SelectionDAG.cpp revision 35ef913ec21de0f4f1b39c811b4335438717a9b8
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/StringExtras.h"
25#include <iostream>
26#include <set>
27#include <cmath>
28#include <algorithm>
29using namespace llvm;
30
31static bool isCommutativeBinOp(unsigned Opcode) {
32  switch (Opcode) {
33  case ISD::ADD:
34  case ISD::MUL:
35  case ISD::FADD:
36  case ISD::FMUL:
37  case ISD::AND:
38  case ISD::OR:
39  case ISD::XOR: return true;
40  default: return false; // FIXME: Need commutative info for user ops!
41  }
42}
43
44static bool isAssociativeBinOp(unsigned Opcode) {
45  switch (Opcode) {
46  case ISD::ADD:
47  case ISD::MUL:
48  case ISD::AND:
49  case ISD::OR:
50  case ISD::XOR: return true;
51  default: return false; // FIXME: Need associative info for user ops!
52  }
53}
54
55// isInvertibleForFree - Return true if there is no cost to emitting the logical
56// inverse of this node.
57static bool isInvertibleForFree(SDOperand N) {
58  if (isa<ConstantSDNode>(N.Val)) return true;
59  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
60    return true;
61  return false;
62}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(double V) const {
73  return DoubleToBits(V) == DoubleToBits(Value);
74}
75
76//===----------------------------------------------------------------------===//
77//                              ISD Class
78//===----------------------------------------------------------------------===//
79
80/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
81/// when given the operation for (X op Y).
82ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
83  // To perform this operation, we just need to swap the L and G bits of the
84  // operation.
85  unsigned OldL = (Operation >> 2) & 1;
86  unsigned OldG = (Operation >> 1) & 1;
87  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
88                       (OldL << 1) |       // New G bit
89                       (OldG << 2));        // New L bit.
90}
91
92/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
93/// 'op' is a valid SetCC operation.
94ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
95  unsigned Operation = Op;
96  if (isInteger)
97    Operation ^= 7;   // Flip L, G, E bits, but not U.
98  else
99    Operation ^= 15;  // Flip all of the condition bits.
100  if (Operation > ISD::SETTRUE2)
101    Operation &= ~8;     // Don't let N and U bits get set.
102  return ISD::CondCode(Operation);
103}
104
105
106/// isSignedOp - For an integer comparison, return 1 if the comparison is a
107/// signed operation and 2 if the result is an unsigned comparison.  Return zero
108/// if the operation does not depend on the sign of the input (setne and seteq).
109static int isSignedOp(ISD::CondCode Opcode) {
110  switch (Opcode) {
111  default: assert(0 && "Illegal integer setcc operation!");
112  case ISD::SETEQ:
113  case ISD::SETNE: return 0;
114  case ISD::SETLT:
115  case ISD::SETLE:
116  case ISD::SETGT:
117  case ISD::SETGE: return 1;
118  case ISD::SETULT:
119  case ISD::SETULE:
120  case ISD::SETUGT:
121  case ISD::SETUGE: return 2;
122  }
123}
124
125/// getSetCCOrOperation - Return the result of a logical OR between different
126/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
127/// returns SETCC_INVALID if it is not possible to represent the resultant
128/// comparison.
129ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
130                                       bool isInteger) {
131  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
132    // Cannot fold a signed integer setcc with an unsigned integer setcc.
133    return ISD::SETCC_INVALID;
134
135  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
136
137  // If the N and U bits get set then the resultant comparison DOES suddenly
138  // care about orderedness, and is true when ordered.
139  if (Op > ISD::SETTRUE2)
140    Op &= ~16;     // Clear the N bit.
141  return ISD::CondCode(Op);
142}
143
144/// getSetCCAndOperation - Return the result of a logical AND between different
145/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
146/// function returns zero if it is not possible to represent the resultant
147/// comparison.
148ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
149                                        bool isInteger) {
150  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
151    // Cannot fold a signed setcc with an unsigned setcc.
152    return ISD::SETCC_INVALID;
153
154  // Combine all of the condition bits.
155  return ISD::CondCode(Op1 & Op2);
156}
157
158const TargetMachine &SelectionDAG::getTarget() const {
159  return TLI.getTargetMachine();
160}
161
162//===----------------------------------------------------------------------===//
163//                              SelectionDAG Class
164//===----------------------------------------------------------------------===//
165
166/// RemoveDeadNodes - This method deletes all unreachable nodes in the
167/// SelectionDAG, including nodes (like loads) that have uses of their token
168/// chain but no other uses and no side effect.  If a node is passed in as an
169/// argument, it is used as the seed for node deletion.
170void SelectionDAG::RemoveDeadNodes(SDNode *N) {
171  // Create a dummy node (which is not added to allnodes), that adds a reference
172  // to the root node, preventing it from being deleted.
173  HandleSDNode Dummy(getRoot());
174
175  bool MadeChange = false;
176
177  // If we have a hint to start from, use it.
178  if (N && N->use_empty()) {
179    DestroyDeadNode(N);
180    MadeChange = true;
181  }
182
183  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
184    if (I->use_empty() && I->getOpcode() != 65535) {
185      // Node is dead, recursively delete newly dead uses.
186      DestroyDeadNode(I);
187      MadeChange = true;
188    }
189
190  // Walk the nodes list, removing the nodes we've marked as dead.
191  if (MadeChange) {
192    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
193      SDNode *N = I++;
194      if (N->use_empty())
195        AllNodes.erase(N);
196    }
197  }
198
199  // If the root changed (e.g. it was a dead load, update the root).
200  setRoot(Dummy.getValue());
201}
202
203/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
204/// graph.  If it is the last user of any of its operands, recursively process
205/// them the same way.
206///
207void SelectionDAG::DestroyDeadNode(SDNode *N) {
208  // Okay, we really are going to delete this node.  First take this out of the
209  // appropriate CSE map.
210  RemoveNodeFromCSEMaps(N);
211
212  // Next, brutally remove the operand list.  This is safe to do, as there are
213  // no cycles in the graph.
214  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
215    SDNode *O = I->Val;
216    O->removeUser(N);
217
218    // Now that we removed this operand, see if there are no uses of it left.
219    if (O->use_empty())
220      DestroyDeadNode(O);
221  }
222  delete[] N->OperandList;
223  N->OperandList = 0;
224  N->NumOperands = 0;
225
226  // Mark the node as dead.
227  N->MorphNodeTo(65535);
228}
229
230void SelectionDAG::DeleteNode(SDNode *N) {
231  assert(N->use_empty() && "Cannot delete a node that is not dead!");
232
233  // First take this out of the appropriate CSE map.
234  RemoveNodeFromCSEMaps(N);
235
236  // Finally, remove uses due to operands of this node, remove from the
237  // AllNodes list, and delete the node.
238  DeleteNodeNotInCSEMaps(N);
239}
240
241void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
242
243  // Remove it from the AllNodes list.
244  AllNodes.remove(N);
245
246  // Drop all of the operands and decrement used nodes use counts.
247  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
248    I->Val->removeUser(N);
249  delete[] N->OperandList;
250  N->OperandList = 0;
251  N->NumOperands = 0;
252
253  delete N;
254}
255
256/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
257/// correspond to it.  This is useful when we're about to delete or repurpose
258/// the node.  We don't want future request for structurally identical nodes
259/// to return N anymore.
260void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
261  bool Erased = false;
262  switch (N->getOpcode()) {
263  case ISD::HANDLENODE: return;  // noop.
264  case ISD::Constant:
265    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
266                                            N->getValueType(0)));
267    break;
268  case ISD::TargetConstant:
269    Erased = TargetConstants.erase(std::make_pair(
270                                    cast<ConstantSDNode>(N)->getValue(),
271                                                  N->getValueType(0)));
272    break;
273  case ISD::ConstantFP: {
274    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
275    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
276    break;
277  }
278  case ISD::STRING:
279    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
280    break;
281  case ISD::CONDCODE:
282    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
283           "Cond code doesn't exist!");
284    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
285    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
286    break;
287  case ISD::GlobalAddress: {
288    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
289    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
290                                               GN->getOffset()));
291    break;
292  }
293  case ISD::TargetGlobalAddress: {
294    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
295    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
296                                                    GN->getOffset()));
297    break;
298  }
299  case ISD::FrameIndex:
300    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
301    break;
302  case ISD::TargetFrameIndex:
303    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
304    break;
305  case ISD::ConstantPool:
306    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
307    break;
308  case ISD::TargetConstantPool:
309    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
310    break;
311  case ISD::BasicBlock:
312    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
313    break;
314  case ISD::ExternalSymbol:
315    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
316    break;
317  case ISD::TargetExternalSymbol:
318    Erased = TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
319    break;
320  case ISD::VALUETYPE:
321    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
322    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
323    break;
324  case ISD::Register:
325    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
326                                           N->getValueType(0)));
327    break;
328  case ISD::SRCVALUE: {
329    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
330    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
331    break;
332  }
333  case ISD::LOAD:
334    Erased = Loads.erase(std::make_pair(N->getOperand(1),
335                                        std::make_pair(N->getOperand(0),
336                                                       N->getValueType(0))));
337    break;
338  default:
339    if (N->getNumValues() == 1) {
340      if (N->getNumOperands() == 0) {
341        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
342                                                 N->getValueType(0)));
343      } else if (N->getNumOperands() == 1) {
344        Erased =
345          UnaryOps.erase(std::make_pair(N->getOpcode(),
346                                        std::make_pair(N->getOperand(0),
347                                                       N->getValueType(0))));
348      } else if (N->getNumOperands() == 2) {
349        Erased =
350          BinaryOps.erase(std::make_pair(N->getOpcode(),
351                                         std::make_pair(N->getOperand(0),
352                                                        N->getOperand(1))));
353      } else {
354        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
355        Erased =
356          OneResultNodes.erase(std::make_pair(N->getOpcode(),
357                                              std::make_pair(N->getValueType(0),
358                                                             Ops)));
359      }
360    } else {
361      // Remove the node from the ArbitraryNodes map.
362      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
363      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
364      Erased =
365        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
366                                            std::make_pair(RV, Ops)));
367    }
368    break;
369  }
370#ifndef NDEBUG
371  // Verify that the node was actually in one of the CSE maps, unless it has a
372  // flag result (which cannot be CSE'd) or is one of the special cases that are
373  // not subject to CSE.
374  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
375      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
376      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
377
378    N->dump();
379    assert(0 && "Node is not in map!");
380  }
381#endif
382}
383
384/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
385/// has been taken out and modified in some way.  If the specified node already
386/// exists in the CSE maps, do not modify the maps, but return the existing node
387/// instead.  If it doesn't exist, add it and return null.
388///
389SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
390  assert(N->getNumOperands() && "This is a leaf node!");
391  if (N->getOpcode() == ISD::CALLSEQ_START ||
392      N->getOpcode() == ISD::CALLSEQ_END ||
393      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
394    return 0;    // Never add these nodes.
395
396  // Check that remaining values produced are not flags.
397  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
398    if (N->getValueType(i) == MVT::Flag)
399      return 0;   // Never CSE anything that produces a flag.
400
401  if (N->getNumValues() == 1) {
402    if (N->getNumOperands() == 1) {
403      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
404                                           std::make_pair(N->getOperand(0),
405                                                          N->getValueType(0)))];
406      if (U) return U;
407      U = N;
408    } else if (N->getNumOperands() == 2) {
409      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
410                                            std::make_pair(N->getOperand(0),
411                                                           N->getOperand(1)))];
412      if (B) return B;
413      B = N;
414    } else {
415      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
416      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
417                                                   std::make_pair(N->getValueType(0), Ops))];
418      if (ORN) return ORN;
419      ORN = N;
420    }
421  } else {
422    if (N->getOpcode() == ISD::LOAD) {
423      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
424                                        std::make_pair(N->getOperand(0),
425                                                       N->getValueType(0)))];
426      if (L) return L;
427      L = N;
428    } else {
429      // Remove the node from the ArbitraryNodes map.
430      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
431      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
432      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
433                                                  std::make_pair(RV, Ops))];
434      if (AN) return AN;
435      AN = N;
436    }
437  }
438  return 0;
439}
440
441
442
443SelectionDAG::~SelectionDAG() {
444  while (!AllNodes.empty()) {
445    SDNode *N = AllNodes.begin();
446    delete [] N->OperandList;
447    N->OperandList = 0;
448    N->NumOperands = 0;
449    AllNodes.pop_front();
450  }
451}
452
453SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
454  if (Op.getValueType() == VT) return Op;
455  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
456  return getNode(ISD::AND, Op.getValueType(), Op,
457                 getConstant(Imm, Op.getValueType()));
458}
459
460SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
461  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
462  // Mask out any bits that are not valid for this constant.
463  if (VT != MVT::i64)
464    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
465
466  SDNode *&N = Constants[std::make_pair(Val, VT)];
467  if (N) return SDOperand(N, 0);
468  N = new ConstantSDNode(false, Val, VT);
469  AllNodes.push_back(N);
470  return SDOperand(N, 0);
471}
472
473SDOperand SelectionDAG::getString(const std::string &Val) {
474  StringSDNode *&N = StringNodes[Val];
475  if (!N) {
476    N = new StringSDNode(Val);
477    AllNodes.push_back(N);
478  }
479  return SDOperand(N, 0);
480}
481
482SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
483  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
484  // Mask out any bits that are not valid for this constant.
485  if (VT != MVT::i64)
486    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
487
488  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
489  if (N) return SDOperand(N, 0);
490  N = new ConstantSDNode(true, Val, VT);
491  AllNodes.push_back(N);
492  return SDOperand(N, 0);
493}
494
495SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
496  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
497  if (VT == MVT::f32)
498    Val = (float)Val;  // Mask out extra precision.
499
500  // Do the map lookup using the actual bit pattern for the floating point
501  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
502  // we don't have issues with SNANs.
503  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
504  if (N) return SDOperand(N, 0);
505  N = new ConstantFPSDNode(Val, VT);
506  AllNodes.push_back(N);
507  return SDOperand(N, 0);
508}
509
510SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
511                                         MVT::ValueType VT, int offset) {
512  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
513  if (N) return SDOperand(N, 0);
514  N = new GlobalAddressSDNode(false, GV, VT, offset);
515  AllNodes.push_back(N);
516  return SDOperand(N, 0);
517}
518
519SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
520                                               MVT::ValueType VT, int offset) {
521  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
522  if (N) return SDOperand(N, 0);
523  N = new GlobalAddressSDNode(true, GV, VT, offset);
524  AllNodes.push_back(N);
525  return SDOperand(N, 0);
526}
527
528SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
529  SDNode *&N = FrameIndices[FI];
530  if (N) return SDOperand(N, 0);
531  N = new FrameIndexSDNode(FI, VT, false);
532  AllNodes.push_back(N);
533  return SDOperand(N, 0);
534}
535
536SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
537  SDNode *&N = TargetFrameIndices[FI];
538  if (N) return SDOperand(N, 0);
539  N = new FrameIndexSDNode(FI, VT, true);
540  AllNodes.push_back(N);
541  return SDOperand(N, 0);
542}
543
544SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
545  SDNode *&N = ConstantPoolIndices[C];
546  if (N) return SDOperand(N, 0);
547  N = new ConstantPoolSDNode(C, VT, false);
548  AllNodes.push_back(N);
549  return SDOperand(N, 0);
550}
551
552SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
553  SDNode *&N = TargetConstantPoolIndices[C];
554  if (N) return SDOperand(N, 0);
555  N = new ConstantPoolSDNode(C, VT, true);
556  AllNodes.push_back(N);
557  return SDOperand(N, 0);
558}
559
560SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
561  SDNode *&N = BBNodes[MBB];
562  if (N) return SDOperand(N, 0);
563  N = new BasicBlockSDNode(MBB);
564  AllNodes.push_back(N);
565  return SDOperand(N, 0);
566}
567
568SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
569  if ((unsigned)VT >= ValueTypeNodes.size())
570    ValueTypeNodes.resize(VT+1);
571  if (ValueTypeNodes[VT] == 0) {
572    ValueTypeNodes[VT] = new VTSDNode(VT);
573    AllNodes.push_back(ValueTypeNodes[VT]);
574  }
575
576  return SDOperand(ValueTypeNodes[VT], 0);
577}
578
579SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
580  SDNode *&N = ExternalSymbols[Sym];
581  if (N) return SDOperand(N, 0);
582  N = new ExternalSymbolSDNode(false, Sym, VT);
583  AllNodes.push_back(N);
584  return SDOperand(N, 0);
585}
586
587SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT::ValueType VT) {
588  SDNode *&N = TargetExternalSymbols[Sym];
589  if (N) return SDOperand(N, 0);
590  N = new ExternalSymbolSDNode(true, Sym, VT);
591  AllNodes.push_back(N);
592  return SDOperand(N, 0);
593}
594
595SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
596  if ((unsigned)Cond >= CondCodeNodes.size())
597    CondCodeNodes.resize(Cond+1);
598
599  if (CondCodeNodes[Cond] == 0) {
600    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
601    AllNodes.push_back(CondCodeNodes[Cond]);
602  }
603  return SDOperand(CondCodeNodes[Cond], 0);
604}
605
606SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
607  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
608  if (!Reg) {
609    Reg = new RegisterSDNode(RegNo, VT);
610    AllNodes.push_back(Reg);
611  }
612  return SDOperand(Reg, 0);
613}
614
615SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
616                                      SDOperand N2, ISD::CondCode Cond) {
617  // These setcc operations always fold.
618  switch (Cond) {
619  default: break;
620  case ISD::SETFALSE:
621  case ISD::SETFALSE2: return getConstant(0, VT);
622  case ISD::SETTRUE:
623  case ISD::SETTRUE2:  return getConstant(1, VT);
624  }
625
626  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
627    uint64_t C2 = N2C->getValue();
628    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
629      uint64_t C1 = N1C->getValue();
630
631      // Sign extend the operands if required
632      if (ISD::isSignedIntSetCC(Cond)) {
633        C1 = N1C->getSignExtended();
634        C2 = N2C->getSignExtended();
635      }
636
637      switch (Cond) {
638      default: assert(0 && "Unknown integer setcc!");
639      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
640      case ISD::SETNE:  return getConstant(C1 != C2, VT);
641      case ISD::SETULT: return getConstant(C1 <  C2, VT);
642      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
643      case ISD::SETULE: return getConstant(C1 <= C2, VT);
644      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
645      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
646      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
647      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
648      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
649      }
650    } else {
651      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
652      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
653        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
654
655        // If the comparison constant has bits in the upper part, the
656        // zero-extended value could never match.
657        if (C2 & (~0ULL << InSize)) {
658          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
659          switch (Cond) {
660          case ISD::SETUGT:
661          case ISD::SETUGE:
662          case ISD::SETEQ: return getConstant(0, VT);
663          case ISD::SETULT:
664          case ISD::SETULE:
665          case ISD::SETNE: return getConstant(1, VT);
666          case ISD::SETGT:
667          case ISD::SETGE:
668            // True if the sign bit of C2 is set.
669            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
670          case ISD::SETLT:
671          case ISD::SETLE:
672            // True if the sign bit of C2 isn't set.
673            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
674          default:
675            break;
676          }
677        }
678
679        // Otherwise, we can perform the comparison with the low bits.
680        switch (Cond) {
681        case ISD::SETEQ:
682        case ISD::SETNE:
683        case ISD::SETUGT:
684        case ISD::SETUGE:
685        case ISD::SETULT:
686        case ISD::SETULE:
687          return getSetCC(VT, N1.getOperand(0),
688                          getConstant(C2, N1.getOperand(0).getValueType()),
689                          Cond);
690        default:
691          break;   // todo, be more careful with signed comparisons
692        }
693      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
694                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
695        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
696        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
697        MVT::ValueType ExtDstTy = N1.getValueType();
698        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
699
700        // If the extended part has any inconsistent bits, it cannot ever
701        // compare equal.  In other words, they have to be all ones or all
702        // zeros.
703        uint64_t ExtBits =
704          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
705        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
706          return getConstant(Cond == ISD::SETNE, VT);
707
708        // Otherwise, make this a use of a zext.
709        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
710                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
711                        Cond);
712      }
713
714      uint64_t MinVal, MaxVal;
715      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
716      if (ISD::isSignedIntSetCC(Cond)) {
717        MinVal = 1ULL << (OperandBitSize-1);
718        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
719          MaxVal = ~0ULL >> (65-OperandBitSize);
720        else
721          MaxVal = 0;
722      } else {
723        MinVal = 0;
724        MaxVal = ~0ULL >> (64-OperandBitSize);
725      }
726
727      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
728      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
729        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
730        --C2;                                          // X >= C1 --> X > (C1-1)
731        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
732                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
733      }
734
735      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
736        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
737        ++C2;                                          // X <= C1 --> X < (C1+1)
738        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
739                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
740      }
741
742      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
743        return getConstant(0, VT);      // X < MIN --> false
744
745      // Canonicalize setgt X, Min --> setne X, Min
746      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
747        return getSetCC(VT, N1, N2, ISD::SETNE);
748
749      // If we have setult X, 1, turn it into seteq X, 0
750      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
751        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
752                        ISD::SETEQ);
753      // If we have setugt X, Max-1, turn it into seteq X, Max
754      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
755        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
756                        ISD::SETEQ);
757
758      // If we have "setcc X, C1", check to see if we can shrink the immediate
759      // by changing cc.
760
761      // SETUGT X, SINTMAX  -> SETLT X, 0
762      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
763          C2 == (~0ULL >> (65-OperandBitSize)))
764        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
765
766      // FIXME: Implement the rest of these.
767
768
769      // Fold bit comparisons when we can.
770      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
771          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
772        if (ConstantSDNode *AndRHS =
773                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
774          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
775            // Perform the xform if the AND RHS is a single bit.
776            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
777              return getNode(ISD::SRL, VT, N1,
778                             getConstant(Log2_64(AndRHS->getValue()),
779                                                   TLI.getShiftAmountTy()));
780            }
781          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
782            // (X & 8) == 8  -->  (X & 8) >> 3
783            // Perform the xform if C2 is a single bit.
784            if ((C2 & (C2-1)) == 0) {
785              return getNode(ISD::SRL, VT, N1,
786                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
787            }
788          }
789        }
790    }
791  } else if (isa<ConstantSDNode>(N1.Val)) {
792      // Ensure that the constant occurs on the RHS.
793    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
794  }
795
796  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
797    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
798      double C1 = N1C->getValue(), C2 = N2C->getValue();
799
800      switch (Cond) {
801      default: break; // FIXME: Implement the rest of these!
802      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
803      case ISD::SETNE:  return getConstant(C1 != C2, VT);
804      case ISD::SETLT:  return getConstant(C1 < C2, VT);
805      case ISD::SETGT:  return getConstant(C1 > C2, VT);
806      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
807      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
808      }
809    } else {
810      // Ensure that the constant occurs on the RHS.
811      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
812    }
813
814  // Could not fold it.
815  return SDOperand();
816}
817
818/// getNode - Gets or creates the specified node.
819///
820SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
821  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
822  if (!N) {
823    N = new SDNode(Opcode, VT);
824    AllNodes.push_back(N);
825  }
826  return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
830                                SDOperand Operand) {
831  // Constant fold unary operations with an integer constant operand.
832  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
833    uint64_t Val = C->getValue();
834    switch (Opcode) {
835    default: break;
836    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
837    case ISD::ANY_EXTEND:
838    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
839    case ISD::TRUNCATE:    return getConstant(Val, VT);
840    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
841    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
842    case ISD::BIT_CONVERT:
843      if (VT == MVT::f32) {
844        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
845        return getConstantFP(BitsToFloat(Val), VT);
846      } else if (VT == MVT::f64) {
847        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
848        return getConstantFP(BitsToDouble(Val), VT);
849      }
850      break;
851    }
852  }
853
854  // Constant fold unary operations with an floating point constant operand.
855  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
856    switch (Opcode) {
857    case ISD::FNEG:
858      return getConstantFP(-C->getValue(), VT);
859    case ISD::FABS:
860      return getConstantFP(fabs(C->getValue()), VT);
861    case ISD::FP_ROUND:
862    case ISD::FP_EXTEND:
863      return getConstantFP(C->getValue(), VT);
864    case ISD::FP_TO_SINT:
865      return getConstant((int64_t)C->getValue(), VT);
866    case ISD::FP_TO_UINT:
867      return getConstant((uint64_t)C->getValue(), VT);
868    case ISD::BIT_CONVERT:
869      if (VT == MVT::i32) {
870        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
871        return getConstant(FloatToBits(C->getValue()), VT);
872      } else if (VT == MVT::i64) {
873        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
874        return getConstant(DoubleToBits(C->getValue()), VT);
875      }
876      break;
877    }
878
879  unsigned OpOpcode = Operand.Val->getOpcode();
880  switch (Opcode) {
881  case ISD::TokenFactor:
882    return Operand;         // Factor of one node?  No factor.
883  case ISD::SIGN_EXTEND:
884    if (Operand.getValueType() == VT) return Operand;   // noop extension
885    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
886      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
887    break;
888  case ISD::ZERO_EXTEND:
889    if (Operand.getValueType() == VT) return Operand;   // noop extension
890    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
891      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
892    break;
893  case ISD::ANY_EXTEND:
894    if (Operand.getValueType() == VT) return Operand;   // noop extension
895    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
896      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
897      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
898    break;
899  case ISD::TRUNCATE:
900    if (Operand.getValueType() == VT) return Operand;   // noop truncate
901    if (OpOpcode == ISD::TRUNCATE)
902      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
903    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
904             OpOpcode == ISD::ANY_EXTEND) {
905      // If the source is smaller than the dest, we still need an extend.
906      if (Operand.Val->getOperand(0).getValueType() < VT)
907        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
908      else if (Operand.Val->getOperand(0).getValueType() > VT)
909        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
910      else
911        return Operand.Val->getOperand(0);
912    }
913    break;
914  case ISD::BIT_CONVERT:
915    // Basic sanity checking.
916    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
917           "Cannot BIT_CONVERT between two different types!");
918    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
919    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
920      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
921    break;
922  case ISD::FNEG:
923    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
924      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
925                     Operand.Val->getOperand(0));
926    if (OpOpcode == ISD::FNEG)  // --X -> X
927      return Operand.Val->getOperand(0);
928    break;
929  case ISD::FABS:
930    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
931      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
932    break;
933  }
934
935  SDNode *N;
936  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
937    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
938    if (E) return SDOperand(E, 0);
939    E = N = new SDNode(Opcode, Operand);
940  } else {
941    N = new SDNode(Opcode, Operand);
942  }
943  N->setValueTypes(VT);
944  AllNodes.push_back(N);
945  return SDOperand(N, 0);
946}
947
948
949
950SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
951                                SDOperand N1, SDOperand N2) {
952#ifndef NDEBUG
953  switch (Opcode) {
954  case ISD::TokenFactor:
955    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
956           N2.getValueType() == MVT::Other && "Invalid token factor!");
957    break;
958  case ISD::AND:
959  case ISD::OR:
960  case ISD::XOR:
961  case ISD::UDIV:
962  case ISD::UREM:
963  case ISD::MULHU:
964  case ISD::MULHS:
965    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
966    // fall through
967  case ISD::ADD:
968  case ISD::SUB:
969  case ISD::MUL:
970  case ISD::SDIV:
971  case ISD::SREM:
972    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
973    // fall through.
974  case ISD::FADD:
975  case ISD::FSUB:
976  case ISD::FMUL:
977  case ISD::FDIV:
978  case ISD::FREM:
979    assert(N1.getValueType() == N2.getValueType() &&
980           N1.getValueType() == VT && "Binary operator types must match!");
981    break;
982
983  case ISD::SHL:
984  case ISD::SRA:
985  case ISD::SRL:
986  case ISD::ROTL:
987  case ISD::ROTR:
988    assert(VT == N1.getValueType() &&
989           "Shift operators return type must be the same as their first arg");
990    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
991           VT != MVT::i1 && "Shifts only work on integers");
992    break;
993  case ISD::FP_ROUND_INREG: {
994    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
995    assert(VT == N1.getValueType() && "Not an inreg round!");
996    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
997           "Cannot FP_ROUND_INREG integer types");
998    assert(EVT <= VT && "Not rounding down!");
999    break;
1000  }
1001  case ISD::AssertSext:
1002  case ISD::AssertZext:
1003  case ISD::SIGN_EXTEND_INREG: {
1004    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1005    assert(VT == N1.getValueType() && "Not an inreg extend!");
1006    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1007           "Cannot *_EXTEND_INREG FP types");
1008    assert(EVT <= VT && "Not extending!");
1009  }
1010
1011  default: break;
1012  }
1013#endif
1014
1015  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1016  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1017  if (N1C) {
1018    if (N2C) {
1019      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1020      switch (Opcode) {
1021      case ISD::ADD: return getConstant(C1 + C2, VT);
1022      case ISD::SUB: return getConstant(C1 - C2, VT);
1023      case ISD::MUL: return getConstant(C1 * C2, VT);
1024      case ISD::UDIV:
1025        if (C2) return getConstant(C1 / C2, VT);
1026        break;
1027      case ISD::UREM :
1028        if (C2) return getConstant(C1 % C2, VT);
1029        break;
1030      case ISD::SDIV :
1031        if (C2) return getConstant(N1C->getSignExtended() /
1032                                   N2C->getSignExtended(), VT);
1033        break;
1034      case ISD::SREM :
1035        if (C2) return getConstant(N1C->getSignExtended() %
1036                                   N2C->getSignExtended(), VT);
1037        break;
1038      case ISD::AND  : return getConstant(C1 & C2, VT);
1039      case ISD::OR   : return getConstant(C1 | C2, VT);
1040      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1041      case ISD::SHL  : return getConstant(C1 << C2, VT);
1042      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1043      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1044      case ISD::ROTL :
1045        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1046                           VT);
1047      case ISD::ROTR :
1048        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1049                           VT);
1050      default: break;
1051      }
1052    } else {      // Cannonicalize constant to RHS if commutative
1053      if (isCommutativeBinOp(Opcode)) {
1054        std::swap(N1C, N2C);
1055        std::swap(N1, N2);
1056      }
1057    }
1058  }
1059
1060  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1061  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1062  if (N1CFP) {
1063    if (N2CFP) {
1064      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1065      switch (Opcode) {
1066      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1067      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1068      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1069      case ISD::FDIV:
1070        if (C2) return getConstantFP(C1 / C2, VT);
1071        break;
1072      case ISD::FREM :
1073        if (C2) return getConstantFP(fmod(C1, C2), VT);
1074        break;
1075      default: break;
1076      }
1077    } else {      // Cannonicalize constant to RHS if commutative
1078      if (isCommutativeBinOp(Opcode)) {
1079        std::swap(N1CFP, N2CFP);
1080        std::swap(N1, N2);
1081      }
1082    }
1083  }
1084
1085  // Finally, fold operations that do not require constants.
1086  switch (Opcode) {
1087  case ISD::FP_ROUND_INREG:
1088    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1089    break;
1090  case ISD::SIGN_EXTEND_INREG: {
1091    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1092    if (EVT == VT) return N1;  // Not actually extending
1093    break;
1094  }
1095
1096  // FIXME: figure out how to safely handle things like
1097  // int foo(int x) { return 1 << (x & 255); }
1098  // int bar() { return foo(256); }
1099#if 0
1100  case ISD::SHL:
1101  case ISD::SRL:
1102  case ISD::SRA:
1103    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1104        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1105      return getNode(Opcode, VT, N1, N2.getOperand(0));
1106    else if (N2.getOpcode() == ISD::AND)
1107      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1108        // If the and is only masking out bits that cannot effect the shift,
1109        // eliminate the and.
1110        unsigned NumBits = MVT::getSizeInBits(VT);
1111        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1112          return getNode(Opcode, VT, N1, N2.getOperand(0));
1113      }
1114    break;
1115#endif
1116  }
1117
1118  // Memoize this node if possible.
1119  SDNode *N;
1120  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1121      VT != MVT::Flag) {
1122    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1123    if (BON) return SDOperand(BON, 0);
1124
1125    BON = N = new SDNode(Opcode, N1, N2);
1126  } else {
1127    N = new SDNode(Opcode, N1, N2);
1128  }
1129
1130  N->setValueTypes(VT);
1131  AllNodes.push_back(N);
1132  return SDOperand(N, 0);
1133}
1134
1135SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1136                                SDOperand N1, SDOperand N2, SDOperand N3) {
1137  // Perform various simplifications.
1138  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1139  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1140  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1141  switch (Opcode) {
1142  case ISD::SETCC: {
1143    // Use SimplifySetCC  to simplify SETCC's.
1144    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1145    if (Simp.Val) return Simp;
1146    break;
1147  }
1148  case ISD::SELECT:
1149    if (N1C)
1150      if (N1C->getValue())
1151        return N2;             // select true, X, Y -> X
1152      else
1153        return N3;             // select false, X, Y -> Y
1154
1155    if (N2 == N3) return N2;   // select C, X, X -> X
1156    break;
1157  case ISD::BRCOND:
1158    if (N2C)
1159      if (N2C->getValue()) // Unconditional branch
1160        return getNode(ISD::BR, MVT::Other, N1, N3);
1161      else
1162        return N1;         // Never-taken branch
1163    break;
1164  }
1165
1166  std::vector<SDOperand> Ops;
1167  Ops.reserve(3);
1168  Ops.push_back(N1);
1169  Ops.push_back(N2);
1170  Ops.push_back(N3);
1171
1172  // Memoize node if it doesn't produce a flag.
1173  SDNode *N;
1174  if (VT != MVT::Flag) {
1175    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1176    if (E) return SDOperand(E, 0);
1177    E = N = new SDNode(Opcode, N1, N2, N3);
1178  } else {
1179    N = new SDNode(Opcode, N1, N2, N3);
1180  }
1181  N->setValueTypes(VT);
1182  AllNodes.push_back(N);
1183  return SDOperand(N, 0);
1184}
1185
1186SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1187                                SDOperand N1, SDOperand N2, SDOperand N3,
1188                                SDOperand N4) {
1189  std::vector<SDOperand> Ops;
1190  Ops.reserve(4);
1191  Ops.push_back(N1);
1192  Ops.push_back(N2);
1193  Ops.push_back(N3);
1194  Ops.push_back(N4);
1195  return getNode(Opcode, VT, Ops);
1196}
1197
1198SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1199                                SDOperand N1, SDOperand N2, SDOperand N3,
1200                                SDOperand N4, SDOperand N5) {
1201  std::vector<SDOperand> Ops;
1202  Ops.reserve(5);
1203  Ops.push_back(N1);
1204  Ops.push_back(N2);
1205  Ops.push_back(N3);
1206  Ops.push_back(N4);
1207  Ops.push_back(N5);
1208  return getNode(Opcode, VT, Ops);
1209}
1210
1211// setAdjCallChain - This method changes the token chain of an
1212// CALLSEQ_START/END node to be the specified operand.
1213void SDNode::setAdjCallChain(SDOperand N) {
1214  assert(N.getValueType() == MVT::Other);
1215  assert((getOpcode() == ISD::CALLSEQ_START ||
1216          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1217
1218  OperandList[0].Val->removeUser(this);
1219  OperandList[0] = N;
1220  OperandList[0].Val->Uses.push_back(this);
1221}
1222
1223
1224
1225SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1226                                SDOperand Chain, SDOperand Ptr,
1227                                SDOperand SV) {
1228  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1229  if (N) return SDOperand(N, 0);
1230  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1231
1232  // Loads have a token chain.
1233  setNodeValueTypes(N, VT, MVT::Other);
1234  AllNodes.push_back(N);
1235  return SDOperand(N, 0);
1236}
1237
1238SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1239                                   SDOperand Chain, SDOperand Ptr,
1240                                   SDOperand SV) {
1241  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1242  if (N) return SDOperand(N, 0);
1243  std::vector<SDOperand> Ops;
1244  Ops.reserve(5);
1245  Ops.push_back(Chain);
1246  Ops.push_back(Ptr);
1247  Ops.push_back(getConstant(Count, MVT::i32));
1248  Ops.push_back(getValueType(EVT));
1249  Ops.push_back(SV);
1250  std::vector<MVT::ValueType> VTs;
1251  VTs.reserve(2);
1252  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1253  return getNode(ISD::VLOAD, VTs, Ops);
1254}
1255
1256SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1257                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1258                                   MVT::ValueType EVT) {
1259  std::vector<SDOperand> Ops;
1260  Ops.reserve(4);
1261  Ops.push_back(Chain);
1262  Ops.push_back(Ptr);
1263  Ops.push_back(SV);
1264  Ops.push_back(getValueType(EVT));
1265  std::vector<MVT::ValueType> VTs;
1266  VTs.reserve(2);
1267  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1268  return getNode(Opcode, VTs, Ops);
1269}
1270
1271SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1272  assert((!V || isa<PointerType>(V->getType())) &&
1273         "SrcValue is not a pointer?");
1274  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1275  if (N) return SDOperand(N, 0);
1276
1277  N = new SrcValueSDNode(V, Offset);
1278  AllNodes.push_back(N);
1279  return SDOperand(N, 0);
1280}
1281
1282SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1283                                std::vector<SDOperand> &Ops) {
1284  switch (Ops.size()) {
1285  case 0: return getNode(Opcode, VT);
1286  case 1: return getNode(Opcode, VT, Ops[0]);
1287  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1288  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1289  default: break;
1290  }
1291
1292  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1293  switch (Opcode) {
1294  default: break;
1295  case ISD::BRCONDTWOWAY:
1296    if (N1C)
1297      if (N1C->getValue()) // Unconditional branch to true dest.
1298        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1299      else                 // Unconditional branch to false dest.
1300        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1301    break;
1302  case ISD::BRTWOWAY_CC:
1303    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1304    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1305           "LHS and RHS of comparison must have same type!");
1306    break;
1307  case ISD::TRUNCSTORE: {
1308    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1309    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1310#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1311    // If this is a truncating store of a constant, convert to the desired type
1312    // and store it instead.
1313    if (isa<Constant>(Ops[0])) {
1314      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1315      if (isa<Constant>(Op))
1316        N1 = Op;
1317    }
1318    // Also for ConstantFP?
1319#endif
1320    if (Ops[0].getValueType() == EVT)       // Normal store?
1321      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1322    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1323    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1324           "Can't do FP-INT conversion!");
1325    break;
1326  }
1327  case ISD::SELECT_CC: {
1328    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1329    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1330           "LHS and RHS of condition must have same type!");
1331    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1332           "True and False arms of SelectCC must have same type!");
1333    assert(Ops[2].getValueType() == VT &&
1334           "select_cc node must be of same type as true and false value!");
1335    break;
1336  }
1337  case ISD::BR_CC: {
1338    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1339    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1340           "LHS/RHS of comparison should match types!");
1341    break;
1342  }
1343  }
1344
1345  // Memoize nodes.
1346  SDNode *N;
1347  if (VT != MVT::Flag) {
1348    SDNode *&E =
1349      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1350    if (E) return SDOperand(E, 0);
1351    E = N = new SDNode(Opcode, Ops);
1352  } else {
1353    N = new SDNode(Opcode, Ops);
1354  }
1355  N->setValueTypes(VT);
1356  AllNodes.push_back(N);
1357  return SDOperand(N, 0);
1358}
1359
1360SDOperand SelectionDAG::getNode(unsigned Opcode,
1361                                std::vector<MVT::ValueType> &ResultTys,
1362                                std::vector<SDOperand> &Ops) {
1363  if (ResultTys.size() == 1)
1364    return getNode(Opcode, ResultTys[0], Ops);
1365
1366  switch (Opcode) {
1367  case ISD::EXTLOAD:
1368  case ISD::SEXTLOAD:
1369  case ISD::ZEXTLOAD: {
1370    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1371    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1372    // If they are asking for an extending load from/to the same thing, return a
1373    // normal load.
1374    if (ResultTys[0] == EVT)
1375      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1376    assert(EVT < ResultTys[0] &&
1377           "Should only be an extending load, not truncating!");
1378    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1379           "Cannot sign/zero extend a FP load!");
1380    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1381           "Cannot convert from FP to Int or Int -> FP!");
1382    break;
1383  }
1384
1385  // FIXME: figure out how to safely handle things like
1386  // int foo(int x) { return 1 << (x & 255); }
1387  // int bar() { return foo(256); }
1388#if 0
1389  case ISD::SRA_PARTS:
1390  case ISD::SRL_PARTS:
1391  case ISD::SHL_PARTS:
1392    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1393        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1394      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1395    else if (N3.getOpcode() == ISD::AND)
1396      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1397        // If the and is only masking out bits that cannot effect the shift,
1398        // eliminate the and.
1399        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1400        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1401          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1402      }
1403    break;
1404#endif
1405  }
1406
1407  // Memoize the node unless it returns a flag.
1408  SDNode *N;
1409  if (ResultTys.back() != MVT::Flag) {
1410    SDNode *&E =
1411      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1412    if (E) return SDOperand(E, 0);
1413    E = N = new SDNode(Opcode, Ops);
1414  } else {
1415    N = new SDNode(Opcode, Ops);
1416  }
1417  setNodeValueTypes(N, ResultTys);
1418  AllNodes.push_back(N);
1419  return SDOperand(N, 0);
1420}
1421
1422void SelectionDAG::setNodeValueTypes(SDNode *N,
1423                                     std::vector<MVT::ValueType> &RetVals) {
1424  switch (RetVals.size()) {
1425  case 0: return;
1426  case 1: N->setValueTypes(RetVals[0]); return;
1427  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1428  default: break;
1429  }
1430
1431  std::list<std::vector<MVT::ValueType> >::iterator I =
1432    std::find(VTList.begin(), VTList.end(), RetVals);
1433  if (I == VTList.end()) {
1434    VTList.push_front(RetVals);
1435    I = VTList.begin();
1436  }
1437
1438  N->setValueTypes(&(*I)[0], I->size());
1439}
1440
1441void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1442                                     MVT::ValueType VT2) {
1443  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1444       E = VTList.end(); I != E; ++I) {
1445    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1446      N->setValueTypes(&(*I)[0], 2);
1447      return;
1448    }
1449  }
1450  std::vector<MVT::ValueType> V;
1451  V.push_back(VT1);
1452  V.push_back(VT2);
1453  VTList.push_front(V);
1454  N->setValueTypes(&(*VTList.begin())[0], 2);
1455}
1456
1457
1458/// SelectNodeTo - These are used for target selectors to *mutate* the
1459/// specified node to have the specified return type, Target opcode, and
1460/// operands.  Note that target opcodes are stored as
1461/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1462///
1463/// Note that SelectNodeTo returns the resultant node.  If there is already a
1464/// node of the specified opcode and operands, it returns that node instead of
1465/// the current one.
1466SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1467                                     MVT::ValueType VT) {
1468  // If an identical node already exists, use it.
1469  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1470  if (ON) return SDOperand(ON, 0);
1471
1472  RemoveNodeFromCSEMaps(N);
1473
1474  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1475  N->setValueTypes(VT);
1476
1477  ON = N;   // Memoize the new node.
1478  return SDOperand(N, 0);
1479}
1480
1481SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1482                                     MVT::ValueType VT, SDOperand Op1) {
1483  // If an identical node already exists, use it.
1484  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1485                                        std::make_pair(Op1, VT))];
1486  if (ON) return SDOperand(ON, 0);
1487
1488  RemoveNodeFromCSEMaps(N);
1489  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1490  N->setValueTypes(VT);
1491  N->setOperands(Op1);
1492
1493  ON = N;   // Memoize the new node.
1494  return SDOperand(N, 0);
1495}
1496
1497SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1498                                     MVT::ValueType VT, SDOperand Op1,
1499                                     SDOperand Op2) {
1500  // If an identical node already exists, use it.
1501  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1502                                         std::make_pair(Op1, Op2))];
1503  if (ON) return SDOperand(ON, 0);
1504
1505  RemoveNodeFromCSEMaps(N);
1506  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1507  N->setValueTypes(VT);
1508  N->setOperands(Op1, Op2);
1509
1510  ON = N;   // Memoize the new node.
1511  return SDOperand(N, 0);
1512}
1513
1514SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1515                                     MVT::ValueType VT, SDOperand Op1,
1516                                     SDOperand Op2, SDOperand Op3) {
1517  // If an identical node already exists, use it.
1518  std::vector<SDOperand> OpList;
1519  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1520  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1521                                              std::make_pair(VT, OpList))];
1522  if (ON) return SDOperand(ON, 0);
1523
1524  RemoveNodeFromCSEMaps(N);
1525  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1526  N->setValueTypes(VT);
1527  N->setOperands(Op1, Op2, Op3);
1528
1529  ON = N;   // Memoize the new node.
1530  return SDOperand(N, 0);
1531}
1532
1533SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1534                                     MVT::ValueType VT, SDOperand Op1,
1535                                     SDOperand Op2, SDOperand Op3,
1536                                     SDOperand Op4) {
1537  // If an identical node already exists, use it.
1538  std::vector<SDOperand> OpList;
1539  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1540  OpList.push_back(Op4);
1541  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1542                                              std::make_pair(VT, OpList))];
1543  if (ON) return SDOperand(ON, 0);
1544
1545  RemoveNodeFromCSEMaps(N);
1546  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1547  N->setValueTypes(VT);
1548  N->setOperands(Op1, Op2, Op3, Op4);
1549
1550  ON = N;   // Memoize the new node.
1551  return SDOperand(N, 0);
1552}
1553
1554SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1555                                     MVT::ValueType VT, SDOperand Op1,
1556                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1557                                     SDOperand Op5) {
1558  // If an identical node already exists, use it.
1559  std::vector<SDOperand> OpList;
1560  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1561  OpList.push_back(Op4); OpList.push_back(Op5);
1562  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1563                                              std::make_pair(VT, OpList))];
1564  if (ON) return SDOperand(ON, 0);
1565
1566  RemoveNodeFromCSEMaps(N);
1567  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1568  N->setValueTypes(VT);
1569  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1570
1571  ON = N;   // Memoize the new node.
1572  return SDOperand(N, 0);
1573}
1574
1575SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1576                                     MVT::ValueType VT, SDOperand Op1,
1577                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1578                                     SDOperand Op5, SDOperand Op6) {
1579  // If an identical node already exists, use it.
1580  std::vector<SDOperand> OpList;
1581  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1582  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1583  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1584                                              std::make_pair(VT, OpList))];
1585  if (ON) return SDOperand(ON, 0);
1586
1587  RemoveNodeFromCSEMaps(N);
1588  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1589  N->setValueTypes(VT);
1590  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1591
1592  ON = N;   // Memoize the new node.
1593  return SDOperand(N, 0);
1594}
1595
1596SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1597                                     MVT::ValueType VT1, MVT::ValueType VT2,
1598                                     SDOperand Op1, SDOperand Op2) {
1599  // If an identical node already exists, use it.
1600  std::vector<SDOperand> OpList;
1601  OpList.push_back(Op1); OpList.push_back(Op2);
1602  std::vector<MVT::ValueType> VTList;
1603  VTList.push_back(VT1); VTList.push_back(VT2);
1604  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1605                                              std::make_pair(VTList, OpList))];
1606  if (ON) return SDOperand(ON, 0);
1607
1608  RemoveNodeFromCSEMaps(N);
1609  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1610  setNodeValueTypes(N, VT1, VT2);
1611  N->setOperands(Op1, Op2);
1612
1613  ON = N;   // Memoize the new node.
1614  return SDOperand(N, 0);
1615}
1616
1617SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1618                                     MVT::ValueType VT1, MVT::ValueType VT2,
1619                                     SDOperand Op1, SDOperand Op2,
1620                                     SDOperand Op3) {
1621  // If an identical node already exists, use it.
1622  std::vector<SDOperand> OpList;
1623  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1624  std::vector<MVT::ValueType> VTList;
1625  VTList.push_back(VT1); VTList.push_back(VT2);
1626  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1627                                              std::make_pair(VTList, OpList))];
1628  if (ON) return SDOperand(ON, 0);
1629
1630  RemoveNodeFromCSEMaps(N);
1631  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1632  setNodeValueTypes(N, VT1, VT2);
1633  N->setOperands(Op1, Op2, Op3);
1634
1635  ON = N;   // Memoize the new node.
1636  return SDOperand(N, 0);
1637}
1638
1639SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1640                                     MVT::ValueType VT1, MVT::ValueType VT2,
1641                                     SDOperand Op1, SDOperand Op2,
1642                                     SDOperand Op3, SDOperand Op4) {
1643  // If an identical node already exists, use it.
1644  std::vector<SDOperand> OpList;
1645  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1646  OpList.push_back(Op4);
1647  std::vector<MVT::ValueType> VTList;
1648  VTList.push_back(VT1); VTList.push_back(VT2);
1649  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1650                                              std::make_pair(VTList, OpList))];
1651  if (ON) return SDOperand(ON, 0);
1652
1653  RemoveNodeFromCSEMaps(N);
1654  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1655  setNodeValueTypes(N, VT1, VT2);
1656  N->setOperands(Op1, Op2, Op3, Op4);
1657
1658  ON = N;   // Memoize the new node.
1659  return SDOperand(N, 0);
1660}
1661
1662SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1663                                     MVT::ValueType VT1, MVT::ValueType VT2,
1664                                     SDOperand Op1, SDOperand Op2,
1665                                     SDOperand Op3, SDOperand Op4,
1666                                     SDOperand Op5) {
1667  // If an identical node already exists, use it.
1668  std::vector<SDOperand> OpList;
1669  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1670  OpList.push_back(Op4); OpList.push_back(Op5);
1671  std::vector<MVT::ValueType> VTList;
1672  VTList.push_back(VT1); VTList.push_back(VT2);
1673  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1674                                              std::make_pair(VTList, OpList))];
1675  if (ON) return SDOperand(ON, 0);
1676
1677  RemoveNodeFromCSEMaps(N);
1678  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1679  setNodeValueTypes(N, VT1, VT2);
1680  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1681
1682  ON = N;   // Memoize the new node.
1683  return SDOperand(N, 0);
1684}
1685
1686// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1687/// This can cause recursive merging of nodes in the DAG.
1688///
1689/// This version assumes From/To have a single result value.
1690///
1691void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
1692                                      std::vector<SDNode*> *Deleted) {
1693  SDNode *From = FromN.Val, *To = ToN.Val;
1694  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
1695         "Cannot replace with this method!");
1696  assert(From != To && "Cannot replace uses of with self");
1697
1698  while (!From->use_empty()) {
1699    // Process users until they are all gone.
1700    SDNode *U = *From->use_begin();
1701
1702    // This node is about to morph, remove its old self from the CSE maps.
1703    RemoveNodeFromCSEMaps(U);
1704
1705    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1706         I != E; ++I)
1707      if (I->Val == From) {
1708        From->removeUser(U);
1709        I->Val = To;
1710        To->addUser(U);
1711      }
1712
1713    // Now that we have modified U, add it back to the CSE maps.  If it already
1714    // exists there, recursively merge the results together.
1715    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1716      ReplaceAllUsesWith(U, Existing, Deleted);
1717      // U is now dead.
1718      if (Deleted) Deleted->push_back(U);
1719      DeleteNodeNotInCSEMaps(U);
1720    }
1721  }
1722}
1723
1724/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1725/// This can cause recursive merging of nodes in the DAG.
1726///
1727/// This version assumes From/To have matching types and numbers of result
1728/// values.
1729///
1730void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
1731                                      std::vector<SDNode*> *Deleted) {
1732  assert(From != To && "Cannot replace uses of with self");
1733  assert(From->getNumValues() == To->getNumValues() &&
1734         "Cannot use this version of ReplaceAllUsesWith!");
1735  if (From->getNumValues() == 1) {  // If possible, use the faster version.
1736    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
1737    return;
1738  }
1739
1740  while (!From->use_empty()) {
1741    // Process users until they are all gone.
1742    SDNode *U = *From->use_begin();
1743
1744    // This node is about to morph, remove its old self from the CSE maps.
1745    RemoveNodeFromCSEMaps(U);
1746
1747    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1748         I != E; ++I)
1749      if (I->Val == From) {
1750        From->removeUser(U);
1751        I->Val = To;
1752        To->addUser(U);
1753      }
1754
1755    // Now that we have modified U, add it back to the CSE maps.  If it already
1756    // exists there, recursively merge the results together.
1757    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1758      ReplaceAllUsesWith(U, Existing, Deleted);
1759      // U is now dead.
1760      if (Deleted) Deleted->push_back(U);
1761      DeleteNodeNotInCSEMaps(U);
1762    }
1763  }
1764}
1765
1766/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1767/// This can cause recursive merging of nodes in the DAG.
1768///
1769/// This version can replace From with any result values.  To must match the
1770/// number and types of values returned by From.
1771void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
1772                                      const std::vector<SDOperand> &To,
1773                                      std::vector<SDNode*> *Deleted) {
1774  assert(From->getNumValues() == To.size() &&
1775         "Incorrect number of values to replace with!");
1776  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
1777    // Degenerate case handled above.
1778    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
1779    return;
1780  }
1781
1782  while (!From->use_empty()) {
1783    // Process users until they are all gone.
1784    SDNode *U = *From->use_begin();
1785
1786    // This node is about to morph, remove its old self from the CSE maps.
1787    RemoveNodeFromCSEMaps(U);
1788
1789    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1790         I != E; ++I)
1791      if (I->Val == From) {
1792        const SDOperand &ToOp = To[I->ResNo];
1793        From->removeUser(U);
1794        *I = ToOp;
1795        ToOp.Val->addUser(U);
1796      }
1797
1798    // Now that we have modified U, add it back to the CSE maps.  If it already
1799    // exists there, recursively merge the results together.
1800    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1801      ReplaceAllUsesWith(U, Existing, Deleted);
1802      // U is now dead.
1803      if (Deleted) Deleted->push_back(U);
1804      DeleteNodeNotInCSEMaps(U);
1805    }
1806  }
1807}
1808
1809
1810//===----------------------------------------------------------------------===//
1811//                              SDNode Class
1812//===----------------------------------------------------------------------===//
1813
1814
1815/// getValueTypeList - Return a pointer to the specified value type.
1816///
1817MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
1818  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
1819  VTs[VT] = VT;
1820  return &VTs[VT];
1821}
1822
1823/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1824/// indicated value.  This method ignores uses of other values defined by this
1825/// operation.
1826bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
1827  assert(Value < getNumValues() && "Bad value!");
1828
1829  // If there is only one value, this is easy.
1830  if (getNumValues() == 1)
1831    return use_size() == NUses;
1832  if (Uses.size() < NUses) return false;
1833
1834  SDOperand TheValue(this, Value);
1835
1836  std::set<SDNode*> UsersHandled;
1837
1838  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
1839       UI != E; ++UI) {
1840    SDNode *User = *UI;
1841    if (User->getNumOperands() == 1 ||
1842        UsersHandled.insert(User).second)     // First time we've seen this?
1843      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
1844        if (User->getOperand(i) == TheValue) {
1845          if (NUses == 0)
1846            return false;   // too many uses
1847          --NUses;
1848        }
1849  }
1850
1851  // Found exactly the right number of uses?
1852  return NUses == 0;
1853}
1854
1855
1856const char *SDNode::getOperationName(const SelectionDAG *G) const {
1857  switch (getOpcode()) {
1858  default:
1859    if (getOpcode() < ISD::BUILTIN_OP_END)
1860      return "<<Unknown DAG Node>>";
1861    else {
1862      if (G) {
1863        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
1864          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
1865            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
1866
1867        TargetLowering &TLI = G->getTargetLoweringInfo();
1868        const char *Name =
1869          TLI.getTargetNodeName(getOpcode());
1870        if (Name) return Name;
1871      }
1872
1873      return "<<Unknown Target Node>>";
1874    }
1875
1876  case ISD::PCMARKER:      return "PCMarker";
1877  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
1878  case ISD::SRCVALUE:      return "SrcValue";
1879  case ISD::VALUETYPE:     return "ValueType";
1880  case ISD::STRING:        return "String";
1881  case ISD::EntryToken:    return "EntryToken";
1882  case ISD::TokenFactor:   return "TokenFactor";
1883  case ISD::AssertSext:    return "AssertSext";
1884  case ISD::AssertZext:    return "AssertZext";
1885  case ISD::Constant:      return "Constant";
1886  case ISD::TargetConstant: return "TargetConstant";
1887  case ISD::ConstantFP:    return "ConstantFP";
1888  case ISD::ConstantVec:   return "ConstantVec";
1889  case ISD::GlobalAddress: return "GlobalAddress";
1890  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
1891  case ISD::FrameIndex:    return "FrameIndex";
1892  case ISD::TargetFrameIndex: return "TargetFrameIndex";
1893  case ISD::BasicBlock:    return "BasicBlock";
1894  case ISD::Register:      return "Register";
1895  case ISD::ExternalSymbol: return "ExternalSymbol";
1896  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
1897  case ISD::ConstantPool:  return "ConstantPool";
1898  case ISD::TargetConstantPool:  return "TargetConstantPool";
1899  case ISD::CopyToReg:     return "CopyToReg";
1900  case ISD::CopyFromReg:   return "CopyFromReg";
1901  case ISD::UNDEF:         return "undef";
1902
1903  // Unary operators
1904  case ISD::FABS:   return "fabs";
1905  case ISD::FNEG:   return "fneg";
1906  case ISD::FSQRT:  return "fsqrt";
1907  case ISD::FSIN:   return "fsin";
1908  case ISD::FCOS:   return "fcos";
1909
1910  // Binary operators
1911  case ISD::ADD:    return "add";
1912  case ISD::SUB:    return "sub";
1913  case ISD::MUL:    return "mul";
1914  case ISD::MULHU:  return "mulhu";
1915  case ISD::MULHS:  return "mulhs";
1916  case ISD::SDIV:   return "sdiv";
1917  case ISD::UDIV:   return "udiv";
1918  case ISD::SREM:   return "srem";
1919  case ISD::UREM:   return "urem";
1920  case ISD::AND:    return "and";
1921  case ISD::OR:     return "or";
1922  case ISD::XOR:    return "xor";
1923  case ISD::SHL:    return "shl";
1924  case ISD::SRA:    return "sra";
1925  case ISD::SRL:    return "srl";
1926  case ISD::ROTL:   return "rotl";
1927  case ISD::ROTR:   return "rotr";
1928  case ISD::BSWAP:  return "bswap";
1929  case ISD::FADD:   return "fadd";
1930  case ISD::FSUB:   return "fsub";
1931  case ISD::FMUL:   return "fmul";
1932  case ISD::FDIV:   return "fdiv";
1933  case ISD::FREM:   return "frem";
1934  case ISD::VADD:   return "vadd";
1935  case ISD::VSUB:   return "vsub";
1936  case ISD::VMUL:   return "vmul";
1937
1938  case ISD::SETCC:       return "setcc";
1939  case ISD::SELECT:      return "select";
1940  case ISD::SELECT_CC:   return "select_cc";
1941  case ISD::ADD_PARTS:   return "add_parts";
1942  case ISD::SUB_PARTS:   return "sub_parts";
1943  case ISD::SHL_PARTS:   return "shl_parts";
1944  case ISD::SRA_PARTS:   return "sra_parts";
1945  case ISD::SRL_PARTS:   return "srl_parts";
1946
1947  // Conversion operators.
1948  case ISD::SIGN_EXTEND: return "sign_extend";
1949  case ISD::ZERO_EXTEND: return "zero_extend";
1950  case ISD::ANY_EXTEND:  return "any_extend";
1951  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
1952  case ISD::TRUNCATE:    return "truncate";
1953  case ISD::FP_ROUND:    return "fp_round";
1954  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
1955  case ISD::FP_EXTEND:   return "fp_extend";
1956
1957  case ISD::SINT_TO_FP:  return "sint_to_fp";
1958  case ISD::UINT_TO_FP:  return "uint_to_fp";
1959  case ISD::FP_TO_SINT:  return "fp_to_sint";
1960  case ISD::FP_TO_UINT:  return "fp_to_uint";
1961  case ISD::BIT_CONVERT: return "bit_convert";
1962
1963    // Control flow instructions
1964  case ISD::BR:      return "br";
1965  case ISD::BRCOND:  return "brcond";
1966  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
1967  case ISD::BR_CC:  return "br_cc";
1968  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
1969  case ISD::RET:     return "ret";
1970  case ISD::CALL:    return "call";
1971  case ISD::TAILCALL:return "tailcall";
1972  case ISD::CALLSEQ_START:  return "callseq_start";
1973  case ISD::CALLSEQ_END:    return "callseq_end";
1974
1975    // Other operators
1976  case ISD::LOAD:    return "load";
1977  case ISD::STORE:   return "store";
1978  case ISD::VLOAD:   return "vload";
1979  case ISD::EXTLOAD:    return "extload";
1980  case ISD::SEXTLOAD:   return "sextload";
1981  case ISD::ZEXTLOAD:   return "zextload";
1982  case ISD::TRUNCSTORE: return "truncstore";
1983
1984  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
1985  case ISD::EXTRACT_ELEMENT: return "extract_element";
1986  case ISD::BUILD_PAIR: return "build_pair";
1987  case ISD::MEMSET:  return "memset";
1988  case ISD::MEMCPY:  return "memcpy";
1989  case ISD::MEMMOVE: return "memmove";
1990
1991  // Bit counting
1992  case ISD::CTPOP:   return "ctpop";
1993  case ISD::CTTZ:    return "cttz";
1994  case ISD::CTLZ:    return "ctlz";
1995
1996  // IO Intrinsics
1997  case ISD::READPORT: return "readport";
1998  case ISD::WRITEPORT: return "writeport";
1999  case ISD::READIO: return "readio";
2000  case ISD::WRITEIO: return "writeio";
2001
2002  // Debug info
2003  case ISD::LOCATION: return "location";
2004  case ISD::DEBUG_LOC: return "debug_loc";
2005  case ISD::DEBUG_LABEL: return "debug_label";
2006
2007  case ISD::CONDCODE:
2008    switch (cast<CondCodeSDNode>(this)->get()) {
2009    default: assert(0 && "Unknown setcc condition!");
2010    case ISD::SETOEQ:  return "setoeq";
2011    case ISD::SETOGT:  return "setogt";
2012    case ISD::SETOGE:  return "setoge";
2013    case ISD::SETOLT:  return "setolt";
2014    case ISD::SETOLE:  return "setole";
2015    case ISD::SETONE:  return "setone";
2016
2017    case ISD::SETO:    return "seto";
2018    case ISD::SETUO:   return "setuo";
2019    case ISD::SETUEQ:  return "setue";
2020    case ISD::SETUGT:  return "setugt";
2021    case ISD::SETUGE:  return "setuge";
2022    case ISD::SETULT:  return "setult";
2023    case ISD::SETULE:  return "setule";
2024    case ISD::SETUNE:  return "setune";
2025
2026    case ISD::SETEQ:   return "seteq";
2027    case ISD::SETGT:   return "setgt";
2028    case ISD::SETGE:   return "setge";
2029    case ISD::SETLT:   return "setlt";
2030    case ISD::SETLE:   return "setle";
2031    case ISD::SETNE:   return "setne";
2032    }
2033  }
2034}
2035
2036void SDNode::dump() const { dump(0); }
2037void SDNode::dump(const SelectionDAG *G) const {
2038  std::cerr << (void*)this << ": ";
2039
2040  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2041    if (i) std::cerr << ",";
2042    if (getValueType(i) == MVT::Other)
2043      std::cerr << "ch";
2044    else
2045      std::cerr << MVT::getValueTypeString(getValueType(i));
2046  }
2047  std::cerr << " = " << getOperationName(G);
2048
2049  std::cerr << " ";
2050  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2051    if (i) std::cerr << ", ";
2052    std::cerr << (void*)getOperand(i).Val;
2053    if (unsigned RN = getOperand(i).ResNo)
2054      std::cerr << ":" << RN;
2055  }
2056
2057  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2058    std::cerr << "<" << CSDN->getValue() << ">";
2059  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2060    std::cerr << "<" << CSDN->getValue() << ">";
2061  } else if (const GlobalAddressSDNode *GADN =
2062             dyn_cast<GlobalAddressSDNode>(this)) {
2063    int offset = GADN->getOffset();
2064    std::cerr << "<";
2065    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2066    if (offset > 0)
2067      std::cerr << " + " << offset;
2068    else
2069      std::cerr << " " << offset;
2070  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2071    std::cerr << "<" << FIDN->getIndex() << ">";
2072  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2073    std::cerr << "<" << *CP->get() << ">";
2074  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2075    std::cerr << "<";
2076    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2077    if (LBB)
2078      std::cerr << LBB->getName() << " ";
2079    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2080  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2081    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2082      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2083    } else {
2084      std::cerr << " #" << R->getReg();
2085    }
2086  } else if (const ExternalSymbolSDNode *ES =
2087             dyn_cast<ExternalSymbolSDNode>(this)) {
2088    std::cerr << "'" << ES->getSymbol() << "'";
2089  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2090    if (M->getValue())
2091      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2092    else
2093      std::cerr << "<null:" << M->getOffset() << ">";
2094  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2095    std::cerr << ":" << getValueTypeString(N->getVT());
2096  }
2097}
2098
2099static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2100  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2101    if (N->getOperand(i).Val->hasOneUse())
2102      DumpNodes(N->getOperand(i).Val, indent+2, G);
2103    else
2104      std::cerr << "\n" << std::string(indent+2, ' ')
2105                << (void*)N->getOperand(i).Val << ": <multiple use>";
2106
2107
2108  std::cerr << "\n" << std::string(indent, ' ');
2109  N->dump(G);
2110}
2111
2112void SelectionDAG::dump() const {
2113  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2114  std::vector<const SDNode*> Nodes;
2115  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2116       I != E; ++I)
2117    Nodes.push_back(I);
2118
2119  std::sort(Nodes.begin(), Nodes.end());
2120
2121  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2122    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2123      DumpNodes(Nodes[i], 2, this);
2124  }
2125
2126  DumpNodes(getRoot().Val, 2, this);
2127
2128  std::cerr << "\n\n";
2129}
2130
2131