SelectionDAG.cpp revision 3ca136312abe3c41f3422e9de280b7be0dc65362
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  if (NumElems == 1)
203    return false;
204  for (unsigned i = 1; i < NumElems; ++i) {
205    SDValue V = N->getOperand(i);
206    if (V.getOpcode() != ISD::UNDEF)
207      return false;
208  }
209  return true;
210}
211
212/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
213/// when given the operation for (X op Y).
214ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
215  // To perform this operation, we just need to swap the L and G bits of the
216  // operation.
217  unsigned OldL = (Operation >> 2) & 1;
218  unsigned OldG = (Operation >> 1) & 1;
219  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
220                       (OldL << 1) |       // New G bit
221                       (OldG << 2));       // New L bit.
222}
223
224/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
225/// 'op' is a valid SetCC operation.
226ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
227  unsigned Operation = Op;
228  if (isInteger)
229    Operation ^= 7;   // Flip L, G, E bits, but not U.
230  else
231    Operation ^= 15;  // Flip all of the condition bits.
232
233  if (Operation > ISD::SETTRUE2)
234    Operation &= ~8;  // Don't let N and U bits get set.
235
236  return ISD::CondCode(Operation);
237}
238
239
240/// isSignedOp - For an integer comparison, return 1 if the comparison is a
241/// signed operation and 2 if the result is an unsigned comparison.  Return zero
242/// if the operation does not depend on the sign of the input (setne and seteq).
243static int isSignedOp(ISD::CondCode Opcode) {
244  switch (Opcode) {
245  default: llvm_unreachable("Illegal integer setcc operation!");
246  case ISD::SETEQ:
247  case ISD::SETNE: return 0;
248  case ISD::SETLT:
249  case ISD::SETLE:
250  case ISD::SETGT:
251  case ISD::SETGE: return 1;
252  case ISD::SETULT:
253  case ISD::SETULE:
254  case ISD::SETUGT:
255  case ISD::SETUGE: return 2;
256  }
257}
258
259/// getSetCCOrOperation - Return the result of a logical OR between different
260/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
261/// returns SETCC_INVALID if it is not possible to represent the resultant
262/// comparison.
263ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
264                                       bool isInteger) {
265  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
266    // Cannot fold a signed integer setcc with an unsigned integer setcc.
267    return ISD::SETCC_INVALID;
268
269  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
270
271  // If the N and U bits get set then the resultant comparison DOES suddenly
272  // care about orderedness, and is true when ordered.
273  if (Op > ISD::SETTRUE2)
274    Op &= ~16;     // Clear the U bit if the N bit is set.
275
276  // Canonicalize illegal integer setcc's.
277  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
278    Op = ISD::SETNE;
279
280  return ISD::CondCode(Op);
281}
282
283/// getSetCCAndOperation - Return the result of a logical AND between different
284/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
285/// function returns zero if it is not possible to represent the resultant
286/// comparison.
287ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
288                                        bool isInteger) {
289  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
290    // Cannot fold a signed setcc with an unsigned setcc.
291    return ISD::SETCC_INVALID;
292
293  // Combine all of the condition bits.
294  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295
296  // Canonicalize illegal integer setcc's.
297  if (isInteger) {
298    switch (Result) {
299    default: break;
300    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
301    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
302    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
303    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
304    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
305    }
306  }
307
308  return Result;
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748#ifndef NDEBUG
749/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
750static void VerifyNodeCommon(SDNode *N) {
751  switch (N->getOpcode()) {
752  default:
753    break;
754  case ISD::BUILD_PAIR: {
755    EVT VT = N->getValueType(0);
756    assert(N->getNumValues() == 1 && "Too many results!");
757    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
758           "Wrong return type!");
759    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
760    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
761           "Mismatched operand types!");
762    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
763           "Wrong operand type!");
764    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
765           "Wrong return type size");
766    break;
767  }
768  case ISD::BUILD_VECTOR: {
769    assert(N->getNumValues() == 1 && "Too many results!");
770    assert(N->getValueType(0).isVector() && "Wrong return type!");
771    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
772           "Wrong number of operands!");
773    EVT EltVT = N->getValueType(0).getVectorElementType();
774    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
775      assert((I->getValueType() == EltVT ||
776             (EltVT.isInteger() && I->getValueType().isInteger() &&
777              EltVT.bitsLE(I->getValueType()))) &&
778            "Wrong operand type!");
779    break;
780  }
781  }
782}
783
784/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
785static void VerifySDNode(SDNode *N) {
786  // The SDNode allocators cannot be used to allocate nodes with fields that are
787  // not present in an SDNode!
788  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
789  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
790  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
791  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
792  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
793  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
794  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
795  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
796  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
797  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
798  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
799  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
800  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
801  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
802  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
803  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
804  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
805  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
806  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
807
808  VerifyNodeCommon(N);
809}
810
811/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
812/// invalid.
813static void VerifyMachineNode(SDNode *N) {
814  // The MachineNode allocators cannot be used to allocate nodes with fields
815  // that are not present in a MachineNode!
816  // Currently there are no such nodes.
817
818  VerifyNodeCommon(N);
819}
820#endif // NDEBUG
821
822/// getEVTAlignment - Compute the default alignment value for the
823/// given type.
824///
825unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
826  const Type *Ty = VT == MVT::iPTR ?
827                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
828                   VT.getTypeForEVT(*getContext());
829
830  return TLI.getTargetData()->getABITypeAlignment(Ty);
831}
832
833// EntryNode could meaningfully have debug info if we can find it...
834SelectionDAG::SelectionDAG(const TargetMachine &tm)
835  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
836    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
837    Root(getEntryNode()), Ordering(0) {
838  AllNodes.push_back(&EntryNode);
839  Ordering = new SDNodeOrdering();
840  DbgInfo = new SDDbgInfo();
841}
842
843void SelectionDAG::init(MachineFunction &mf) {
844  MF = &mf;
845  Context = &mf.getFunction()->getContext();
846}
847
848SelectionDAG::~SelectionDAG() {
849  allnodes_clear();
850  delete Ordering;
851  delete DbgInfo;
852}
853
854void SelectionDAG::allnodes_clear() {
855  assert(&*AllNodes.begin() == &EntryNode);
856  AllNodes.remove(AllNodes.begin());
857  while (!AllNodes.empty())
858    DeallocateNode(AllNodes.begin());
859}
860
861void SelectionDAG::clear() {
862  allnodes_clear();
863  OperandAllocator.Reset();
864  CSEMap.clear();
865
866  ExtendedValueTypeNodes.clear();
867  ExternalSymbols.clear();
868  TargetExternalSymbols.clear();
869  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
870            static_cast<CondCodeSDNode*>(0));
871  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
872            static_cast<SDNode*>(0));
873
874  EntryNode.UseList = 0;
875  AllNodes.push_back(&EntryNode);
876  Root = getEntryNode();
877  Ordering->clear();
878  DbgInfo->clear();
879}
880
881SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
882  return VT.bitsGT(Op.getValueType()) ?
883    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
884    getNode(ISD::TRUNCATE, DL, VT, Op);
885}
886
887SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
888  return VT.bitsGT(Op.getValueType()) ?
889    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
890    getNode(ISD::TRUNCATE, DL, VT, Op);
891}
892
893SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
894  assert(!VT.isVector() &&
895         "getZeroExtendInReg should use the vector element type instead of "
896         "the vector type!");
897  if (Op.getValueType() == VT) return Op;
898  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
899  APInt Imm = APInt::getLowBitsSet(BitWidth,
900                                   VT.getSizeInBits());
901  return getNode(ISD::AND, DL, Op.getValueType(), Op,
902                 getConstant(Imm, Op.getValueType()));
903}
904
905/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
906///
907SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
908  EVT EltVT = VT.getScalarType();
909  SDValue NegOne =
910    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
911  return getNode(ISD::XOR, DL, VT, Val, NegOne);
912}
913
914SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
915  EVT EltVT = VT.getScalarType();
916  assert((EltVT.getSizeInBits() >= 64 ||
917         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
918         "getConstant with a uint64_t value that doesn't fit in the type!");
919  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
920}
921
922SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
923  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
924}
925
926SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
927  assert(VT.isInteger() && "Cannot create FP integer constant!");
928
929  EVT EltVT = VT.getScalarType();
930  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
931         "APInt size does not match type size!");
932
933  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
934  FoldingSetNodeID ID;
935  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
936  ID.AddPointer(&Val);
937  void *IP = 0;
938  SDNode *N = NULL;
939  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
940    if (!VT.isVector())
941      return SDValue(N, 0);
942
943  if (!N) {
944    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
945    CSEMap.InsertNode(N, IP);
946    AllNodes.push_back(N);
947  }
948
949  SDValue Result(N, 0);
950  if (VT.isVector()) {
951    SmallVector<SDValue, 8> Ops;
952    Ops.assign(VT.getVectorNumElements(), Result);
953    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
954  }
955  return Result;
956}
957
958SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
959  return getConstant(Val, TLI.getPointerTy(), isTarget);
960}
961
962
963SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
964  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
965}
966
967SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
968  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
969
970  EVT EltVT = VT.getScalarType();
971
972  // Do the map lookup using the actual bit pattern for the floating point
973  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
974  // we don't have issues with SNANs.
975  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
976  FoldingSetNodeID ID;
977  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
978  ID.AddPointer(&V);
979  void *IP = 0;
980  SDNode *N = NULL;
981  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
982    if (!VT.isVector())
983      return SDValue(N, 0);
984
985  if (!N) {
986    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
987    CSEMap.InsertNode(N, IP);
988    AllNodes.push_back(N);
989  }
990
991  SDValue Result(N, 0);
992  if (VT.isVector()) {
993    SmallVector<SDValue, 8> Ops;
994    Ops.assign(VT.getVectorNumElements(), Result);
995    // FIXME DebugLoc info might be appropriate here
996    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
997  }
998  return Result;
999}
1000
1001SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1002  EVT EltVT = VT.getScalarType();
1003  if (EltVT==MVT::f32)
1004    return getConstantFP(APFloat((float)Val), VT, isTarget);
1005  else if (EltVT==MVT::f64)
1006    return getConstantFP(APFloat(Val), VT, isTarget);
1007  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1008    bool ignored;
1009    APFloat apf = APFloat(Val);
1010    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1011                &ignored);
1012    return getConstantFP(apf, VT, isTarget);
1013  } else {
1014    assert(0 && "Unsupported type in getConstantFP");
1015    return SDValue();
1016  }
1017}
1018
1019SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1020                                       EVT VT, int64_t Offset,
1021                                       bool isTargetGA,
1022                                       unsigned char TargetFlags) {
1023  assert((TargetFlags == 0 || isTargetGA) &&
1024         "Cannot set target flags on target-independent globals");
1025
1026  // Truncate (with sign-extension) the offset value to the pointer size.
1027  EVT PTy = TLI.getPointerTy();
1028  unsigned BitWidth = PTy.getSizeInBits();
1029  if (BitWidth < 64)
1030    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1031
1032  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1033  if (!GVar) {
1034    // If GV is an alias then use the aliasee for determining thread-localness.
1035    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1036      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1037  }
1038
1039  unsigned Opc;
1040  if (GVar && GVar->isThreadLocal())
1041    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1042  else
1043    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1044
1045  FoldingSetNodeID ID;
1046  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1047  ID.AddPointer(GV);
1048  ID.AddInteger(Offset);
1049  ID.AddInteger(TargetFlags);
1050  void *IP = 0;
1051  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1052    return SDValue(E, 0);
1053
1054  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1055                                                      Offset, TargetFlags);
1056  CSEMap.InsertNode(N, IP);
1057  AllNodes.push_back(N);
1058  return SDValue(N, 0);
1059}
1060
1061SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1062  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1063  FoldingSetNodeID ID;
1064  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1065  ID.AddInteger(FI);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069
1070  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1071  CSEMap.InsertNode(N, IP);
1072  AllNodes.push_back(N);
1073  return SDValue(N, 0);
1074}
1075
1076SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1077                                   unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTarget) &&
1079         "Cannot set target flags on target-independent jump tables");
1080  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1083  ID.AddInteger(JTI);
1084  ID.AddInteger(TargetFlags);
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088
1089  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1090                                                  TargetFlags);
1091  CSEMap.InsertNode(N, IP);
1092  AllNodes.push_back(N);
1093  return SDValue(N, 0);
1094}
1095
1096SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1097                                      unsigned Alignment, int Offset,
1098                                      bool isTarget,
1099                                      unsigned char TargetFlags) {
1100  assert((TargetFlags == 0 || isTarget) &&
1101         "Cannot set target flags on target-independent globals");
1102  if (Alignment == 0)
1103    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1104  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1107  ID.AddInteger(Alignment);
1108  ID.AddInteger(Offset);
1109  ID.AddPointer(C);
1110  ID.AddInteger(TargetFlags);
1111  void *IP = 0;
1112  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1113    return SDValue(E, 0);
1114
1115  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1116                                                     Alignment, TargetFlags);
1117  CSEMap.InsertNode(N, IP);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122
1123SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1124                                      unsigned Alignment, int Offset,
1125                                      bool isTarget,
1126                                      unsigned char TargetFlags) {
1127  assert((TargetFlags == 0 || isTarget) &&
1128         "Cannot set target flags on target-independent globals");
1129  if (Alignment == 0)
1130    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1131  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1132  FoldingSetNodeID ID;
1133  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1134  ID.AddInteger(Alignment);
1135  ID.AddInteger(Offset);
1136  C->AddSelectionDAGCSEId(ID);
1137  ID.AddInteger(TargetFlags);
1138  void *IP = 0;
1139  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1140    return SDValue(E, 0);
1141
1142  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1143                                                     Alignment, TargetFlags);
1144  CSEMap.InsertNode(N, IP);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1150  FoldingSetNodeID ID;
1151  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1152  ID.AddPointer(MBB);
1153  void *IP = 0;
1154  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1155    return SDValue(E, 0);
1156
1157  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1158  CSEMap.InsertNode(N, IP);
1159  AllNodes.push_back(N);
1160  return SDValue(N, 0);
1161}
1162
1163SDValue SelectionDAG::getValueType(EVT VT) {
1164  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1165      ValueTypeNodes.size())
1166    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1167
1168  SDNode *&N = VT.isExtended() ?
1169    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1170
1171  if (N) return SDValue(N, 0);
1172  N = new (NodeAllocator) VTSDNode(VT);
1173  AllNodes.push_back(N);
1174  return SDValue(N, 0);
1175}
1176
1177SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1178  SDNode *&N = ExternalSymbols[Sym];
1179  if (N) return SDValue(N, 0);
1180  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1181  AllNodes.push_back(N);
1182  return SDValue(N, 0);
1183}
1184
1185SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1186                                              unsigned char TargetFlags) {
1187  SDNode *&N =
1188    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1189                                                               TargetFlags)];
1190  if (N) return SDValue(N, 0);
1191  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1192  AllNodes.push_back(N);
1193  return SDValue(N, 0);
1194}
1195
1196SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1197  if ((unsigned)Cond >= CondCodeNodes.size())
1198    CondCodeNodes.resize(Cond+1);
1199
1200  if (CondCodeNodes[Cond] == 0) {
1201    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1202    CondCodeNodes[Cond] = N;
1203    AllNodes.push_back(N);
1204  }
1205
1206  return SDValue(CondCodeNodes[Cond], 0);
1207}
1208
1209// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1210// the shuffle mask M that point at N1 to point at N2, and indices that point
1211// N2 to point at N1.
1212static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1213  std::swap(N1, N2);
1214  int NElts = M.size();
1215  for (int i = 0; i != NElts; ++i) {
1216    if (M[i] >= NElts)
1217      M[i] -= NElts;
1218    else if (M[i] >= 0)
1219      M[i] += NElts;
1220  }
1221}
1222
1223SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1224                                       SDValue N2, const int *Mask) {
1225  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1226  assert(VT.isVector() && N1.getValueType().isVector() &&
1227         "Vector Shuffle VTs must be a vectors");
1228  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1229         && "Vector Shuffle VTs must have same element type");
1230
1231  // Canonicalize shuffle undef, undef -> undef
1232  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1233    return getUNDEF(VT);
1234
1235  // Validate that all indices in Mask are within the range of the elements
1236  // input to the shuffle.
1237  unsigned NElts = VT.getVectorNumElements();
1238  SmallVector<int, 8> MaskVec;
1239  for (unsigned i = 0; i != NElts; ++i) {
1240    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1241    MaskVec.push_back(Mask[i]);
1242  }
1243
1244  // Canonicalize shuffle v, v -> v, undef
1245  if (N1 == N2) {
1246    N2 = getUNDEF(VT);
1247    for (unsigned i = 0; i != NElts; ++i)
1248      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1249  }
1250
1251  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1252  if (N1.getOpcode() == ISD::UNDEF)
1253    commuteShuffle(N1, N2, MaskVec);
1254
1255  // Canonicalize all index into lhs, -> shuffle lhs, undef
1256  // Canonicalize all index into rhs, -> shuffle rhs, undef
1257  bool AllLHS = true, AllRHS = true;
1258  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1259  for (unsigned i = 0; i != NElts; ++i) {
1260    if (MaskVec[i] >= (int)NElts) {
1261      if (N2Undef)
1262        MaskVec[i] = -1;
1263      else
1264        AllLHS = false;
1265    } else if (MaskVec[i] >= 0) {
1266      AllRHS = false;
1267    }
1268  }
1269  if (AllLHS && AllRHS)
1270    return getUNDEF(VT);
1271  if (AllLHS && !N2Undef)
1272    N2 = getUNDEF(VT);
1273  if (AllRHS) {
1274    N1 = getUNDEF(VT);
1275    commuteShuffle(N1, N2, MaskVec);
1276  }
1277
1278  // If Identity shuffle, or all shuffle in to undef, return that node.
1279  bool AllUndef = true;
1280  bool Identity = true;
1281  for (unsigned i = 0; i != NElts; ++i) {
1282    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1283    if (MaskVec[i] >= 0) AllUndef = false;
1284  }
1285  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1286    return N1;
1287  if (AllUndef)
1288    return getUNDEF(VT);
1289
1290  FoldingSetNodeID ID;
1291  SDValue Ops[2] = { N1, N2 };
1292  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1293  for (unsigned i = 0; i != NElts; ++i)
1294    ID.AddInteger(MaskVec[i]);
1295
1296  void* IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299
1300  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1301  // SDNode doesn't have access to it.  This memory will be "leaked" when
1302  // the node is deallocated, but recovered when the NodeAllocator is released.
1303  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1304  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1305
1306  ShuffleVectorSDNode *N =
1307    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1308  CSEMap.InsertNode(N, IP);
1309  AllNodes.push_back(N);
1310  return SDValue(N, 0);
1311}
1312
1313SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1314                                       SDValue Val, SDValue DTy,
1315                                       SDValue STy, SDValue Rnd, SDValue Sat,
1316                                       ISD::CvtCode Code) {
1317  // If the src and dest types are the same and the conversion is between
1318  // integer types of the same sign or two floats, no conversion is necessary.
1319  if (DTy == STy &&
1320      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1321    return Val;
1322
1323  FoldingSetNodeID ID;
1324  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1325  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1326  void* IP = 0;
1327  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1328    return SDValue(E, 0);
1329
1330  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1331                                                           Code);
1332  CSEMap.InsertNode(N, IP);
1333  AllNodes.push_back(N);
1334  return SDValue(N, 0);
1335}
1336
1337SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1338  FoldingSetNodeID ID;
1339  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1340  ID.AddInteger(RegNo);
1341  void *IP = 0;
1342  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1343    return SDValue(E, 0);
1344
1345  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1346  CSEMap.InsertNode(N, IP);
1347  AllNodes.push_back(N);
1348  return SDValue(N, 0);
1349}
1350
1351SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1352  FoldingSetNodeID ID;
1353  SDValue Ops[] = { Root };
1354  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1355  ID.AddPointer(Label);
1356  void *IP = 0;
1357  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1358    return SDValue(E, 0);
1359
1360  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1361  CSEMap.InsertNode(N, IP);
1362  AllNodes.push_back(N);
1363  return SDValue(N, 0);
1364}
1365
1366
1367SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1368                                      bool isTarget,
1369                                      unsigned char TargetFlags) {
1370  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1371
1372  FoldingSetNodeID ID;
1373  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1374  ID.AddPointer(BA);
1375  ID.AddInteger(TargetFlags);
1376  void *IP = 0;
1377  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1378    return SDValue(E, 0);
1379
1380  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1381  CSEMap.InsertNode(N, IP);
1382  AllNodes.push_back(N);
1383  return SDValue(N, 0);
1384}
1385
1386SDValue SelectionDAG::getSrcValue(const Value *V) {
1387  assert((!V || V->getType()->isPointerTy()) &&
1388         "SrcValue is not a pointer?");
1389
1390  FoldingSetNodeID ID;
1391  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1392  ID.AddPointer(V);
1393
1394  void *IP = 0;
1395  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1396    return SDValue(E, 0);
1397
1398  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1399  CSEMap.InsertNode(N, IP);
1400  AllNodes.push_back(N);
1401  return SDValue(N, 0);
1402}
1403
1404/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1405SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1406  FoldingSetNodeID ID;
1407  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1408  ID.AddPointer(MD);
1409
1410  void *IP = 0;
1411  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1412    return SDValue(E, 0);
1413
1414  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1415  CSEMap.InsertNode(N, IP);
1416  AllNodes.push_back(N);
1417  return SDValue(N, 0);
1418}
1419
1420
1421/// getShiftAmountOperand - Return the specified value casted to
1422/// the target's desired shift amount type.
1423SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1424  EVT OpTy = Op.getValueType();
1425  MVT ShTy = TLI.getShiftAmountTy();
1426  if (OpTy == ShTy || OpTy.isVector()) return Op;
1427
1428  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1429  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1430}
1431
1432/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1433/// specified value type.
1434SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1435  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1436  unsigned ByteSize = VT.getStoreSize();
1437  const Type *Ty = VT.getTypeForEVT(*getContext());
1438  unsigned StackAlign =
1439  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1440
1441  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1442  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1443}
1444
1445/// CreateStackTemporary - Create a stack temporary suitable for holding
1446/// either of the specified value types.
1447SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1448  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1449                            VT2.getStoreSizeInBits())/8;
1450  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1451  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1452  const TargetData *TD = TLI.getTargetData();
1453  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1454                            TD->getPrefTypeAlignment(Ty2));
1455
1456  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1457  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1458  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1459}
1460
1461SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1462                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1463  // These setcc operations always fold.
1464  switch (Cond) {
1465  default: break;
1466  case ISD::SETFALSE:
1467  case ISD::SETFALSE2: return getConstant(0, VT);
1468  case ISD::SETTRUE:
1469  case ISD::SETTRUE2:  return getConstant(1, VT);
1470
1471  case ISD::SETOEQ:
1472  case ISD::SETOGT:
1473  case ISD::SETOGE:
1474  case ISD::SETOLT:
1475  case ISD::SETOLE:
1476  case ISD::SETONE:
1477  case ISD::SETO:
1478  case ISD::SETUO:
1479  case ISD::SETUEQ:
1480  case ISD::SETUNE:
1481    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1482    break;
1483  }
1484
1485  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1486    const APInt &C2 = N2C->getAPIntValue();
1487    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1488      const APInt &C1 = N1C->getAPIntValue();
1489
1490      switch (Cond) {
1491      default: llvm_unreachable("Unknown integer setcc!");
1492      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1493      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1494      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1495      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1496      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1497      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1498      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1499      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1500      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1501      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1502      }
1503    }
1504  }
1505  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1506    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1507      // No compile time operations on this type yet.
1508      if (N1C->getValueType(0) == MVT::ppcf128)
1509        return SDValue();
1510
1511      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1512      switch (Cond) {
1513      default: break;
1514      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1515                          return getUNDEF(VT);
1516                        // fall through
1517      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1518      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1519                          return getUNDEF(VT);
1520                        // fall through
1521      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1522                                           R==APFloat::cmpLessThan, VT);
1523      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1524                          return getUNDEF(VT);
1525                        // fall through
1526      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1527      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1528                          return getUNDEF(VT);
1529                        // fall through
1530      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1531      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1532                          return getUNDEF(VT);
1533                        // fall through
1534      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1535                                           R==APFloat::cmpEqual, VT);
1536      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1537                          return getUNDEF(VT);
1538                        // fall through
1539      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1540                                           R==APFloat::cmpEqual, VT);
1541      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1542      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1543      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1544                                           R==APFloat::cmpEqual, VT);
1545      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1546      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1547                                           R==APFloat::cmpLessThan, VT);
1548      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1549                                           R==APFloat::cmpUnordered, VT);
1550      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1551      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1552      }
1553    } else {
1554      // Ensure that the constant occurs on the RHS.
1555      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1556    }
1557  }
1558
1559  // Could not fold it.
1560  return SDValue();
1561}
1562
1563/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1564/// use this predicate to simplify operations downstream.
1565bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1566  // This predicate is not safe for vector operations.
1567  if (Op.getValueType().isVector())
1568    return false;
1569
1570  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1571  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1572}
1573
1574/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1575/// this predicate to simplify operations downstream.  Mask is known to be zero
1576/// for bits that V cannot have.
1577bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1578                                     unsigned Depth) const {
1579  APInt KnownZero, KnownOne;
1580  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1581  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1582  return (KnownZero & Mask) == Mask;
1583}
1584
1585/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1586/// known to be either zero or one and return them in the KnownZero/KnownOne
1587/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1588/// processing.
1589void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1590                                     APInt &KnownZero, APInt &KnownOne,
1591                                     unsigned Depth) const {
1592  unsigned BitWidth = Mask.getBitWidth();
1593  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1594         "Mask size mismatches value type size!");
1595
1596  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1597  if (Depth == 6 || Mask == 0)
1598    return;  // Limit search depth.
1599
1600  APInt KnownZero2, KnownOne2;
1601
1602  switch (Op.getOpcode()) {
1603  case ISD::Constant:
1604    // We know all of the bits for a constant!
1605    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1606    KnownZero = ~KnownOne & Mask;
1607    return;
1608  case ISD::AND:
1609    // If either the LHS or the RHS are Zero, the result is zero.
1610    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1611    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1612                      KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // Output known-1 bits are only known if set in both the LHS & RHS.
1617    KnownOne &= KnownOne2;
1618    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1619    KnownZero |= KnownZero2;
1620    return;
1621  case ISD::OR:
1622    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1623    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1624                      KnownZero2, KnownOne2, Depth+1);
1625    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1626    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1627
1628    // Output known-0 bits are only known if clear in both the LHS & RHS.
1629    KnownZero &= KnownZero2;
1630    // Output known-1 are known to be set if set in either the LHS | RHS.
1631    KnownOne |= KnownOne2;
1632    return;
1633  case ISD::XOR: {
1634    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1635    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1636    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1637    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1638
1639    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1640    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1641    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1642    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1643    KnownZero = KnownZeroOut;
1644    return;
1645  }
1646  case ISD::MUL: {
1647    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1648    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // If low bits are zero in either operand, output low known-0 bits.
1654    // Also compute a conserative estimate for high known-0 bits.
1655    // More trickiness is possible, but this is sufficient for the
1656    // interesting case of alignment computation.
1657    KnownOne.clear();
1658    unsigned TrailZ = KnownZero.countTrailingOnes() +
1659                      KnownZero2.countTrailingOnes();
1660    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1661                               KnownZero2.countLeadingOnes(),
1662                               BitWidth) - BitWidth;
1663
1664    TrailZ = std::min(TrailZ, BitWidth);
1665    LeadZ = std::min(LeadZ, BitWidth);
1666    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1667                APInt::getHighBitsSet(BitWidth, LeadZ);
1668    KnownZero &= Mask;
1669    return;
1670  }
1671  case ISD::UDIV: {
1672    // For the purposes of computing leading zeros we can conservatively
1673    // treat a udiv as a logical right shift by the power of 2 known to
1674    // be less than the denominator.
1675    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1676    ComputeMaskedBits(Op.getOperand(0),
1677                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1678    unsigned LeadZ = KnownZero2.countLeadingOnes();
1679
1680    KnownOne2.clear();
1681    KnownZero2.clear();
1682    ComputeMaskedBits(Op.getOperand(1),
1683                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1684    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1685    if (RHSUnknownLeadingOnes != BitWidth)
1686      LeadZ = std::min(BitWidth,
1687                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1688
1689    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1690    return;
1691  }
1692  case ISD::SELECT:
1693    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1694    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1695    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1696    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1697
1698    // Only known if known in both the LHS and RHS.
1699    KnownOne &= KnownOne2;
1700    KnownZero &= KnownZero2;
1701    return;
1702  case ISD::SELECT_CC:
1703    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1704    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1705    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1706    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1707
1708    // Only known if known in both the LHS and RHS.
1709    KnownOne &= KnownOne2;
1710    KnownZero &= KnownZero2;
1711    return;
1712  case ISD::SADDO:
1713  case ISD::UADDO:
1714  case ISD::SSUBO:
1715  case ISD::USUBO:
1716  case ISD::SMULO:
1717  case ISD::UMULO:
1718    if (Op.getResNo() != 1)
1719      return;
1720    // The boolean result conforms to getBooleanContents.  Fall through.
1721  case ISD::SETCC:
1722    // If we know the result of a setcc has the top bits zero, use this info.
1723    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1724        BitWidth > 1)
1725      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1726    return;
1727  case ISD::SHL:
1728    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1729    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1730      unsigned ShAmt = SA->getZExtValue();
1731
1732      // If the shift count is an invalid immediate, don't do anything.
1733      if (ShAmt >= BitWidth)
1734        return;
1735
1736      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1737                        KnownZero, KnownOne, Depth+1);
1738      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1739      KnownZero <<= ShAmt;
1740      KnownOne  <<= ShAmt;
1741      // low bits known zero.
1742      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1743    }
1744    return;
1745  case ISD::SRL:
1746    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1747    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1748      unsigned ShAmt = SA->getZExtValue();
1749
1750      // If the shift count is an invalid immediate, don't do anything.
1751      if (ShAmt >= BitWidth)
1752        return;
1753
1754      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1755                        KnownZero, KnownOne, Depth+1);
1756      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1757      KnownZero = KnownZero.lshr(ShAmt);
1758      KnownOne  = KnownOne.lshr(ShAmt);
1759
1760      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1761      KnownZero |= HighBits;  // High bits known zero.
1762    }
1763    return;
1764  case ISD::SRA:
1765    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1766      unsigned ShAmt = SA->getZExtValue();
1767
1768      // If the shift count is an invalid immediate, don't do anything.
1769      if (ShAmt >= BitWidth)
1770        return;
1771
1772      APInt InDemandedMask = (Mask << ShAmt);
1773      // If any of the demanded bits are produced by the sign extension, we also
1774      // demand the input sign bit.
1775      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1776      if (HighBits.getBoolValue())
1777        InDemandedMask |= APInt::getSignBit(BitWidth);
1778
1779      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1780                        Depth+1);
1781      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1782      KnownZero = KnownZero.lshr(ShAmt);
1783      KnownOne  = KnownOne.lshr(ShAmt);
1784
1785      // Handle the sign bits.
1786      APInt SignBit = APInt::getSignBit(BitWidth);
1787      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1788
1789      if (KnownZero.intersects(SignBit)) {
1790        KnownZero |= HighBits;  // New bits are known zero.
1791      } else if (KnownOne.intersects(SignBit)) {
1792        KnownOne  |= HighBits;  // New bits are known one.
1793      }
1794    }
1795    return;
1796  case ISD::SIGN_EXTEND_INREG: {
1797    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1798    unsigned EBits = EVT.getScalarType().getSizeInBits();
1799
1800    // Sign extension.  Compute the demanded bits in the result that are not
1801    // present in the input.
1802    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1803
1804    APInt InSignBit = APInt::getSignBit(EBits);
1805    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1806
1807    // If the sign extended bits are demanded, we know that the sign
1808    // bit is demanded.
1809    InSignBit.zext(BitWidth);
1810    if (NewBits.getBoolValue())
1811      InputDemandedBits |= InSignBit;
1812
1813    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1814                      KnownZero, KnownOne, Depth+1);
1815    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1816
1817    // If the sign bit of the input is known set or clear, then we know the
1818    // top bits of the result.
1819    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1820      KnownZero |= NewBits;
1821      KnownOne  &= ~NewBits;
1822    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1823      KnownOne  |= NewBits;
1824      KnownZero &= ~NewBits;
1825    } else {                              // Input sign bit unknown
1826      KnownZero &= ~NewBits;
1827      KnownOne  &= ~NewBits;
1828    }
1829    return;
1830  }
1831  case ISD::CTTZ:
1832  case ISD::CTLZ:
1833  case ISD::CTPOP: {
1834    unsigned LowBits = Log2_32(BitWidth)+1;
1835    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1836    KnownOne.clear();
1837    return;
1838  }
1839  case ISD::LOAD: {
1840    if (ISD::isZEXTLoad(Op.getNode())) {
1841      LoadSDNode *LD = cast<LoadSDNode>(Op);
1842      EVT VT = LD->getMemoryVT();
1843      unsigned MemBits = VT.getScalarType().getSizeInBits();
1844      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1845    }
1846    return;
1847  }
1848  case ISD::ZERO_EXTEND: {
1849    EVT InVT = Op.getOperand(0).getValueType();
1850    unsigned InBits = InVT.getScalarType().getSizeInBits();
1851    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1852    APInt InMask    = Mask;
1853    InMask.trunc(InBits);
1854    KnownZero.trunc(InBits);
1855    KnownOne.trunc(InBits);
1856    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1857    KnownZero.zext(BitWidth);
1858    KnownOne.zext(BitWidth);
1859    KnownZero |= NewBits;
1860    return;
1861  }
1862  case ISD::SIGN_EXTEND: {
1863    EVT InVT = Op.getOperand(0).getValueType();
1864    unsigned InBits = InVT.getScalarType().getSizeInBits();
1865    APInt InSignBit = APInt::getSignBit(InBits);
1866    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1867    APInt InMask = Mask;
1868    InMask.trunc(InBits);
1869
1870    // If any of the sign extended bits are demanded, we know that the sign
1871    // bit is demanded. Temporarily set this bit in the mask for our callee.
1872    if (NewBits.getBoolValue())
1873      InMask |= InSignBit;
1874
1875    KnownZero.trunc(InBits);
1876    KnownOne.trunc(InBits);
1877    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1878
1879    // Note if the sign bit is known to be zero or one.
1880    bool SignBitKnownZero = KnownZero.isNegative();
1881    bool SignBitKnownOne  = KnownOne.isNegative();
1882    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1883           "Sign bit can't be known to be both zero and one!");
1884
1885    // If the sign bit wasn't actually demanded by our caller, we don't
1886    // want it set in the KnownZero and KnownOne result values. Reset the
1887    // mask and reapply it to the result values.
1888    InMask = Mask;
1889    InMask.trunc(InBits);
1890    KnownZero &= InMask;
1891    KnownOne  &= InMask;
1892
1893    KnownZero.zext(BitWidth);
1894    KnownOne.zext(BitWidth);
1895
1896    // If the sign bit is known zero or one, the top bits match.
1897    if (SignBitKnownZero)
1898      KnownZero |= NewBits;
1899    else if (SignBitKnownOne)
1900      KnownOne  |= NewBits;
1901    return;
1902  }
1903  case ISD::ANY_EXTEND: {
1904    EVT InVT = Op.getOperand(0).getValueType();
1905    unsigned InBits = InVT.getScalarType().getSizeInBits();
1906    APInt InMask = Mask;
1907    InMask.trunc(InBits);
1908    KnownZero.trunc(InBits);
1909    KnownOne.trunc(InBits);
1910    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1911    KnownZero.zext(BitWidth);
1912    KnownOne.zext(BitWidth);
1913    return;
1914  }
1915  case ISD::TRUNCATE: {
1916    EVT InVT = Op.getOperand(0).getValueType();
1917    unsigned InBits = InVT.getScalarType().getSizeInBits();
1918    APInt InMask = Mask;
1919    InMask.zext(InBits);
1920    KnownZero.zext(InBits);
1921    KnownOne.zext(InBits);
1922    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1923    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1924    KnownZero.trunc(BitWidth);
1925    KnownOne.trunc(BitWidth);
1926    break;
1927  }
1928  case ISD::AssertZext: {
1929    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1930    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1931    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1932                      KnownOne, Depth+1);
1933    KnownZero |= (~InMask) & Mask;
1934    return;
1935  }
1936  case ISD::FGETSIGN:
1937    // All bits are zero except the low bit.
1938    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1939    return;
1940
1941  case ISD::SUB: {
1942    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1943      // We know that the top bits of C-X are clear if X contains less bits
1944      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1945      // positive if we can prove that X is >= 0 and < 16.
1946      if (CLHS->getAPIntValue().isNonNegative()) {
1947        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1948        // NLZ can't be BitWidth with no sign bit
1949        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1950        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1951                          Depth+1);
1952
1953        // If all of the MaskV bits are known to be zero, then we know the
1954        // output top bits are zero, because we now know that the output is
1955        // from [0-C].
1956        if ((KnownZero2 & MaskV) == MaskV) {
1957          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1958          // Top bits known zero.
1959          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1960        }
1961      }
1962    }
1963  }
1964  // fall through
1965  case ISD::ADD: {
1966    // Output known-0 bits are known if clear or set in both the low clear bits
1967    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1968    // low 3 bits clear.
1969    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1970                                       BitWidth - Mask.countLeadingZeros());
1971    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1972    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1973    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1974
1975    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1976    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1977    KnownZeroOut = std::min(KnownZeroOut,
1978                            KnownZero2.countTrailingOnes());
1979
1980    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1981    return;
1982  }
1983  case ISD::SREM:
1984    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1985      const APInt &RA = Rem->getAPIntValue().abs();
1986      if (RA.isPowerOf2()) {
1987        APInt LowBits = RA - 1;
1988        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1989        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1990
1991        // The low bits of the first operand are unchanged by the srem.
1992        KnownZero = KnownZero2 & LowBits;
1993        KnownOne = KnownOne2 & LowBits;
1994
1995        // If the first operand is non-negative or has all low bits zero, then
1996        // the upper bits are all zero.
1997        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1998          KnownZero |= ~LowBits;
1999
2000        // If the first operand is negative and not all low bits are zero, then
2001        // the upper bits are all one.
2002        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2003          KnownOne |= ~LowBits;
2004
2005        KnownZero &= Mask;
2006        KnownOne &= Mask;
2007
2008        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2009      }
2010    }
2011    return;
2012  case ISD::UREM: {
2013    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2014      const APInt &RA = Rem->getAPIntValue();
2015      if (RA.isPowerOf2()) {
2016        APInt LowBits = (RA - 1);
2017        APInt Mask2 = LowBits & Mask;
2018        KnownZero |= ~LowBits & Mask;
2019        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2020        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2021        break;
2022      }
2023    }
2024
2025    // Since the result is less than or equal to either operand, any leading
2026    // zero bits in either operand must also exist in the result.
2027    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2028    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2029                      Depth+1);
2030    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2031                      Depth+1);
2032
2033    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2034                                KnownZero2.countLeadingOnes());
2035    KnownOne.clear();
2036    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2037    return;
2038  }
2039  default:
2040    // Allow the target to implement this method for its nodes.
2041    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2042  case ISD::INTRINSIC_WO_CHAIN:
2043  case ISD::INTRINSIC_W_CHAIN:
2044  case ISD::INTRINSIC_VOID:
2045      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2046                                         Depth);
2047    }
2048    return;
2049  }
2050}
2051
2052/// ComputeNumSignBits - Return the number of times the sign bit of the
2053/// register is replicated into the other bits.  We know that at least 1 bit
2054/// is always equal to the sign bit (itself), but other cases can give us
2055/// information.  For example, immediately after an "SRA X, 2", we know that
2056/// the top 3 bits are all equal to each other, so we return 3.
2057unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2058  EVT VT = Op.getValueType();
2059  assert(VT.isInteger() && "Invalid VT!");
2060  unsigned VTBits = VT.getScalarType().getSizeInBits();
2061  unsigned Tmp, Tmp2;
2062  unsigned FirstAnswer = 1;
2063
2064  if (Depth == 6)
2065    return 1;  // Limit search depth.
2066
2067  switch (Op.getOpcode()) {
2068  default: break;
2069  case ISD::AssertSext:
2070    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2071    return VTBits-Tmp+1;
2072  case ISD::AssertZext:
2073    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2074    return VTBits-Tmp;
2075
2076  case ISD::Constant: {
2077    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2078    // If negative, return # leading ones.
2079    if (Val.isNegative())
2080      return Val.countLeadingOnes();
2081
2082    // Return # leading zeros.
2083    return Val.countLeadingZeros();
2084  }
2085
2086  case ISD::SIGN_EXTEND:
2087    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2088    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2089
2090  case ISD::SIGN_EXTEND_INREG:
2091    // Max of the input and what this extends.
2092    Tmp =
2093      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2094    Tmp = VTBits-Tmp+1;
2095
2096    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2097    return std::max(Tmp, Tmp2);
2098
2099  case ISD::SRA:
2100    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2101    // SRA X, C   -> adds C sign bits.
2102    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2103      Tmp += C->getZExtValue();
2104      if (Tmp > VTBits) Tmp = VTBits;
2105    }
2106    return Tmp;
2107  case ISD::SHL:
2108    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2109      // shl destroys sign bits.
2110      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2111      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2112          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2113      return Tmp - C->getZExtValue();
2114    }
2115    break;
2116  case ISD::AND:
2117  case ISD::OR:
2118  case ISD::XOR:    // NOT is handled here.
2119    // Logical binary ops preserve the number of sign bits at the worst.
2120    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2121    if (Tmp != 1) {
2122      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2123      FirstAnswer = std::min(Tmp, Tmp2);
2124      // We computed what we know about the sign bits as our first
2125      // answer. Now proceed to the generic code that uses
2126      // ComputeMaskedBits, and pick whichever answer is better.
2127    }
2128    break;
2129
2130  case ISD::SELECT:
2131    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2132    if (Tmp == 1) return 1;  // Early out.
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2134    return std::min(Tmp, Tmp2);
2135
2136  case ISD::SADDO:
2137  case ISD::UADDO:
2138  case ISD::SSUBO:
2139  case ISD::USUBO:
2140  case ISD::SMULO:
2141  case ISD::UMULO:
2142    if (Op.getResNo() != 1)
2143      break;
2144    // The boolean result conforms to getBooleanContents.  Fall through.
2145  case ISD::SETCC:
2146    // If setcc returns 0/-1, all bits are sign bits.
2147    if (TLI.getBooleanContents() ==
2148        TargetLowering::ZeroOrNegativeOneBooleanContent)
2149      return VTBits;
2150    break;
2151  case ISD::ROTL:
2152  case ISD::ROTR:
2153    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2154      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2155
2156      // Handle rotate right by N like a rotate left by 32-N.
2157      if (Op.getOpcode() == ISD::ROTR)
2158        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2159
2160      // If we aren't rotating out all of the known-in sign bits, return the
2161      // number that are left.  This handles rotl(sext(x), 1) for example.
2162      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2163      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2164    }
2165    break;
2166  case ISD::ADD:
2167    // Add can have at most one carry bit.  Thus we know that the output
2168    // is, at worst, one more bit than the inputs.
2169    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2170    if (Tmp == 1) return 1;  // Early out.
2171
2172    // Special case decrementing a value (ADD X, -1):
2173    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2174      if (CRHS->isAllOnesValue()) {
2175        APInt KnownZero, KnownOne;
2176        APInt Mask = APInt::getAllOnesValue(VTBits);
2177        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2178
2179        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2180        // sign bits set.
2181        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2182          return VTBits;
2183
2184        // If we are subtracting one from a positive number, there is no carry
2185        // out of the result.
2186        if (KnownZero.isNegative())
2187          return Tmp;
2188      }
2189
2190    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2191    if (Tmp2 == 1) return 1;
2192      return std::min(Tmp, Tmp2)-1;
2193    break;
2194
2195  case ISD::SUB:
2196    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2197    if (Tmp2 == 1) return 1;
2198
2199    // Handle NEG.
2200    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2201      if (CLHS->isNullValue()) {
2202        APInt KnownZero, KnownOne;
2203        APInt Mask = APInt::getAllOnesValue(VTBits);
2204        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2205        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2206        // sign bits set.
2207        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2208          return VTBits;
2209
2210        // If the input is known to be positive (the sign bit is known clear),
2211        // the output of the NEG has the same number of sign bits as the input.
2212        if (KnownZero.isNegative())
2213          return Tmp2;
2214
2215        // Otherwise, we treat this like a SUB.
2216      }
2217
2218    // Sub can have at most one carry bit.  Thus we know that the output
2219    // is, at worst, one more bit than the inputs.
2220    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2221    if (Tmp == 1) return 1;  // Early out.
2222      return std::min(Tmp, Tmp2)-1;
2223    break;
2224  case ISD::TRUNCATE:
2225    // FIXME: it's tricky to do anything useful for this, but it is an important
2226    // case for targets like X86.
2227    break;
2228  }
2229
2230  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2231  if (Op.getOpcode() == ISD::LOAD) {
2232    LoadSDNode *LD = cast<LoadSDNode>(Op);
2233    unsigned ExtType = LD->getExtensionType();
2234    switch (ExtType) {
2235    default: break;
2236    case ISD::SEXTLOAD:    // '17' bits known
2237      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2238      return VTBits-Tmp+1;
2239    case ISD::ZEXTLOAD:    // '16' bits known
2240      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2241      return VTBits-Tmp;
2242    }
2243  }
2244
2245  // Allow the target to implement this method for its nodes.
2246  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2247      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2248      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2249      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2250    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2251    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2252  }
2253
2254  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2255  // use this information.
2256  APInt KnownZero, KnownOne;
2257  APInt Mask = APInt::getAllOnesValue(VTBits);
2258  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2259
2260  if (KnownZero.isNegative()) {        // sign bit is 0
2261    Mask = KnownZero;
2262  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2263    Mask = KnownOne;
2264  } else {
2265    // Nothing known.
2266    return FirstAnswer;
2267  }
2268
2269  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2270  // the number of identical bits in the top of the input value.
2271  Mask = ~Mask;
2272  Mask <<= Mask.getBitWidth()-VTBits;
2273  // Return # leading zeros.  We use 'min' here in case Val was zero before
2274  // shifting.  We don't want to return '64' as for an i32 "0".
2275  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2276}
2277
2278bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2279  // If we're told that NaNs won't happen, assume they won't.
2280  if (NoNaNsFPMath)
2281    return true;
2282
2283  // If the value is a constant, we can obviously see if it is a NaN or not.
2284  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2285    return !C->getValueAPF().isNaN();
2286
2287  // TODO: Recognize more cases here.
2288
2289  return false;
2290}
2291
2292bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2293  // If the value is a constant, we can obviously see if it is a zero or not.
2294  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2295    return !C->isZero();
2296
2297  // TODO: Recognize more cases here.
2298
2299  return false;
2300}
2301
2302bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2303  // Check the obvious case.
2304  if (A == B) return true;
2305
2306  // For for negative and positive zero.
2307  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2308    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2309      if (CA->isZero() && CB->isZero()) return true;
2310
2311  // Otherwise they may not be equal.
2312  return false;
2313}
2314
2315bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2316  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2317  if (!GA) return false;
2318  if (GA->getOffset() != 0) return false;
2319  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2320  if (!GV) return false;
2321  return MF->getMMI().hasDebugInfo();
2322}
2323
2324
2325/// getNode - Gets or creates the specified node.
2326///
2327SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2328  FoldingSetNodeID ID;
2329  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2330  void *IP = 0;
2331  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2332    return SDValue(E, 0);
2333
2334  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2335  CSEMap.InsertNode(N, IP);
2336
2337  AllNodes.push_back(N);
2338#ifndef NDEBUG
2339  VerifySDNode(N);
2340#endif
2341  return SDValue(N, 0);
2342}
2343
2344SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2345                              EVT VT, SDValue Operand) {
2346  // Constant fold unary operations with an integer constant operand.
2347  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2348    const APInt &Val = C->getAPIntValue();
2349    switch (Opcode) {
2350    default: break;
2351    case ISD::SIGN_EXTEND:
2352      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2353    case ISD::ANY_EXTEND:
2354    case ISD::ZERO_EXTEND:
2355    case ISD::TRUNCATE:
2356      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2357    case ISD::UINT_TO_FP:
2358    case ISD::SINT_TO_FP: {
2359      const uint64_t zero[] = {0, 0};
2360      // No compile time operations on ppcf128.
2361      if (VT == MVT::ppcf128) break;
2362      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2363      (void)apf.convertFromAPInt(Val,
2364                                 Opcode==ISD::SINT_TO_FP,
2365                                 APFloat::rmNearestTiesToEven);
2366      return getConstantFP(apf, VT);
2367    }
2368    case ISD::BIT_CONVERT:
2369      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2370        return getConstantFP(Val.bitsToFloat(), VT);
2371      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2372        return getConstantFP(Val.bitsToDouble(), VT);
2373      break;
2374    case ISD::BSWAP:
2375      return getConstant(Val.byteSwap(), VT);
2376    case ISD::CTPOP:
2377      return getConstant(Val.countPopulation(), VT);
2378    case ISD::CTLZ:
2379      return getConstant(Val.countLeadingZeros(), VT);
2380    case ISD::CTTZ:
2381      return getConstant(Val.countTrailingZeros(), VT);
2382    }
2383  }
2384
2385  // Constant fold unary operations with a floating point constant operand.
2386  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2387    APFloat V = C->getValueAPF();    // make copy
2388    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2389      switch (Opcode) {
2390      case ISD::FNEG:
2391        V.changeSign();
2392        return getConstantFP(V, VT);
2393      case ISD::FABS:
2394        V.clearSign();
2395        return getConstantFP(V, VT);
2396      case ISD::FP_ROUND:
2397      case ISD::FP_EXTEND: {
2398        bool ignored;
2399        // This can return overflow, underflow, or inexact; we don't care.
2400        // FIXME need to be more flexible about rounding mode.
2401        (void)V.convert(*EVTToAPFloatSemantics(VT),
2402                        APFloat::rmNearestTiesToEven, &ignored);
2403        return getConstantFP(V, VT);
2404      }
2405      case ISD::FP_TO_SINT:
2406      case ISD::FP_TO_UINT: {
2407        integerPart x[2];
2408        bool ignored;
2409        assert(integerPartWidth >= 64);
2410        // FIXME need to be more flexible about rounding mode.
2411        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2412                              Opcode==ISD::FP_TO_SINT,
2413                              APFloat::rmTowardZero, &ignored);
2414        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2415          break;
2416        APInt api(VT.getSizeInBits(), 2, x);
2417        return getConstant(api, VT);
2418      }
2419      case ISD::BIT_CONVERT:
2420        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2421          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2422        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2423          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2424        break;
2425      }
2426    }
2427  }
2428
2429  unsigned OpOpcode = Operand.getNode()->getOpcode();
2430  switch (Opcode) {
2431  case ISD::TokenFactor:
2432  case ISD::MERGE_VALUES:
2433  case ISD::CONCAT_VECTORS:
2434    return Operand;         // Factor, merge or concat of one node?  No need.
2435  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2436  case ISD::FP_EXTEND:
2437    assert(VT.isFloatingPoint() &&
2438           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2439    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2440    assert((!VT.isVector() ||
2441            VT.getVectorNumElements() ==
2442            Operand.getValueType().getVectorNumElements()) &&
2443           "Vector element count mismatch!");
2444    if (Operand.getOpcode() == ISD::UNDEF)
2445      return getUNDEF(VT);
2446    break;
2447  case ISD::SIGN_EXTEND:
2448    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2449           "Invalid SIGN_EXTEND!");
2450    if (Operand.getValueType() == VT) return Operand;   // noop extension
2451    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2452           "Invalid sext node, dst < src!");
2453    assert((!VT.isVector() ||
2454            VT.getVectorNumElements() ==
2455            Operand.getValueType().getVectorNumElements()) &&
2456           "Vector element count mismatch!");
2457    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2458      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2459    break;
2460  case ISD::ZERO_EXTEND:
2461    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2462           "Invalid ZERO_EXTEND!");
2463    if (Operand.getValueType() == VT) return Operand;   // noop extension
2464    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2465           "Invalid zext node, dst < src!");
2466    assert((!VT.isVector() ||
2467            VT.getVectorNumElements() ==
2468            Operand.getValueType().getVectorNumElements()) &&
2469           "Vector element count mismatch!");
2470    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2471      return getNode(ISD::ZERO_EXTEND, DL, VT,
2472                     Operand.getNode()->getOperand(0));
2473    break;
2474  case ISD::ANY_EXTEND:
2475    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2476           "Invalid ANY_EXTEND!");
2477    if (Operand.getValueType() == VT) return Operand;   // noop extension
2478    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2479           "Invalid anyext node, dst < src!");
2480    assert((!VT.isVector() ||
2481            VT.getVectorNumElements() ==
2482            Operand.getValueType().getVectorNumElements()) &&
2483           "Vector element count mismatch!");
2484
2485    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2486        OpOpcode == ISD::ANY_EXTEND)
2487      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2488      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2489
2490    // (ext (trunx x)) -> x
2491    if (OpOpcode == ISD::TRUNCATE) {
2492      SDValue OpOp = Operand.getNode()->getOperand(0);
2493      if (OpOp.getValueType() == VT)
2494        return OpOp;
2495    }
2496    break;
2497  case ISD::TRUNCATE:
2498    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2499           "Invalid TRUNCATE!");
2500    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2501    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2502           "Invalid truncate node, src < dst!");
2503    assert((!VT.isVector() ||
2504            VT.getVectorNumElements() ==
2505            Operand.getValueType().getVectorNumElements()) &&
2506           "Vector element count mismatch!");
2507    if (OpOpcode == ISD::TRUNCATE)
2508      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2509    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2510             OpOpcode == ISD::ANY_EXTEND) {
2511      // If the source is smaller than the dest, we still need an extend.
2512      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2513            .bitsLT(VT.getScalarType()))
2514        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2515      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2516        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2517      else
2518        return Operand.getNode()->getOperand(0);
2519    }
2520    break;
2521  case ISD::BIT_CONVERT:
2522    // Basic sanity checking.
2523    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2524           && "Cannot BIT_CONVERT between types of different sizes!");
2525    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2526    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2527      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2528    if (OpOpcode == ISD::UNDEF)
2529      return getUNDEF(VT);
2530    break;
2531  case ISD::SCALAR_TO_VECTOR:
2532    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2533           (VT.getVectorElementType() == Operand.getValueType() ||
2534            (VT.getVectorElementType().isInteger() &&
2535             Operand.getValueType().isInteger() &&
2536             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2537           "Illegal SCALAR_TO_VECTOR node!");
2538    if (OpOpcode == ISD::UNDEF)
2539      return getUNDEF(VT);
2540    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2541    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2542        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2543        Operand.getConstantOperandVal(1) == 0 &&
2544        Operand.getOperand(0).getValueType() == VT)
2545      return Operand.getOperand(0);
2546    break;
2547  case ISD::FNEG:
2548    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2549    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2550      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2551                     Operand.getNode()->getOperand(0));
2552    if (OpOpcode == ISD::FNEG)  // --X -> X
2553      return Operand.getNode()->getOperand(0);
2554    break;
2555  case ISD::FABS:
2556    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2557      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2558    break;
2559  }
2560
2561  SDNode *N;
2562  SDVTList VTs = getVTList(VT);
2563  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2564    FoldingSetNodeID ID;
2565    SDValue Ops[1] = { Operand };
2566    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2567    void *IP = 0;
2568    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2569      return SDValue(E, 0);
2570
2571    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2572    CSEMap.InsertNode(N, IP);
2573  } else {
2574    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2575  }
2576
2577  AllNodes.push_back(N);
2578#ifndef NDEBUG
2579  VerifySDNode(N);
2580#endif
2581  return SDValue(N, 0);
2582}
2583
2584SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2585                                             EVT VT,
2586                                             ConstantSDNode *Cst1,
2587                                             ConstantSDNode *Cst2) {
2588  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2589
2590  switch (Opcode) {
2591  case ISD::ADD:  return getConstant(C1 + C2, VT);
2592  case ISD::SUB:  return getConstant(C1 - C2, VT);
2593  case ISD::MUL:  return getConstant(C1 * C2, VT);
2594  case ISD::UDIV:
2595    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2596    break;
2597  case ISD::UREM:
2598    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2599    break;
2600  case ISD::SDIV:
2601    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2602    break;
2603  case ISD::SREM:
2604    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2605    break;
2606  case ISD::AND:  return getConstant(C1 & C2, VT);
2607  case ISD::OR:   return getConstant(C1 | C2, VT);
2608  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2609  case ISD::SHL:  return getConstant(C1 << C2, VT);
2610  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2611  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2612  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2613  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2614  default: break;
2615  }
2616
2617  return SDValue();
2618}
2619
2620SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2621                              SDValue N1, SDValue N2) {
2622  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2623  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2624  switch (Opcode) {
2625  default: break;
2626  case ISD::TokenFactor:
2627    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2628           N2.getValueType() == MVT::Other && "Invalid token factor!");
2629    // Fold trivial token factors.
2630    if (N1.getOpcode() == ISD::EntryToken) return N2;
2631    if (N2.getOpcode() == ISD::EntryToken) return N1;
2632    if (N1 == N2) return N1;
2633    break;
2634  case ISD::CONCAT_VECTORS:
2635    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2636    // one big BUILD_VECTOR.
2637    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2638        N2.getOpcode() == ISD::BUILD_VECTOR) {
2639      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2640                                    N1.getNode()->op_end());
2641      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2642      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2643    }
2644    break;
2645  case ISD::AND:
2646    assert(VT.isInteger() && "This operator does not apply to FP types!");
2647    assert(N1.getValueType() == N2.getValueType() &&
2648           N1.getValueType() == VT && "Binary operator types must match!");
2649    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2650    // worth handling here.
2651    if (N2C && N2C->isNullValue())
2652      return N2;
2653    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2654      return N1;
2655    break;
2656  case ISD::OR:
2657  case ISD::XOR:
2658  case ISD::ADD:
2659  case ISD::SUB:
2660    assert(VT.isInteger() && "This operator does not apply to FP types!");
2661    assert(N1.getValueType() == N2.getValueType() &&
2662           N1.getValueType() == VT && "Binary operator types must match!");
2663    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2664    // it's worth handling here.
2665    if (N2C && N2C->isNullValue())
2666      return N1;
2667    break;
2668  case ISD::UDIV:
2669  case ISD::UREM:
2670  case ISD::MULHU:
2671  case ISD::MULHS:
2672  case ISD::MUL:
2673  case ISD::SDIV:
2674  case ISD::SREM:
2675    assert(VT.isInteger() && "This operator does not apply to FP types!");
2676    assert(N1.getValueType() == N2.getValueType() &&
2677           N1.getValueType() == VT && "Binary operator types must match!");
2678    break;
2679  case ISD::FADD:
2680  case ISD::FSUB:
2681  case ISD::FMUL:
2682  case ISD::FDIV:
2683  case ISD::FREM:
2684    if (UnsafeFPMath) {
2685      if (Opcode == ISD::FADD) {
2686        // 0+x --> x
2687        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2688          if (CFP->getValueAPF().isZero())
2689            return N2;
2690        // x+0 --> x
2691        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2692          if (CFP->getValueAPF().isZero())
2693            return N1;
2694      } else if (Opcode == ISD::FSUB) {
2695        // x-0 --> x
2696        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2697          if (CFP->getValueAPF().isZero())
2698            return N1;
2699      }
2700    }
2701    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2702    assert(N1.getValueType() == N2.getValueType() &&
2703           N1.getValueType() == VT && "Binary operator types must match!");
2704    break;
2705  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2706    assert(N1.getValueType() == VT &&
2707           N1.getValueType().isFloatingPoint() &&
2708           N2.getValueType().isFloatingPoint() &&
2709           "Invalid FCOPYSIGN!");
2710    break;
2711  case ISD::SHL:
2712  case ISD::SRA:
2713  case ISD::SRL:
2714  case ISD::ROTL:
2715  case ISD::ROTR:
2716    assert(VT == N1.getValueType() &&
2717           "Shift operators return type must be the same as their first arg");
2718    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2719           "Shifts only work on integers");
2720
2721    // Always fold shifts of i1 values so the code generator doesn't need to
2722    // handle them.  Since we know the size of the shift has to be less than the
2723    // size of the value, the shift/rotate count is guaranteed to be zero.
2724    if (VT == MVT::i1)
2725      return N1;
2726    if (N2C && N2C->isNullValue())
2727      return N1;
2728    break;
2729  case ISD::FP_ROUND_INREG: {
2730    EVT EVT = cast<VTSDNode>(N2)->getVT();
2731    assert(VT == N1.getValueType() && "Not an inreg round!");
2732    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2733           "Cannot FP_ROUND_INREG integer types");
2734    assert(EVT.isVector() == VT.isVector() &&
2735           "FP_ROUND_INREG type should be vector iff the operand "
2736           "type is vector!");
2737    assert((!EVT.isVector() ||
2738            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2739           "Vector element counts must match in FP_ROUND_INREG");
2740    assert(EVT.bitsLE(VT) && "Not rounding down!");
2741    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2742    break;
2743  }
2744  case ISD::FP_ROUND:
2745    assert(VT.isFloatingPoint() &&
2746           N1.getValueType().isFloatingPoint() &&
2747           VT.bitsLE(N1.getValueType()) &&
2748           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2749    if (N1.getValueType() == VT) return N1;  // noop conversion.
2750    break;
2751  case ISD::AssertSext:
2752  case ISD::AssertZext: {
2753    EVT EVT = cast<VTSDNode>(N2)->getVT();
2754    assert(VT == N1.getValueType() && "Not an inreg extend!");
2755    assert(VT.isInteger() && EVT.isInteger() &&
2756           "Cannot *_EXTEND_INREG FP types");
2757    assert(!EVT.isVector() &&
2758           "AssertSExt/AssertZExt type should be the vector element type "
2759           "rather than the vector type!");
2760    assert(EVT.bitsLE(VT) && "Not extending!");
2761    if (VT == EVT) return N1; // noop assertion.
2762    break;
2763  }
2764  case ISD::SIGN_EXTEND_INREG: {
2765    EVT EVT = cast<VTSDNode>(N2)->getVT();
2766    assert(VT == N1.getValueType() && "Not an inreg extend!");
2767    assert(VT.isInteger() && EVT.isInteger() &&
2768           "Cannot *_EXTEND_INREG FP types");
2769    assert(EVT.isVector() == VT.isVector() &&
2770           "SIGN_EXTEND_INREG type should be vector iff the operand "
2771           "type is vector!");
2772    assert((!EVT.isVector() ||
2773            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2774           "Vector element counts must match in SIGN_EXTEND_INREG");
2775    assert(EVT.bitsLE(VT) && "Not extending!");
2776    if (EVT == VT) return N1;  // Not actually extending
2777
2778    if (N1C) {
2779      APInt Val = N1C->getAPIntValue();
2780      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2781      Val <<= Val.getBitWidth()-FromBits;
2782      Val = Val.ashr(Val.getBitWidth()-FromBits);
2783      return getConstant(Val, VT);
2784    }
2785    break;
2786  }
2787  case ISD::EXTRACT_VECTOR_ELT:
2788    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2789    if (N1.getOpcode() == ISD::UNDEF)
2790      return getUNDEF(VT);
2791
2792    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2793    // expanding copies of large vectors from registers.
2794    if (N2C &&
2795        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2796        N1.getNumOperands() > 0) {
2797      unsigned Factor =
2798        N1.getOperand(0).getValueType().getVectorNumElements();
2799      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2800                     N1.getOperand(N2C->getZExtValue() / Factor),
2801                     getConstant(N2C->getZExtValue() % Factor,
2802                                 N2.getValueType()));
2803    }
2804
2805    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2806    // expanding large vector constants.
2807    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2808      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2809      EVT VEltTy = N1.getValueType().getVectorElementType();
2810      if (Elt.getValueType() != VEltTy) {
2811        // If the vector element type is not legal, the BUILD_VECTOR operands
2812        // are promoted and implicitly truncated.  Make that explicit here.
2813        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2814      }
2815      if (VT != VEltTy) {
2816        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2817        // result is implicitly extended.
2818        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2819      }
2820      return Elt;
2821    }
2822
2823    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2824    // operations are lowered to scalars.
2825    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2826      // If the indices are the same, return the inserted element else
2827      // if the indices are known different, extract the element from
2828      // the original vector.
2829      SDValue N1Op2 = N1.getOperand(2);
2830      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2831
2832      if (N1Op2C && N2C) {
2833        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2834          if (VT == N1.getOperand(1).getValueType())
2835            return N1.getOperand(1);
2836          else
2837            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2838        }
2839
2840        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2841      }
2842    }
2843    break;
2844  case ISD::EXTRACT_ELEMENT:
2845    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2846    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2847           (N1.getValueType().isInteger() == VT.isInteger()) &&
2848           "Wrong types for EXTRACT_ELEMENT!");
2849
2850    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2851    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2852    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2853    if (N1.getOpcode() == ISD::BUILD_PAIR)
2854      return N1.getOperand(N2C->getZExtValue());
2855
2856    // EXTRACT_ELEMENT of a constant int is also very common.
2857    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2858      unsigned ElementSize = VT.getSizeInBits();
2859      unsigned Shift = ElementSize * N2C->getZExtValue();
2860      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2861      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2862    }
2863    break;
2864  case ISD::EXTRACT_SUBVECTOR:
2865    if (N1.getValueType() == VT) // Trivial extraction.
2866      return N1;
2867    break;
2868  }
2869
2870  if (N1C) {
2871    if (N2C) {
2872      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2873      if (SV.getNode()) return SV;
2874    } else {      // Cannonicalize constant to RHS if commutative
2875      if (isCommutativeBinOp(Opcode)) {
2876        std::swap(N1C, N2C);
2877        std::swap(N1, N2);
2878      }
2879    }
2880  }
2881
2882  // Constant fold FP operations.
2883  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2884  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2885  if (N1CFP) {
2886    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2887      // Cannonicalize constant to RHS if commutative
2888      std::swap(N1CFP, N2CFP);
2889      std::swap(N1, N2);
2890    } else if (N2CFP && VT != MVT::ppcf128) {
2891      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2892      APFloat::opStatus s;
2893      switch (Opcode) {
2894      case ISD::FADD:
2895        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2896        if (s != APFloat::opInvalidOp)
2897          return getConstantFP(V1, VT);
2898        break;
2899      case ISD::FSUB:
2900        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2901        if (s!=APFloat::opInvalidOp)
2902          return getConstantFP(V1, VT);
2903        break;
2904      case ISD::FMUL:
2905        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2906        if (s!=APFloat::opInvalidOp)
2907          return getConstantFP(V1, VT);
2908        break;
2909      case ISD::FDIV:
2910        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2911        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2912          return getConstantFP(V1, VT);
2913        break;
2914      case ISD::FREM :
2915        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2916        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2917          return getConstantFP(V1, VT);
2918        break;
2919      case ISD::FCOPYSIGN:
2920        V1.copySign(V2);
2921        return getConstantFP(V1, VT);
2922      default: break;
2923      }
2924    }
2925  }
2926
2927  // Canonicalize an UNDEF to the RHS, even over a constant.
2928  if (N1.getOpcode() == ISD::UNDEF) {
2929    if (isCommutativeBinOp(Opcode)) {
2930      std::swap(N1, N2);
2931    } else {
2932      switch (Opcode) {
2933      case ISD::FP_ROUND_INREG:
2934      case ISD::SIGN_EXTEND_INREG:
2935      case ISD::SUB:
2936      case ISD::FSUB:
2937      case ISD::FDIV:
2938      case ISD::FREM:
2939      case ISD::SRA:
2940        return N1;     // fold op(undef, arg2) -> undef
2941      case ISD::UDIV:
2942      case ISD::SDIV:
2943      case ISD::UREM:
2944      case ISD::SREM:
2945      case ISD::SRL:
2946      case ISD::SHL:
2947        if (!VT.isVector())
2948          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2949        // For vectors, we can't easily build an all zero vector, just return
2950        // the LHS.
2951        return N2;
2952      }
2953    }
2954  }
2955
2956  // Fold a bunch of operators when the RHS is undef.
2957  if (N2.getOpcode() == ISD::UNDEF) {
2958    switch (Opcode) {
2959    case ISD::XOR:
2960      if (N1.getOpcode() == ISD::UNDEF)
2961        // Handle undef ^ undef -> 0 special case. This is a common
2962        // idiom (misuse).
2963        return getConstant(0, VT);
2964      // fallthrough
2965    case ISD::ADD:
2966    case ISD::ADDC:
2967    case ISD::ADDE:
2968    case ISD::SUB:
2969    case ISD::UDIV:
2970    case ISD::SDIV:
2971    case ISD::UREM:
2972    case ISD::SREM:
2973      return N2;       // fold op(arg1, undef) -> undef
2974    case ISD::FADD:
2975    case ISD::FSUB:
2976    case ISD::FMUL:
2977    case ISD::FDIV:
2978    case ISD::FREM:
2979      if (UnsafeFPMath)
2980        return N2;
2981      break;
2982    case ISD::MUL:
2983    case ISD::AND:
2984    case ISD::SRL:
2985    case ISD::SHL:
2986      if (!VT.isVector())
2987        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2988      // For vectors, we can't easily build an all zero vector, just return
2989      // the LHS.
2990      return N1;
2991    case ISD::OR:
2992      if (!VT.isVector())
2993        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2994      // For vectors, we can't easily build an all one vector, just return
2995      // the LHS.
2996      return N1;
2997    case ISD::SRA:
2998      return N1;
2999    }
3000  }
3001
3002  // Memoize this node if possible.
3003  SDNode *N;
3004  SDVTList VTs = getVTList(VT);
3005  if (VT != MVT::Flag) {
3006    SDValue Ops[] = { N1, N2 };
3007    FoldingSetNodeID ID;
3008    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3009    void *IP = 0;
3010    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3011      return SDValue(E, 0);
3012
3013    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3014    CSEMap.InsertNode(N, IP);
3015  } else {
3016    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3017  }
3018
3019  AllNodes.push_back(N);
3020#ifndef NDEBUG
3021  VerifySDNode(N);
3022#endif
3023  return SDValue(N, 0);
3024}
3025
3026SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3027                              SDValue N1, SDValue N2, SDValue N3) {
3028  // Perform various simplifications.
3029  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3030  switch (Opcode) {
3031  case ISD::CONCAT_VECTORS:
3032    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3033    // one big BUILD_VECTOR.
3034    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3035        N2.getOpcode() == ISD::BUILD_VECTOR &&
3036        N3.getOpcode() == ISD::BUILD_VECTOR) {
3037      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3038                                    N1.getNode()->op_end());
3039      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3040      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3041      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3042    }
3043    break;
3044  case ISD::SETCC: {
3045    // Use FoldSetCC to simplify SETCC's.
3046    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3047    if (Simp.getNode()) return Simp;
3048    break;
3049  }
3050  case ISD::SELECT:
3051    if (N1C) {
3052     if (N1C->getZExtValue())
3053        return N2;             // select true, X, Y -> X
3054      else
3055        return N3;             // select false, X, Y -> Y
3056    }
3057
3058    if (N2 == N3) return N2;   // select C, X, X -> X
3059    break;
3060  case ISD::VECTOR_SHUFFLE:
3061    llvm_unreachable("should use getVectorShuffle constructor!");
3062    break;
3063  case ISD::BIT_CONVERT:
3064    // Fold bit_convert nodes from a type to themselves.
3065    if (N1.getValueType() == VT)
3066      return N1;
3067    break;
3068  }
3069
3070  // Memoize node if it doesn't produce a flag.
3071  SDNode *N;
3072  SDVTList VTs = getVTList(VT);
3073  if (VT != MVT::Flag) {
3074    SDValue Ops[] = { N1, N2, N3 };
3075    FoldingSetNodeID ID;
3076    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3077    void *IP = 0;
3078    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3079      return SDValue(E, 0);
3080
3081    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3082    CSEMap.InsertNode(N, IP);
3083  } else {
3084    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3085  }
3086
3087  AllNodes.push_back(N);
3088#ifndef NDEBUG
3089  VerifySDNode(N);
3090#endif
3091  return SDValue(N, 0);
3092}
3093
3094SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3095                              SDValue N1, SDValue N2, SDValue N3,
3096                              SDValue N4) {
3097  SDValue Ops[] = { N1, N2, N3, N4 };
3098  return getNode(Opcode, DL, VT, Ops, 4);
3099}
3100
3101SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3102                              SDValue N1, SDValue N2, SDValue N3,
3103                              SDValue N4, SDValue N5) {
3104  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3105  return getNode(Opcode, DL, VT, Ops, 5);
3106}
3107
3108/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3109/// the incoming stack arguments to be loaded from the stack.
3110SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3111  SmallVector<SDValue, 8> ArgChains;
3112
3113  // Include the original chain at the beginning of the list. When this is
3114  // used by target LowerCall hooks, this helps legalize find the
3115  // CALLSEQ_BEGIN node.
3116  ArgChains.push_back(Chain);
3117
3118  // Add a chain value for each stack argument.
3119  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3120       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3121    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3122      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3123        if (FI->getIndex() < 0)
3124          ArgChains.push_back(SDValue(L, 1));
3125
3126  // Build a tokenfactor for all the chains.
3127  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3128                 &ArgChains[0], ArgChains.size());
3129}
3130
3131/// getMemsetValue - Vectorized representation of the memset value
3132/// operand.
3133static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3134                              DebugLoc dl) {
3135  assert(Value.getOpcode() != ISD::UNDEF);
3136
3137  unsigned NumBits = VT.getScalarType().getSizeInBits();
3138  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3139    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3140    unsigned Shift = 8;
3141    for (unsigned i = NumBits; i > 8; i >>= 1) {
3142      Val = (Val << Shift) | Val;
3143      Shift <<= 1;
3144    }
3145    if (VT.isInteger())
3146      return DAG.getConstant(Val, VT);
3147    return DAG.getConstantFP(APFloat(Val), VT);
3148  }
3149
3150  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3151  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3152  unsigned Shift = 8;
3153  for (unsigned i = NumBits; i > 8; i >>= 1) {
3154    Value = DAG.getNode(ISD::OR, dl, VT,
3155                        DAG.getNode(ISD::SHL, dl, VT, Value,
3156                                    DAG.getConstant(Shift,
3157                                                    TLI.getShiftAmountTy())),
3158                        Value);
3159    Shift <<= 1;
3160  }
3161
3162  return Value;
3163}
3164
3165/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3166/// used when a memcpy is turned into a memset when the source is a constant
3167/// string ptr.
3168static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3169                                  const TargetLowering &TLI,
3170                                  std::string &Str, unsigned Offset) {
3171  // Handle vector with all elements zero.
3172  if (Str.empty()) {
3173    if (VT.isInteger())
3174      return DAG.getConstant(0, VT);
3175    else if (VT == MVT::f32 || VT == MVT::f64)
3176      return DAG.getConstantFP(0.0, VT);
3177    else if (VT.isVector()) {
3178      unsigned NumElts = VT.getVectorNumElements();
3179      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3180      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3181                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3182                                                             EltVT, NumElts)));
3183    } else
3184      llvm_unreachable("Expected type!");
3185  }
3186
3187  assert(!VT.isVector() && "Can't handle vector type here!");
3188  unsigned NumBits = VT.getSizeInBits();
3189  unsigned MSB = NumBits / 8;
3190  uint64_t Val = 0;
3191  if (TLI.isLittleEndian())
3192    Offset = Offset + MSB - 1;
3193  for (unsigned i = 0; i != MSB; ++i) {
3194    Val = (Val << 8) | (unsigned char)Str[Offset];
3195    Offset += TLI.isLittleEndian() ? -1 : 1;
3196  }
3197  return DAG.getConstant(Val, VT);
3198}
3199
3200/// getMemBasePlusOffset - Returns base and offset node for the
3201///
3202static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3203                                      SelectionDAG &DAG) {
3204  EVT VT = Base.getValueType();
3205  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3206                     VT, Base, DAG.getConstant(Offset, VT));
3207}
3208
3209/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3210///
3211static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3212  unsigned SrcDelta = 0;
3213  GlobalAddressSDNode *G = NULL;
3214  if (Src.getOpcode() == ISD::GlobalAddress)
3215    G = cast<GlobalAddressSDNode>(Src);
3216  else if (Src.getOpcode() == ISD::ADD &&
3217           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3218           Src.getOperand(1).getOpcode() == ISD::Constant) {
3219    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3220    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3221  }
3222  if (!G)
3223    return false;
3224
3225  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3226  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3227    return true;
3228
3229  return false;
3230}
3231
3232/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3233/// to replace the memset / memcpy. Return true if the number of memory ops
3234/// is below the threshold. It returns the types of the sequence of
3235/// memory ops to perform memset / memcpy by reference.
3236static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3237                                     unsigned Limit, uint64_t Size,
3238                                     unsigned DstAlign, unsigned SrcAlign,
3239                                     bool NonScalarIntSafe,
3240                                     bool MemcpyStrSrc,
3241                                     SelectionDAG &DAG,
3242                                     const TargetLowering &TLI) {
3243  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3244         "Expecting memcpy / memset source to meet alignment requirement!");
3245  // If 'SrcAlign' is zero, that means the memory operation does not need load
3246  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3247  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3248  // specified alignment of the memory operation. If it is zero, that means
3249  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3250  // indicates whether the memcpy source is constant so it does not need to be
3251  // loaded.
3252  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3253                                   NonScalarIntSafe, MemcpyStrSrc,
3254                                   DAG.getMachineFunction());
3255
3256  if (VT == MVT::Other) {
3257    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3258        TLI.allowsUnalignedMemoryAccesses(VT)) {
3259      VT = TLI.getPointerTy();
3260    } else {
3261      switch (DstAlign & 7) {
3262      case 0:  VT = MVT::i64; break;
3263      case 4:  VT = MVT::i32; break;
3264      case 2:  VT = MVT::i16; break;
3265      default: VT = MVT::i8;  break;
3266      }
3267    }
3268
3269    MVT LVT = MVT::i64;
3270    while (!TLI.isTypeLegal(LVT))
3271      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3272    assert(LVT.isInteger());
3273
3274    if (VT.bitsGT(LVT))
3275      VT = LVT;
3276  }
3277
3278  // If we're optimizing for size, and there is a limit, bump the maximum number
3279  // of operations inserted down to 4.  This is a wild guess that approximates
3280  // the size of a call to memcpy or memset (3 arguments + call).
3281  if (Limit != ~0U) {
3282    const Function *F = DAG.getMachineFunction().getFunction();
3283    if (F->hasFnAttr(Attribute::OptimizeForSize))
3284      Limit = 4;
3285  }
3286
3287  unsigned NumMemOps = 0;
3288  while (Size != 0) {
3289    unsigned VTSize = VT.getSizeInBits() / 8;
3290    while (VTSize > Size) {
3291      // For now, only use non-vector load / store's for the left-over pieces.
3292      if (VT.isVector() || VT.isFloatingPoint()) {
3293        VT = MVT::i64;
3294        while (!TLI.isTypeLegal(VT))
3295          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3296        VTSize = VT.getSizeInBits() / 8;
3297      } else {
3298        // This can result in a type that is not legal on the target, e.g.
3299        // 1 or 2 bytes on PPC.
3300        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3301        VTSize >>= 1;
3302      }
3303    }
3304
3305    if (++NumMemOps > Limit)
3306      return false;
3307    MemOps.push_back(VT);
3308    Size -= VTSize;
3309  }
3310
3311  return true;
3312}
3313
3314static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3315                                       SDValue Chain, SDValue Dst,
3316                                       SDValue Src, uint64_t Size,
3317                                       unsigned Align, bool isVol,
3318                                       bool AlwaysInline,
3319                                       MachinePointerInfo DstPtrInfo,
3320                                       MachinePointerInfo SrcPtrInfo) {
3321  // Turn a memcpy of undef to nop.
3322  if (Src.getOpcode() == ISD::UNDEF)
3323    return Chain;
3324
3325  // Expand memcpy to a series of load and store ops if the size operand falls
3326  // below a certain threshold.
3327  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3328  // rather than maybe a humongous number of loads and stores.
3329  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3330  std::vector<EVT> MemOps;
3331  bool DstAlignCanChange = false;
3332  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3333  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3334  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3335    DstAlignCanChange = true;
3336  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3337  if (Align > SrcAlign)
3338    SrcAlign = Align;
3339  std::string Str;
3340  bool CopyFromStr = isMemSrcFromString(Src, Str);
3341  bool isZeroStr = CopyFromStr && Str.empty();
3342  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3343
3344  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3345                                (DstAlignCanChange ? 0 : Align),
3346                                (isZeroStr ? 0 : SrcAlign),
3347                                true, CopyFromStr, DAG, TLI))
3348    return SDValue();
3349
3350  if (DstAlignCanChange) {
3351    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3352    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3353    if (NewAlign > Align) {
3354      // Give the stack frame object a larger alignment if needed.
3355      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3356        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3357      Align = NewAlign;
3358    }
3359  }
3360
3361  SmallVector<SDValue, 8> OutChains;
3362  unsigned NumMemOps = MemOps.size();
3363  uint64_t SrcOff = 0, DstOff = 0;
3364  for (unsigned i = 0; i != NumMemOps; ++i) {
3365    EVT VT = MemOps[i];
3366    unsigned VTSize = VT.getSizeInBits() / 8;
3367    SDValue Value, Store;
3368
3369    if (CopyFromStr &&
3370        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3371      // It's unlikely a store of a vector immediate can be done in a single
3372      // instruction. It would require a load from a constantpool first.
3373      // We only handle zero vectors here.
3374      // FIXME: Handle other cases where store of vector immediate is done in
3375      // a single instruction.
3376      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3377      Store = DAG.getStore(Chain, dl, Value,
3378                           getMemBasePlusOffset(Dst, DstOff, DAG),
3379                           DstPtrInfo.getWithOffset(DstOff), isVol,
3380                           false, Align);
3381    } else {
3382      // The type might not be legal for the target.  This should only happen
3383      // if the type is smaller than a legal type, as on PPC, so the right
3384      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3385      // to Load/Store if NVT==VT.
3386      // FIXME does the case above also need this?
3387      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3388      assert(NVT.bitsGE(VT));
3389      Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3390                             getMemBasePlusOffset(Src, SrcOff, DAG),
3391                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3392                             MinAlign(SrcAlign, SrcOff));
3393      Store = DAG.getTruncStore(Chain, dl, Value,
3394                                getMemBasePlusOffset(Dst, DstOff, DAG),
3395                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3396                                false, Align);
3397    }
3398    OutChains.push_back(Store);
3399    SrcOff += VTSize;
3400    DstOff += VTSize;
3401  }
3402
3403  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3404                     &OutChains[0], OutChains.size());
3405}
3406
3407static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3408                                        SDValue Chain, SDValue Dst,
3409                                        SDValue Src, uint64_t Size,
3410                                        unsigned Align,  bool isVol,
3411                                        bool AlwaysInline,
3412                                        MachinePointerInfo DstPtrInfo,
3413                                        MachinePointerInfo SrcPtrInfo) {
3414  // Turn a memmove of undef to nop.
3415  if (Src.getOpcode() == ISD::UNDEF)
3416    return Chain;
3417
3418  // Expand memmove to a series of load and store ops if the size operand falls
3419  // below a certain threshold.
3420  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421  std::vector<EVT> MemOps;
3422  bool DstAlignCanChange = false;
3423  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3424  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3425  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3426    DstAlignCanChange = true;
3427  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3428  if (Align > SrcAlign)
3429    SrcAlign = Align;
3430  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3431
3432  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3433                                (DstAlignCanChange ? 0 : Align),
3434                                SrcAlign, true, false, DAG, TLI))
3435    return SDValue();
3436
3437  if (DstAlignCanChange) {
3438    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3439    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3440    if (NewAlign > Align) {
3441      // Give the stack frame object a larger alignment if needed.
3442      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3443        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3444      Align = NewAlign;
3445    }
3446  }
3447
3448  uint64_t SrcOff = 0, DstOff = 0;
3449  SmallVector<SDValue, 8> LoadValues;
3450  SmallVector<SDValue, 8> LoadChains;
3451  SmallVector<SDValue, 8> OutChains;
3452  unsigned NumMemOps = MemOps.size();
3453  for (unsigned i = 0; i < NumMemOps; i++) {
3454    EVT VT = MemOps[i];
3455    unsigned VTSize = VT.getSizeInBits() / 8;
3456    SDValue Value, Store;
3457
3458    Value = DAG.getLoad(VT, dl, Chain,
3459                        getMemBasePlusOffset(Src, SrcOff, DAG),
3460                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3461                        false, SrcAlign);
3462    LoadValues.push_back(Value);
3463    LoadChains.push_back(Value.getValue(1));
3464    SrcOff += VTSize;
3465  }
3466  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3467                      &LoadChains[0], LoadChains.size());
3468  OutChains.clear();
3469  for (unsigned i = 0; i < NumMemOps; i++) {
3470    EVT VT = MemOps[i];
3471    unsigned VTSize = VT.getSizeInBits() / 8;
3472    SDValue Value, Store;
3473
3474    Store = DAG.getStore(Chain, dl, LoadValues[i],
3475                         getMemBasePlusOffset(Dst, DstOff, DAG),
3476                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3477    OutChains.push_back(Store);
3478    DstOff += VTSize;
3479  }
3480
3481  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3482                     &OutChains[0], OutChains.size());
3483}
3484
3485static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3486                               SDValue Chain, SDValue Dst,
3487                               SDValue Src, uint64_t Size,
3488                               unsigned Align, bool isVol,
3489                               MachinePointerInfo DstPtrInfo) {
3490  // Turn a memset of undef to nop.
3491  if (Src.getOpcode() == ISD::UNDEF)
3492    return Chain;
3493
3494  // Expand memset to a series of load/store ops if the size operand
3495  // falls below a certain threshold.
3496  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3497  std::vector<EVT> MemOps;
3498  bool DstAlignCanChange = false;
3499  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3500  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3501  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3502    DstAlignCanChange = true;
3503  bool NonScalarIntSafe =
3504    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3505  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3506                                Size, (DstAlignCanChange ? 0 : Align), 0,
3507                                NonScalarIntSafe, false, DAG, TLI))
3508    return SDValue();
3509
3510  if (DstAlignCanChange) {
3511    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3512    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3513    if (NewAlign > Align) {
3514      // Give the stack frame object a larger alignment if needed.
3515      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3516        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3517      Align = NewAlign;
3518    }
3519  }
3520
3521  SmallVector<SDValue, 8> OutChains;
3522  uint64_t DstOff = 0;
3523  unsigned NumMemOps = MemOps.size();
3524  for (unsigned i = 0; i < NumMemOps; i++) {
3525    EVT VT = MemOps[i];
3526    unsigned VTSize = VT.getSizeInBits() / 8;
3527    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3528    SDValue Store = DAG.getStore(Chain, dl, Value,
3529                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3530                                 DstPtrInfo.getWithOffset(DstOff),
3531                                 isVol, false, Align);
3532    OutChains.push_back(Store);
3533    DstOff += VTSize;
3534  }
3535
3536  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3537                     &OutChains[0], OutChains.size());
3538}
3539
3540SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3541                                SDValue Src, SDValue Size,
3542                                unsigned Align, bool isVol, bool AlwaysInline,
3543                                MachinePointerInfo DstPtrInfo,
3544                                MachinePointerInfo SrcPtrInfo) {
3545
3546  // Check to see if we should lower the memcpy to loads and stores first.
3547  // For cases within the target-specified limits, this is the best choice.
3548  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3549  if (ConstantSize) {
3550    // Memcpy with size zero? Just return the original chain.
3551    if (ConstantSize->isNullValue())
3552      return Chain;
3553
3554    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3555                                             ConstantSize->getZExtValue(),Align,
3556                                isVol, false, DstPtrInfo, SrcPtrInfo);
3557    if (Result.getNode())
3558      return Result;
3559  }
3560
3561  // Then check to see if we should lower the memcpy with target-specific
3562  // code. If the target chooses to do this, this is the next best.
3563  SDValue Result =
3564    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3565                                isVol, AlwaysInline,
3566                                DstPtrInfo, SrcPtrInfo);
3567  if (Result.getNode())
3568    return Result;
3569
3570  // If we really need inline code and the target declined to provide it,
3571  // use a (potentially long) sequence of loads and stores.
3572  if (AlwaysInline) {
3573    assert(ConstantSize && "AlwaysInline requires a constant size!");
3574    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3575                                   ConstantSize->getZExtValue(), Align, isVol,
3576                                   true, DstPtrInfo, SrcPtrInfo);
3577  }
3578
3579  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3580  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3581  // respect volatile, so they may do things like read or write memory
3582  // beyond the given memory regions. But fixing this isn't easy, and most
3583  // people don't care.
3584
3585  // Emit a library call.
3586  TargetLowering::ArgListTy Args;
3587  TargetLowering::ArgListEntry Entry;
3588  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3589  Entry.Node = Dst; Args.push_back(Entry);
3590  Entry.Node = Src; Args.push_back(Entry);
3591  Entry.Node = Size; Args.push_back(Entry);
3592  // FIXME: pass in DebugLoc
3593  std::pair<SDValue,SDValue> CallResult =
3594    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3595                    false, false, false, false, 0,
3596                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3597                    /*isReturnValueUsed=*/false,
3598                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3599                                      TLI.getPointerTy()),
3600                    Args, *this, dl);
3601  return CallResult.second;
3602}
3603
3604SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3605                                 SDValue Src, SDValue Size,
3606                                 unsigned Align, bool isVol,
3607                                 MachinePointerInfo DstPtrInfo,
3608                                 MachinePointerInfo SrcPtrInfo) {
3609
3610  // Check to see if we should lower the memmove to loads and stores first.
3611  // For cases within the target-specified limits, this is the best choice.
3612  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3613  if (ConstantSize) {
3614    // Memmove with size zero? Just return the original chain.
3615    if (ConstantSize->isNullValue())
3616      return Chain;
3617
3618    SDValue Result =
3619      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3620                               ConstantSize->getZExtValue(), Align, isVol,
3621                               false, DstPtrInfo, SrcPtrInfo);
3622    if (Result.getNode())
3623      return Result;
3624  }
3625
3626  // Then check to see if we should lower the memmove with target-specific
3627  // code. If the target chooses to do this, this is the next best.
3628  SDValue Result =
3629    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3630                                 DstPtrInfo, SrcPtrInfo);
3631  if (Result.getNode())
3632    return Result;
3633
3634  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3635  // not be safe.  See memcpy above for more details.
3636
3637  // Emit a library call.
3638  TargetLowering::ArgListTy Args;
3639  TargetLowering::ArgListEntry Entry;
3640  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3641  Entry.Node = Dst; Args.push_back(Entry);
3642  Entry.Node = Src; Args.push_back(Entry);
3643  Entry.Node = Size; Args.push_back(Entry);
3644  // FIXME:  pass in DebugLoc
3645  std::pair<SDValue,SDValue> CallResult =
3646    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3647                    false, false, false, false, 0,
3648                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3649                    /*isReturnValueUsed=*/false,
3650                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3651                                      TLI.getPointerTy()),
3652                    Args, *this, dl);
3653  return CallResult.second;
3654}
3655
3656SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3657                                SDValue Src, SDValue Size,
3658                                unsigned Align, bool isVol,
3659                                MachinePointerInfo DstPtrInfo) {
3660
3661  // Check to see if we should lower the memset to stores first.
3662  // For cases within the target-specified limits, this is the best choice.
3663  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3664  if (ConstantSize) {
3665    // Memset with size zero? Just return the original chain.
3666    if (ConstantSize->isNullValue())
3667      return Chain;
3668
3669    SDValue Result =
3670      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3671                      Align, isVol, DstPtrInfo);
3672
3673    if (Result.getNode())
3674      return Result;
3675  }
3676
3677  // Then check to see if we should lower the memset with target-specific
3678  // code. If the target chooses to do this, this is the next best.
3679  SDValue Result =
3680    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3681                                DstPtrInfo);
3682  if (Result.getNode())
3683    return Result;
3684
3685  // Emit a library call.
3686  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3687  TargetLowering::ArgListTy Args;
3688  TargetLowering::ArgListEntry Entry;
3689  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3690  Args.push_back(Entry);
3691  // Extend or truncate the argument to be an i32 value for the call.
3692  if (Src.getValueType().bitsGT(MVT::i32))
3693    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3694  else
3695    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3696  Entry.Node = Src;
3697  Entry.Ty = Type::getInt32Ty(*getContext());
3698  Entry.isSExt = true;
3699  Args.push_back(Entry);
3700  Entry.Node = Size;
3701  Entry.Ty = IntPtrTy;
3702  Entry.isSExt = false;
3703  Args.push_back(Entry);
3704  // FIXME: pass in DebugLoc
3705  std::pair<SDValue,SDValue> CallResult =
3706    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3707                    false, false, false, false, 0,
3708                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3709                    /*isReturnValueUsed=*/false,
3710                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3711                                      TLI.getPointerTy()),
3712                    Args, *this, dl);
3713  return CallResult.second;
3714}
3715
3716SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3717                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3718                                SDValue Swp, MachinePointerInfo PtrInfo,
3719                                unsigned Alignment) {
3720  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3721    Alignment = getEVTAlignment(MemVT);
3722
3723  MachineFunction &MF = getMachineFunction();
3724  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3725
3726  // For now, atomics are considered to be volatile always.
3727  Flags |= MachineMemOperand::MOVolatile;
3728
3729  MachineMemOperand *MMO =
3730    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3731
3732  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3733}
3734
3735SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3736                                SDValue Chain,
3737                                SDValue Ptr, SDValue Cmp,
3738                                SDValue Swp, MachineMemOperand *MMO) {
3739  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3740  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3741
3742  EVT VT = Cmp.getValueType();
3743
3744  SDVTList VTs = getVTList(VT, MVT::Other);
3745  FoldingSetNodeID ID;
3746  ID.AddInteger(MemVT.getRawBits());
3747  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3748  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3749  void* IP = 0;
3750  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3751    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3752    return SDValue(E, 0);
3753  }
3754  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3755                                               Ptr, Cmp, Swp, MMO);
3756  CSEMap.InsertNode(N, IP);
3757  AllNodes.push_back(N);
3758  return SDValue(N, 0);
3759}
3760
3761SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3762                                SDValue Chain,
3763                                SDValue Ptr, SDValue Val,
3764                                const Value* PtrVal,
3765                                unsigned Alignment) {
3766  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3767    Alignment = getEVTAlignment(MemVT);
3768
3769  MachineFunction &MF = getMachineFunction();
3770  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3771
3772  // For now, atomics are considered to be volatile always.
3773  Flags |= MachineMemOperand::MOVolatile;
3774
3775  MachineMemOperand *MMO =
3776    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3777                            MemVT.getStoreSize(), Alignment);
3778
3779  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3780}
3781
3782SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3783                                SDValue Chain,
3784                                SDValue Ptr, SDValue Val,
3785                                MachineMemOperand *MMO) {
3786  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3787          Opcode == ISD::ATOMIC_LOAD_SUB ||
3788          Opcode == ISD::ATOMIC_LOAD_AND ||
3789          Opcode == ISD::ATOMIC_LOAD_OR ||
3790          Opcode == ISD::ATOMIC_LOAD_XOR ||
3791          Opcode == ISD::ATOMIC_LOAD_NAND ||
3792          Opcode == ISD::ATOMIC_LOAD_MIN ||
3793          Opcode == ISD::ATOMIC_LOAD_MAX ||
3794          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3795          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3796          Opcode == ISD::ATOMIC_SWAP) &&
3797         "Invalid Atomic Op");
3798
3799  EVT VT = Val.getValueType();
3800
3801  SDVTList VTs = getVTList(VT, MVT::Other);
3802  FoldingSetNodeID ID;
3803  ID.AddInteger(MemVT.getRawBits());
3804  SDValue Ops[] = {Chain, Ptr, Val};
3805  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3806  void* IP = 0;
3807  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3808    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3809    return SDValue(E, 0);
3810  }
3811  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3812                                               Ptr, Val, MMO);
3813  CSEMap.InsertNode(N, IP);
3814  AllNodes.push_back(N);
3815  return SDValue(N, 0);
3816}
3817
3818/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3819/// Allowed to return something different (and simpler) if Simplify is true.
3820SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3821                                     DebugLoc dl) {
3822  if (NumOps == 1)
3823    return Ops[0];
3824
3825  SmallVector<EVT, 4> VTs;
3826  VTs.reserve(NumOps);
3827  for (unsigned i = 0; i < NumOps; ++i)
3828    VTs.push_back(Ops[i].getValueType());
3829  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3830                 Ops, NumOps);
3831}
3832
3833SDValue
3834SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3835                                  const EVT *VTs, unsigned NumVTs,
3836                                  const SDValue *Ops, unsigned NumOps,
3837                                  EVT MemVT, MachinePointerInfo PtrInfo,
3838                                  unsigned Align, bool Vol,
3839                                  bool ReadMem, bool WriteMem) {
3840  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3841                             MemVT, PtrInfo, Align, Vol,
3842                             ReadMem, WriteMem);
3843}
3844
3845SDValue
3846SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3847                                  const SDValue *Ops, unsigned NumOps,
3848                                  EVT MemVT, MachinePointerInfo PtrInfo,
3849                                  unsigned Align, bool Vol,
3850                                  bool ReadMem, bool WriteMem) {
3851  if (Align == 0)  // Ensure that codegen never sees alignment 0
3852    Align = getEVTAlignment(MemVT);
3853
3854  MachineFunction &MF = getMachineFunction();
3855  unsigned Flags = 0;
3856  if (WriteMem)
3857    Flags |= MachineMemOperand::MOStore;
3858  if (ReadMem)
3859    Flags |= MachineMemOperand::MOLoad;
3860  if (Vol)
3861    Flags |= MachineMemOperand::MOVolatile;
3862  MachineMemOperand *MMO =
3863    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3864
3865  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3866}
3867
3868SDValue
3869SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3870                                  const SDValue *Ops, unsigned NumOps,
3871                                  EVT MemVT, MachineMemOperand *MMO) {
3872  assert((Opcode == ISD::INTRINSIC_VOID ||
3873          Opcode == ISD::INTRINSIC_W_CHAIN ||
3874          Opcode == ISD::PREFETCH ||
3875          (Opcode <= INT_MAX &&
3876           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3877         "Opcode is not a memory-accessing opcode!");
3878
3879  // Memoize the node unless it returns a flag.
3880  MemIntrinsicSDNode *N;
3881  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3882    FoldingSetNodeID ID;
3883    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3884    void *IP = 0;
3885    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3886      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3887      return SDValue(E, 0);
3888    }
3889
3890    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3891                                               MemVT, MMO);
3892    CSEMap.InsertNode(N, IP);
3893  } else {
3894    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3895                                               MemVT, MMO);
3896  }
3897  AllNodes.push_back(N);
3898  return SDValue(N, 0);
3899}
3900
3901/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3902/// MachinePointerInfo record from it.  This is particularly useful because the
3903/// code generator has many cases where it doesn't bother passing in a
3904/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3905static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3906  // If this is FI+Offset, we can model it.
3907  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
3908    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
3909
3910  // If this is (FI+Offset1)+Offset2, we can model it.
3911  if (Ptr.getOpcode() != ISD::ADD ||
3912      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
3913      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
3914    return MachinePointerInfo();
3915
3916  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3917  return MachinePointerInfo::getFixedStack(FI, Offset+
3918                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
3919}
3920
3921/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3922/// MachinePointerInfo record from it.  This is particularly useful because the
3923/// code generator has many cases where it doesn't bother passing in a
3924/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3925static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
3926  // If the 'Offset' value isn't a constant, we can't handle this.
3927  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
3928    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
3929  if (OffsetOp.getOpcode() == ISD::UNDEF)
3930    return InferPointerInfo(Ptr);
3931  return MachinePointerInfo();
3932}
3933
3934
3935SDValue
3936SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3937                      EVT VT, DebugLoc dl, SDValue Chain,
3938                      SDValue Ptr, SDValue Offset,
3939                      MachinePointerInfo PtrInfo, EVT MemVT,
3940                      bool isVolatile, bool isNonTemporal,
3941                      unsigned Alignment, const MDNode *TBAAInfo) {
3942  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3943    Alignment = getEVTAlignment(VT);
3944
3945  unsigned Flags = MachineMemOperand::MOLoad;
3946  if (isVolatile)
3947    Flags |= MachineMemOperand::MOVolatile;
3948  if (isNonTemporal)
3949    Flags |= MachineMemOperand::MONonTemporal;
3950
3951  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
3952  // clients.
3953  if (PtrInfo.V == 0)
3954    PtrInfo = InferPointerInfo(Ptr, Offset);
3955
3956  MachineFunction &MF = getMachineFunction();
3957  MachineMemOperand *MMO =
3958    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
3959                            TBAAInfo);
3960  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
3961}
3962
3963SDValue
3964SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3965                      EVT VT, DebugLoc dl, SDValue Chain,
3966                      SDValue Ptr, SDValue Offset, EVT MemVT,
3967                      MachineMemOperand *MMO) {
3968  if (VT == MemVT) {
3969    ExtType = ISD::NON_EXTLOAD;
3970  } else if (ExtType == ISD::NON_EXTLOAD) {
3971    assert(VT == MemVT && "Non-extending load from different memory type!");
3972  } else {
3973    // Extending load.
3974    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3975           "Should only be an extending load, not truncating!");
3976    assert(VT.isInteger() == MemVT.isInteger() &&
3977           "Cannot convert from FP to Int or Int -> FP!");
3978    assert(VT.isVector() == MemVT.isVector() &&
3979           "Cannot use trunc store to convert to or from a vector!");
3980    assert((!VT.isVector() ||
3981            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3982           "Cannot use trunc store to change the number of vector elements!");
3983  }
3984
3985  bool Indexed = AM != ISD::UNINDEXED;
3986  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3987         "Unindexed load with an offset!");
3988
3989  SDVTList VTs = Indexed ?
3990    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3991  SDValue Ops[] = { Chain, Ptr, Offset };
3992  FoldingSetNodeID ID;
3993  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3994  ID.AddInteger(MemVT.getRawBits());
3995  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3996                                     MMO->isNonTemporal()));
3997  void *IP = 0;
3998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3999    cast<LoadSDNode>(E)->refineAlignment(MMO);
4000    return SDValue(E, 0);
4001  }
4002  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4003                                             MemVT, MMO);
4004  CSEMap.InsertNode(N, IP);
4005  AllNodes.push_back(N);
4006  return SDValue(N, 0);
4007}
4008
4009SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4010                              SDValue Chain, SDValue Ptr,
4011                              MachinePointerInfo PtrInfo,
4012                              bool isVolatile, bool isNonTemporal,
4013                              unsigned Alignment, const MDNode *TBAAInfo) {
4014  SDValue Undef = getUNDEF(Ptr.getValueType());
4015  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4016                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4017}
4018
4019SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
4020                                 SDValue Chain, SDValue Ptr,
4021                                 MachinePointerInfo PtrInfo, EVT MemVT,
4022                                 bool isVolatile, bool isNonTemporal,
4023                                 unsigned Alignment, const MDNode *TBAAInfo) {
4024  SDValue Undef = getUNDEF(Ptr.getValueType());
4025  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4026                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4027                 TBAAInfo);
4028}
4029
4030
4031SDValue
4032SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4033                             SDValue Offset, ISD::MemIndexedMode AM) {
4034  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4035  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4036         "Load is already a indexed load!");
4037  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4038                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4039                 LD->getMemoryVT(),
4040                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4041}
4042
4043SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4044                               SDValue Ptr, MachinePointerInfo PtrInfo,
4045                               bool isVolatile, bool isNonTemporal,
4046                               unsigned Alignment, const MDNode *TBAAInfo) {
4047  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4048    Alignment = getEVTAlignment(Val.getValueType());
4049
4050  unsigned Flags = MachineMemOperand::MOStore;
4051  if (isVolatile)
4052    Flags |= MachineMemOperand::MOVolatile;
4053  if (isNonTemporal)
4054    Flags |= MachineMemOperand::MONonTemporal;
4055
4056  if (PtrInfo.V == 0)
4057    PtrInfo = InferPointerInfo(Ptr);
4058
4059  MachineFunction &MF = getMachineFunction();
4060  MachineMemOperand *MMO =
4061    MF.getMachineMemOperand(PtrInfo, Flags,
4062                            Val.getValueType().getStoreSize(), Alignment,
4063                            TBAAInfo);
4064
4065  return getStore(Chain, dl, Val, Ptr, MMO);
4066}
4067
4068SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4069                               SDValue Ptr, MachineMemOperand *MMO) {
4070  EVT VT = Val.getValueType();
4071  SDVTList VTs = getVTList(MVT::Other);
4072  SDValue Undef = getUNDEF(Ptr.getValueType());
4073  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4074  FoldingSetNodeID ID;
4075  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4076  ID.AddInteger(VT.getRawBits());
4077  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4078                                     MMO->isNonTemporal()));
4079  void *IP = 0;
4080  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4081    cast<StoreSDNode>(E)->refineAlignment(MMO);
4082    return SDValue(E, 0);
4083  }
4084  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4085                                              false, VT, MMO);
4086  CSEMap.InsertNode(N, IP);
4087  AllNodes.push_back(N);
4088  return SDValue(N, 0);
4089}
4090
4091SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4092                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4093                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4094                                    unsigned Alignment,
4095                                    const MDNode *TBAAInfo) {
4096  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4097    Alignment = getEVTAlignment(SVT);
4098
4099  unsigned Flags = MachineMemOperand::MOStore;
4100  if (isVolatile)
4101    Flags |= MachineMemOperand::MOVolatile;
4102  if (isNonTemporal)
4103    Flags |= MachineMemOperand::MONonTemporal;
4104
4105  if (PtrInfo.V == 0)
4106    PtrInfo = InferPointerInfo(Ptr);
4107
4108  MachineFunction &MF = getMachineFunction();
4109  MachineMemOperand *MMO =
4110    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4111                            TBAAInfo);
4112
4113  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4114}
4115
4116SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4117                                    SDValue Ptr, EVT SVT,
4118                                    MachineMemOperand *MMO) {
4119  EVT VT = Val.getValueType();
4120
4121  if (VT == SVT)
4122    return getStore(Chain, dl, Val, Ptr, MMO);
4123
4124  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4125         "Should only be a truncating store, not extending!");
4126  assert(VT.isInteger() == SVT.isInteger() &&
4127         "Can't do FP-INT conversion!");
4128  assert(VT.isVector() == SVT.isVector() &&
4129         "Cannot use trunc store to convert to or from a vector!");
4130  assert((!VT.isVector() ||
4131          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4132         "Cannot use trunc store to change the number of vector elements!");
4133
4134  SDVTList VTs = getVTList(MVT::Other);
4135  SDValue Undef = getUNDEF(Ptr.getValueType());
4136  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4137  FoldingSetNodeID ID;
4138  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4139  ID.AddInteger(SVT.getRawBits());
4140  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4141                                     MMO->isNonTemporal()));
4142  void *IP = 0;
4143  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4144    cast<StoreSDNode>(E)->refineAlignment(MMO);
4145    return SDValue(E, 0);
4146  }
4147  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4148                                              true, SVT, MMO);
4149  CSEMap.InsertNode(N, IP);
4150  AllNodes.push_back(N);
4151  return SDValue(N, 0);
4152}
4153
4154SDValue
4155SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4156                              SDValue Offset, ISD::MemIndexedMode AM) {
4157  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4158  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4159         "Store is already a indexed store!");
4160  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4161  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4162  FoldingSetNodeID ID;
4163  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4164  ID.AddInteger(ST->getMemoryVT().getRawBits());
4165  ID.AddInteger(ST->getRawSubclassData());
4166  void *IP = 0;
4167  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4168    return SDValue(E, 0);
4169
4170  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4171                                              ST->isTruncatingStore(),
4172                                              ST->getMemoryVT(),
4173                                              ST->getMemOperand());
4174  CSEMap.InsertNode(N, IP);
4175  AllNodes.push_back(N);
4176  return SDValue(N, 0);
4177}
4178
4179SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4180                               SDValue Chain, SDValue Ptr,
4181                               SDValue SV,
4182                               unsigned Align) {
4183  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4184  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4185}
4186
4187SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4188                              const SDUse *Ops, unsigned NumOps) {
4189  switch (NumOps) {
4190  case 0: return getNode(Opcode, DL, VT);
4191  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4192  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4193  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4194  default: break;
4195  }
4196
4197  // Copy from an SDUse array into an SDValue array for use with
4198  // the regular getNode logic.
4199  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4200  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4201}
4202
4203SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4204                              const SDValue *Ops, unsigned NumOps) {
4205  switch (NumOps) {
4206  case 0: return getNode(Opcode, DL, VT);
4207  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4208  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4209  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4210  default: break;
4211  }
4212
4213  switch (Opcode) {
4214  default: break;
4215  case ISD::SELECT_CC: {
4216    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4217    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4218           "LHS and RHS of condition must have same type!");
4219    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4220           "True and False arms of SelectCC must have same type!");
4221    assert(Ops[2].getValueType() == VT &&
4222           "select_cc node must be of same type as true and false value!");
4223    break;
4224  }
4225  case ISD::BR_CC: {
4226    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4227    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4228           "LHS/RHS of comparison should match types!");
4229    break;
4230  }
4231  }
4232
4233  // Memoize nodes.
4234  SDNode *N;
4235  SDVTList VTs = getVTList(VT);
4236
4237  if (VT != MVT::Flag) {
4238    FoldingSetNodeID ID;
4239    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4240    void *IP = 0;
4241
4242    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4243      return SDValue(E, 0);
4244
4245    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4246    CSEMap.InsertNode(N, IP);
4247  } else {
4248    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4249  }
4250
4251  AllNodes.push_back(N);
4252#ifndef NDEBUG
4253  VerifySDNode(N);
4254#endif
4255  return SDValue(N, 0);
4256}
4257
4258SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4259                              const std::vector<EVT> &ResultTys,
4260                              const SDValue *Ops, unsigned NumOps) {
4261  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4262                 Ops, NumOps);
4263}
4264
4265SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4266                              const EVT *VTs, unsigned NumVTs,
4267                              const SDValue *Ops, unsigned NumOps) {
4268  if (NumVTs == 1)
4269    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4270  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4271}
4272
4273SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4274                              const SDValue *Ops, unsigned NumOps) {
4275  if (VTList.NumVTs == 1)
4276    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4277
4278#if 0
4279  switch (Opcode) {
4280  // FIXME: figure out how to safely handle things like
4281  // int foo(int x) { return 1 << (x & 255); }
4282  // int bar() { return foo(256); }
4283  case ISD::SRA_PARTS:
4284  case ISD::SRL_PARTS:
4285  case ISD::SHL_PARTS:
4286    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4287        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4288      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4289    else if (N3.getOpcode() == ISD::AND)
4290      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4291        // If the and is only masking out bits that cannot effect the shift,
4292        // eliminate the and.
4293        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4294        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4295          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4296      }
4297    break;
4298  }
4299#endif
4300
4301  // Memoize the node unless it returns a flag.
4302  SDNode *N;
4303  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4304    FoldingSetNodeID ID;
4305    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4306    void *IP = 0;
4307    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4308      return SDValue(E, 0);
4309
4310    if (NumOps == 1) {
4311      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4312    } else if (NumOps == 2) {
4313      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4314    } else if (NumOps == 3) {
4315      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4316                                            Ops[2]);
4317    } else {
4318      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4319    }
4320    CSEMap.InsertNode(N, IP);
4321  } else {
4322    if (NumOps == 1) {
4323      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4324    } else if (NumOps == 2) {
4325      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4326    } else if (NumOps == 3) {
4327      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4328                                            Ops[2]);
4329    } else {
4330      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4331    }
4332  }
4333  AllNodes.push_back(N);
4334#ifndef NDEBUG
4335  VerifySDNode(N);
4336#endif
4337  return SDValue(N, 0);
4338}
4339
4340SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4341  return getNode(Opcode, DL, VTList, 0, 0);
4342}
4343
4344SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4345                              SDValue N1) {
4346  SDValue Ops[] = { N1 };
4347  return getNode(Opcode, DL, VTList, Ops, 1);
4348}
4349
4350SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4351                              SDValue N1, SDValue N2) {
4352  SDValue Ops[] = { N1, N2 };
4353  return getNode(Opcode, DL, VTList, Ops, 2);
4354}
4355
4356SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4357                              SDValue N1, SDValue N2, SDValue N3) {
4358  SDValue Ops[] = { N1, N2, N3 };
4359  return getNode(Opcode, DL, VTList, Ops, 3);
4360}
4361
4362SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4363                              SDValue N1, SDValue N2, SDValue N3,
4364                              SDValue N4) {
4365  SDValue Ops[] = { N1, N2, N3, N4 };
4366  return getNode(Opcode, DL, VTList, Ops, 4);
4367}
4368
4369SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4370                              SDValue N1, SDValue N2, SDValue N3,
4371                              SDValue N4, SDValue N5) {
4372  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4373  return getNode(Opcode, DL, VTList, Ops, 5);
4374}
4375
4376SDVTList SelectionDAG::getVTList(EVT VT) {
4377  return makeVTList(SDNode::getValueTypeList(VT), 1);
4378}
4379
4380SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4381  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4382       E = VTList.rend(); I != E; ++I)
4383    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4384      return *I;
4385
4386  EVT *Array = Allocator.Allocate<EVT>(2);
4387  Array[0] = VT1;
4388  Array[1] = VT2;
4389  SDVTList Result = makeVTList(Array, 2);
4390  VTList.push_back(Result);
4391  return Result;
4392}
4393
4394SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4395  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4396       E = VTList.rend(); I != E; ++I)
4397    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4398                          I->VTs[2] == VT3)
4399      return *I;
4400
4401  EVT *Array = Allocator.Allocate<EVT>(3);
4402  Array[0] = VT1;
4403  Array[1] = VT2;
4404  Array[2] = VT3;
4405  SDVTList Result = makeVTList(Array, 3);
4406  VTList.push_back(Result);
4407  return Result;
4408}
4409
4410SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4411  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4412       E = VTList.rend(); I != E; ++I)
4413    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4414                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4415      return *I;
4416
4417  EVT *Array = Allocator.Allocate<EVT>(4);
4418  Array[0] = VT1;
4419  Array[1] = VT2;
4420  Array[2] = VT3;
4421  Array[3] = VT4;
4422  SDVTList Result = makeVTList(Array, 4);
4423  VTList.push_back(Result);
4424  return Result;
4425}
4426
4427SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4428  switch (NumVTs) {
4429    case 0: llvm_unreachable("Cannot have nodes without results!");
4430    case 1: return getVTList(VTs[0]);
4431    case 2: return getVTList(VTs[0], VTs[1]);
4432    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4433    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4434    default: break;
4435  }
4436
4437  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4438       E = VTList.rend(); I != E; ++I) {
4439    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4440      continue;
4441
4442    bool NoMatch = false;
4443    for (unsigned i = 2; i != NumVTs; ++i)
4444      if (VTs[i] != I->VTs[i]) {
4445        NoMatch = true;
4446        break;
4447      }
4448    if (!NoMatch)
4449      return *I;
4450  }
4451
4452  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4453  std::copy(VTs, VTs+NumVTs, Array);
4454  SDVTList Result = makeVTList(Array, NumVTs);
4455  VTList.push_back(Result);
4456  return Result;
4457}
4458
4459
4460/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4461/// specified operands.  If the resultant node already exists in the DAG,
4462/// this does not modify the specified node, instead it returns the node that
4463/// already exists.  If the resultant node does not exist in the DAG, the
4464/// input node is returned.  As a degenerate case, if you specify the same
4465/// input operands as the node already has, the input node is returned.
4466SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4467  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4468
4469  // Check to see if there is no change.
4470  if (Op == N->getOperand(0)) return N;
4471
4472  // See if the modified node already exists.
4473  void *InsertPos = 0;
4474  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4475    return Existing;
4476
4477  // Nope it doesn't.  Remove the node from its current place in the maps.
4478  if (InsertPos)
4479    if (!RemoveNodeFromCSEMaps(N))
4480      InsertPos = 0;
4481
4482  // Now we update the operands.
4483  N->OperandList[0].set(Op);
4484
4485  // If this gets put into a CSE map, add it.
4486  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4487  return N;
4488}
4489
4490SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4491  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4492
4493  // Check to see if there is no change.
4494  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4495    return N;   // No operands changed, just return the input node.
4496
4497  // See if the modified node already exists.
4498  void *InsertPos = 0;
4499  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4500    return Existing;
4501
4502  // Nope it doesn't.  Remove the node from its current place in the maps.
4503  if (InsertPos)
4504    if (!RemoveNodeFromCSEMaps(N))
4505      InsertPos = 0;
4506
4507  // Now we update the operands.
4508  if (N->OperandList[0] != Op1)
4509    N->OperandList[0].set(Op1);
4510  if (N->OperandList[1] != Op2)
4511    N->OperandList[1].set(Op2);
4512
4513  // If this gets put into a CSE map, add it.
4514  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4515  return N;
4516}
4517
4518SDNode *SelectionDAG::
4519UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4520  SDValue Ops[] = { Op1, Op2, Op3 };
4521  return UpdateNodeOperands(N, Ops, 3);
4522}
4523
4524SDNode *SelectionDAG::
4525UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4526                   SDValue Op3, SDValue Op4) {
4527  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4528  return UpdateNodeOperands(N, Ops, 4);
4529}
4530
4531SDNode *SelectionDAG::
4532UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4533                   SDValue Op3, SDValue Op4, SDValue Op5) {
4534  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4535  return UpdateNodeOperands(N, Ops, 5);
4536}
4537
4538SDNode *SelectionDAG::
4539UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4540  assert(N->getNumOperands() == NumOps &&
4541         "Update with wrong number of operands");
4542
4543  // Check to see if there is no change.
4544  bool AnyChange = false;
4545  for (unsigned i = 0; i != NumOps; ++i) {
4546    if (Ops[i] != N->getOperand(i)) {
4547      AnyChange = true;
4548      break;
4549    }
4550  }
4551
4552  // No operands changed, just return the input node.
4553  if (!AnyChange) return N;
4554
4555  // See if the modified node already exists.
4556  void *InsertPos = 0;
4557  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4558    return Existing;
4559
4560  // Nope it doesn't.  Remove the node from its current place in the maps.
4561  if (InsertPos)
4562    if (!RemoveNodeFromCSEMaps(N))
4563      InsertPos = 0;
4564
4565  // Now we update the operands.
4566  for (unsigned i = 0; i != NumOps; ++i)
4567    if (N->OperandList[i] != Ops[i])
4568      N->OperandList[i].set(Ops[i]);
4569
4570  // If this gets put into a CSE map, add it.
4571  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4572  return N;
4573}
4574
4575/// DropOperands - Release the operands and set this node to have
4576/// zero operands.
4577void SDNode::DropOperands() {
4578  // Unlike the code in MorphNodeTo that does this, we don't need to
4579  // watch for dead nodes here.
4580  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4581    SDUse &Use = *I++;
4582    Use.set(SDValue());
4583  }
4584}
4585
4586/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4587/// machine opcode.
4588///
4589SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4590                                   EVT VT) {
4591  SDVTList VTs = getVTList(VT);
4592  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4593}
4594
4595SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4596                                   EVT VT, SDValue Op1) {
4597  SDVTList VTs = getVTList(VT);
4598  SDValue Ops[] = { Op1 };
4599  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4600}
4601
4602SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4603                                   EVT VT, SDValue Op1,
4604                                   SDValue Op2) {
4605  SDVTList VTs = getVTList(VT);
4606  SDValue Ops[] = { Op1, Op2 };
4607  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4608}
4609
4610SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4611                                   EVT VT, SDValue Op1,
4612                                   SDValue Op2, SDValue Op3) {
4613  SDVTList VTs = getVTList(VT);
4614  SDValue Ops[] = { Op1, Op2, Op3 };
4615  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4616}
4617
4618SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4619                                   EVT VT, const SDValue *Ops,
4620                                   unsigned NumOps) {
4621  SDVTList VTs = getVTList(VT);
4622  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4623}
4624
4625SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4626                                   EVT VT1, EVT VT2, const SDValue *Ops,
4627                                   unsigned NumOps) {
4628  SDVTList VTs = getVTList(VT1, VT2);
4629  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4630}
4631
4632SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4633                                   EVT VT1, EVT VT2) {
4634  SDVTList VTs = getVTList(VT1, VT2);
4635  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4636}
4637
4638SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4639                                   EVT VT1, EVT VT2, EVT VT3,
4640                                   const SDValue *Ops, unsigned NumOps) {
4641  SDVTList VTs = getVTList(VT1, VT2, VT3);
4642  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4643}
4644
4645SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4646                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4647                                   const SDValue *Ops, unsigned NumOps) {
4648  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4649  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4650}
4651
4652SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4653                                   EVT VT1, EVT VT2,
4654                                   SDValue Op1) {
4655  SDVTList VTs = getVTList(VT1, VT2);
4656  SDValue Ops[] = { Op1 };
4657  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4658}
4659
4660SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4661                                   EVT VT1, EVT VT2,
4662                                   SDValue Op1, SDValue Op2) {
4663  SDVTList VTs = getVTList(VT1, VT2);
4664  SDValue Ops[] = { Op1, Op2 };
4665  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4666}
4667
4668SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4669                                   EVT VT1, EVT VT2,
4670                                   SDValue Op1, SDValue Op2,
4671                                   SDValue Op3) {
4672  SDVTList VTs = getVTList(VT1, VT2);
4673  SDValue Ops[] = { Op1, Op2, Op3 };
4674  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4675}
4676
4677SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4678                                   EVT VT1, EVT VT2, EVT VT3,
4679                                   SDValue Op1, SDValue Op2,
4680                                   SDValue Op3) {
4681  SDVTList VTs = getVTList(VT1, VT2, VT3);
4682  SDValue Ops[] = { Op1, Op2, Op3 };
4683  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4684}
4685
4686SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4687                                   SDVTList VTs, const SDValue *Ops,
4688                                   unsigned NumOps) {
4689  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4690  // Reset the NodeID to -1.
4691  N->setNodeId(-1);
4692  return N;
4693}
4694
4695/// MorphNodeTo - This *mutates* the specified node to have the specified
4696/// return type, opcode, and operands.
4697///
4698/// Note that MorphNodeTo returns the resultant node.  If there is already a
4699/// node of the specified opcode and operands, it returns that node instead of
4700/// the current one.  Note that the DebugLoc need not be the same.
4701///
4702/// Using MorphNodeTo is faster than creating a new node and swapping it in
4703/// with ReplaceAllUsesWith both because it often avoids allocating a new
4704/// node, and because it doesn't require CSE recalculation for any of
4705/// the node's users.
4706///
4707SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4708                                  SDVTList VTs, const SDValue *Ops,
4709                                  unsigned NumOps) {
4710  // If an identical node already exists, use it.
4711  void *IP = 0;
4712  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4713    FoldingSetNodeID ID;
4714    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4715    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4716      return ON;
4717  }
4718
4719  if (!RemoveNodeFromCSEMaps(N))
4720    IP = 0;
4721
4722  // Start the morphing.
4723  N->NodeType = Opc;
4724  N->ValueList = VTs.VTs;
4725  N->NumValues = VTs.NumVTs;
4726
4727  // Clear the operands list, updating used nodes to remove this from their
4728  // use list.  Keep track of any operands that become dead as a result.
4729  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4730  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4731    SDUse &Use = *I++;
4732    SDNode *Used = Use.getNode();
4733    Use.set(SDValue());
4734    if (Used->use_empty())
4735      DeadNodeSet.insert(Used);
4736  }
4737
4738  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4739    // Initialize the memory references information.
4740    MN->setMemRefs(0, 0);
4741    // If NumOps is larger than the # of operands we can have in a
4742    // MachineSDNode, reallocate the operand list.
4743    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4744      if (MN->OperandsNeedDelete)
4745        delete[] MN->OperandList;
4746      if (NumOps > array_lengthof(MN->LocalOperands))
4747        // We're creating a final node that will live unmorphed for the
4748        // remainder of the current SelectionDAG iteration, so we can allocate
4749        // the operands directly out of a pool with no recycling metadata.
4750        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4751                         Ops, NumOps);
4752      else
4753        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4754      MN->OperandsNeedDelete = false;
4755    } else
4756      MN->InitOperands(MN->OperandList, Ops, NumOps);
4757  } else {
4758    // If NumOps is larger than the # of operands we currently have, reallocate
4759    // the operand list.
4760    if (NumOps > N->NumOperands) {
4761      if (N->OperandsNeedDelete)
4762        delete[] N->OperandList;
4763      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4764      N->OperandsNeedDelete = true;
4765    } else
4766      N->InitOperands(N->OperandList, Ops, NumOps);
4767  }
4768
4769  // Delete any nodes that are still dead after adding the uses for the
4770  // new operands.
4771  if (!DeadNodeSet.empty()) {
4772    SmallVector<SDNode *, 16> DeadNodes;
4773    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4774         E = DeadNodeSet.end(); I != E; ++I)
4775      if ((*I)->use_empty())
4776        DeadNodes.push_back(*I);
4777    RemoveDeadNodes(DeadNodes);
4778  }
4779
4780  if (IP)
4781    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4782  return N;
4783}
4784
4785
4786/// getMachineNode - These are used for target selectors to create a new node
4787/// with specified return type(s), MachineInstr opcode, and operands.
4788///
4789/// Note that getMachineNode returns the resultant node.  If there is already a
4790/// node of the specified opcode and operands, it returns that node instead of
4791/// the current one.
4792MachineSDNode *
4793SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4794  SDVTList VTs = getVTList(VT);
4795  return getMachineNode(Opcode, dl, VTs, 0, 0);
4796}
4797
4798MachineSDNode *
4799SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4800  SDVTList VTs = getVTList(VT);
4801  SDValue Ops[] = { Op1 };
4802  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4803}
4804
4805MachineSDNode *
4806SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4807                             SDValue Op1, SDValue Op2) {
4808  SDVTList VTs = getVTList(VT);
4809  SDValue Ops[] = { Op1, Op2 };
4810  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4811}
4812
4813MachineSDNode *
4814SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4815                             SDValue Op1, SDValue Op2, SDValue Op3) {
4816  SDVTList VTs = getVTList(VT);
4817  SDValue Ops[] = { Op1, Op2, Op3 };
4818  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4819}
4820
4821MachineSDNode *
4822SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4823                             const SDValue *Ops, unsigned NumOps) {
4824  SDVTList VTs = getVTList(VT);
4825  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4826}
4827
4828MachineSDNode *
4829SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4830  SDVTList VTs = getVTList(VT1, VT2);
4831  return getMachineNode(Opcode, dl, VTs, 0, 0);
4832}
4833
4834MachineSDNode *
4835SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4836                             EVT VT1, EVT VT2, SDValue Op1) {
4837  SDVTList VTs = getVTList(VT1, VT2);
4838  SDValue Ops[] = { Op1 };
4839  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4840}
4841
4842MachineSDNode *
4843SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4844                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4845  SDVTList VTs = getVTList(VT1, VT2);
4846  SDValue Ops[] = { Op1, Op2 };
4847  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4848}
4849
4850MachineSDNode *
4851SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4852                             EVT VT1, EVT VT2, SDValue Op1,
4853                             SDValue Op2, SDValue Op3) {
4854  SDVTList VTs = getVTList(VT1, VT2);
4855  SDValue Ops[] = { Op1, Op2, Op3 };
4856  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4857}
4858
4859MachineSDNode *
4860SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4861                             EVT VT1, EVT VT2,
4862                             const SDValue *Ops, unsigned NumOps) {
4863  SDVTList VTs = getVTList(VT1, VT2);
4864  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4865}
4866
4867MachineSDNode *
4868SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4869                             EVT VT1, EVT VT2, EVT VT3,
4870                             SDValue Op1, SDValue Op2) {
4871  SDVTList VTs = getVTList(VT1, VT2, VT3);
4872  SDValue Ops[] = { Op1, Op2 };
4873  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4874}
4875
4876MachineSDNode *
4877SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4878                             EVT VT1, EVT VT2, EVT VT3,
4879                             SDValue Op1, SDValue Op2, SDValue Op3) {
4880  SDVTList VTs = getVTList(VT1, VT2, VT3);
4881  SDValue Ops[] = { Op1, Op2, Op3 };
4882  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4883}
4884
4885MachineSDNode *
4886SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4887                             EVT VT1, EVT VT2, EVT VT3,
4888                             const SDValue *Ops, unsigned NumOps) {
4889  SDVTList VTs = getVTList(VT1, VT2, VT3);
4890  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4891}
4892
4893MachineSDNode *
4894SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4895                             EVT VT2, EVT VT3, EVT VT4,
4896                             const SDValue *Ops, unsigned NumOps) {
4897  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4898  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4899}
4900
4901MachineSDNode *
4902SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4903                             const std::vector<EVT> &ResultTys,
4904                             const SDValue *Ops, unsigned NumOps) {
4905  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4906  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4907}
4908
4909MachineSDNode *
4910SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4911                             const SDValue *Ops, unsigned NumOps) {
4912  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4913  MachineSDNode *N;
4914  void *IP;
4915
4916  if (DoCSE) {
4917    FoldingSetNodeID ID;
4918    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4919    IP = 0;
4920    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4921      return cast<MachineSDNode>(E);
4922  }
4923
4924  // Allocate a new MachineSDNode.
4925  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4926
4927  // Initialize the operands list.
4928  if (NumOps > array_lengthof(N->LocalOperands))
4929    // We're creating a final node that will live unmorphed for the
4930    // remainder of the current SelectionDAG iteration, so we can allocate
4931    // the operands directly out of a pool with no recycling metadata.
4932    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4933                    Ops, NumOps);
4934  else
4935    N->InitOperands(N->LocalOperands, Ops, NumOps);
4936  N->OperandsNeedDelete = false;
4937
4938  if (DoCSE)
4939    CSEMap.InsertNode(N, IP);
4940
4941  AllNodes.push_back(N);
4942#ifndef NDEBUG
4943  VerifyMachineNode(N);
4944#endif
4945  return N;
4946}
4947
4948/// getTargetExtractSubreg - A convenience function for creating
4949/// TargetOpcode::EXTRACT_SUBREG nodes.
4950SDValue
4951SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4952                                     SDValue Operand) {
4953  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4954  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4955                                  VT, Operand, SRIdxVal);
4956  return SDValue(Subreg, 0);
4957}
4958
4959/// getTargetInsertSubreg - A convenience function for creating
4960/// TargetOpcode::INSERT_SUBREG nodes.
4961SDValue
4962SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4963                                    SDValue Operand, SDValue Subreg) {
4964  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4965  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4966                                  VT, Operand, Subreg, SRIdxVal);
4967  return SDValue(Result, 0);
4968}
4969
4970/// getNodeIfExists - Get the specified node if it's already available, or
4971/// else return NULL.
4972SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4973                                      const SDValue *Ops, unsigned NumOps) {
4974  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4975    FoldingSetNodeID ID;
4976    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4977    void *IP = 0;
4978    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4979      return E;
4980  }
4981  return NULL;
4982}
4983
4984/// getDbgValue - Creates a SDDbgValue node.
4985///
4986SDDbgValue *
4987SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4988                          DebugLoc DL, unsigned O) {
4989  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4990}
4991
4992SDDbgValue *
4993SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4994                          DebugLoc DL, unsigned O) {
4995  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4996}
4997
4998SDDbgValue *
4999SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5000                          DebugLoc DL, unsigned O) {
5001  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5002}
5003
5004namespace {
5005
5006/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5007/// pointed to by a use iterator is deleted, increment the use iterator
5008/// so that it doesn't dangle.
5009///
5010/// This class also manages a "downlink" DAGUpdateListener, to forward
5011/// messages to ReplaceAllUsesWith's callers.
5012///
5013class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5014  SelectionDAG::DAGUpdateListener *DownLink;
5015  SDNode::use_iterator &UI;
5016  SDNode::use_iterator &UE;
5017
5018  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5019    // Increment the iterator as needed.
5020    while (UI != UE && N == *UI)
5021      ++UI;
5022
5023    // Then forward the message.
5024    if (DownLink) DownLink->NodeDeleted(N, E);
5025  }
5026
5027  virtual void NodeUpdated(SDNode *N) {
5028    // Just forward the message.
5029    if (DownLink) DownLink->NodeUpdated(N);
5030  }
5031
5032public:
5033  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5034                     SDNode::use_iterator &ui,
5035                     SDNode::use_iterator &ue)
5036    : DownLink(dl), UI(ui), UE(ue) {}
5037};
5038
5039}
5040
5041/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5042/// This can cause recursive merging of nodes in the DAG.
5043///
5044/// This version assumes From has a single result value.
5045///
5046void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5047                                      DAGUpdateListener *UpdateListener) {
5048  SDNode *From = FromN.getNode();
5049  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5050         "Cannot replace with this method!");
5051  assert(From != To.getNode() && "Cannot replace uses of with self");
5052
5053  // Iterate over all the existing uses of From. New uses will be added
5054  // to the beginning of the use list, which we avoid visiting.
5055  // This specifically avoids visiting uses of From that arise while the
5056  // replacement is happening, because any such uses would be the result
5057  // of CSE: If an existing node looks like From after one of its operands
5058  // is replaced by To, we don't want to replace of all its users with To
5059  // too. See PR3018 for more info.
5060  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5061  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5062  while (UI != UE) {
5063    SDNode *User = *UI;
5064
5065    // This node is about to morph, remove its old self from the CSE maps.
5066    RemoveNodeFromCSEMaps(User);
5067
5068    // A user can appear in a use list multiple times, and when this
5069    // happens the uses are usually next to each other in the list.
5070    // To help reduce the number of CSE recomputations, process all
5071    // the uses of this user that we can find this way.
5072    do {
5073      SDUse &Use = UI.getUse();
5074      ++UI;
5075      Use.set(To);
5076    } while (UI != UE && *UI == User);
5077
5078    // Now that we have modified User, add it back to the CSE maps.  If it
5079    // already exists there, recursively merge the results together.
5080    AddModifiedNodeToCSEMaps(User, &Listener);
5081  }
5082}
5083
5084/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5085/// This can cause recursive merging of nodes in the DAG.
5086///
5087/// This version assumes that for each value of From, there is a
5088/// corresponding value in To in the same position with the same type.
5089///
5090void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5091                                      DAGUpdateListener *UpdateListener) {
5092#ifndef NDEBUG
5093  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5094    assert((!From->hasAnyUseOfValue(i) ||
5095            From->getValueType(i) == To->getValueType(i)) &&
5096           "Cannot use this version of ReplaceAllUsesWith!");
5097#endif
5098
5099  // Handle the trivial case.
5100  if (From == To)
5101    return;
5102
5103  // Iterate over just the existing users of From. See the comments in
5104  // the ReplaceAllUsesWith above.
5105  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5106  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5107  while (UI != UE) {
5108    SDNode *User = *UI;
5109
5110    // This node is about to morph, remove its old self from the CSE maps.
5111    RemoveNodeFromCSEMaps(User);
5112
5113    // A user can appear in a use list multiple times, and when this
5114    // happens the uses are usually next to each other in the list.
5115    // To help reduce the number of CSE recomputations, process all
5116    // the uses of this user that we can find this way.
5117    do {
5118      SDUse &Use = UI.getUse();
5119      ++UI;
5120      Use.setNode(To);
5121    } while (UI != UE && *UI == User);
5122
5123    // Now that we have modified User, add it back to the CSE maps.  If it
5124    // already exists there, recursively merge the results together.
5125    AddModifiedNodeToCSEMaps(User, &Listener);
5126  }
5127}
5128
5129/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5130/// This can cause recursive merging of nodes in the DAG.
5131///
5132/// This version can replace From with any result values.  To must match the
5133/// number and types of values returned by From.
5134void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5135                                      const SDValue *To,
5136                                      DAGUpdateListener *UpdateListener) {
5137  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5138    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5139
5140  // Iterate over just the existing users of From. See the comments in
5141  // the ReplaceAllUsesWith above.
5142  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5143  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5144  while (UI != UE) {
5145    SDNode *User = *UI;
5146
5147    // This node is about to morph, remove its old self from the CSE maps.
5148    RemoveNodeFromCSEMaps(User);
5149
5150    // A user can appear in a use list multiple times, and when this
5151    // happens the uses are usually next to each other in the list.
5152    // To help reduce the number of CSE recomputations, process all
5153    // the uses of this user that we can find this way.
5154    do {
5155      SDUse &Use = UI.getUse();
5156      const SDValue &ToOp = To[Use.getResNo()];
5157      ++UI;
5158      Use.set(ToOp);
5159    } while (UI != UE && *UI == User);
5160
5161    // Now that we have modified User, add it back to the CSE maps.  If it
5162    // already exists there, recursively merge the results together.
5163    AddModifiedNodeToCSEMaps(User, &Listener);
5164  }
5165}
5166
5167/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5168/// uses of other values produced by From.getNode() alone.  The Deleted
5169/// vector is handled the same way as for ReplaceAllUsesWith.
5170void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5171                                             DAGUpdateListener *UpdateListener){
5172  // Handle the really simple, really trivial case efficiently.
5173  if (From == To) return;
5174
5175  // Handle the simple, trivial, case efficiently.
5176  if (From.getNode()->getNumValues() == 1) {
5177    ReplaceAllUsesWith(From, To, UpdateListener);
5178    return;
5179  }
5180
5181  // Iterate over just the existing users of From. See the comments in
5182  // the ReplaceAllUsesWith above.
5183  SDNode::use_iterator UI = From.getNode()->use_begin(),
5184                       UE = From.getNode()->use_end();
5185  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5186  while (UI != UE) {
5187    SDNode *User = *UI;
5188    bool UserRemovedFromCSEMaps = false;
5189
5190    // A user can appear in a use list multiple times, and when this
5191    // happens the uses are usually next to each other in the list.
5192    // To help reduce the number of CSE recomputations, process all
5193    // the uses of this user that we can find this way.
5194    do {
5195      SDUse &Use = UI.getUse();
5196
5197      // Skip uses of different values from the same node.
5198      if (Use.getResNo() != From.getResNo()) {
5199        ++UI;
5200        continue;
5201      }
5202
5203      // If this node hasn't been modified yet, it's still in the CSE maps,
5204      // so remove its old self from the CSE maps.
5205      if (!UserRemovedFromCSEMaps) {
5206        RemoveNodeFromCSEMaps(User);
5207        UserRemovedFromCSEMaps = true;
5208      }
5209
5210      ++UI;
5211      Use.set(To);
5212    } while (UI != UE && *UI == User);
5213
5214    // We are iterating over all uses of the From node, so if a use
5215    // doesn't use the specific value, no changes are made.
5216    if (!UserRemovedFromCSEMaps)
5217      continue;
5218
5219    // Now that we have modified User, add it back to the CSE maps.  If it
5220    // already exists there, recursively merge the results together.
5221    AddModifiedNodeToCSEMaps(User, &Listener);
5222  }
5223}
5224
5225namespace {
5226  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5227  /// to record information about a use.
5228  struct UseMemo {
5229    SDNode *User;
5230    unsigned Index;
5231    SDUse *Use;
5232  };
5233
5234  /// operator< - Sort Memos by User.
5235  bool operator<(const UseMemo &L, const UseMemo &R) {
5236    return (intptr_t)L.User < (intptr_t)R.User;
5237  }
5238}
5239
5240/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5241/// uses of other values produced by From.getNode() alone.  The same value
5242/// may appear in both the From and To list.  The Deleted vector is
5243/// handled the same way as for ReplaceAllUsesWith.
5244void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5245                                              const SDValue *To,
5246                                              unsigned Num,
5247                                              DAGUpdateListener *UpdateListener){
5248  // Handle the simple, trivial case efficiently.
5249  if (Num == 1)
5250    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5251
5252  // Read up all the uses and make records of them. This helps
5253  // processing new uses that are introduced during the
5254  // replacement process.
5255  SmallVector<UseMemo, 4> Uses;
5256  for (unsigned i = 0; i != Num; ++i) {
5257    unsigned FromResNo = From[i].getResNo();
5258    SDNode *FromNode = From[i].getNode();
5259    for (SDNode::use_iterator UI = FromNode->use_begin(),
5260         E = FromNode->use_end(); UI != E; ++UI) {
5261      SDUse &Use = UI.getUse();
5262      if (Use.getResNo() == FromResNo) {
5263        UseMemo Memo = { *UI, i, &Use };
5264        Uses.push_back(Memo);
5265      }
5266    }
5267  }
5268
5269  // Sort the uses, so that all the uses from a given User are together.
5270  std::sort(Uses.begin(), Uses.end());
5271
5272  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5273       UseIndex != UseIndexEnd; ) {
5274    // We know that this user uses some value of From.  If it is the right
5275    // value, update it.
5276    SDNode *User = Uses[UseIndex].User;
5277
5278    // This node is about to morph, remove its old self from the CSE maps.
5279    RemoveNodeFromCSEMaps(User);
5280
5281    // The Uses array is sorted, so all the uses for a given User
5282    // are next to each other in the list.
5283    // To help reduce the number of CSE recomputations, process all
5284    // the uses of this user that we can find this way.
5285    do {
5286      unsigned i = Uses[UseIndex].Index;
5287      SDUse &Use = *Uses[UseIndex].Use;
5288      ++UseIndex;
5289
5290      Use.set(To[i]);
5291    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5292
5293    // Now that we have modified User, add it back to the CSE maps.  If it
5294    // already exists there, recursively merge the results together.
5295    AddModifiedNodeToCSEMaps(User, UpdateListener);
5296  }
5297}
5298
5299/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5300/// based on their topological order. It returns the maximum id and a vector
5301/// of the SDNodes* in assigned order by reference.
5302unsigned SelectionDAG::AssignTopologicalOrder() {
5303
5304  unsigned DAGSize = 0;
5305
5306  // SortedPos tracks the progress of the algorithm. Nodes before it are
5307  // sorted, nodes after it are unsorted. When the algorithm completes
5308  // it is at the end of the list.
5309  allnodes_iterator SortedPos = allnodes_begin();
5310
5311  // Visit all the nodes. Move nodes with no operands to the front of
5312  // the list immediately. Annotate nodes that do have operands with their
5313  // operand count. Before we do this, the Node Id fields of the nodes
5314  // may contain arbitrary values. After, the Node Id fields for nodes
5315  // before SortedPos will contain the topological sort index, and the
5316  // Node Id fields for nodes At SortedPos and after will contain the
5317  // count of outstanding operands.
5318  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5319    SDNode *N = I++;
5320    checkForCycles(N);
5321    unsigned Degree = N->getNumOperands();
5322    if (Degree == 0) {
5323      // A node with no uses, add it to the result array immediately.
5324      N->setNodeId(DAGSize++);
5325      allnodes_iterator Q = N;
5326      if (Q != SortedPos)
5327        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5328      assert(SortedPos != AllNodes.end() && "Overran node list");
5329      ++SortedPos;
5330    } else {
5331      // Temporarily use the Node Id as scratch space for the degree count.
5332      N->setNodeId(Degree);
5333    }
5334  }
5335
5336  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5337  // such that by the time the end is reached all nodes will be sorted.
5338  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5339    SDNode *N = I;
5340    checkForCycles(N);
5341    // N is in sorted position, so all its uses have one less operand
5342    // that needs to be sorted.
5343    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5344         UI != UE; ++UI) {
5345      SDNode *P = *UI;
5346      unsigned Degree = P->getNodeId();
5347      assert(Degree != 0 && "Invalid node degree");
5348      --Degree;
5349      if (Degree == 0) {
5350        // All of P's operands are sorted, so P may sorted now.
5351        P->setNodeId(DAGSize++);
5352        if (P != SortedPos)
5353          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5354        assert(SortedPos != AllNodes.end() && "Overran node list");
5355        ++SortedPos;
5356      } else {
5357        // Update P's outstanding operand count.
5358        P->setNodeId(Degree);
5359      }
5360    }
5361    if (I == SortedPos) {
5362#ifndef NDEBUG
5363      SDNode *S = ++I;
5364      dbgs() << "Overran sorted position:\n";
5365      S->dumprFull();
5366#endif
5367      llvm_unreachable(0);
5368    }
5369  }
5370
5371  assert(SortedPos == AllNodes.end() &&
5372         "Topological sort incomplete!");
5373  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5374         "First node in topological sort is not the entry token!");
5375  assert(AllNodes.front().getNodeId() == 0 &&
5376         "First node in topological sort has non-zero id!");
5377  assert(AllNodes.front().getNumOperands() == 0 &&
5378         "First node in topological sort has operands!");
5379  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5380         "Last node in topologic sort has unexpected id!");
5381  assert(AllNodes.back().use_empty() &&
5382         "Last node in topologic sort has users!");
5383  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5384  return DAGSize;
5385}
5386
5387/// AssignOrdering - Assign an order to the SDNode.
5388void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5389  assert(SD && "Trying to assign an order to a null node!");
5390  Ordering->add(SD, Order);
5391}
5392
5393/// GetOrdering - Get the order for the SDNode.
5394unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5395  assert(SD && "Trying to get the order of a null node!");
5396  return Ordering->getOrder(SD);
5397}
5398
5399/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5400/// value is produced by SD.
5401void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5402  DbgInfo->add(DB, SD, isParameter);
5403  if (SD)
5404    SD->setHasDebugValue(true);
5405}
5406
5407//===----------------------------------------------------------------------===//
5408//                              SDNode Class
5409//===----------------------------------------------------------------------===//
5410
5411HandleSDNode::~HandleSDNode() {
5412  DropOperands();
5413}
5414
5415GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5416                                         const GlobalValue *GA,
5417                                         EVT VT, int64_t o, unsigned char TF)
5418  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5419  TheGlobal = GA;
5420}
5421
5422MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5423                     MachineMemOperand *mmo)
5424 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5425  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5426                                      MMO->isNonTemporal());
5427  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5428  assert(isNonTemporal() == MMO->isNonTemporal() &&
5429         "Non-temporal encoding error!");
5430  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5431}
5432
5433MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5434                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5435                     MachineMemOperand *mmo)
5436   : SDNode(Opc, dl, VTs, Ops, NumOps),
5437     MemoryVT(memvt), MMO(mmo) {
5438  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5439                                      MMO->isNonTemporal());
5440  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5441  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5442}
5443
5444/// Profile - Gather unique data for the node.
5445///
5446void SDNode::Profile(FoldingSetNodeID &ID) const {
5447  AddNodeIDNode(ID, this);
5448}
5449
5450namespace {
5451  struct EVTArray {
5452    std::vector<EVT> VTs;
5453
5454    EVTArray() {
5455      VTs.reserve(MVT::LAST_VALUETYPE);
5456      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5457        VTs.push_back(MVT((MVT::SimpleValueType)i));
5458    }
5459  };
5460}
5461
5462static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5463static ManagedStatic<EVTArray> SimpleVTArray;
5464static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5465
5466/// getValueTypeList - Return a pointer to the specified value type.
5467///
5468const EVT *SDNode::getValueTypeList(EVT VT) {
5469  if (VT.isExtended()) {
5470    sys::SmartScopedLock<true> Lock(*VTMutex);
5471    return &(*EVTs->insert(VT).first);
5472  } else {
5473    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5474           "Value type out of range!");
5475    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5476  }
5477}
5478
5479/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5480/// indicated value.  This method ignores uses of other values defined by this
5481/// operation.
5482bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5483  assert(Value < getNumValues() && "Bad value!");
5484
5485  // TODO: Only iterate over uses of a given value of the node
5486  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5487    if (UI.getUse().getResNo() == Value) {
5488      if (NUses == 0)
5489        return false;
5490      --NUses;
5491    }
5492  }
5493
5494  // Found exactly the right number of uses?
5495  return NUses == 0;
5496}
5497
5498
5499/// hasAnyUseOfValue - Return true if there are any use of the indicated
5500/// value. This method ignores uses of other values defined by this operation.
5501bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5502  assert(Value < getNumValues() && "Bad value!");
5503
5504  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5505    if (UI.getUse().getResNo() == Value)
5506      return true;
5507
5508  return false;
5509}
5510
5511
5512/// isOnlyUserOf - Return true if this node is the only use of N.
5513///
5514bool SDNode::isOnlyUserOf(SDNode *N) const {
5515  bool Seen = false;
5516  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5517    SDNode *User = *I;
5518    if (User == this)
5519      Seen = true;
5520    else
5521      return false;
5522  }
5523
5524  return Seen;
5525}
5526
5527/// isOperand - Return true if this node is an operand of N.
5528///
5529bool SDValue::isOperandOf(SDNode *N) const {
5530  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5531    if (*this == N->getOperand(i))
5532      return true;
5533  return false;
5534}
5535
5536bool SDNode::isOperandOf(SDNode *N) const {
5537  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5538    if (this == N->OperandList[i].getNode())
5539      return true;
5540  return false;
5541}
5542
5543/// reachesChainWithoutSideEffects - Return true if this operand (which must
5544/// be a chain) reaches the specified operand without crossing any
5545/// side-effecting instructions on any chain path.  In practice, this looks
5546/// through token factors and non-volatile loads.  In order to remain efficient,
5547/// this only looks a couple of nodes in, it does not do an exhaustive search.
5548bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5549                                               unsigned Depth) const {
5550  if (*this == Dest) return true;
5551
5552  // Don't search too deeply, we just want to be able to see through
5553  // TokenFactor's etc.
5554  if (Depth == 0) return false;
5555
5556  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5557  // of the operands of the TF does not reach dest, then we cannot do the xform.
5558  if (getOpcode() == ISD::TokenFactor) {
5559    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5560      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5561        return false;
5562    return true;
5563  }
5564
5565  // Loads don't have side effects, look through them.
5566  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5567    if (!Ld->isVolatile())
5568      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5569  }
5570  return false;
5571}
5572
5573/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5574/// is either an operand of N or it can be reached by traversing up the operands.
5575/// NOTE: this is an expensive method. Use it carefully.
5576bool SDNode::isPredecessorOf(SDNode *N) const {
5577  SmallPtrSet<SDNode *, 32> Visited;
5578  SmallVector<SDNode *, 16> Worklist;
5579  Worklist.push_back(N);
5580
5581  do {
5582    N = Worklist.pop_back_val();
5583    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5584      SDNode *Op = N->getOperand(i).getNode();
5585      if (Op == this)
5586        return true;
5587      if (Visited.insert(Op))
5588        Worklist.push_back(Op);
5589    }
5590  } while (!Worklist.empty());
5591
5592  return false;
5593}
5594
5595uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5596  assert(Num < NumOperands && "Invalid child # of SDNode!");
5597  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5598}
5599
5600std::string SDNode::getOperationName(const SelectionDAG *G) const {
5601  switch (getOpcode()) {
5602  default:
5603    if (getOpcode() < ISD::BUILTIN_OP_END)
5604      return "<<Unknown DAG Node>>";
5605    if (isMachineOpcode()) {
5606      if (G)
5607        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5608          if (getMachineOpcode() < TII->getNumOpcodes())
5609            return TII->get(getMachineOpcode()).getName();
5610      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5611    }
5612    if (G) {
5613      const TargetLowering &TLI = G->getTargetLoweringInfo();
5614      const char *Name = TLI.getTargetNodeName(getOpcode());
5615      if (Name) return Name;
5616      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5617    }
5618    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5619
5620#ifndef NDEBUG
5621  case ISD::DELETED_NODE:
5622    return "<<Deleted Node!>>";
5623#endif
5624  case ISD::PREFETCH:      return "Prefetch";
5625  case ISD::MEMBARRIER:    return "MemBarrier";
5626  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5627  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5628  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5629  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5630  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5631  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5632  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5633  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5634  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5635  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5636  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5637  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5638  case ISD::PCMARKER:      return "PCMarker";
5639  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5640  case ISD::SRCVALUE:      return "SrcValue";
5641  case ISD::MDNODE_SDNODE: return "MDNode";
5642  case ISD::EntryToken:    return "EntryToken";
5643  case ISD::TokenFactor:   return "TokenFactor";
5644  case ISD::AssertSext:    return "AssertSext";
5645  case ISD::AssertZext:    return "AssertZext";
5646
5647  case ISD::BasicBlock:    return "BasicBlock";
5648  case ISD::VALUETYPE:     return "ValueType";
5649  case ISD::Register:      return "Register";
5650
5651  case ISD::Constant:      return "Constant";
5652  case ISD::ConstantFP:    return "ConstantFP";
5653  case ISD::GlobalAddress: return "GlobalAddress";
5654  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5655  case ISD::FrameIndex:    return "FrameIndex";
5656  case ISD::JumpTable:     return "JumpTable";
5657  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5658  case ISD::RETURNADDR: return "RETURNADDR";
5659  case ISD::FRAMEADDR: return "FRAMEADDR";
5660  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5661  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5662  case ISD::LSDAADDR: return "LSDAADDR";
5663  case ISD::EHSELECTION: return "EHSELECTION";
5664  case ISD::EH_RETURN: return "EH_RETURN";
5665  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5666  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5667  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5668  case ISD::ConstantPool:  return "ConstantPool";
5669  case ISD::ExternalSymbol: return "ExternalSymbol";
5670  case ISD::BlockAddress:  return "BlockAddress";
5671  case ISD::INTRINSIC_WO_CHAIN:
5672  case ISD::INTRINSIC_VOID:
5673  case ISD::INTRINSIC_W_CHAIN: {
5674    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5675    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5676    if (IID < Intrinsic::num_intrinsics)
5677      return Intrinsic::getName((Intrinsic::ID)IID);
5678    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5679      return TII->getName(IID);
5680    llvm_unreachable("Invalid intrinsic ID");
5681  }
5682
5683  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5684  case ISD::TargetConstant: return "TargetConstant";
5685  case ISD::TargetConstantFP:return "TargetConstantFP";
5686  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5687  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5688  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5689  case ISD::TargetJumpTable:  return "TargetJumpTable";
5690  case ISD::TargetConstantPool:  return "TargetConstantPool";
5691  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5692  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5693
5694  case ISD::CopyToReg:     return "CopyToReg";
5695  case ISD::CopyFromReg:   return "CopyFromReg";
5696  case ISD::UNDEF:         return "undef";
5697  case ISD::MERGE_VALUES:  return "merge_values";
5698  case ISD::INLINEASM:     return "inlineasm";
5699  case ISD::EH_LABEL:      return "eh_label";
5700  case ISD::HANDLENODE:    return "handlenode";
5701
5702  // Unary operators
5703  case ISD::FABS:   return "fabs";
5704  case ISD::FNEG:   return "fneg";
5705  case ISD::FSQRT:  return "fsqrt";
5706  case ISD::FSIN:   return "fsin";
5707  case ISD::FCOS:   return "fcos";
5708  case ISD::FTRUNC: return "ftrunc";
5709  case ISD::FFLOOR: return "ffloor";
5710  case ISD::FCEIL:  return "fceil";
5711  case ISD::FRINT:  return "frint";
5712  case ISD::FNEARBYINT: return "fnearbyint";
5713  case ISD::FEXP:   return "fexp";
5714  case ISD::FEXP2:  return "fexp2";
5715  case ISD::FLOG:   return "flog";
5716  case ISD::FLOG2:  return "flog2";
5717  case ISD::FLOG10: return "flog10";
5718
5719  // Binary operators
5720  case ISD::ADD:    return "add";
5721  case ISD::SUB:    return "sub";
5722  case ISD::MUL:    return "mul";
5723  case ISD::MULHU:  return "mulhu";
5724  case ISD::MULHS:  return "mulhs";
5725  case ISD::SDIV:   return "sdiv";
5726  case ISD::UDIV:   return "udiv";
5727  case ISD::SREM:   return "srem";
5728  case ISD::UREM:   return "urem";
5729  case ISD::SMUL_LOHI:  return "smul_lohi";
5730  case ISD::UMUL_LOHI:  return "umul_lohi";
5731  case ISD::SDIVREM:    return "sdivrem";
5732  case ISD::UDIVREM:    return "udivrem";
5733  case ISD::AND:    return "and";
5734  case ISD::OR:     return "or";
5735  case ISD::XOR:    return "xor";
5736  case ISD::SHL:    return "shl";
5737  case ISD::SRA:    return "sra";
5738  case ISD::SRL:    return "srl";
5739  case ISD::ROTL:   return "rotl";
5740  case ISD::ROTR:   return "rotr";
5741  case ISD::FADD:   return "fadd";
5742  case ISD::FSUB:   return "fsub";
5743  case ISD::FMUL:   return "fmul";
5744  case ISD::FDIV:   return "fdiv";
5745  case ISD::FREM:   return "frem";
5746  case ISD::FCOPYSIGN: return "fcopysign";
5747  case ISD::FGETSIGN:  return "fgetsign";
5748  case ISD::FPOW:   return "fpow";
5749
5750  case ISD::FPOWI:  return "fpowi";
5751  case ISD::SETCC:       return "setcc";
5752  case ISD::VSETCC:      return "vsetcc";
5753  case ISD::SELECT:      return "select";
5754  case ISD::SELECT_CC:   return "select_cc";
5755  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5756  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5757  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5758  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5759  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5760  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5761  case ISD::CARRY_FALSE:         return "carry_false";
5762  case ISD::ADDC:        return "addc";
5763  case ISD::ADDE:        return "adde";
5764  case ISD::SADDO:       return "saddo";
5765  case ISD::UADDO:       return "uaddo";
5766  case ISD::SSUBO:       return "ssubo";
5767  case ISD::USUBO:       return "usubo";
5768  case ISD::SMULO:       return "smulo";
5769  case ISD::UMULO:       return "umulo";
5770  case ISD::SUBC:        return "subc";
5771  case ISD::SUBE:        return "sube";
5772  case ISD::SHL_PARTS:   return "shl_parts";
5773  case ISD::SRA_PARTS:   return "sra_parts";
5774  case ISD::SRL_PARTS:   return "srl_parts";
5775
5776  // Conversion operators.
5777  case ISD::SIGN_EXTEND: return "sign_extend";
5778  case ISD::ZERO_EXTEND: return "zero_extend";
5779  case ISD::ANY_EXTEND:  return "any_extend";
5780  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5781  case ISD::TRUNCATE:    return "truncate";
5782  case ISD::FP_ROUND:    return "fp_round";
5783  case ISD::FLT_ROUNDS_: return "flt_rounds";
5784  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5785  case ISD::FP_EXTEND:   return "fp_extend";
5786
5787  case ISD::SINT_TO_FP:  return "sint_to_fp";
5788  case ISD::UINT_TO_FP:  return "uint_to_fp";
5789  case ISD::FP_TO_SINT:  return "fp_to_sint";
5790  case ISD::FP_TO_UINT:  return "fp_to_uint";
5791  case ISD::BIT_CONVERT: return "bit_convert";
5792  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5793  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5794
5795  case ISD::CONVERT_RNDSAT: {
5796    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5797    default: llvm_unreachable("Unknown cvt code!");
5798    case ISD::CVT_FF:  return "cvt_ff";
5799    case ISD::CVT_FS:  return "cvt_fs";
5800    case ISD::CVT_FU:  return "cvt_fu";
5801    case ISD::CVT_SF:  return "cvt_sf";
5802    case ISD::CVT_UF:  return "cvt_uf";
5803    case ISD::CVT_SS:  return "cvt_ss";
5804    case ISD::CVT_SU:  return "cvt_su";
5805    case ISD::CVT_US:  return "cvt_us";
5806    case ISD::CVT_UU:  return "cvt_uu";
5807    }
5808  }
5809
5810    // Control flow instructions
5811  case ISD::BR:      return "br";
5812  case ISD::BRIND:   return "brind";
5813  case ISD::BR_JT:   return "br_jt";
5814  case ISD::BRCOND:  return "brcond";
5815  case ISD::BR_CC:   return "br_cc";
5816  case ISD::CALLSEQ_START:  return "callseq_start";
5817  case ISD::CALLSEQ_END:    return "callseq_end";
5818
5819    // Other operators
5820  case ISD::LOAD:               return "load";
5821  case ISD::STORE:              return "store";
5822  case ISD::VAARG:              return "vaarg";
5823  case ISD::VACOPY:             return "vacopy";
5824  case ISD::VAEND:              return "vaend";
5825  case ISD::VASTART:            return "vastart";
5826  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5827  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5828  case ISD::BUILD_PAIR:         return "build_pair";
5829  case ISD::STACKSAVE:          return "stacksave";
5830  case ISD::STACKRESTORE:       return "stackrestore";
5831  case ISD::TRAP:               return "trap";
5832
5833  // Bit manipulation
5834  case ISD::BSWAP:   return "bswap";
5835  case ISD::CTPOP:   return "ctpop";
5836  case ISD::CTTZ:    return "cttz";
5837  case ISD::CTLZ:    return "ctlz";
5838
5839  // Trampolines
5840  case ISD::TRAMPOLINE: return "trampoline";
5841
5842  case ISD::CONDCODE:
5843    switch (cast<CondCodeSDNode>(this)->get()) {
5844    default: llvm_unreachable("Unknown setcc condition!");
5845    case ISD::SETOEQ:  return "setoeq";
5846    case ISD::SETOGT:  return "setogt";
5847    case ISD::SETOGE:  return "setoge";
5848    case ISD::SETOLT:  return "setolt";
5849    case ISD::SETOLE:  return "setole";
5850    case ISD::SETONE:  return "setone";
5851
5852    case ISD::SETO:    return "seto";
5853    case ISD::SETUO:   return "setuo";
5854    case ISD::SETUEQ:  return "setue";
5855    case ISD::SETUGT:  return "setugt";
5856    case ISD::SETUGE:  return "setuge";
5857    case ISD::SETULT:  return "setult";
5858    case ISD::SETULE:  return "setule";
5859    case ISD::SETUNE:  return "setune";
5860
5861    case ISD::SETEQ:   return "seteq";
5862    case ISD::SETGT:   return "setgt";
5863    case ISD::SETGE:   return "setge";
5864    case ISD::SETLT:   return "setlt";
5865    case ISD::SETLE:   return "setle";
5866    case ISD::SETNE:   return "setne";
5867    }
5868  }
5869}
5870
5871const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5872  switch (AM) {
5873  default:
5874    return "";
5875  case ISD::PRE_INC:
5876    return "<pre-inc>";
5877  case ISD::PRE_DEC:
5878    return "<pre-dec>";
5879  case ISD::POST_INC:
5880    return "<post-inc>";
5881  case ISD::POST_DEC:
5882    return "<post-dec>";
5883  }
5884}
5885
5886std::string ISD::ArgFlagsTy::getArgFlagsString() {
5887  std::string S = "< ";
5888
5889  if (isZExt())
5890    S += "zext ";
5891  if (isSExt())
5892    S += "sext ";
5893  if (isInReg())
5894    S += "inreg ";
5895  if (isSRet())
5896    S += "sret ";
5897  if (isByVal())
5898    S += "byval ";
5899  if (isNest())
5900    S += "nest ";
5901  if (getByValAlign())
5902    S += "byval-align:" + utostr(getByValAlign()) + " ";
5903  if (getOrigAlign())
5904    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5905  if (getByValSize())
5906    S += "byval-size:" + utostr(getByValSize()) + " ";
5907  return S + ">";
5908}
5909
5910void SDNode::dump() const { dump(0); }
5911void SDNode::dump(const SelectionDAG *G) const {
5912  print(dbgs(), G);
5913  dbgs() << '\n';
5914}
5915
5916void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5917  OS << (void*)this << ": ";
5918
5919  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5920    if (i) OS << ",";
5921    if (getValueType(i) == MVT::Other)
5922      OS << "ch";
5923    else
5924      OS << getValueType(i).getEVTString();
5925  }
5926  OS << " = " << getOperationName(G);
5927}
5928
5929void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5930  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5931    if (!MN->memoperands_empty()) {
5932      OS << "<";
5933      OS << "Mem:";
5934      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5935           e = MN->memoperands_end(); i != e; ++i) {
5936        OS << **i;
5937        if (llvm::next(i) != e)
5938          OS << " ";
5939      }
5940      OS << ">";
5941    }
5942  } else if (const ShuffleVectorSDNode *SVN =
5943               dyn_cast<ShuffleVectorSDNode>(this)) {
5944    OS << "<";
5945    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5946      int Idx = SVN->getMaskElt(i);
5947      if (i) OS << ",";
5948      if (Idx < 0)
5949        OS << "u";
5950      else
5951        OS << Idx;
5952    }
5953    OS << ">";
5954  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5955    OS << '<' << CSDN->getAPIntValue() << '>';
5956  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5957    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5958      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5959    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5960      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5961    else {
5962      OS << "<APFloat(";
5963      CSDN->getValueAPF().bitcastToAPInt().dump();
5964      OS << ")>";
5965    }
5966  } else if (const GlobalAddressSDNode *GADN =
5967             dyn_cast<GlobalAddressSDNode>(this)) {
5968    int64_t offset = GADN->getOffset();
5969    OS << '<';
5970    WriteAsOperand(OS, GADN->getGlobal());
5971    OS << '>';
5972    if (offset > 0)
5973      OS << " + " << offset;
5974    else
5975      OS << " " << offset;
5976    if (unsigned int TF = GADN->getTargetFlags())
5977      OS << " [TF=" << TF << ']';
5978  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5979    OS << "<" << FIDN->getIndex() << ">";
5980  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5981    OS << "<" << JTDN->getIndex() << ">";
5982    if (unsigned int TF = JTDN->getTargetFlags())
5983      OS << " [TF=" << TF << ']';
5984  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5985    int offset = CP->getOffset();
5986    if (CP->isMachineConstantPoolEntry())
5987      OS << "<" << *CP->getMachineCPVal() << ">";
5988    else
5989      OS << "<" << *CP->getConstVal() << ">";
5990    if (offset > 0)
5991      OS << " + " << offset;
5992    else
5993      OS << " " << offset;
5994    if (unsigned int TF = CP->getTargetFlags())
5995      OS << " [TF=" << TF << ']';
5996  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5997    OS << "<";
5998    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5999    if (LBB)
6000      OS << LBB->getName() << " ";
6001    OS << (const void*)BBDN->getBasicBlock() << ">";
6002  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6003    if (G && R->getReg() &&
6004        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
6005      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
6006    } else {
6007      OS << " %reg" << R->getReg();
6008    }
6009  } else if (const ExternalSymbolSDNode *ES =
6010             dyn_cast<ExternalSymbolSDNode>(this)) {
6011    OS << "'" << ES->getSymbol() << "'";
6012    if (unsigned int TF = ES->getTargetFlags())
6013      OS << " [TF=" << TF << ']';
6014  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6015    if (M->getValue())
6016      OS << "<" << M->getValue() << ">";
6017    else
6018      OS << "<null>";
6019  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6020    if (MD->getMD())
6021      OS << "<" << MD->getMD() << ">";
6022    else
6023      OS << "<null>";
6024  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6025    OS << ":" << N->getVT().getEVTString();
6026  }
6027  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6028    OS << "<" << *LD->getMemOperand();
6029
6030    bool doExt = true;
6031    switch (LD->getExtensionType()) {
6032    default: doExt = false; break;
6033    case ISD::EXTLOAD: OS << ", anyext"; break;
6034    case ISD::SEXTLOAD: OS << ", sext"; break;
6035    case ISD::ZEXTLOAD: OS << ", zext"; break;
6036    }
6037    if (doExt)
6038      OS << " from " << LD->getMemoryVT().getEVTString();
6039
6040    const char *AM = getIndexedModeName(LD->getAddressingMode());
6041    if (*AM)
6042      OS << ", " << AM;
6043
6044    OS << ">";
6045  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6046    OS << "<" << *ST->getMemOperand();
6047
6048    if (ST->isTruncatingStore())
6049      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6050
6051    const char *AM = getIndexedModeName(ST->getAddressingMode());
6052    if (*AM)
6053      OS << ", " << AM;
6054
6055    OS << ">";
6056  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6057    OS << "<" << *M->getMemOperand() << ">";
6058  } else if (const BlockAddressSDNode *BA =
6059               dyn_cast<BlockAddressSDNode>(this)) {
6060    OS << "<";
6061    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6062    OS << ", ";
6063    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6064    OS << ">";
6065    if (unsigned int TF = BA->getTargetFlags())
6066      OS << " [TF=" << TF << ']';
6067  }
6068
6069  if (G)
6070    if (unsigned Order = G->GetOrdering(this))
6071      OS << " [ORD=" << Order << ']';
6072
6073  if (getNodeId() != -1)
6074    OS << " [ID=" << getNodeId() << ']';
6075
6076  DebugLoc dl = getDebugLoc();
6077  if (G && !dl.isUnknown()) {
6078    DIScope
6079      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6080    OS << " dbg:";
6081    // Omit the directory, since it's usually long and uninteresting.
6082    if (Scope.Verify())
6083      OS << Scope.getFilename();
6084    else
6085      OS << "<unknown>";
6086    OS << ':' << dl.getLine();
6087    if (dl.getCol() != 0)
6088      OS << ':' << dl.getCol();
6089  }
6090}
6091
6092void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6093  print_types(OS, G);
6094  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6095    if (i) OS << ", "; else OS << " ";
6096    OS << (void*)getOperand(i).getNode();
6097    if (unsigned RN = getOperand(i).getResNo())
6098      OS << ":" << RN;
6099  }
6100  print_details(OS, G);
6101}
6102
6103static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6104                                  const SelectionDAG *G, unsigned depth,
6105                                  unsigned indent)
6106{
6107  if (depth == 0)
6108    return;
6109
6110  OS.indent(indent);
6111
6112  N->print(OS, G);
6113
6114  if (depth < 1)
6115    return;
6116
6117  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6118    OS << '\n';
6119    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6120  }
6121}
6122
6123void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6124                            unsigned depth) const {
6125  printrWithDepthHelper(OS, this, G, depth, 0);
6126}
6127
6128void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6129  // Don't print impossibly deep things.
6130  printrWithDepth(OS, G, 100);
6131}
6132
6133void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6134  printrWithDepth(dbgs(), G, depth);
6135}
6136
6137void SDNode::dumprFull(const SelectionDAG *G) const {
6138  // Don't print impossibly deep things.
6139  dumprWithDepth(G, 100);
6140}
6141
6142static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6143  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6144    if (N->getOperand(i).getNode()->hasOneUse())
6145      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6146    else
6147      dbgs() << "\n" << std::string(indent+2, ' ')
6148           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6149
6150
6151  dbgs() << "\n";
6152  dbgs().indent(indent);
6153  N->dump(G);
6154}
6155
6156SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6157  assert(N->getNumValues() == 1 &&
6158         "Can't unroll a vector with multiple results!");
6159
6160  EVT VT = N->getValueType(0);
6161  unsigned NE = VT.getVectorNumElements();
6162  EVT EltVT = VT.getVectorElementType();
6163  DebugLoc dl = N->getDebugLoc();
6164
6165  SmallVector<SDValue, 8> Scalars;
6166  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6167
6168  // If ResNE is 0, fully unroll the vector op.
6169  if (ResNE == 0)
6170    ResNE = NE;
6171  else if (NE > ResNE)
6172    NE = ResNE;
6173
6174  unsigned i;
6175  for (i= 0; i != NE; ++i) {
6176    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6177      SDValue Operand = N->getOperand(j);
6178      EVT OperandVT = Operand.getValueType();
6179      if (OperandVT.isVector()) {
6180        // A vector operand; extract a single element.
6181        EVT OperandEltVT = OperandVT.getVectorElementType();
6182        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6183                              OperandEltVT,
6184                              Operand,
6185                              getConstant(i, MVT::i32));
6186      } else {
6187        // A scalar operand; just use it as is.
6188        Operands[j] = Operand;
6189      }
6190    }
6191
6192    switch (N->getOpcode()) {
6193    default:
6194      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6195                                &Operands[0], Operands.size()));
6196      break;
6197    case ISD::SHL:
6198    case ISD::SRA:
6199    case ISD::SRL:
6200    case ISD::ROTL:
6201    case ISD::ROTR:
6202      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6203                                getShiftAmountOperand(Operands[1])));
6204      break;
6205    case ISD::SIGN_EXTEND_INREG:
6206    case ISD::FP_ROUND_INREG: {
6207      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6208      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6209                                Operands[0],
6210                                getValueType(ExtVT)));
6211    }
6212    }
6213  }
6214
6215  for (; i < ResNE; ++i)
6216    Scalars.push_back(getUNDEF(EltVT));
6217
6218  return getNode(ISD::BUILD_VECTOR, dl,
6219                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6220                 &Scalars[0], Scalars.size());
6221}
6222
6223
6224/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6225/// location that is 'Dist' units away from the location that the 'Base' load
6226/// is loading from.
6227bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6228                                     unsigned Bytes, int Dist) const {
6229  if (LD->getChain() != Base->getChain())
6230    return false;
6231  EVT VT = LD->getValueType(0);
6232  if (VT.getSizeInBits() / 8 != Bytes)
6233    return false;
6234
6235  SDValue Loc = LD->getOperand(1);
6236  SDValue BaseLoc = Base->getOperand(1);
6237  if (Loc.getOpcode() == ISD::FrameIndex) {
6238    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6239      return false;
6240    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6241    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6242    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6243    int FS  = MFI->getObjectSize(FI);
6244    int BFS = MFI->getObjectSize(BFI);
6245    if (FS != BFS || FS != (int)Bytes) return false;
6246    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6247  }
6248  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6249    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6250    if (V && (V->getSExtValue() == Dist*Bytes))
6251      return true;
6252  }
6253
6254  const GlobalValue *GV1 = NULL;
6255  const GlobalValue *GV2 = NULL;
6256  int64_t Offset1 = 0;
6257  int64_t Offset2 = 0;
6258  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6259  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6260  if (isGA1 && isGA2 && GV1 == GV2)
6261    return Offset1 == (Offset2 + Dist*Bytes);
6262  return false;
6263}
6264
6265
6266/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6267/// it cannot be inferred.
6268unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6269  // If this is a GlobalAddress + cst, return the alignment.
6270  const GlobalValue *GV;
6271  int64_t GVOffset = 0;
6272  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6273    // If GV has specified alignment, then use it. Otherwise, use the preferred
6274    // alignment.
6275    unsigned Align = GV->getAlignment();
6276    if (!Align) {
6277      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6278        if (GVar->hasInitializer()) {
6279          const TargetData *TD = TLI.getTargetData();
6280          Align = TD->getPreferredAlignment(GVar);
6281        }
6282      }
6283    }
6284    return MinAlign(Align, GVOffset);
6285  }
6286
6287  // If this is a direct reference to a stack slot, use information about the
6288  // stack slot's alignment.
6289  int FrameIdx = 1 << 31;
6290  int64_t FrameOffset = 0;
6291  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6292    FrameIdx = FI->getIndex();
6293  } else if (Ptr.getOpcode() == ISD::ADD &&
6294             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6295             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6296    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6297    FrameOffset = Ptr.getConstantOperandVal(1);
6298  }
6299
6300  if (FrameIdx != (1 << 31)) {
6301    // FIXME: Handle FI+CST.
6302    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6303    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6304                                    FrameOffset);
6305    return FIInfoAlign;
6306  }
6307
6308  return 0;
6309}
6310
6311void SelectionDAG::dump() const {
6312  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6313
6314  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6315       I != E; ++I) {
6316    const SDNode *N = I;
6317    if (!N->hasOneUse() && N != getRoot().getNode())
6318      DumpNodes(N, 2, this);
6319  }
6320
6321  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6322
6323  dbgs() << "\n\n";
6324}
6325
6326void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6327  print_types(OS, G);
6328  print_details(OS, G);
6329}
6330
6331typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6332static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6333                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6334  if (!once.insert(N))          // If we've been here before, return now.
6335    return;
6336
6337  // Dump the current SDNode, but don't end the line yet.
6338  OS << std::string(indent, ' ');
6339  N->printr(OS, G);
6340
6341  // Having printed this SDNode, walk the children:
6342  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6343    const SDNode *child = N->getOperand(i).getNode();
6344
6345    if (i) OS << ",";
6346    OS << " ";
6347
6348    if (child->getNumOperands() == 0) {
6349      // This child has no grandchildren; print it inline right here.
6350      child->printr(OS, G);
6351      once.insert(child);
6352    } else {         // Just the address. FIXME: also print the child's opcode.
6353      OS << (void*)child;
6354      if (unsigned RN = N->getOperand(i).getResNo())
6355        OS << ":" << RN;
6356    }
6357  }
6358
6359  OS << "\n";
6360
6361  // Dump children that have grandchildren on their own line(s).
6362  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6363    const SDNode *child = N->getOperand(i).getNode();
6364    DumpNodesr(OS, child, indent+2, G, once);
6365  }
6366}
6367
6368void SDNode::dumpr() const {
6369  VisitedSDNodeSet once;
6370  DumpNodesr(dbgs(), this, 0, 0, once);
6371}
6372
6373void SDNode::dumpr(const SelectionDAG *G) const {
6374  VisitedSDNodeSet once;
6375  DumpNodesr(dbgs(), this, 0, G, once);
6376}
6377
6378
6379// getAddressSpace - Return the address space this GlobalAddress belongs to.
6380unsigned GlobalAddressSDNode::getAddressSpace() const {
6381  return getGlobal()->getType()->getAddressSpace();
6382}
6383
6384
6385const Type *ConstantPoolSDNode::getType() const {
6386  if (isMachineConstantPoolEntry())
6387    return Val.MachineCPVal->getType();
6388  return Val.ConstVal->getType();
6389}
6390
6391bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6392                                        APInt &SplatUndef,
6393                                        unsigned &SplatBitSize,
6394                                        bool &HasAnyUndefs,
6395                                        unsigned MinSplatBits,
6396                                        bool isBigEndian) {
6397  EVT VT = getValueType(0);
6398  assert(VT.isVector() && "Expected a vector type");
6399  unsigned sz = VT.getSizeInBits();
6400  if (MinSplatBits > sz)
6401    return false;
6402
6403  SplatValue = APInt(sz, 0);
6404  SplatUndef = APInt(sz, 0);
6405
6406  // Get the bits.  Bits with undefined values (when the corresponding element
6407  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6408  // in SplatValue.  If any of the values are not constant, give up and return
6409  // false.
6410  unsigned int nOps = getNumOperands();
6411  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6412  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6413
6414  for (unsigned j = 0; j < nOps; ++j) {
6415    unsigned i = isBigEndian ? nOps-1-j : j;
6416    SDValue OpVal = getOperand(i);
6417    unsigned BitPos = j * EltBitSize;
6418
6419    if (OpVal.getOpcode() == ISD::UNDEF)
6420      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6421    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6422      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6423                    zextOrTrunc(sz) << BitPos;
6424    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6425      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6426     else
6427      return false;
6428  }
6429
6430  // The build_vector is all constants or undefs.  Find the smallest element
6431  // size that splats the vector.
6432
6433  HasAnyUndefs = (SplatUndef != 0);
6434  while (sz > 8) {
6435
6436    unsigned HalfSize = sz / 2;
6437    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6438    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6439    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6440    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6441
6442    // If the two halves do not match (ignoring undef bits), stop here.
6443    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6444        MinSplatBits > HalfSize)
6445      break;
6446
6447    SplatValue = HighValue | LowValue;
6448    SplatUndef = HighUndef & LowUndef;
6449
6450    sz = HalfSize;
6451  }
6452
6453  SplatBitSize = sz;
6454  return true;
6455}
6456
6457bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6458  // Find the first non-undef value in the shuffle mask.
6459  unsigned i, e;
6460  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6461    /* search */;
6462
6463  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6464
6465  // Make sure all remaining elements are either undef or the same as the first
6466  // non-undef value.
6467  for (int Idx = Mask[i]; i != e; ++i)
6468    if (Mask[i] >= 0 && Mask[i] != Idx)
6469      return false;
6470  return true;
6471}
6472
6473#ifdef XDEBUG
6474static void checkForCyclesHelper(const SDNode *N,
6475                                 SmallPtrSet<const SDNode*, 32> &Visited,
6476                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6477  // If this node has already been checked, don't check it again.
6478  if (Checked.count(N))
6479    return;
6480
6481  // If a node has already been visited on this depth-first walk, reject it as
6482  // a cycle.
6483  if (!Visited.insert(N)) {
6484    dbgs() << "Offending node:\n";
6485    N->dumprFull();
6486    errs() << "Detected cycle in SelectionDAG\n";
6487    abort();
6488  }
6489
6490  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6491    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6492
6493  Checked.insert(N);
6494  Visited.erase(N);
6495}
6496#endif
6497
6498void llvm::checkForCycles(const llvm::SDNode *N) {
6499#ifdef XDEBUG
6500  assert(N && "Checking nonexistant SDNode");
6501  SmallPtrSet<const SDNode*, 32> visited;
6502  SmallPtrSet<const SDNode*, 32> checked;
6503  checkForCyclesHelper(N, visited, checked);
6504#endif
6505}
6506
6507void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6508  checkForCycles(DAG->getRoot().getNode());
6509}
6510