case ISD::BUILD_PAIR: {
808    EVT VT = N->getValueType(0);
809    assert(N->getNumValues() == 1 && "Too many results!");
810    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
811           "Wrong return type!");
812    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
813    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
814           "Mismatched operand types!");
815    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
816           "Wrong operand type!");
817    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
818           "Wrong return type size");
819    break;
820  }
821  case ISD::BUILD_VECTOR: {
822    assert(N->getNumValues() == 1 && "Too many results!");
823    assert(N->getValueType(0).isVector() && "Wrong return type!");
824    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
825           "Wrong number of operands!");
826    EVT EltVT = N->getValueType(0).getVectorElementType();
827    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
828      assert((I->getValueType() == EltVT ||
829             (EltVT.isInteger() && I->getValueType().isInteger() &&
830              EltVT.bitsLE(I->getValueType()))) &&
831            "Wrong operand type!");
832      assert(I->getValueType() == N->getOperand(0).getValueType() &&
833             "Operands must all have the same type");
834    }
835    break;
836  }
837  }
838}
839
840/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
841static void VerifySDNode(SDNode *N) {
842  // The SDNode allocators cannot be used to allocate nodes with fields that are
843  // not present in an SDNode!
844  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
845  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
846  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
847  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
848  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
849  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
850  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
851  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
852  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
853  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
854  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
855  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
856  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
857  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
858  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
859  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
860  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
861  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
862  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
863
864  VerifyNodeCommon(N);
865}
866
867/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
868/// invalid.
869static void VerifyMachineNode(SDNode *N) {
870  // The MachineNode allocators cannot be used to allocate nodes with fields
871  // that are not present in a MachineNode!
872  // Currently there are no such nodes.
873
874  VerifyNodeCommon(N);
875}
876#endif // NDEBUG
877
878/// getEVTAlignment - Compute the default alignment value for the
879/// given type.
880///
881unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
882  Type *Ty = VT == MVT::iPTR ?
883                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
884                   VT.getTypeForEVT(*getContext());
885
886  return TLI.getDataLayout()->getABITypeAlignment(Ty);
887}
888
889// EntryNode could meaningfully have debug info if we can find it...
890SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
891  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
892    OptLevel(OL), EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
893    Root(getEntryNode()), Ordering(0), UpdateListeners(0) {
894  AllNodes.push_back(&EntryNode);
895  Ordering = new SDNodeOrdering();
896  DbgInfo = new SDDbgInfo();
897}
898
899void SelectionDAG::init(MachineFunction &mf) {
900  MF = &mf;
901  Context = &mf.getFunction()->getContext();
902}
903
904SelectionDAG::~SelectionDAG() {
905  assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
906  allnodes_clear();
907  delete Ordering;
908  delete DbgInfo;
909}
910
911void SelectionDAG::allnodes_clear() {
912  assert(&*AllNodes.begin() == &EntryNode);
913  AllNodes.remove(AllNodes.begin());
914  while (!AllNodes.empty())
915    DeallocateNode(AllNodes.begin());
916}
917
918void SelectionDAG::clear() {
919  allnodes_clear();
920  OperandAllocator.Reset();
921  CSEMap.clear();
922
923  ExtendedValueTypeNodes.clear();
924  ExternalSymbols.clear();
925  TargetExternalSymbols.clear();
926  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
927            static_cast<CondCodeSDNode*>(0));
928  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
929            static_cast<SDNode*>(0));
930
931  EntryNode.UseList = 0;
932  AllNodes.push_back(&EntryNode);
933  Root = getEntryNode();
934  Ordering->clear();
935  DbgInfo->clear();
936}
937
938SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
939  return VT.bitsGT(Op.getValueType()) ?
940    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
941    getNode(ISD::TRUNCATE, DL, VT, Op);
942}
943
944SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
945  return VT.bitsGT(Op.getValueType()) ?
946    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
947    getNode(ISD::TRUNCATE, DL, VT, Op);
948}
949
950SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
951  return VT.bitsGT(Op.getValueType()) ?
952    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
953    getNode(ISD::TRUNCATE, DL, VT, Op);
954}
955
956SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
957  assert(!VT.isVector() &&
958         "getZeroExtendInReg should use the vector element type instead of "
959         "the vector type!");
960  if (Op.getValueType() == VT) return Op;
961  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
962  APInt Imm = APInt::getLowBitsSet(BitWidth,
963                                   VT.getSizeInBits());
964  return getNode(ISD::AND, DL, Op.getValueType(), Op,
965                 getConstant(Imm, Op.getValueType()));
966}
967
968/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
969///
970SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
971  EVT EltVT = VT.getScalarType();
972  SDValue NegOne =
973    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
974  return getNode(ISD::XOR, DL, VT, Val, NegOne);
975}
976
977SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
978  EVT EltVT = VT.getScalarType();
979  assert((EltVT.getSizeInBits() >= 64 ||
980         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
981         "getConstant with a uint64_t value that doesn't fit in the type!");
982  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
983}
984
985SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
986  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
987}
988
989SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
990  assert(VT.isInteger() && "Cannot create FP integer constant!");
991
992  EVT EltVT = VT.getScalarType();
993  const ConstantInt *Elt = &Val;
994
995  // In some cases the vector type is legal but the element type is illegal and
996  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
997  // inserted value (the type does not need to match the vector element type).
998  // Any extra bits introduced will be truncated away.
999  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
1000      TargetLowering::TypePromoteInteger) {
1001   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
1002   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
1003   Elt = ConstantInt::get(*getContext(), NewVal);
1004  }
1005
1006  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1007         "APInt size does not match type size!");
1008  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1011  ID.AddPointer(Elt);
1012  void *IP = 0;
1013  SDNode *N = NULL;
1014  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1015    if (!VT.isVector())
1016      return SDValue(N, 0);
1017
1018  if (!N) {
1019    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
1020    CSEMap.InsertNode(N, IP);
1021    AllNodes.push_back(N);
1022  }
1023
1024  SDValue Result(N, 0);
1025  if (VT.isVector()) {
1026    SmallVector<SDValue, 8> Ops;
1027    Ops.assign(VT.getVectorNumElements(), Result);
1028    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1029  }
1030  return Result;
1031}
1032
1033SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
1034  return getConstant(Val, TLI.getPointerTy(), isTarget);
1035}
1036
1037
1038SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
1039  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
1040}
1041
1042SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
1043  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1044
1045  EVT EltVT = VT.getScalarType();
1046
1047  // Do the map lookup using the actual bit pattern for the floating point
1048  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1049  // we don't have issues with SNANs.
1050  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1053  ID.AddPointer(&V);
1054  void *IP = 0;
1055  SDNode *N = NULL;
1056  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1057    if (!VT.isVector())
1058      return SDValue(N, 0);
1059
1060  if (!N) {
1061    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1062    CSEMap.InsertNode(N, IP);
1063    AllNodes.push_back(N);
1064  }
1065
1066  SDValue Result(N, 0);
1067  if (VT.isVector()) {
1068    SmallVector<SDValue, 8> Ops;
1069    Ops.assign(VT.getVectorNumElements(), Result);
1070    // FIXME DebugLoc info might be appropriate here
1071    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1072  }
1073  return Result;
1074}
1075
1076SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1077  EVT EltVT = VT.getScalarType();
1078  if (EltVT==MVT::f32)
1079    return getConstantFP(APFloat((float)Val), VT, isTarget);
1080  else if (EltVT==MVT::f64)
1081    return getConstantFP(APFloat(Val), VT, isTarget);
1082  else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::f16) {
1083    bool ignored;
1084    APFloat apf = APFloat(Val);
1085    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1086                &ignored);
1087    return getConstantFP(apf, VT, isTarget);
1088  } else
1089    llvm_unreachable("Unsupported type in getConstantFP");
1090}
1091
1092SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1093                                       EVT VT, int64_t Offset,
1094                                       bool isTargetGA,
1095                                       unsigned char TargetFlags) {
1096  assert((TargetFlags == 0 || isTargetGA) &&
1097         "Cannot set target flags on target-independent globals");
1098
1099  // Truncate (with sign-extension) the offset value to the pointer size.
1100  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
1101  if (BitWidth < 64)
1102    Offset = SignExtend64(Offset, BitWidth);
1103
1104  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1105  if (!GVar) {
1106    // If GV is an alias then use the aliasee for determining thread-localness.
1107    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1108      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1109  }
1110
1111  unsigned Opc;
1112  if (GVar && GVar->isThreadLocal())
1113    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1114  else
1115    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1116
1117  FoldingSetNodeID ID;
1118  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1119  ID.AddPointer(GV);
1120  ID.AddInteger(Offset);
1121  ID.AddInteger(TargetFlags);
1122  ID.AddInteger(GV->getType()->getAddressSpace());
1123  void *IP = 0;
1124  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1125    return SDValue(E, 0);
1126
1127  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1128                                                      Offset, TargetFlags);
1129  CSEMap.InsertNode(N, IP);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1135  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1136  FoldingSetNodeID ID;
1137  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1138  ID.AddInteger(FI);
1139  void *IP = 0;
1140  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1141    return SDValue(E, 0);
1142
1143  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1144  CSEMap.InsertNode(N, IP);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1150                                   unsigned char TargetFlags) {
1151  assert((TargetFlags == 0 || isTarget) &&
1152         "Cannot set target flags on target-independent jump tables");
1153  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1154  FoldingSetNodeID ID;
1155  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1156  ID.AddInteger(JTI);
1157  ID.AddInteger(TargetFlags);
1158  void *IP = 0;
1159  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1160    return SDValue(E, 0);
1161
1162  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1163                                                  TargetFlags);
1164  CSEMap.InsertNode(N, IP);
1165  AllNodes.push_back(N);
1166  return SDValue(N, 0);
1167}
1168
1169SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1170                                      unsigned Alignment, int Offset,
1171                                      bool isTarget,
1172                                      unsigned char TargetFlags) {
1173  assert((TargetFlags == 0 || isTarget) &&
1174         "Cannot set target flags on target-independent globals");
1175  if (Alignment == 0)
1176    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1177  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1178  FoldingSetNodeID ID;
1179  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1180  ID.AddInteger(Alignment);
1181  ID.AddInteger(Offset);
1182  ID.AddPointer(C);
1183  ID.AddInteger(TargetFlags);
1184  void *IP = 0;
1185  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1186    return SDValue(E, 0);
1187
1188  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1189                                                     Alignment, TargetFlags);
1190  CSEMap.InsertNode(N, IP);
1191  AllNodes.push_back(N);
1192  return SDValue(N, 0);
1193}
1194
1195
1196SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1197                                      unsigned Alignment, int Offset,
1198                                      bool isTarget,
1199                                      unsigned char TargetFlags) {
1200  assert((TargetFlags == 0 || isTarget) &&
1201         "Cannot set target flags on target-independent globals");
1202  if (Alignment == 0)
1203    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1204  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1205  FoldingSetNodeID ID;
1206  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1207  ID.AddInteger(Alignment);
1208  ID.AddInteger(Offset);
1209  C->addSelectionDAGCSEId(ID);
1210  ID.AddInteger(TargetFlags);
1211  void *IP = 0;
1212  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1213    return SDValue(E, 0);
1214
1215  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1216                                                     Alignment, TargetFlags);
1217  CSEMap.InsertNode(N, IP);
1218  AllNodes.push_back(N);
1219  return SDValue(N, 0);
1220}
1221
1222SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1223                                     unsigned char TargetFlags) {
1224  FoldingSetNodeID ID;
1225  AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0);
1226  ID.AddInteger(Index);
1227  ID.AddInteger(Offset);
1228  ID.AddInteger(TargetFlags);
1229  void *IP = 0;
1230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1231    return SDValue(E, 0);
1232
1233  SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
1234                                                    TargetFlags);
1235  CSEMap.InsertNode(N, IP);
1236  AllNodes.push_back(N);
1237  return SDValue(N, 0);
1238}
1239
1240SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1241  FoldingSetNodeID ID;
1242  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1243  ID.AddPointer(MBB);
1244  void *IP = 0;
1245  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1246    return SDValue(E, 0);
1247
1248  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1249  CSEMap.InsertNode(N, IP);
1250  AllNodes.push_back(N);
1251  return SDValue(N, 0);
1252}
1253
1254SDValue SelectionDAG::getValueType(EVT VT) {
1255  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1256      ValueTypeNodes.size())
1257    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1258
1259  SDNode *&N = VT.isExtended() ?
1260    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1261
1262  if (N) return SDValue(N, 0);
1263  N = new (NodeAllocator) VTSDNode(VT);
1264  AllNodes.push_back(N);
1265  return SDValue(N, 0);
1266}
1267
1268SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1269  SDNode *&N = ExternalSymbols[Sym];
1270  if (N) return SDValue(N, 0);
1271  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1272  AllNodes.push_back(N);
1273  return SDValue(N, 0);
1274}
1275
1276SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1277                                              unsigned char TargetFlags) {
1278  SDNode *&N =
1279    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1280                                                               TargetFlags)];
1281  if (N) return SDValue(N, 0);
1282  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1283  AllNodes.push_back(N);
1284  return SDValue(N, 0);
1285}
1286
1287SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1288  if ((unsigned)Cond >= CondCodeNodes.size())
1289    CondCodeNodes.resize(Cond+1);
1290
1291  if (CondCodeNodes[Cond] == 0) {
1292    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1293    CondCodeNodes[Cond] = N;
1294    AllNodes.push_back(N);
1295  }
1296
1297  return SDValue(CondCodeNodes[Cond], 0);
1298}
1299
1300// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1301// the shuffle mask M that point at N1 to point at N2, and indices that point
1302// N2 to point at N1.
1303static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1304  std::swap(N1, N2);
1305  int NElts = M.size();
1306  for (int i = 0; i != NElts; ++i) {
1307    if (M[i] >= NElts)
1308      M[i] -= NElts;
1309    else if (M[i] >= 0)
1310      M[i] += NElts;
1311  }
1312}
1313
1314SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1315                                       SDValue N2, const int *Mask) {
1316  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1317  assert(VT.isVector() && N1.getValueType().isVector() &&
1318         "Vector Shuffle VTs must be a vectors");
1319  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1320         && "Vector Shuffle VTs must have same element type");
1321
1322  // Canonicalize shuffle undef, undef -> undef
1323  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1324    return getUNDEF(VT);
1325
1326  // Validate that all indices in Mask are within the range of the elements
1327  // input to the shuffle.
1328  unsigned NElts = VT.getVectorNumElements();
1329  SmallVector<int, 8> MaskVec;
1330  for (unsigned i = 0; i != NElts; ++i) {
1331    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1332    MaskVec.push_back(Mask[i]);
1333  }
1334
1335  // Canonicalize shuffle v, v -> v, undef
1336  if (N1 == N2) {
1337    N2 = getUNDEF(VT);
1338    for (unsigned i = 0; i != NElts; ++i)
1339      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1340  }
1341
1342  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1343  if (N1.getOpcode() == ISD::UNDEF)
1344    commuteShuffle(N1, N2, MaskVec);
1345
1346  // Canonicalize all index into lhs, -> shuffle lhs, undef
1347  // Canonicalize all index into rhs, -> shuffle rhs, undef
1348  bool AllLHS = true, AllRHS = true;
1349  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1350  for (unsigned i = 0; i != NElts; ++i) {
1351    if (MaskVec[i] >= (int)NElts) {
1352      if (N2Undef)
1353        MaskVec[i] = -1;
1354      else
1355        AllLHS = false;
1356    } else if (MaskVec[i] >= 0) {
1357      AllRHS = false;
1358    }
1359  }
1360  if (AllLHS && AllRHS)
1361    return getUNDEF(VT);
1362  if (AllLHS && !N2Undef)
1363    N2 = getUNDEF(VT);
1364  if (AllRHS) {
1365    N1 = getUNDEF(VT);
1366    commuteShuffle(N1, N2, MaskVec);
1367  }
1368
1369  // If Identity shuffle, or all shuffle in to undef, return that node.
1370  bool AllUndef = true;
1371  bool Identity = true;
1372  for (unsigned i = 0; i != NElts; ++i) {
1373    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1374    if (MaskVec[i] >= 0) AllUndef = false;
1375  }
1376  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1377    return N1;
1378  if (AllUndef)
1379    return getUNDEF(VT);
1380
1381  FoldingSetNodeID ID;
1382  SDValue Ops[2] = { N1, N2 };
1383  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1384  for (unsigned i = 0; i != NElts; ++i)
1385    ID.AddInteger(MaskVec[i]);
1386
1387  void* IP = 0;
1388  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1389    return SDValue(E, 0);
1390
1391  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1392  // SDNode doesn't have access to it.  This memory will be "leaked" when
1393  // the node is deallocated, but recovered when the NodeAllocator is released.
1394  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1395  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1396
1397  ShuffleVectorSDNode *N =
1398    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1399  CSEMap.InsertNode(N, IP);
1400  AllNodes.push_back(N);
1401  return SDValue(N, 0);
1402}
1403
1404SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1405                                       SDValue Val, SDValue DTy,
1406                                       SDValue STy, SDValue Rnd, SDValue Sat,
1407                                       ISD::CvtCode Code) {
1408  // If the src and dest types are the same and the conversion is between
1409  // integer types of the same sign or two floats, no conversion is necessary.
1410  if (DTy == STy &&
1411      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1412    return Val;
1413
1414  FoldingSetNodeID ID;
1415  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1416  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1417  void* IP = 0;
1418  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1419    return SDValue(E, 0);
1420
1421  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1422                                                           Code);
1423  CSEMap.InsertNode(N, IP);
1424  AllNodes.push_back(N);
1425  return SDValue(N, 0);
1426}
1427
1428SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1429  FoldingSetNodeID ID;
1430  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1431  ID.AddInteger(RegNo);
1432  void *IP = 0;
1433  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1434    return SDValue(E, 0);
1435
1436  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1437  CSEMap.InsertNode(N, IP);
1438  AllNodes.push_back(N);
1439  return SDValue(N, 0);
1440}
1441
1442SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1443  FoldingSetNodeID ID;
1444  AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0);
1445  ID.AddPointer(RegMask);
1446  void *IP = 0;
1447  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1448    return SDValue(E, 0);
1449
1450  SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
1451  CSEMap.InsertNode(N, IP);
1452  AllNodes.push_back(N);
1453  return SDValue(N, 0);
1454}
1455
1456SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1457  FoldingSetNodeID ID;
1458  SDValue Ops[] = { Root };
1459  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1460  ID.AddPointer(Label);
1461  void *IP = 0;
1462  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1463    return SDValue(E, 0);
1464
1465  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1466  CSEMap.InsertNode(N, IP);
1467  AllNodes.push_back(N);
1468  return SDValue(N, 0);
1469}
1470
1471
1472SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1473                                      int64_t Offset,
1474                                      bool isTarget,
1475                                      unsigned char TargetFlags) {
1476  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1477
1478  FoldingSetNodeID ID;
1479  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1480  ID.AddPointer(BA);
1481  ID.AddInteger(Offset);
1482  ID.AddInteger(TargetFlags);
1483  void *IP = 0;
1484  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1485    return SDValue(E, 0);
1486
1487  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
1488                                                     TargetFlags);
1489  CSEMap.InsertNode(N, IP);
1490  AllNodes.push_back(N);
1491  return SDValue(N, 0);
1492}
1493
1494SDValue SelectionDAG::getSrcValue(const Value *V) {
1495  assert((!V || V->getType()->isPointerTy()) &&
1496         "SrcValue is not a pointer?");
1497
1498  FoldingSetNodeID ID;
1499  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1500  ID.AddPointer(V);
1501
1502  void *IP = 0;
1503  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1504    return SDValue(E, 0);
1505
1506  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1507  CSEMap.InsertNode(N, IP);
1508  AllNodes.push_back(N);
1509  return SDValue(N, 0);
1510}
1511
1512/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1513SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1514  FoldingSetNodeID ID;
1515  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1516  ID.AddPointer(MD);
1517
1518  void *IP = 0;
1519  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1520    return SDValue(E, 0);
1521
1522  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1523  CSEMap.InsertNode(N, IP);
1524  AllNodes.push_back(N);
1525  return SDValue(N, 0);
1526}
1527
1528
1529/// getShiftAmountOperand - Return the specified value casted to
1530/// the target's desired shift amount type.
1531SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1532  EVT OpTy = Op.getValueType();
1533  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1534  if (OpTy == ShTy || OpTy.isVector()) return Op;
1535
1536  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1537  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1538}
1539
1540/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1541/// specified value type.
1542SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1543  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1544  unsigned ByteSize = VT.getStoreSize();
1545  Type *Ty = VT.getTypeForEVT(*getContext());
1546  unsigned StackAlign =
1547  std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
1548
1549  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1550  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1551}
1552
1553/// CreateStackTemporary - Create a stack temporary suitable for holding
1554/// either of the specified value types.
1555SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1556  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1557                            VT2.getStoreSizeInBits())/8;
1558  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1559  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1560  const DataLayout *TD = TLI.getDataLayout();
1561  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1562                            TD->getPrefTypeAlignment(Ty2));
1563
1564  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1565  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1566  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1567}
1568
1569SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1570                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1571  // These setcc operations always fold.
1572  switch (Cond) {
1573  default: break;
1574  case ISD::SETFALSE:
1575  case ISD::SETFALSE2: return getConstant(0, VT);
1576  case ISD::SETTRUE:
1577  case ISD::SETTRUE2:  return getConstant(1, VT);
1578
1579  case ISD::SETOEQ:
1580  case ISD::SETOGT:
1581  case ISD::SETOGE:
1582  case ISD::SETOLT:
1583  case ISD::SETOLE:
1584  case ISD::SETONE:
1585  case ISD::SETO:
1586  case ISD::SETUO:
1587  case ISD::SETUEQ:
1588  case ISD::SETUNE:
1589    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1590    break;
1591  }
1592
1593  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1594    const APInt &C2 = N2C->getAPIntValue();
1595    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1596      const APInt &C1 = N1C->getAPIntValue();
1597
1598      switch (Cond) {
1599      default: llvm_unreachable("Unknown integer setcc!");
1600      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1601      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1602      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1603      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1604      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1605      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1606      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1607      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1608      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1609      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1610      }
1611    }
1612  }
1613  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1614    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1615      // No compile time operations on this type yet.
1616      if (N1C->getValueType(0) == MVT::ppcf128)
1617        return SDValue();
1618
1619      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1620      switch (Cond) {
1621      default: break;
1622      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1623                          return getUNDEF(VT);
1624                        // fall through
1625      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1626      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1627                          return getUNDEF(VT);
1628                        // fall through
1629      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1630                                           R==APFloat::cmpLessThan, VT);
1631      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1632                          return getUNDEF(VT);
1633                        // fall through
1634      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1635      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1636                          return getUNDEF(VT);
1637                        // fall through
1638      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1639      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1640                          return getUNDEF(VT);
1641                        // fall through
1642      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1643                                           R==APFloat::cmpEqual, VT);
1644      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1645                          return getUNDEF(VT);
1646                        // fall through
1647      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1648                                           R==APFloat::cmpEqual, VT);
1649      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1650      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1651      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1652                                           R==APFloat::cmpEqual, VT);
1653      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1654      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1655                                           R==APFloat::cmpLessThan, VT);
1656      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1657                                           R==APFloat::cmpUnordered, VT);
1658      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1659      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1660      }
1661    } else {
1662      // Ensure that the constant occurs on the RHS.
1663      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1664    }
1665  }
1666
1667  // Could not fold it.
1668  return SDValue();
1669}
1670
1671/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1672/// use this predicate to simplify operations downstream.
1673bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1674  // This predicate is not safe for vector operations.
1675  if (Op.getValueType().isVector())
1676    return false;
1677
1678  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1679  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1680}
1681
1682/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1683/// this predicate to simplify operations downstream.  Mask is known to be zero
1684/// for bits that V cannot have.
1685bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1686                                     unsigned Depth) const {
1687  APInt KnownZero, KnownOne;
1688  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1689  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1690  return (KnownZero & Mask) == Mask;
1691}
1692
1693/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1694/// known to be either zero or one and return them in the KnownZero/KnownOne
1695/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1696/// processing.
1697void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
1698                                     APInt &KnownOne, unsigned Depth) const {
1699  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1700
1701  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1702  if (Depth == 6)
1703    return;  // Limit search depth.
1704
1705  APInt KnownZero2, KnownOne2;
1706
1707  switch (Op.getOpcode()) {
1708  case ISD::Constant:
1709    // We know all of the bits for a constant!
1710    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1711    KnownZero = ~KnownOne;
1712    return;
1713  case ISD::AND:
1714    // If either the LHS or the RHS are Zero, the result is zero.
1715    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1716    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1717    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1718    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1719
1720    // Output known-1 bits are only known if set in both the LHS & RHS.
1721    KnownOne &= KnownOne2;
1722    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1723    KnownZero |= KnownZero2;
1724    return;
1725  case ISD::OR:
1726    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1727    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1728    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1729    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1730
1731    // Output known-0 bits are only known if clear in both the LHS & RHS.
1732    KnownZero &= KnownZero2;
1733    // Output known-1 are known to be set if set in either the LHS | RHS.
1734    KnownOne |= KnownOne2;
1735    return;
1736  case ISD::XOR: {
1737    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1738    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1739    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1740    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1741
1742    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1743    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1744    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1745    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1746    KnownZero = KnownZeroOut;
1747    return;
1748  }
1749  case ISD::MUL: {
1750    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1751    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1752    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1753    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1754
1755    // If low bits are zero in either operand, output low known-0 bits.
1756    // Also compute a conserative estimate for high known-0 bits.
1757    // More trickiness is possible, but this is sufficient for the
1758    // interesting case of alignment computation.
1759    KnownOne.clearAllBits();
1760    unsigned TrailZ = KnownZero.countTrailingOnes() +
1761                      KnownZero2.countTrailingOnes();
1762    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1763                               KnownZero2.countLeadingOnes(),
1764                               BitWidth) - BitWidth;
1765
1766    TrailZ = std::min(TrailZ, BitWidth);
1767    LeadZ = std::min(LeadZ, BitWidth);
1768    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1769                APInt::getHighBitsSet(BitWidth, LeadZ);
1770    return;
1771  }
1772  case ISD::UDIV: {
1773    // For the purposes of computing leading zeros we can conservatively
1774    // treat a udiv as a logical right shift by the power of 2 known to
1775    // be less than the denominator.
1776    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1777    unsigned LeadZ = KnownZero2.countLeadingOnes();
1778
1779    KnownOne2.clearAllBits();
1780    KnownZero2.clearAllBits();
1781    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1782    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1783    if (RHSUnknownLeadingOnes != BitWidth)
1784      LeadZ = std::min(BitWidth,
1785                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1786
1787    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1788    return;
1789  }
1790  case ISD::SELECT:
1791    ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
1792    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1793    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1794    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1795
1796    // Only known if known in both the LHS and RHS.
1797    KnownOne &= KnownOne2;
1798    KnownZero &= KnownZero2;
1799    return;
1800  case ISD::SELECT_CC:
1801    ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
1802    ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
1803    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1804    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1805
1806    // Only known if known in both the LHS and RHS.
1807    KnownOne &= KnownOne2;
1808    KnownZero &= KnownZero2;
1809    return;
1810  case ISD::SADDO:
1811  case ISD::UADDO:
1812  case ISD::SSUBO:
1813  case ISD::USUBO:
1814  case ISD::SMULO:
1815  case ISD::UMULO:
1816    if (Op.getResNo() != 1)
1817      return;
1818    // The boolean result conforms to getBooleanContents.  Fall through.
1819  case ISD::SETCC:
1820    // If we know the result of a setcc has the top bits zero, use this info.
1821    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1822        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1823      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1824    return;
1825  case ISD::SHL:
1826    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1827    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1828      unsigned ShAmt = SA->getZExtValue();
1829
1830      // If the shift count is an invalid immediate, don't do anything.
1831      if (ShAmt >= BitWidth)
1832        return;
1833
1834      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1835      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1836      KnownZero <<= ShAmt;
1837      KnownOne  <<= ShAmt;
1838      // low bits known zero.
1839      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1840    }
1841    return;
1842  case ISD::SRL:
1843    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1844    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1845      unsigned ShAmt = SA->getZExtValue();
1846
1847      // If the shift count is an invalid immediate, don't do anything.
1848      if (ShAmt >= BitWidth)
1849        return;
1850
1851      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1852      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1853      KnownZero = KnownZero.lshr(ShAmt);
1854      KnownOne  = KnownOne.lshr(ShAmt);
1855
1856      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1857      KnownZero |= HighBits;  // High bits known zero.
1858    }
1859    return;
1860  case ISD::SRA:
1861    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1862      unsigned ShAmt = SA->getZExtValue();
1863
1864      // If the shift count is an invalid immediate, don't do anything.
1865      if (ShAmt >= BitWidth)
1866        return;
1867
1868      // If any of the demanded bits are produced by the sign extension, we also
1869      // demand the input sign bit.
1870      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1871
1872      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1873      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1874      KnownZero = KnownZero.lshr(ShAmt);
1875      KnownOne  = KnownOne.lshr(ShAmt);
1876
1877      // Handle the sign bits.
1878      APInt SignBit = APInt::getSignBit(BitWidth);
1879      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1880
1881      if (KnownZero.intersects(SignBit)) {
1882        KnownZero |= HighBits;  // New bits are known zero.
1883      } else if (KnownOne.intersects(SignBit)) {
1884        KnownOne  |= HighBits;  // New bits are known one.
1885      }
1886    }
1887    return;
1888  case ISD::SIGN_EXTEND_INREG: {
1889    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1890    unsigned EBits = EVT.getScalarType().getSizeInBits();
1891
1892    // Sign extension.  Compute the demanded bits in the result that are not
1893    // present in the input.
1894    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
1895
1896    APInt InSignBit = APInt::getSignBit(EBits);
1897    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
1898
1899    // If the sign extended bits are demanded, we know that the sign
1900    // bit is demanded.
1901    InSignBit = InSignBit.zext(BitWidth);
1902    if (NewBits.getBoolValue())
1903      InputDemandedBits |= InSignBit;
1904
1905    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1906    KnownOne &= InputDemandedBits;
1907    KnownZero &= InputDemandedBits;
1908    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1909
1910    // If the sign bit of the input is known set or clear, then we know the
1911    // top bits of the result.
1912    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1913      KnownZero |= NewBits;
1914      KnownOne  &= ~NewBits;
1915    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1916      KnownOne  |= NewBits;
1917      KnownZero &= ~NewBits;
1918    } else {                              // Input sign bit unknown
1919      KnownZero &= ~NewBits;
1920      KnownOne  &= ~NewBits;
1921    }
1922    return;
1923  }
1924  case ISD::CTTZ:
1925  case ISD::CTTZ_ZERO_UNDEF:
1926  case ISD::CTLZ:
1927  case ISD::CTLZ_ZERO_UNDEF:
1928  case ISD::CTPOP: {
1929    unsigned LowBits = Log2_32(BitWidth)+1;
1930    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1931    KnownOne.clearAllBits();
1932    return;
1933  }
1934  case ISD::LOAD: {
1935    LoadSDNode *LD = cast<LoadSDNode>(Op);
1936    if (ISD::isZEXTLoad(Op.getNode())) {
1937      EVT VT = LD->getMemoryVT();
1938      unsigned MemBits = VT.getScalarType().getSizeInBits();
1939      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1940    } else if (const MDNode *Ranges = LD->getRanges()) {
1941      computeMaskedBitsLoad(*Ranges, KnownZero);
1942    }
1943    return;
1944  }
1945  case ISD::ZERO_EXTEND: {
1946    EVT InVT = Op.getOperand(0).getValueType();
1947    unsigned InBits = InVT.getScalarType().getSizeInBits();
1948    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1949    KnownZero = KnownZero.trunc(InBits);
1950    KnownOne = KnownOne.trunc(InBits);
1951    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1952    KnownZero = KnownZero.zext(BitWidth);
1953    KnownOne = KnownOne.zext(BitWidth);
1954    KnownZero |= NewBits;
1955    return;
1956  }
1957  case ISD::SIGN_EXTEND: {
1958    EVT InVT = Op.getOperand(0).getValueType();
1959    unsigned InBits = InVT.getScalarType().getSizeInBits();
1960    APInt InSignBit = APInt::getSignBit(InBits);
1961    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1962
1963    KnownZero = KnownZero.trunc(InBits);
1964    KnownOne = KnownOne.trunc(InBits);
1965    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1966
1967    // Note if the sign bit is known to be zero or one.
1968    bool SignBitKnownZero = KnownZero.isNegative();
1969    bool SignBitKnownOne  = KnownOne.isNegative();
1970    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1971           "Sign bit can't be known to be both zero and one!");
1972
1973    KnownZero = KnownZero.zext(BitWidth);
1974    KnownOne = KnownOne.zext(BitWidth);
1975
1976    // If the sign bit is known zero or one, the top bits match.
1977    if (SignBitKnownZero)
1978      KnownZero |= NewBits;
1979    else if (SignBitKnownOne)
1980      KnownOne  |= NewBits;
1981    return;
1982  }
1983  case ISD::ANY_EXTEND: {
1984    EVT InVT = Op.getOperand(0).getValueType();
1985    unsigned InBits = InVT.getScalarType().getSizeInBits();
1986    KnownZero = KnownZero.trunc(InBits);
1987    KnownOne = KnownOne.trunc(InBits);
1988    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1989    KnownZero = KnownZero.zext(BitWidth);
1990    KnownOne = KnownOne.zext(BitWidth);
1991    return;
1992  }
1993  case ISD::TRUNCATE: {
1994    EVT InVT = Op.getOperand(0).getValueType();
1995    unsigned InBits = InVT.getScalarType().getSizeInBits();
1996    KnownZero = KnownZero.zext(InBits);
1997    KnownOne = KnownOne.zext(InBits);
1998    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1999    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2000    KnownZero = KnownZero.trunc(BitWidth);
2001    KnownOne = KnownOne.trunc(BitWidth);
2002    break;
2003  }
2004  case ISD::AssertZext: {
2005    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2006    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2007    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2008    KnownZero |= (~InMask);
2009    KnownOne  &= (~KnownZero);
2010    return;
2011  }
2012  case ISD::FGETSIGN:
2013    // All bits are zero except the low bit.
2014    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2015    return;
2016
2017  case ISD::SUB: {
2018    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
2019      // We know that the top bits of C-X are clear if X contains less bits
2020      // than C (i.e. no wrap-around can happen).  For example, 20-X is
2021      // positive if we can prove that X is >= 0 and < 16.
2022      if (CLHS->getAPIntValue().isNonNegative()) {
2023        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2024        // NLZ can't be BitWidth with no sign bit
2025        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2026        ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2027
2028        // If all of the MaskV bits are known to be zero, then we know the
2029        // output top bits are zero, because we now know that the output is
2030        // from [0-C].
2031        if ((KnownZero2 & MaskV) == MaskV) {
2032          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2033          // Top bits known zero.
2034          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2035        }
2036      }
2037    }
2038  }
2039  // fall through
2040  case ISD::ADD:
2041  case ISD::ADDE: {
2042    // Output known-0 bits are known if clear or set in both the low clear bits
2043    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2044    // low 3 bits clear.
2045    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2046    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2047    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
2048
2049    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2050    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2051    KnownZeroOut = std::min(KnownZeroOut,
2052                            KnownZero2.countTrailingOnes());
2053
2054    if (Op.getOpcode() == ISD::ADD) {
2055      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
2056      return;
2057    }
2058
2059    // With ADDE, a carry bit may be added in, so we can only use this
2060    // information if we know (at least) that the low two bits are clear.  We
2061    // then return to the caller that the low bit is unknown but that other bits
2062    // are known zero.
2063    if (KnownZeroOut >= 2) // ADDE
2064      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2065    return;
2066  }
2067  case ISD::SREM:
2068    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2069      const APInt &RA = Rem->getAPIntValue().abs();
2070      if (RA.isPowerOf2()) {
2071        APInt LowBits = RA - 1;
2072        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2073        ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
2074
2075        // The low bits of the first operand are unchanged by the srem.
2076        KnownZero = KnownZero2 & LowBits;
2077        KnownOne = KnownOne2 & LowBits;
2078
2079        // If the first operand is non-negative or has all low bits zero, then
2080        // the upper bits are all zero.
2081        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2082          KnownZero |= ~LowBits;
2083
2084        // If the first operand is negative and not all low bits are zero, then
2085        // the upper bits are all one.
2086        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2087          KnownOne |= ~LowBits;
2088        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2089      }
2090    }
2091    return;
2092  case ISD::UREM: {
2093    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2094      const APInt &RA = Rem->getAPIntValue();
2095      if (RA.isPowerOf2()) {
2096        APInt LowBits = (RA - 1);
2097        KnownZero |= ~LowBits;
2098        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1);
2099        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2100        break;
2101      }
2102    }
2103
2104    // Since the result is less than or equal to either operand, any leading
2105    // zero bits in either operand must also exist in the result.
2106    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2107    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2108
2109    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2110                                KnownZero2.countLeadingOnes());
2111    KnownOne.clearAllBits();
2112    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2113    return;
2114  }
2115  case ISD::FrameIndex:
2116  case ISD::TargetFrameIndex:
2117    if (unsigned Align = InferPtrAlignment(Op)) {
2118      // The low bits are known zero if the pointer is aligned.
2119      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2120      return;
2121    }
2122    break;
2123
2124  default:
2125    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2126      break;
2127    // Fallthrough
2128  case ISD::INTRINSIC_WO_CHAIN:
2129  case ISD::INTRINSIC_W_CHAIN:
2130  case ISD::INTRINSIC_VOID:
2131    // Allow the target to implement this method for its nodes.
2132    TLI.computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2133    return;
2134  }
2135}
2136
2137/// ComputeNumSignBits - Return the number of times the sign bit of the
2138/// register is replicated into the other bits.  We know that at least 1 bit
2139/// is always equal to the sign bit (itself), but other cases can give us
2140/// information.  For example, immediately after an "SRA X, 2", we know that
2141/// the top 3 bits are all equal to each other, so we return 3.
2142unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2143  EVT VT = Op.getValueType();
2144  assert(VT.isInteger() && "Invalid VT!");
2145  unsigned VTBits = VT.getScalarType().getSizeInBits();
2146  unsigned Tmp, Tmp2;
2147  unsigned FirstAnswer = 1;
2148
2149  if (Depth == 6)
2150    return 1;  // Limit search depth.
2151
2152  switch (Op.getOpcode()) {
2153  default: break;
2154  case ISD::AssertSext:
2155    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2156    return VTBits-Tmp+1;
2157  case ISD::AssertZext:
2158    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2159    return VTBits-Tmp;
2160
2161  case ISD::Constant: {
2162    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2163    return Val.getNumSignBits();
2164  }
2165
2166  case ISD::SIGN_EXTEND:
2167    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2168    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2169
2170  case ISD::SIGN_EXTEND_INREG:
2171    // Max of the input and what this extends.
2172    Tmp =
2173      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2174    Tmp = VTBits-Tmp+1;
2175
2176    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2177    return std::max(Tmp, Tmp2);
2178
2179  case ISD::SRA:
2180    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2181    // SRA X, C   -> adds C sign bits.
2182    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2183      Tmp += C->getZExtValue();
2184      if (Tmp > VTBits) Tmp = VTBits;
2185    }
2186    return Tmp;
2187  case ISD::SHL:
2188    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2189      // shl destroys sign bits.
2190      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2191      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2192          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2193      return Tmp - C->getZExtValue();
2194    }
2195    break;
2196  case ISD::AND:
2197  case ISD::OR:
2198  case ISD::XOR:    // NOT is handled here.
2199    // Logical binary ops preserve the number of sign bits at the worst.
2200    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2201    if (Tmp != 1) {
2202      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2203      FirstAnswer = std::min(Tmp, Tmp2);
2204      // We computed what we know about the sign bits as our first
2205      // answer. Now proceed to the generic code that uses
2206      // ComputeMaskedBits, and pick whichever answer is better.
2207    }
2208    break;
2209
2210  case ISD::SELECT:
2211    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2212    if (Tmp == 1) return 1;  // Early out.
2213    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2214    return std::min(Tmp, Tmp2);
2215
2216  case ISD::SADDO:
2217  case ISD::UADDO:
2218  case ISD::SSUBO:
2219  case ISD::USUBO:
2220  case ISD::SMULO:
2221  case ISD::UMULO:
2222    if (Op.getResNo() != 1)
2223      break;
2224    // The boolean result conforms to getBooleanContents.  Fall through.
2225  case ISD::SETCC:
2226    // If setcc returns 0/-1, all bits are sign bits.
2227    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2228        TargetLowering::ZeroOrNegativeOneBooleanContent)
2229      return VTBits;
2230    break;
2231  case ISD::ROTL:
2232  case ISD::ROTR:
2233    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2234      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2235
2236      // Handle rotate right by N like a rotate left by 32-N.
2237      if (Op.getOpcode() == ISD::ROTR)
2238        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2239
2240      // If we aren't rotating out all of the known-in sign bits, return the
2241      // number that are left.  This handles rotl(sext(x), 1) for example.
2242      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2243      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2244    }
2245    break;
2246  case ISD::ADD:
2247    // Add can have at most one carry bit.  Thus we know that the output
2248    // is, at worst, one more bit than the inputs.
2249    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2250    if (Tmp == 1) return 1;  // Early out.
2251
2252    // Special case decrementing a value (ADD X, -1):
2253    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2254      if (CRHS->isAllOnesValue()) {
2255        APInt KnownZero, KnownOne;
2256        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2257
2258        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2259        // sign bits set.
2260        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2261          return VTBits;
2262
2263        // If we are subtracting one from a positive number, there is no carry
2264        // out of the result.
2265        if (KnownZero.isNegative())
2266          return Tmp;
2267      }
2268
2269    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2270    if (Tmp2 == 1) return 1;
2271    return std::min(Tmp, Tmp2)-1;
2272
2273  case ISD::SUB:
2274    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2275    if (Tmp2 == 1) return 1;
2276
2277    // Handle NEG.
2278    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2279      if (CLHS->isNullValue()) {
2280        APInt KnownZero, KnownOne;
2281        ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2282        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2283        // sign bits set.
2284        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2285          return VTBits;
2286
2287        // If the input is known to be positive (the sign bit is known clear),
2288        // the output of the NEG has the same number of sign bits as the input.
2289        if (KnownZero.isNegative())
2290          return Tmp2;
2291
2292        // Otherwise, we treat this like a SUB.
2293      }
2294
2295    // Sub can have at most one carry bit.  Thus we know that the output
2296    // is, at worst, one more bit than the inputs.
2297    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2298    if (Tmp == 1) return 1;  // Early out.
2299    return std::min(Tmp, Tmp2)-1;
2300  case ISD::TRUNCATE:
2301    // FIXME: it's tricky to do anything useful for this, but it is an important
2302    // case for targets like X86.
2303    break;
2304  }
2305
2306  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2307  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2308    unsigned ExtType = LD->getExtensionType();
2309    switch (ExtType) {
2310    default: break;
2311    case ISD::SEXTLOAD:    // '17' bits known
2312      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2313      return VTBits-Tmp+1;
2314    case ISD::ZEXTLOAD:    // '16' bits known
2315      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2316      return VTBits-Tmp;
2317    }
2318  }
2319
2320  // Allow the target to implement this method for its nodes.
2321  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2322      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2323      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2324      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2325    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2326    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2327  }
2328
2329  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2330  // use this information.
2331  APInt KnownZero, KnownOne;
2332  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
2333
2334  APInt Mask;
2335  if (KnownZero.isNegative()) {        // sign bit is 0
2336    Mask = KnownZero;
2337  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2338    Mask = KnownOne;
2339  } else {
2340    // Nothing known.
2341    return FirstAnswer;
2342  }
2343
2344  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2345  // the number of identical bits in the top of the input value.
2346  Mask = ~Mask;
2347  Mask <<= Mask.getBitWidth()-VTBits;
2348  // Return # leading zeros.  We use 'min' here in case Val was zero before
2349  // shifting.  We don't want to return '64' as for an i32 "0".
2350  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2351}
2352
2353/// isBaseWithConstantOffset - Return true if the specified operand is an
2354/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2355/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2356/// semantics as an ADD.  This handles the equivalence:
2357///     X|Cst == X+Cst iff X&Cst = 0.
2358bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2359  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2360      !isa<ConstantSDNode>(Op.getOperand(1)))
2361    return false;
2362
2363  if (Op.getOpcode() == ISD::OR &&
2364      !MaskedValueIsZero(Op.getOperand(0),
2365                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2366    return false;
2367
2368  return true;
2369}
2370
2371
2372bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2373  // If we're told that NaNs won't happen, assume they won't.
2374  if (getTarget().Options.NoNaNsFPMath)
2375    return true;
2376
2377  // If the value is a constant, we can obviously see if it is a NaN or not.
2378  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2379    return !C->getValueAPF().isNaN();
2380
2381  // TODO: Recognize more cases here.
2382
2383  return false;
2384}
2385
2386bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2387  // If the value is a constant, we can obviously see if it is a zero or not.
2388  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2389    return !C->isZero();
2390
2391  // TODO: Recognize more cases here.
2392  switch (Op.getOpcode()) {
2393  default: break;
2394  case ISD::OR:
2395    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2396      return !C->isNullValue();
2397    break;
2398  }
2399
2400  return false;
2401}
2402
2403bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2404  // Check the obvious case.
2405  if (A == B) return true;
2406
2407  // For for negative and positive zero.
2408  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2409    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2410      if (CA->isZero() && CB->isZero()) return true;
2411
2412  // Otherwise they may not be equal.
2413  return false;
2414}
2415
2416/// getNode - Gets or creates the specified node.
2417///
2418SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2419  FoldingSetNodeID ID;
2420  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2421  void *IP = 0;
2422  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2423    return SDValue(E, 0);
2424
2425  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2426  CSEMap.InsertNode(N, IP);
2427
2428  AllNodes.push_back(N);
2429#ifndef NDEBUG
2430  VerifySDNode(N);
2431#endif
2432  return SDValue(N, 0);
2433}
2434
2435SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2436                              EVT VT, SDValue Operand) {
2437  // Constant fold unary operations with an integer constant operand.
2438  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2439    const APInt &Val = C->getAPIntValue();
2440    switch (Opcode) {
2441    default: break;
2442    case ISD::SIGN_EXTEND:
2443      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2444    case ISD::ANY_EXTEND:
2445    case ISD::ZERO_EXTEND:
2446    case ISD::TRUNCATE:
2447      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2448    case ISD::UINT_TO_FP:
2449    case ISD::SINT_TO_FP: {
2450      // No compile time operations on ppcf128.
2451      if (VT == MVT::ppcf128) break;
2452      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2453      (void)apf.convertFromAPInt(Val,
2454                                 Opcode==ISD::SINT_TO_FP,
2455                                 APFloat::rmNearestTiesToEven);
2456      return getConstantFP(apf, VT);
2457    }
2458    case ISD::BITCAST:
2459      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2460        return getConstantFP(APFloat(Val), VT);
2461      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2462        return getConstantFP(APFloat(Val), VT);
2463      break;
2464    case ISD::BSWAP:
2465      return getConstant(Val.byteSwap(), VT);
2466    case ISD::CTPOP:
2467      return getConstant(Val.countPopulation(), VT);
2468    case ISD::CTLZ:
2469    case ISD::CTLZ_ZERO_UNDEF:
2470      return getConstant(Val.countLeadingZeros(), VT);
2471    case ISD::CTTZ:
2472    case ISD::CTTZ_ZERO_UNDEF:
2473      return getConstant(Val.countTrailingZeros(), VT);
2474    }
2475  }
2476
2477  // Constant fold unary operations with a floating point constant operand.
2478  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2479    APFloat V = C->getValueAPF();    // make copy
2480    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2481      switch (Opcode) {
2482      case ISD::FNEG:
2483        V.changeSign();
2484        return getConstantFP(V, VT);
2485      case ISD::FABS:
2486        V.clearSign();
2487        return getConstantFP(V, VT);
2488      case ISD::FCEIL: {
2489        APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
2490        if (fs == APFloat::opOK || fs == APFloat::opInexact)
2491          return getConstantFP(V, VT);
2492        break;
2493      }
2494      case ISD::FTRUNC: {
2495        APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
2496        if (fs == APFloat::opOK || fs == APFloat::opInexact)
2497          return getConstantFP(V, VT);
2498        break;
2499      }
2500      case ISD::FFLOOR: {
2501        APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
2502        if (fs == APFloat::opOK || fs == APFloat::opInexact)
2503          return getConstantFP(V, VT);
2504        break;
2505      }
2506      case ISD::FP_EXTEND: {
2507        bool ignored;
2508        // This can return overflow, underflow, or inexact; we don't care.
2509        // FIXME need to be more flexible about rounding mode.
2510        (void)V.convert(*EVTToAPFloatSemantics(VT),
2511                        APFloat::rmNearestTiesToEven, &ignored);
2512        return getConstantFP(V, VT);
2513      }
2514      case ISD::FP_TO_SINT:
2515      case ISD::FP_TO_UINT: {
2516        integerPart x[2];
2517        bool ignored;
2518        assert(integerPartWidth >= 64);
2519        // FIXME need to be more flexible about rounding mode.
2520        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2521                              Opcode==ISD::FP_TO_SINT,
2522                              APFloat::rmTowardZero, &ignored);
2523        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2524          break;
2525        APInt api(VT.getSizeInBits(), x);
2526        return getConstant(api, VT);
2527      }
2528      case ISD::BITCAST:
2529        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2530          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2531        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2532          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2533        break;
2534      }
2535    }
2536  }
2537
2538  unsigned OpOpcode = Operand.getNode()->getOpcode();
2539  switch (Opcode) {
2540  case ISD::TokenFactor:
2541  case ISD::MERGE_VALUES:
2542  case ISD::CONCAT_VECTORS:
2543    return Operand;         // Factor, merge or concat of one node?  No need.
2544  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2545  case ISD::FP_EXTEND:
2546    assert(VT.isFloatingPoint() &&
2547           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2548    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2549    assert((!VT.isVector() ||
2550            VT.getVectorNumElements() ==
2551            Operand.getValueType().getVectorNumElements()) &&
2552           "Vector element count mismatch!");
2553    if (Operand.getOpcode() == ISD::UNDEF)
2554      return getUNDEF(VT);
2555    break;
2556  case ISD::SIGN_EXTEND:
2557    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2558           "Invalid SIGN_EXTEND!");
2559    if (Operand.getValueType() == VT) return Operand;   // noop extension
2560    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2561           "Invalid sext node, dst < src!");
2562    assert((!VT.isVector() ||
2563            VT.getVectorNumElements() ==
2564            Operand.getValueType().getVectorNumElements()) &&
2565           "Vector element count mismatch!");
2566    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2567      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2568    else if (OpOpcode == ISD::UNDEF)
2569      // sext(undef) = 0, because the top bits will all be the same.
2570      return getConstant(0, VT);
2571    break;
2572  case ISD::ZERO_EXTEND:
2573    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2574           "Invalid ZERO_EXTEND!");
2575    if (Operand.getValueType() == VT) return Operand;   // noop extension
2576    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2577           "Invalid zext node, dst < src!");
2578    assert((!VT.isVector() ||
2579            VT.getVectorNumElements() ==
2580            Operand.getValueType().getVectorNumElements()) &&
2581           "Vector element count mismatch!");
2582    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2583      return getNode(ISD::ZERO_EXTEND, DL, VT,
2584                     Operand.getNode()->getOperand(0));
2585    else if (OpOpcode == ISD::UNDEF)
2586      // zext(undef) = 0, because the top bits will be zero.
2587      return getConstant(0, VT);
2588    break;
2589  case ISD::ANY_EXTEND:
2590    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2591           "Invalid ANY_EXTEND!");
2592    if (Operand.getValueType() == VT) return Operand;   // noop extension
2593    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2594           "Invalid anyext node, dst < src!");
2595    assert((!VT.isVector() ||
2596            VT.getVectorNumElements() ==
2597            Operand.getValueType().getVectorNumElements()) &&
2598           "Vector element count mismatch!");
2599
2600    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2601        OpOpcode == ISD::ANY_EXTEND)
2602      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2603      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2604    else if (OpOpcode == ISD::UNDEF)
2605      return getUNDEF(VT);
2606
2607    // (ext (trunx x)) -> x
2608    if (OpOpcode == ISD::TRUNCATE) {
2609      SDValue OpOp = Operand.getNode()->getOperand(0);
2610      if (OpOp.getValueType() == VT)
2611        return OpOp;
2612    }
2613    break;
2614  case ISD::TRUNCATE:
2615    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2616           "Invalid TRUNCATE!");
2617    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2618    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2619           "Invalid truncate node, src < dst!");
2620    assert((!VT.isVector() ||
2621            VT.getVectorNumElements() ==
2622            Operand.getValueType().getVectorNumElements()) &&
2623           "Vector element count mismatch!");
2624    if (OpOpcode == ISD::TRUNCATE)
2625      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2626    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2627        OpOpcode == ISD::ANY_EXTEND) {
2628      // If the source is smaller than the dest, we still need an extend.
2629      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2630            .bitsLT(VT.getScalarType()))
2631        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2632      if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2633        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2634      return Operand.getNode()->getOperand(0);
2635    }
2636    if (OpOpcode == ISD::UNDEF)
2637      return getUNDEF(VT);
2638    break;
2639  case ISD::BITCAST:
2640    // Basic sanity checking.
2641    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2642           && "Cannot BITCAST between types of different sizes!");
2643    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2644    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2645      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2646    if (OpOpcode == ISD::UNDEF)
2647      return getUNDEF(VT);
2648    break;
2649  case ISD::SCALAR_TO_VECTOR:
2650    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2651           (VT.getVectorElementType() == Operand.getValueType() ||
2652            (VT.getVectorElementType().isInteger() &&
2653             Operand.getValueType().isInteger() &&
2654             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2655           "Illegal SCALAR_TO_VECTOR node!");
2656    if (OpOpcode == ISD::UNDEF)
2657      return getUNDEF(VT);
2658    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2659    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2660        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2661        Operand.getConstantOperandVal(1) == 0 &&
2662        Operand.getOperand(0).getValueType() == VT)
2663      return Operand.getOperand(0);
2664    break;
2665  case ISD::FNEG:
2666    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2667    if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
2668      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2669                     Operand.getNode()->getOperand(0));
2670    if (OpOpcode == ISD::FNEG)  // --X -> X
2671      return Operand.getNode()->getOperand(0);
2672    break;
2673  case ISD::FABS:
2674    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2675      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2676    break;
2677  }
2678
2679  SDNode *N;
2680  SDVTList VTs = getVTList(VT);
2681  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2682    FoldingSetNodeID ID;
2683    SDValue Ops[1] = { Operand };
2684    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2685    void *IP = 0;
2686    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2687      return SDValue(E, 0);
2688
2689    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2690    CSEMap.InsertNode(N, IP);
2691  } else {
2692    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2693  }
2694
2695  AllNodes.push_back(N);
2696#ifndef NDEBUG
2697  VerifySDNode(N);
2698#endif
2699  return SDValue(N, 0);
2700}
2701
2702SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2703                                             EVT VT,
2704                                             ConstantSDNode *Cst1,
2705                                             ConstantSDNode *Cst2) {
2706  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2707
2708  switch (Opcode) {
2709  case ISD::ADD:  return getConstant(C1 + C2, VT);
2710  case ISD::SUB:  return getConstant(C1 - C2, VT);
2711  case ISD::MUL:  return getConstant(C1 * C2, VT);
2712  case ISD::UDIV:
2713    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2714    break;
2715  case ISD::UREM:
2716    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2717    break;
2718  case ISD::SDIV:
2719    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2720    break;
2721  case ISD::SREM:
2722    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2723    break;
2724  case ISD::AND:  return getConstant(C1 & C2, VT);
2725  case ISD::OR:   return getConstant(C1 | C2, VT);
2726  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2727  case ISD::SHL:  return getConstant(C1 << C2, VT);
2728  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2729  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2730  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2731  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2732  default: break;
2733  }
2734
2735  return SDValue();
2736}
2737
2738SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2739                              SDValue N1, SDValue N2) {
2740  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2741  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2742  switch (Opcode) {
2743  default: break;
2744  case ISD::TokenFactor:
2745    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2746           N2.getValueType() == MVT::Other && "Invalid token factor!");
2747    // Fold trivial token factors.
2748    if (N1.getOpcode() == ISD::EntryToken) return N2;
2749    if (N2.getOpcode() == ISD::EntryToken) return N1;
2750    if (N1 == N2) return N1;
2751    break;
2752  case ISD::CONCAT_VECTORS:
2753    // Concat of UNDEFs is UNDEF.
2754    if (N1.getOpcode() == ISD::UNDEF &&
2755        N2.getOpcode() == ISD::UNDEF)
2756      return getUNDEF(VT);
2757
2758    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2759    // one big BUILD_VECTOR.
2760    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2761        N2.getOpcode() == ISD::BUILD_VECTOR) {
2762      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2763                                    N1.getNode()->op_end());
2764      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2765      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2766    }
2767    break;
2768  case ISD::AND:
2769    assert(VT.isInteger() && "This operator does not apply to FP types!");
2770    assert(N1.getValueType() == N2.getValueType() &&
2771           N1.getValueType() == VT && "Binary operator types must match!");
2772    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2773    // worth handling here.
2774    if (N2C && N2C->isNullValue())
2775      return N2;
2776    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2777      return N1;
2778    break;
2779  case ISD::OR:
2780  case ISD::XOR:
2781  case ISD::ADD:
2782  case ISD::SUB:
2783    assert(VT.isInteger() && "This operator does not apply to FP types!");
2784    assert(N1.getValueType() == N2.getValueType() &&
2785           N1.getValueType() == VT && "Binary operator types must match!");
2786    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2787    // it's worth handling here.
2788    if (N2C && N2C->isNullValue())
2789      return N1;
2790    break;
2791  case ISD::UDIV:
2792  case ISD::UREM:
2793  case ISD::MULHU:
2794  case ISD::MULHS:
2795  case ISD::MUL:
2796  case ISD::SDIV:
2797  case ISD::SREM:
2798    assert(VT.isInteger() && "This operator does not apply to FP types!");
2799    assert(N1.getValueType() == N2.getValueType() &&
2800           N1.getValueType() == VT && "Binary operator types must match!");
2801    break;
2802  case ISD::FADD:
2803  case ISD::FSUB:
2804  case ISD::FMUL:
2805  case ISD::FDIV:
2806  case ISD::FREM:
2807    if (getTarget().Options.UnsafeFPMath) {
2808      if (Opcode == ISD::FADD) {
2809        // 0+x --> x
2810        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2811          if (CFP->getValueAPF().isZero())
2812            return N2;
2813        // x+0 --> x
2814        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2815          if (CFP->getValueAPF().isZero())
2816            return N1;
2817      } else if (Opcode == ISD::FSUB) {
2818        // x-0 --> x
2819        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2820          if (CFP->getValueAPF().isZero())
2821            return N1;
2822      } else if (Opcode == ISD::FMUL) {
2823        ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
2824        SDValue V = N2;
2825
2826        // If the first operand isn't the constant, try the second
2827        if (!CFP) {
2828          CFP = dyn_cast<ConstantFPSDNode>(N2);
2829          V = N1;
2830        }
2831
2832        if (CFP) {
2833          // 0*x --> 0
2834          if (CFP->isZero())
2835            return SDValue(CFP,0);
2836          // 1*x --> x
2837          if (CFP->isExactlyValue(1.0))
2838            return V;
2839        }
2840      }
2841    }
2842    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2843    assert(N1.getValueType() == N2.getValueType() &&
2844           N1.getValueType() == VT && "Binary operator types must match!");
2845    break;
2846  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2847    assert(N1.getValueType() == VT &&
2848           N1.getValueType().isFloatingPoint() &&
2849           N2.getValueType().isFloatingPoint() &&
2850           "Invalid FCOPYSIGN!");
2851    break;
2852  case ISD::SHL:
2853  case ISD::SRA:
2854  case ISD::SRL:
2855  case ISD::ROTL:
2856  case ISD::ROTR:
2857    assert(VT == N1.getValueType() &&
2858           "Shift operators return type must be the same as their first arg");
2859    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2860           "Shifts only work on integers");
2861    // Verify that the shift amount VT is bit enough to hold valid shift
2862    // amounts.  This catches things like trying to shift an i1024 value by an
2863    // i8, which is easy to fall into in generic code that uses
2864    // TLI.getShiftAmount().
2865    assert(N2.getValueType().getSizeInBits() >=
2866                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2867           "Invalid use of small shift amount with oversized value!");
2868
2869    // Always fold shifts of i1 values so the code generator doesn't need to
2870    // handle them.  Since we know the size of the shift has to be less than the
2871    // size of the value, the shift/rotate count is guaranteed to be zero.
2872    if (VT == MVT::i1)
2873      return N1;
2874    if (N2C && N2C->isNullValue())
2875      return N1;
2876    break;
2877  case ISD::FP_ROUND_INREG: {
2878    EVT EVT = cast<VTSDNode>(N2)->getVT();
2879    assert(VT == N1.getValueType() && "Not an inreg round!");
2880    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2881           "Cannot FP_ROUND_INREG integer types");
2882    assert(EVT.isVector() == VT.isVector() &&
2883           "FP_ROUND_INREG type should be vector iff the operand "
2884           "type is vector!");
2885    assert((!EVT.isVector() ||
2886            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2887           "Vector element counts must match in FP_ROUND_INREG");
2888    assert(EVT.bitsLE(VT) && "Not rounding down!");
2889    (void)EVT;
2890    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2891    break;
2892  }
2893  case ISD::FP_ROUND:
2894    assert(VT.isFloatingPoint() &&
2895           N1.getValueType().isFloatingPoint() &&
2896           VT.bitsLE(N1.getValueType()) &&
2897           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2898    if (N1.getValueType() == VT) return N1;  // noop conversion.
2899    break;
2900  case ISD::AssertSext:
2901  case ISD::AssertZext: {
2902    EVT EVT = cast<VTSDNode>(N2)->getVT();
2903    assert(VT == N1.getValueType() && "Not an inreg extend!");
2904    assert(VT.isInteger() && EVT.isInteger() &&
2905           "Cannot *_EXTEND_INREG FP types");
2906    assert(!EVT.isVector() &&
2907           "AssertSExt/AssertZExt type should be the vector element type "
2908           "rather than the vector type!");
2909    assert(EVT.bitsLE(VT) && "Not extending!");
2910    if (VT == EVT) return N1; // noop assertion.
2911    break;
2912  }
2913  case ISD::SIGN_EXTEND_INREG: {
2914    EVT EVT = cast<VTSDNode>(N2)->getVT();
2915    assert(VT == N1.getValueType() && "Not an inreg extend!");
2916    assert(VT.isInteger() && EVT.isInteger() &&
2917           "Cannot *_EXTEND_INREG FP types");
2918    assert(EVT.isVector() == VT.isVector() &&
2919           "SIGN_EXTEND_INREG type should be vector iff the operand "
2920           "type is vector!");
2921    assert((!EVT.isVector() ||
2922            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2923           "Vector element counts must match in SIGN_EXTEND_INREG");
2924    assert(EVT.bitsLE(VT) && "Not extending!");
2925    if (EVT == VT) return N1;  // Not actually extending
2926
2927    if (N1C) {
2928      APInt Val = N1C->getAPIntValue();
2929      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2930      Val <<= Val.getBitWidth()-FromBits;
2931      Val = Val.ashr(Val.getBitWidth()-FromBits);
2932      return getConstant(Val, VT);
2933    }
2934    break;
2935  }
2936  case ISD::EXTRACT_VECTOR_ELT:
2937    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2938    if (N1.getOpcode() == ISD::UNDEF)
2939      return getUNDEF(VT);
2940
2941    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2942    // expanding copies of large vectors from registers.
2943    if (N2C &&
2944        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2945        N1.getNumOperands() > 0) {
2946      unsigned Factor =
2947        N1.getOperand(0).getValueType().getVectorNumElements();
2948      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2949                     N1.getOperand(N2C->getZExtValue() / Factor),
2950                     getConstant(N2C->getZExtValue() % Factor,
2951                                 N2.getValueType()));
2952    }
2953
2954    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2955    // expanding large vector constants.
2956    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2957      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2958
2959      if (VT != Elt.getValueType())
2960        // If the vector element type is not legal, the BUILD_VECTOR operands
2961        // are promoted and implicitly truncated, and the result implicitly
2962        // extended. Make that explicit here.
2963        Elt = getAnyExtOrTrunc(Elt, DL, VT);
2964
2965      return Elt;
2966    }
2967
2968    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2969    // operations are lowered to scalars.
2970    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2971      // If the indices are the same, return the inserted element else
2972      // if the indices are known different, extract the element from
2973      // the original vector.
2974      SDValue N1Op2 = N1.getOperand(2);
2975      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2976
2977      if (N1Op2C && N2C) {
2978        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2979          if (VT == N1.getOperand(1).getValueType())
2980            return N1.getOperand(1);
2981          else
2982            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2983        }
2984
2985        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2986      }
2987    }
2988    break;
2989  case ISD::EXTRACT_ELEMENT:
2990    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2991    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2992           (N1.getValueType().isInteger() == VT.isInteger()) &&
2993           N1.getValueType() != VT &&
2994           "Wrong types for EXTRACT_ELEMENT!");
2995
2996    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2997    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2998    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2999    if (N1.getOpcode() == ISD::BUILD_PAIR)
3000      return N1.getOperand(N2C->getZExtValue());
3001
3002    // EXTRACT_ELEMENT of a constant int is also very common.
3003    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3004      unsigned ElementSize = VT.getSizeInBits();
3005      unsigned Shift = ElementSize * N2C->getZExtValue();
3006      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
3007      return getConstant(ShiftedVal.trunc(ElementSize), VT);
3008    }
3009    break;
3010  case ISD::EXTRACT_SUBVECTOR: {
3011    SDValue Index = N2;
3012    if (VT.isSimple() && N1.getValueType().isSimple()) {
3013      assert(VT.isVector() && N1.getValueType().isVector() &&
3014             "Extract subvector VTs must be a vectors!");
3015      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
3016             "Extract subvector VTs must have the same element type!");
3017      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3018             "Extract subvector must be from larger vector to smaller vector!");
3019
3020      if (isa<ConstantSDNode>(Index.getNode())) {
3021        assert((VT.getVectorNumElements() +
3022                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3023                <= N1.getValueType().getVectorNumElements())
3024               && "Extract subvector overflow!");
3025      }
3026
3027      // Trivial extraction.
3028      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
3029        return N1;
3030    }
3031    break;
3032  }
3033  }
3034
3035  if (N1C) {
3036    if (N2C) {
3037      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
3038      if (SV.getNode()) return SV;
3039    } else {      // Cannonicalize constant to RHS if commutative
3040      if (isCommutativeBinOp(Opcode)) {
3041        std::swap(N1C, N2C);
3042        std::swap(N1, N2);
3043      }
3044    }
3045  }
3046
3047  // Constant fold FP operations.
3048  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
3049  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
3050  if (N1CFP) {
3051    if (!N2CFP && isCommutativeBinOp(Opcode)) {
3052      // Cannonicalize constant to RHS if commutative
3053      std::swap(N1CFP, N2CFP);
3054      std::swap(N1, N2);
3055    } else if (N2CFP && VT != MVT::ppcf128) {
3056      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3057      APFloat::opStatus s;
3058      switch (Opcode) {
3059      case ISD::FADD:
3060        s = V1.add(V2, APFloat::rmNearestTiesToEven);
3061        if (s != APFloat::opInvalidOp)
3062          return getConstantFP(V1, VT);
3063        break;
3064      case ISD::FSUB:
3065        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3066        if (s!=APFloat::opInvalidOp)
3067          return getConstantFP(V1, VT);
3068        break;
3069      case ISD::FMUL:
3070        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3071        if (s!=APFloat::opInvalidOp)
3072          return getConstantFP(V1, VT);
3073        break;
3074      case ISD::FDIV:
3075        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3076        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3077          return getConstantFP(V1, VT);
3078        break;
3079      case ISD::FREM :
3080        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
3081        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3082          return getConstantFP(V1, VT);
3083        break;
3084      case ISD::FCOPYSIGN:
3085        V1.copySign(V2);
3086        return getConstantFP(V1, VT);
3087      default: break;
3088      }
3089    }
3090
3091    if (Opcode == ISD::FP_ROUND) {
3092      APFloat V = N1CFP->getValueAPF();    // make copy
3093      bool ignored;
3094      // This can return overflow, underflow, or inexact; we don't care.
3095      // FIXME need to be more flexible about rounding mode.
3096      (void)V.convert(*EVTToAPFloatSemantics(VT),
3097                      APFloat::rmNearestTiesToEven, &ignored);
3098      return getConstantFP(V, VT);
3099    }
3100  }
3101
3102  // Canonicalize an UNDEF to the RHS, even over a constant.
3103  if (N1.getOpcode() == ISD::UNDEF) {
3104    if (isCommutativeBinOp(Opcode)) {
3105      std::swap(N1, N2);
3106    } else {
3107      switch (Opcode) {
3108      case ISD::FP_ROUND_INREG:
3109      case ISD::SIGN_EXTEND_INREG:
3110      case ISD::SUB:
3111      case ISD::FSUB:
3112      case ISD::FDIV:
3113      case ISD::FREM:
3114      case ISD::SRA:
3115        return N1;     // fold op(undef, arg2) -> undef
3116      case ISD::UDIV:
3117      case ISD::SDIV:
3118      case ISD::UREM:
3119      case ISD::SREM:
3120      case ISD::SRL:
3121      case ISD::SHL:
3122        if (!VT.isVector())
3123          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3124        // For vectors, we can't easily build an all zero vector, just return
3125        // the LHS.
3126        return N2;
3127      }
3128    }
3129  }
3130
3131  // Fold a bunch of operators when the RHS is undef.
3132  if (N2.getOpcode() == ISD::UNDEF) {
3133    switch (Opcode) {
3134    case ISD::XOR:
3135      if (N1.getOpcode() == ISD::UNDEF)
3136        // Handle undef ^ undef -> 0 special case. This is a common
3137        // idiom (misuse).
3138        return getConstant(0, VT);
3139      // fallthrough
3140    case ISD::ADD:
3141    case ISD::ADDC:
3142    case ISD::ADDE:
3143    case ISD::SUB:
3144    case ISD::UDIV:
3145    case ISD::SDIV:
3146    case ISD::UREM:
3147    case ISD::SREM:
3148      return N2;       // fold op(arg1, undef) -> undef
3149    case ISD::FADD:
3150    case ISD::FSUB:
3151    case ISD::FMUL:
3152    case ISD::FDIV:
3153    case ISD::FREM:
3154      if (getTarget().Options.UnsafeFPMath)
3155        return N2;
3156      break;
3157    case ISD::MUL:
3158    case ISD::AND:
3159    case ISD::SRL:
3160    case ISD::SHL:
3161      if (!VT.isVector())
3162        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3163      // For vectors, we can't easily build an all zero vector, just return
3164      // the LHS.
3165      return N1;
3166    case ISD::OR:
3167      if (!VT.isVector())
3168        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3169      // For vectors, we can't easily build an all one vector, just return
3170      // the LHS.
3171      return N1;
3172    case ISD::SRA:
3173      return N1;
3174    }
3175  }
3176
3177  // Memoize this node if possible.
3178  SDNode *N;
3179  SDVTList VTs = getVTList(VT);
3180  if (VT != MVT::Glue) {
3181    SDValue Ops[] = { N1, N2 };
3182    FoldingSetNodeID ID;
3183    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3184    void *IP = 0;
3185    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3186      return SDValue(E, 0);
3187
3188    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3189    CSEMap.InsertNode(N, IP);
3190  } else {
3191    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3192  }
3193
3194  AllNodes.push_back(N);
3195#ifndef NDEBUG
3196  VerifySDNode(N);
3197#endif
3198  return SDValue(N, 0);
3199}
3200
3201SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3202                              SDValue N1, SDValue N2, SDValue N3) {
3203  // Perform various simplifications.
3204  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3205  switch (Opcode) {
3206  case ISD::CONCAT_VECTORS:
3207    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3208    // one big BUILD_VECTOR.
3209    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3210        N2.getOpcode() == ISD::BUILD_VECTOR &&
3211        N3.getOpcode() == ISD::BUILD_VECTOR) {
3212      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3213                                    N1.getNode()->op_end());
3214      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3215      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3216      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3217    }
3218    break;
3219  case ISD::SETCC: {
3220    // Use FoldSetCC to simplify SETCC's.
3221    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3222    if (Simp.getNode()) return Simp;
3223    break;
3224  }
3225  case ISD::SELECT:
3226    if (N1C) {
3227     if (N1C->getZExtValue())
3228       return N2;             // select true, X, Y -> X
3229     return N3;             // select false, X, Y -> Y
3230    }
3231
3232    if (N2 == N3) return N2;   // select C, X, X -> X
3233    break;
3234  case ISD::VECTOR_SHUFFLE:
3235    llvm_unreachable("should use getVectorShuffle constructor!");
3236  case ISD::INSERT_SUBVECTOR: {
3237    SDValue Index = N3;
3238    if (VT.isSimple() && N1.getValueType().isSimple()
3239        && N2.getValueType().isSimple()) {
3240      assert(VT.isVector() && N1.getValueType().isVector() &&
3241             N2.getValueType().isVector() &&
3242             "Insert subvector VTs must be a vectors");
3243      assert(VT == N1.getValueType() &&
3244             "Dest and insert subvector source types must match!");
3245      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3246             "Insert subvector must be from smaller vector to larger vector!");
3247      if (isa<ConstantSDNode>(Index.getNode())) {
3248        assert((N2.getValueType().getVectorNumElements() +
3249                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3250                <= VT.getVectorNumElements())
3251               && "Insert subvector overflow!");
3252      }
3253
3254      // Trivial insertion.
3255      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3256        return N2;
3257    }
3258    break;
3259  }
3260  case ISD::BITCAST:
3261    // Fold bit_convert nodes from a type to themselves.
3262    if (N1.getValueType() == VT)
3263      return N1;
3264    break;
3265  }
3266
3267  // Memoize node if it doesn't produce a flag.
3268  SDNode *N;
3269  SDVTList VTs = getVTList(VT);
3270  if (VT != MVT::Glue) {
3271    SDValue Ops[] = { N1, N2, N3 };
3272    FoldingSetNodeID ID;
3273    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3274    void *IP = 0;
3275    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3276      return SDValue(E, 0);
3277
3278    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3279    CSEMap.InsertNode(N, IP);
3280  } else {
3281    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3282  }
3283
3284  AllNodes.push_back(N);
3285#ifndef NDEBUG
3286  VerifySDNode(N);
3287#endif
3288  return SDValue(N, 0);
3289}
3290
3291SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3292                              SDValue N1, SDValue N2, SDValue N3,
3293                              SDValue N4) {
3294  SDValue Ops[] = { N1, N2, N3, N4 };
3295  return getNode(Opcode, DL, VT, Ops, 4);
3296}
3297
3298SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3299                              SDValue N1, SDValue N2, SDValue N3,
3300                              SDValue N4, SDValue N5) {
3301  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3302  return getNode(Opcode, DL, VT, Ops, 5);
3303}
3304
3305/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3306/// the incoming stack arguments to be loaded from the stack.
3307SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3308  SmallVector<SDValue, 8> ArgChains;
3309
3310  // Include the original chain at the beginning of the list. When this is
3311  // used by target LowerCall hooks, this helps legalize find the
3312  // CALLSEQ_BEGIN node.
3313  ArgChains.push_back(Chain);
3314
3315  // Add a chain value for each stack argument.
3316  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3317       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3318    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3319      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3320        if (FI->getIndex() < 0)
3321          ArgChains.push_back(SDValue(L, 1));
3322
3323  // Build a tokenfactor for all the chains.
3324  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3325                 &ArgChains[0], ArgChains.size());
3326}
3327
3328/// SplatByte - Distribute ByteVal over NumBits bits.
3329static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3330  APInt Val = APInt(NumBits, ByteVal);
3331  unsigned Shift = 8;
3332  for (unsigned i = NumBits; i > 8; i >>= 1) {
3333    Val = (Val << Shift) | Val;
3334    Shift <<= 1;
3335  }
3336  return Val;
3337}
3338
3339/// getMemsetValue - Vectorized representation of the memset value
3340/// operand.
3341static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3342                              DebugLoc dl) {
3343  assert(Value.getOpcode() != ISD::UNDEF);
3344
3345  unsigned NumBits = VT.getScalarType().getSizeInBits();
3346  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3347    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3348    if (VT.isInteger())
3349      return DAG.getConstant(Val, VT);
3350    return DAG.getConstantFP(APFloat(Val), VT);
3351  }
3352
3353  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3354  if (NumBits > 8) {
3355    // Use a multiplication with 0x010101... to extend the input to the
3356    // required length.
3357    APInt Magic = SplatByte(NumBits, 0x01);
3358    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3359  }
3360
3361  return Value;
3362}
3363
3364/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3365/// used when a memcpy is turned into a memset when the source is a constant
3366/// string ptr.
3367static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3368                                  const TargetLowering &TLI, StringRef Str) {
3369  // Handle vector with all elements zero.
3370  if (Str.empty()) {
3371    if (VT.isInteger())
3372      return DAG.getConstant(0, VT);
3373    else if (VT == MVT::f32 || VT == MVT::f64)
3374      return DAG.getConstantFP(0.0, VT);
3375    else if (VT.isVector()) {
3376      unsigned NumElts = VT.getVectorNumElements();
3377      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3378      return DAG.getNode(ISD::BITCAST, dl, VT,
3379                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3380                                                             EltVT, NumElts)));
3381    } else
3382      llvm_unreachable("Expected type!");
3383  }
3384
3385  assert(!VT.isVector() && "Can't handle vector type here!");
3386  unsigned NumVTBytes = VT.getSizeInBits() / 8;
3387  unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
3388
3389  uint64_t Val = 0;
3390  if (TLI.isLittleEndian()) {
3391    for (unsigned i = 0; i != NumBytes; ++i)
3392      Val |= (uint64_t)(unsigned char)Str[i] << i*8;
3393  } else {
3394    for (unsigned i = 0; i != NumBytes; ++i)
3395      Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
3396  }
3397
3398  return DAG.getConstant(Val, VT);
3399}
3400
3401/// getMemBasePlusOffset - Returns base and offset node for the
3402///
3403static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3404                                      SelectionDAG &DAG) {
3405  EVT VT = Base.getValueType();
3406  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3407                     VT, Base, DAG.getConstant(Offset, VT));
3408}
3409
3410/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3411///
3412static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
3413  unsigned SrcDelta = 0;
3414  GlobalAddressSDNode *G = NULL;
3415  if (Src.getOpcode() == ISD::GlobalAddress)
3416    G = cast<GlobalAddressSDNode>(Src);
3417  else if (Src.getOpcode() == ISD::ADD &&
3418           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3419           Src.getOperand(1).getOpcode() == ISD::Constant) {
3420    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3421    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3422  }
3423  if (!G)
3424    return false;
3425
3426  return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
3427}
3428
3429/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3430/// to replace the memset / memcpy. Return true if the number of memory ops
3431/// is below the threshold. It returns the types of the sequence of
3432/// memory ops to perform memset / memcpy by reference.
3433static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3434                                     unsigned Limit, uint64_t Size,
3435                                     unsigned DstAlign, unsigned SrcAlign,
3436                                     bool IsZeroVal,
3437                                     bool MemcpyStrSrc,
3438                                     SelectionDAG &DAG,
3439                                     const TargetLowering &TLI) {
3440  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3441         "Expecting memcpy / memset source to meet alignment requirement!");
3442  // If 'SrcAlign' is zero, that means the memory operation does not need to
3443  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3444  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3445  // is the specified alignment of the memory operation. If it is zero, that
3446  // means it's possible to change the alignment of the destination.
3447  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3448  // not need to be loaded.
3449  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3450                                   IsZeroVal, MemcpyStrSrc,
3451                                   DAG.getMachineFunction());
3452
3453  if (VT == MVT::Other) {
3454    if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
3455        TLI.allowsUnalignedMemoryAccesses(VT)) {
3456      VT = TLI.getPointerTy();
3457    } else {
3458      switch (DstAlign & 7) {
3459      case 0:  VT = MVT::i64; break;
3460      case 4:  VT = MVT::i32; break;
3461      case 2:  VT = MVT::i16; break;
3462      default: VT = MVT::i8;  break;
3463      }
3464    }
3465
3466    MVT LVT = MVT::i64;
3467    while (!TLI.isTypeLegal(LVT))
3468      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3469    assert(LVT.isInteger());
3470
3471    if (VT.bitsGT(LVT))
3472      VT = LVT;
3473  }
3474
3475  unsigned NumMemOps = 0;
3476  while (Size != 0) {
3477    unsigned VTSize = VT.getSizeInBits() / 8;
3478    while (VTSize > Size) {
3479      // For now, only use non-vector load / store's for the left-over pieces.
3480      if (VT.isVector() || VT.isFloatingPoint()) {
3481        VT = MVT::i64;
3482        while (!TLI.isTypeLegal(VT))
3483          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3484        VTSize = VT.getSizeInBits() / 8;
3485      } else {
3486        // This can result in a type that is not legal on the target, e.g.
3487        // 1 or 2 bytes on PPC.
3488        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3489        VTSize >>= 1;
3490      }
3491    }
3492
3493    if (++NumMemOps > Limit)
3494      return false;
3495    MemOps.push_back(VT);
3496    Size -= VTSize;
3497  }
3498
3499  return true;
3500}
3501
3502static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3503                                       SDValue Chain, SDValue Dst,
3504                                       SDValue Src, uint64_t Size,
3505                                       unsigned Align, bool isVol,
3506                                       bool AlwaysInline,
3507                                       MachinePointerInfo DstPtrInfo,
3508                                       MachinePointerInfo SrcPtrInfo) {
3509  // Turn a memcpy of undef to nop.
3510  if (Src.getOpcode() == ISD::UNDEF)
3511    return Chain;
3512
3513  // Expand memcpy to a series of load and store ops if the size operand falls
3514  // below a certain threshold.
3515  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3516  // rather than maybe a humongous number of loads and stores.
3517  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3518  std::vector<EVT> MemOps;
3519  bool DstAlignCanChange = false;
3520  MachineFunction &MF = DAG.getMachineFunction();
3521  MachineFrameInfo *MFI = MF.getFrameInfo();
3522  bool OptSize = MF.getFunction()->getFnAttributes().hasOptimizeForSizeAttr();
3523  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3524  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3525    DstAlignCanChange = true;
3526  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3527  if (Align > SrcAlign)
3528    SrcAlign = Align;
3529  StringRef Str;
3530  bool CopyFromStr = isMemSrcFromString(Src, Str);
3531  bool isZeroStr = CopyFromStr && Str.empty();
3532  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3533
3534  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3535                                (DstAlignCanChange ? 0 : Align),
3536                                (isZeroStr ? 0 : SrcAlign),
3537                                true, CopyFromStr, DAG, TLI))
3538    return SDValue();
3539
3540  if (DstAlignCanChange) {
3541    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3542    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3543    if (NewAlign > Align) {
3544      // Give the stack frame object a larger alignment if needed.
3545      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3546        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3547      Align = NewAlign;
3548    }
3549  }
3550
3551  SmallVector<SDValue, 8> OutChains;
3552  unsigned NumMemOps = MemOps.size();
3553  uint64_t SrcOff = 0, DstOff = 0;
3554  for (unsigned i = 0; i != NumMemOps; ++i) {
3555    EVT VT = MemOps[i];
3556    unsigned VTSize = VT.getSizeInBits() / 8;
3557    SDValue Value, Store;
3558
3559    if (CopyFromStr &&
3560        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3561      // It's unlikely a store of a vector immediate can be done in a single
3562      // instruction. It would require a load from a constantpool first.
3563      // We only handle zero vectors here.
3564      // FIXME: Handle other cases where store of vector immediate is done in
3565      // a single instruction.
3566      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
3567      Store = DAG.getStore(Chain, dl, Value,
3568                           getMemBasePlusOffset(Dst, DstOff, DAG),
3569                           DstPtrInfo.getWithOffset(DstOff), isVol,
3570                           false, Align);
3571    } else {
3572      // The type might not be legal for the target.  This should only happen
3573      // if the type is smaller than a legal type, as on PPC, so the right
3574      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3575      // to Load/Store if NVT==VT.
3576      // FIXME does the case above also need this?
3577      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3578      assert(NVT.bitsGE(VT));
3579      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3580                             getMemBasePlusOffset(Src, SrcOff, DAG),
3581                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3582                             MinAlign(SrcAlign, SrcOff));
3583      Store = DAG.getTruncStore(Chain, dl, Value,
3584                                getMemBasePlusOffset(Dst, DstOff, DAG),
3585                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3586                                false, Align);
3587    }
3588    OutChains.push_back(Store);
3589    SrcOff += VTSize;
3590    DstOff += VTSize;
3591  }
3592
3593  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3594                     &OutChains[0], OutChains.size());
3595}
3596
3597static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3598                                        SDValue Chain, SDValue Dst,
3599                                        SDValue Src, uint64_t Size,
3600                                        unsigned Align,  bool isVol,
3601                                        bool AlwaysInline,
3602                                        MachinePointerInfo DstPtrInfo,
3603                                        MachinePointerInfo SrcPtrInfo) {
3604  // Turn a memmove of undef to nop.
3605  if (Src.getOpcode() == ISD::UNDEF)
3606    return Chain;
3607
3608  // Expand memmove to a series of load and store ops if the size operand falls
3609  // below a certain threshold.
3610  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3611  std::vector<EVT> MemOps;
3612  bool DstAlignCanChange = false;
3613  MachineFunction &MF = DAG.getMachineFunction();
3614  MachineFrameInfo *MFI = MF.getFrameInfo();
3615  bool OptSize = MF.getFunction()->getFnAttributes().hasOptimizeForSizeAttr();
3616  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3617  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3618    DstAlignCanChange = true;
3619  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3620  if (Align > SrcAlign)
3621    SrcAlign = Align;
3622  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3623
3624  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3625                                (DstAlignCanChange ? 0 : Align),
3626                                SrcAlign, true, false, DAG, TLI))
3627    return SDValue();
3628
3629  if (DstAlignCanChange) {
3630    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3631    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3632    if (NewAlign > Align) {
3633      // Give the stack frame object a larger alignment if needed.
3634      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3635        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3636      Align = NewAlign;
3637    }
3638  }
3639
3640  uint64_t SrcOff = 0, DstOff = 0;
3641  SmallVector<SDValue, 8> LoadValues;
3642  SmallVector<SDValue, 8> LoadChains;
3643  SmallVector<SDValue, 8> OutChains;
3644  unsigned NumMemOps = MemOps.size();
3645  for (unsigned i = 0; i < NumMemOps; i++) {
3646    EVT VT = MemOps[i];
3647    unsigned VTSize = VT.getSizeInBits() / 8;
3648    SDValue Value, Store;
3649
3650    Value = DAG.getLoad(VT, dl, Chain,
3651                        getMemBasePlusOffset(Src, SrcOff, DAG),
3652                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3653                        false, false, SrcAlign);
3654    LoadValues.push_back(Value);
3655    LoadChains.push_back(Value.getValue(1));
3656    SrcOff += VTSize;
3657  }
3658  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3659                      &LoadChains[0], LoadChains.size());
3660  OutChains.clear();
3661  for (unsigned i = 0; i < NumMemOps; i++) {
3662    EVT VT = MemOps[i];
3663    unsigned VTSize = VT.getSizeInBits() / 8;
3664    SDValue Value, Store;
3665
3666    Store = DAG.getStore(Chain, dl, LoadValues[i],
3667                         getMemBasePlusOffset(Dst, DstOff, DAG),
3668                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3669    OutChains.push_back(Store);
3670    DstOff += VTSize;
3671  }
3672
3673  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3674                     &OutChains[0], OutChains.size());
3675}
3676
3677static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3678                               SDValue Chain, SDValue Dst,
3679                               SDValue Src, uint64_t Size,
3680                               unsigned Align, bool isVol,
3681                               MachinePointerInfo DstPtrInfo) {
3682  // Turn a memset of undef to nop.
3683  if (Src.getOpcode() == ISD::UNDEF)
3684    return Chain;
3685
3686  // Expand memset to a series of load/store ops if the size operand
3687  // falls below a certain threshold.
3688  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3689  std::vector<EVT> MemOps;
3690  bool DstAlignCanChange = false;
3691  MachineFunction &MF = DAG.getMachineFunction();
3692  MachineFrameInfo *MFI = MF.getFrameInfo();
3693  bool OptSize = MF.getFunction()->getFnAttributes().hasOptimizeForSizeAttr();
3694  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3695  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3696    DstAlignCanChange = true;
3697  bool IsZeroVal =
3698    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3699  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3700                                Size, (DstAlignCanChange ? 0 : Align), 0,
3701                                IsZeroVal, false, DAG, TLI))
3702    return SDValue();
3703
3704  if (DstAlignCanChange) {
3705    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3706    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3707    if (NewAlign > Align) {
3708      // Give the stack frame object a larger alignment if needed.
3709      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3710        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3711      Align = NewAlign;
3712    }
3713  }
3714
3715  SmallVector<SDValue, 8> OutChains;
3716  uint64_t DstOff = 0;
3717  unsigned NumMemOps = MemOps.size();
3718
3719  // Find the largest store and generate the bit pattern for it.
3720  EVT LargestVT = MemOps[0];
3721  for (unsigned i = 1; i < NumMemOps; i++)
3722    if (MemOps[i].bitsGT(LargestVT))
3723      LargestVT = MemOps[i];
3724  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3725
3726  for (unsigned i = 0; i < NumMemOps; i++) {
3727    EVT VT = MemOps[i];
3728
3729    // If this store is smaller than the largest store see whether we can get
3730    // the smaller value for free with a truncate.
3731    SDValue Value = MemSetValue;
3732    if (VT.bitsLT(LargestVT)) {
3733      if (!LargestVT.isVector() && !VT.isVector() &&
3734          TLI.isTruncateFree(LargestVT, VT))
3735        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3736      else
3737        Value = getMemsetValue(Src, VT, DAG, dl);
3738    }
3739    assert(Value.getValueType() == VT && "Value with wrong type.");
3740    SDValue Store = DAG.getStore(Chain, dl, Value,
3741                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3742                                 DstPtrInfo.getWithOffset(DstOff),
3743                                 isVol, false, Align);
3744    OutChains.push_back(Store);
3745    DstOff += VT.getSizeInBits() / 8;
3746  }
3747
3748  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3749                     &OutChains[0], OutChains.size());
3750}
3751
3752SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3753                                SDValue Src, SDValue Size,
3754                                unsigned Align, bool isVol, bool AlwaysInline,
3755                                MachinePointerInfo DstPtrInfo,
3756                                MachinePointerInfo SrcPtrInfo) {
3757
3758  // Check to see if we should lower the memcpy to loads and stores first.
3759  // For cases within the target-specified limits, this is the best choice.
3760  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3761  if (ConstantSize) {
3762    // Memcpy with size zero? Just return the original chain.
3763    if (ConstantSize->isNullValue())
3764      return Chain;
3765
3766    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3767                                             ConstantSize->getZExtValue(),Align,
3768                                isVol, false, DstPtrInfo, SrcPtrInfo);
3769    if (Result.getNode())
3770      return Result;
3771  }
3772
3773  // Then check to see if we should lower the memcpy with target-specific
3774  // code. If the target chooses to do this, this is the next best.
3775  SDValue Result =
3776    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3777                                isVol, AlwaysInline,
3778                                DstPtrInfo, SrcPtrInfo);
3779  if (Result.getNode())
3780    return Result;
3781
3782  // If we really need inline code and the target declined to provide it,
3783  // use a (potentially long) sequence of loads and stores.
3784  if (AlwaysInline) {
3785    assert(ConstantSize && "AlwaysInline requires a constant size!");
3786    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3787                                   ConstantSize->getZExtValue(), Align, isVol,
3788                                   true, DstPtrInfo, SrcPtrInfo);
3789  }
3790
3791  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3792  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3793  // respect volatile, so they may do things like read or write memory
3794  // beyond the given memory regions. But fixing this isn't easy, and most
3795  // people don't care.
3796
3797  // Emit a library call.
3798  TargetLowering::ArgListTy Args;
3799  TargetLowering::ArgListEntry Entry;
3800  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3801  Entry.Node = Dst; Args.push_back(Entry);
3802  Entry.Node = Src; Args.push_back(Entry);
3803  Entry.Node = Size; Args.push_back(Entry);
3804  // FIXME: pass in DebugLoc
3805  TargetLowering::
3806  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3807                    false, false, false, false, 0,
3808                    TLI.getLibcallCallingConv(RTLIB::MEMCPY),
3809                    /*isTailCall=*/false,
3810                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3811                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3812                                      TLI.getPointerTy()),
3813                    Args, *this, dl);
3814  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3815
3816  return CallResult.second;
3817}
3818
3819SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3820                                 SDValue Src, SDValue Size,
3821                                 unsigned Align, bool isVol,
3822                                 MachinePointerInfo DstPtrInfo,
3823                                 MachinePointerInfo SrcPtrInfo) {
3824
3825  // Check to see if we should lower the memmove to loads and stores first.
3826  // For cases within the target-specified limits, this is the best choice.
3827  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3828  if (ConstantSize) {
3829    // Memmove with size zero? Just return the original chain.
3830    if (ConstantSize->isNullValue())
3831      return Chain;
3832
3833    SDValue Result =
3834      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3835                               ConstantSize->getZExtValue(), Align, isVol,
3836                               false, DstPtrInfo, SrcPtrInfo);
3837    if (Result.getNode())
3838      return Result;
3839  }
3840
3841  // Then check to see if we should lower the memmove with target-specific
3842  // code. If the target chooses to do this, this is the next best.
3843  SDValue Result =
3844    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3845                                 DstPtrInfo, SrcPtrInfo);
3846  if (Result.getNode())
3847    return Result;
3848
3849  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3850  // not be safe.  See memcpy above for more details.
3851
3852  // Emit a library call.
3853  TargetLowering::ArgListTy Args;
3854  TargetLowering::ArgListEntry Entry;
3855  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3856  Entry.Node = Dst; Args.push_back(Entry);
3857  Entry.Node = Src; Args.push_back(Entry);
3858  Entry.Node = Size; Args.push_back(Entry);
3859  // FIXME:  pass in DebugLoc
3860  TargetLowering::
3861  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3862                    false, false, false, false, 0,
3863                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE),
3864                    /*isTailCall=*/false,
3865                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3866                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3867                                      TLI.getPointerTy()),
3868                    Args, *this, dl);
3869  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3870
3871  return CallResult.second;
3872}
3873
3874SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3875                                SDValue Src, SDValue Size,
3876                                unsigned Align, bool isVol,
3877                                MachinePointerInfo DstPtrInfo) {
3878
3879  // Check to see if we should lower the memset to stores first.
3880  // For cases within the target-specified limits, this is the best choice.
3881  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3882  if (ConstantSize) {
3883    // Memset with size zero? Just return the original chain.
3884    if (ConstantSize->isNullValue())
3885      return Chain;
3886
3887    SDValue Result =
3888      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3889                      Align, isVol, DstPtrInfo);
3890
3891    if (Result.getNode())
3892      return Result;
3893  }
3894
3895  // Then check to see if we should lower the memset with target-specific
3896  // code. If the target chooses to do this, this is the next best.
3897  SDValue Result =
3898    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3899                                DstPtrInfo);
3900  if (Result.getNode())
3901    return Result;
3902
3903  // Emit a library call.
3904  Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
3905  TargetLowering::ArgListTy Args;
3906  TargetLowering::ArgListEntry Entry;
3907  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3908  Args.push_back(Entry);
3909  // Extend or truncate the argument to be an i32 value for the call.
3910  if (Src.getValueType().bitsGT(MVT::i32))
3911    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3912  else
3913    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3914  Entry.Node = Src;
3915  Entry.Ty = Type::getInt32Ty(*getContext());
3916  Entry.isSExt = true;
3917  Args.push_back(Entry);
3918  Entry.Node = Size;
3919  Entry.Ty = IntPtrTy;
3920  Entry.isSExt = false;
3921  Args.push_back(Entry);
3922  // FIXME: pass in DebugLoc
3923  TargetLowering::
3924  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3925                    false, false, false, false, 0,
3926                    TLI.getLibcallCallingConv(RTLIB::MEMSET),
3927                    /*isTailCall=*/false,
3928                    /*doesNotReturn*/false, /*isReturnValueUsed=*/false,
3929                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3930                                      TLI.getPointerTy()),
3931                    Args, *this, dl);
3932  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3933
3934  return CallResult.second;
3935}
3936
3937SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3938                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3939                                SDValue Swp, MachinePointerInfo PtrInfo,
3940                                unsigned Alignment,
3941                                AtomicOrdering Ordering,
3942                                SynchronizationScope SynchScope) {
3943  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3944    Alignment = getEVTAlignment(MemVT);
3945
3946  MachineFunction &MF = getMachineFunction();
3947
3948  // All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE.
3949  // For now, atomics are considered to be volatile always.
3950  // FIXME: Volatile isn't really correct; we should keep track of atomic
3951  // orderings in the memoperand.
3952  unsigned Flags = MachineMemOperand::MOVolatile;
3953  if (Opcode != ISD::ATOMIC_STORE)
3954    Flags |= MachineMemOperand::MOLoad;
3955  if (Opcode != ISD::ATOMIC_LOAD)
3956    Flags |= MachineMemOperand::MOStore;
3957
3958  MachineMemOperand *MMO =
3959    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3960
3961  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3962                   Ordering, SynchScope);
3963}
3964
3965SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3966                                SDValue Chain,
3967                                SDValue Ptr, SDValue Cmp,
3968                                SDValue Swp, MachineMemOperand *MMO,
3969                                AtomicOrdering Ordering,
3970                                SynchronizationScope SynchScope) {
3971  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3972  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3973
3974  EVT VT = Cmp.getValueType();
3975
3976  SDVTList VTs = getVTList(VT, MVT::Other);
3977  FoldingSetNodeID ID;
3978  ID.AddInteger(MemVT.getRawBits());
3979  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3980  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3981  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
3982  void* IP = 0;
3983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3984    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3985    return SDValue(E, 0);
3986  }
3987  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3988                                               Ptr, Cmp, Swp, MMO, Ordering,
3989                                               SynchScope);
3990  CSEMap.InsertNode(N, IP);
3991  AllNodes.push_back(N);
3992  return SDValue(N, 0);
3993}
3994
3995SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3996                                SDValue Chain,
3997                                SDValue Ptr, SDValue Val,
3998                                const Value* PtrVal,
3999                                unsigned Alignment,
4000                                AtomicOrdering Ordering,
4001                                SynchronizationScope SynchScope) {
4002  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4003    Alignment = getEVTAlignment(MemVT);
4004
4005  MachineFunction &MF = getMachineFunction();
4006  // An atomic store does not load. An atomic load does not store.
4007  // (An atomicrmw obviously both loads and stores.)
4008  // For now, atomics are considered to be volatile always, and they are
4009  // chained as such.
4010  // FIXME: Volatile isn't really correct; we should keep track of atomic
4011  // orderings in the memoperand.
4012  unsigned Flags = MachineMemOperand::MOVolatile;
4013  if (Opcode != ISD::ATOMIC_STORE)
4014    Flags |= MachineMemOperand::MOLoad;
4015  if (Opcode != ISD::ATOMIC_LOAD)
4016    Flags |= MachineMemOperand::MOStore;
4017
4018  MachineMemOperand *MMO =
4019    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4020                            MemVT.getStoreSize(), Alignment);
4021
4022  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
4023                   Ordering, SynchScope);
4024}
4025
4026SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4027                                SDValue Chain,
4028                                SDValue Ptr, SDValue Val,
4029                                MachineMemOperand *MMO,
4030                                AtomicOrdering Ordering,
4031                                SynchronizationScope SynchScope) {
4032  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
4033          Opcode == ISD::ATOMIC_LOAD_SUB ||
4034          Opcode == ISD::ATOMIC_LOAD_AND ||
4035          Opcode == ISD::ATOMIC_LOAD_OR ||
4036          Opcode == ISD::ATOMIC_LOAD_XOR ||
4037          Opcode == ISD::ATOMIC_LOAD_NAND ||
4038          Opcode == ISD::ATOMIC_LOAD_MIN ||
4039          Opcode == ISD::ATOMIC_LOAD_MAX ||
4040          Opcode == ISD::ATOMIC_LOAD_UMIN ||
4041          Opcode == ISD::ATOMIC_LOAD_UMAX ||
4042          Opcode == ISD::ATOMIC_SWAP ||
4043          Opcode == ISD::ATOMIC_STORE) &&
4044         "Invalid Atomic Op");
4045
4046  EVT VT = Val.getValueType();
4047
4048  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
4049                                               getVTList(VT, MVT::Other);
4050  FoldingSetNodeID ID;
4051  ID.AddInteger(MemVT.getRawBits());
4052  SDValue Ops[] = {Chain, Ptr, Val};
4053  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
4054  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4055  void* IP = 0;
4056  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4057    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4058    return SDValue(E, 0);
4059  }
4060  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4061                                               Ptr, Val, MMO,
4062                                               Ordering, SynchScope);
4063  CSEMap.InsertNode(N, IP);
4064  AllNodes.push_back(N);
4065  return SDValue(N, 0);
4066}
4067
4068SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4069                                EVT VT, SDValue Chain,
4070                                SDValue Ptr,
4071                                const Value* PtrVal,
4072                                unsigned Alignment,
4073                                AtomicOrdering Ordering,
4074                                SynchronizationScope SynchScope) {
4075  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4076    Alignment = getEVTAlignment(MemVT);
4077
4078  MachineFunction &MF = getMachineFunction();
4079  // An atomic store does not load. An atomic load does not store.
4080  // (An atomicrmw obviously both loads and stores.)
4081  // For now, atomics are considered to be volatile always, and they are
4082  // chained as such.
4083  // FIXME: Volatile isn't really correct; we should keep track of atomic
4084  // orderings in the memoperand.
4085  unsigned Flags = MachineMemOperand::MOVolatile;
4086  if (Opcode != ISD::ATOMIC_STORE)
4087    Flags |= MachineMemOperand::MOLoad;
4088  if (Opcode != ISD::ATOMIC_LOAD)
4089    Flags |= MachineMemOperand::MOStore;
4090
4091  MachineMemOperand *MMO =
4092    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4093                            MemVT.getStoreSize(), Alignment);
4094
4095  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
4096                   Ordering, SynchScope);
4097}
4098
4099SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4100                                EVT VT, SDValue Chain,
4101                                SDValue Ptr,
4102                                MachineMemOperand *MMO,
4103                                AtomicOrdering Ordering,
4104                                SynchronizationScope SynchScope) {
4105  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4106
4107  SDVTList VTs = getVTList(VT, MVT::Other);
4108  FoldingSetNodeID ID;
4109  ID.AddInteger(MemVT.getRawBits());
4110  SDValue Ops[] = {Chain, Ptr};
4111  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4112  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4113  void* IP = 0;
4114  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4115    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4116    return SDValue(E, 0);
4117  }
4118  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4119                                               Ptr, MMO, Ordering, SynchScope);
4120  CSEMap.InsertNode(N, IP);
4121  AllNodes.push_back(N);
4122  return SDValue(N, 0);
4123}
4124
4125/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4126SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4127                                     DebugLoc dl) {
4128  if (NumOps == 1)
4129    return Ops[0];
4130
4131  SmallVector<EVT, 4> VTs;
4132  VTs.reserve(NumOps);
4133  for (unsigned i = 0; i < NumOps; ++i)
4134    VTs.push_back(Ops[i].getValueType());
4135  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4136                 Ops, NumOps);
4137}
4138
4139SDValue
4140SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4141                                  const EVT *VTs, unsigned NumVTs,
4142                                  const SDValue *Ops, unsigned NumOps,
4143                                  EVT MemVT, MachinePointerInfo PtrInfo,
4144                                  unsigned Align, bool Vol,
4145                                  bool ReadMem, bool WriteMem) {
4146  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4147                             MemVT, PtrInfo, Align, Vol,
4148                             ReadMem, WriteMem);
4149}
4150
4151SDValue
4152SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4153                                  const SDValue *Ops, unsigned NumOps,
4154                                  EVT MemVT, MachinePointerInfo PtrInfo,
4155                                  unsigned Align, bool Vol,
4156                                  bool ReadMem, bool WriteMem) {
4157  if (Align == 0)  // Ensure that codegen never sees alignment 0
4158    Align = getEVTAlignment(MemVT);
4159
4160  MachineFunction &MF = getMachineFunction();
4161  unsigned Flags = 0;
4162  if (WriteMem)
4163    Flags |= MachineMemOperand::MOStore;
4164  if (ReadMem)
4165    Flags |= MachineMemOperand::MOLoad;
4166  if (Vol)
4167    Flags |= MachineMemOperand::MOVolatile;
4168  MachineMemOperand *MMO =
4169    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4170
4171  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4172}
4173
4174SDValue
4175SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4176                                  const SDValue *Ops, unsigned NumOps,
4177                                  EVT MemVT, MachineMemOperand *MMO) {
4178  assert((Opcode == ISD::INTRINSIC_VOID ||
4179          Opcode == ISD::INTRINSIC_W_CHAIN ||
4180          Opcode == ISD::PREFETCH ||
4181          Opcode == ISD::LIFETIME_START ||
4182          Opcode == ISD::LIFETIME_END ||
4183          (Opcode <= INT_MAX &&
4184           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4185         "Opcode is not a memory-accessing opcode!");
4186
4187  // Memoize the node unless it returns a flag.
4188  MemIntrinsicSDNode *N;
4189  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4190    FoldingSetNodeID ID;
4191    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4192    ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4193    void *IP = 0;
4194    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4195      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4196      return SDValue(E, 0);
4197    }
4198
4199    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4200                                               MemVT, MMO);
4201    CSEMap.InsertNode(N, IP);
4202  } else {
4203    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4204                                               MemVT, MMO);
4205  }
4206  AllNodes.push_back(N);
4207  return SDValue(N, 0);
4208}
4209
4210/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4211/// MachinePointerInfo record from it.  This is particularly useful because the
4212/// code generator has many cases where it doesn't bother passing in a
4213/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4214static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4215  // If this is FI+Offset, we can model it.
4216  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4217    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4218
4219  // If this is (FI+Offset1)+Offset2, we can model it.
4220  if (Ptr.getOpcode() != ISD::ADD ||
4221      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4222      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4223    return MachinePointerInfo();
4224
4225  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4226  return MachinePointerInfo::getFixedStack(FI, Offset+
4227                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4228}
4229
4230/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4231/// MachinePointerInfo record from it.  This is particularly useful because the
4232/// code generator has many cases where it doesn't bother passing in a
4233/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4234static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4235  // If the 'Offset' value isn't a constant, we can't handle this.
4236  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4237    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4238  if (OffsetOp.getOpcode() == ISD::UNDEF)
4239    return InferPointerInfo(Ptr);
4240  return MachinePointerInfo();
4241}
4242
4243
4244SDValue
4245SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4246                      EVT VT, DebugLoc dl, SDValue Chain,
4247                      SDValue Ptr, SDValue Offset,
4248                      MachinePointerInfo PtrInfo, EVT MemVT,
4249                      bool isVolatile, bool isNonTemporal, bool isInvariant,
4250                      unsigned Alignment, const MDNode *TBAAInfo,
4251                      const MDNode *Ranges) {
4252  assert(Chain.getValueType() == MVT::Other &&
4253        "Invalid chain type");
4254  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4255    Alignment = getEVTAlignment(VT);
4256
4257  unsigned Flags = MachineMemOperand::MOLoad;
4258  if (isVolatile)
4259    Flags |= MachineMemOperand::MOVolatile;
4260  if (isNonTemporal)
4261    Flags |= MachineMemOperand::MONonTemporal;
4262  if (isInvariant)
4263    Flags |= MachineMemOperand::MOInvariant;
4264
4265  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4266  // clients.
4267  if (PtrInfo.V == 0)
4268    PtrInfo = InferPointerInfo(Ptr, Offset);
4269
4270  MachineFunction &MF = getMachineFunction();
4271  MachineMemOperand *MMO =
4272    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4273                            TBAAInfo, Ranges);
4274  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4275}
4276
4277SDValue
4278SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4279                      EVT VT, DebugLoc dl, SDValue Chain,
4280                      SDValue Ptr, SDValue Offset, EVT MemVT,
4281                      MachineMemOperand *MMO) {
4282  if (VT == MemVT) {
4283    ExtType = ISD::NON_EXTLOAD;
4284  } else if (ExtType == ISD::NON_EXTLOAD) {
4285    assert(VT == MemVT && "Non-extending load from different memory type!");
4286  } else {
4287    // Extending load.
4288    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4289           "Should only be an extending load, not truncating!");
4290    assert(VT.isInteger() == MemVT.isInteger() &&
4291           "Cannot convert from FP to Int or Int -> FP!");
4292    assert(VT.isVector() == MemVT.isVector() &&
4293           "Cannot use trunc store to convert to or from a vector!");
4294    assert((!VT.isVector() ||
4295            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4296           "Cannot use trunc store to change the number of vector elements!");
4297  }
4298
4299  bool Indexed = AM != ISD::UNINDEXED;
4300  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4301         "Unindexed load with an offset!");
4302
4303  SDVTList VTs = Indexed ?
4304    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4305  SDValue Ops[] = { Chain, Ptr, Offset };
4306  FoldingSetNodeID ID;
4307  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4308  ID.AddInteger(MemVT.getRawBits());
4309  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4310                                     MMO->isNonTemporal(),
4311                                     MMO->isInvariant()));
4312  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4313  void *IP = 0;
4314  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4315    cast<LoadSDNode>(E)->refineAlignment(MMO);
4316    return SDValue(E, 0);
4317  }
4318  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4319                                             MemVT, MMO);
4320  CSEMap.InsertNode(N, IP);
4321  AllNodes.push_back(N);
4322  return SDValue(N, 0);
4323}
4324
4325SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4326                              SDValue Chain, SDValue Ptr,
4327                              MachinePointerInfo PtrInfo,
4328                              bool isVolatile, bool isNonTemporal,
4329                              bool isInvariant, unsigned Alignment,
4330                              const MDNode *TBAAInfo,
4331                              const MDNode *Ranges) {
4332  SDValue Undef = getUNDEF(Ptr.getValueType());
4333  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4334                 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
4335                 TBAAInfo, Ranges);
4336}
4337
4338SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4339                                 SDValue Chain, SDValue Ptr,
4340                                 MachinePointerInfo PtrInfo, EVT MemVT,
4341                                 bool isVolatile, bool isNonTemporal,
4342                                 unsigned Alignment, const MDNode *TBAAInfo) {
4343  SDValue Undef = getUNDEF(Ptr.getValueType());
4344  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4345                 PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
4346                 TBAAInfo);
4347}
4348
4349
4350SDValue
4351SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4352                             SDValue Offset, ISD::MemIndexedMode AM) {
4353  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4354  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4355         "Load is already a indexed load!");
4356  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4357                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4358                 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
4359                 false, LD->getAlignment());
4360}
4361
4362SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4363                               SDValue Ptr, MachinePointerInfo PtrInfo,
4364                               bool isVolatile, bool isNonTemporal,
4365                               unsigned Alignment, const MDNode *TBAAInfo) {
4366  assert(Chain.getValueType() == MVT::Other &&
4367        "Invalid chain type");
4368  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4369    Alignment = getEVTAlignment(Val.getValueType());
4370
4371  unsigned Flags = MachineMemOperand::MOStore;
4372  if (isVolatile)
4373    Flags |= MachineMemOperand::MOVolatile;
4374  if (isNonTemporal)
4375    Flags |= MachineMemOperand::MONonTemporal;
4376
4377  if (PtrInfo.V == 0)
4378    PtrInfo = InferPointerInfo(Ptr);
4379
4380  MachineFunction &MF = getMachineFunction();
4381  MachineMemOperand *MMO =
4382    MF.getMachineMemOperand(PtrInfo, Flags,
4383                            Val.getValueType().getStoreSize(), Alignment,
4384                            TBAAInfo);
4385
4386  return getStore(Chain, dl, Val, Ptr, MMO);
4387}
4388
4389SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4390                               SDValue Ptr, MachineMemOperand *MMO) {
4391  assert(Chain.getValueType() == MVT::Other &&
4392        "Invalid chain type");
4393  EVT VT = Val.getValueType();
4394  SDVTList VTs = getVTList(MVT::Other);
4395  SDValue Undef = getUNDEF(Ptr.getValueType());
4396  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4397  FoldingSetNodeID ID;
4398  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4399  ID.AddInteger(VT.getRawBits());
4400  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4401                                     MMO->isNonTemporal(), MMO->isInvariant()));
4402  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4403  void *IP = 0;
4404  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4405    cast<StoreSDNode>(E)->refineAlignment(MMO);
4406    return SDValue(E, 0);
4407  }
4408  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4409                                              false, VT, MMO);
4410  CSEMap.InsertNode(N, IP);
4411  AllNodes.push_back(N);
4412  return SDValue(N, 0);
4413}
4414
4415SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4416                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4417                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4418                                    unsigned Alignment,
4419                                    const MDNode *TBAAInfo) {
4420  assert(Chain.getValueType() == MVT::Other &&
4421        "Invalid chain type");
4422  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4423    Alignment = getEVTAlignment(SVT);
4424
4425  unsigned Flags = MachineMemOperand::MOStore;
4426  if (isVolatile)
4427    Flags |= MachineMemOperand::MOVolatile;
4428  if (isNonTemporal)
4429    Flags |= MachineMemOperand::MONonTemporal;
4430
4431  if (PtrInfo.V == 0)
4432    PtrInfo = InferPointerInfo(Ptr);
4433
4434  MachineFunction &MF = getMachineFunction();
4435  MachineMemOperand *MMO =
4436    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4437                            TBAAInfo);
4438
4439  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4440}
4441
4442SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4443                                    SDValue Ptr, EVT SVT,
4444                                    MachineMemOperand *MMO) {
4445  EVT VT = Val.getValueType();
4446
4447  assert(Chain.getValueType() == MVT::Other &&
4448        "Invalid chain type");
4449  if (VT == SVT)
4450    return getStore(Chain, dl, Val, Ptr, MMO);
4451
4452  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4453         "Should only be a truncating store, not extending!");
4454  assert(VT.isInteger() == SVT.isInteger() &&
4455         "Can't do FP-INT conversion!");
4456  assert(VT.isVector() == SVT.isVector() &&
4457         "Cannot use trunc store to convert to or from a vector!");
4458  assert((!VT.isVector() ||
4459          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4460         "Cannot use trunc store to change the number of vector elements!");
4461
4462  SDVTList VTs = getVTList(MVT::Other);
4463  SDValue Undef = getUNDEF(Ptr.getValueType());
4464  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4465  FoldingSetNodeID ID;
4466  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4467  ID.AddInteger(SVT.getRawBits());
4468  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4469                                     MMO->isNonTemporal(), MMO->isInvariant()));
4470  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4471  void *IP = 0;
4472  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4473    cast<StoreSDNode>(E)->refineAlignment(MMO);
4474    return SDValue(E, 0);
4475  }
4476  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4477                                              true, SVT, MMO);
4478  CSEMap.InsertNode(N, IP);
4479  AllNodes.push_back(N);
4480  return SDValue(N, 0);
4481}
4482
4483SDValue
4484SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4485                              SDValue Offset, ISD::MemIndexedMode AM) {
4486  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4487  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4488         "Store is already a indexed store!");
4489  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4490  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4491  FoldingSetNodeID ID;
4492  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4493  ID.AddInteger(ST->getMemoryVT().getRawBits());
4494  ID.AddInteger(ST->getRawSubclassData());
4495  ID.AddInteger(ST->getPointerInfo().getAddrSpace());
4496  void *IP = 0;
4497  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4498    return SDValue(E, 0);
4499
4500  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4501                                              ST->isTruncatingStore(),
4502                                              ST->getMemoryVT(),
4503                                              ST->getMemOperand());
4504  CSEMap.InsertNode(N, IP);
4505  AllNodes.push_back(N);
4506  return SDValue(N, 0);
4507}
4508
4509SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4510                               SDValue Chain, SDValue Ptr,
4511                               SDValue SV,
4512                               unsigned Align) {
4513  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4514  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4515}
4516
4517SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4518                              const SDUse *Ops, unsigned NumOps) {
4519  switch (NumOps) {
4520  case 0: return getNode(Opcode, DL, VT);
4521  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4522  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4523  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4524  default: break;
4525  }
4526
4527  // Copy from an SDUse array into an SDValue array for use with
4528  // the regular getNode logic.
4529  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4530  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4531}
4532
4533SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4534                              const SDValue *Ops, unsigned NumOps) {
4535  switch (NumOps) {
4536  case 0: return getNode(Opcode, DL, VT);
4537  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4538  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4539  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4540  default: break;
4541  }
4542
4543  switch (Opcode) {
4544  default: break;
4545  case ISD::SELECT_CC: {
4546    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4547    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4548           "LHS and RHS of condition must have same type!");
4549    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4550           "True and False arms of SelectCC must have same type!");
4551    assert(Ops[2].getValueType() == VT &&
4552           "select_cc node must be of same type as true and false value!");
4553    break;
4554  }
4555  case ISD::BR_CC: {
4556    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4557    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4558           "LHS/RHS of comparison should match types!");
4559    break;
4560  }
4561  }
4562
4563  // Memoize nodes.
4564  SDNode *N;
4565  SDVTList VTs = getVTList(VT);
4566
4567  if (VT != MVT::Glue) {
4568    FoldingSetNodeID ID;
4569    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4570    void *IP = 0;
4571
4572    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4573      return SDValue(E, 0);
4574
4575    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4576    CSEMap.InsertNode(N, IP);
4577  } else {
4578    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4579  }
4580
4581  AllNodes.push_back(N);
4582#ifndef NDEBUG
4583  VerifySDNode(N);
4584#endif
4585  return SDValue(N, 0);
4586}
4587
4588SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4589                              const std::vector<EVT> &ResultTys,
4590                              const SDValue *Ops, unsigned NumOps) {
4591  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4592                 Ops, NumOps);
4593}
4594
4595SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4596                              const EVT *VTs, unsigned NumVTs,
4597                              const SDValue *Ops, unsigned NumOps) {
4598  if (NumVTs == 1)
4599    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4600  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4601}
4602
4603SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4604                              const SDValue *Ops, unsigned NumOps) {
4605  if (VTList.NumVTs == 1)
4606    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4607
4608#if 0
4609  switch (Opcode) {
4610  // FIXME: figure out how to safely handle things like
4611  // int foo(int x) { return 1 << (x & 255); }
4612  // int bar() { return foo(256); }
4613  case ISD::SRA_PARTS:
4614  case ISD::SRL_PARTS:
4615  case ISD::SHL_PARTS:
4616    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4617        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4618      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4619    else if (N3.getOpcode() == ISD::AND)
4620      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4621        // If the and is only masking out bits that cannot effect the shift,
4622        // eliminate the and.
4623        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4624        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4625          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4626      }
4627    break;
4628  }
4629#endif
4630
4631  // Memoize the node unless it returns a flag.
4632  SDNode *N;
4633  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4634    FoldingSetNodeID ID;
4635    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4636    void *IP = 0;
4637    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4638      return SDValue(E, 0);
4639
4640    if (NumOps == 1) {
4641      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4642    } else if (NumOps == 2) {
4643      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4644    } else if (NumOps == 3) {
4645      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4646                                            Ops[2]);
4647    } else {
4648      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4649    }
4650    CSEMap.InsertNode(N, IP);
4651  } else {
4652    if (NumOps == 1) {
4653      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4654    } else if (NumOps == 2) {
4655      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4656    } else if (NumOps == 3) {
4657      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4658                                            Ops[2]);
4659    } else {
4660      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4661    }
4662  }
4663  AllNodes.push_back(N);
4664#ifndef NDEBUG
4665  VerifySDNode(N);
4666#endif
4667  return SDValue(N, 0);
4668}
4669
4670SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4671  return getNode(Opcode, DL, VTList, 0, 0);
4672}
4673
4674SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4675                              SDValue N1) {
4676  SDValue Ops[] = { N1 };
4677  return getNode(Opcode, DL, VTList, Ops, 1);
4678}
4679
4680SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4681                              SDValue N1, SDValue N2) {
4682  SDValue Ops[] = { N1, N2 };
4683  return getNode(Opcode, DL, VTList, Ops, 2);
4684}
4685
4686SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4687                              SDValue N1, SDValue N2, SDValue N3) {
4688  SDValue Ops[] = { N1, N2, N3 };
4689  return getNode(Opcode, DL, VTList, Ops, 3);
4690}
4691
4692SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4693                              SDValue N1, SDValue N2, SDValue N3,
4694                              SDValue N4) {
4695  SDValue Ops[] = { N1, N2, N3, N4 };
4696  return getNode(Opcode, DL, VTList, Ops, 4);
4697}
4698
4699SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4700                              SDValue N1, SDValue N2, SDValue N3,
4701                              SDValue N4, SDValue N5) {
4702  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4703  return getNode(Opcode, DL, VTList, Ops, 5);
4704}
4705
4706SDVTList SelectionDAG::getVTList(EVT VT) {
4707  return makeVTList(SDNode::getValueTypeList(VT), 1);
4708}
4709
4710SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4711  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4712       E = VTList.rend(); I != E; ++I)
4713    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4714      return *I;
4715
4716  EVT *Array = Allocator.Allocate<EVT>(2);
4717  Array[0] = VT1;
4718  Array[1] = VT2;
4719  SDVTList Result = makeVTList(Array, 2);
4720  VTList.push_back(Result);
4721  return Result;
4722}
4723
4724SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4725  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4726       E = VTList.rend(); I != E; ++I)
4727    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4728                          I->VTs[2] == VT3)
4729      return *I;
4730
4731  EVT *Array = Allocator.Allocate<EVT>(3);
4732  Array[0] = VT1;
4733  Array[1] = VT2;
4734  Array[2] = VT3;
4735  SDVTList Result = makeVTList(Array, 3);
4736  VTList.push_back(Result);
4737  return Result;
4738}
4739
4740SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4741  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4742       E = VTList.rend(); I != E; ++I)
4743    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4744                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4745      return *I;
4746
4747  EVT *Array = Allocator.Allocate<EVT>(4);
4748  Array[0] = VT1;
4749  Array[1] = VT2;
4750  Array[2] = VT3;
4751  Array[3] = VT4;
4752  SDVTList Result = makeVTList(Array, 4);
4753  VTList.push_back(Result);
4754  return Result;
4755}
4756
4757SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4758  switch (NumVTs) {
4759    case 0: llvm_unreachable("Cannot have nodes without results!");
4760    case 1: return getVTList(VTs[0]);
4761    case 2: return getVTList(VTs[0], VTs[1]);
4762    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4763    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4764    default: break;
4765  }
4766
4767  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4768       E = VTList.rend(); I != E; ++I) {
4769    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4770      continue;
4771
4772    if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
4773      return *I;
4774  }
4775
4776  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4777  std::copy(VTs, VTs+NumVTs, Array);
4778  SDVTList Result = makeVTList(Array, NumVTs);
4779  VTList.push_back(Result);
4780  return Result;
4781}
4782
4783
4784/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4785/// specified operands.  If the resultant node already exists in the DAG,
4786/// this does not modify the specified node, instead it returns the node that
4787/// already exists.  If the resultant node does not exist in the DAG, the
4788/// input node is returned.  As a degenerate case, if you specify the same
4789/// input operands as the node already has, the input node is returned.
4790SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4791  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4792
4793  // Check to see if there is no change.
4794  if (Op == N->getOperand(0)) return N;
4795
4796  // See if the modified node already exists.
4797  void *InsertPos = 0;
4798  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4799    return Existing;
4800
4801  // Nope it doesn't.  Remove the node from its current place in the maps.
4802  if (InsertPos)
4803    if (!RemoveNodeFromCSEMaps(N))
4804      InsertPos = 0;
4805
4806  // Now we update the operands.
4807  N->OperandList[0].set(Op);
4808
4809  // If this gets put into a CSE map, add it.
4810  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4811  return N;
4812}
4813
4814SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4815  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4816
4817  // Check to see if there is no change.
4818  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4819    return N;   // No operands changed, just return the input node.
4820
4821  // See if the modified node already exists.
4822  void *InsertPos = 0;
4823  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4824    return Existing;
4825
4826  // Nope it doesn't.  Remove the node from its current place in the maps.
4827  if (InsertPos)
4828    if (!RemoveNodeFromCSEMaps(N))
4829      InsertPos = 0;
4830
4831  // Now we update the operands.
4832  if (N->OperandList[0] != Op1)
4833    N->OperandList[0].set(Op1);
4834  if (N->OperandList[1] != Op2)
4835    N->OperandList[1].set(Op2);
4836
4837  // If this gets put into a CSE map, add it.
4838  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4839  return N;
4840}
4841
4842SDNode *SelectionDAG::
4843UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4844  SDValue Ops[] = { Op1, Op2, Op3 };
4845  return UpdateNodeOperands(N, Ops, 3);
4846}
4847
4848SDNode *SelectionDAG::
4849UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4850                   SDValue Op3, SDValue Op4) {
4851  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4852  return UpdateNodeOperands(N, Ops, 4);
4853}
4854
4855SDNode *SelectionDAG::
4856UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4857                   SDValue Op3, SDValue Op4, SDValue Op5) {
4858  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4859  return UpdateNodeOperands(N, Ops, 5);
4860}
4861
4862SDNode *SelectionDAG::
4863UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4864  assert(N->getNumOperands() == NumOps &&
4865         "Update with wrong number of operands");
4866
4867  // Check to see if there is no change.
4868  bool AnyChange = false;
4869  for (unsigned i = 0; i != NumOps; ++i) {
4870    if (Ops[i] != N->getOperand(i)) {
4871      AnyChange = true;
4872      break;
4873    }
4874  }
4875
4876  // No operands changed, just return the input node.
4877  if (!AnyChange) return N;
4878
4879  // See if the modified node already exists.
4880  void *InsertPos = 0;
4881  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4882    return Existing;
4883
4884  // Nope it doesn't.  Remove the node from its current place in the maps.
4885  if (InsertPos)
4886    if (!RemoveNodeFromCSEMaps(N))
4887      InsertPos = 0;
4888
4889  // Now we update the operands.
4890  for (unsigned i = 0; i != NumOps; ++i)
4891    if (N->OperandList[i] != Ops[i])
4892      N->OperandList[i].set(Ops[i]);
4893
4894  // If this gets put into a CSE map, add it.
4895  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4896  return N;
4897}
4898
4899/// DropOperands - Release the operands and set this node to have
4900/// zero operands.
4901void SDNode::DropOperands() {
4902  // Unlike the code in MorphNodeTo that does this, we don't need to
4903  // watch for dead nodes here.
4904  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4905    SDUse &Use = *I++;
4906    Use.set(SDValue());
4907  }
4908}
4909
4910/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4911/// machine opcode.
4912///
4913SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4914                                   EVT VT) {
4915  SDVTList VTs = getVTList(VT);
4916  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4917}
4918
4919SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4920                                   EVT VT, SDValue Op1) {
4921  SDVTList VTs = getVTList(VT);
4922  SDValue Ops[] = { Op1 };
4923  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4924}
4925
4926SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4927                                   EVT VT, SDValue Op1,
4928                                   SDValue Op2) {
4929  SDVTList VTs = getVTList(VT);
4930  SDValue Ops[] = { Op1, Op2 };
4931  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4932}
4933
4934SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4935                                   EVT VT, SDValue Op1,
4936                                   SDValue Op2, SDValue Op3) {
4937  SDVTList VTs = getVTList(VT);
4938  SDValue Ops[] = { Op1, Op2, Op3 };
4939  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4940}
4941
4942SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4943                                   EVT VT, const SDValue *Ops,
4944                                   unsigned NumOps) {
4945  SDVTList VTs = getVTList(VT);
4946  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4947}
4948
4949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4950                                   EVT VT1, EVT VT2, const SDValue *Ops,
4951                                   unsigned NumOps) {
4952  SDVTList VTs = getVTList(VT1, VT2);
4953  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4954}
4955
4956SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4957                                   EVT VT1, EVT VT2) {
4958  SDVTList VTs = getVTList(VT1, VT2);
4959  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4960}
4961
4962SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4963                                   EVT VT1, EVT VT2, EVT VT3,
4964                                   const SDValue *Ops, unsigned NumOps) {
4965  SDVTList VTs = getVTList(VT1, VT2, VT3);
4966  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4967}
4968
4969SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4970                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4971                                   const SDValue *Ops, unsigned NumOps) {
4972  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4973  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4974}
4975
4976SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4977                                   EVT VT1, EVT VT2,
4978                                   SDValue Op1) {
4979  SDVTList VTs = getVTList(VT1, VT2);
4980  SDValue Ops[] = { Op1 };
4981  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4982}
4983
4984SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4985                                   EVT VT1, EVT VT2,
4986                                   SDValue Op1, SDValue Op2) {
4987  SDVTList VTs = getVTList(VT1, VT2);
4988  SDValue Ops[] = { Op1, Op2 };
4989  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4990}
4991
4992SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4993                                   EVT VT1, EVT VT2,
4994                                   SDValue Op1, SDValue Op2,
4995                                   SDValue Op3) {
4996  SDVTList VTs = getVTList(VT1, VT2);
4997  SDValue Ops[] = { Op1, Op2, Op3 };
4998  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4999}
5000
5001SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5002                                   EVT VT1, EVT VT2, EVT VT3,
5003                                   SDValue Op1, SDValue Op2,
5004                                   SDValue Op3) {
5005  SDVTList VTs = getVTList(VT1, VT2, VT3);
5006  SDValue Ops[] = { Op1, Op2, Op3 };
5007  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5008}
5009
5010SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5011                                   SDVTList VTs, const SDValue *Ops,
5012                                   unsigned NumOps) {
5013  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
5014  // Reset the NodeID to -1.
5015  N->setNodeId(-1);
5016  return N;
5017}
5018
5019/// UpdadeDebugLocOnMergedSDNode - If the opt level is -O0 then it throws away
5020/// the line number information on the merged node since it is not possible to
5021/// preserve the information that operation is associated with multiple lines.
5022/// This will make the debugger working better at -O0, were there is a higher
5023/// probability having other instructions associated with that line.
5024///
5025SDNode *SelectionDAG::UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc OLoc) {
5026  DebugLoc NLoc = N->getDebugLoc();
5027  if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) && (OLoc != NLoc)) {
5028    N->setDebugLoc(DebugLoc());
5029  }
5030  return N;
5031}
5032
5033/// MorphNodeTo - This *mutates* the specified node to have the specified
5034/// return type, opcode, and operands.
5035///
5036/// Note that MorphNodeTo returns the resultant node.  If there is already a
5037/// node of the specified opcode and operands, it returns that node instead of
5038/// the current one.  Note that the DebugLoc need not be the same.
5039///
5040/// Using MorphNodeTo is faster than creating a new node and swapping it in
5041/// with ReplaceAllUsesWith both because it often avoids allocating a new
5042/// node, and because it doesn't require CSE recalculation for any of
5043/// the node's users.
5044///
5045SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
5046                                  SDVTList VTs, const SDValue *Ops,
5047                                  unsigned NumOps) {
5048  // If an identical node already exists, use it.
5049  void *IP = 0;
5050  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
5051    FoldingSetNodeID ID;
5052    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
5053    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
5054      return UpdadeDebugLocOnMergedSDNode(ON, N->getDebugLoc());
5055  }
5056
5057  if (!RemoveNodeFromCSEMaps(N))
5058    IP = 0;
5059
5060  // Start the morphing.
5061  N->NodeType = Opc;
5062  N->ValueList = VTs.VTs;
5063  N->NumValues = VTs.NumVTs;
5064
5065  // Clear the operands list, updating used nodes to remove this from their
5066  // use list.  Keep track of any operands that become dead as a result.
5067  SmallPtrSet<SDNode*, 16> DeadNodeSet;
5068  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
5069    SDUse &Use = *I++;
5070    SDNode *Used = Use.getNode();
5071    Use.set(SDValue());
5072    if (Used->use_empty())
5073      DeadNodeSet.insert(Used);
5074  }
5075
5076  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
5077    // Initialize the memory references information.
5078    MN->setMemRefs(0, 0);
5079    // If NumOps is larger than the # of operands we can have in a
5080    // MachineSDNode, reallocate the operand list.
5081    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
5082      if (MN->OperandsNeedDelete)
5083        delete[] MN->OperandList;
5084      if (NumOps > array_lengthof(MN->LocalOperands))
5085        // We're creating a final node that will live unmorphed for the
5086        // remainder of the current SelectionDAG iteration, so we can allocate
5087        // the operands directly out of a pool with no recycling metadata.
5088        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5089                         Ops, NumOps);
5090      else
5091        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
5092      MN->OperandsNeedDelete = false;
5093    } else
5094      MN->InitOperands(MN->OperandList, Ops, NumOps);
5095  } else {
5096    // If NumOps is larger than the # of operands we currently have, reallocate
5097    // the operand list.
5098    if (NumOps > N->NumOperands) {
5099      if (N->OperandsNeedDelete)
5100        delete[] N->OperandList;
5101      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
5102      N->OperandsNeedDelete = true;
5103    } else
5104      N->InitOperands(N->OperandList, Ops, NumOps);
5105  }
5106
5107  // Delete any nodes that are still dead after adding the uses for the
5108  // new operands.
5109  if (!DeadNodeSet.empty()) {
5110    SmallVector<SDNode *, 16> DeadNodes;
5111    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
5112         E = DeadNodeSet.end(); I != E; ++I)
5113      if ((*I)->use_empty())
5114        DeadNodes.push_back(*I);
5115    RemoveDeadNodes(DeadNodes);
5116  }
5117
5118  if (IP)
5119    CSEMap.InsertNode(N, IP);   // Memoize the new node.
5120  return N;
5121}
5122
5123
5124/// getMachineNode - These are used for target selectors to create a new node
5125/// with specified return type(s), MachineInstr opcode, and operands.
5126///
5127/// Note that getMachineNode returns the resultant node.  If there is already a
5128/// node of the specified opcode and operands, it returns that node instead of
5129/// the current one.
5130MachineSDNode *
5131SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
5132  SDVTList VTs = getVTList(VT);
5133  return getMachineNode(Opcode, dl, VTs, 0, 0);
5134}
5135
5136MachineSDNode *
5137SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5138  SDVTList VTs = getVTList(VT);
5139  SDValue Ops[] = { Op1 };
5140  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5141}
5142
5143MachineSDNode *
5144SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5145                             SDValue Op1, SDValue Op2) {
5146  SDVTList VTs = getVTList(VT);
5147  SDValue Ops[] = { Op1, Op2 };
5148  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5149}
5150
5151MachineSDNode *
5152SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5153                             SDValue Op1, SDValue Op2, SDValue Op3) {
5154  SDVTList VTs = getVTList(VT);
5155  SDValue Ops[] = { Op1, Op2, Op3 };
5156  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5157}
5158
5159MachineSDNode *
5160SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5161                             const SDValue *Ops, unsigned NumOps) {
5162  SDVTList VTs = getVTList(VT);
5163  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5164}
5165
5166MachineSDNode *
5167SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5168  SDVTList VTs = getVTList(VT1, VT2);
5169  return getMachineNode(Opcode, dl, VTs, 0, 0);
5170}
5171
5172MachineSDNode *
5173SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5174                             EVT VT1, EVT VT2, SDValue Op1) {
5175  SDVTList VTs = getVTList(VT1, VT2);
5176  SDValue Ops[] = { Op1 };
5177  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5178}
5179
5180MachineSDNode *
5181SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5182                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5183  SDVTList VTs = getVTList(VT1, VT2);
5184  SDValue Ops[] = { Op1, Op2 };
5185  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5186}
5187
5188MachineSDNode *
5189SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5190                             EVT VT1, EVT VT2, SDValue Op1,
5191                             SDValue Op2, SDValue Op3) {
5192  SDVTList VTs = getVTList(VT1, VT2);
5193  SDValue Ops[] = { Op1, Op2, Op3 };
5194  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5195}
5196
5197MachineSDNode *
5198SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5199                             EVT VT1, EVT VT2,
5200                             const SDValue *Ops, unsigned NumOps) {
5201  SDVTList VTs = getVTList(VT1, VT2);
5202  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5203}
5204
5205MachineSDNode *
5206SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5207                             EVT VT1, EVT VT2, EVT VT3,
5208                             SDValue Op1, SDValue Op2) {
5209  SDVTList VTs = getVTList(VT1, VT2, VT3);
5210  SDValue Ops[] = { Op1, Op2 };
5211  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5212}
5213
5214MachineSDNode *
5215SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5216                             EVT VT1, EVT VT2, EVT VT3,
5217                             SDValue Op1, SDValue Op2, SDValue Op3) {
5218  SDVTList VTs = getVTList(VT1, VT2, VT3);
5219  SDValue Ops[] = { Op1, Op2, Op3 };
5220  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5221}
5222
5223MachineSDNode *
5224SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5225                             EVT VT1, EVT VT2, EVT VT3,
5226                             const SDValue *Ops, unsigned NumOps) {
5227  SDVTList VTs = getVTList(VT1, VT2, VT3);
5228  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5229}
5230
5231MachineSDNode *
5232SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5233                             EVT VT2, EVT VT3, EVT VT4,
5234                             const SDValue *Ops, unsigned NumOps) {
5235  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5236  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5237}
5238
5239MachineSDNode *
5240SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5241                             const std::vector<EVT> &ResultTys,
5242                             const SDValue *Ops, unsigned NumOps) {
5243  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5244  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5245}
5246
5247MachineSDNode *
5248SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5249                             const SDValue *Ops, unsigned NumOps) {
5250  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5251  MachineSDNode *N;
5252  void *IP = 0;
5253
5254  if (DoCSE) {
5255    FoldingSetNodeID ID;
5256    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5257    IP = 0;
5258    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
5259      return cast<MachineSDNode>(UpdadeDebugLocOnMergedSDNode(E, DL));
5260    }
5261  }
5262
5263  // Allocate a new MachineSDNode.
5264  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5265
5266  // Initialize the operands list.
5267  if (NumOps > array_lengthof(N->LocalOperands))
5268    // We're creating a final node that will live unmorphed for the
5269    // remainder of the current SelectionDAG iteration, so we can allocate
5270    // the operands directly out of a pool with no recycling metadata.
5271    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5272                    Ops, NumOps);
5273  else
5274    N->InitOperands(N->LocalOperands, Ops, NumOps);
5275  N->OperandsNeedDelete = false;
5276
5277  if (DoCSE)
5278    CSEMap.InsertNode(N, IP);
5279
5280  AllNodes.push_back(N);
5281#ifndef NDEBUG
5282  VerifyMachineNode(N);
5283#endif
5284  return N;
5285}
5286
5287/// getTargetExtractSubreg - A convenience function for creating
5288/// TargetOpcode::EXTRACT_SUBREG nodes.
5289SDValue
5290SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5291                                     SDValue Operand) {
5292  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5293  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5294                                  VT, Operand, SRIdxVal);
5295  return SDValue(Subreg, 0);
5296}
5297
5298/// getTargetInsertSubreg - A convenience function for creating
5299/// TargetOpcode::INSERT_SUBREG nodes.
5300SDValue
5301SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5302                                    SDValue Operand, SDValue Subreg) {
5303  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5304  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5305                                  VT, Operand, Subreg, SRIdxVal);
5306  return SDValue(Result, 0);
5307}
5308
5309/// getNodeIfExists - Get the specified node if it's already available, or
5310/// else return NULL.
5311SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5312                                      const SDValue *Ops, unsigned NumOps) {
5313  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5314    FoldingSetNodeID ID;
5315    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5316    void *IP = 0;
5317    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5318      return E;
5319  }
5320  return NULL;
5321}
5322
5323/// getDbgValue - Creates a SDDbgValue node.
5324///
5325SDDbgValue *
5326SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5327                          DebugLoc DL, unsigned O) {
5328  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5329}
5330
5331SDDbgValue *
5332SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5333                          DebugLoc DL, unsigned O) {
5334  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5335}
5336
5337SDDbgValue *
5338SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5339                          DebugLoc DL, unsigned O) {
5340  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5341}
5342
5343namespace {
5344
5345/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5346/// pointed to by a use iterator is deleted, increment the use iterator
5347/// so that it doesn't dangle.
5348///
5349class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5350  SDNode::use_iterator &UI;
5351  SDNode::use_iterator &UE;
5352
5353  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5354    // Increment the iterator as needed.
5355    while (UI != UE && N == *UI)
5356      ++UI;
5357  }
5358
5359public:
5360  RAUWUpdateListener(SelectionDAG &d,
5361                     SDNode::use_iterator &ui,
5362                     SDNode::use_iterator &ue)
5363    : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
5364};
5365
5366}
5367
5368/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5369/// This can cause recursive merging of nodes in the DAG.
5370///
5371/// This version assumes From has a single result value.
5372///
5373void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
5374  SDNode *From = FromN.getNode();
5375  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5376         "Cannot replace with this method!");
5377  assert(From != To.getNode() && "Cannot replace uses of with self");
5378
5379  // Iterate over all the existing uses of From. New uses will be added
5380  // to the beginning of the use list, which we avoid visiting.
5381  // This specifically avoids visiting uses of From that arise while the
5382  // replacement is happening, because any such uses would be the result
5383  // of CSE: If an existing node looks like From after one of its operands
5384  // is replaced by To, we don't want to replace of all its users with To
5385  // too. See PR3018 for more info.
5386  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5387  RAUWUpdateListener Listener(*this, UI, UE);
5388  while (UI != UE) {
5389    SDNode *User = *UI;
5390
5391    // This node is about to morph, remove its old self from the CSE maps.
5392    RemoveNodeFromCSEMaps(User);
5393
5394    // A user can appear in a use list multiple times, and when this
5395    // happens the uses are usually next to each other in the list.
5396    // To help reduce the number of CSE recomputations, process all
5397    // the uses of this user that we can find this way.
5398    do {
5399      SDUse &Use = UI.getUse();
5400      ++UI;
5401      Use.set(To);
5402    } while (UI != UE && *UI == User);
5403
5404    // Now that we have modified User, add it back to the CSE maps.  If it
5405    // already exists there, recursively merge the results together.
5406    AddModifiedNodeToCSEMaps(User);
5407  }
5408
5409  // If we just RAUW'd the root, take note.
5410  if (FromN == getRoot())
5411    setRoot(To);
5412}
5413
5414/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5415/// This can cause recursive merging of nodes in the DAG.
5416///
5417/// This version assumes that for each value of From, there is a
5418/// corresponding value in To in the same position with the same type.
5419///
5420void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
5421#ifndef NDEBUG
5422  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5423    assert((!From->hasAnyUseOfValue(i) ||
5424            From->getValueType(i) == To->getValueType(i)) &&
5425           "Cannot use this version of ReplaceAllUsesWith!");
5426#endif
5427
5428  // Handle the trivial case.
5429  if (From == To)
5430    return;
5431
5432  // Iterate over just the existing users of From. See the comments in
5433  // the ReplaceAllUsesWith above.
5434  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5435  RAUWUpdateListener Listener(*this, UI, UE);
5436  while (UI != UE) {
5437    SDNode *User = *UI;
5438
5439    // This node is about to morph, remove its old self from the CSE maps.
5440    RemoveNodeFromCSEMaps(User);
5441
5442    // A user can appear in a use list multiple times, and when this
5443    // happens the uses are usually next to each other in the list.
5444    // To help reduce the number of CSE recomputations, process all
5445    // the uses of this user that we can find this way.
5446    do {
5447      SDUse &Use = UI.getUse();
5448      ++UI;
5449      Use.setNode(To);
5450    } while (UI != UE && *UI == User);
5451
5452    // Now that we have modified User, add it back to the CSE maps.  If it
5453    // already exists there, recursively merge the results together.
5454    AddModifiedNodeToCSEMaps(User);
5455  }
5456
5457  // If we just RAUW'd the root, take note.
5458  if (From == getRoot().getNode())
5459    setRoot(SDValue(To, getRoot().getResNo()));
5460}
5461
5462/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5463/// This can cause recursive merging of nodes in the DAG.
5464///
5465/// This version can replace From with any result values.  To must match the
5466/// number and types of values returned by From.
5467void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
5468  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5469    return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
5470
5471  // Iterate over just the existing users of From. See the comments in
5472  // the ReplaceAllUsesWith above.
5473  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5474  RAUWUpdateListener Listener(*this, UI, UE);
5475  while (UI != UE) {
5476    SDNode *User = *UI;
5477
5478    // This node is about to morph, remove its old self from the CSE maps.
5479    RemoveNodeFromCSEMaps(User);
5480
5481    // A user can appear in a use list multiple times, and when this
5482    // happens the uses are usually next to each other in the list.
5483    // To help reduce the number of CSE recomputations, process all
5484    // the uses of this user that we can find this way.
5485    do {
5486      SDUse &Use = UI.getUse();
5487      const SDValue &ToOp = To[Use.getResNo()];
5488      ++UI;
5489      Use.set(ToOp);
5490    } while (UI != UE && *UI == User);
5491
5492    // Now that we have modified User, add it back to the CSE maps.  If it
5493    // already exists there, recursively merge the results together.
5494    AddModifiedNodeToCSEMaps(User);
5495  }
5496
5497  // If we just RAUW'd the root, take note.
5498  if (From == getRoot().getNode())
5499    setRoot(SDValue(To[getRoot().getResNo()]));
5500}
5501
5502/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5503/// uses of other values produced by From.getNode() alone.  The Deleted
5504/// vector is handled the same way as for ReplaceAllUsesWith.
5505void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
5506  // Handle the really simple, really trivial case efficiently.
5507  if (From == To) return;
5508
5509  // Handle the simple, trivial, case efficiently.
5510  if (From.getNode()->getNumValues() == 1) {
5511    ReplaceAllUsesWith(From, To);
5512    return;
5513  }
5514
5515  // Iterate over just the existing users of From. See the comments in
5516  // the ReplaceAllUsesWith above.
5517  SDNode::use_iterator UI = From.getNode()->use_begin(),
5518                       UE = From.getNode()->use_end();
5519  RAUWUpdateListener Listener(*this, UI, UE);
5520  while (UI != UE) {
5521    SDNode *User = *UI;
5522    bool UserRemovedFromCSEMaps = false;
5523
5524    // A user can appear in a use list multiple times, and when this
5525    // happens the uses are usually next to each other in the list.
5526    // To help reduce the number of CSE recomputations, process all
5527    // the uses of this user that we can find this way.
5528    do {
5529      SDUse &Use = UI.getUse();
5530
5531      // Skip uses of different values from the same node.
5532      if (Use.getResNo() != From.getResNo()) {
5533        ++UI;
5534        continue;
5535      }
5536
5537      // If this node hasn't been modified yet, it's still in the CSE maps,
5538      // so remove its old self from the CSE maps.
5539      if (!UserRemovedFromCSEMaps) {
5540        RemoveNodeFromCSEMaps(User);
5541        UserRemovedFromCSEMaps = true;
5542      }
5543
5544      ++UI;
5545      Use.set(To);
5546    } while (UI != UE && *UI == User);
5547
5548    // We are iterating over all uses of the From node, so if a use
5549    // doesn't use the specific value, no changes are made.
5550    if (!UserRemovedFromCSEMaps)
5551      continue;
5552
5553    // Now that we have modified User, add it back to the CSE maps.  If it
5554    // already exists there, recursively merge the results together.
5555    AddModifiedNodeToCSEMaps(User);
5556  }
5557
5558  // If we just RAUW'd the root, take note.
5559  if (From == getRoot())
5560    setRoot(To);
5561}
5562
5563namespace {
5564  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5565  /// to record information about a use.
5566  struct UseMemo {
5567    SDNode *User;
5568    unsigned Index;
5569    SDUse *Use;
5570  };
5571
5572  /// operator< - Sort Memos by User.
5573  bool operator<(const UseMemo &L, const UseMemo &R) {
5574    return (intptr_t)L.User < (intptr_t)R.User;
5575  }
5576}
5577
5578/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5579/// uses of other values produced by From.getNode() alone.  The same value
5580/// may appear in both the From and To list.  The Deleted vector is
5581/// handled the same way as for ReplaceAllUsesWith.
5582void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5583                                              const SDValue *To,
5584                                              unsigned Num){
5585  // Handle the simple, trivial case efficiently.
5586  if (Num == 1)
5587    return ReplaceAllUsesOfValueWith(*From, *To);
5588
5589  // Read up all the uses and make records of them. This helps
5590  // processing new uses that are introduced during the
5591  // replacement process.
5592  SmallVector<UseMemo, 4> Uses;
5593  for (unsigned i = 0; i != Num; ++i) {
5594    unsigned FromResNo = From[i].getResNo();
5595    SDNode *FromNode = From[i].getNode();
5596    for (SDNode::use_iterator UI = FromNode->use_begin(),
5597         E = FromNode->use_end(); UI != E; ++UI) {
5598      SDUse &Use = UI.getUse();
5599      if (Use.getResNo() == FromResNo) {
5600        UseMemo Memo = { *UI, i, &Use };
5601        Uses.push_back(Memo);
5602      }
5603    }
5604  }
5605
5606  // Sort the uses, so that all the uses from a given User are together.
5607  std::sort(Uses.begin(), Uses.end());
5608
5609  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5610       UseIndex != UseIndexEnd; ) {
5611    // We know that this user uses some value of From.  If it is the right
5612    // value, update it.
5613    SDNode *User = Uses[UseIndex].User;
5614
5615    // This node is about to morph, remove its old self from the CSE maps.
5616    RemoveNodeFromCSEMaps(User);
5617
5618    // The Uses array is sorted, so all the uses for a given User
5619    // are next to each other in the list.
5620    // To help reduce the number of CSE recomputations, process all
5621    // the uses of this user that we can find this way.
5622    do {
5623      unsigned i = Uses[UseIndex].Index;
5624      SDUse &Use = *Uses[UseIndex].Use;
5625      ++UseIndex;
5626
5627      Use.set(To[i]);
5628    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5629
5630    // Now that we have modified User, add it back to the CSE maps.  If it
5631    // already exists there, recursively merge the results together.
5632    AddModifiedNodeToCSEMaps(User);
5633  }
5634}
5635
5636/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5637/// based on their topological order. It returns the maximum id and a vector
5638/// of the SDNodes* in assigned order by reference.
5639unsigned SelectionDAG::AssignTopologicalOrder() {
5640
5641  unsigned DAGSize = 0;
5642
5643  // SortedPos tracks the progress of the algorithm. Nodes before it are
5644  // sorted, nodes after it are unsorted. When the algorithm completes
5645  // it is at the end of the list.
5646  allnodes_iterator SortedPos = allnodes_begin();
5647
5648  // Visit all the nodes. Move nodes with no operands to the front of
5649  // the list immediately. Annotate nodes that do have operands with their
5650  // operand count. Before we do this, the Node Id fields of the nodes
5651  // may contain arbitrary values. After, the Node Id fields for nodes
5652  // before SortedPos will contain the topological sort index, and the
5653  // Node Id fields for nodes At SortedPos and after will contain the
5654  // count of outstanding operands.
5655  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5656    SDNode *N = I++;
5657    checkForCycles(N);
5658    unsigned Degree = N->getNumOperands();
5659    if (Degree == 0) {
5660      // A node with no uses, add it to the result array immediately.
5661      N->setNodeId(DAGSize++);
5662      allnodes_iterator Q = N;
5663      if (Q != SortedPos)
5664        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5665      assert(SortedPos != AllNodes.end() && "Overran node list");
5666      ++SortedPos;
5667    } else {
5668      // Temporarily use the Node Id as scratch space for the degree count.
5669      N->setNodeId(Degree);
5670    }
5671  }
5672
5673  // Visit all the nodes. As we iterate, move nodes into sorted order,
5674  // such that by the time the end is reached all nodes will be sorted.
5675  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5676    SDNode *N = I;
5677    checkForCycles(N);
5678    // N is in sorted position, so all its uses have one less operand
5679    // that needs to be sorted.
5680    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5681         UI != UE; ++UI) {
5682      SDNode *P = *UI;
5683      unsigned Degree = P->getNodeId();
5684      assert(Degree != 0 && "Invalid node degree");
5685      --Degree;
5686      if (Degree == 0) {
5687        // All of P's operands are sorted, so P may sorted now.
5688        P->setNodeId(DAGSize++);
5689        if (P != SortedPos)
5690          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5691        assert(SortedPos != AllNodes.end() && "Overran node list");
5692        ++SortedPos;
5693      } else {
5694        // Update P's outstanding operand count.
5695        P->setNodeId(Degree);
5696      }
5697    }
5698    if (I == SortedPos) {
5699#ifndef NDEBUG
5700      SDNode *S = ++I;
5701      dbgs() << "Overran sorted position:\n";
5702      S->dumprFull();
5703#endif
5704      llvm_unreachable(0);
5705    }
5706  }
5707
5708  assert(SortedPos == AllNodes.end() &&
5709         "Topological sort incomplete!");
5710  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5711         "First node in topological sort is not the entry token!");
5712  assert(AllNodes.front().getNodeId() == 0 &&
5713         "First node in topological sort has non-zero id!");
5714  assert(AllNodes.front().getNumOperands() == 0 &&
5715         "First node in topological sort has operands!");
5716  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5717         "Last node in topologic sort has unexpected id!");
5718  assert(AllNodes.back().use_empty() &&
5719         "Last node in topologic sort has users!");
5720  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5721  return DAGSize;
5722}
5723
5724/// AssignOrdering - Assign an order to the SDNode.
5725void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5726  assert(SD && "Trying to assign an order to a null node!");
5727  Ordering->add(SD, Order);
5728}
5729
5730/// GetOrdering - Get the order for the SDNode.
5731unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5732  assert(SD && "Trying to get the order of a null node!");
5733  return Ordering->getOrder(SD);
5734}
5735
5736/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5737/// value is produced by SD.
5738void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5739  DbgInfo->add(DB, SD, isParameter);
5740  if (SD)
5741    SD->setHasDebugValue(true);
5742}
5743
5744/// TransferDbgValues - Transfer SDDbgValues.
5745void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5746  if (From == To || !From.getNode()->getHasDebugValue())
5747    return;
5748  SDNode *FromNode = From.getNode();
5749  SDNode *ToNode = To.getNode();
5750  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5751  SmallVector<SDDbgValue *, 2> ClonedDVs;
5752  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5753       I != E; ++I) {
5754    SDDbgValue *Dbg = *I;
5755    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5756      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5757                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5758                                      Dbg->getOrder());
5759      ClonedDVs.push_back(Clone);
5760    }
5761  }
5762  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5763         E = ClonedDVs.end(); I != E; ++I)
5764    AddDbgValue(*I, ToNode, false);
5765}
5766
5767//===----------------------------------------------------------------------===//
5768//                              SDNode Class
5769//===----------------------------------------------------------------------===//
5770
5771HandleSDNode::~HandleSDNode() {
5772  DropOperands();
5773}
5774
5775GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5776                                         const GlobalValue *GA,
5777                                         EVT VT, int64_t o, unsigned char TF)
5778  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5779  TheGlobal = GA;
5780}
5781
5782MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5783                     MachineMemOperand *mmo)
5784 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5785  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5786                                      MMO->isNonTemporal(), MMO->isInvariant());
5787  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5788  assert(isNonTemporal() == MMO->isNonTemporal() &&
5789         "Non-temporal encoding error!");
5790  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5791}
5792
5793MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5794                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5795                     MachineMemOperand *mmo)
5796   : SDNode(Opc, dl, VTs, Ops, NumOps),
5797     MemoryVT(memvt), MMO(mmo) {
5798  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5799                                      MMO->isNonTemporal(), MMO->isInvariant());
5800  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5801  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5802}
5803
5804/// Profile - Gather unique data for the node.
5805///
5806void SDNode::Profile(FoldingSetNodeID &ID) const {
5807  AddNodeIDNode(ID, this);
5808}
5809
5810namespace {
5811  struct EVTArray {
5812    std::vector<EVT> VTs;
5813
5814    EVTArray() {
5815      VTs.reserve(MVT::LAST_VALUETYPE);
5816      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5817        VTs.push_back(MVT((MVT::SimpleValueType)i));
5818    }
5819  };
5820}
5821
5822static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5823static ManagedStatic<EVTArray> SimpleVTArray;
5824static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5825
5826/// getValueTypeList - Return a pointer to the specified value type.
5827///
5828const EVT *SDNode::getValueTypeList(EVT VT) {
5829  if (VT.isExtended()) {
5830    sys::SmartScopedLock<true> Lock(*VTMutex);
5831    return &(*EVTs->insert(VT).first);
5832  } else {
5833    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5834           "Value type out of range!");
5835    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5836  }
5837}
5838
5839/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5840/// indicated value.  This method ignores uses of other values defined by this
5841/// operation.
5842bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5843  assert(Value < getNumValues() && "Bad value!");
5844
5845  // TODO: Only iterate over uses of a given value of the node
5846  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5847    if (UI.getUse().getResNo() == Value) {
5848      if (NUses == 0)
5849        return false;
5850      --NUses;
5851    }
5852  }
5853
5854  // Found exactly the right number of uses?
5855  return NUses == 0;
5856}
5857
5858
5859/// hasAnyUseOfValue - Return true if there are any use of the indicated
5860/// value. This method ignores uses of other values defined by this operation.
5861bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5862  assert(Value < getNumValues() && "Bad value!");
5863
5864  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5865    if (UI.getUse().getResNo() == Value)
5866      return true;
5867
5868  return false;
5869}
5870
5871
5872/// isOnlyUserOf - Return true if this node is the only use of N.
5873///
5874bool SDNode::isOnlyUserOf(SDNode *N) const {
5875  bool Seen = false;
5876  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5877    SDNode *User = *I;
5878    if (User == this)
5879      Seen = true;
5880    else
5881      return false;
5882  }
5883
5884  return Seen;
5885}
5886
5887/// isOperand - Return true if this node is an operand of N.
5888///
5889bool SDValue::isOperandOf(SDNode *N) const {
5890  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5891    if (*this == N->getOperand(i))
5892      return true;
5893  return false;
5894}
5895
5896bool SDNode::isOperandOf(SDNode *N) const {
5897  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5898    if (this == N->OperandList[i].getNode())
5899      return true;
5900  return false;
5901}
5902
5903/// reachesChainWithoutSideEffects - Return true if this operand (which must
5904/// be a chain) reaches the specified operand without crossing any
5905/// side-effecting instructions on any chain path.  In practice, this looks
5906/// through token factors and non-volatile loads.  In order to remain efficient,
5907/// this only looks a couple of nodes in, it does not do an exhaustive search.
5908bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5909                                               unsigned Depth) const {
5910  if (*this == Dest) return true;
5911
5912  // Don't search too deeply, we just want to be able to see through
5913  // TokenFactor's etc.
5914  if (Depth == 0) return false;
5915
5916  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5917  // of the operands of the TF does not reach dest, then we cannot do the xform.
5918  if (getOpcode() == ISD::TokenFactor) {
5919    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5920      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5921        return false;
5922    return true;
5923  }
5924
5925  // Loads don't have side effects, look through them.
5926  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5927    if (!Ld->isVolatile())
5928      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5929  }
5930  return false;
5931}
5932
5933/// hasPredecessor - Return true if N is a predecessor of this node.
5934/// N is either an operand of this node, or can be reached by recursively
5935/// traversing up the operands.
5936/// NOTE: This is an expensive method. Use it carefully.
5937bool SDNode::hasPredecessor(const SDNode *N) const {
5938  SmallPtrSet<const SDNode *, 32> Visited;
5939  SmallVector<const SDNode *, 16> Worklist;
5940  return hasPredecessorHelper(N, Visited, Worklist);
5941}
5942
5943bool SDNode::hasPredecessorHelper(const SDNode *N,
5944                                  SmallPtrSet<const SDNode *, 32> &Visited,
5945                                  SmallVector<const SDNode *, 16> &Worklist) const {
5946  if (Visited.empty()) {
5947    Worklist.push_back(this);
5948  } else {
5949    // Take a look in the visited set. If we've already encountered this node
5950    // we needn't search further.
5951    if (Visited.count(N))
5952      return true;
5953  }
5954
5955  // Haven't visited N yet. Continue the search.
5956  while (!Worklist.empty()) {
5957    const SDNode *M = Worklist.pop_back_val();
5958    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5959      SDNode *Op = M->getOperand(i).getNode();
5960      if (Visited.insert(Op))
5961        Worklist.push_back(Op);
5962      if (Op == N)
5963        return true;
5964    }
5965  }
5966
5967  return false;
5968}
5969
5970uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5971  assert(Num < NumOperands && "Invalid child # of SDNode!");
5972  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5973}
5974
5975SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5976  assert(N->getNumValues() == 1 &&
5977         "Can't unroll a vector with multiple results!");
5978
5979  EVT VT = N->getValueType(0);
5980  unsigned NE = VT.getVectorNumElements();
5981  EVT EltVT = VT.getVectorElementType();
5982  DebugLoc dl = N->getDebugLoc();
5983
5984  SmallVector<SDValue, 8> Scalars;
5985  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5986
5987  // If ResNE is 0, fully unroll the vector op.
5988  if (ResNE == 0)
5989    ResNE = NE;
5990  else if (NE > ResNE)
5991    NE = ResNE;
5992
5993  unsigned i;
5994  for (i= 0; i != NE; ++i) {
5995    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
5996      SDValue Operand = N->getOperand(j);
5997      EVT OperandVT = Operand.getValueType();
5998      if (OperandVT.isVector()) {
5999        // A vector operand; extract a single element.
6000        EVT OperandEltVT = OperandVT.getVectorElementType();
6001        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6002                              OperandEltVT,
6003                              Operand,
6004                              getConstant(i, TLI.getPointerTy()));
6005      } else {
6006        // A scalar operand; just use it as is.
6007        Operands[j] = Operand;
6008      }
6009    }
6010
6011    switch (N->getOpcode()) {
6012    default:
6013      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6014                                &Operands[0], Operands.size()));
6015      break;
6016    case ISD::VSELECT:
6017      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6018                                &Operands[0], Operands.size()));
6019      break;
6020    case ISD::SHL:
6021    case ISD::SRA:
6022    case ISD::SRL:
6023    case ISD::ROTL:
6024    case ISD::ROTR:
6025      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6026                                getShiftAmountOperand(Operands[0].getValueType(),
6027                                                      Operands[1])));
6028      break;
6029    case ISD::SIGN_EXTEND_INREG:
6030    case ISD::FP_ROUND_INREG: {
6031      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6032      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6033                                Operands[0],
6034                                getValueType(ExtVT)));
6035    }
6036    }
6037  }
6038
6039  for (; i < ResNE; ++i)
6040    Scalars.push_back(getUNDEF(EltVT));
6041
6042  return getNode(ISD::BUILD_VECTOR, dl,
6043                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6044                 &Scalars[0], Scalars.size());
6045}
6046
6047
6048/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6049/// location that is 'Dist' units away from the location that the 'Base' load
6050/// is loading from.
6051bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6052                                     unsigned Bytes, int Dist) const {
6053  if (LD->getChain() != Base->getChain())
6054    return false;
6055  EVT VT = LD->getValueType(0);
6056  if (VT.getSizeInBits() / 8 != Bytes)
6057    return false;
6058
6059  SDValue Loc = LD->getOperand(1);
6060  SDValue BaseLoc = Base->getOperand(1);
6061  if (Loc.getOpcode() == ISD::FrameIndex) {
6062    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6063      return false;
6064    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6065    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6066    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6067    int FS  = MFI->getObjectSize(FI);
6068    int BFS = MFI->getObjectSize(BFI);
6069    if (FS != BFS || FS != (int)Bytes) return false;
6070    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6071  }
6072
6073  // Handle X+C
6074  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6075      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6076    return true;
6077
6078  const GlobalValue *GV1 = NULL;
6079  const GlobalValue *GV2 = NULL;
6080  int64_t Offset1 = 0;
6081  int64_t Offset2 = 0;
6082  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6083  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6084  if (isGA1 && isGA2 && GV1 == GV2)
6085    return Offset1 == (Offset2 + Dist*Bytes);
6086  return false;
6087}
6088
6089
6090/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6091/// it cannot be inferred.
6092unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6093  // If this is a GlobalAddress + cst, return the alignment.
6094  const GlobalValue *GV;
6095  int64_t GVOffset = 0;
6096  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6097    unsigned PtrWidth = TLI.getPointerTy().getSizeInBits();
6098    APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
6099    llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
6100                            TLI.getDataLayout());
6101    unsigned AlignBits = KnownZero.countTrailingOnes();
6102    unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
6103    if (Align)
6104      return MinAlign(Align, GVOffset);
6105  }
6106
6107  // If this is a direct reference to a stack slot, use information about the
6108  // stack slot's alignment.
6109  int FrameIdx = 1 << 31;
6110  int64_t FrameOffset = 0;
6111  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6112    FrameIdx = FI->getIndex();
6113  } else if (isBaseWithConstantOffset(Ptr) &&
6114             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6115    // Handle FI+Cst
6116    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6117    FrameOffset = Ptr.getConstantOperandVal(1);
6118  }
6119
6120  if (FrameIdx != (1 << 31)) {
6121    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6122    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6123                                    FrameOffset);
6124    return FIInfoAlign;
6125  }
6126
6127  return 0;
6128}
6129
6130// getAddressSpace - Return the address space this GlobalAddress belongs to.
6131unsigned GlobalAddressSDNode::getAddressSpace() const {
6132  return getGlobal()->getType()->getAddressSpace();
6133}
6134
6135
6136Type *ConstantPoolSDNode::getType() const {
6137  if (isMachineConstantPoolEntry())
6138    return Val.MachineCPVal->getType();
6139  return Val.ConstVal->getType();
6140}
6141
6142bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6143                                        APInt &SplatUndef,
6144                                        unsigned &SplatBitSize,
6145                                        bool &HasAnyUndefs,
6146                                        unsigned MinSplatBits,
6147                                        bool isBigEndian) {
6148  EVT VT = getValueType(0);
6149  assert(VT.isVector() && "Expected a vector type");
6150  unsigned sz = VT.getSizeInBits();
6151  if (MinSplatBits > sz)
6152    return false;
6153
6154  SplatValue = APInt(sz, 0);
6155  SplatUndef = APInt(sz, 0);
6156
6157  // Get the bits.  Bits with undefined values (when the corresponding element
6158  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6159  // in SplatValue.  If any of the values are not constant, give up and return
6160  // false.
6161  unsigned int nOps = getNumOperands();
6162  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6163  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6164
6165  for (unsigned j = 0; j < nOps; ++j) {
6166    unsigned i = isBigEndian ? nOps-1-j : j;
6167    SDValue OpVal = getOperand(i);
6168    unsigned BitPos = j * EltBitSize;
6169
6170    if (OpVal.getOpcode() == ISD::UNDEF)
6171      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6172    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6173      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6174                    zextOrTrunc(sz) << BitPos;
6175    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6176      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6177     else
6178      return false;
6179  }
6180
6181  // The build_vector is all constants or undefs.  Find the smallest element
6182  // size that splats the vector.
6183
6184  HasAnyUndefs = (SplatUndef != 0);
6185  while (sz > 8) {
6186
6187    unsigned HalfSize = sz / 2;
6188    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6189    APInt LowValue = SplatValue.trunc(HalfSize);
6190    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6191    APInt LowUndef = SplatUndef.trunc(HalfSize);
6192
6193    // If the two halves do not match (ignoring undef bits), stop here.
6194    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6195        MinSplatBits > HalfSize)
6196      break;
6197
6198    SplatValue = HighValue | LowValue;
6199    SplatUndef = HighUndef & LowUndef;
6200
6201    sz = HalfSize;
6202  }
6203
6204  SplatBitSize = sz;
6205  return true;
6206}
6207
6208bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6209  // Find the first non-undef value in the shuffle mask.
6210  unsigned i, e;
6211  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6212    /* search */;
6213
6214  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6215
6216  // Make sure all remaining elements are either undef or the same as the first
6217  // non-undef value.
6218  for (int Idx = Mask[i]; i != e; ++i)
6219    if (Mask[i] >= 0 && Mask[i] != Idx)
6220      return false;
6221  return true;
6222}
6223
6224#ifdef XDEBUG
6225static void checkForCyclesHelper(const SDNode *N,
6226                                 SmallPtrSet<const SDNode*, 32> &Visited,
6227                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6228  // If this node has already been checked, don't check it again.
6229  if (Checked.count(N))
6230    return;
6231
6232  // If a node has already been visited on this depth-first walk, reject it as
6233  // a cycle.
6234  if (!Visited.insert(N)) {
6235    dbgs() << "Offending node:\n";
6236    N->dumprFull();
6237    errs() << "Detected cycle in SelectionDAG\n";
6238    abort();
6239  }
6240
6241  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6242    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6243
6244  Checked.insert(N);
6245  Visited.erase(N);
6246}
6247#endif
6248
6249void llvm::checkForCycles(const llvm::SDNode *N) {
6250#ifdef XDEBUG
6251  assert(N && "Checking nonexistant SDNode");
6252  SmallPtrSet<const SDNode*, 32> visited;
6253  SmallPtrSet<const SDNode*, 32> checked;
6254  checkForCyclesHelper(N, visited, checked);
6255#endif
6256}
6257
6258void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6259  checkForCycles(DAG->getRoot().getNode());
6260}
6261