SelectionDAG.cpp revision 36ddaf294db6fbbbac5e79ca0e2d166ea36fe187
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41  SDVTList Res = {VTs, NumVTs};
42  return Res;
43}
44
45//===----------------------------------------------------------------------===//
46//                              ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
53bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
54  return Value.bitwiseIsEqual(V);
55}
56
57bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58                                           const APFloat& Val) {
59  // convert modifies in place, so make a copy.
60  APFloat Val2 = APFloat(Val);
61  switch (VT) {
62  default:
63    return false;         // These can't be represented as floating point!
64
65  // FIXME rounding mode needs to be more flexible
66  case MVT::f32:
67    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69              APFloat::opOK;
70  case MVT::f64:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           &Val2.getSemantics() == &APFloat::IEEEdouble ||
73           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74             APFloat::opOK;
75  // TODO: Figure out how to test if we can use a shorter type instead!
76  case MVT::f80:
77  case MVT::f128:
78  case MVT::ppcf128:
79    return true;
80  }
81}
82
83//===----------------------------------------------------------------------===//
84//                              ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90  // Look through a bit convert.
91  if (N->getOpcode() == ISD::BIT_CONVERT)
92    N = N->getOperand(0).Val;
93
94  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96  unsigned i = 0, e = N->getNumOperands();
97
98  // Skip over all of the undef values.
99  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100    ++i;
101
102  // Do not accept an all-undef vector.
103  if (i == e) return false;
104
105  // Do not accept build_vectors that aren't all constants or which have non-~0
106  // elements.
107  SDOperand NotZero = N->getOperand(i);
108  if (isa<ConstantSDNode>(NotZero)) {
109    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110      return false;
111  } else if (isa<ConstantFPSDNode>(NotZero)) {
112    MVT::ValueType VT = NotZero.getValueType();
113    if (VT== MVT::f64) {
114      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
116        return false;
117    } else {
118      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119                      getValueAPF().convertToAPInt().getZExtValue() !=
120          (uint32_t)-1)
121        return false;
122    }
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// isDebugLabel - Return true if the specified node represents a debug
176/// label (i.e. ISD::LABEL or TargetInstrInfo::LANEL node and third operand
177/// is 0).
178bool ISD::isDebugLabel(const SDNode *N) {
179  SDOperand Zero;
180  if (N->getOpcode() == ISD::LABEL)
181    Zero = N->getOperand(2);
182  else if (N->isTargetOpcode() &&
183           N->getTargetOpcode() == TargetInstrInfo::LABEL)
184    // Chain moved to last operand.
185    Zero = N->getOperand(1);
186  else
187    return false;
188  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
189}
190
191/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
192/// when given the operation for (X op Y).
193ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
194  // To perform this operation, we just need to swap the L and G bits of the
195  // operation.
196  unsigned OldL = (Operation >> 2) & 1;
197  unsigned OldG = (Operation >> 1) & 1;
198  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
199                       (OldL << 1) |       // New G bit
200                       (OldG << 2));        // New L bit.
201}
202
203/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
204/// 'op' is a valid SetCC operation.
205ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
206  unsigned Operation = Op;
207  if (isInteger)
208    Operation ^= 7;   // Flip L, G, E bits, but not U.
209  else
210    Operation ^= 15;  // Flip all of the condition bits.
211  if (Operation > ISD::SETTRUE2)
212    Operation &= ~8;     // Don't let N and U bits get set.
213  return ISD::CondCode(Operation);
214}
215
216
217/// isSignedOp - For an integer comparison, return 1 if the comparison is a
218/// signed operation and 2 if the result is an unsigned comparison.  Return zero
219/// if the operation does not depend on the sign of the input (setne and seteq).
220static int isSignedOp(ISD::CondCode Opcode) {
221  switch (Opcode) {
222  default: assert(0 && "Illegal integer setcc operation!");
223  case ISD::SETEQ:
224  case ISD::SETNE: return 0;
225  case ISD::SETLT:
226  case ISD::SETLE:
227  case ISD::SETGT:
228  case ISD::SETGE: return 1;
229  case ISD::SETULT:
230  case ISD::SETULE:
231  case ISD::SETUGT:
232  case ISD::SETUGE: return 2;
233  }
234}
235
236/// getSetCCOrOperation - Return the result of a logical OR between different
237/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
238/// returns SETCC_INVALID if it is not possible to represent the resultant
239/// comparison.
240ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
241                                       bool isInteger) {
242  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
243    // Cannot fold a signed integer setcc with an unsigned integer setcc.
244    return ISD::SETCC_INVALID;
245
246  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
247
248  // If the N and U bits get set then the resultant comparison DOES suddenly
249  // care about orderedness, and is true when ordered.
250  if (Op > ISD::SETTRUE2)
251    Op &= ~16;     // Clear the U bit if the N bit is set.
252
253  // Canonicalize illegal integer setcc's.
254  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
255    Op = ISD::SETNE;
256
257  return ISD::CondCode(Op);
258}
259
260/// getSetCCAndOperation - Return the result of a logical AND between different
261/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
262/// function returns zero if it is not possible to represent the resultant
263/// comparison.
264ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
265                                        bool isInteger) {
266  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
267    // Cannot fold a signed setcc with an unsigned setcc.
268    return ISD::SETCC_INVALID;
269
270  // Combine all of the condition bits.
271  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
272
273  // Canonicalize illegal integer setcc's.
274  if (isInteger) {
275    switch (Result) {
276    default: break;
277    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
278    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
279    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
280    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
281    }
282  }
283
284  return Result;
285}
286
287const TargetMachine &SelectionDAG::getTarget() const {
288  return TLI.getTargetMachine();
289}
290
291//===----------------------------------------------------------------------===//
292//                           SDNode Profile Support
293//===----------------------------------------------------------------------===//
294
295/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
296///
297static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
298  ID.AddInteger(OpC);
299}
300
301/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
302/// solely with their pointer.
303void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
304  ID.AddPointer(VTList.VTs);
305}
306
307/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
308///
309static void AddNodeIDOperands(FoldingSetNodeID &ID,
310                              const SDOperand *Ops, unsigned NumOps) {
311  for (; NumOps; --NumOps, ++Ops) {
312    ID.AddPointer(Ops->Val);
313    ID.AddInteger(Ops->ResNo);
314  }
315}
316
317static void AddNodeIDNode(FoldingSetNodeID &ID,
318                          unsigned short OpC, SDVTList VTList,
319                          const SDOperand *OpList, unsigned N) {
320  AddNodeIDOpcode(ID, OpC);
321  AddNodeIDValueTypes(ID, VTList);
322  AddNodeIDOperands(ID, OpList, N);
323}
324
325/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
326/// data.
327static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
328  AddNodeIDOpcode(ID, N->getOpcode());
329  // Add the return value info.
330  AddNodeIDValueTypes(ID, N->getVTList());
331  // Add the operand info.
332  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
333
334  // Handle SDNode leafs with special info.
335  switch (N->getOpcode()) {
336  default: break;  // Normal nodes don't need extra info.
337  case ISD::TargetConstant:
338  case ISD::Constant:
339    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
340    break;
341  case ISD::TargetConstantFP:
342  case ISD::ConstantFP: {
343    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
344    break;
345  }
346  case ISD::TargetGlobalAddress:
347  case ISD::GlobalAddress:
348  case ISD::TargetGlobalTLSAddress:
349  case ISD::GlobalTLSAddress: {
350    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
351    ID.AddPointer(GA->getGlobal());
352    ID.AddInteger(GA->getOffset());
353    break;
354  }
355  case ISD::BasicBlock:
356    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
357    break;
358  case ISD::Register:
359    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
360    break;
361  case ISD::SRCVALUE: {
362    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
363    ID.AddPointer(SV->getValue());
364    ID.AddInteger(SV->getOffset());
365    break;
366  }
367  case ISD::FrameIndex:
368  case ISD::TargetFrameIndex:
369    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
370    break;
371  case ISD::JumpTable:
372  case ISD::TargetJumpTable:
373    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
374    break;
375  case ISD::ConstantPool:
376  case ISD::TargetConstantPool: {
377    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
378    ID.AddInteger(CP->getAlignment());
379    ID.AddInteger(CP->getOffset());
380    if (CP->isMachineConstantPoolEntry())
381      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
382    else
383      ID.AddPointer(CP->getConstVal());
384    break;
385  }
386  case ISD::LOAD: {
387    LoadSDNode *LD = cast<LoadSDNode>(N);
388    ID.AddInteger(LD->getAddressingMode());
389    ID.AddInteger(LD->getExtensionType());
390    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
391    ID.AddInteger(LD->getAlignment());
392    ID.AddInteger(LD->isVolatile());
393    break;
394  }
395  case ISD::STORE: {
396    StoreSDNode *ST = cast<StoreSDNode>(N);
397    ID.AddInteger(ST->getAddressingMode());
398    ID.AddInteger(ST->isTruncatingStore());
399    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
400    ID.AddInteger(ST->getAlignment());
401    ID.AddInteger(ST->isVolatile());
402    break;
403  }
404  }
405}
406
407//===----------------------------------------------------------------------===//
408//                              SelectionDAG Class
409//===----------------------------------------------------------------------===//
410
411/// RemoveDeadNodes - This method deletes all unreachable nodes in the
412/// SelectionDAG.
413void SelectionDAG::RemoveDeadNodes() {
414  // Create a dummy node (which is not added to allnodes), that adds a reference
415  // to the root node, preventing it from being deleted.
416  HandleSDNode Dummy(getRoot());
417
418  SmallVector<SDNode*, 128> DeadNodes;
419
420  // Add all obviously-dead nodes to the DeadNodes worklist.
421  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
422    if (I->use_empty())
423      DeadNodes.push_back(I);
424
425  // Process the worklist, deleting the nodes and adding their uses to the
426  // worklist.
427  while (!DeadNodes.empty()) {
428    SDNode *N = DeadNodes.back();
429    DeadNodes.pop_back();
430
431    // Take the node out of the appropriate CSE map.
432    RemoveNodeFromCSEMaps(N);
433
434    // Next, brutally remove the operand list.  This is safe to do, as there are
435    // no cycles in the graph.
436    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
437      SDNode *Operand = I->Val;
438      Operand->removeUser(N);
439
440      // Now that we removed this operand, see if there are no uses of it left.
441      if (Operand->use_empty())
442        DeadNodes.push_back(Operand);
443    }
444    if (N->OperandsNeedDelete)
445      delete[] N->OperandList;
446    N->OperandList = 0;
447    N->NumOperands = 0;
448
449    // Finally, remove N itself.
450    AllNodes.erase(N);
451  }
452
453  // If the root changed (e.g. it was a dead load, update the root).
454  setRoot(Dummy.getValue());
455}
456
457void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
458  SmallVector<SDNode*, 16> DeadNodes;
459  DeadNodes.push_back(N);
460
461  // Process the worklist, deleting the nodes and adding their uses to the
462  // worklist.
463  while (!DeadNodes.empty()) {
464    SDNode *N = DeadNodes.back();
465    DeadNodes.pop_back();
466
467    // Take the node out of the appropriate CSE map.
468    RemoveNodeFromCSEMaps(N);
469
470    // Next, brutally remove the operand list.  This is safe to do, as there are
471    // no cycles in the graph.
472    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
473      SDNode *Operand = I->Val;
474      Operand->removeUser(N);
475
476      // Now that we removed this operand, see if there are no uses of it left.
477      if (Operand->use_empty())
478        DeadNodes.push_back(Operand);
479    }
480    if (N->OperandsNeedDelete)
481      delete[] N->OperandList;
482    N->OperandList = 0;
483    N->NumOperands = 0;
484
485    // Finally, remove N itself.
486    Deleted.push_back(N);
487    AllNodes.erase(N);
488  }
489}
490
491void SelectionDAG::DeleteNode(SDNode *N) {
492  assert(N->use_empty() && "Cannot delete a node that is not dead!");
493
494  // First take this out of the appropriate CSE map.
495  RemoveNodeFromCSEMaps(N);
496
497  // Finally, remove uses due to operands of this node, remove from the
498  // AllNodes list, and delete the node.
499  DeleteNodeNotInCSEMaps(N);
500}
501
502void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
503
504  // Remove it from the AllNodes list.
505  AllNodes.remove(N);
506
507  // Drop all of the operands and decrement used nodes use counts.
508  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
509    I->Val->removeUser(N);
510  if (N->OperandsNeedDelete)
511    delete[] N->OperandList;
512  N->OperandList = 0;
513  N->NumOperands = 0;
514
515  delete N;
516}
517
518/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
519/// correspond to it.  This is useful when we're about to delete or repurpose
520/// the node.  We don't want future request for structurally identical nodes
521/// to return N anymore.
522void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
523  bool Erased = false;
524  switch (N->getOpcode()) {
525  case ISD::HANDLENODE: return;  // noop.
526  case ISD::STRING:
527    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
528    break;
529  case ISD::CONDCODE:
530    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
531           "Cond code doesn't exist!");
532    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
533    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
534    break;
535  case ISD::ExternalSymbol:
536    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
537    break;
538  case ISD::TargetExternalSymbol:
539    Erased =
540      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
541    break;
542  case ISD::VALUETYPE: {
543    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
544    if (MVT::isExtendedVT(VT)) {
545      Erased = ExtendedValueTypeNodes.erase(VT);
546    } else {
547      Erased = ValueTypeNodes[VT] != 0;
548      ValueTypeNodes[VT] = 0;
549    }
550    break;
551  }
552  default:
553    // Remove it from the CSE Map.
554    Erased = CSEMap.RemoveNode(N);
555    break;
556  }
557#ifndef NDEBUG
558  // Verify that the node was actually in one of the CSE maps, unless it has a
559  // flag result (which cannot be CSE'd) or is one of the special cases that are
560  // not subject to CSE.
561  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
562      !N->isTargetOpcode()) {
563    N->dump(this);
564    cerr << "\n";
565    assert(0 && "Node is not in map!");
566  }
567#endif
568}
569
570/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
571/// has been taken out and modified in some way.  If the specified node already
572/// exists in the CSE maps, do not modify the maps, but return the existing node
573/// instead.  If it doesn't exist, add it and return null.
574///
575SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
576  assert(N->getNumOperands() && "This is a leaf node!");
577  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
578    return 0;    // Never add these nodes.
579
580  // Check that remaining values produced are not flags.
581  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
582    if (N->getValueType(i) == MVT::Flag)
583      return 0;   // Never CSE anything that produces a flag.
584
585  SDNode *New = CSEMap.GetOrInsertNode(N);
586  if (New != N) return New;  // Node already existed.
587  return 0;
588}
589
590/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
591/// were replaced with those specified.  If this node is never memoized,
592/// return null, otherwise return a pointer to the slot it would take.  If a
593/// node already exists with these operands, the slot will be non-null.
594SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
595                                           void *&InsertPos) {
596  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
597    return 0;    // Never add these nodes.
598
599  // Check that remaining values produced are not flags.
600  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
601    if (N->getValueType(i) == MVT::Flag)
602      return 0;   // Never CSE anything that produces a flag.
603
604  SDOperand Ops[] = { Op };
605  FoldingSetNodeID ID;
606  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
607  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
608}
609
610/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
611/// were replaced with those specified.  If this node is never memoized,
612/// return null, otherwise return a pointer to the slot it would take.  If a
613/// node already exists with these operands, the slot will be non-null.
614SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
615                                           SDOperand Op1, SDOperand Op2,
616                                           void *&InsertPos) {
617  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
618    return 0;    // Never add these nodes.
619
620  // Check that remaining values produced are not flags.
621  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
622    if (N->getValueType(i) == MVT::Flag)
623      return 0;   // Never CSE anything that produces a flag.
624
625  SDOperand Ops[] = { Op1, Op2 };
626  FoldingSetNodeID ID;
627  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
628  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
629}
630
631
632/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
633/// were replaced with those specified.  If this node is never memoized,
634/// return null, otherwise return a pointer to the slot it would take.  If a
635/// node already exists with these operands, the slot will be non-null.
636SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
637                                           const SDOperand *Ops,unsigned NumOps,
638                                           void *&InsertPos) {
639  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
640    return 0;    // Never add these nodes.
641
642  // Check that remaining values produced are not flags.
643  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
644    if (N->getValueType(i) == MVT::Flag)
645      return 0;   // Never CSE anything that produces a flag.
646
647  FoldingSetNodeID ID;
648  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
649
650  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
651    ID.AddInteger(LD->getAddressingMode());
652    ID.AddInteger(LD->getExtensionType());
653    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
654    ID.AddInteger(LD->getAlignment());
655    ID.AddInteger(LD->isVolatile());
656  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
657    ID.AddInteger(ST->getAddressingMode());
658    ID.AddInteger(ST->isTruncatingStore());
659    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
660    ID.AddInteger(ST->getAlignment());
661    ID.AddInteger(ST->isVolatile());
662  }
663
664  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
665}
666
667
668SelectionDAG::~SelectionDAG() {
669  while (!AllNodes.empty()) {
670    SDNode *N = AllNodes.begin();
671    N->SetNextInBucket(0);
672    if (N->OperandsNeedDelete)
673      delete [] N->OperandList;
674    N->OperandList = 0;
675    N->NumOperands = 0;
676    AllNodes.pop_front();
677  }
678}
679
680SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
681  if (Op.getValueType() == VT) return Op;
682  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
683  return getNode(ISD::AND, Op.getValueType(), Op,
684                 getConstant(Imm, Op.getValueType()));
685}
686
687SDOperand SelectionDAG::getString(const std::string &Val) {
688  StringSDNode *&N = StringNodes[Val];
689  if (!N) {
690    N = new StringSDNode(Val);
691    AllNodes.push_back(N);
692  }
693  return SDOperand(N, 0);
694}
695
696SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
697  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
698
699  MVT::ValueType EltVT =
700    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
701
702  // Mask out any bits that are not valid for this constant.
703  Val &= MVT::getIntVTBitMask(EltVT);
704
705  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
706  FoldingSetNodeID ID;
707  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
708  ID.AddInteger(Val);
709  void *IP = 0;
710  SDNode *N = NULL;
711  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
712    if (!MVT::isVector(VT))
713      return SDOperand(N, 0);
714  if (!N) {
715    N = new ConstantSDNode(isT, Val, EltVT);
716    CSEMap.InsertNode(N, IP);
717    AllNodes.push_back(N);
718  }
719
720  SDOperand Result(N, 0);
721  if (MVT::isVector(VT)) {
722    SmallVector<SDOperand, 8> Ops;
723    Ops.assign(MVT::getVectorNumElements(VT), Result);
724    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
725  }
726  return Result;
727}
728
729SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
730  return getConstant(Val, TLI.getPointerTy(), isTarget);
731}
732
733
734SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
735                                      bool isTarget) {
736  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
737
738  MVT::ValueType EltVT =
739    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
740
741  // Do the map lookup using the actual bit pattern for the floating point
742  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
743  // we don't have issues with SNANs.
744  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
745  FoldingSetNodeID ID;
746  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
747  ID.AddAPFloat(V);
748  void *IP = 0;
749  SDNode *N = NULL;
750  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
751    if (!MVT::isVector(VT))
752      return SDOperand(N, 0);
753  if (!N) {
754    N = new ConstantFPSDNode(isTarget, V, EltVT);
755    CSEMap.InsertNode(N, IP);
756    AllNodes.push_back(N);
757  }
758
759  SDOperand Result(N, 0);
760  if (MVT::isVector(VT)) {
761    SmallVector<SDOperand, 8> Ops;
762    Ops.assign(MVT::getVectorNumElements(VT), Result);
763    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
764  }
765  return Result;
766}
767
768SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
769                                      bool isTarget) {
770  MVT::ValueType EltVT =
771    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
772  if (EltVT==MVT::f32)
773    return getConstantFP(APFloat((float)Val), VT, isTarget);
774  else
775    return getConstantFP(APFloat(Val), VT, isTarget);
776}
777
778SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
779                                         MVT::ValueType VT, int Offset,
780                                         bool isTargetGA) {
781  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
782  unsigned Opc;
783  if (GVar && GVar->isThreadLocal())
784    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
785  else
786    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
789  ID.AddPointer(GV);
790  ID.AddInteger(Offset);
791  void *IP = 0;
792  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
793   return SDOperand(E, 0);
794  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
795  CSEMap.InsertNode(N, IP);
796  AllNodes.push_back(N);
797  return SDOperand(N, 0);
798}
799
800SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
801                                      bool isTarget) {
802  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
803  FoldingSetNodeID ID;
804  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
805  ID.AddInteger(FI);
806  void *IP = 0;
807  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
808    return SDOperand(E, 0);
809  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
810  CSEMap.InsertNode(N, IP);
811  AllNodes.push_back(N);
812  return SDOperand(N, 0);
813}
814
815SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
816  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
817  FoldingSetNodeID ID;
818  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
819  ID.AddInteger(JTI);
820  void *IP = 0;
821  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
822    return SDOperand(E, 0);
823  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
824  CSEMap.InsertNode(N, IP);
825  AllNodes.push_back(N);
826  return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
830                                        unsigned Alignment, int Offset,
831                                        bool isTarget) {
832  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
833  FoldingSetNodeID ID;
834  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
835  ID.AddInteger(Alignment);
836  ID.AddInteger(Offset);
837  ID.AddPointer(C);
838  void *IP = 0;
839  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
840    return SDOperand(E, 0);
841  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
842  CSEMap.InsertNode(N, IP);
843  AllNodes.push_back(N);
844  return SDOperand(N, 0);
845}
846
847
848SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
849                                        MVT::ValueType VT,
850                                        unsigned Alignment, int Offset,
851                                        bool isTarget) {
852  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
855  ID.AddInteger(Alignment);
856  ID.AddInteger(Offset);
857  C->AddSelectionDAGCSEId(ID);
858  void *IP = 0;
859  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
860    return SDOperand(E, 0);
861  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
862  CSEMap.InsertNode(N, IP);
863  AllNodes.push_back(N);
864  return SDOperand(N, 0);
865}
866
867
868SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
871  ID.AddPointer(MBB);
872  void *IP = 0;
873  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
874    return SDOperand(E, 0);
875  SDNode *N = new BasicBlockSDNode(MBB);
876  CSEMap.InsertNode(N, IP);
877  AllNodes.push_back(N);
878  return SDOperand(N, 0);
879}
880
881SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
882  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
883    ValueTypeNodes.resize(VT+1);
884
885  SDNode *&N = MVT::isExtendedVT(VT) ?
886    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
887
888  if (N) return SDOperand(N, 0);
889  N = new VTSDNode(VT);
890  AllNodes.push_back(N);
891  return SDOperand(N, 0);
892}
893
894SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
895  SDNode *&N = ExternalSymbols[Sym];
896  if (N) return SDOperand(N, 0);
897  N = new ExternalSymbolSDNode(false, Sym, VT);
898  AllNodes.push_back(N);
899  return SDOperand(N, 0);
900}
901
902SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
903                                                MVT::ValueType VT) {
904  SDNode *&N = TargetExternalSymbols[Sym];
905  if (N) return SDOperand(N, 0);
906  N = new ExternalSymbolSDNode(true, Sym, VT);
907  AllNodes.push_back(N);
908  return SDOperand(N, 0);
909}
910
911SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
912  if ((unsigned)Cond >= CondCodeNodes.size())
913    CondCodeNodes.resize(Cond+1);
914
915  if (CondCodeNodes[Cond] == 0) {
916    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
917    AllNodes.push_back(CondCodeNodes[Cond]);
918  }
919  return SDOperand(CondCodeNodes[Cond], 0);
920}
921
922SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
925  ID.AddInteger(RegNo);
926  void *IP = 0;
927  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
928    return SDOperand(E, 0);
929  SDNode *N = new RegisterSDNode(RegNo, VT);
930  CSEMap.InsertNode(N, IP);
931  AllNodes.push_back(N);
932  return SDOperand(N, 0);
933}
934
935SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
936  assert((!V || isa<PointerType>(V->getType())) &&
937         "SrcValue is not a pointer?");
938
939  FoldingSetNodeID ID;
940  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
941  ID.AddPointer(V);
942  ID.AddInteger(Offset);
943  void *IP = 0;
944  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
945    return SDOperand(E, 0);
946  SDNode *N = new SrcValueSDNode(V, Offset);
947  CSEMap.InsertNode(N, IP);
948  AllNodes.push_back(N);
949  return SDOperand(N, 0);
950}
951
952/// CreateStackTemporary - Create a stack temporary, suitable for holding the
953/// specified value type.
954SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
955  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
956  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
957  const Type *Ty = MVT::getTypeForValueType(VT);
958  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
959  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
960  return getFrameIndex(FrameIdx, TLI.getPointerTy());
961}
962
963
964SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
965                                  SDOperand N2, ISD::CondCode Cond) {
966  // These setcc operations always fold.
967  switch (Cond) {
968  default: break;
969  case ISD::SETFALSE:
970  case ISD::SETFALSE2: return getConstant(0, VT);
971  case ISD::SETTRUE:
972  case ISD::SETTRUE2:  return getConstant(1, VT);
973
974  case ISD::SETOEQ:
975  case ISD::SETOGT:
976  case ISD::SETOGE:
977  case ISD::SETOLT:
978  case ISD::SETOLE:
979  case ISD::SETONE:
980  case ISD::SETO:
981  case ISD::SETUO:
982  case ISD::SETUEQ:
983  case ISD::SETUNE:
984    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
985    break;
986  }
987
988  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
989    uint64_t C2 = N2C->getValue();
990    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
991      uint64_t C1 = N1C->getValue();
992
993      // Sign extend the operands if required
994      if (ISD::isSignedIntSetCC(Cond)) {
995        C1 = N1C->getSignExtended();
996        C2 = N2C->getSignExtended();
997      }
998
999      switch (Cond) {
1000      default: assert(0 && "Unknown integer setcc!");
1001      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1002      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1003      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1004      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1005      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1006      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1007      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1008      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1009      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1010      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1011      }
1012    }
1013  }
1014  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1015    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1016      // No compile time operations on this type yet.
1017      if (N1C->getValueType(0) == MVT::ppcf128)
1018        return SDOperand();
1019
1020      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1021      switch (Cond) {
1022      default: break;
1023      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1024                          return getNode(ISD::UNDEF, VT);
1025                        // fall through
1026      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1027      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1028                          return getNode(ISD::UNDEF, VT);
1029                        // fall through
1030      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1031                                           R==APFloat::cmpLessThan, VT);
1032      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1033                          return getNode(ISD::UNDEF, VT);
1034                        // fall through
1035      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1036      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1037                          return getNode(ISD::UNDEF, VT);
1038                        // fall through
1039      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1040      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1041                          return getNode(ISD::UNDEF, VT);
1042                        // fall through
1043      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1044                                           R==APFloat::cmpEqual, VT);
1045      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1046                          return getNode(ISD::UNDEF, VT);
1047                        // fall through
1048      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1049                                           R==APFloat::cmpEqual, VT);
1050      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1051      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1052      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1053                                           R==APFloat::cmpEqual, VT);
1054      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1055      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1056                                           R==APFloat::cmpLessThan, VT);
1057      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1058                                           R==APFloat::cmpUnordered, VT);
1059      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1060      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1061      }
1062    } else {
1063      // Ensure that the constant occurs on the RHS.
1064      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1065    }
1066
1067  // Could not fold it.
1068  return SDOperand();
1069}
1070
1071/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1072/// this predicate to simplify operations downstream.  Mask is known to be zero
1073/// for bits that V cannot have.
1074bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1075                                     unsigned Depth) const {
1076  // The masks are not wide enough to represent this type!  Should use APInt.
1077  if (Op.getValueType() == MVT::i128)
1078    return false;
1079
1080  uint64_t KnownZero, KnownOne;
1081  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1082  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1083  return (KnownZero & Mask) == Mask;
1084}
1085
1086/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1087/// known to be either zero or one and return them in the KnownZero/KnownOne
1088/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1089/// processing.
1090void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1091                                     uint64_t &KnownZero, uint64_t &KnownOne,
1092                                     unsigned Depth) const {
1093  KnownZero = KnownOne = 0;   // Don't know anything.
1094  if (Depth == 6 || Mask == 0)
1095    return;  // Limit search depth.
1096
1097  // The masks are not wide enough to represent this type!  Should use APInt.
1098  if (Op.getValueType() == MVT::i128)
1099    return;
1100
1101  uint64_t KnownZero2, KnownOne2;
1102
1103  switch (Op.getOpcode()) {
1104  case ISD::Constant:
1105    // We know all of the bits for a constant!
1106    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1107    KnownZero = ~KnownOne & Mask;
1108    return;
1109  case ISD::AND:
1110    // If either the LHS or the RHS are Zero, the result is zero.
1111    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1112    Mask &= ~KnownZero;
1113    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1114    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1115    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1116
1117    // Output known-1 bits are only known if set in both the LHS & RHS.
1118    KnownOne &= KnownOne2;
1119    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1120    KnownZero |= KnownZero2;
1121    return;
1122  case ISD::OR:
1123    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1124    Mask &= ~KnownOne;
1125    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1126    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1127    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1128
1129    // Output known-0 bits are only known if clear in both the LHS & RHS.
1130    KnownZero &= KnownZero2;
1131    // Output known-1 are known to be set if set in either the LHS | RHS.
1132    KnownOne |= KnownOne2;
1133    return;
1134  case ISD::XOR: {
1135    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1136    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1137    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1138    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1139
1140    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1141    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1142    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1143    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1144    KnownZero = KnownZeroOut;
1145    return;
1146  }
1147  case ISD::SELECT:
1148    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1149    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1150    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1151    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1152
1153    // Only known if known in both the LHS and RHS.
1154    KnownOne &= KnownOne2;
1155    KnownZero &= KnownZero2;
1156    return;
1157  case ISD::SELECT_CC:
1158    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1159    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1160    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1161    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1162
1163    // Only known if known in both the LHS and RHS.
1164    KnownOne &= KnownOne2;
1165    KnownZero &= KnownZero2;
1166    return;
1167  case ISD::SETCC:
1168    // If we know the result of a setcc has the top bits zero, use this info.
1169    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1170      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1171    return;
1172  case ISD::SHL:
1173    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1174    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1175      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1176                        KnownZero, KnownOne, Depth+1);
1177      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1178      KnownZero <<= SA->getValue();
1179      KnownOne  <<= SA->getValue();
1180      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1181    }
1182    return;
1183  case ISD::SRL:
1184    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1185    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1186      MVT::ValueType VT = Op.getValueType();
1187      unsigned ShAmt = SA->getValue();
1188
1189      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1190      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1191                        KnownZero, KnownOne, Depth+1);
1192      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1193      KnownZero &= TypeMask;
1194      KnownOne  &= TypeMask;
1195      KnownZero >>= ShAmt;
1196      KnownOne  >>= ShAmt;
1197
1198      uint64_t HighBits = (1ULL << ShAmt)-1;
1199      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1200      KnownZero |= HighBits;  // High bits known zero.
1201    }
1202    return;
1203  case ISD::SRA:
1204    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1205      MVT::ValueType VT = Op.getValueType();
1206      unsigned ShAmt = SA->getValue();
1207
1208      // Compute the new bits that are at the top now.
1209      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1210
1211      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1212      // If any of the demanded bits are produced by the sign extension, we also
1213      // demand the input sign bit.
1214      uint64_t HighBits = (1ULL << ShAmt)-1;
1215      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1216      if (HighBits & Mask)
1217        InDemandedMask |= MVT::getIntVTSignBit(VT);
1218
1219      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1220                        Depth+1);
1221      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222      KnownZero &= TypeMask;
1223      KnownOne  &= TypeMask;
1224      KnownZero >>= ShAmt;
1225      KnownOne  >>= ShAmt;
1226
1227      // Handle the sign bits.
1228      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1229      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1230
1231      if (KnownZero & SignBit) {
1232        KnownZero |= HighBits;  // New bits are known zero.
1233      } else if (KnownOne & SignBit) {
1234        KnownOne  |= HighBits;  // New bits are known one.
1235      }
1236    }
1237    return;
1238  case ISD::SIGN_EXTEND_INREG: {
1239    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1240
1241    // Sign extension.  Compute the demanded bits in the result that are not
1242    // present in the input.
1243    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1244
1245    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1246    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1247
1248    // If the sign extended bits are demanded, we know that the sign
1249    // bit is demanded.
1250    if (NewBits)
1251      InputDemandedBits |= InSignBit;
1252
1253    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1254                      KnownZero, KnownOne, Depth+1);
1255    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1256
1257    // If the sign bit of the input is known set or clear, then we know the
1258    // top bits of the result.
1259    if (KnownZero & InSignBit) {          // Input sign bit known clear
1260      KnownZero |= NewBits;
1261      KnownOne  &= ~NewBits;
1262    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1263      KnownOne  |= NewBits;
1264      KnownZero &= ~NewBits;
1265    } else {                              // Input sign bit unknown
1266      KnownZero &= ~NewBits;
1267      KnownOne  &= ~NewBits;
1268    }
1269    return;
1270  }
1271  case ISD::CTTZ:
1272  case ISD::CTLZ:
1273  case ISD::CTPOP: {
1274    MVT::ValueType VT = Op.getValueType();
1275    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1276    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1277    KnownOne  = 0;
1278    return;
1279  }
1280  case ISD::LOAD: {
1281    if (ISD::isZEXTLoad(Op.Val)) {
1282      LoadSDNode *LD = cast<LoadSDNode>(Op);
1283      MVT::ValueType VT = LD->getMemoryVT();
1284      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1285    }
1286    return;
1287  }
1288  case ISD::ZERO_EXTEND: {
1289    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1290    uint64_t NewBits = (~InMask) & Mask;
1291    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1292                      KnownOne, Depth+1);
1293    KnownZero |= NewBits & Mask;
1294    KnownOne  &= ~NewBits;
1295    return;
1296  }
1297  case ISD::SIGN_EXTEND: {
1298    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1299    unsigned InBits    = MVT::getSizeInBits(InVT);
1300    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1301    uint64_t InSignBit = 1ULL << (InBits-1);
1302    uint64_t NewBits   = (~InMask) & Mask;
1303    uint64_t InDemandedBits = Mask & InMask;
1304
1305    // If any of the sign extended bits are demanded, we know that the sign
1306    // bit is demanded.
1307    if (NewBits & Mask)
1308      InDemandedBits |= InSignBit;
1309
1310    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1311                      KnownOne, Depth+1);
1312    // If the sign bit is known zero or one, the  top bits match.
1313    if (KnownZero & InSignBit) {
1314      KnownZero |= NewBits;
1315      KnownOne  &= ~NewBits;
1316    } else if (KnownOne & InSignBit) {
1317      KnownOne  |= NewBits;
1318      KnownZero &= ~NewBits;
1319    } else {   // Otherwise, top bits aren't known.
1320      KnownOne  &= ~NewBits;
1321      KnownZero &= ~NewBits;
1322    }
1323    return;
1324  }
1325  case ISD::ANY_EXTEND: {
1326    MVT::ValueType VT = Op.getOperand(0).getValueType();
1327    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1328                      KnownZero, KnownOne, Depth+1);
1329    return;
1330  }
1331  case ISD::TRUNCATE: {
1332    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1333    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1334    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1335    KnownZero &= OutMask;
1336    KnownOne &= OutMask;
1337    break;
1338  }
1339  case ISD::AssertZext: {
1340    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1341    uint64_t InMask = MVT::getIntVTBitMask(VT);
1342    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1343                      KnownOne, Depth+1);
1344    KnownZero |= (~InMask) & Mask;
1345    return;
1346  }
1347  case ISD::FGETSIGN:
1348    // All bits are zero except the low bit.
1349    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1350    return;
1351
1352  case ISD::ADD: {
1353    // If either the LHS or the RHS are Zero, the result is zero.
1354    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1355    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1356    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1357    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1358
1359    // Output known-0 bits are known if clear or set in both the low clear bits
1360    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1361    // low 3 bits clear.
1362    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1363                                     CountTrailingZeros_64(~KnownZero2));
1364
1365    KnownZero = (1ULL << KnownZeroOut) - 1;
1366    KnownOne = 0;
1367    return;
1368  }
1369  case ISD::SUB: {
1370    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1371    if (!CLHS) return;
1372
1373    // We know that the top bits of C-X are clear if X contains less bits
1374    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1375    // positive if we can prove that X is >= 0 and < 16.
1376    MVT::ValueType VT = CLHS->getValueType(0);
1377    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1378      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1379      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1380      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1381      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1382
1383      // If all of the MaskV bits are known to be zero, then we know the output
1384      // top bits are zero, because we now know that the output is from [0-C].
1385      if ((KnownZero & MaskV) == MaskV) {
1386        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1387        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1388        KnownOne = 0;   // No one bits known.
1389      } else {
1390        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1391      }
1392    }
1393    return;
1394  }
1395  default:
1396    // Allow the target to implement this method for its nodes.
1397    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1398  case ISD::INTRINSIC_WO_CHAIN:
1399  case ISD::INTRINSIC_W_CHAIN:
1400  case ISD::INTRINSIC_VOID:
1401      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1402    }
1403    return;
1404  }
1405}
1406
1407/// ComputeNumSignBits - Return the number of times the sign bit of the
1408/// register is replicated into the other bits.  We know that at least 1 bit
1409/// is always equal to the sign bit (itself), but other cases can give us
1410/// information.  For example, immediately after an "SRA X, 2", we know that
1411/// the top 3 bits are all equal to each other, so we return 3.
1412unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1413  MVT::ValueType VT = Op.getValueType();
1414  assert(MVT::isInteger(VT) && "Invalid VT!");
1415  unsigned VTBits = MVT::getSizeInBits(VT);
1416  unsigned Tmp, Tmp2;
1417
1418  if (Depth == 6)
1419    return 1;  // Limit search depth.
1420
1421  switch (Op.getOpcode()) {
1422  default: break;
1423  case ISD::AssertSext:
1424    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1425    return VTBits-Tmp+1;
1426  case ISD::AssertZext:
1427    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1428    return VTBits-Tmp;
1429
1430  case ISD::Constant: {
1431    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1432    // If negative, invert the bits, then look at it.
1433    if (Val & MVT::getIntVTSignBit(VT))
1434      Val = ~Val;
1435
1436    // Shift the bits so they are the leading bits in the int64_t.
1437    Val <<= 64-VTBits;
1438
1439    // Return # leading zeros.  We use 'min' here in case Val was zero before
1440    // shifting.  We don't want to return '64' as for an i32 "0".
1441    return std::min(VTBits, CountLeadingZeros_64(Val));
1442  }
1443
1444  case ISD::SIGN_EXTEND:
1445    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1446    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1447
1448  case ISD::SIGN_EXTEND_INREG:
1449    // Max of the input and what this extends.
1450    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1451    Tmp = VTBits-Tmp+1;
1452
1453    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1454    return std::max(Tmp, Tmp2);
1455
1456  case ISD::SRA:
1457    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1458    // SRA X, C   -> adds C sign bits.
1459    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1460      Tmp += C->getValue();
1461      if (Tmp > VTBits) Tmp = VTBits;
1462    }
1463    return Tmp;
1464  case ISD::SHL:
1465    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1466      // shl destroys sign bits.
1467      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468      if (C->getValue() >= VTBits ||      // Bad shift.
1469          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1470      return Tmp - C->getValue();
1471    }
1472    break;
1473  case ISD::AND:
1474  case ISD::OR:
1475  case ISD::XOR:    // NOT is handled here.
1476    // Logical binary ops preserve the number of sign bits.
1477    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1478    if (Tmp == 1) return 1;  // Early out.
1479    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1480    return std::min(Tmp, Tmp2);
1481
1482  case ISD::SELECT:
1483    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1484    if (Tmp == 1) return 1;  // Early out.
1485    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1486    return std::min(Tmp, Tmp2);
1487
1488  case ISD::SETCC:
1489    // If setcc returns 0/-1, all bits are sign bits.
1490    if (TLI.getSetCCResultContents() ==
1491        TargetLowering::ZeroOrNegativeOneSetCCResult)
1492      return VTBits;
1493    break;
1494  case ISD::ROTL:
1495  case ISD::ROTR:
1496    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1497      unsigned RotAmt = C->getValue() & (VTBits-1);
1498
1499      // Handle rotate right by N like a rotate left by 32-N.
1500      if (Op.getOpcode() == ISD::ROTR)
1501        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1502
1503      // If we aren't rotating out all of the known-in sign bits, return the
1504      // number that are left.  This handles rotl(sext(x), 1) for example.
1505      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1506      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1507    }
1508    break;
1509  case ISD::ADD:
1510    // Add can have at most one carry bit.  Thus we know that the output
1511    // is, at worst, one more bit than the inputs.
1512    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1513    if (Tmp == 1) return 1;  // Early out.
1514
1515    // Special case decrementing a value (ADD X, -1):
1516    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1517      if (CRHS->isAllOnesValue()) {
1518        uint64_t KnownZero, KnownOne;
1519        uint64_t Mask = MVT::getIntVTBitMask(VT);
1520        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1521
1522        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1523        // sign bits set.
1524        if ((KnownZero|1) == Mask)
1525          return VTBits;
1526
1527        // If we are subtracting one from a positive number, there is no carry
1528        // out of the result.
1529        if (KnownZero & MVT::getIntVTSignBit(VT))
1530          return Tmp;
1531      }
1532
1533    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1534    if (Tmp2 == 1) return 1;
1535      return std::min(Tmp, Tmp2)-1;
1536    break;
1537
1538  case ISD::SUB:
1539    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1540    if (Tmp2 == 1) return 1;
1541
1542    // Handle NEG.
1543    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1544      if (CLHS->getValue() == 0) {
1545        uint64_t KnownZero, KnownOne;
1546        uint64_t Mask = MVT::getIntVTBitMask(VT);
1547        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1548        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1549        // sign bits set.
1550        if ((KnownZero|1) == Mask)
1551          return VTBits;
1552
1553        // If the input is known to be positive (the sign bit is known clear),
1554        // the output of the NEG has the same number of sign bits as the input.
1555        if (KnownZero & MVT::getIntVTSignBit(VT))
1556          return Tmp2;
1557
1558        // Otherwise, we treat this like a SUB.
1559      }
1560
1561    // Sub can have at most one carry bit.  Thus we know that the output
1562    // is, at worst, one more bit than the inputs.
1563    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1564    if (Tmp == 1) return 1;  // Early out.
1565      return std::min(Tmp, Tmp2)-1;
1566    break;
1567  case ISD::TRUNCATE:
1568    // FIXME: it's tricky to do anything useful for this, but it is an important
1569    // case for targets like X86.
1570    break;
1571  }
1572
1573  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1574  if (Op.getOpcode() == ISD::LOAD) {
1575    LoadSDNode *LD = cast<LoadSDNode>(Op);
1576    unsigned ExtType = LD->getExtensionType();
1577    switch (ExtType) {
1578    default: break;
1579    case ISD::SEXTLOAD:    // '17' bits known
1580      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1581      return VTBits-Tmp+1;
1582    case ISD::ZEXTLOAD:    // '16' bits known
1583      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1584      return VTBits-Tmp;
1585    }
1586  }
1587
1588  // Allow the target to implement this method for its nodes.
1589  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1590      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1591      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1592      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1593    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1594    if (NumBits > 1) return NumBits;
1595  }
1596
1597  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1598  // use this information.
1599  uint64_t KnownZero, KnownOne;
1600  uint64_t Mask = MVT::getIntVTBitMask(VT);
1601  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1602
1603  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1604  if (KnownZero & SignBit) {        // SignBit is 0
1605    Mask = KnownZero;
1606  } else if (KnownOne & SignBit) {  // SignBit is 1;
1607    Mask = KnownOne;
1608  } else {
1609    // Nothing known.
1610    return 1;
1611  }
1612
1613  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1614  // the number of identical bits in the top of the input value.
1615  Mask ^= ~0ULL;
1616  Mask <<= 64-VTBits;
1617  // Return # leading zeros.  We use 'min' here in case Val was zero before
1618  // shifting.  We don't want to return '64' as for an i32 "0".
1619  return std::min(VTBits, CountLeadingZeros_64(Mask));
1620}
1621
1622
1623/// getNode - Gets or creates the specified node.
1624///
1625SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1626  FoldingSetNodeID ID;
1627  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1628  void *IP = 0;
1629  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1630    return SDOperand(E, 0);
1631  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1632  CSEMap.InsertNode(N, IP);
1633
1634  AllNodes.push_back(N);
1635  return SDOperand(N, 0);
1636}
1637
1638SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1639                                SDOperand Operand) {
1640  unsigned Tmp1;
1641  // Constant fold unary operations with an integer constant operand.
1642  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1643    uint64_t Val = C->getValue();
1644    switch (Opcode) {
1645    default: break;
1646    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1647    case ISD::ANY_EXTEND:
1648    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1649    case ISD::TRUNCATE:    return getConstant(Val, VT);
1650    case ISD::UINT_TO_FP:
1651    case ISD::SINT_TO_FP: {
1652      const uint64_t zero[] = {0, 0};
1653      // No compile time operations on this type.
1654      if (VT==MVT::ppcf128)
1655        break;
1656      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1657      (void)apf.convertFromZeroExtendedInteger(&Val,
1658                               MVT::getSizeInBits(Operand.getValueType()),
1659                               Opcode==ISD::SINT_TO_FP,
1660                               APFloat::rmNearestTiesToEven);
1661      return getConstantFP(apf, VT);
1662    }
1663    case ISD::BIT_CONVERT:
1664      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1665        return getConstantFP(BitsToFloat(Val), VT);
1666      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1667        return getConstantFP(BitsToDouble(Val), VT);
1668      break;
1669    case ISD::BSWAP:
1670      switch(VT) {
1671      default: assert(0 && "Invalid bswap!"); break;
1672      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1673      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1674      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1675      }
1676      break;
1677    case ISD::CTPOP:
1678      switch(VT) {
1679      default: assert(0 && "Invalid ctpop!"); break;
1680      case MVT::i1: return getConstant(Val != 0, VT);
1681      case MVT::i8:
1682        Tmp1 = (unsigned)Val & 0xFF;
1683        return getConstant(CountPopulation_32(Tmp1), VT);
1684      case MVT::i16:
1685        Tmp1 = (unsigned)Val & 0xFFFF;
1686        return getConstant(CountPopulation_32(Tmp1), VT);
1687      case MVT::i32:
1688        return getConstant(CountPopulation_32((unsigned)Val), VT);
1689      case MVT::i64:
1690        return getConstant(CountPopulation_64(Val), VT);
1691      }
1692    case ISD::CTLZ:
1693      switch(VT) {
1694      default: assert(0 && "Invalid ctlz!"); break;
1695      case MVT::i1: return getConstant(Val == 0, VT);
1696      case MVT::i8:
1697        Tmp1 = (unsigned)Val & 0xFF;
1698        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1699      case MVT::i16:
1700        Tmp1 = (unsigned)Val & 0xFFFF;
1701        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1702      case MVT::i32:
1703        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1704      case MVT::i64:
1705        return getConstant(CountLeadingZeros_64(Val), VT);
1706      }
1707    case ISD::CTTZ:
1708      switch(VT) {
1709      default: assert(0 && "Invalid cttz!"); break;
1710      case MVT::i1: return getConstant(Val == 0, VT);
1711      case MVT::i8:
1712        Tmp1 = (unsigned)Val | 0x100;
1713        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1714      case MVT::i16:
1715        Tmp1 = (unsigned)Val | 0x10000;
1716        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1717      case MVT::i32:
1718        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1719      case MVT::i64:
1720        return getConstant(CountTrailingZeros_64(Val), VT);
1721      }
1722    }
1723  }
1724
1725  // Constant fold unary operations with a floating point constant operand.
1726  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1727    APFloat V = C->getValueAPF();    // make copy
1728    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1729      switch (Opcode) {
1730      case ISD::FNEG:
1731        V.changeSign();
1732        return getConstantFP(V, VT);
1733      case ISD::FABS:
1734        V.clearSign();
1735        return getConstantFP(V, VT);
1736      case ISD::FP_ROUND:
1737      case ISD::FP_EXTEND:
1738        // This can return overflow, underflow, or inexact; we don't care.
1739        // FIXME need to be more flexible about rounding mode.
1740        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1741                         VT==MVT::f64 ? APFloat::IEEEdouble :
1742                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1743                         VT==MVT::f128 ? APFloat::IEEEquad :
1744                         APFloat::Bogus,
1745                         APFloat::rmNearestTiesToEven);
1746        return getConstantFP(V, VT);
1747      case ISD::FP_TO_SINT:
1748      case ISD::FP_TO_UINT: {
1749        integerPart x;
1750        assert(integerPartWidth >= 64);
1751        // FIXME need to be more flexible about rounding mode.
1752        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1753                              Opcode==ISD::FP_TO_SINT,
1754                              APFloat::rmTowardZero);
1755        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1756          break;
1757        return getConstant(x, VT);
1758      }
1759      case ISD::BIT_CONVERT:
1760        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1761          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1762        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1763          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1764        break;
1765      }
1766    }
1767  }
1768
1769  unsigned OpOpcode = Operand.Val->getOpcode();
1770  switch (Opcode) {
1771  case ISD::TokenFactor:
1772    return Operand;         // Factor of one node?  No factor.
1773  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1774  case ISD::FP_EXTEND:
1775    assert(MVT::isFloatingPoint(VT) &&
1776           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1777    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1778    break;
1779    case ISD::SIGN_EXTEND:
1780    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1781           "Invalid SIGN_EXTEND!");
1782    if (Operand.getValueType() == VT) return Operand;   // noop extension
1783    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1784           && "Invalid sext node, dst < src!");
1785    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1786      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1787    break;
1788  case ISD::ZERO_EXTEND:
1789    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1790           "Invalid ZERO_EXTEND!");
1791    if (Operand.getValueType() == VT) return Operand;   // noop extension
1792    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1793           && "Invalid zext node, dst < src!");
1794    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1795      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1796    break;
1797  case ISD::ANY_EXTEND:
1798    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1799           "Invalid ANY_EXTEND!");
1800    if (Operand.getValueType() == VT) return Operand;   // noop extension
1801    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1802           && "Invalid anyext node, dst < src!");
1803    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1804      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1805      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1806    break;
1807  case ISD::TRUNCATE:
1808    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1809           "Invalid TRUNCATE!");
1810    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1811    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1812           && "Invalid truncate node, src < dst!");
1813    if (OpOpcode == ISD::TRUNCATE)
1814      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1815    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1816             OpOpcode == ISD::ANY_EXTEND) {
1817      // If the source is smaller than the dest, we still need an extend.
1818      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1819          < MVT::getSizeInBits(VT))
1820        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1821      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1822               > MVT::getSizeInBits(VT))
1823        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1824      else
1825        return Operand.Val->getOperand(0);
1826    }
1827    break;
1828  case ISD::BIT_CONVERT:
1829    // Basic sanity checking.
1830    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1831           && "Cannot BIT_CONVERT between types of different sizes!");
1832    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1833    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1834      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1835    if (OpOpcode == ISD::UNDEF)
1836      return getNode(ISD::UNDEF, VT);
1837    break;
1838  case ISD::SCALAR_TO_VECTOR:
1839    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1840           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1841           "Illegal SCALAR_TO_VECTOR node!");
1842    break;
1843  case ISD::FNEG:
1844    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1845      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1846                     Operand.Val->getOperand(0));
1847    if (OpOpcode == ISD::FNEG)  // --X -> X
1848      return Operand.Val->getOperand(0);
1849    break;
1850  case ISD::FABS:
1851    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1852      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1853    break;
1854  }
1855
1856  SDNode *N;
1857  SDVTList VTs = getVTList(VT);
1858  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1859    FoldingSetNodeID ID;
1860    SDOperand Ops[1] = { Operand };
1861    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1862    void *IP = 0;
1863    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1864      return SDOperand(E, 0);
1865    N = new UnarySDNode(Opcode, VTs, Operand);
1866    CSEMap.InsertNode(N, IP);
1867  } else {
1868    N = new UnarySDNode(Opcode, VTs, Operand);
1869  }
1870  AllNodes.push_back(N);
1871  return SDOperand(N, 0);
1872}
1873
1874
1875
1876SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1877                                SDOperand N1, SDOperand N2) {
1878  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1879  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1880  switch (Opcode) {
1881  default: break;
1882  case ISD::TokenFactor:
1883    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1884           N2.getValueType() == MVT::Other && "Invalid token factor!");
1885    // Fold trivial token factors.
1886    if (N1.getOpcode() == ISD::EntryToken) return N2;
1887    if (N2.getOpcode() == ISD::EntryToken) return N1;
1888    break;
1889  case ISD::AND:
1890    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1891           N1.getValueType() == VT && "Binary operator types must match!");
1892    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1893    // worth handling here.
1894    if (N2C && N2C->getValue() == 0)
1895      return N2;
1896    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1897      return N1;
1898    break;
1899  case ISD::OR:
1900  case ISD::XOR:
1901    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1902           N1.getValueType() == VT && "Binary operator types must match!");
1903    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1904    // worth handling here.
1905    if (N2C && N2C->getValue() == 0)
1906      return N1;
1907    break;
1908  case ISD::UDIV:
1909  case ISD::UREM:
1910  case ISD::MULHU:
1911  case ISD::MULHS:
1912    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1913    // fall through
1914  case ISD::ADD:
1915  case ISD::SUB:
1916  case ISD::MUL:
1917  case ISD::SDIV:
1918  case ISD::SREM:
1919  case ISD::FADD:
1920  case ISD::FSUB:
1921  case ISD::FMUL:
1922  case ISD::FDIV:
1923  case ISD::FREM:
1924    assert(N1.getValueType() == N2.getValueType() &&
1925           N1.getValueType() == VT && "Binary operator types must match!");
1926    break;
1927  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1928    assert(N1.getValueType() == VT &&
1929           MVT::isFloatingPoint(N1.getValueType()) &&
1930           MVT::isFloatingPoint(N2.getValueType()) &&
1931           "Invalid FCOPYSIGN!");
1932    break;
1933  case ISD::SHL:
1934  case ISD::SRA:
1935  case ISD::SRL:
1936  case ISD::ROTL:
1937  case ISD::ROTR:
1938    assert(VT == N1.getValueType() &&
1939           "Shift operators return type must be the same as their first arg");
1940    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1941           VT != MVT::i1 && "Shifts only work on integers");
1942    break;
1943  case ISD::FP_ROUND_INREG: {
1944    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1945    assert(VT == N1.getValueType() && "Not an inreg round!");
1946    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1947           "Cannot FP_ROUND_INREG integer types");
1948    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1949           "Not rounding down!");
1950    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1951    break;
1952  }
1953  case ISD::FP_ROUND:
1954    assert(MVT::isFloatingPoint(VT) &&
1955           MVT::isFloatingPoint(N1.getValueType()) &&
1956           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
1957           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
1958    if (N1.getValueType() == VT) return N1;  // noop conversion.
1959    break;
1960  case ISD::AssertSext:
1961  case ISD::AssertZext: {
1962    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1963    assert(VT == N1.getValueType() && "Not an inreg extend!");
1964    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1965           "Cannot *_EXTEND_INREG FP types");
1966    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1967           "Not extending!");
1968    break;
1969  }
1970  case ISD::SIGN_EXTEND_INREG: {
1971    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1972    assert(VT == N1.getValueType() && "Not an inreg extend!");
1973    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1974           "Cannot *_EXTEND_INREG FP types");
1975    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1976           "Not extending!");
1977    if (EVT == VT) return N1;  // Not actually extending
1978
1979    if (N1C) {
1980      int64_t Val = N1C->getValue();
1981      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1982      Val <<= 64-FromBits;
1983      Val >>= 64-FromBits;
1984      return getConstant(Val, VT);
1985    }
1986    break;
1987  }
1988  case ISD::EXTRACT_VECTOR_ELT:
1989    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
1990
1991    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
1992    // expanding copies of large vectors from registers.
1993    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
1994        N1.getNumOperands() > 0) {
1995      unsigned Factor =
1996        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
1997      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
1998                     N1.getOperand(N2C->getValue() / Factor),
1999                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2000    }
2001
2002    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2003    // expanding large vector constants.
2004    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2005      return N1.getOperand(N2C->getValue());
2006
2007    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2008    // operations are lowered to scalars.
2009    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2010      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2011        if (IEC == N2C)
2012          return N1.getOperand(1);
2013        else
2014          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2015      }
2016    break;
2017  case ISD::EXTRACT_ELEMENT:
2018    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2019
2020    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2021    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2022    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2023    if (N1.getOpcode() == ISD::BUILD_PAIR)
2024      return N1.getOperand(N2C->getValue());
2025
2026    // EXTRACT_ELEMENT of a constant int is also very common.
2027    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2028      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2029      return getConstant(C->getValue() >> Shift, VT);
2030    }
2031    break;
2032  }
2033
2034  if (N1C) {
2035    if (N2C) {
2036      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2037      switch (Opcode) {
2038      case ISD::ADD: return getConstant(C1 + C2, VT);
2039      case ISD::SUB: return getConstant(C1 - C2, VT);
2040      case ISD::MUL: return getConstant(C1 * C2, VT);
2041      case ISD::UDIV:
2042        if (C2) return getConstant(C1 / C2, VT);
2043        break;
2044      case ISD::UREM :
2045        if (C2) return getConstant(C1 % C2, VT);
2046        break;
2047      case ISD::SDIV :
2048        if (C2) return getConstant(N1C->getSignExtended() /
2049                                   N2C->getSignExtended(), VT);
2050        break;
2051      case ISD::SREM :
2052        if (C2) return getConstant(N1C->getSignExtended() %
2053                                   N2C->getSignExtended(), VT);
2054        break;
2055      case ISD::AND  : return getConstant(C1 & C2, VT);
2056      case ISD::OR   : return getConstant(C1 | C2, VT);
2057      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2058      case ISD::SHL  : return getConstant(C1 << C2, VT);
2059      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2060      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2061      case ISD::ROTL :
2062        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2063                           VT);
2064      case ISD::ROTR :
2065        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2066                           VT);
2067      default: break;
2068      }
2069    } else {      // Cannonicalize constant to RHS if commutative
2070      if (isCommutativeBinOp(Opcode)) {
2071        std::swap(N1C, N2C);
2072        std::swap(N1, N2);
2073      }
2074    }
2075  }
2076
2077  // Constant fold FP operations.
2078  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2079  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2080  if (N1CFP) {
2081    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2082      // Cannonicalize constant to RHS if commutative
2083      std::swap(N1CFP, N2CFP);
2084      std::swap(N1, N2);
2085    } else if (N2CFP && VT != MVT::ppcf128) {
2086      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2087      APFloat::opStatus s;
2088      switch (Opcode) {
2089      case ISD::FADD:
2090        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2091        if (s != APFloat::opInvalidOp)
2092          return getConstantFP(V1, VT);
2093        break;
2094      case ISD::FSUB:
2095        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2096        if (s!=APFloat::opInvalidOp)
2097          return getConstantFP(V1, VT);
2098        break;
2099      case ISD::FMUL:
2100        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2101        if (s!=APFloat::opInvalidOp)
2102          return getConstantFP(V1, VT);
2103        break;
2104      case ISD::FDIV:
2105        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2106        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2107          return getConstantFP(V1, VT);
2108        break;
2109      case ISD::FREM :
2110        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2111        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2112          return getConstantFP(V1, VT);
2113        break;
2114      case ISD::FCOPYSIGN:
2115        V1.copySign(V2);
2116        return getConstantFP(V1, VT);
2117      default: break;
2118      }
2119    }
2120  }
2121
2122  // Canonicalize an UNDEF to the RHS, even over a constant.
2123  if (N1.getOpcode() == ISD::UNDEF) {
2124    if (isCommutativeBinOp(Opcode)) {
2125      std::swap(N1, N2);
2126    } else {
2127      switch (Opcode) {
2128      case ISD::FP_ROUND_INREG:
2129      case ISD::SIGN_EXTEND_INREG:
2130      case ISD::SUB:
2131      case ISD::FSUB:
2132      case ISD::FDIV:
2133      case ISD::FREM:
2134      case ISD::SRA:
2135        return N1;     // fold op(undef, arg2) -> undef
2136      case ISD::UDIV:
2137      case ISD::SDIV:
2138      case ISD::UREM:
2139      case ISD::SREM:
2140      case ISD::SRL:
2141      case ISD::SHL:
2142        if (!MVT::isVector(VT))
2143          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2144        // For vectors, we can't easily build an all zero vector, just return
2145        // the LHS.
2146        return N2;
2147      }
2148    }
2149  }
2150
2151  // Fold a bunch of operators when the RHS is undef.
2152  if (N2.getOpcode() == ISD::UNDEF) {
2153    switch (Opcode) {
2154    case ISD::ADD:
2155    case ISD::ADDC:
2156    case ISD::ADDE:
2157    case ISD::SUB:
2158    case ISD::FADD:
2159    case ISD::FSUB:
2160    case ISD::FMUL:
2161    case ISD::FDIV:
2162    case ISD::FREM:
2163    case ISD::UDIV:
2164    case ISD::SDIV:
2165    case ISD::UREM:
2166    case ISD::SREM:
2167    case ISD::XOR:
2168      return N2;       // fold op(arg1, undef) -> undef
2169    case ISD::MUL:
2170    case ISD::AND:
2171    case ISD::SRL:
2172    case ISD::SHL:
2173      if (!MVT::isVector(VT))
2174        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2175      // For vectors, we can't easily build an all zero vector, just return
2176      // the LHS.
2177      return N1;
2178    case ISD::OR:
2179      if (!MVT::isVector(VT))
2180        return getConstant(MVT::getIntVTBitMask(VT), VT);
2181      // For vectors, we can't easily build an all one vector, just return
2182      // the LHS.
2183      return N1;
2184    case ISD::SRA:
2185      return N1;
2186    }
2187  }
2188
2189  // Memoize this node if possible.
2190  SDNode *N;
2191  SDVTList VTs = getVTList(VT);
2192  if (VT != MVT::Flag) {
2193    SDOperand Ops[] = { N1, N2 };
2194    FoldingSetNodeID ID;
2195    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2196    void *IP = 0;
2197    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2198      return SDOperand(E, 0);
2199    N = new BinarySDNode(Opcode, VTs, N1, N2);
2200    CSEMap.InsertNode(N, IP);
2201  } else {
2202    N = new BinarySDNode(Opcode, VTs, N1, N2);
2203  }
2204
2205  AllNodes.push_back(N);
2206  return SDOperand(N, 0);
2207}
2208
2209SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2210                                SDOperand N1, SDOperand N2, SDOperand N3) {
2211  // Perform various simplifications.
2212  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2213  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2214  switch (Opcode) {
2215  case ISD::SETCC: {
2216    // Use FoldSetCC to simplify SETCC's.
2217    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2218    if (Simp.Val) return Simp;
2219    break;
2220  }
2221  case ISD::SELECT:
2222    if (N1C)
2223      if (N1C->getValue())
2224        return N2;             // select true, X, Y -> X
2225      else
2226        return N3;             // select false, X, Y -> Y
2227
2228    if (N2 == N3) return N2;   // select C, X, X -> X
2229    break;
2230  case ISD::BRCOND:
2231    if (N2C)
2232      if (N2C->getValue()) // Unconditional branch
2233        return getNode(ISD::BR, MVT::Other, N1, N3);
2234      else
2235        return N1;         // Never-taken branch
2236    break;
2237  case ISD::VECTOR_SHUFFLE:
2238    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2239           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2240           N3.getOpcode() == ISD::BUILD_VECTOR &&
2241           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2242           "Illegal VECTOR_SHUFFLE node!");
2243    break;
2244  case ISD::BIT_CONVERT:
2245    // Fold bit_convert nodes from a type to themselves.
2246    if (N1.getValueType() == VT)
2247      return N1;
2248    break;
2249  }
2250
2251  // Memoize node if it doesn't produce a flag.
2252  SDNode *N;
2253  SDVTList VTs = getVTList(VT);
2254  if (VT != MVT::Flag) {
2255    SDOperand Ops[] = { N1, N2, N3 };
2256    FoldingSetNodeID ID;
2257    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2258    void *IP = 0;
2259    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2260      return SDOperand(E, 0);
2261    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2262    CSEMap.InsertNode(N, IP);
2263  } else {
2264    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2265  }
2266  AllNodes.push_back(N);
2267  return SDOperand(N, 0);
2268}
2269
2270SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2271                                SDOperand N1, SDOperand N2, SDOperand N3,
2272                                SDOperand N4) {
2273  SDOperand Ops[] = { N1, N2, N3, N4 };
2274  return getNode(Opcode, VT, Ops, 4);
2275}
2276
2277SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2278                                SDOperand N1, SDOperand N2, SDOperand N3,
2279                                SDOperand N4, SDOperand N5) {
2280  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2281  return getNode(Opcode, VT, Ops, 5);
2282}
2283
2284SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2285                                  SDOperand Src, SDOperand Size,
2286                                  SDOperand Align,
2287                                  SDOperand AlwaysInline) {
2288  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2289  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2290}
2291
2292SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2293                                  SDOperand Src, SDOperand Size,
2294                                  SDOperand Align,
2295                                  SDOperand AlwaysInline) {
2296  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2297  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2298}
2299
2300SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2301                                  SDOperand Src, SDOperand Size,
2302                                  SDOperand Align,
2303                                  SDOperand AlwaysInline) {
2304  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2305  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2306}
2307
2308SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2309                                SDOperand Chain, SDOperand Ptr,
2310                                const Value *SV, int SVOffset,
2311                                bool isVolatile, unsigned Alignment) {
2312  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2313    const Type *Ty = 0;
2314    if (VT != MVT::iPTR) {
2315      Ty = MVT::getTypeForValueType(VT);
2316    } else if (SV) {
2317      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2318      assert(PT && "Value for load must be a pointer");
2319      Ty = PT->getElementType();
2320    }
2321    assert(Ty && "Could not get type information for load");
2322    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2323  }
2324  SDVTList VTs = getVTList(VT, MVT::Other);
2325  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2326  SDOperand Ops[] = { Chain, Ptr, Undef };
2327  FoldingSetNodeID ID;
2328  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2329  ID.AddInteger(ISD::UNINDEXED);
2330  ID.AddInteger(ISD::NON_EXTLOAD);
2331  ID.AddInteger((unsigned int)VT);
2332  ID.AddInteger(Alignment);
2333  ID.AddInteger(isVolatile);
2334  void *IP = 0;
2335  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2336    return SDOperand(E, 0);
2337  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2338                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2339                             isVolatile);
2340  CSEMap.InsertNode(N, IP);
2341  AllNodes.push_back(N);
2342  return SDOperand(N, 0);
2343}
2344
2345SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2346                                   SDOperand Chain, SDOperand Ptr,
2347                                   const Value *SV,
2348                                   int SVOffset, MVT::ValueType EVT,
2349                                   bool isVolatile, unsigned Alignment) {
2350  // If they are asking for an extending load from/to the same thing, return a
2351  // normal load.
2352  if (VT == EVT)
2353    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2354
2355  if (MVT::isVector(VT))
2356    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2357  else
2358    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2359           "Should only be an extending load, not truncating!");
2360  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2361         "Cannot sign/zero extend a FP/Vector load!");
2362  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2363         "Cannot convert from FP to Int or Int -> FP!");
2364
2365  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2366    const Type *Ty = 0;
2367    if (VT != MVT::iPTR) {
2368      Ty = MVT::getTypeForValueType(VT);
2369    } else if (SV) {
2370      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2371      assert(PT && "Value for load must be a pointer");
2372      Ty = PT->getElementType();
2373    }
2374    assert(Ty && "Could not get type information for load");
2375    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2376  }
2377  SDVTList VTs = getVTList(VT, MVT::Other);
2378  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2379  SDOperand Ops[] = { Chain, Ptr, Undef };
2380  FoldingSetNodeID ID;
2381  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2382  ID.AddInteger(ISD::UNINDEXED);
2383  ID.AddInteger(ExtType);
2384  ID.AddInteger((unsigned int)EVT);
2385  ID.AddInteger(Alignment);
2386  ID.AddInteger(isVolatile);
2387  void *IP = 0;
2388  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2389    return SDOperand(E, 0);
2390  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2391                             SV, SVOffset, Alignment, isVolatile);
2392  CSEMap.InsertNode(N, IP);
2393  AllNodes.push_back(N);
2394  return SDOperand(N, 0);
2395}
2396
2397SDOperand
2398SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2399                             SDOperand Offset, ISD::MemIndexedMode AM) {
2400  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2401  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2402         "Load is already a indexed load!");
2403  MVT::ValueType VT = OrigLoad.getValueType();
2404  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2405  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2406  FoldingSetNodeID ID;
2407  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2408  ID.AddInteger(AM);
2409  ID.AddInteger(LD->getExtensionType());
2410  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2411  ID.AddInteger(LD->getAlignment());
2412  ID.AddInteger(LD->isVolatile());
2413  void *IP = 0;
2414  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2415    return SDOperand(E, 0);
2416  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2417                             LD->getExtensionType(), LD->getMemoryVT(),
2418                             LD->getSrcValue(), LD->getSrcValueOffset(),
2419                             LD->getAlignment(), LD->isVolatile());
2420  CSEMap.InsertNode(N, IP);
2421  AllNodes.push_back(N);
2422  return SDOperand(N, 0);
2423}
2424
2425SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2426                                 SDOperand Ptr, const Value *SV, int SVOffset,
2427                                 bool isVolatile, unsigned Alignment) {
2428  MVT::ValueType VT = Val.getValueType();
2429
2430  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2431    const Type *Ty = 0;
2432    if (VT != MVT::iPTR) {
2433      Ty = MVT::getTypeForValueType(VT);
2434    } else if (SV) {
2435      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2436      assert(PT && "Value for store must be a pointer");
2437      Ty = PT->getElementType();
2438    }
2439    assert(Ty && "Could not get type information for store");
2440    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2441  }
2442  SDVTList VTs = getVTList(MVT::Other);
2443  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2444  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2445  FoldingSetNodeID ID;
2446  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2447  ID.AddInteger(ISD::UNINDEXED);
2448  ID.AddInteger(false);
2449  ID.AddInteger((unsigned int)VT);
2450  ID.AddInteger(Alignment);
2451  ID.AddInteger(isVolatile);
2452  void *IP = 0;
2453  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2454    return SDOperand(E, 0);
2455  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2456                              VT, SV, SVOffset, Alignment, isVolatile);
2457  CSEMap.InsertNode(N, IP);
2458  AllNodes.push_back(N);
2459  return SDOperand(N, 0);
2460}
2461
2462SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2463                                      SDOperand Ptr, const Value *SV,
2464                                      int SVOffset, MVT::ValueType SVT,
2465                                      bool isVolatile, unsigned Alignment) {
2466  MVT::ValueType VT = Val.getValueType();
2467
2468  if (VT == SVT)
2469    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2470
2471  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2472         "Not a truncation?");
2473  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2474         "Can't do FP-INT conversion!");
2475
2476  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2477    const Type *Ty = 0;
2478    if (VT != MVT::iPTR) {
2479      Ty = MVT::getTypeForValueType(VT);
2480    } else if (SV) {
2481      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2482      assert(PT && "Value for store must be a pointer");
2483      Ty = PT->getElementType();
2484    }
2485    assert(Ty && "Could not get type information for store");
2486    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2487  }
2488  SDVTList VTs = getVTList(MVT::Other);
2489  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2490  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2491  FoldingSetNodeID ID;
2492  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2493  ID.AddInteger(ISD::UNINDEXED);
2494  ID.AddInteger(1);
2495  ID.AddInteger((unsigned int)SVT);
2496  ID.AddInteger(Alignment);
2497  ID.AddInteger(isVolatile);
2498  void *IP = 0;
2499  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2500    return SDOperand(E, 0);
2501  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2502                              SVT, SV, SVOffset, Alignment, isVolatile);
2503  CSEMap.InsertNode(N, IP);
2504  AllNodes.push_back(N);
2505  return SDOperand(N, 0);
2506}
2507
2508SDOperand
2509SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2510                              SDOperand Offset, ISD::MemIndexedMode AM) {
2511  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2512  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2513         "Store is already a indexed store!");
2514  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2515  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2516  FoldingSetNodeID ID;
2517  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2518  ID.AddInteger(AM);
2519  ID.AddInteger(ST->isTruncatingStore());
2520  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2521  ID.AddInteger(ST->getAlignment());
2522  ID.AddInteger(ST->isVolatile());
2523  void *IP = 0;
2524  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2525    return SDOperand(E, 0);
2526  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2527                              ST->isTruncatingStore(), ST->getMemoryVT(),
2528                              ST->getSrcValue(), ST->getSrcValueOffset(),
2529                              ST->getAlignment(), ST->isVolatile());
2530  CSEMap.InsertNode(N, IP);
2531  AllNodes.push_back(N);
2532  return SDOperand(N, 0);
2533}
2534
2535SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2536                                 SDOperand Chain, SDOperand Ptr,
2537                                 SDOperand SV) {
2538  SDOperand Ops[] = { Chain, Ptr, SV };
2539  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2540}
2541
2542SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2543                                const SDOperand *Ops, unsigned NumOps) {
2544  switch (NumOps) {
2545  case 0: return getNode(Opcode, VT);
2546  case 1: return getNode(Opcode, VT, Ops[0]);
2547  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2548  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2549  default: break;
2550  }
2551
2552  switch (Opcode) {
2553  default: break;
2554  case ISD::SELECT_CC: {
2555    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2556    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2557           "LHS and RHS of condition must have same type!");
2558    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2559           "True and False arms of SelectCC must have same type!");
2560    assert(Ops[2].getValueType() == VT &&
2561           "select_cc node must be of same type as true and false value!");
2562    break;
2563  }
2564  case ISD::BR_CC: {
2565    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2566    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2567           "LHS/RHS of comparison should match types!");
2568    break;
2569  }
2570  }
2571
2572  // Memoize nodes.
2573  SDNode *N;
2574  SDVTList VTs = getVTList(VT);
2575  if (VT != MVT::Flag) {
2576    FoldingSetNodeID ID;
2577    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2578    void *IP = 0;
2579    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2580      return SDOperand(E, 0);
2581    N = new SDNode(Opcode, VTs, Ops, NumOps);
2582    CSEMap.InsertNode(N, IP);
2583  } else {
2584    N = new SDNode(Opcode, VTs, Ops, NumOps);
2585  }
2586  AllNodes.push_back(N);
2587  return SDOperand(N, 0);
2588}
2589
2590SDOperand SelectionDAG::getNode(unsigned Opcode,
2591                                std::vector<MVT::ValueType> &ResultTys,
2592                                const SDOperand *Ops, unsigned NumOps) {
2593  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2594                 Ops, NumOps);
2595}
2596
2597SDOperand SelectionDAG::getNode(unsigned Opcode,
2598                                const MVT::ValueType *VTs, unsigned NumVTs,
2599                                const SDOperand *Ops, unsigned NumOps) {
2600  if (NumVTs == 1)
2601    return getNode(Opcode, VTs[0], Ops, NumOps);
2602  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2603}
2604
2605SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2606                                const SDOperand *Ops, unsigned NumOps) {
2607  if (VTList.NumVTs == 1)
2608    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2609
2610  switch (Opcode) {
2611  // FIXME: figure out how to safely handle things like
2612  // int foo(int x) { return 1 << (x & 255); }
2613  // int bar() { return foo(256); }
2614#if 0
2615  case ISD::SRA_PARTS:
2616  case ISD::SRL_PARTS:
2617  case ISD::SHL_PARTS:
2618    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2619        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2620      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2621    else if (N3.getOpcode() == ISD::AND)
2622      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2623        // If the and is only masking out bits that cannot effect the shift,
2624        // eliminate the and.
2625        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2626        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2627          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2628      }
2629    break;
2630#endif
2631  }
2632
2633  // Memoize the node unless it returns a flag.
2634  SDNode *N;
2635  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2636    FoldingSetNodeID ID;
2637    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2638    void *IP = 0;
2639    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2640      return SDOperand(E, 0);
2641    if (NumOps == 1)
2642      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2643    else if (NumOps == 2)
2644      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2645    else if (NumOps == 3)
2646      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2647    else
2648      N = new SDNode(Opcode, VTList, Ops, NumOps);
2649    CSEMap.InsertNode(N, IP);
2650  } else {
2651    if (NumOps == 1)
2652      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2653    else if (NumOps == 2)
2654      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2655    else if (NumOps == 3)
2656      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2657    else
2658      N = new SDNode(Opcode, VTList, Ops, NumOps);
2659  }
2660  AllNodes.push_back(N);
2661  return SDOperand(N, 0);
2662}
2663
2664SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2665  return getNode(Opcode, VTList, 0, 0);
2666}
2667
2668SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2669                                SDOperand N1) {
2670  SDOperand Ops[] = { N1 };
2671  return getNode(Opcode, VTList, Ops, 1);
2672}
2673
2674SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2675                                SDOperand N1, SDOperand N2) {
2676  SDOperand Ops[] = { N1, N2 };
2677  return getNode(Opcode, VTList, Ops, 2);
2678}
2679
2680SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2681                                SDOperand N1, SDOperand N2, SDOperand N3) {
2682  SDOperand Ops[] = { N1, N2, N3 };
2683  return getNode(Opcode, VTList, Ops, 3);
2684}
2685
2686SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2687                                SDOperand N1, SDOperand N2, SDOperand N3,
2688                                SDOperand N4) {
2689  SDOperand Ops[] = { N1, N2, N3, N4 };
2690  return getNode(Opcode, VTList, Ops, 4);
2691}
2692
2693SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2694                                SDOperand N1, SDOperand N2, SDOperand N3,
2695                                SDOperand N4, SDOperand N5) {
2696  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2697  return getNode(Opcode, VTList, Ops, 5);
2698}
2699
2700SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2701  return makeVTList(SDNode::getValueTypeList(VT), 1);
2702}
2703
2704SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2705  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2706       E = VTList.end(); I != E; ++I) {
2707    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2708      return makeVTList(&(*I)[0], 2);
2709  }
2710  std::vector<MVT::ValueType> V;
2711  V.push_back(VT1);
2712  V.push_back(VT2);
2713  VTList.push_front(V);
2714  return makeVTList(&(*VTList.begin())[0], 2);
2715}
2716SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2717                                 MVT::ValueType VT3) {
2718  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2719       E = VTList.end(); I != E; ++I) {
2720    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2721        (*I)[2] == VT3)
2722      return makeVTList(&(*I)[0], 3);
2723  }
2724  std::vector<MVT::ValueType> V;
2725  V.push_back(VT1);
2726  V.push_back(VT2);
2727  V.push_back(VT3);
2728  VTList.push_front(V);
2729  return makeVTList(&(*VTList.begin())[0], 3);
2730}
2731
2732SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2733  switch (NumVTs) {
2734    case 0: assert(0 && "Cannot have nodes without results!");
2735    case 1: return getVTList(VTs[0]);
2736    case 2: return getVTList(VTs[0], VTs[1]);
2737    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2738    default: break;
2739  }
2740
2741  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2742       E = VTList.end(); I != E; ++I) {
2743    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2744
2745    bool NoMatch = false;
2746    for (unsigned i = 2; i != NumVTs; ++i)
2747      if (VTs[i] != (*I)[i]) {
2748        NoMatch = true;
2749        break;
2750      }
2751    if (!NoMatch)
2752      return makeVTList(&*I->begin(), NumVTs);
2753  }
2754
2755  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2756  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2757}
2758
2759
2760/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2761/// specified operands.  If the resultant node already exists in the DAG,
2762/// this does not modify the specified node, instead it returns the node that
2763/// already exists.  If the resultant node does not exist in the DAG, the
2764/// input node is returned.  As a degenerate case, if you specify the same
2765/// input operands as the node already has, the input node is returned.
2766SDOperand SelectionDAG::
2767UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2768  SDNode *N = InN.Val;
2769  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2770
2771  // Check to see if there is no change.
2772  if (Op == N->getOperand(0)) return InN;
2773
2774  // See if the modified node already exists.
2775  void *InsertPos = 0;
2776  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2777    return SDOperand(Existing, InN.ResNo);
2778
2779  // Nope it doesn't.  Remove the node from it's current place in the maps.
2780  if (InsertPos)
2781    RemoveNodeFromCSEMaps(N);
2782
2783  // Now we update the operands.
2784  N->OperandList[0].Val->removeUser(N);
2785  Op.Val->addUser(N);
2786  N->OperandList[0] = Op;
2787
2788  // If this gets put into a CSE map, add it.
2789  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2790  return InN;
2791}
2792
2793SDOperand SelectionDAG::
2794UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2795  SDNode *N = InN.Val;
2796  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2797
2798  // Check to see if there is no change.
2799  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2800    return InN;   // No operands changed, just return the input node.
2801
2802  // See if the modified node already exists.
2803  void *InsertPos = 0;
2804  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2805    return SDOperand(Existing, InN.ResNo);
2806
2807  // Nope it doesn't.  Remove the node from it's current place in the maps.
2808  if (InsertPos)
2809    RemoveNodeFromCSEMaps(N);
2810
2811  // Now we update the operands.
2812  if (N->OperandList[0] != Op1) {
2813    N->OperandList[0].Val->removeUser(N);
2814    Op1.Val->addUser(N);
2815    N->OperandList[0] = Op1;
2816  }
2817  if (N->OperandList[1] != Op2) {
2818    N->OperandList[1].Val->removeUser(N);
2819    Op2.Val->addUser(N);
2820    N->OperandList[1] = Op2;
2821  }
2822
2823  // If this gets put into a CSE map, add it.
2824  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2825  return InN;
2826}
2827
2828SDOperand SelectionDAG::
2829UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2830  SDOperand Ops[] = { Op1, Op2, Op3 };
2831  return UpdateNodeOperands(N, Ops, 3);
2832}
2833
2834SDOperand SelectionDAG::
2835UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2836                   SDOperand Op3, SDOperand Op4) {
2837  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2838  return UpdateNodeOperands(N, Ops, 4);
2839}
2840
2841SDOperand SelectionDAG::
2842UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2843                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2844  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2845  return UpdateNodeOperands(N, Ops, 5);
2846}
2847
2848
2849SDOperand SelectionDAG::
2850UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2851  SDNode *N = InN.Val;
2852  assert(N->getNumOperands() == NumOps &&
2853         "Update with wrong number of operands");
2854
2855  // Check to see if there is no change.
2856  bool AnyChange = false;
2857  for (unsigned i = 0; i != NumOps; ++i) {
2858    if (Ops[i] != N->getOperand(i)) {
2859      AnyChange = true;
2860      break;
2861    }
2862  }
2863
2864  // No operands changed, just return the input node.
2865  if (!AnyChange) return InN;
2866
2867  // See if the modified node already exists.
2868  void *InsertPos = 0;
2869  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2870    return SDOperand(Existing, InN.ResNo);
2871
2872  // Nope it doesn't.  Remove the node from it's current place in the maps.
2873  if (InsertPos)
2874    RemoveNodeFromCSEMaps(N);
2875
2876  // Now we update the operands.
2877  for (unsigned i = 0; i != NumOps; ++i) {
2878    if (N->OperandList[i] != Ops[i]) {
2879      N->OperandList[i].Val->removeUser(N);
2880      Ops[i].Val->addUser(N);
2881      N->OperandList[i] = Ops[i];
2882    }
2883  }
2884
2885  // If this gets put into a CSE map, add it.
2886  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2887  return InN;
2888}
2889
2890
2891/// MorphNodeTo - This frees the operands of the current node, resets the
2892/// opcode, types, and operands to the specified value.  This should only be
2893/// used by the SelectionDAG class.
2894void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2895                         const SDOperand *Ops, unsigned NumOps) {
2896  NodeType = Opc;
2897  ValueList = L.VTs;
2898  NumValues = L.NumVTs;
2899
2900  // Clear the operands list, updating used nodes to remove this from their
2901  // use list.
2902  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2903    I->Val->removeUser(this);
2904
2905  // If NumOps is larger than the # of operands we currently have, reallocate
2906  // the operand list.
2907  if (NumOps > NumOperands) {
2908    if (OperandsNeedDelete)
2909      delete [] OperandList;
2910    OperandList = new SDOperand[NumOps];
2911    OperandsNeedDelete = true;
2912  }
2913
2914  // Assign the new operands.
2915  NumOperands = NumOps;
2916
2917  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2918    OperandList[i] = Ops[i];
2919    SDNode *N = OperandList[i].Val;
2920    N->Uses.push_back(this);
2921  }
2922}
2923
2924/// SelectNodeTo - These are used for target selectors to *mutate* the
2925/// specified node to have the specified return type, Target opcode, and
2926/// operands.  Note that target opcodes are stored as
2927/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2928///
2929/// Note that SelectNodeTo returns the resultant node.  If there is already a
2930/// node of the specified opcode and operands, it returns that node instead of
2931/// the current one.
2932SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2933                                   MVT::ValueType VT) {
2934  SDVTList VTs = getVTList(VT);
2935  FoldingSetNodeID ID;
2936  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2937  void *IP = 0;
2938  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2939    return ON;
2940
2941  RemoveNodeFromCSEMaps(N);
2942
2943  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2944
2945  CSEMap.InsertNode(N, IP);
2946  return N;
2947}
2948
2949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2950                                   MVT::ValueType VT, SDOperand Op1) {
2951  // If an identical node already exists, use it.
2952  SDVTList VTs = getVTList(VT);
2953  SDOperand Ops[] = { Op1 };
2954
2955  FoldingSetNodeID ID;
2956  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2957  void *IP = 0;
2958  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2959    return ON;
2960
2961  RemoveNodeFromCSEMaps(N);
2962  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2963  CSEMap.InsertNode(N, IP);
2964  return N;
2965}
2966
2967SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2968                                   MVT::ValueType VT, SDOperand Op1,
2969                                   SDOperand Op2) {
2970  // If an identical node already exists, use it.
2971  SDVTList VTs = getVTList(VT);
2972  SDOperand Ops[] = { Op1, Op2 };
2973
2974  FoldingSetNodeID ID;
2975  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2976  void *IP = 0;
2977  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2978    return ON;
2979
2980  RemoveNodeFromCSEMaps(N);
2981
2982  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2983
2984  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2985  return N;
2986}
2987
2988SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2989                                   MVT::ValueType VT, SDOperand Op1,
2990                                   SDOperand Op2, SDOperand Op3) {
2991  // If an identical node already exists, use it.
2992  SDVTList VTs = getVTList(VT);
2993  SDOperand Ops[] = { Op1, Op2, Op3 };
2994  FoldingSetNodeID ID;
2995  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2996  void *IP = 0;
2997  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2998    return ON;
2999
3000  RemoveNodeFromCSEMaps(N);
3001
3002  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3003
3004  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3005  return N;
3006}
3007
3008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3009                                   MVT::ValueType VT, const SDOperand *Ops,
3010                                   unsigned NumOps) {
3011  // If an identical node already exists, use it.
3012  SDVTList VTs = getVTList(VT);
3013  FoldingSetNodeID ID;
3014  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3015  void *IP = 0;
3016  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3017    return ON;
3018
3019  RemoveNodeFromCSEMaps(N);
3020  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3021
3022  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3023  return N;
3024}
3025
3026SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3027                                   MVT::ValueType VT1, MVT::ValueType VT2,
3028                                   SDOperand Op1, SDOperand Op2) {
3029  SDVTList VTs = getVTList(VT1, VT2);
3030  FoldingSetNodeID ID;
3031  SDOperand Ops[] = { Op1, Op2 };
3032  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3033  void *IP = 0;
3034  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3035    return ON;
3036
3037  RemoveNodeFromCSEMaps(N);
3038  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3039  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3040  return N;
3041}
3042
3043SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3044                                   MVT::ValueType VT1, MVT::ValueType VT2,
3045                                   SDOperand Op1, SDOperand Op2,
3046                                   SDOperand Op3) {
3047  // If an identical node already exists, use it.
3048  SDVTList VTs = getVTList(VT1, VT2);
3049  SDOperand Ops[] = { Op1, Op2, Op3 };
3050  FoldingSetNodeID ID;
3051  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3052  void *IP = 0;
3053  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3054    return ON;
3055
3056  RemoveNodeFromCSEMaps(N);
3057
3058  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3059  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3060  return N;
3061}
3062
3063
3064/// getTargetNode - These are used for target selectors to create a new node
3065/// with specified return type(s), target opcode, and operands.
3066///
3067/// Note that getTargetNode returns the resultant node.  If there is already a
3068/// node of the specified opcode and operands, it returns that node instead of
3069/// the current one.
3070SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3071  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3072}
3073SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3074                                    SDOperand Op1) {
3075  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3076}
3077SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3078                                    SDOperand Op1, SDOperand Op2) {
3079  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3080}
3081SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3082                                    SDOperand Op1, SDOperand Op2,
3083                                    SDOperand Op3) {
3084  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3085}
3086SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3087                                    const SDOperand *Ops, unsigned NumOps) {
3088  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3089}
3090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3091                                    MVT::ValueType VT2) {
3092  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3093  SDOperand Op;
3094  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3095}
3096SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3097                                    MVT::ValueType VT2, SDOperand Op1) {
3098  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3099  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3100}
3101SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3102                                    MVT::ValueType VT2, SDOperand Op1,
3103                                    SDOperand Op2) {
3104  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3105  SDOperand Ops[] = { Op1, Op2 };
3106  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3107}
3108SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3109                                    MVT::ValueType VT2, SDOperand Op1,
3110                                    SDOperand Op2, SDOperand Op3) {
3111  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3112  SDOperand Ops[] = { Op1, Op2, Op3 };
3113  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3114}
3115SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3116                                    MVT::ValueType VT2,
3117                                    const SDOperand *Ops, unsigned NumOps) {
3118  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3119  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3120}
3121SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3122                                    MVT::ValueType VT2, MVT::ValueType VT3,
3123                                    SDOperand Op1, SDOperand Op2) {
3124  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3125  SDOperand Ops[] = { Op1, Op2 };
3126  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3127}
3128SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3129                                    MVT::ValueType VT2, MVT::ValueType VT3,
3130                                    SDOperand Op1, SDOperand Op2,
3131                                    SDOperand Op3) {
3132  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3133  SDOperand Ops[] = { Op1, Op2, Op3 };
3134  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3135}
3136SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3137                                    MVT::ValueType VT2, MVT::ValueType VT3,
3138                                    const SDOperand *Ops, unsigned NumOps) {
3139  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3140  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3141}
3142SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3143                                    MVT::ValueType VT2, MVT::ValueType VT3,
3144                                    MVT::ValueType VT4,
3145                                    const SDOperand *Ops, unsigned NumOps) {
3146  std::vector<MVT::ValueType> VTList;
3147  VTList.push_back(VT1);
3148  VTList.push_back(VT2);
3149  VTList.push_back(VT3);
3150  VTList.push_back(VT4);
3151  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3152  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3153}
3154SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3155                                    std::vector<MVT::ValueType> &ResultTys,
3156                                    const SDOperand *Ops, unsigned NumOps) {
3157  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3158  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3159                 Ops, NumOps).Val;
3160}
3161
3162/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3163/// This can cause recursive merging of nodes in the DAG.
3164///
3165/// This version assumes From/To have a single result value.
3166///
3167void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3168                                      std::vector<SDNode*> *Deleted) {
3169  SDNode *From = FromN.Val, *To = ToN.Val;
3170  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3171         "Cannot replace with this method!");
3172  assert(From != To && "Cannot replace uses of with self");
3173
3174  while (!From->use_empty()) {
3175    // Process users until they are all gone.
3176    SDNode *U = *From->use_begin();
3177
3178    // This node is about to morph, remove its old self from the CSE maps.
3179    RemoveNodeFromCSEMaps(U);
3180
3181    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3182         I != E; ++I)
3183      if (I->Val == From) {
3184        From->removeUser(U);
3185        I->Val = To;
3186        To->addUser(U);
3187      }
3188
3189    // Now that we have modified U, add it back to the CSE maps.  If it already
3190    // exists there, recursively merge the results together.
3191    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3192      ReplaceAllUsesWith(U, Existing, Deleted);
3193      // U is now dead.
3194      if (Deleted) Deleted->push_back(U);
3195      DeleteNodeNotInCSEMaps(U);
3196    }
3197  }
3198}
3199
3200/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3201/// This can cause recursive merging of nodes in the DAG.
3202///
3203/// This version assumes From/To have matching types and numbers of result
3204/// values.
3205///
3206void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3207                                      std::vector<SDNode*> *Deleted) {
3208  assert(From != To && "Cannot replace uses of with self");
3209  assert(From->getNumValues() == To->getNumValues() &&
3210         "Cannot use this version of ReplaceAllUsesWith!");
3211  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3212    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3213    return;
3214  }
3215
3216  while (!From->use_empty()) {
3217    // Process users until they are all gone.
3218    SDNode *U = *From->use_begin();
3219
3220    // This node is about to morph, remove its old self from the CSE maps.
3221    RemoveNodeFromCSEMaps(U);
3222
3223    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3224         I != E; ++I)
3225      if (I->Val == From) {
3226        From->removeUser(U);
3227        I->Val = To;
3228        To->addUser(U);
3229      }
3230
3231    // Now that we have modified U, add it back to the CSE maps.  If it already
3232    // exists there, recursively merge the results together.
3233    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3234      ReplaceAllUsesWith(U, Existing, Deleted);
3235      // U is now dead.
3236      if (Deleted) Deleted->push_back(U);
3237      DeleteNodeNotInCSEMaps(U);
3238    }
3239  }
3240}
3241
3242/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3243/// This can cause recursive merging of nodes in the DAG.
3244///
3245/// This version can replace From with any result values.  To must match the
3246/// number and types of values returned by From.
3247void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3248                                      const SDOperand *To,
3249                                      std::vector<SDNode*> *Deleted) {
3250  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3251    // Degenerate case handled above.
3252    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3253    return;
3254  }
3255
3256  while (!From->use_empty()) {
3257    // Process users until they are all gone.
3258    SDNode *U = *From->use_begin();
3259
3260    // This node is about to morph, remove its old self from the CSE maps.
3261    RemoveNodeFromCSEMaps(U);
3262
3263    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3264         I != E; ++I)
3265      if (I->Val == From) {
3266        const SDOperand &ToOp = To[I->ResNo];
3267        From->removeUser(U);
3268        *I = ToOp;
3269        ToOp.Val->addUser(U);
3270      }
3271
3272    // Now that we have modified U, add it back to the CSE maps.  If it already
3273    // exists there, recursively merge the results together.
3274    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3275      ReplaceAllUsesWith(U, Existing, Deleted);
3276      // U is now dead.
3277      if (Deleted) Deleted->push_back(U);
3278      DeleteNodeNotInCSEMaps(U);
3279    }
3280  }
3281}
3282
3283/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3284/// uses of other values produced by From.Val alone.  The Deleted vector is
3285/// handled the same was as for ReplaceAllUsesWith.
3286void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3287                                             std::vector<SDNode*> *Deleted) {
3288  assert(From != To && "Cannot replace a value with itself");
3289  // Handle the simple, trivial, case efficiently.
3290  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3291    ReplaceAllUsesWith(From, To, Deleted);
3292    return;
3293  }
3294
3295  // Get all of the users of From.Val.  We want these in a nice,
3296  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3297  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3298
3299  std::vector<SDNode*> LocalDeletionVector;
3300
3301  // Pick a deletion vector to use.  If the user specified one, use theirs,
3302  // otherwise use a local one.
3303  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3304  while (!Users.empty()) {
3305    // We know that this user uses some value of From.  If it is the right
3306    // value, update it.
3307    SDNode *User = Users.back();
3308    Users.pop_back();
3309
3310    // Scan for an operand that matches From.
3311    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3312    for (; Op != E; ++Op)
3313      if (*Op == From) break;
3314
3315    // If there are no matches, the user must use some other result of From.
3316    if (Op == E) continue;
3317
3318    // Okay, we know this user needs to be updated.  Remove its old self
3319    // from the CSE maps.
3320    RemoveNodeFromCSEMaps(User);
3321
3322    // Update all operands that match "From".
3323    for (; Op != E; ++Op) {
3324      if (*Op == From) {
3325        From.Val->removeUser(User);
3326        *Op = To;
3327        To.Val->addUser(User);
3328      }
3329    }
3330
3331    // Now that we have modified User, add it back to the CSE maps.  If it
3332    // already exists there, recursively merge the results together.
3333    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3334    if (!Existing) continue;  // Continue on to next user.
3335
3336    // If there was already an existing matching node, use ReplaceAllUsesWith
3337    // to replace the dead one with the existing one.  However, this can cause
3338    // recursive merging of other unrelated nodes down the line.  The merging
3339    // can cause deletion of nodes that used the old value.  In this case,
3340    // we have to be certain to remove them from the Users set.
3341    unsigned NumDeleted = DeleteVector->size();
3342    ReplaceAllUsesWith(User, Existing, DeleteVector);
3343
3344    // User is now dead.
3345    DeleteVector->push_back(User);
3346    DeleteNodeNotInCSEMaps(User);
3347
3348    // We have to be careful here, because ReplaceAllUsesWith could have
3349    // deleted a user of From, which means there may be dangling pointers
3350    // in the "Users" setvector.  Scan over the deleted node pointers and
3351    // remove them from the setvector.
3352    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3353      Users.remove((*DeleteVector)[i]);
3354
3355    // If the user doesn't need the set of deleted elements, don't retain them
3356    // to the next loop iteration.
3357    if (Deleted == 0)
3358      LocalDeletionVector.clear();
3359  }
3360}
3361
3362
3363/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3364/// their allnodes order. It returns the maximum id.
3365unsigned SelectionDAG::AssignNodeIds() {
3366  unsigned Id = 0;
3367  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3368    SDNode *N = I;
3369    N->setNodeId(Id++);
3370  }
3371  return Id;
3372}
3373
3374/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3375/// based on their topological order. It returns the maximum id and a vector
3376/// of the SDNodes* in assigned order by reference.
3377unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3378  unsigned DAGSize = AllNodes.size();
3379  std::vector<unsigned> InDegree(DAGSize);
3380  std::vector<SDNode*> Sources;
3381
3382  // Use a two pass approach to avoid using a std::map which is slow.
3383  unsigned Id = 0;
3384  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3385    SDNode *N = I;
3386    N->setNodeId(Id++);
3387    unsigned Degree = N->use_size();
3388    InDegree[N->getNodeId()] = Degree;
3389    if (Degree == 0)
3390      Sources.push_back(N);
3391  }
3392
3393  TopOrder.clear();
3394  while (!Sources.empty()) {
3395    SDNode *N = Sources.back();
3396    Sources.pop_back();
3397    TopOrder.push_back(N);
3398    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3399      SDNode *P = I->Val;
3400      unsigned Degree = --InDegree[P->getNodeId()];
3401      if (Degree == 0)
3402        Sources.push_back(P);
3403    }
3404  }
3405
3406  // Second pass, assign the actual topological order as node ids.
3407  Id = 0;
3408  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3409       TI != TE; ++TI)
3410    (*TI)->setNodeId(Id++);
3411
3412  return Id;
3413}
3414
3415
3416
3417//===----------------------------------------------------------------------===//
3418//                              SDNode Class
3419//===----------------------------------------------------------------------===//
3420
3421// Out-of-line virtual method to give class a home.
3422void SDNode::ANCHOR() {}
3423void UnarySDNode::ANCHOR() {}
3424void BinarySDNode::ANCHOR() {}
3425void TernarySDNode::ANCHOR() {}
3426void HandleSDNode::ANCHOR() {}
3427void StringSDNode::ANCHOR() {}
3428void ConstantSDNode::ANCHOR() {}
3429void ConstantFPSDNode::ANCHOR() {}
3430void GlobalAddressSDNode::ANCHOR() {}
3431void FrameIndexSDNode::ANCHOR() {}
3432void JumpTableSDNode::ANCHOR() {}
3433void ConstantPoolSDNode::ANCHOR() {}
3434void BasicBlockSDNode::ANCHOR() {}
3435void SrcValueSDNode::ANCHOR() {}
3436void RegisterSDNode::ANCHOR() {}
3437void ExternalSymbolSDNode::ANCHOR() {}
3438void CondCodeSDNode::ANCHOR() {}
3439void VTSDNode::ANCHOR() {}
3440void LoadSDNode::ANCHOR() {}
3441void StoreSDNode::ANCHOR() {}
3442
3443HandleSDNode::~HandleSDNode() {
3444  SDVTList VTs = { 0, 0 };
3445  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3446}
3447
3448GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3449                                         MVT::ValueType VT, int o)
3450  : SDNode(isa<GlobalVariable>(GA) &&
3451           cast<GlobalVariable>(GA)->isThreadLocal() ?
3452           // Thread Local
3453           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3454           // Non Thread Local
3455           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3456           getSDVTList(VT)), Offset(o) {
3457  TheGlobal = const_cast<GlobalValue*>(GA);
3458}
3459
3460/// Profile - Gather unique data for the node.
3461///
3462void SDNode::Profile(FoldingSetNodeID &ID) {
3463  AddNodeIDNode(ID, this);
3464}
3465
3466/// getValueTypeList - Return a pointer to the specified value type.
3467///
3468MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3469  if (MVT::isExtendedVT(VT)) {
3470    static std::set<MVT::ValueType> EVTs;
3471    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3472  } else {
3473    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3474    VTs[VT] = VT;
3475    return &VTs[VT];
3476  }
3477}
3478
3479/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3480/// indicated value.  This method ignores uses of other values defined by this
3481/// operation.
3482bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3483  assert(Value < getNumValues() && "Bad value!");
3484
3485  // If there is only one value, this is easy.
3486  if (getNumValues() == 1)
3487    return use_size() == NUses;
3488  if (use_size() < NUses) return false;
3489
3490  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3491
3492  SmallPtrSet<SDNode*, 32> UsersHandled;
3493
3494  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3495    SDNode *User = *UI;
3496    if (User->getNumOperands() == 1 ||
3497        UsersHandled.insert(User))     // First time we've seen this?
3498      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3499        if (User->getOperand(i) == TheValue) {
3500          if (NUses == 0)
3501            return false;   // too many uses
3502          --NUses;
3503        }
3504  }
3505
3506  // Found exactly the right number of uses?
3507  return NUses == 0;
3508}
3509
3510
3511/// hasAnyUseOfValue - Return true if there are any use of the indicated
3512/// value. This method ignores uses of other values defined by this operation.
3513bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3514  assert(Value < getNumValues() && "Bad value!");
3515
3516  if (use_empty()) return false;
3517
3518  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3519
3520  SmallPtrSet<SDNode*, 32> UsersHandled;
3521
3522  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3523    SDNode *User = *UI;
3524    if (User->getNumOperands() == 1 ||
3525        UsersHandled.insert(User))     // First time we've seen this?
3526      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3527        if (User->getOperand(i) == TheValue) {
3528          return true;
3529        }
3530  }
3531
3532  return false;
3533}
3534
3535
3536/// isOnlyUse - Return true if this node is the only use of N.
3537///
3538bool SDNode::isOnlyUse(SDNode *N) const {
3539  bool Seen = false;
3540  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3541    SDNode *User = *I;
3542    if (User == this)
3543      Seen = true;
3544    else
3545      return false;
3546  }
3547
3548  return Seen;
3549}
3550
3551/// isOperand - Return true if this node is an operand of N.
3552///
3553bool SDOperand::isOperand(SDNode *N) const {
3554  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3555    if (*this == N->getOperand(i))
3556      return true;
3557  return false;
3558}
3559
3560bool SDNode::isOperand(SDNode *N) const {
3561  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3562    if (this == N->OperandList[i].Val)
3563      return true;
3564  return false;
3565}
3566
3567/// reachesChainWithoutSideEffects - Return true if this operand (which must
3568/// be a chain) reaches the specified operand without crossing any
3569/// side-effecting instructions.  In practice, this looks through token
3570/// factors and non-volatile loads.  In order to remain efficient, this only
3571/// looks a couple of nodes in, it does not do an exhaustive search.
3572bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3573                                               unsigned Depth) const {
3574  if (*this == Dest) return true;
3575
3576  // Don't search too deeply, we just want to be able to see through
3577  // TokenFactor's etc.
3578  if (Depth == 0) return false;
3579
3580  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3581  // of the operands of the TF reach dest, then we can do the xform.
3582  if (getOpcode() == ISD::TokenFactor) {
3583    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3584      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3585        return true;
3586    return false;
3587  }
3588
3589  // Loads don't have side effects, look through them.
3590  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3591    if (!Ld->isVolatile())
3592      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3593  }
3594  return false;
3595}
3596
3597
3598static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3599                            SmallPtrSet<SDNode *, 32> &Visited) {
3600  if (found || !Visited.insert(N))
3601    return;
3602
3603  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3604    SDNode *Op = N->getOperand(i).Val;
3605    if (Op == P) {
3606      found = true;
3607      return;
3608    }
3609    findPredecessor(Op, P, found, Visited);
3610  }
3611}
3612
3613/// isPredecessor - Return true if this node is a predecessor of N. This node
3614/// is either an operand of N or it can be reached by recursively traversing
3615/// up the operands.
3616/// NOTE: this is an expensive method. Use it carefully.
3617bool SDNode::isPredecessor(SDNode *N) const {
3618  SmallPtrSet<SDNode *, 32> Visited;
3619  bool found = false;
3620  findPredecessor(N, this, found, Visited);
3621  return found;
3622}
3623
3624uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3625  assert(Num < NumOperands && "Invalid child # of SDNode!");
3626  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3627}
3628
3629std::string SDNode::getOperationName(const SelectionDAG *G) const {
3630  switch (getOpcode()) {
3631  default:
3632    if (getOpcode() < ISD::BUILTIN_OP_END)
3633      return "<<Unknown DAG Node>>";
3634    else {
3635      if (G) {
3636        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3637          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3638            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3639
3640        TargetLowering &TLI = G->getTargetLoweringInfo();
3641        const char *Name =
3642          TLI.getTargetNodeName(getOpcode());
3643        if (Name) return Name;
3644      }
3645
3646      return "<<Unknown Target Node>>";
3647    }
3648
3649  case ISD::PCMARKER:      return "PCMarker";
3650  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3651  case ISD::SRCVALUE:      return "SrcValue";
3652  case ISD::EntryToken:    return "EntryToken";
3653  case ISD::TokenFactor:   return "TokenFactor";
3654  case ISD::AssertSext:    return "AssertSext";
3655  case ISD::AssertZext:    return "AssertZext";
3656
3657  case ISD::STRING:        return "String";
3658  case ISD::BasicBlock:    return "BasicBlock";
3659  case ISD::VALUETYPE:     return "ValueType";
3660  case ISD::Register:      return "Register";
3661
3662  case ISD::Constant:      return "Constant";
3663  case ISD::ConstantFP:    return "ConstantFP";
3664  case ISD::GlobalAddress: return "GlobalAddress";
3665  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3666  case ISD::FrameIndex:    return "FrameIndex";
3667  case ISD::JumpTable:     return "JumpTable";
3668  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3669  case ISD::RETURNADDR: return "RETURNADDR";
3670  case ISD::FRAMEADDR: return "FRAMEADDR";
3671  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3672  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3673  case ISD::EHSELECTION: return "EHSELECTION";
3674  case ISD::EH_RETURN: return "EH_RETURN";
3675  case ISD::ConstantPool:  return "ConstantPool";
3676  case ISD::ExternalSymbol: return "ExternalSymbol";
3677  case ISD::INTRINSIC_WO_CHAIN: {
3678    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3679    return Intrinsic::getName((Intrinsic::ID)IID);
3680  }
3681  case ISD::INTRINSIC_VOID:
3682  case ISD::INTRINSIC_W_CHAIN: {
3683    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3684    return Intrinsic::getName((Intrinsic::ID)IID);
3685  }
3686
3687  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3688  case ISD::TargetConstant: return "TargetConstant";
3689  case ISD::TargetConstantFP:return "TargetConstantFP";
3690  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3691  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3692  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3693  case ISD::TargetJumpTable:  return "TargetJumpTable";
3694  case ISD::TargetConstantPool:  return "TargetConstantPool";
3695  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3696
3697  case ISD::CopyToReg:     return "CopyToReg";
3698  case ISD::CopyFromReg:   return "CopyFromReg";
3699  case ISD::UNDEF:         return "undef";
3700  case ISD::MERGE_VALUES:  return "merge_values";
3701  case ISD::INLINEASM:     return "inlineasm";
3702  case ISD::LABEL:         return "label";
3703  case ISD::HANDLENODE:    return "handlenode";
3704  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3705  case ISD::CALL:          return "call";
3706
3707  // Unary operators
3708  case ISD::FABS:   return "fabs";
3709  case ISD::FNEG:   return "fneg";
3710  case ISD::FSQRT:  return "fsqrt";
3711  case ISD::FSIN:   return "fsin";
3712  case ISD::FCOS:   return "fcos";
3713  case ISD::FPOWI:  return "fpowi";
3714  case ISD::FPOW:   return "fpow";
3715
3716  // Binary operators
3717  case ISD::ADD:    return "add";
3718  case ISD::SUB:    return "sub";
3719  case ISD::MUL:    return "mul";
3720  case ISD::MULHU:  return "mulhu";
3721  case ISD::MULHS:  return "mulhs";
3722  case ISD::SDIV:   return "sdiv";
3723  case ISD::UDIV:   return "udiv";
3724  case ISD::SREM:   return "srem";
3725  case ISD::UREM:   return "urem";
3726  case ISD::SMUL_LOHI:  return "smul_lohi";
3727  case ISD::UMUL_LOHI:  return "umul_lohi";
3728  case ISD::SDIVREM:    return "sdivrem";
3729  case ISD::UDIVREM:    return "divrem";
3730  case ISD::AND:    return "and";
3731  case ISD::OR:     return "or";
3732  case ISD::XOR:    return "xor";
3733  case ISD::SHL:    return "shl";
3734  case ISD::SRA:    return "sra";
3735  case ISD::SRL:    return "srl";
3736  case ISD::ROTL:   return "rotl";
3737  case ISD::ROTR:   return "rotr";
3738  case ISD::FADD:   return "fadd";
3739  case ISD::FSUB:   return "fsub";
3740  case ISD::FMUL:   return "fmul";
3741  case ISD::FDIV:   return "fdiv";
3742  case ISD::FREM:   return "frem";
3743  case ISD::FCOPYSIGN: return "fcopysign";
3744  case ISD::FGETSIGN:  return "fgetsign";
3745
3746  case ISD::SETCC:       return "setcc";
3747  case ISD::SELECT:      return "select";
3748  case ISD::SELECT_CC:   return "select_cc";
3749  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3750  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3751  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3752  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3753  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3754  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3755  case ISD::CARRY_FALSE:         return "carry_false";
3756  case ISD::ADDC:        return "addc";
3757  case ISD::ADDE:        return "adde";
3758  case ISD::SUBC:        return "subc";
3759  case ISD::SUBE:        return "sube";
3760  case ISD::SHL_PARTS:   return "shl_parts";
3761  case ISD::SRA_PARTS:   return "sra_parts";
3762  case ISD::SRL_PARTS:   return "srl_parts";
3763
3764  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3765  case ISD::INSERT_SUBREG:      return "insert_subreg";
3766
3767  // Conversion operators.
3768  case ISD::SIGN_EXTEND: return "sign_extend";
3769  case ISD::ZERO_EXTEND: return "zero_extend";
3770  case ISD::ANY_EXTEND:  return "any_extend";
3771  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3772  case ISD::TRUNCATE:    return "truncate";
3773  case ISD::FP_ROUND:    return "fp_round";
3774  case ISD::FLT_ROUNDS_: return "flt_rounds";
3775  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3776  case ISD::FP_EXTEND:   return "fp_extend";
3777
3778  case ISD::SINT_TO_FP:  return "sint_to_fp";
3779  case ISD::UINT_TO_FP:  return "uint_to_fp";
3780  case ISD::FP_TO_SINT:  return "fp_to_sint";
3781  case ISD::FP_TO_UINT:  return "fp_to_uint";
3782  case ISD::BIT_CONVERT: return "bit_convert";
3783
3784    // Control flow instructions
3785  case ISD::BR:      return "br";
3786  case ISD::BRIND:   return "brind";
3787  case ISD::BR_JT:   return "br_jt";
3788  case ISD::BRCOND:  return "brcond";
3789  case ISD::BR_CC:   return "br_cc";
3790  case ISD::RET:     return "ret";
3791  case ISD::CALLSEQ_START:  return "callseq_start";
3792  case ISD::CALLSEQ_END:    return "callseq_end";
3793
3794    // Other operators
3795  case ISD::LOAD:               return "load";
3796  case ISD::STORE:              return "store";
3797  case ISD::VAARG:              return "vaarg";
3798  case ISD::VACOPY:             return "vacopy";
3799  case ISD::VAEND:              return "vaend";
3800  case ISD::VASTART:            return "vastart";
3801  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3802  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3803  case ISD::BUILD_PAIR:         return "build_pair";
3804  case ISD::STACKSAVE:          return "stacksave";
3805  case ISD::STACKRESTORE:       return "stackrestore";
3806  case ISD::TRAP:               return "trap";
3807
3808  // Block memory operations.
3809  case ISD::MEMSET:  return "memset";
3810  case ISD::MEMCPY:  return "memcpy";
3811  case ISD::MEMMOVE: return "memmove";
3812
3813  // Bit manipulation
3814  case ISD::BSWAP:   return "bswap";
3815  case ISD::CTPOP:   return "ctpop";
3816  case ISD::CTTZ:    return "cttz";
3817  case ISD::CTLZ:    return "ctlz";
3818
3819  // Debug info
3820  case ISD::LOCATION: return "location";
3821  case ISD::DEBUG_LOC: return "debug_loc";
3822
3823  // Trampolines
3824  case ISD::TRAMPOLINE: return "trampoline";
3825
3826  case ISD::CONDCODE:
3827    switch (cast<CondCodeSDNode>(this)->get()) {
3828    default: assert(0 && "Unknown setcc condition!");
3829    case ISD::SETOEQ:  return "setoeq";
3830    case ISD::SETOGT:  return "setogt";
3831    case ISD::SETOGE:  return "setoge";
3832    case ISD::SETOLT:  return "setolt";
3833    case ISD::SETOLE:  return "setole";
3834    case ISD::SETONE:  return "setone";
3835
3836    case ISD::SETO:    return "seto";
3837    case ISD::SETUO:   return "setuo";
3838    case ISD::SETUEQ:  return "setue";
3839    case ISD::SETUGT:  return "setugt";
3840    case ISD::SETUGE:  return "setuge";
3841    case ISD::SETULT:  return "setult";
3842    case ISD::SETULE:  return "setule";
3843    case ISD::SETUNE:  return "setune";
3844
3845    case ISD::SETEQ:   return "seteq";
3846    case ISD::SETGT:   return "setgt";
3847    case ISD::SETGE:   return "setge";
3848    case ISD::SETLT:   return "setlt";
3849    case ISD::SETLE:   return "setle";
3850    case ISD::SETNE:   return "setne";
3851    }
3852  }
3853}
3854
3855const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3856  switch (AM) {
3857  default:
3858    return "";
3859  case ISD::PRE_INC:
3860    return "<pre-inc>";
3861  case ISD::PRE_DEC:
3862    return "<pre-dec>";
3863  case ISD::POST_INC:
3864    return "<post-inc>";
3865  case ISD::POST_DEC:
3866    return "<post-dec>";
3867  }
3868}
3869
3870void SDNode::dump() const { dump(0); }
3871void SDNode::dump(const SelectionDAG *G) const {
3872  cerr << (void*)this << ": ";
3873
3874  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3875    if (i) cerr << ",";
3876    if (getValueType(i) == MVT::Other)
3877      cerr << "ch";
3878    else
3879      cerr << MVT::getValueTypeString(getValueType(i));
3880  }
3881  cerr << " = " << getOperationName(G);
3882
3883  cerr << " ";
3884  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3885    if (i) cerr << ", ";
3886    cerr << (void*)getOperand(i).Val;
3887    if (unsigned RN = getOperand(i).ResNo)
3888      cerr << ":" << RN;
3889  }
3890
3891  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3892    SDNode *Mask = getOperand(2).Val;
3893    cerr << "<";
3894    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3895      if (i) cerr << ",";
3896      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3897        cerr << "u";
3898      else
3899        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3900    }
3901    cerr << ">";
3902  }
3903
3904  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3905    cerr << "<" << CSDN->getValue() << ">";
3906  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3907    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3908      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3909    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3910      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3911    else {
3912      cerr << "<APFloat(";
3913      CSDN->getValueAPF().convertToAPInt().dump();
3914      cerr << ")>";
3915    }
3916  } else if (const GlobalAddressSDNode *GADN =
3917             dyn_cast<GlobalAddressSDNode>(this)) {
3918    int offset = GADN->getOffset();
3919    cerr << "<";
3920    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3921    if (offset > 0)
3922      cerr << " + " << offset;
3923    else
3924      cerr << " " << offset;
3925  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3926    cerr << "<" << FIDN->getIndex() << ">";
3927  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3928    cerr << "<" << JTDN->getIndex() << ">";
3929  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3930    int offset = CP->getOffset();
3931    if (CP->isMachineConstantPoolEntry())
3932      cerr << "<" << *CP->getMachineCPVal() << ">";
3933    else
3934      cerr << "<" << *CP->getConstVal() << ">";
3935    if (offset > 0)
3936      cerr << " + " << offset;
3937    else
3938      cerr << " " << offset;
3939  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3940    cerr << "<";
3941    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3942    if (LBB)
3943      cerr << LBB->getName() << " ";
3944    cerr << (const void*)BBDN->getBasicBlock() << ">";
3945  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3946    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3947      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3948    } else {
3949      cerr << " #" << R->getReg();
3950    }
3951  } else if (const ExternalSymbolSDNode *ES =
3952             dyn_cast<ExternalSymbolSDNode>(this)) {
3953    cerr << "'" << ES->getSymbol() << "'";
3954  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3955    if (M->getValue())
3956      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3957    else
3958      cerr << "<null:" << M->getOffset() << ">";
3959  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3960    cerr << ":" << MVT::getValueTypeString(N->getVT());
3961  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3962    const Value *SrcValue = LD->getSrcValue();
3963    int SrcOffset = LD->getSrcValueOffset();
3964    cerr << " <";
3965    if (SrcValue)
3966      cerr << SrcValue;
3967    else
3968      cerr << "null";
3969    cerr << ":" << SrcOffset << ">";
3970
3971    bool doExt = true;
3972    switch (LD->getExtensionType()) {
3973    default: doExt = false; break;
3974    case ISD::EXTLOAD:
3975      cerr << " <anyext ";
3976      break;
3977    case ISD::SEXTLOAD:
3978      cerr << " <sext ";
3979      break;
3980    case ISD::ZEXTLOAD:
3981      cerr << " <zext ";
3982      break;
3983    }
3984    if (doExt)
3985      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
3986
3987    const char *AM = getIndexedModeName(LD->getAddressingMode());
3988    if (*AM)
3989      cerr << " " << AM;
3990    if (LD->isVolatile())
3991      cerr << " <volatile>";
3992    cerr << " alignment=" << LD->getAlignment();
3993  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3994    const Value *SrcValue = ST->getSrcValue();
3995    int SrcOffset = ST->getSrcValueOffset();
3996    cerr << " <";
3997    if (SrcValue)
3998      cerr << SrcValue;
3999    else
4000      cerr << "null";
4001    cerr << ":" << SrcOffset << ">";
4002
4003    if (ST->isTruncatingStore())
4004      cerr << " <trunc "
4005           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4006
4007    const char *AM = getIndexedModeName(ST->getAddressingMode());
4008    if (*AM)
4009      cerr << " " << AM;
4010    if (ST->isVolatile())
4011      cerr << " <volatile>";
4012    cerr << " alignment=" << ST->getAlignment();
4013  }
4014}
4015
4016static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4017  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4018    if (N->getOperand(i).Val->hasOneUse())
4019      DumpNodes(N->getOperand(i).Val, indent+2, G);
4020    else
4021      cerr << "\n" << std::string(indent+2, ' ')
4022           << (void*)N->getOperand(i).Val << ": <multiple use>";
4023
4024
4025  cerr << "\n" << std::string(indent, ' ');
4026  N->dump(G);
4027}
4028
4029void SelectionDAG::dump() const {
4030  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4031  std::vector<const SDNode*> Nodes;
4032  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4033       I != E; ++I)
4034    Nodes.push_back(I);
4035
4036  std::sort(Nodes.begin(), Nodes.end());
4037
4038  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4039    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4040      DumpNodes(Nodes[i], 2, this);
4041  }
4042
4043  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4044
4045  cerr << "\n\n";
4046}
4047
4048const Type *ConstantPoolSDNode::getType() const {
4049  if (isMachineConstantPoolEntry())
4050    return Val.MachineCPVal->getType();
4051  return Val.ConstVal->getType();
4052}
4053