SelectionDAG.cpp revision 3d01556ac63fa62acf14d1290d6326f1d1db2ee0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getVal());
346    ID.AddInteger(Ops->getSDValue().getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getAddressingMode());
433    ID.AddInteger(LD->getExtensionType());
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawFlags());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getRawFlags());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX: {
458    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
459    ID.AddInteger(AT->getRawFlags());
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries both alignment and volatility information.
480///
481static inline unsigned
482encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
483  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::DBG_LABEL:
499  case ISD::DBG_STOPPOINT:
500  case ISD::EH_LABEL:
501  case ISD::DECLARE:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Flag)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.back();
542    DeadNodes.pop_back();
543
544    if (UpdateListener)
545      UpdateListener->NodeDeleted(N, 0);
546
547    // Take the node out of the appropriate CSE map.
548    RemoveNodeFromCSEMaps(N);
549
550    // Next, brutally remove the operand list.  This is safe to do, as there are
551    // no cycles in the graph.
552    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
553      SDNode *Operand = I->getVal();
554      Operand->removeUser(std::distance(N->op_begin(), I), N);
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  assert(N->use_empty() && "Cannot delete a node that is not dead!");
572
573  // First take this out of the appropriate CSE map.
574  RemoveNodeFromCSEMaps(N);
575
576  // Finally, remove uses due to operands of this node, remove from the
577  // AllNodes list, and delete the node.
578  DeleteNodeNotInCSEMaps(N);
579}
580
581void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
582  assert(N != AllNodes.begin());
583
584  // Drop all of the operands and decrement used node's use counts.
585  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
586    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
587
588  DeallocateNode(N);
589}
590
591void SelectionDAG::DeallocateNode(SDNode *N) {
592  if (N->OperandsNeedDelete)
593    delete[] N->OperandList;
594
595  // Set the opcode to DELETED_NODE to help catch bugs when node
596  // memory is reallocated.
597  N->NodeType = ISD::DELETED_NODE;
598
599  NodeAllocator.Deallocate(AllNodes.remove(N));
600}
601
602/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
603/// correspond to it.  This is useful when we're about to delete or repurpose
604/// the node.  We don't want future request for structurally identical nodes
605/// to return N anymore.
606bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
607  bool Erased = false;
608  switch (N->getOpcode()) {
609  case ISD::EntryToken:
610    assert(0 && "EntryToken should not be in CSEMaps!");
611    return false;
612  case ISD::HANDLENODE: return false;  // noop.
613  case ISD::CONDCODE:
614    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
615           "Cond code doesn't exist!");
616    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
617    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
618    break;
619  case ISD::ExternalSymbol:
620    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
621    break;
622  case ISD::TargetExternalSymbol:
623    Erased =
624      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::VALUETYPE: {
627    MVT VT = cast<VTSDNode>(N)->getVT();
628    if (VT.isExtended()) {
629      Erased = ExtendedValueTypeNodes.erase(VT);
630    } else {
631      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
632      ValueTypeNodes[VT.getSimpleVT()] = 0;
633    }
634    break;
635  }
636  default:
637    // Remove it from the CSE Map.
638    Erased = CSEMap.RemoveNode(N);
639    break;
640  }
641#ifndef NDEBUG
642  // Verify that the node was actually in one of the CSE maps, unless it has a
643  // flag result (which cannot be CSE'd) or is one of the special cases that are
644  // not subject to CSE.
645  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646      !N->isMachineOpcode() && !doNotCSE(N)) {
647    N->dump(this);
648    cerr << "\n";
649    assert(0 && "Node is not in map!");
650  }
651#endif
652  return Erased;
653}
654
655/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
656/// has been taken out and modified in some way.  If the specified node already
657/// exists in the CSE maps, do not modify the maps, but return the existing node
658/// instead.  If it doesn't exist, add it and return null.
659///
660SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
661  assert(N->getNumOperands() && "This is a leaf node!");
662
663  if (doNotCSE(N))
664    return 0;
665
666  SDNode *New = CSEMap.GetOrInsertNode(N);
667  if (New != N) return New;  // Node already existed.
668  return 0;
669}
670
671/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
672/// were replaced with those specified.  If this node is never memoized,
673/// return null, otherwise return a pointer to the slot it would take.  If a
674/// node already exists with these operands, the slot will be non-null.
675SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
676                                           void *&InsertPos) {
677  if (doNotCSE(N))
678    return 0;
679
680  SDValue Ops[] = { Op };
681  FoldingSetNodeID ID;
682  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
683  AddNodeIDCustom(ID, N);
684  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
685}
686
687/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688/// were replaced with those specified.  If this node is never memoized,
689/// return null, otherwise return a pointer to the slot it would take.  If a
690/// node already exists with these operands, the slot will be non-null.
691SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
692                                           SDValue Op1, SDValue Op2,
693                                           void *&InsertPos) {
694  if (doNotCSE(N))
695    return 0;
696
697  SDValue Ops[] = { Op1, Op2 };
698  FoldingSetNodeID ID;
699  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
700  AddNodeIDCustom(ID, N);
701  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
702}
703
704
705/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
706/// were replaced with those specified.  If this node is never memoized,
707/// return null, otherwise return a pointer to the slot it would take.  If a
708/// node already exists with these operands, the slot will be non-null.
709SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
710                                           const SDValue *Ops,unsigned NumOps,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  FoldingSetNodeID ID;
716  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
717  AddNodeIDCustom(ID, N);
718  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719}
720
721/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
722void SelectionDAG::VerifyNode(SDNode *N) {
723  switch (N->getOpcode()) {
724  default:
725    break;
726  case ISD::BUILD_PAIR: {
727    MVT VT = N->getValueType(0);
728    assert(N->getNumValues() == 1 && "Too many results!");
729    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
730           "Wrong return type!");
731    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
732    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
733           "Mismatched operand types!");
734    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
735           "Wrong operand type!");
736    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
737           "Wrong return type size");
738    break;
739  }
740  case ISD::BUILD_VECTOR: {
741    assert(N->getNumValues() == 1 && "Too many results!");
742    assert(N->getValueType(0).isVector() && "Wrong return type!");
743    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
744           "Wrong number of operands!");
745    // FIXME: Change vector_shuffle to a variadic node with mask elements being
746    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
747    // operand, and it is not always possible to legalize it.  Turning off the
748    // following checks at least makes it possible to legalize most of the time.
749//    MVT EltVT = N->getValueType(0).getVectorElementType();
750//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
751//      assert(I->getSDValue().getValueType() == EltVT &&
752//             "Wrong operand type!");
753    break;
754  }
755  }
756}
757
758/// getMVTAlignment - Compute the default alignment value for the
759/// given type.
760///
761unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
762  const Type *Ty = VT == MVT::iPTR ?
763                   PointerType::get(Type::Int8Ty, 0) :
764                   VT.getTypeForMVT();
765
766  return TLI.getTargetData()->getABITypeAlignment(Ty);
767}
768
769SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
770  : TLI(tli), FLI(fli),
771    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
772    Root(getEntryNode()) {
773  AllNodes.push_back(&EntryNode);
774}
775
776void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
777                        DwarfWriter *dw) {
778  MF = &mf;
779  MMI = mmi;
780  DW = dw;
781}
782
783SelectionDAG::~SelectionDAG() {
784  allnodes_clear();
785}
786
787void SelectionDAG::allnodes_clear() {
788  assert(&*AllNodes.begin() == &EntryNode);
789  AllNodes.remove(AllNodes.begin());
790  while (!AllNodes.empty())
791    DeallocateNode(AllNodes.begin());
792}
793
794void SelectionDAG::clear() {
795  allnodes_clear();
796  OperandAllocator.Reset();
797  CSEMap.clear();
798
799  ExtendedValueTypeNodes.clear();
800  ExternalSymbols.clear();
801  TargetExternalSymbols.clear();
802  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
803            static_cast<CondCodeSDNode*>(0));
804  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
805            static_cast<SDNode*>(0));
806
807  EntryNode.Uses = 0;
808  AllNodes.push_back(&EntryNode);
809  Root = getEntryNode();
810}
811
812SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
813  if (Op.getValueType() == VT) return Op;
814  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
815                                   VT.getSizeInBits());
816  return getNode(ISD::AND, Op.getValueType(), Op,
817                 getConstant(Imm, Op.getValueType()));
818}
819
820/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
821///
822SDValue SelectionDAG::getNOT(SDValue Val, MVT VT) {
823  SDValue NegOne;
824  if (VT.isVector()) {
825    MVT EltVT = VT.getVectorElementType();
826    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
827    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
828    NegOne = getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], NegOnes.size());
829  } else
830    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
831
832  return getNode(ISD::XOR, VT, Val, NegOne);
833}
834
835SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
836  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
837  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
838}
839
840SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
841  return getConstant(*ConstantInt::get(Val), VT, isT);
842}
843
844SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
845  assert(VT.isInteger() && "Cannot create FP integer constant!");
846
847  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
848  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
849         "APInt size does not match type size!");
850
851  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
852  FoldingSetNodeID ID;
853  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
854  ID.AddPointer(&Val);
855  void *IP = 0;
856  SDNode *N = NULL;
857  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
858    if (!VT.isVector())
859      return SDValue(N, 0);
860  if (!N) {
861    N = NodeAllocator.Allocate<ConstantSDNode>();
862    new (N) ConstantSDNode(isT, &Val, EltVT);
863    CSEMap.InsertNode(N, IP);
864    AllNodes.push_back(N);
865  }
866
867  SDValue Result(N, 0);
868  if (VT.isVector()) {
869    SmallVector<SDValue, 8> Ops;
870    Ops.assign(VT.getVectorNumElements(), Result);
871    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
872  }
873  return Result;
874}
875
876SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
877  return getConstant(Val, TLI.getPointerTy(), isTarget);
878}
879
880
881SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
882  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
883}
884
885SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
886  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
887
888  MVT EltVT =
889    VT.isVector() ? VT.getVectorElementType() : VT;
890
891  // Do the map lookup using the actual bit pattern for the floating point
892  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
893  // we don't have issues with SNANs.
894  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
897  ID.AddPointer(&V);
898  void *IP = 0;
899  SDNode *N = NULL;
900  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
901    if (!VT.isVector())
902      return SDValue(N, 0);
903  if (!N) {
904    N = NodeAllocator.Allocate<ConstantFPSDNode>();
905    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
906    CSEMap.InsertNode(N, IP);
907    AllNodes.push_back(N);
908  }
909
910  SDValue Result(N, 0);
911  if (VT.isVector()) {
912    SmallVector<SDValue, 8> Ops;
913    Ops.assign(VT.getVectorNumElements(), Result);
914    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
915  }
916  return Result;
917}
918
919SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
920  MVT EltVT =
921    VT.isVector() ? VT.getVectorElementType() : VT;
922  if (EltVT==MVT::f32)
923    return getConstantFP(APFloat((float)Val), VT, isTarget);
924  else
925    return getConstantFP(APFloat(Val), VT, isTarget);
926}
927
928SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
929                                       MVT VT, int64_t Offset,
930                                       bool isTargetGA) {
931  unsigned Opc;
932
933  // Truncate (with sign-extension) the offset value to the pointer size.
934  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
935  if (BitWidth < 64)
936    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
937
938  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
939  if (!GVar) {
940    // If GV is an alias then use the aliasee for determining thread-localness.
941    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
942      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
943  }
944
945  if (GVar && GVar->isThreadLocal())
946    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
947  else
948    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
949
950  FoldingSetNodeID ID;
951  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
952  ID.AddPointer(GV);
953  ID.AddInteger(Offset);
954  void *IP = 0;
955  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
956   return SDValue(E, 0);
957  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
958  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
959  CSEMap.InsertNode(N, IP);
960  AllNodes.push_back(N);
961  return SDValue(N, 0);
962}
963
964SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
965  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
966  FoldingSetNodeID ID;
967  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
968  ID.AddInteger(FI);
969  void *IP = 0;
970  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
971    return SDValue(E, 0);
972  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
973  new (N) FrameIndexSDNode(FI, VT, isTarget);
974  CSEMap.InsertNode(N, IP);
975  AllNodes.push_back(N);
976  return SDValue(N, 0);
977}
978
979SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
980  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
981  FoldingSetNodeID ID;
982  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
983  ID.AddInteger(JTI);
984  void *IP = 0;
985  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
986    return SDValue(E, 0);
987  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
988  new (N) JumpTableSDNode(JTI, VT, isTarget);
989  CSEMap.InsertNode(N, IP);
990  AllNodes.push_back(N);
991  return SDValue(N, 0);
992}
993
994SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
995                                      unsigned Alignment, int Offset,
996                                      bool isTarget) {
997  if (Alignment == 0)
998    Alignment =
999      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1000  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1001  FoldingSetNodeID ID;
1002  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1003  ID.AddInteger(Alignment);
1004  ID.AddInteger(Offset);
1005  ID.AddPointer(C);
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDValue(E, 0);
1009  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1010  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDValue(N, 0);
1014}
1015
1016
1017SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1018                                      unsigned Alignment, int Offset,
1019                                      bool isTarget) {
1020  if (Alignment == 0)
1021    Alignment =
1022      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1023  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1026  ID.AddInteger(Alignment);
1027  ID.AddInteger(Offset);
1028  C->AddSelectionDAGCSEId(ID);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1033  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039
1040SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1043  ID.AddPointer(MBB);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1048  new (N) BasicBlockSDNode(MBB);
1049  CSEMap.InsertNode(N, IP);
1050  AllNodes.push_back(N);
1051  return SDValue(N, 0);
1052}
1053
1054SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1055  FoldingSetNodeID ID;
1056  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1057  ID.AddInteger(Flags.getRawBits());
1058  void *IP = 0;
1059  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1060    return SDValue(E, 0);
1061  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1062  new (N) ARG_FLAGSSDNode(Flags);
1063  CSEMap.InsertNode(N, IP);
1064  AllNodes.push_back(N);
1065  return SDValue(N, 0);
1066}
1067
1068SDValue SelectionDAG::getValueType(MVT VT) {
1069  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1070    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1071
1072  SDNode *&N = VT.isExtended() ?
1073    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1074
1075  if (N) return SDValue(N, 0);
1076  N = NodeAllocator.Allocate<VTSDNode>();
1077  new (N) VTSDNode(VT);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1083  SDNode *&N = ExternalSymbols[Sym];
1084  if (N) return SDValue(N, 0);
1085  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1086  new (N) ExternalSymbolSDNode(false, Sym, VT);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1092  SDNode *&N = TargetExternalSymbols[Sym];
1093  if (N) return SDValue(N, 0);
1094  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1095  new (N) ExternalSymbolSDNode(true, Sym, VT);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1101  if ((unsigned)Cond >= CondCodeNodes.size())
1102    CondCodeNodes.resize(Cond+1);
1103
1104  if (CondCodeNodes[Cond] == 0) {
1105    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1106    new (N) CondCodeSDNode(Cond);
1107    CondCodeNodes[Cond] = N;
1108    AllNodes.push_back(N);
1109  }
1110  return SDValue(CondCodeNodes[Cond], 0);
1111}
1112
1113SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1114                                       SDValue STy, SDValue Rnd, SDValue Sat,
1115                                       ISD::CvtCode Code) {
1116  // If the src and dest types are the same, no conversion is necessary.
1117  if (DTy == STy)
1118    return Val;
1119
1120  FoldingSetNodeID ID;
1121  void* IP = 0;
1122  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1123    return SDValue(E, 0);
1124  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1125  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1126  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1127  CSEMap.InsertNode(N, IP);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1133  FoldingSetNodeID ID;
1134  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1135  ID.AddInteger(RegNo);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1140  new (N) RegisterSDNode(RegNo, VT);
1141  CSEMap.InsertNode(N, IP);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1147                                      unsigned Line, unsigned Col,
1148                                      Value *CU) {
1149  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1150  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getLabel(unsigned Opcode,
1156                               SDValue Root,
1157                               unsigned LabelID) {
1158  FoldingSetNodeID ID;
1159  SDValue Ops[] = { Root };
1160  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1161  ID.AddInteger(LabelID);
1162  void *IP = 0;
1163  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1164    return SDValue(E, 0);
1165  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1166  new (N) LabelSDNode(Opcode, Root, LabelID);
1167  CSEMap.InsertNode(N, IP);
1168  AllNodes.push_back(N);
1169  return SDValue(N, 0);
1170}
1171
1172SDValue SelectionDAG::getSrcValue(const Value *V) {
1173  assert((!V || isa<PointerType>(V->getType())) &&
1174         "SrcValue is not a pointer?");
1175
1176  FoldingSetNodeID ID;
1177  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1178  ID.AddPointer(V);
1179
1180  void *IP = 0;
1181  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1182    return SDValue(E, 0);
1183
1184  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1185  new (N) SrcValueSDNode(V);
1186  CSEMap.InsertNode(N, IP);
1187  AllNodes.push_back(N);
1188  return SDValue(N, 0);
1189}
1190
1191SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1192#ifndef NDEBUG
1193  const Value *v = MO.getValue();
1194  assert((!v || isa<PointerType>(v->getType())) &&
1195         "SrcValue is not a pointer?");
1196#endif
1197
1198  FoldingSetNodeID ID;
1199  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1200  MO.Profile(ID);
1201
1202  void *IP = 0;
1203  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1204    return SDValue(E, 0);
1205
1206  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1207  new (N) MemOperandSDNode(MO);
1208  CSEMap.InsertNode(N, IP);
1209  AllNodes.push_back(N);
1210  return SDValue(N, 0);
1211}
1212
1213/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1214/// specified value type.
1215SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1216  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1217  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1218  const Type *Ty = VT.getTypeForMVT();
1219  unsigned StackAlign =
1220  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1221
1222  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1223  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1224}
1225
1226/// CreateStackTemporary - Create a stack temporary suitable for holding
1227/// either of the specified value types.
1228SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1229  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1230                            VT2.getStoreSizeInBits())/8;
1231  const Type *Ty1 = VT1.getTypeForMVT();
1232  const Type *Ty2 = VT2.getTypeForMVT();
1233  const TargetData *TD = TLI.getTargetData();
1234  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1235                            TD->getPrefTypeAlignment(Ty2));
1236
1237  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1238  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1239  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1240}
1241
1242SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1243                                SDValue N2, ISD::CondCode Cond) {
1244  // These setcc operations always fold.
1245  switch (Cond) {
1246  default: break;
1247  case ISD::SETFALSE:
1248  case ISD::SETFALSE2: return getConstant(0, VT);
1249  case ISD::SETTRUE:
1250  case ISD::SETTRUE2:  return getConstant(1, VT);
1251
1252  case ISD::SETOEQ:
1253  case ISD::SETOGT:
1254  case ISD::SETOGE:
1255  case ISD::SETOLT:
1256  case ISD::SETOLE:
1257  case ISD::SETONE:
1258  case ISD::SETO:
1259  case ISD::SETUO:
1260  case ISD::SETUEQ:
1261  case ISD::SETUNE:
1262    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1263    break;
1264  }
1265
1266  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1267    const APInt &C2 = N2C->getAPIntValue();
1268    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1269      const APInt &C1 = N1C->getAPIntValue();
1270
1271      switch (Cond) {
1272      default: assert(0 && "Unknown integer setcc!");
1273      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1274      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1275      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1276      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1277      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1278      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1279      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1280      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1281      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1282      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1283      }
1284    }
1285  }
1286  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1287    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1288      // No compile time operations on this type yet.
1289      if (N1C->getValueType(0) == MVT::ppcf128)
1290        return SDValue();
1291
1292      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1293      switch (Cond) {
1294      default: break;
1295      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1296                          return getNode(ISD::UNDEF, VT);
1297                        // fall through
1298      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1299      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1300                          return getNode(ISD::UNDEF, VT);
1301                        // fall through
1302      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1303                                           R==APFloat::cmpLessThan, VT);
1304      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1305                          return getNode(ISD::UNDEF, VT);
1306                        // fall through
1307      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1308      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1309                          return getNode(ISD::UNDEF, VT);
1310                        // fall through
1311      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1312      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1313                          return getNode(ISD::UNDEF, VT);
1314                        // fall through
1315      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1316                                           R==APFloat::cmpEqual, VT);
1317      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1318                          return getNode(ISD::UNDEF, VT);
1319                        // fall through
1320      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1321                                           R==APFloat::cmpEqual, VT);
1322      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1323      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1324      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1325                                           R==APFloat::cmpEqual, VT);
1326      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1327      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1328                                           R==APFloat::cmpLessThan, VT);
1329      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1330                                           R==APFloat::cmpUnordered, VT);
1331      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1332      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1333      }
1334    } else {
1335      // Ensure that the constant occurs on the RHS.
1336      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1337    }
1338  }
1339
1340  // Could not fold it.
1341  return SDValue();
1342}
1343
1344/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1345/// use this predicate to simplify operations downstream.
1346bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1347  unsigned BitWidth = Op.getValueSizeInBits();
1348  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1349}
1350
1351/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1352/// this predicate to simplify operations downstream.  Mask is known to be zero
1353/// for bits that V cannot have.
1354bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1355                                     unsigned Depth) const {
1356  APInt KnownZero, KnownOne;
1357  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1358  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1359  return (KnownZero & Mask) == Mask;
1360}
1361
1362/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1363/// known to be either zero or one and return them in the KnownZero/KnownOne
1364/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1365/// processing.
1366void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1367                                     APInt &KnownZero, APInt &KnownOne,
1368                                     unsigned Depth) const {
1369  unsigned BitWidth = Mask.getBitWidth();
1370  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1371         "Mask size mismatches value type size!");
1372
1373  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1374  if (Depth == 6 || Mask == 0)
1375    return;  // Limit search depth.
1376
1377  APInt KnownZero2, KnownOne2;
1378
1379  switch (Op.getOpcode()) {
1380  case ISD::Constant:
1381    // We know all of the bits for a constant!
1382    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1383    KnownZero = ~KnownOne & Mask;
1384    return;
1385  case ISD::AND:
1386    // If either the LHS or the RHS are Zero, the result is zero.
1387    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1388    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1389                      KnownZero2, KnownOne2, Depth+1);
1390    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1391    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1392
1393    // Output known-1 bits are only known if set in both the LHS & RHS.
1394    KnownOne &= KnownOne2;
1395    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1396    KnownZero |= KnownZero2;
1397    return;
1398  case ISD::OR:
1399    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1400    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1401                      KnownZero2, KnownOne2, Depth+1);
1402    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1403    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1404
1405    // Output known-0 bits are only known if clear in both the LHS & RHS.
1406    KnownZero &= KnownZero2;
1407    // Output known-1 are known to be set if set in either the LHS | RHS.
1408    KnownOne |= KnownOne2;
1409    return;
1410  case ISD::XOR: {
1411    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1412    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1413    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1414    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1415
1416    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1417    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1418    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1419    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1420    KnownZero = KnownZeroOut;
1421    return;
1422  }
1423  case ISD::MUL: {
1424    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1425    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1426    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1427    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1428    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1429
1430    // If low bits are zero in either operand, output low known-0 bits.
1431    // Also compute a conserative estimate for high known-0 bits.
1432    // More trickiness is possible, but this is sufficient for the
1433    // interesting case of alignment computation.
1434    KnownOne.clear();
1435    unsigned TrailZ = KnownZero.countTrailingOnes() +
1436                      KnownZero2.countTrailingOnes();
1437    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1438                               KnownZero2.countLeadingOnes(),
1439                               BitWidth) - BitWidth;
1440
1441    TrailZ = std::min(TrailZ, BitWidth);
1442    LeadZ = std::min(LeadZ, BitWidth);
1443    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1444                APInt::getHighBitsSet(BitWidth, LeadZ);
1445    KnownZero &= Mask;
1446    return;
1447  }
1448  case ISD::UDIV: {
1449    // For the purposes of computing leading zeros we can conservatively
1450    // treat a udiv as a logical right shift by the power of 2 known to
1451    // be less than the denominator.
1452    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1453    ComputeMaskedBits(Op.getOperand(0),
1454                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1455    unsigned LeadZ = KnownZero2.countLeadingOnes();
1456
1457    KnownOne2.clear();
1458    KnownZero2.clear();
1459    ComputeMaskedBits(Op.getOperand(1),
1460                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1461    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1462    if (RHSUnknownLeadingOnes != BitWidth)
1463      LeadZ = std::min(BitWidth,
1464                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1465
1466    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1467    return;
1468  }
1469  case ISD::SELECT:
1470    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1471    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1472    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1473    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1474
1475    // Only known if known in both the LHS and RHS.
1476    KnownOne &= KnownOne2;
1477    KnownZero &= KnownZero2;
1478    return;
1479  case ISD::SELECT_CC:
1480    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1481    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1482    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1483    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1484
1485    // Only known if known in both the LHS and RHS.
1486    KnownOne &= KnownOne2;
1487    KnownZero &= KnownZero2;
1488    return;
1489  case ISD::SADDO:
1490  case ISD::UADDO:
1491  case ISD::SSUBO:
1492  case ISD::USUBO:
1493  case ISD::SMULO:
1494  case ISD::UMULO:
1495    if (Op.getResNo() != 1)
1496      return;
1497    // The boolean result conforms to getBooleanContents.  Fall through.
1498  case ISD::SETCC:
1499    // If we know the result of a setcc has the top bits zero, use this info.
1500    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1501        BitWidth > 1)
1502      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1503    return;
1504  case ISD::SHL:
1505    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1506    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1507      unsigned ShAmt = SA->getZExtValue();
1508
1509      // If the shift count is an invalid immediate, don't do anything.
1510      if (ShAmt >= BitWidth)
1511        return;
1512
1513      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1514                        KnownZero, KnownOne, Depth+1);
1515      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516      KnownZero <<= ShAmt;
1517      KnownOne  <<= ShAmt;
1518      // low bits known zero.
1519      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1520    }
1521    return;
1522  case ISD::SRL:
1523    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1524    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1525      unsigned ShAmt = SA->getZExtValue();
1526
1527      // If the shift count is an invalid immediate, don't do anything.
1528      if (ShAmt >= BitWidth)
1529        return;
1530
1531      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1532                        KnownZero, KnownOne, Depth+1);
1533      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1534      KnownZero = KnownZero.lshr(ShAmt);
1535      KnownOne  = KnownOne.lshr(ShAmt);
1536
1537      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1538      KnownZero |= HighBits;  // High bits known zero.
1539    }
1540    return;
1541  case ISD::SRA:
1542    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1543      unsigned ShAmt = SA->getZExtValue();
1544
1545      // If the shift count is an invalid immediate, don't do anything.
1546      if (ShAmt >= BitWidth)
1547        return;
1548
1549      APInt InDemandedMask = (Mask << ShAmt);
1550      // If any of the demanded bits are produced by the sign extension, we also
1551      // demand the input sign bit.
1552      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1553      if (HighBits.getBoolValue())
1554        InDemandedMask |= APInt::getSignBit(BitWidth);
1555
1556      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1557                        Depth+1);
1558      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1559      KnownZero = KnownZero.lshr(ShAmt);
1560      KnownOne  = KnownOne.lshr(ShAmt);
1561
1562      // Handle the sign bits.
1563      APInt SignBit = APInt::getSignBit(BitWidth);
1564      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1565
1566      if (KnownZero.intersects(SignBit)) {
1567        KnownZero |= HighBits;  // New bits are known zero.
1568      } else if (KnownOne.intersects(SignBit)) {
1569        KnownOne  |= HighBits;  // New bits are known one.
1570      }
1571    }
1572    return;
1573  case ISD::SIGN_EXTEND_INREG: {
1574    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1575    unsigned EBits = EVT.getSizeInBits();
1576
1577    // Sign extension.  Compute the demanded bits in the result that are not
1578    // present in the input.
1579    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1580
1581    APInt InSignBit = APInt::getSignBit(EBits);
1582    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1583
1584    // If the sign extended bits are demanded, we know that the sign
1585    // bit is demanded.
1586    InSignBit.zext(BitWidth);
1587    if (NewBits.getBoolValue())
1588      InputDemandedBits |= InSignBit;
1589
1590    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1591                      KnownZero, KnownOne, Depth+1);
1592    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1593
1594    // If the sign bit of the input is known set or clear, then we know the
1595    // top bits of the result.
1596    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1597      KnownZero |= NewBits;
1598      KnownOne  &= ~NewBits;
1599    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1600      KnownOne  |= NewBits;
1601      KnownZero &= ~NewBits;
1602    } else {                              // Input sign bit unknown
1603      KnownZero &= ~NewBits;
1604      KnownOne  &= ~NewBits;
1605    }
1606    return;
1607  }
1608  case ISD::CTTZ:
1609  case ISD::CTLZ:
1610  case ISD::CTPOP: {
1611    unsigned LowBits = Log2_32(BitWidth)+1;
1612    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1613    KnownOne.clear();
1614    return;
1615  }
1616  case ISD::LOAD: {
1617    if (ISD::isZEXTLoad(Op.getNode())) {
1618      LoadSDNode *LD = cast<LoadSDNode>(Op);
1619      MVT VT = LD->getMemoryVT();
1620      unsigned MemBits = VT.getSizeInBits();
1621      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1622    }
1623    return;
1624  }
1625  case ISD::ZERO_EXTEND: {
1626    MVT InVT = Op.getOperand(0).getValueType();
1627    unsigned InBits = InVT.getSizeInBits();
1628    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1629    APInt InMask    = Mask;
1630    InMask.trunc(InBits);
1631    KnownZero.trunc(InBits);
1632    KnownOne.trunc(InBits);
1633    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1634    KnownZero.zext(BitWidth);
1635    KnownOne.zext(BitWidth);
1636    KnownZero |= NewBits;
1637    return;
1638  }
1639  case ISD::SIGN_EXTEND: {
1640    MVT InVT = Op.getOperand(0).getValueType();
1641    unsigned InBits = InVT.getSizeInBits();
1642    APInt InSignBit = APInt::getSignBit(InBits);
1643    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1644    APInt InMask = Mask;
1645    InMask.trunc(InBits);
1646
1647    // If any of the sign extended bits are demanded, we know that the sign
1648    // bit is demanded. Temporarily set this bit in the mask for our callee.
1649    if (NewBits.getBoolValue())
1650      InMask |= InSignBit;
1651
1652    KnownZero.trunc(InBits);
1653    KnownOne.trunc(InBits);
1654    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1655
1656    // Note if the sign bit is known to be zero or one.
1657    bool SignBitKnownZero = KnownZero.isNegative();
1658    bool SignBitKnownOne  = KnownOne.isNegative();
1659    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1660           "Sign bit can't be known to be both zero and one!");
1661
1662    // If the sign bit wasn't actually demanded by our caller, we don't
1663    // want it set in the KnownZero and KnownOne result values. Reset the
1664    // mask and reapply it to the result values.
1665    InMask = Mask;
1666    InMask.trunc(InBits);
1667    KnownZero &= InMask;
1668    KnownOne  &= InMask;
1669
1670    KnownZero.zext(BitWidth);
1671    KnownOne.zext(BitWidth);
1672
1673    // If the sign bit is known zero or one, the top bits match.
1674    if (SignBitKnownZero)
1675      KnownZero |= NewBits;
1676    else if (SignBitKnownOne)
1677      KnownOne  |= NewBits;
1678    return;
1679  }
1680  case ISD::ANY_EXTEND: {
1681    MVT InVT = Op.getOperand(0).getValueType();
1682    unsigned InBits = InVT.getSizeInBits();
1683    APInt InMask = Mask;
1684    InMask.trunc(InBits);
1685    KnownZero.trunc(InBits);
1686    KnownOne.trunc(InBits);
1687    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1688    KnownZero.zext(BitWidth);
1689    KnownOne.zext(BitWidth);
1690    return;
1691  }
1692  case ISD::TRUNCATE: {
1693    MVT InVT = Op.getOperand(0).getValueType();
1694    unsigned InBits = InVT.getSizeInBits();
1695    APInt InMask = Mask;
1696    InMask.zext(InBits);
1697    KnownZero.zext(InBits);
1698    KnownOne.zext(InBits);
1699    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1700    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701    KnownZero.trunc(BitWidth);
1702    KnownOne.trunc(BitWidth);
1703    break;
1704  }
1705  case ISD::AssertZext: {
1706    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1707    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1708    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1709                      KnownOne, Depth+1);
1710    KnownZero |= (~InMask) & Mask;
1711    return;
1712  }
1713  case ISD::FGETSIGN:
1714    // All bits are zero except the low bit.
1715    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1716    return;
1717
1718  case ISD::SUB: {
1719    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1720      // We know that the top bits of C-X are clear if X contains less bits
1721      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1722      // positive if we can prove that X is >= 0 and < 16.
1723      if (CLHS->getAPIntValue().isNonNegative()) {
1724        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1725        // NLZ can't be BitWidth with no sign bit
1726        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1727        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1728                          Depth+1);
1729
1730        // If all of the MaskV bits are known to be zero, then we know the
1731        // output top bits are zero, because we now know that the output is
1732        // from [0-C].
1733        if ((KnownZero2 & MaskV) == MaskV) {
1734          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1735          // Top bits known zero.
1736          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1737        }
1738      }
1739    }
1740  }
1741  // fall through
1742  case ISD::ADD: {
1743    // Output known-0 bits are known if clear or set in both the low clear bits
1744    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1745    // low 3 bits clear.
1746    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1747    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1748    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1749    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1750
1751    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1752    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1753    KnownZeroOut = std::min(KnownZeroOut,
1754                            KnownZero2.countTrailingOnes());
1755
1756    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1757    return;
1758  }
1759  case ISD::SREM:
1760    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1761      const APInt &RA = Rem->getAPIntValue();
1762      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1763        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1764        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1765        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1766
1767        // If the sign bit of the first operand is zero, the sign bit of
1768        // the result is zero. If the first operand has no one bits below
1769        // the second operand's single 1 bit, its sign will be zero.
1770        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1771          KnownZero2 |= ~LowBits;
1772
1773        KnownZero |= KnownZero2 & Mask;
1774
1775        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1776      }
1777    }
1778    return;
1779  case ISD::UREM: {
1780    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1781      const APInt &RA = Rem->getAPIntValue();
1782      if (RA.isPowerOf2()) {
1783        APInt LowBits = (RA - 1);
1784        APInt Mask2 = LowBits & Mask;
1785        KnownZero |= ~LowBits & Mask;
1786        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1787        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1788        break;
1789      }
1790    }
1791
1792    // Since the result is less than or equal to either operand, any leading
1793    // zero bits in either operand must also exist in the result.
1794    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1795    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1796                      Depth+1);
1797    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1798                      Depth+1);
1799
1800    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1801                                KnownZero2.countLeadingOnes());
1802    KnownOne.clear();
1803    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1804    return;
1805  }
1806  default:
1807    // Allow the target to implement this method for its nodes.
1808    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1809  case ISD::INTRINSIC_WO_CHAIN:
1810  case ISD::INTRINSIC_W_CHAIN:
1811  case ISD::INTRINSIC_VOID:
1812      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1813    }
1814    return;
1815  }
1816}
1817
1818/// ComputeNumSignBits - Return the number of times the sign bit of the
1819/// register is replicated into the other bits.  We know that at least 1 bit
1820/// is always equal to the sign bit (itself), but other cases can give us
1821/// information.  For example, immediately after an "SRA X, 2", we know that
1822/// the top 3 bits are all equal to each other, so we return 3.
1823unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1824  MVT VT = Op.getValueType();
1825  assert(VT.isInteger() && "Invalid VT!");
1826  unsigned VTBits = VT.getSizeInBits();
1827  unsigned Tmp, Tmp2;
1828  unsigned FirstAnswer = 1;
1829
1830  if (Depth == 6)
1831    return 1;  // Limit search depth.
1832
1833  switch (Op.getOpcode()) {
1834  default: break;
1835  case ISD::AssertSext:
1836    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1837    return VTBits-Tmp+1;
1838  case ISD::AssertZext:
1839    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1840    return VTBits-Tmp;
1841
1842  case ISD::Constant: {
1843    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1844    // If negative, return # leading ones.
1845    if (Val.isNegative())
1846      return Val.countLeadingOnes();
1847
1848    // Return # leading zeros.
1849    return Val.countLeadingZeros();
1850  }
1851
1852  case ISD::SIGN_EXTEND:
1853    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1854    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1855
1856  case ISD::SIGN_EXTEND_INREG:
1857    // Max of the input and what this extends.
1858    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1859    Tmp = VTBits-Tmp+1;
1860
1861    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1862    return std::max(Tmp, Tmp2);
1863
1864  case ISD::SRA:
1865    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1866    // SRA X, C   -> adds C sign bits.
1867    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1868      Tmp += C->getZExtValue();
1869      if (Tmp > VTBits) Tmp = VTBits;
1870    }
1871    return Tmp;
1872  case ISD::SHL:
1873    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1874      // shl destroys sign bits.
1875      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1876      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1877          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1878      return Tmp - C->getZExtValue();
1879    }
1880    break;
1881  case ISD::AND:
1882  case ISD::OR:
1883  case ISD::XOR:    // NOT is handled here.
1884    // Logical binary ops preserve the number of sign bits at the worst.
1885    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1886    if (Tmp != 1) {
1887      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1888      FirstAnswer = std::min(Tmp, Tmp2);
1889      // We computed what we know about the sign bits as our first
1890      // answer. Now proceed to the generic code that uses
1891      // ComputeMaskedBits, and pick whichever answer is better.
1892    }
1893    break;
1894
1895  case ISD::SELECT:
1896    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1897    if (Tmp == 1) return 1;  // Early out.
1898    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1899    return std::min(Tmp, Tmp2);
1900
1901  case ISD::SADDO:
1902  case ISD::UADDO:
1903  case ISD::SSUBO:
1904  case ISD::USUBO:
1905  case ISD::SMULO:
1906  case ISD::UMULO:
1907    if (Op.getResNo() != 1)
1908      break;
1909    // The boolean result conforms to getBooleanContents.  Fall through.
1910  case ISD::SETCC:
1911    // If setcc returns 0/-1, all bits are sign bits.
1912    if (TLI.getBooleanContents() ==
1913        TargetLowering::ZeroOrNegativeOneBooleanContent)
1914      return VTBits;
1915    break;
1916  case ISD::ROTL:
1917  case ISD::ROTR:
1918    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1919      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1920
1921      // Handle rotate right by N like a rotate left by 32-N.
1922      if (Op.getOpcode() == ISD::ROTR)
1923        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1924
1925      // If we aren't rotating out all of the known-in sign bits, return the
1926      // number that are left.  This handles rotl(sext(x), 1) for example.
1927      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1928      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1929    }
1930    break;
1931  case ISD::ADD:
1932    // Add can have at most one carry bit.  Thus we know that the output
1933    // is, at worst, one more bit than the inputs.
1934    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1935    if (Tmp == 1) return 1;  // Early out.
1936
1937    // Special case decrementing a value (ADD X, -1):
1938    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1939      if (CRHS->isAllOnesValue()) {
1940        APInt KnownZero, KnownOne;
1941        APInt Mask = APInt::getAllOnesValue(VTBits);
1942        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1943
1944        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1945        // sign bits set.
1946        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1947          return VTBits;
1948
1949        // If we are subtracting one from a positive number, there is no carry
1950        // out of the result.
1951        if (KnownZero.isNegative())
1952          return Tmp;
1953      }
1954
1955    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1956    if (Tmp2 == 1) return 1;
1957      return std::min(Tmp, Tmp2)-1;
1958    break;
1959
1960  case ISD::SUB:
1961    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1962    if (Tmp2 == 1) return 1;
1963
1964    // Handle NEG.
1965    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1966      if (CLHS->isNullValue()) {
1967        APInt KnownZero, KnownOne;
1968        APInt Mask = APInt::getAllOnesValue(VTBits);
1969        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1970        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1971        // sign bits set.
1972        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1973          return VTBits;
1974
1975        // If the input is known to be positive (the sign bit is known clear),
1976        // the output of the NEG has the same number of sign bits as the input.
1977        if (KnownZero.isNegative())
1978          return Tmp2;
1979
1980        // Otherwise, we treat this like a SUB.
1981      }
1982
1983    // Sub can have at most one carry bit.  Thus we know that the output
1984    // is, at worst, one more bit than the inputs.
1985    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1986    if (Tmp == 1) return 1;  // Early out.
1987      return std::min(Tmp, Tmp2)-1;
1988    break;
1989  case ISD::TRUNCATE:
1990    // FIXME: it's tricky to do anything useful for this, but it is an important
1991    // case for targets like X86.
1992    break;
1993  }
1994
1995  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1996  if (Op.getOpcode() == ISD::LOAD) {
1997    LoadSDNode *LD = cast<LoadSDNode>(Op);
1998    unsigned ExtType = LD->getExtensionType();
1999    switch (ExtType) {
2000    default: break;
2001    case ISD::SEXTLOAD:    // '17' bits known
2002      Tmp = LD->getMemoryVT().getSizeInBits();
2003      return VTBits-Tmp+1;
2004    case ISD::ZEXTLOAD:    // '16' bits known
2005      Tmp = LD->getMemoryVT().getSizeInBits();
2006      return VTBits-Tmp;
2007    }
2008  }
2009
2010  // Allow the target to implement this method for its nodes.
2011  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2012      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2013      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2014      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2015    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2016    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2017  }
2018
2019  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2020  // use this information.
2021  APInt KnownZero, KnownOne;
2022  APInt Mask = APInt::getAllOnesValue(VTBits);
2023  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2024
2025  if (KnownZero.isNegative()) {        // sign bit is 0
2026    Mask = KnownZero;
2027  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2028    Mask = KnownOne;
2029  } else {
2030    // Nothing known.
2031    return FirstAnswer;
2032  }
2033
2034  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2035  // the number of identical bits in the top of the input value.
2036  Mask = ~Mask;
2037  Mask <<= Mask.getBitWidth()-VTBits;
2038  // Return # leading zeros.  We use 'min' here in case Val was zero before
2039  // shifting.  We don't want to return '64' as for an i32 "0".
2040  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2041}
2042
2043
2044bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2045  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2046  if (!GA) return false;
2047  if (GA->getOffset() != 0) return false;
2048  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2049  if (!GV) return false;
2050  MachineModuleInfo *MMI = getMachineModuleInfo();
2051  return MMI && MMI->hasDebugInfo();
2052}
2053
2054
2055/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2056/// element of the result of the vector shuffle.
2057SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2058  MVT VT = N->getValueType(0);
2059  SDValue PermMask = N->getOperand(2);
2060  SDValue Idx = PermMask.getOperand(i);
2061  if (Idx.getOpcode() == ISD::UNDEF)
2062    return getNode(ISD::UNDEF, VT.getVectorElementType());
2063  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2064  unsigned NumElems = PermMask.getNumOperands();
2065  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2066  Index %= NumElems;
2067
2068  if (V.getOpcode() == ISD::BIT_CONVERT) {
2069    V = V.getOperand(0);
2070    MVT VVT = V.getValueType();
2071    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2072      return SDValue();
2073  }
2074  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2075    return (Index == 0) ? V.getOperand(0)
2076                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2077  if (V.getOpcode() == ISD::BUILD_VECTOR)
2078    return V.getOperand(Index);
2079  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2080    return getShuffleScalarElt(V.getNode(), Index);
2081  return SDValue();
2082}
2083
2084
2085/// getNode - Gets or creates the specified node.
2086///
2087SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2088  FoldingSetNodeID ID;
2089  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2090  void *IP = 0;
2091  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2092    return SDValue(E, 0);
2093  SDNode *N = NodeAllocator.Allocate<SDNode>();
2094  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2095  CSEMap.InsertNode(N, IP);
2096
2097  AllNodes.push_back(N);
2098#ifndef NDEBUG
2099  VerifyNode(N);
2100#endif
2101  return SDValue(N, 0);
2102}
2103
2104SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2105  // Constant fold unary operations with an integer constant operand.
2106  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2107    const APInt &Val = C->getAPIntValue();
2108    unsigned BitWidth = VT.getSizeInBits();
2109    switch (Opcode) {
2110    default: break;
2111    case ISD::SIGN_EXTEND:
2112      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2113    case ISD::ANY_EXTEND:
2114    case ISD::ZERO_EXTEND:
2115    case ISD::TRUNCATE:
2116      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2117    case ISD::UINT_TO_FP:
2118    case ISD::SINT_TO_FP: {
2119      const uint64_t zero[] = {0, 0};
2120      // No compile time operations on this type.
2121      if (VT==MVT::ppcf128)
2122        break;
2123      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2124      (void)apf.convertFromAPInt(Val,
2125                                 Opcode==ISD::SINT_TO_FP,
2126                                 APFloat::rmNearestTiesToEven);
2127      return getConstantFP(apf, VT);
2128    }
2129    case ISD::BIT_CONVERT:
2130      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2131        return getConstantFP(Val.bitsToFloat(), VT);
2132      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2133        return getConstantFP(Val.bitsToDouble(), VT);
2134      break;
2135    case ISD::BSWAP:
2136      return getConstant(Val.byteSwap(), VT);
2137    case ISD::CTPOP:
2138      return getConstant(Val.countPopulation(), VT);
2139    case ISD::CTLZ:
2140      return getConstant(Val.countLeadingZeros(), VT);
2141    case ISD::CTTZ:
2142      return getConstant(Val.countTrailingZeros(), VT);
2143    }
2144  }
2145
2146  // Constant fold unary operations with a floating point constant operand.
2147  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2148    APFloat V = C->getValueAPF();    // make copy
2149    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2150      switch (Opcode) {
2151      case ISD::FNEG:
2152        V.changeSign();
2153        return getConstantFP(V, VT);
2154      case ISD::FABS:
2155        V.clearSign();
2156        return getConstantFP(V, VT);
2157      case ISD::FP_ROUND:
2158      case ISD::FP_EXTEND: {
2159        bool ignored;
2160        // This can return overflow, underflow, or inexact; we don't care.
2161        // FIXME need to be more flexible about rounding mode.
2162        (void)V.convert(*MVTToAPFloatSemantics(VT),
2163                        APFloat::rmNearestTiesToEven, &ignored);
2164        return getConstantFP(V, VT);
2165      }
2166      case ISD::FP_TO_SINT:
2167      case ISD::FP_TO_UINT: {
2168        integerPart x;
2169        bool ignored;
2170        assert(integerPartWidth >= 64);
2171        // FIXME need to be more flexible about rounding mode.
2172        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2173                              Opcode==ISD::FP_TO_SINT,
2174                              APFloat::rmTowardZero, &ignored);
2175        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2176          break;
2177        return getConstant(x, VT);
2178      }
2179      case ISD::BIT_CONVERT:
2180        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2181          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2182        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2183          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2184        break;
2185      }
2186    }
2187  }
2188
2189  unsigned OpOpcode = Operand.getNode()->getOpcode();
2190  switch (Opcode) {
2191  case ISD::TokenFactor:
2192  case ISD::MERGE_VALUES:
2193  case ISD::CONCAT_VECTORS:
2194    return Operand;         // Factor, merge or concat of one node?  No need.
2195  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2196  case ISD::FP_EXTEND:
2197    assert(VT.isFloatingPoint() &&
2198           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2199    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2200    if (Operand.getOpcode() == ISD::UNDEF)
2201      return getNode(ISD::UNDEF, VT);
2202    break;
2203  case ISD::SIGN_EXTEND:
2204    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2205           "Invalid SIGN_EXTEND!");
2206    if (Operand.getValueType() == VT) return Operand;   // noop extension
2207    assert(Operand.getValueType().bitsLT(VT)
2208           && "Invalid sext node, dst < src!");
2209    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2210      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2211    break;
2212  case ISD::ZERO_EXTEND:
2213    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2214           "Invalid ZERO_EXTEND!");
2215    if (Operand.getValueType() == VT) return Operand;   // noop extension
2216    assert(Operand.getValueType().bitsLT(VT)
2217           && "Invalid zext node, dst < src!");
2218    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2219      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2220    break;
2221  case ISD::ANY_EXTEND:
2222    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2223           "Invalid ANY_EXTEND!");
2224    if (Operand.getValueType() == VT) return Operand;   // noop extension
2225    assert(Operand.getValueType().bitsLT(VT)
2226           && "Invalid anyext node, dst < src!");
2227    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2228      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2229      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2230    break;
2231  case ISD::TRUNCATE:
2232    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2233           "Invalid TRUNCATE!");
2234    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2235    assert(Operand.getValueType().bitsGT(VT)
2236           && "Invalid truncate node, src < dst!");
2237    if (OpOpcode == ISD::TRUNCATE)
2238      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2239    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2240             OpOpcode == ISD::ANY_EXTEND) {
2241      // If the source is smaller than the dest, we still need an extend.
2242      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2243        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2244      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2245        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2246      else
2247        return Operand.getNode()->getOperand(0);
2248    }
2249    break;
2250  case ISD::BIT_CONVERT:
2251    // Basic sanity checking.
2252    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2253           && "Cannot BIT_CONVERT between types of different sizes!");
2254    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2255    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2256      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2257    if (OpOpcode == ISD::UNDEF)
2258      return getNode(ISD::UNDEF, VT);
2259    break;
2260  case ISD::SCALAR_TO_VECTOR:
2261    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2262           VT.getVectorElementType() == Operand.getValueType() &&
2263           "Illegal SCALAR_TO_VECTOR node!");
2264    if (OpOpcode == ISD::UNDEF)
2265      return getNode(ISD::UNDEF, VT);
2266    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2267    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2268        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2269        Operand.getConstantOperandVal(1) == 0 &&
2270        Operand.getOperand(0).getValueType() == VT)
2271      return Operand.getOperand(0);
2272    break;
2273  case ISD::FNEG:
2274    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2275      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2276                     Operand.getNode()->getOperand(0));
2277    if (OpOpcode == ISD::FNEG)  // --X -> X
2278      return Operand.getNode()->getOperand(0);
2279    break;
2280  case ISD::FABS:
2281    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2282      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2283    break;
2284  }
2285
2286  SDNode *N;
2287  SDVTList VTs = getVTList(VT);
2288  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2289    FoldingSetNodeID ID;
2290    SDValue Ops[1] = { Operand };
2291    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2292    void *IP = 0;
2293    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2294      return SDValue(E, 0);
2295    N = NodeAllocator.Allocate<UnarySDNode>();
2296    new (N) UnarySDNode(Opcode, VTs, Operand);
2297    CSEMap.InsertNode(N, IP);
2298  } else {
2299    N = NodeAllocator.Allocate<UnarySDNode>();
2300    new (N) UnarySDNode(Opcode, VTs, Operand);
2301  }
2302
2303  AllNodes.push_back(N);
2304#ifndef NDEBUG
2305  VerifyNode(N);
2306#endif
2307  return SDValue(N, 0);
2308}
2309
2310SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2311                                             MVT VT,
2312                                             ConstantSDNode *Cst1,
2313                                             ConstantSDNode *Cst2) {
2314  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2315
2316  switch (Opcode) {
2317  case ISD::ADD:  return getConstant(C1 + C2, VT);
2318  case ISD::SUB:  return getConstant(C1 - C2, VT);
2319  case ISD::MUL:  return getConstant(C1 * C2, VT);
2320  case ISD::UDIV:
2321    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2322    break;
2323  case ISD::UREM:
2324    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2325    break;
2326  case ISD::SDIV:
2327    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2328    break;
2329  case ISD::SREM:
2330    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2331    break;
2332  case ISD::AND:  return getConstant(C1 & C2, VT);
2333  case ISD::OR:   return getConstant(C1 | C2, VT);
2334  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2335  case ISD::SHL:  return getConstant(C1 << C2, VT);
2336  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2337  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2338  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2339  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2340  default: break;
2341  }
2342
2343  return SDValue();
2344}
2345
2346SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2347                              SDValue N1, SDValue N2) {
2348  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2349  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2350  switch (Opcode) {
2351  default: break;
2352  case ISD::TokenFactor:
2353    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2354           N2.getValueType() == MVT::Other && "Invalid token factor!");
2355    // Fold trivial token factors.
2356    if (N1.getOpcode() == ISD::EntryToken) return N2;
2357    if (N2.getOpcode() == ISD::EntryToken) return N1;
2358    if (N1 == N2) return N1;
2359    break;
2360  case ISD::CONCAT_VECTORS:
2361    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2362    // one big BUILD_VECTOR.
2363    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2364        N2.getOpcode() == ISD::BUILD_VECTOR) {
2365      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2366      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2367      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2368    }
2369    break;
2370  case ISD::AND:
2371    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2372           N1.getValueType() == VT && "Binary operator types must match!");
2373    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2374    // worth handling here.
2375    if (N2C && N2C->isNullValue())
2376      return N2;
2377    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2378      return N1;
2379    break;
2380  case ISD::OR:
2381  case ISD::XOR:
2382  case ISD::ADD:
2383  case ISD::SUB:
2384    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2385           N1.getValueType() == VT && "Binary operator types must match!");
2386    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2387    // it's worth handling here.
2388    if (N2C && N2C->isNullValue())
2389      return N1;
2390    break;
2391  case ISD::UDIV:
2392  case ISD::UREM:
2393  case ISD::MULHU:
2394  case ISD::MULHS:
2395  case ISD::MUL:
2396  case ISD::SDIV:
2397  case ISD::SREM:
2398    assert(VT.isInteger() && "This operator does not apply to FP types!");
2399    // fall through
2400  case ISD::FADD:
2401  case ISD::FSUB:
2402  case ISD::FMUL:
2403  case ISD::FDIV:
2404  case ISD::FREM:
2405    if (UnsafeFPMath && Opcode == ISD::FADD) {
2406      // 0+x --> x
2407      if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2408        if (CFP->getValueAPF().isZero())
2409          return N2;
2410      // x+0 --> x
2411      if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2412        if (CFP->getValueAPF().isZero())
2413          return N1;
2414    }
2415    assert(N1.getValueType() == N2.getValueType() &&
2416           N1.getValueType() == VT && "Binary operator types must match!");
2417    break;
2418  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2419    assert(N1.getValueType() == VT &&
2420           N1.getValueType().isFloatingPoint() &&
2421           N2.getValueType().isFloatingPoint() &&
2422           "Invalid FCOPYSIGN!");
2423    break;
2424  case ISD::SHL:
2425  case ISD::SRA:
2426  case ISD::SRL:
2427  case ISD::ROTL:
2428  case ISD::ROTR:
2429    assert(VT == N1.getValueType() &&
2430           "Shift operators return type must be the same as their first arg");
2431    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2432           "Shifts only work on integers");
2433    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2434            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2435           "Wrong type for shift amount");
2436
2437    // Always fold shifts of i1 values so the code generator doesn't need to
2438    // handle them.  Since we know the size of the shift has to be less than the
2439    // size of the value, the shift/rotate count is guaranteed to be zero.
2440    if (VT == MVT::i1)
2441      return N1;
2442    break;
2443  case ISD::FP_ROUND_INREG: {
2444    MVT EVT = cast<VTSDNode>(N2)->getVT();
2445    assert(VT == N1.getValueType() && "Not an inreg round!");
2446    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2447           "Cannot FP_ROUND_INREG integer types");
2448    assert(EVT.bitsLE(VT) && "Not rounding down!");
2449    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2450    break;
2451  }
2452  case ISD::FP_ROUND:
2453    assert(VT.isFloatingPoint() &&
2454           N1.getValueType().isFloatingPoint() &&
2455           VT.bitsLE(N1.getValueType()) &&
2456           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2457    if (N1.getValueType() == VT) return N1;  // noop conversion.
2458    break;
2459  case ISD::AssertSext:
2460  case ISD::AssertZext: {
2461    MVT EVT = cast<VTSDNode>(N2)->getVT();
2462    assert(VT == N1.getValueType() && "Not an inreg extend!");
2463    assert(VT.isInteger() && EVT.isInteger() &&
2464           "Cannot *_EXTEND_INREG FP types");
2465    assert(EVT.bitsLE(VT) && "Not extending!");
2466    if (VT == EVT) return N1; // noop assertion.
2467    break;
2468  }
2469  case ISD::SIGN_EXTEND_INREG: {
2470    MVT EVT = cast<VTSDNode>(N2)->getVT();
2471    assert(VT == N1.getValueType() && "Not an inreg extend!");
2472    assert(VT.isInteger() && EVT.isInteger() &&
2473           "Cannot *_EXTEND_INREG FP types");
2474    assert(EVT.bitsLE(VT) && "Not extending!");
2475    if (EVT == VT) return N1;  // Not actually extending
2476
2477    if (N1C) {
2478      APInt Val = N1C->getAPIntValue();
2479      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2480      Val <<= Val.getBitWidth()-FromBits;
2481      Val = Val.ashr(Val.getBitWidth()-FromBits);
2482      return getConstant(Val, VT);
2483    }
2484    break;
2485  }
2486  case ISD::EXTRACT_VECTOR_ELT:
2487    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2488    if (N1.getOpcode() == ISD::UNDEF)
2489      return getNode(ISD::UNDEF, VT);
2490
2491    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2492    // expanding copies of large vectors from registers.
2493    if (N2C &&
2494        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2495        N1.getNumOperands() > 0) {
2496      unsigned Factor =
2497        N1.getOperand(0).getValueType().getVectorNumElements();
2498      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2499                     N1.getOperand(N2C->getZExtValue() / Factor),
2500                     getConstant(N2C->getZExtValue() % Factor,
2501                                 N2.getValueType()));
2502    }
2503
2504    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2505    // expanding large vector constants.
2506    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2507      return N1.getOperand(N2C->getZExtValue());
2508
2509    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2510    // operations are lowered to scalars.
2511    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2512      if (N1.getOperand(2) == N2)
2513        return N1.getOperand(1);
2514      else
2515        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2516    }
2517    break;
2518  case ISD::EXTRACT_ELEMENT:
2519    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2520    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2521           (N1.getValueType().isInteger() == VT.isInteger()) &&
2522           "Wrong types for EXTRACT_ELEMENT!");
2523
2524    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2525    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2526    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2527    if (N1.getOpcode() == ISD::BUILD_PAIR)
2528      return N1.getOperand(N2C->getZExtValue());
2529
2530    // EXTRACT_ELEMENT of a constant int is also very common.
2531    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2532      unsigned ElementSize = VT.getSizeInBits();
2533      unsigned Shift = ElementSize * N2C->getZExtValue();
2534      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2535      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2536    }
2537    break;
2538  case ISD::EXTRACT_SUBVECTOR:
2539    if (N1.getValueType() == VT) // Trivial extraction.
2540      return N1;
2541    break;
2542  }
2543
2544  if (N1C) {
2545    if (N2C) {
2546      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2547      if (SV.getNode()) return SV;
2548    } else {      // Cannonicalize constant to RHS if commutative
2549      if (isCommutativeBinOp(Opcode)) {
2550        std::swap(N1C, N2C);
2551        std::swap(N1, N2);
2552      }
2553    }
2554  }
2555
2556  // Constant fold FP operations.
2557  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2558  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2559  if (N1CFP) {
2560    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2561      // Cannonicalize constant to RHS if commutative
2562      std::swap(N1CFP, N2CFP);
2563      std::swap(N1, N2);
2564    } else if (N2CFP && VT != MVT::ppcf128) {
2565      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2566      APFloat::opStatus s;
2567      switch (Opcode) {
2568      case ISD::FADD:
2569        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2570        if (s != APFloat::opInvalidOp)
2571          return getConstantFP(V1, VT);
2572        break;
2573      case ISD::FSUB:
2574        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2575        if (s!=APFloat::opInvalidOp)
2576          return getConstantFP(V1, VT);
2577        break;
2578      case ISD::FMUL:
2579        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2580        if (s!=APFloat::opInvalidOp)
2581          return getConstantFP(V1, VT);
2582        break;
2583      case ISD::FDIV:
2584        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2585        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2586          return getConstantFP(V1, VT);
2587        break;
2588      case ISD::FREM :
2589        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2590        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2591          return getConstantFP(V1, VT);
2592        break;
2593      case ISD::FCOPYSIGN:
2594        V1.copySign(V2);
2595        return getConstantFP(V1, VT);
2596      default: break;
2597      }
2598    }
2599  }
2600
2601  // Canonicalize an UNDEF to the RHS, even over a constant.
2602  if (N1.getOpcode() == ISD::UNDEF) {
2603    if (isCommutativeBinOp(Opcode)) {
2604      std::swap(N1, N2);
2605    } else {
2606      switch (Opcode) {
2607      case ISD::FP_ROUND_INREG:
2608      case ISD::SIGN_EXTEND_INREG:
2609      case ISD::SUB:
2610      case ISD::FSUB:
2611      case ISD::FDIV:
2612      case ISD::FREM:
2613      case ISD::SRA:
2614        return N1;     // fold op(undef, arg2) -> undef
2615      case ISD::UDIV:
2616      case ISD::SDIV:
2617      case ISD::UREM:
2618      case ISD::SREM:
2619      case ISD::SRL:
2620      case ISD::SHL:
2621        if (!VT.isVector())
2622          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2623        // For vectors, we can't easily build an all zero vector, just return
2624        // the LHS.
2625        return N2;
2626      }
2627    }
2628  }
2629
2630  // Fold a bunch of operators when the RHS is undef.
2631  if (N2.getOpcode() == ISD::UNDEF) {
2632    switch (Opcode) {
2633    case ISD::XOR:
2634      if (N1.getOpcode() == ISD::UNDEF)
2635        // Handle undef ^ undef -> 0 special case. This is a common
2636        // idiom (misuse).
2637        return getConstant(0, VT);
2638      // fallthrough
2639    case ISD::ADD:
2640    case ISD::ADDC:
2641    case ISD::ADDE:
2642    case ISD::SUB:
2643    case ISD::FADD:
2644    case ISD::FSUB:
2645    case ISD::FMUL:
2646    case ISD::FDIV:
2647    case ISD::FREM:
2648    case ISD::UDIV:
2649    case ISD::SDIV:
2650    case ISD::UREM:
2651    case ISD::SREM:
2652      return N2;       // fold op(arg1, undef) -> undef
2653    case ISD::MUL:
2654    case ISD::AND:
2655    case ISD::SRL:
2656    case ISD::SHL:
2657      if (!VT.isVector())
2658        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2659      // For vectors, we can't easily build an all zero vector, just return
2660      // the LHS.
2661      return N1;
2662    case ISD::OR:
2663      if (!VT.isVector())
2664        return getConstant(VT.getIntegerVTBitMask(), VT);
2665      // For vectors, we can't easily build an all one vector, just return
2666      // the LHS.
2667      return N1;
2668    case ISD::SRA:
2669      return N1;
2670    }
2671  }
2672
2673  // Memoize this node if possible.
2674  SDNode *N;
2675  SDVTList VTs = getVTList(VT);
2676  if (VT != MVT::Flag) {
2677    SDValue Ops[] = { N1, N2 };
2678    FoldingSetNodeID ID;
2679    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2680    void *IP = 0;
2681    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2682      return SDValue(E, 0);
2683    N = NodeAllocator.Allocate<BinarySDNode>();
2684    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2685    CSEMap.InsertNode(N, IP);
2686  } else {
2687    N = NodeAllocator.Allocate<BinarySDNode>();
2688    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2689  }
2690
2691  AllNodes.push_back(N);
2692#ifndef NDEBUG
2693  VerifyNode(N);
2694#endif
2695  return SDValue(N, 0);
2696}
2697
2698SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2699                              SDValue N1, SDValue N2, SDValue N3) {
2700  // Perform various simplifications.
2701  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2702  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2703  switch (Opcode) {
2704  case ISD::CONCAT_VECTORS:
2705    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2706    // one big BUILD_VECTOR.
2707    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2708        N2.getOpcode() == ISD::BUILD_VECTOR &&
2709        N3.getOpcode() == ISD::BUILD_VECTOR) {
2710      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2711      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2712      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2713      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2714    }
2715    break;
2716  case ISD::SETCC: {
2717    // Use FoldSetCC to simplify SETCC's.
2718    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2719    if (Simp.getNode()) return Simp;
2720    break;
2721  }
2722  case ISD::SELECT:
2723    if (N1C) {
2724     if (N1C->getZExtValue())
2725        return N2;             // select true, X, Y -> X
2726      else
2727        return N3;             // select false, X, Y -> Y
2728    }
2729
2730    if (N2 == N3) return N2;   // select C, X, X -> X
2731    break;
2732  case ISD::BRCOND:
2733    if (N2C) {
2734      if (N2C->getZExtValue()) // Unconditional branch
2735        return getNode(ISD::BR, MVT::Other, N1, N3);
2736      else
2737        return N1;         // Never-taken branch
2738    }
2739    break;
2740  case ISD::VECTOR_SHUFFLE:
2741    assert(N1.getValueType() == N2.getValueType() &&
2742           N1.getValueType().isVector() &&
2743           VT.isVector() && N3.getValueType().isVector() &&
2744           N3.getOpcode() == ISD::BUILD_VECTOR &&
2745           VT.getVectorNumElements() == N3.getNumOperands() &&
2746           "Illegal VECTOR_SHUFFLE node!");
2747    break;
2748  case ISD::BIT_CONVERT:
2749    // Fold bit_convert nodes from a type to themselves.
2750    if (N1.getValueType() == VT)
2751      return N1;
2752    break;
2753  }
2754
2755  // Memoize node if it doesn't produce a flag.
2756  SDNode *N;
2757  SDVTList VTs = getVTList(VT);
2758  if (VT != MVT::Flag) {
2759    SDValue Ops[] = { N1, N2, N3 };
2760    FoldingSetNodeID ID;
2761    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2762    void *IP = 0;
2763    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2764      return SDValue(E, 0);
2765    N = NodeAllocator.Allocate<TernarySDNode>();
2766    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2767    CSEMap.InsertNode(N, IP);
2768  } else {
2769    N = NodeAllocator.Allocate<TernarySDNode>();
2770    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2771  }
2772  AllNodes.push_back(N);
2773#ifndef NDEBUG
2774  VerifyNode(N);
2775#endif
2776  return SDValue(N, 0);
2777}
2778
2779SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2780                              SDValue N1, SDValue N2, SDValue N3,
2781                              SDValue N4) {
2782  SDValue Ops[] = { N1, N2, N3, N4 };
2783  return getNode(Opcode, VT, Ops, 4);
2784}
2785
2786SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2787                              SDValue N1, SDValue N2, SDValue N3,
2788                              SDValue N4, SDValue N5) {
2789  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2790  return getNode(Opcode, VT, Ops, 5);
2791}
2792
2793/// getMemsetValue - Vectorized representation of the memset value
2794/// operand.
2795static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2796  unsigned NumBits = VT.isVector() ?
2797    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2798  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2799    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2800    unsigned Shift = 8;
2801    for (unsigned i = NumBits; i > 8; i >>= 1) {
2802      Val = (Val << Shift) | Val;
2803      Shift <<= 1;
2804    }
2805    if (VT.isInteger())
2806      return DAG.getConstant(Val, VT);
2807    return DAG.getConstantFP(APFloat(Val), VT);
2808  }
2809
2810  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2811  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2812  unsigned Shift = 8;
2813  for (unsigned i = NumBits; i > 8; i >>= 1) {
2814    Value = DAG.getNode(ISD::OR, VT,
2815                        DAG.getNode(ISD::SHL, VT, Value,
2816                                    DAG.getConstant(Shift,
2817                                                    TLI.getShiftAmountTy())),
2818                        Value);
2819    Shift <<= 1;
2820  }
2821
2822  return Value;
2823}
2824
2825/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2826/// used when a memcpy is turned into a memset when the source is a constant
2827/// string ptr.
2828static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2829                                    const TargetLowering &TLI,
2830                                    std::string &Str, unsigned Offset) {
2831  // Handle vector with all elements zero.
2832  if (Str.empty()) {
2833    if (VT.isInteger())
2834      return DAG.getConstant(0, VT);
2835    unsigned NumElts = VT.getVectorNumElements();
2836    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2837    return DAG.getNode(ISD::BIT_CONVERT, VT,
2838                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2839  }
2840
2841  assert(!VT.isVector() && "Can't handle vector type here!");
2842  unsigned NumBits = VT.getSizeInBits();
2843  unsigned MSB = NumBits / 8;
2844  uint64_t Val = 0;
2845  if (TLI.isLittleEndian())
2846    Offset = Offset + MSB - 1;
2847  for (unsigned i = 0; i != MSB; ++i) {
2848    Val = (Val << 8) | (unsigned char)Str[Offset];
2849    Offset += TLI.isLittleEndian() ? -1 : 1;
2850  }
2851  return DAG.getConstant(Val, VT);
2852}
2853
2854/// getMemBasePlusOffset - Returns base and offset node for the
2855///
2856static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2857                                      SelectionDAG &DAG) {
2858  MVT VT = Base.getValueType();
2859  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2860}
2861
2862/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2863///
2864static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2865  unsigned SrcDelta = 0;
2866  GlobalAddressSDNode *G = NULL;
2867  if (Src.getOpcode() == ISD::GlobalAddress)
2868    G = cast<GlobalAddressSDNode>(Src);
2869  else if (Src.getOpcode() == ISD::ADD &&
2870           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2871           Src.getOperand(1).getOpcode() == ISD::Constant) {
2872    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2873    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2874  }
2875  if (!G)
2876    return false;
2877
2878  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2879  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2880    return true;
2881
2882  return false;
2883}
2884
2885/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2886/// to replace the memset / memcpy is below the threshold. It also returns the
2887/// types of the sequence of memory ops to perform memset / memcpy.
2888static
2889bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2890                              SDValue Dst, SDValue Src,
2891                              unsigned Limit, uint64_t Size, unsigned &Align,
2892                              std::string &Str, bool &isSrcStr,
2893                              SelectionDAG &DAG,
2894                              const TargetLowering &TLI) {
2895  isSrcStr = isMemSrcFromString(Src, Str);
2896  bool isSrcConst = isa<ConstantSDNode>(Src);
2897  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2898  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2899  if (VT != MVT::iAny) {
2900    unsigned NewAlign = (unsigned)
2901      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2902    // If source is a string constant, this will require an unaligned load.
2903    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2904      if (Dst.getOpcode() != ISD::FrameIndex) {
2905        // Can't change destination alignment. It requires a unaligned store.
2906        if (AllowUnalign)
2907          VT = MVT::iAny;
2908      } else {
2909        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2910        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2911        if (MFI->isFixedObjectIndex(FI)) {
2912          // Can't change destination alignment. It requires a unaligned store.
2913          if (AllowUnalign)
2914            VT = MVT::iAny;
2915        } else {
2916          // Give the stack frame object a larger alignment if needed.
2917          if (MFI->getObjectAlignment(FI) < NewAlign)
2918            MFI->setObjectAlignment(FI, NewAlign);
2919          Align = NewAlign;
2920        }
2921      }
2922    }
2923  }
2924
2925  if (VT == MVT::iAny) {
2926    if (AllowUnalign) {
2927      VT = MVT::i64;
2928    } else {
2929      switch (Align & 7) {
2930      case 0:  VT = MVT::i64; break;
2931      case 4:  VT = MVT::i32; break;
2932      case 2:  VT = MVT::i16; break;
2933      default: VT = MVT::i8;  break;
2934      }
2935    }
2936
2937    MVT LVT = MVT::i64;
2938    while (!TLI.isTypeLegal(LVT))
2939      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2940    assert(LVT.isInteger());
2941
2942    if (VT.bitsGT(LVT))
2943      VT = LVT;
2944  }
2945
2946  unsigned NumMemOps = 0;
2947  while (Size != 0) {
2948    unsigned VTSize = VT.getSizeInBits() / 8;
2949    while (VTSize > Size) {
2950      // For now, only use non-vector load / store's for the left-over pieces.
2951      if (VT.isVector()) {
2952        VT = MVT::i64;
2953        while (!TLI.isTypeLegal(VT))
2954          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2955        VTSize = VT.getSizeInBits() / 8;
2956      } else {
2957        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2958        VTSize >>= 1;
2959      }
2960    }
2961
2962    if (++NumMemOps > Limit)
2963      return false;
2964    MemOps.push_back(VT);
2965    Size -= VTSize;
2966  }
2967
2968  return true;
2969}
2970
2971static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2972                                         SDValue Chain, SDValue Dst,
2973                                         SDValue Src, uint64_t Size,
2974                                         unsigned Align, bool AlwaysInline,
2975                                         const Value *DstSV, uint64_t DstSVOff,
2976                                         const Value *SrcSV, uint64_t SrcSVOff){
2977  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2978
2979  // Expand memcpy to a series of load and store ops if the size operand falls
2980  // below a certain threshold.
2981  std::vector<MVT> MemOps;
2982  uint64_t Limit = -1ULL;
2983  if (!AlwaysInline)
2984    Limit = TLI.getMaxStoresPerMemcpy();
2985  unsigned DstAlign = Align;  // Destination alignment can change.
2986  std::string Str;
2987  bool CopyFromStr;
2988  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2989                                Str, CopyFromStr, DAG, TLI))
2990    return SDValue();
2991
2992
2993  bool isZeroStr = CopyFromStr && Str.empty();
2994  SmallVector<SDValue, 8> OutChains;
2995  unsigned NumMemOps = MemOps.size();
2996  uint64_t SrcOff = 0, DstOff = 0;
2997  for (unsigned i = 0; i < NumMemOps; i++) {
2998    MVT VT = MemOps[i];
2999    unsigned VTSize = VT.getSizeInBits() / 8;
3000    SDValue Value, Store;
3001
3002    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3003      // It's unlikely a store of a vector immediate can be done in a single
3004      // instruction. It would require a load from a constantpool first.
3005      // We also handle store a vector with all zero's.
3006      // FIXME: Handle other cases where store of vector immediate is done in
3007      // a single instruction.
3008      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3009      Store = DAG.getStore(Chain, Value,
3010                           getMemBasePlusOffset(Dst, DstOff, DAG),
3011                           DstSV, DstSVOff + DstOff, false, DstAlign);
3012    } else {
3013      Value = DAG.getLoad(VT, Chain,
3014                          getMemBasePlusOffset(Src, SrcOff, DAG),
3015                          SrcSV, SrcSVOff + SrcOff, false, Align);
3016      Store = DAG.getStore(Chain, Value,
3017                           getMemBasePlusOffset(Dst, DstOff, DAG),
3018                           DstSV, DstSVOff + DstOff, false, DstAlign);
3019    }
3020    OutChains.push_back(Store);
3021    SrcOff += VTSize;
3022    DstOff += VTSize;
3023  }
3024
3025  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3026                     &OutChains[0], OutChains.size());
3027}
3028
3029static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3030                                          SDValue Chain, SDValue Dst,
3031                                          SDValue Src, uint64_t Size,
3032                                          unsigned Align, bool AlwaysInline,
3033                                          const Value *DstSV, uint64_t DstSVOff,
3034                                          const Value *SrcSV, uint64_t SrcSVOff){
3035  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036
3037  // Expand memmove to a series of load and store ops if the size operand falls
3038  // below a certain threshold.
3039  std::vector<MVT> MemOps;
3040  uint64_t Limit = -1ULL;
3041  if (!AlwaysInline)
3042    Limit = TLI.getMaxStoresPerMemmove();
3043  unsigned DstAlign = Align;  // Destination alignment can change.
3044  std::string Str;
3045  bool CopyFromStr;
3046  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3047                                Str, CopyFromStr, DAG, TLI))
3048    return SDValue();
3049
3050  uint64_t SrcOff = 0, DstOff = 0;
3051
3052  SmallVector<SDValue, 8> LoadValues;
3053  SmallVector<SDValue, 8> LoadChains;
3054  SmallVector<SDValue, 8> OutChains;
3055  unsigned NumMemOps = MemOps.size();
3056  for (unsigned i = 0; i < NumMemOps; i++) {
3057    MVT VT = MemOps[i];
3058    unsigned VTSize = VT.getSizeInBits() / 8;
3059    SDValue Value, Store;
3060
3061    Value = DAG.getLoad(VT, Chain,
3062                        getMemBasePlusOffset(Src, SrcOff, DAG),
3063                        SrcSV, SrcSVOff + SrcOff, false, Align);
3064    LoadValues.push_back(Value);
3065    LoadChains.push_back(Value.getValue(1));
3066    SrcOff += VTSize;
3067  }
3068  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3069                      &LoadChains[0], LoadChains.size());
3070  OutChains.clear();
3071  for (unsigned i = 0; i < NumMemOps; i++) {
3072    MVT VT = MemOps[i];
3073    unsigned VTSize = VT.getSizeInBits() / 8;
3074    SDValue Value, Store;
3075
3076    Store = DAG.getStore(Chain, LoadValues[i],
3077                         getMemBasePlusOffset(Dst, DstOff, DAG),
3078                         DstSV, DstSVOff + DstOff, false, DstAlign);
3079    OutChains.push_back(Store);
3080    DstOff += VTSize;
3081  }
3082
3083  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3084                     &OutChains[0], OutChains.size());
3085}
3086
3087static SDValue getMemsetStores(SelectionDAG &DAG,
3088                                 SDValue Chain, SDValue Dst,
3089                                 SDValue Src, uint64_t Size,
3090                                 unsigned Align,
3091                                 const Value *DstSV, uint64_t DstSVOff) {
3092  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3093
3094  // Expand memset to a series of load/store ops if the size operand
3095  // falls below a certain threshold.
3096  std::vector<MVT> MemOps;
3097  std::string Str;
3098  bool CopyFromStr;
3099  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3100                                Size, Align, Str, CopyFromStr, DAG, TLI))
3101    return SDValue();
3102
3103  SmallVector<SDValue, 8> OutChains;
3104  uint64_t DstOff = 0;
3105
3106  unsigned NumMemOps = MemOps.size();
3107  for (unsigned i = 0; i < NumMemOps; i++) {
3108    MVT VT = MemOps[i];
3109    unsigned VTSize = VT.getSizeInBits() / 8;
3110    SDValue Value = getMemsetValue(Src, VT, DAG);
3111    SDValue Store = DAG.getStore(Chain, Value,
3112                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3113                                 DstSV, DstSVOff + DstOff);
3114    OutChains.push_back(Store);
3115    DstOff += VTSize;
3116  }
3117
3118  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3119                     &OutChains[0], OutChains.size());
3120}
3121
3122SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3123                                SDValue Src, SDValue Size,
3124                                unsigned Align, bool AlwaysInline,
3125                                const Value *DstSV, uint64_t DstSVOff,
3126                                const Value *SrcSV, uint64_t SrcSVOff) {
3127
3128  // Check to see if we should lower the memcpy to loads and stores first.
3129  // For cases within the target-specified limits, this is the best choice.
3130  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3131  if (ConstantSize) {
3132    // Memcpy with size zero? Just return the original chain.
3133    if (ConstantSize->isNullValue())
3134      return Chain;
3135
3136    SDValue Result =
3137      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3138                              ConstantSize->getZExtValue(),
3139                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3140    if (Result.getNode())
3141      return Result;
3142  }
3143
3144  // Then check to see if we should lower the memcpy with target-specific
3145  // code. If the target chooses to do this, this is the next best.
3146  SDValue Result =
3147    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3148                                AlwaysInline,
3149                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3150  if (Result.getNode())
3151    return Result;
3152
3153  // If we really need inline code and the target declined to provide it,
3154  // use a (potentially long) sequence of loads and stores.
3155  if (AlwaysInline) {
3156    assert(ConstantSize && "AlwaysInline requires a constant size!");
3157    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3158                                   ConstantSize->getZExtValue(), Align, true,
3159                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3160  }
3161
3162  // Emit a library call.
3163  TargetLowering::ArgListTy Args;
3164  TargetLowering::ArgListEntry Entry;
3165  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3166  Entry.Node = Dst; Args.push_back(Entry);
3167  Entry.Node = Src; Args.push_back(Entry);
3168  Entry.Node = Size; Args.push_back(Entry);
3169  std::pair<SDValue,SDValue> CallResult =
3170    TLI.LowerCallTo(Chain, Type::VoidTy,
3171                    false, false, false, false, CallingConv::C, false,
3172                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3173                    Args, *this);
3174  return CallResult.second;
3175}
3176
3177SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3178                                 SDValue Src, SDValue Size,
3179                                 unsigned Align,
3180                                 const Value *DstSV, uint64_t DstSVOff,
3181                                 const Value *SrcSV, uint64_t SrcSVOff) {
3182
3183  // Check to see if we should lower the memmove to loads and stores first.
3184  // For cases within the target-specified limits, this is the best choice.
3185  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3186  if (ConstantSize) {
3187    // Memmove with size zero? Just return the original chain.
3188    if (ConstantSize->isNullValue())
3189      return Chain;
3190
3191    SDValue Result =
3192      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3193                               ConstantSize->getZExtValue(),
3194                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3195    if (Result.getNode())
3196      return Result;
3197  }
3198
3199  // Then check to see if we should lower the memmove with target-specific
3200  // code. If the target chooses to do this, this is the next best.
3201  SDValue Result =
3202    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3203                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3204  if (Result.getNode())
3205    return Result;
3206
3207  // Emit a library call.
3208  TargetLowering::ArgListTy Args;
3209  TargetLowering::ArgListEntry Entry;
3210  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3211  Entry.Node = Dst; Args.push_back(Entry);
3212  Entry.Node = Src; Args.push_back(Entry);
3213  Entry.Node = Size; Args.push_back(Entry);
3214  std::pair<SDValue,SDValue> CallResult =
3215    TLI.LowerCallTo(Chain, Type::VoidTy,
3216                    false, false, false, false, CallingConv::C, false,
3217                    getExternalSymbol("memmove", TLI.getPointerTy()),
3218                    Args, *this);
3219  return CallResult.second;
3220}
3221
3222SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3223                                SDValue Src, SDValue Size,
3224                                unsigned Align,
3225                                const Value *DstSV, uint64_t DstSVOff) {
3226
3227  // Check to see if we should lower the memset to stores first.
3228  // For cases within the target-specified limits, this is the best choice.
3229  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3230  if (ConstantSize) {
3231    // Memset with size zero? Just return the original chain.
3232    if (ConstantSize->isNullValue())
3233      return Chain;
3234
3235    SDValue Result =
3236      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3237                      Align, DstSV, DstSVOff);
3238    if (Result.getNode())
3239      return Result;
3240  }
3241
3242  // Then check to see if we should lower the memset with target-specific
3243  // code. If the target chooses to do this, this is the next best.
3244  SDValue Result =
3245    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3246                                DstSV, DstSVOff);
3247  if (Result.getNode())
3248    return Result;
3249
3250  // Emit a library call.
3251  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3252  TargetLowering::ArgListTy Args;
3253  TargetLowering::ArgListEntry Entry;
3254  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3255  Args.push_back(Entry);
3256  // Extend or truncate the argument to be an i32 value for the call.
3257  if (Src.getValueType().bitsGT(MVT::i32))
3258    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3259  else
3260    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3261  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3262  Args.push_back(Entry);
3263  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3264  Args.push_back(Entry);
3265  std::pair<SDValue,SDValue> CallResult =
3266    TLI.LowerCallTo(Chain, Type::VoidTy,
3267                    false, false, false, false, CallingConv::C, false,
3268                    getExternalSymbol("memset", TLI.getPointerTy()),
3269                    Args, *this);
3270  return CallResult.second;
3271}
3272
3273SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3274                                SDValue Chain,
3275                                SDValue Ptr, SDValue Cmp,
3276                                SDValue Swp, const Value* PtrVal,
3277                                unsigned Alignment) {
3278  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3279  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3280
3281  MVT VT = Cmp.getValueType();
3282
3283  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3284    Alignment = getMVTAlignment(MemVT);
3285
3286  SDVTList VTs = getVTList(VT, MVT::Other);
3287  FoldingSetNodeID ID;
3288  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3289  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3290  void* IP = 0;
3291  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3292    return SDValue(E, 0);
3293  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3294  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3295                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3296  CSEMap.InsertNode(N, IP);
3297  AllNodes.push_back(N);
3298  return SDValue(N, 0);
3299}
3300
3301SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3302                                SDValue Chain,
3303                                SDValue Ptr, SDValue Val,
3304                                const Value* PtrVal,
3305                                unsigned Alignment) {
3306  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3307          Opcode == ISD::ATOMIC_LOAD_SUB ||
3308          Opcode == ISD::ATOMIC_LOAD_AND ||
3309          Opcode == ISD::ATOMIC_LOAD_OR ||
3310          Opcode == ISD::ATOMIC_LOAD_XOR ||
3311          Opcode == ISD::ATOMIC_LOAD_NAND ||
3312          Opcode == ISD::ATOMIC_LOAD_MIN ||
3313          Opcode == ISD::ATOMIC_LOAD_MAX ||
3314          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3315          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3316          Opcode == ISD::ATOMIC_SWAP) &&
3317         "Invalid Atomic Op");
3318
3319  MVT VT = Val.getValueType();
3320
3321  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3322    Alignment = getMVTAlignment(MemVT);
3323
3324  SDVTList VTs = getVTList(VT, MVT::Other);
3325  FoldingSetNodeID ID;
3326  SDValue Ops[] = {Chain, Ptr, Val};
3327  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3328  void* IP = 0;
3329  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3330    return SDValue(E, 0);
3331  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3332  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3333                       Chain, Ptr, Val, PtrVal, Alignment);
3334  CSEMap.InsertNode(N, IP);
3335  AllNodes.push_back(N);
3336  return SDValue(N, 0);
3337}
3338
3339/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3340/// Allowed to return something different (and simpler) if Simplify is true.
3341SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3342  if (NumOps == 1)
3343    return Ops[0];
3344
3345  SmallVector<MVT, 4> VTs;
3346  VTs.reserve(NumOps);
3347  for (unsigned i = 0; i < NumOps; ++i)
3348    VTs.push_back(Ops[i].getValueType());
3349  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3350}
3351
3352SDValue
3353SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3354                                  const MVT *VTs, unsigned NumVTs,
3355                                  const SDValue *Ops, unsigned NumOps,
3356                                  MVT MemVT, const Value *srcValue, int SVOff,
3357                                  unsigned Align, bool Vol,
3358                                  bool ReadMem, bool WriteMem) {
3359  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3360                             MemVT, srcValue, SVOff, Align, Vol,
3361                             ReadMem, WriteMem);
3362}
3363
3364SDValue
3365SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3366                                  const SDValue *Ops, unsigned NumOps,
3367                                  MVT MemVT, const Value *srcValue, int SVOff,
3368                                  unsigned Align, bool Vol,
3369                                  bool ReadMem, bool WriteMem) {
3370  // Memoize the node unless it returns a flag.
3371  MemIntrinsicSDNode *N;
3372  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3373    FoldingSetNodeID ID;
3374    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3375    void *IP = 0;
3376    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3377      return SDValue(E, 0);
3378
3379    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3380    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3381                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3382    CSEMap.InsertNode(N, IP);
3383  } else {
3384    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3385    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3386                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3387  }
3388  AllNodes.push_back(N);
3389  return SDValue(N, 0);
3390}
3391
3392SDValue
3393SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3394                      bool IsInreg, SDVTList VTs,
3395                      const SDValue *Operands, unsigned NumOperands) {
3396  // Do not include isTailCall in the folding set profile.
3397  FoldingSetNodeID ID;
3398  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3399  ID.AddInteger(CallingConv);
3400  ID.AddInteger(IsVarArgs);
3401  void *IP = 0;
3402  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3403    // Instead of including isTailCall in the folding set, we just
3404    // set the flag of the existing node.
3405    if (!IsTailCall)
3406      cast<CallSDNode>(E)->setNotTailCall();
3407    return SDValue(E, 0);
3408  }
3409  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3410  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3411                     VTs, Operands, NumOperands);
3412  CSEMap.InsertNode(N, IP);
3413  AllNodes.push_back(N);
3414  return SDValue(N, 0);
3415}
3416
3417SDValue
3418SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3419                      MVT VT, SDValue Chain,
3420                      SDValue Ptr, SDValue Offset,
3421                      const Value *SV, int SVOffset, MVT EVT,
3422                      bool isVolatile, unsigned Alignment) {
3423  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3424    Alignment = getMVTAlignment(VT);
3425
3426  if (VT == EVT) {
3427    ExtType = ISD::NON_EXTLOAD;
3428  } else if (ExtType == ISD::NON_EXTLOAD) {
3429    assert(VT == EVT && "Non-extending load from different memory type!");
3430  } else {
3431    // Extending load.
3432    if (VT.isVector())
3433      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3434             "Invalid vector extload!");
3435    else
3436      assert(EVT.bitsLT(VT) &&
3437             "Should only be an extending load, not truncating!");
3438    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3439           "Cannot sign/zero extend a FP/Vector load!");
3440    assert(VT.isInteger() == EVT.isInteger() &&
3441           "Cannot convert from FP to Int or Int -> FP!");
3442  }
3443
3444  bool Indexed = AM != ISD::UNINDEXED;
3445  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3446         "Unindexed load with an offset!");
3447
3448  SDVTList VTs = Indexed ?
3449    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3450  SDValue Ops[] = { Chain, Ptr, Offset };
3451  FoldingSetNodeID ID;
3452  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3453  ID.AddInteger(AM);
3454  ID.AddInteger(ExtType);
3455  ID.AddInteger(EVT.getRawBits());
3456  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3457  void *IP = 0;
3458  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3459    return SDValue(E, 0);
3460  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3461  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3462                     Alignment, isVolatile);
3463  CSEMap.InsertNode(N, IP);
3464  AllNodes.push_back(N);
3465  return SDValue(N, 0);
3466}
3467
3468SDValue SelectionDAG::getLoad(MVT VT,
3469                              SDValue Chain, SDValue Ptr,
3470                              const Value *SV, int SVOffset,
3471                              bool isVolatile, unsigned Alignment) {
3472  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3473  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3474                 SV, SVOffset, VT, isVolatile, Alignment);
3475}
3476
3477SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3478                                 SDValue Chain, SDValue Ptr,
3479                                 const Value *SV,
3480                                 int SVOffset, MVT EVT,
3481                                 bool isVolatile, unsigned Alignment) {
3482  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3483  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3484                 SV, SVOffset, EVT, isVolatile, Alignment);
3485}
3486
3487SDValue
3488SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3489                             SDValue Offset, ISD::MemIndexedMode AM) {
3490  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3491  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3492         "Load is already a indexed load!");
3493  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3494                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3495                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3496                 LD->isVolatile(), LD->getAlignment());
3497}
3498
3499SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3500                               SDValue Ptr, const Value *SV, int SVOffset,
3501                               bool isVolatile, unsigned Alignment) {
3502  MVT VT = Val.getValueType();
3503
3504  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3505    Alignment = getMVTAlignment(VT);
3506
3507  SDVTList VTs = getVTList(MVT::Other);
3508  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3509  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3510  FoldingSetNodeID ID;
3511  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3512  ID.AddInteger(ISD::UNINDEXED);
3513  ID.AddInteger(false);
3514  ID.AddInteger(VT.getRawBits());
3515  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3516  void *IP = 0;
3517  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3518    return SDValue(E, 0);
3519  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3520  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3521                      VT, SV, SVOffset, Alignment, isVolatile);
3522  CSEMap.InsertNode(N, IP);
3523  AllNodes.push_back(N);
3524  return SDValue(N, 0);
3525}
3526
3527SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3528                                    SDValue Ptr, const Value *SV,
3529                                    int SVOffset, MVT SVT,
3530                                    bool isVolatile, unsigned Alignment) {
3531  MVT VT = Val.getValueType();
3532
3533  if (VT == SVT)
3534    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3535
3536  assert(VT.bitsGT(SVT) && "Not a truncation?");
3537  assert(VT.isInteger() == SVT.isInteger() &&
3538         "Can't do FP-INT conversion!");
3539
3540  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3541    Alignment = getMVTAlignment(VT);
3542
3543  SDVTList VTs = getVTList(MVT::Other);
3544  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3545  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3546  FoldingSetNodeID ID;
3547  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3548  ID.AddInteger(ISD::UNINDEXED);
3549  ID.AddInteger(1);
3550  ID.AddInteger(SVT.getRawBits());
3551  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3552  void *IP = 0;
3553  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3554    return SDValue(E, 0);
3555  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3556  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3557                      SVT, SV, SVOffset, Alignment, isVolatile);
3558  CSEMap.InsertNode(N, IP);
3559  AllNodes.push_back(N);
3560  return SDValue(N, 0);
3561}
3562
3563SDValue
3564SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3565                              SDValue Offset, ISD::MemIndexedMode AM) {
3566  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3567  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3568         "Store is already a indexed store!");
3569  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3570  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3571  FoldingSetNodeID ID;
3572  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3573  ID.AddInteger(AM);
3574  ID.AddInteger(ST->isTruncatingStore());
3575  ID.AddInteger(ST->getMemoryVT().getRawBits());
3576  ID.AddInteger(ST->getRawFlags());
3577  void *IP = 0;
3578  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3579    return SDValue(E, 0);
3580  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3581  new (N) StoreSDNode(Ops, VTs, AM,
3582                      ST->isTruncatingStore(), ST->getMemoryVT(),
3583                      ST->getSrcValue(), ST->getSrcValueOffset(),
3584                      ST->getAlignment(), ST->isVolatile());
3585  CSEMap.InsertNode(N, IP);
3586  AllNodes.push_back(N);
3587  return SDValue(N, 0);
3588}
3589
3590SDValue SelectionDAG::getVAArg(MVT VT,
3591                               SDValue Chain, SDValue Ptr,
3592                               SDValue SV) {
3593  SDValue Ops[] = { Chain, Ptr, SV };
3594  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3595}
3596
3597SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3598                              const SDUse *Ops, unsigned NumOps) {
3599  switch (NumOps) {
3600  case 0: return getNode(Opcode, VT);
3601  case 1: return getNode(Opcode, VT, Ops[0]);
3602  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3603  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3604  default: break;
3605  }
3606
3607  // Copy from an SDUse array into an SDValue array for use with
3608  // the regular getNode logic.
3609  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3610  return getNode(Opcode, VT, &NewOps[0], NumOps);
3611}
3612
3613SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3614                              const SDValue *Ops, unsigned NumOps) {
3615  switch (NumOps) {
3616  case 0: return getNode(Opcode, VT);
3617  case 1: return getNode(Opcode, VT, Ops[0]);
3618  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3619  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3620  default: break;
3621  }
3622
3623  switch (Opcode) {
3624  default: break;
3625  case ISD::SELECT_CC: {
3626    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3627    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3628           "LHS and RHS of condition must have same type!");
3629    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3630           "True and False arms of SelectCC must have same type!");
3631    assert(Ops[2].getValueType() == VT &&
3632           "select_cc node must be of same type as true and false value!");
3633    break;
3634  }
3635  case ISD::BR_CC: {
3636    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3637    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3638           "LHS/RHS of comparison should match types!");
3639    break;
3640  }
3641  }
3642
3643  // Memoize nodes.
3644  SDNode *N;
3645  SDVTList VTs = getVTList(VT);
3646  if (VT != MVT::Flag) {
3647    FoldingSetNodeID ID;
3648    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3649    void *IP = 0;
3650    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3651      return SDValue(E, 0);
3652    N = NodeAllocator.Allocate<SDNode>();
3653    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3654    CSEMap.InsertNode(N, IP);
3655  } else {
3656    N = NodeAllocator.Allocate<SDNode>();
3657    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3658  }
3659  AllNodes.push_back(N);
3660#ifndef NDEBUG
3661  VerifyNode(N);
3662#endif
3663  return SDValue(N, 0);
3664}
3665
3666SDValue SelectionDAG::getNode(unsigned Opcode,
3667                              const std::vector<MVT> &ResultTys,
3668                              const SDValue *Ops, unsigned NumOps) {
3669  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3670                 Ops, NumOps);
3671}
3672
3673SDValue SelectionDAG::getNode(unsigned Opcode,
3674                              const MVT *VTs, unsigned NumVTs,
3675                              const SDValue *Ops, unsigned NumOps) {
3676  if (NumVTs == 1)
3677    return getNode(Opcode, VTs[0], Ops, NumOps);
3678  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3679}
3680
3681SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3682                              const SDValue *Ops, unsigned NumOps) {
3683  if (VTList.NumVTs == 1)
3684    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3685
3686  switch (Opcode) {
3687  // FIXME: figure out how to safely handle things like
3688  // int foo(int x) { return 1 << (x & 255); }
3689  // int bar() { return foo(256); }
3690#if 0
3691  case ISD::SRA_PARTS:
3692  case ISD::SRL_PARTS:
3693  case ISD::SHL_PARTS:
3694    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3695        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3696      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3697    else if (N3.getOpcode() == ISD::AND)
3698      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3699        // If the and is only masking out bits that cannot effect the shift,
3700        // eliminate the and.
3701        unsigned NumBits = VT.getSizeInBits()*2;
3702        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3703          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3704      }
3705    break;
3706#endif
3707  }
3708
3709  // Memoize the node unless it returns a flag.
3710  SDNode *N;
3711  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3712    FoldingSetNodeID ID;
3713    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3714    void *IP = 0;
3715    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3716      return SDValue(E, 0);
3717    if (NumOps == 1) {
3718      N = NodeAllocator.Allocate<UnarySDNode>();
3719      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3720    } else if (NumOps == 2) {
3721      N = NodeAllocator.Allocate<BinarySDNode>();
3722      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3723    } else if (NumOps == 3) {
3724      N = NodeAllocator.Allocate<TernarySDNode>();
3725      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3726    } else {
3727      N = NodeAllocator.Allocate<SDNode>();
3728      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3729    }
3730    CSEMap.InsertNode(N, IP);
3731  } else {
3732    if (NumOps == 1) {
3733      N = NodeAllocator.Allocate<UnarySDNode>();
3734      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3735    } else if (NumOps == 2) {
3736      N = NodeAllocator.Allocate<BinarySDNode>();
3737      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3738    } else if (NumOps == 3) {
3739      N = NodeAllocator.Allocate<TernarySDNode>();
3740      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3741    } else {
3742      N = NodeAllocator.Allocate<SDNode>();
3743      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3744    }
3745  }
3746  AllNodes.push_back(N);
3747#ifndef NDEBUG
3748  VerifyNode(N);
3749#endif
3750  return SDValue(N, 0);
3751}
3752
3753SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3754  return getNode(Opcode, VTList, 0, 0);
3755}
3756
3757SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3758                                SDValue N1) {
3759  SDValue Ops[] = { N1 };
3760  return getNode(Opcode, VTList, Ops, 1);
3761}
3762
3763SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3764                              SDValue N1, SDValue N2) {
3765  SDValue Ops[] = { N1, N2 };
3766  return getNode(Opcode, VTList, Ops, 2);
3767}
3768
3769SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3770                              SDValue N1, SDValue N2, SDValue N3) {
3771  SDValue Ops[] = { N1, N2, N3 };
3772  return getNode(Opcode, VTList, Ops, 3);
3773}
3774
3775SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3776                              SDValue N1, SDValue N2, SDValue N3,
3777                              SDValue N4) {
3778  SDValue Ops[] = { N1, N2, N3, N4 };
3779  return getNode(Opcode, VTList, Ops, 4);
3780}
3781
3782SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3783                              SDValue N1, SDValue N2, SDValue N3,
3784                              SDValue N4, SDValue N5) {
3785  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3786  return getNode(Opcode, VTList, Ops, 5);
3787}
3788
3789SDVTList SelectionDAG::getVTList(MVT VT) {
3790  return makeVTList(SDNode::getValueTypeList(VT), 1);
3791}
3792
3793SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3794  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3795       E = VTList.rend(); I != E; ++I)
3796    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3797      return *I;
3798
3799  MVT *Array = Allocator.Allocate<MVT>(2);
3800  Array[0] = VT1;
3801  Array[1] = VT2;
3802  SDVTList Result = makeVTList(Array, 2);
3803  VTList.push_back(Result);
3804  return Result;
3805}
3806
3807SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3808  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3809       E = VTList.rend(); I != E; ++I)
3810    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3811                          I->VTs[2] == VT3)
3812      return *I;
3813
3814  MVT *Array = Allocator.Allocate<MVT>(3);
3815  Array[0] = VT1;
3816  Array[1] = VT2;
3817  Array[2] = VT3;
3818  SDVTList Result = makeVTList(Array, 3);
3819  VTList.push_back(Result);
3820  return Result;
3821}
3822
3823SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3824  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3825       E = VTList.rend(); I != E; ++I)
3826    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3827                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3828      return *I;
3829
3830  MVT *Array = Allocator.Allocate<MVT>(3);
3831  Array[0] = VT1;
3832  Array[1] = VT2;
3833  Array[2] = VT3;
3834  Array[3] = VT4;
3835  SDVTList Result = makeVTList(Array, 4);
3836  VTList.push_back(Result);
3837  return Result;
3838}
3839
3840SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3841  switch (NumVTs) {
3842    case 0: assert(0 && "Cannot have nodes without results!");
3843    case 1: return getVTList(VTs[0]);
3844    case 2: return getVTList(VTs[0], VTs[1]);
3845    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3846    default: break;
3847  }
3848
3849  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3850       E = VTList.rend(); I != E; ++I) {
3851    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3852      continue;
3853
3854    bool NoMatch = false;
3855    for (unsigned i = 2; i != NumVTs; ++i)
3856      if (VTs[i] != I->VTs[i]) {
3857        NoMatch = true;
3858        break;
3859      }
3860    if (!NoMatch)
3861      return *I;
3862  }
3863
3864  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3865  std::copy(VTs, VTs+NumVTs, Array);
3866  SDVTList Result = makeVTList(Array, NumVTs);
3867  VTList.push_back(Result);
3868  return Result;
3869}
3870
3871
3872/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3873/// specified operands.  If the resultant node already exists in the DAG,
3874/// this does not modify the specified node, instead it returns the node that
3875/// already exists.  If the resultant node does not exist in the DAG, the
3876/// input node is returned.  As a degenerate case, if you specify the same
3877/// input operands as the node already has, the input node is returned.
3878SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3879  SDNode *N = InN.getNode();
3880  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3881
3882  // Check to see if there is no change.
3883  if (Op == N->getOperand(0)) return InN;
3884
3885  // See if the modified node already exists.
3886  void *InsertPos = 0;
3887  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3888    return SDValue(Existing, InN.getResNo());
3889
3890  // Nope it doesn't.  Remove the node from its current place in the maps.
3891  if (InsertPos)
3892    if (!RemoveNodeFromCSEMaps(N))
3893      InsertPos = 0;
3894
3895  // Now we update the operands.
3896  N->OperandList[0].getVal()->removeUser(0, N);
3897  N->OperandList[0] = Op;
3898  N->OperandList[0].setUser(N);
3899  Op.getNode()->addUser(0, N);
3900
3901  // If this gets put into a CSE map, add it.
3902  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3903  return InN;
3904}
3905
3906SDValue SelectionDAG::
3907UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3908  SDNode *N = InN.getNode();
3909  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3910
3911  // Check to see if there is no change.
3912  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3913    return InN;   // No operands changed, just return the input node.
3914
3915  // See if the modified node already exists.
3916  void *InsertPos = 0;
3917  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3918    return SDValue(Existing, InN.getResNo());
3919
3920  // Nope it doesn't.  Remove the node from its current place in the maps.
3921  if (InsertPos)
3922    if (!RemoveNodeFromCSEMaps(N))
3923      InsertPos = 0;
3924
3925  // Now we update the operands.
3926  if (N->OperandList[0] != Op1) {
3927    N->OperandList[0].getVal()->removeUser(0, N);
3928    N->OperandList[0] = Op1;
3929    N->OperandList[0].setUser(N);
3930    Op1.getNode()->addUser(0, N);
3931  }
3932  if (N->OperandList[1] != Op2) {
3933    N->OperandList[1].getVal()->removeUser(1, N);
3934    N->OperandList[1] = Op2;
3935    N->OperandList[1].setUser(N);
3936    Op2.getNode()->addUser(1, N);
3937  }
3938
3939  // If this gets put into a CSE map, add it.
3940  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3941  return InN;
3942}
3943
3944SDValue SelectionDAG::
3945UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3946  SDValue Ops[] = { Op1, Op2, Op3 };
3947  return UpdateNodeOperands(N, Ops, 3);
3948}
3949
3950SDValue SelectionDAG::
3951UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3952                   SDValue Op3, SDValue Op4) {
3953  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3954  return UpdateNodeOperands(N, Ops, 4);
3955}
3956
3957SDValue SelectionDAG::
3958UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3959                   SDValue Op3, SDValue Op4, SDValue Op5) {
3960  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3961  return UpdateNodeOperands(N, Ops, 5);
3962}
3963
3964SDValue SelectionDAG::
3965UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3966  SDNode *N = InN.getNode();
3967  assert(N->getNumOperands() == NumOps &&
3968         "Update with wrong number of operands");
3969
3970  // Check to see if there is no change.
3971  bool AnyChange = false;
3972  for (unsigned i = 0; i != NumOps; ++i) {
3973    if (Ops[i] != N->getOperand(i)) {
3974      AnyChange = true;
3975      break;
3976    }
3977  }
3978
3979  // No operands changed, just return the input node.
3980  if (!AnyChange) return InN;
3981
3982  // See if the modified node already exists.
3983  void *InsertPos = 0;
3984  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3985    return SDValue(Existing, InN.getResNo());
3986
3987  // Nope it doesn't.  Remove the node from its current place in the maps.
3988  if (InsertPos)
3989    if (!RemoveNodeFromCSEMaps(N))
3990      InsertPos = 0;
3991
3992  // Now we update the operands.
3993  for (unsigned i = 0; i != NumOps; ++i) {
3994    if (N->OperandList[i] != Ops[i]) {
3995      N->OperandList[i].getVal()->removeUser(i, N);
3996      N->OperandList[i] = Ops[i];
3997      N->OperandList[i].setUser(N);
3998      Ops[i].getNode()->addUser(i, N);
3999    }
4000  }
4001
4002  // If this gets put into a CSE map, add it.
4003  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4004  return InN;
4005}
4006
4007/// DropOperands - Release the operands and set this node to have
4008/// zero operands.
4009void SDNode::DropOperands() {
4010  // Unlike the code in MorphNodeTo that does this, we don't need to
4011  // watch for dead nodes here.
4012  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4013    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4014
4015  NumOperands = 0;
4016}
4017
4018/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4019/// machine opcode.
4020///
4021SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4022                                   MVT VT) {
4023  SDVTList VTs = getVTList(VT);
4024  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4025}
4026
4027SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4028                                   MVT VT, SDValue Op1) {
4029  SDVTList VTs = getVTList(VT);
4030  SDValue Ops[] = { Op1 };
4031  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4032}
4033
4034SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4035                                   MVT VT, SDValue Op1,
4036                                   SDValue Op2) {
4037  SDVTList VTs = getVTList(VT);
4038  SDValue Ops[] = { Op1, Op2 };
4039  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4040}
4041
4042SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4043                                   MVT VT, SDValue Op1,
4044                                   SDValue Op2, SDValue Op3) {
4045  SDVTList VTs = getVTList(VT);
4046  SDValue Ops[] = { Op1, Op2, Op3 };
4047  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4048}
4049
4050SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4051                                   MVT VT, const SDValue *Ops,
4052                                   unsigned NumOps) {
4053  SDVTList VTs = getVTList(VT);
4054  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4055}
4056
4057SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4058                                   MVT VT1, MVT VT2, const SDValue *Ops,
4059                                   unsigned NumOps) {
4060  SDVTList VTs = getVTList(VT1, VT2);
4061  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4062}
4063
4064SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4065                                   MVT VT1, MVT VT2) {
4066  SDVTList VTs = getVTList(VT1, VT2);
4067  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4068}
4069
4070SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4071                                   MVT VT1, MVT VT2, MVT VT3,
4072                                   const SDValue *Ops, unsigned NumOps) {
4073  SDVTList VTs = getVTList(VT1, VT2, VT3);
4074  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4075}
4076
4077SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4078                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4079                                   const SDValue *Ops, unsigned NumOps) {
4080  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4081  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4082}
4083
4084SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4085                                   MVT VT1, MVT VT2,
4086                                   SDValue Op1) {
4087  SDVTList VTs = getVTList(VT1, VT2);
4088  SDValue Ops[] = { Op1 };
4089  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4090}
4091
4092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4093                                   MVT VT1, MVT VT2,
4094                                   SDValue Op1, SDValue Op2) {
4095  SDVTList VTs = getVTList(VT1, VT2);
4096  SDValue Ops[] = { Op1, Op2 };
4097  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4098}
4099
4100SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4101                                   MVT VT1, MVT VT2,
4102                                   SDValue Op1, SDValue Op2,
4103                                   SDValue Op3) {
4104  SDVTList VTs = getVTList(VT1, VT2);
4105  SDValue Ops[] = { Op1, Op2, Op3 };
4106  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4107}
4108
4109SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4110                                   MVT VT1, MVT VT2, MVT VT3,
4111                                   SDValue Op1, SDValue Op2,
4112                                   SDValue Op3) {
4113  SDVTList VTs = getVTList(VT1, VT2, VT3);
4114  SDValue Ops[] = { Op1, Op2, Op3 };
4115  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4116}
4117
4118SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4119                                   SDVTList VTs, const SDValue *Ops,
4120                                   unsigned NumOps) {
4121  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4122}
4123
4124SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4125                                  MVT VT) {
4126  SDVTList VTs = getVTList(VT);
4127  return MorphNodeTo(N, Opc, VTs, 0, 0);
4128}
4129
4130SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4131                                  MVT VT, SDValue Op1) {
4132  SDVTList VTs = getVTList(VT);
4133  SDValue Ops[] = { Op1 };
4134  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4135}
4136
4137SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4138                                  MVT VT, SDValue Op1,
4139                                  SDValue Op2) {
4140  SDVTList VTs = getVTList(VT);
4141  SDValue Ops[] = { Op1, Op2 };
4142  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4143}
4144
4145SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4146                                  MVT VT, SDValue Op1,
4147                                  SDValue Op2, SDValue Op3) {
4148  SDVTList VTs = getVTList(VT);
4149  SDValue Ops[] = { Op1, Op2, Op3 };
4150  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4151}
4152
4153SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4154                                  MVT VT, const SDValue *Ops,
4155                                  unsigned NumOps) {
4156  SDVTList VTs = getVTList(VT);
4157  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4158}
4159
4160SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4161                                  MVT VT1, MVT VT2, const SDValue *Ops,
4162                                  unsigned NumOps) {
4163  SDVTList VTs = getVTList(VT1, VT2);
4164  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4165}
4166
4167SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4168                                  MVT VT1, MVT VT2) {
4169  SDVTList VTs = getVTList(VT1, VT2);
4170  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4171}
4172
4173SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4174                                  MVT VT1, MVT VT2, MVT VT3,
4175                                  const SDValue *Ops, unsigned NumOps) {
4176  SDVTList VTs = getVTList(VT1, VT2, VT3);
4177  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4178}
4179
4180SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4181                                  MVT VT1, MVT VT2,
4182                                  SDValue Op1) {
4183  SDVTList VTs = getVTList(VT1, VT2);
4184  SDValue Ops[] = { Op1 };
4185  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4186}
4187
4188SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4189                                  MVT VT1, MVT VT2,
4190                                  SDValue Op1, SDValue Op2) {
4191  SDVTList VTs = getVTList(VT1, VT2);
4192  SDValue Ops[] = { Op1, Op2 };
4193  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4194}
4195
4196SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4197                                  MVT VT1, MVT VT2,
4198                                  SDValue Op1, SDValue Op2,
4199                                  SDValue Op3) {
4200  SDVTList VTs = getVTList(VT1, VT2);
4201  SDValue Ops[] = { Op1, Op2, Op3 };
4202  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4203}
4204
4205/// MorphNodeTo - These *mutate* the specified node to have the specified
4206/// return type, opcode, and operands.
4207///
4208/// Note that MorphNodeTo returns the resultant node.  If there is already a
4209/// node of the specified opcode and operands, it returns that node instead of
4210/// the current one.
4211///
4212/// Using MorphNodeTo is faster than creating a new node and swapping it in
4213/// with ReplaceAllUsesWith both because it often avoids allocating a new
4214/// node, and because it doesn't require CSE recalculation for any of
4215/// the node's users.
4216///
4217SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4218                                  SDVTList VTs, const SDValue *Ops,
4219                                  unsigned NumOps) {
4220  // If an identical node already exists, use it.
4221  void *IP = 0;
4222  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4223    FoldingSetNodeID ID;
4224    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4225    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4226      return ON;
4227  }
4228
4229  if (!RemoveNodeFromCSEMaps(N))
4230    IP = 0;
4231
4232  // Start the morphing.
4233  N->NodeType = Opc;
4234  N->ValueList = VTs.VTs;
4235  N->NumValues = VTs.NumVTs;
4236
4237  // Clear the operands list, updating used nodes to remove this from their
4238  // use list.  Keep track of any operands that become dead as a result.
4239  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4240  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4241       I != E; ++I) {
4242    SDNode *Used = I->getVal();
4243    Used->removeUser(std::distance(B, I), N);
4244    if (Used->use_empty())
4245      DeadNodeSet.insert(Used);
4246  }
4247
4248  // If NumOps is larger than the # of operands we currently have, reallocate
4249  // the operand list.
4250  if (NumOps > N->NumOperands) {
4251    if (N->OperandsNeedDelete)
4252      delete[] N->OperandList;
4253
4254    if (N->isMachineOpcode()) {
4255      // We're creating a final node that will live unmorphed for the
4256      // remainder of the current SelectionDAG iteration, so we can allocate
4257      // the operands directly out of a pool with no recycling metadata.
4258      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4259      N->OperandsNeedDelete = false;
4260    } else {
4261      N->OperandList = new SDUse[NumOps];
4262      N->OperandsNeedDelete = true;
4263    }
4264  }
4265
4266  // Assign the new operands.
4267  N->NumOperands = NumOps;
4268  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4269    N->OperandList[i] = Ops[i];
4270    N->OperandList[i].setUser(N);
4271    SDNode *ToUse = N->OperandList[i].getVal();
4272    ToUse->addUser(i, N);
4273  }
4274
4275  // Delete any nodes that are still dead after adding the uses for the
4276  // new operands.
4277  SmallVector<SDNode *, 16> DeadNodes;
4278  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4279       E = DeadNodeSet.end(); I != E; ++I)
4280    if ((*I)->use_empty())
4281      DeadNodes.push_back(*I);
4282  RemoveDeadNodes(DeadNodes);
4283
4284  if (IP)
4285    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4286  return N;
4287}
4288
4289
4290/// getTargetNode - These are used for target selectors to create a new node
4291/// with specified return type(s), target opcode, and operands.
4292///
4293/// Note that getTargetNode returns the resultant node.  If there is already a
4294/// node of the specified opcode and operands, it returns that node instead of
4295/// the current one.
4296SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4297  return getNode(~Opcode, VT).getNode();
4298}
4299SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4300  return getNode(~Opcode, VT, Op1).getNode();
4301}
4302SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4303                                    SDValue Op1, SDValue Op2) {
4304  return getNode(~Opcode, VT, Op1, Op2).getNode();
4305}
4306SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4307                                    SDValue Op1, SDValue Op2,
4308                                    SDValue Op3) {
4309  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4310}
4311SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4312                                    const SDValue *Ops, unsigned NumOps) {
4313  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4314}
4315SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4316  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4317  SDValue Op;
4318  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4319}
4320SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4321                                    MVT VT2, SDValue Op1) {
4322  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4323  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4324}
4325SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4326                                    MVT VT2, SDValue Op1,
4327                                    SDValue Op2) {
4328  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4329  SDValue Ops[] = { Op1, Op2 };
4330  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4331}
4332SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4333                                    MVT VT2, SDValue Op1,
4334                                    SDValue Op2, SDValue Op3) {
4335  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4336  SDValue Ops[] = { Op1, Op2, Op3 };
4337  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4338}
4339SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4340                                    const SDValue *Ops, unsigned NumOps) {
4341  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4342  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4343}
4344SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4345                                    SDValue Op1, SDValue Op2) {
4346  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4347  SDValue Ops[] = { Op1, Op2 };
4348  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4349}
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4351                                    SDValue Op1, SDValue Op2,
4352                                    SDValue Op3) {
4353  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4354  SDValue Ops[] = { Op1, Op2, Op3 };
4355  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4356}
4357SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4358                                    const SDValue *Ops, unsigned NumOps) {
4359  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4360  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4361}
4362SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4363                                    MVT VT2, MVT VT3, MVT VT4,
4364                                    const SDValue *Ops, unsigned NumOps) {
4365  std::vector<MVT> VTList;
4366  VTList.push_back(VT1);
4367  VTList.push_back(VT2);
4368  VTList.push_back(VT3);
4369  VTList.push_back(VT4);
4370  const MVT *VTs = getNodeValueTypes(VTList);
4371  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4372}
4373SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4374                                    const std::vector<MVT> &ResultTys,
4375                                    const SDValue *Ops, unsigned NumOps) {
4376  const MVT *VTs = getNodeValueTypes(ResultTys);
4377  return getNode(~Opcode, VTs, ResultTys.size(),
4378                 Ops, NumOps).getNode();
4379}
4380
4381/// getNodeIfExists - Get the specified node if it's already available, or
4382/// else return NULL.
4383SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4384                                      const SDValue *Ops, unsigned NumOps) {
4385  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4386    FoldingSetNodeID ID;
4387    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4388    void *IP = 0;
4389    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4390      return E;
4391  }
4392  return NULL;
4393}
4394
4395
4396/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4397/// This can cause recursive merging of nodes in the DAG.
4398///
4399/// This version assumes From has a single result value.
4400///
4401void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4402                                      DAGUpdateListener *UpdateListener) {
4403  SDNode *From = FromN.getNode();
4404  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4405         "Cannot replace with this method!");
4406  assert(From != To.getNode() && "Cannot replace uses of with self");
4407
4408  // Iterate over all the existing uses of From. This specifically avoids
4409  // visiting any new uses of From that arise while the replacement is
4410  // happening, because any such uses would be the result of CSE: If an
4411  // existing node looks like From after one of its operands is replaced
4412  // by To, we don't want to replace of all its users with To too.
4413  // See PR3018 for more info.
4414  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4415  while (UI != UE) {
4416    SDNode *U = *UI;
4417    do ++UI; while (UI != UE && *UI == U);
4418
4419    // This node is about to morph, remove its old self from the CSE maps.
4420    RemoveNodeFromCSEMaps(U);
4421    int operandNum = 0;
4422    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4423         I != E; ++I, ++operandNum)
4424      if (I->getVal() == From) {
4425        From->removeUser(operandNum, U);
4426        *I = To;
4427        I->setUser(U);
4428        To.getNode()->addUser(operandNum, U);
4429      }
4430
4431    // Now that we have modified U, add it back to the CSE maps.  If it already
4432    // exists there, recursively merge the results together.
4433    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4434      ReplaceAllUsesWith(U, Existing, UpdateListener);
4435      // U is now dead.  Inform the listener if it exists and delete it.
4436      if (UpdateListener)
4437        UpdateListener->NodeDeleted(U, Existing);
4438      DeleteNodeNotInCSEMaps(U);
4439    } else {
4440      // If the node doesn't already exist, we updated it.  Inform a listener if
4441      // it exists.
4442      if (UpdateListener)
4443        UpdateListener->NodeUpdated(U);
4444    }
4445  }
4446}
4447
4448/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4449/// This can cause recursive merging of nodes in the DAG.
4450///
4451/// This version assumes From/To have matching types and numbers of result
4452/// values.
4453///
4454void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4455                                      DAGUpdateListener *UpdateListener) {
4456  assert(From->getVTList().VTs == To->getVTList().VTs &&
4457         From->getNumValues() == To->getNumValues() &&
4458         "Cannot use this version of ReplaceAllUsesWith!");
4459
4460  // Handle the trivial case.
4461  if (From == To)
4462    return;
4463
4464  // Iterate over just the existing users of From. See the comments in
4465  // the ReplaceAllUsesWith above.
4466  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4467  while (UI != UE) {
4468    SDNode *U = *UI;
4469    do ++UI; while (UI != UE && *UI == U);
4470
4471    // This node is about to morph, remove its old self from the CSE maps.
4472    RemoveNodeFromCSEMaps(U);
4473    int operandNum = 0;
4474    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4475         I != E; ++I, ++operandNum)
4476      if (I->getVal() == From) {
4477        From->removeUser(operandNum, U);
4478        I->getSDValue().setNode(To);
4479        To->addUser(operandNum, U);
4480      }
4481
4482    // Now that we have modified U, add it back to the CSE maps.  If it already
4483    // exists there, recursively merge the results together.
4484    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4485      ReplaceAllUsesWith(U, Existing, UpdateListener);
4486      // U is now dead.  Inform the listener if it exists and delete it.
4487      if (UpdateListener)
4488        UpdateListener->NodeDeleted(U, Existing);
4489      DeleteNodeNotInCSEMaps(U);
4490    } else {
4491      // If the node doesn't already exist, we updated it.  Inform a listener if
4492      // it exists.
4493      if (UpdateListener)
4494        UpdateListener->NodeUpdated(U);
4495    }
4496  }
4497}
4498
4499/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4500/// This can cause recursive merging of nodes in the DAG.
4501///
4502/// This version can replace From with any result values.  To must match the
4503/// number and types of values returned by From.
4504void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4505                                      const SDValue *To,
4506                                      DAGUpdateListener *UpdateListener) {
4507  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4508    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4509
4510  // Iterate over just the existing users of From. See the comments in
4511  // the ReplaceAllUsesWith above.
4512  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4513  while (UI != UE) {
4514    SDNode *U = *UI;
4515    do ++UI; while (UI != UE && *UI == U);
4516
4517    // This node is about to morph, remove its old self from the CSE maps.
4518    RemoveNodeFromCSEMaps(U);
4519    int operandNum = 0;
4520    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4521         I != E; ++I, ++operandNum)
4522      if (I->getVal() == From) {
4523        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4524        From->removeUser(operandNum, U);
4525        *I = ToOp;
4526        I->setUser(U);
4527        ToOp.getNode()->addUser(operandNum, U);
4528      }
4529
4530    // Now that we have modified U, add it back to the CSE maps.  If it already
4531    // exists there, recursively merge the results together.
4532    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4533      ReplaceAllUsesWith(U, Existing, UpdateListener);
4534      // U is now dead.  Inform the listener if it exists and delete it.
4535      if (UpdateListener)
4536        UpdateListener->NodeDeleted(U, Existing);
4537      DeleteNodeNotInCSEMaps(U);
4538    } else {
4539      // If the node doesn't already exist, we updated it.  Inform a listener if
4540      // it exists.
4541      if (UpdateListener)
4542        UpdateListener->NodeUpdated(U);
4543    }
4544  }
4545}
4546
4547/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4548/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4549/// handled the same way as for ReplaceAllUsesWith.
4550void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4551                                             DAGUpdateListener *UpdateListener){
4552  // Handle the really simple, really trivial case efficiently.
4553  if (From == To) return;
4554
4555  // Handle the simple, trivial, case efficiently.
4556  if (From.getNode()->getNumValues() == 1) {
4557    ReplaceAllUsesWith(From, To, UpdateListener);
4558    return;
4559  }
4560
4561  // Get all of the users of From.getNode().  We want these in a nice,
4562  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4563  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4564
4565  while (!Users.empty()) {
4566    // We know that this user uses some value of From.  If it is the right
4567    // value, update it.
4568    SDNode *User = Users.back();
4569    Users.pop_back();
4570
4571    // Scan for an operand that matches From.
4572    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4573    for (; Op != E; ++Op)
4574      if (*Op == From) break;
4575
4576    // If there are no matches, the user must use some other result of From.
4577    if (Op == E) continue;
4578
4579    // Okay, we know this user needs to be updated.  Remove its old self
4580    // from the CSE maps.
4581    RemoveNodeFromCSEMaps(User);
4582
4583    // Update all operands that match "From" in case there are multiple uses.
4584    for (; Op != E; ++Op) {
4585      if (*Op == From) {
4586        From.getNode()->removeUser(Op-User->op_begin(), User);
4587        *Op = To;
4588        Op->setUser(User);
4589        To.getNode()->addUser(Op-User->op_begin(), User);
4590      }
4591    }
4592
4593    // Now that we have modified User, add it back to the CSE maps.  If it
4594    // already exists there, recursively merge the results together.
4595    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4596    if (!Existing) {
4597      if (UpdateListener) UpdateListener->NodeUpdated(User);
4598      continue;  // Continue on to next user.
4599    }
4600
4601    // If there was already an existing matching node, use ReplaceAllUsesWith
4602    // to replace the dead one with the existing one.  This can cause
4603    // recursive merging of other unrelated nodes down the line.
4604    ReplaceAllUsesWith(User, Existing, UpdateListener);
4605
4606    // User is now dead.  Notify a listener if present.
4607    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4608    DeleteNodeNotInCSEMaps(User);
4609  }
4610}
4611
4612/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4613/// uses of other values produced by From.getVal() alone.  The same value may
4614/// appear in both the From and To list.  The Deleted vector is
4615/// handled the same way as for ReplaceAllUsesWith.
4616void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4617                                              const SDValue *To,
4618                                              unsigned Num,
4619                                              DAGUpdateListener *UpdateListener){
4620  // Handle the simple, trivial case efficiently.
4621  if (Num == 1)
4622    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4623
4624  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4625  for (unsigned i = 0; i != Num; ++i)
4626    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4627         E = From[i].getNode()->use_end(); UI != E; ++UI)
4628      Users.push_back(std::make_pair(*UI, i));
4629
4630  while (!Users.empty()) {
4631    // We know that this user uses some value of From.  If it is the right
4632    // value, update it.
4633    SDNode *User = Users.back().first;
4634    unsigned i = Users.back().second;
4635    Users.pop_back();
4636
4637    // Scan for an operand that matches From.
4638    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4639    for (; Op != E; ++Op)
4640      if (*Op == From[i]) break;
4641
4642    // If there are no matches, the user must use some other result of From.
4643    if (Op == E) continue;
4644
4645    // Okay, we know this user needs to be updated.  Remove its old self
4646    // from the CSE maps.
4647    RemoveNodeFromCSEMaps(User);
4648
4649    // Update all operands that match "From" in case there are multiple uses.
4650    for (; Op != E; ++Op) {
4651      if (*Op == From[i]) {
4652        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4653        *Op = To[i];
4654        Op->setUser(User);
4655        To[i].getNode()->addUser(Op-User->op_begin(), User);
4656      }
4657    }
4658
4659    // Now that we have modified User, add it back to the CSE maps.  If it
4660    // already exists there, recursively merge the results together.
4661    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4662    if (!Existing) {
4663      if (UpdateListener) UpdateListener->NodeUpdated(User);
4664      continue;  // Continue on to next user.
4665    }
4666
4667    // If there was already an existing matching node, use ReplaceAllUsesWith
4668    // to replace the dead one with the existing one.  This can cause
4669    // recursive merging of other unrelated nodes down the line.
4670    ReplaceAllUsesWith(User, Existing, UpdateListener);
4671
4672    // User is now dead.  Notify a listener if present.
4673    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4674    DeleteNodeNotInCSEMaps(User);
4675  }
4676}
4677
4678/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4679/// based on their topological order. It returns the maximum id and a vector
4680/// of the SDNodes* in assigned order by reference.
4681unsigned SelectionDAG::AssignTopologicalOrder() {
4682
4683  unsigned DAGSize = 0;
4684
4685  // SortedPos tracks the progress of the algorithm. Nodes before it are
4686  // sorted, nodes after it are unsorted. When the algorithm completes
4687  // it is at the end of the list.
4688  allnodes_iterator SortedPos = allnodes_begin();
4689
4690  // Visit all the nodes. Move nodes with no operands to the front of
4691  // the list immediately. Annotate nodes that do have operands with their
4692  // operand count. Before we do this, the Node Id fields of the nodes
4693  // may contain arbitrary values. After, the Node Id fields for nodes
4694  // before SortedPos will contain the topological sort index, and the
4695  // Node Id fields for nodes At SortedPos and after will contain the
4696  // count of outstanding operands.
4697  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4698    SDNode *N = I++;
4699    unsigned Degree = N->getNumOperands();
4700    if (Degree == 0) {
4701      // A node with no uses, add it to the result array immediately.
4702      N->setNodeId(DAGSize++);
4703      allnodes_iterator Q = N;
4704      if (Q != SortedPos)
4705        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4706      ++SortedPos;
4707    } else {
4708      // Temporarily use the Node Id as scratch space for the degree count.
4709      N->setNodeId(Degree);
4710    }
4711  }
4712
4713  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4714  // such that by the time the end is reached all nodes will be sorted.
4715  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4716    SDNode *N = I;
4717    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4718         UI != UE; ++UI) {
4719      SDNode *P = *UI;
4720      unsigned Degree = P->getNodeId();
4721      --Degree;
4722      if (Degree == 0) {
4723        // All of P's operands are sorted, so P may sorted now.
4724        P->setNodeId(DAGSize++);
4725        if (P != SortedPos)
4726          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4727        ++SortedPos;
4728      } else {
4729        // Update P's outstanding operand count.
4730        P->setNodeId(Degree);
4731      }
4732    }
4733  }
4734
4735  assert(SortedPos == AllNodes.end() &&
4736         "Topological sort incomplete!");
4737  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4738         "First node in topological sort is not the entry token!");
4739  assert(AllNodes.front().getNodeId() == 0 &&
4740         "First node in topological sort has non-zero id!");
4741  assert(AllNodes.front().getNumOperands() == 0 &&
4742         "First node in topological sort has operands!");
4743  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4744         "Last node in topologic sort has unexpected id!");
4745  assert(AllNodes.back().use_empty() &&
4746         "Last node in topologic sort has users!");
4747  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4748  return DAGSize;
4749}
4750
4751
4752
4753//===----------------------------------------------------------------------===//
4754//                              SDNode Class
4755//===----------------------------------------------------------------------===//
4756
4757HandleSDNode::~HandleSDNode() {
4758  DropOperands();
4759}
4760
4761GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4762                                         MVT VT, int64_t o)
4763  : SDNode(isa<GlobalVariable>(GA) &&
4764           cast<GlobalVariable>(GA)->isThreadLocal() ?
4765           // Thread Local
4766           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4767           // Non Thread Local
4768           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4769           getSDVTList(VT)), Offset(o) {
4770  TheGlobal = const_cast<GlobalValue*>(GA);
4771}
4772
4773MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4774                     const Value *srcValue, int SVO,
4775                     unsigned alignment, bool vol)
4776 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4777   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4778
4779  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4780  assert(getAlignment() == alignment && "Alignment representation error!");
4781  assert(isVolatile() == vol && "Volatile representation error!");
4782}
4783
4784MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4785                     unsigned NumOps, MVT memvt, const Value *srcValue,
4786                     int SVO, unsigned alignment, bool vol)
4787   : SDNode(Opc, VTs, Ops, NumOps),
4788     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4789     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4790  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4791  assert(getAlignment() == alignment && "Alignment representation error!");
4792  assert(isVolatile() == vol && "Volatile representation error!");
4793}
4794
4795/// getMemOperand - Return a MachineMemOperand object describing the memory
4796/// reference performed by this memory reference.
4797MachineMemOperand MemSDNode::getMemOperand() const {
4798  int Flags = 0;
4799  if (isa<LoadSDNode>(this))
4800    Flags = MachineMemOperand::MOLoad;
4801  else if (isa<StoreSDNode>(this))
4802    Flags = MachineMemOperand::MOStore;
4803  else if (isa<AtomicSDNode>(this)) {
4804    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4805  }
4806  else {
4807    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4808    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4809    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4810    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4811  }
4812
4813  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4814  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4815
4816  // Check if the memory reference references a frame index
4817  const FrameIndexSDNode *FI =
4818  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4819  if (!getSrcValue() && FI)
4820    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4821                             Flags, 0, Size, getAlignment());
4822  else
4823    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4824                             Size, getAlignment());
4825}
4826
4827/// Profile - Gather unique data for the node.
4828///
4829void SDNode::Profile(FoldingSetNodeID &ID) const {
4830  AddNodeIDNode(ID, this);
4831}
4832
4833/// getValueTypeList - Return a pointer to the specified value type.
4834///
4835const MVT *SDNode::getValueTypeList(MVT VT) {
4836  if (VT.isExtended()) {
4837    static std::set<MVT, MVT::compareRawBits> EVTs;
4838    return &(*EVTs.insert(VT).first);
4839  } else {
4840    static MVT VTs[MVT::LAST_VALUETYPE];
4841    VTs[VT.getSimpleVT()] = VT;
4842    return &VTs[VT.getSimpleVT()];
4843  }
4844}
4845
4846/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4847/// indicated value.  This method ignores uses of other values defined by this
4848/// operation.
4849bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4850  assert(Value < getNumValues() && "Bad value!");
4851
4852  // TODO: Only iterate over uses of a given value of the node
4853  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4854    if (UI.getUse().getSDValue().getResNo() == Value) {
4855      if (NUses == 0)
4856        return false;
4857      --NUses;
4858    }
4859  }
4860
4861  // Found exactly the right number of uses?
4862  return NUses == 0;
4863}
4864
4865
4866/// hasAnyUseOfValue - Return true if there are any use of the indicated
4867/// value. This method ignores uses of other values defined by this operation.
4868bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4869  assert(Value < getNumValues() && "Bad value!");
4870
4871  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4872    if (UI.getUse().getSDValue().getResNo() == Value)
4873      return true;
4874
4875  return false;
4876}
4877
4878
4879/// isOnlyUserOf - Return true if this node is the only use of N.
4880///
4881bool SDNode::isOnlyUserOf(SDNode *N) const {
4882  bool Seen = false;
4883  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4884    SDNode *User = *I;
4885    if (User == this)
4886      Seen = true;
4887    else
4888      return false;
4889  }
4890
4891  return Seen;
4892}
4893
4894/// isOperand - Return true if this node is an operand of N.
4895///
4896bool SDValue::isOperandOf(SDNode *N) const {
4897  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4898    if (*this == N->getOperand(i))
4899      return true;
4900  return false;
4901}
4902
4903bool SDNode::isOperandOf(SDNode *N) const {
4904  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4905    if (this == N->OperandList[i].getVal())
4906      return true;
4907  return false;
4908}
4909
4910/// reachesChainWithoutSideEffects - Return true if this operand (which must
4911/// be a chain) reaches the specified operand without crossing any
4912/// side-effecting instructions.  In practice, this looks through token
4913/// factors and non-volatile loads.  In order to remain efficient, this only
4914/// looks a couple of nodes in, it does not do an exhaustive search.
4915bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4916                                               unsigned Depth) const {
4917  if (*this == Dest) return true;
4918
4919  // Don't search too deeply, we just want to be able to see through
4920  // TokenFactor's etc.
4921  if (Depth == 0) return false;
4922
4923  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4924  // of the operands of the TF reach dest, then we can do the xform.
4925  if (getOpcode() == ISD::TokenFactor) {
4926    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4927      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4928        return true;
4929    return false;
4930  }
4931
4932  // Loads don't have side effects, look through them.
4933  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4934    if (!Ld->isVolatile())
4935      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4936  }
4937  return false;
4938}
4939
4940
4941static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4942                            SmallPtrSet<SDNode *, 32> &Visited) {
4943  if (found || !Visited.insert(N))
4944    return;
4945
4946  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4947    SDNode *Op = N->getOperand(i).getNode();
4948    if (Op == P) {
4949      found = true;
4950      return;
4951    }
4952    findPredecessor(Op, P, found, Visited);
4953  }
4954}
4955
4956/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4957/// is either an operand of N or it can be reached by recursively traversing
4958/// up the operands.
4959/// NOTE: this is an expensive method. Use it carefully.
4960bool SDNode::isPredecessorOf(SDNode *N) const {
4961  SmallPtrSet<SDNode *, 32> Visited;
4962  bool found = false;
4963  findPredecessor(N, this, found, Visited);
4964  return found;
4965}
4966
4967uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4968  assert(Num < NumOperands && "Invalid child # of SDNode!");
4969  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4970}
4971
4972std::string SDNode::getOperationName(const SelectionDAG *G) const {
4973  switch (getOpcode()) {
4974  default:
4975    if (getOpcode() < ISD::BUILTIN_OP_END)
4976      return "<<Unknown DAG Node>>";
4977    if (isMachineOpcode()) {
4978      if (G)
4979        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4980          if (getMachineOpcode() < TII->getNumOpcodes())
4981            return TII->get(getMachineOpcode()).getName();
4982      return "<<Unknown Machine Node>>";
4983    }
4984    if (G) {
4985      const TargetLowering &TLI = G->getTargetLoweringInfo();
4986      const char *Name = TLI.getTargetNodeName(getOpcode());
4987      if (Name) return Name;
4988      return "<<Unknown Target Node>>";
4989    }
4990    return "<<Unknown Node>>";
4991
4992#ifndef NDEBUG
4993  case ISD::DELETED_NODE:
4994    return "<<Deleted Node!>>";
4995#endif
4996  case ISD::PREFETCH:      return "Prefetch";
4997  case ISD::MEMBARRIER:    return "MemBarrier";
4998  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
4999  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5000  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5001  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5002  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5003  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5004  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5005  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5006  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5007  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5008  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5009  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5010  case ISD::PCMARKER:      return "PCMarker";
5011  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5012  case ISD::SRCVALUE:      return "SrcValue";
5013  case ISD::MEMOPERAND:    return "MemOperand";
5014  case ISD::EntryToken:    return "EntryToken";
5015  case ISD::TokenFactor:   return "TokenFactor";
5016  case ISD::AssertSext:    return "AssertSext";
5017  case ISD::AssertZext:    return "AssertZext";
5018
5019  case ISD::BasicBlock:    return "BasicBlock";
5020  case ISD::ARG_FLAGS:     return "ArgFlags";
5021  case ISD::VALUETYPE:     return "ValueType";
5022  case ISD::Register:      return "Register";
5023
5024  case ISD::Constant:      return "Constant";
5025  case ISD::ConstantFP:    return "ConstantFP";
5026  case ISD::GlobalAddress: return "GlobalAddress";
5027  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5028  case ISD::FrameIndex:    return "FrameIndex";
5029  case ISD::JumpTable:     return "JumpTable";
5030  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5031  case ISD::RETURNADDR: return "RETURNADDR";
5032  case ISD::FRAMEADDR: return "FRAMEADDR";
5033  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5034  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5035  case ISD::EHSELECTION: return "EHSELECTION";
5036  case ISD::EH_RETURN: return "EH_RETURN";
5037  case ISD::ConstantPool:  return "ConstantPool";
5038  case ISD::ExternalSymbol: return "ExternalSymbol";
5039  case ISD::INTRINSIC_WO_CHAIN: {
5040    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5041    return Intrinsic::getName((Intrinsic::ID)IID);
5042  }
5043  case ISD::INTRINSIC_VOID:
5044  case ISD::INTRINSIC_W_CHAIN: {
5045    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5046    return Intrinsic::getName((Intrinsic::ID)IID);
5047  }
5048
5049  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5050  case ISD::TargetConstant: return "TargetConstant";
5051  case ISD::TargetConstantFP:return "TargetConstantFP";
5052  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5053  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5054  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5055  case ISD::TargetJumpTable:  return "TargetJumpTable";
5056  case ISD::TargetConstantPool:  return "TargetConstantPool";
5057  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5058
5059  case ISD::CopyToReg:     return "CopyToReg";
5060  case ISD::CopyFromReg:   return "CopyFromReg";
5061  case ISD::UNDEF:         return "undef";
5062  case ISD::MERGE_VALUES:  return "merge_values";
5063  case ISD::INLINEASM:     return "inlineasm";
5064  case ISD::DBG_LABEL:     return "dbg_label";
5065  case ISD::EH_LABEL:      return "eh_label";
5066  case ISD::DECLARE:       return "declare";
5067  case ISD::HANDLENODE:    return "handlenode";
5068  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5069  case ISD::CALL:          return "call";
5070
5071  // Unary operators
5072  case ISD::FABS:   return "fabs";
5073  case ISD::FNEG:   return "fneg";
5074  case ISD::FSQRT:  return "fsqrt";
5075  case ISD::FSIN:   return "fsin";
5076  case ISD::FCOS:   return "fcos";
5077  case ISD::FPOWI:  return "fpowi";
5078  case ISD::FPOW:   return "fpow";
5079  case ISD::FTRUNC: return "ftrunc";
5080  case ISD::FFLOOR: return "ffloor";
5081  case ISD::FCEIL:  return "fceil";
5082  case ISD::FRINT:  return "frint";
5083  case ISD::FNEARBYINT: return "fnearbyint";
5084
5085  // Binary operators
5086  case ISD::ADD:    return "add";
5087  case ISD::SUB:    return "sub";
5088  case ISD::MUL:    return "mul";
5089  case ISD::MULHU:  return "mulhu";
5090  case ISD::MULHS:  return "mulhs";
5091  case ISD::SDIV:   return "sdiv";
5092  case ISD::UDIV:   return "udiv";
5093  case ISD::SREM:   return "srem";
5094  case ISD::UREM:   return "urem";
5095  case ISD::SMUL_LOHI:  return "smul_lohi";
5096  case ISD::UMUL_LOHI:  return "umul_lohi";
5097  case ISD::SDIVREM:    return "sdivrem";
5098  case ISD::UDIVREM:    return "udivrem";
5099  case ISD::AND:    return "and";
5100  case ISD::OR:     return "or";
5101  case ISD::XOR:    return "xor";
5102  case ISD::SHL:    return "shl";
5103  case ISD::SRA:    return "sra";
5104  case ISD::SRL:    return "srl";
5105  case ISD::ROTL:   return "rotl";
5106  case ISD::ROTR:   return "rotr";
5107  case ISD::FADD:   return "fadd";
5108  case ISD::FSUB:   return "fsub";
5109  case ISD::FMUL:   return "fmul";
5110  case ISD::FDIV:   return "fdiv";
5111  case ISD::FREM:   return "frem";
5112  case ISD::FCOPYSIGN: return "fcopysign";
5113  case ISD::FGETSIGN:  return "fgetsign";
5114
5115  case ISD::SETCC:       return "setcc";
5116  case ISD::VSETCC:      return "vsetcc";
5117  case ISD::SELECT:      return "select";
5118  case ISD::SELECT_CC:   return "select_cc";
5119  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5120  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5121  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5122  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5123  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5124  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5125  case ISD::CARRY_FALSE:         return "carry_false";
5126  case ISD::ADDC:        return "addc";
5127  case ISD::ADDE:        return "adde";
5128  case ISD::SADDO:       return "saddo";
5129  case ISD::UADDO:       return "uaddo";
5130  case ISD::SSUBO:       return "ssubo";
5131  case ISD::USUBO:       return "usubo";
5132  case ISD::SMULO:       return "smulo";
5133  case ISD::UMULO:       return "umulo";
5134  case ISD::SUBC:        return "subc";
5135  case ISD::SUBE:        return "sube";
5136  case ISD::SHL_PARTS:   return "shl_parts";
5137  case ISD::SRA_PARTS:   return "sra_parts";
5138  case ISD::SRL_PARTS:   return "srl_parts";
5139
5140  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5141  case ISD::INSERT_SUBREG:      return "insert_subreg";
5142
5143  // Conversion operators.
5144  case ISD::SIGN_EXTEND: return "sign_extend";
5145  case ISD::ZERO_EXTEND: return "zero_extend";
5146  case ISD::ANY_EXTEND:  return "any_extend";
5147  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5148  case ISD::TRUNCATE:    return "truncate";
5149  case ISD::FP_ROUND:    return "fp_round";
5150  case ISD::FLT_ROUNDS_: return "flt_rounds";
5151  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5152  case ISD::FP_EXTEND:   return "fp_extend";
5153
5154  case ISD::SINT_TO_FP:  return "sint_to_fp";
5155  case ISD::UINT_TO_FP:  return "uint_to_fp";
5156  case ISD::FP_TO_SINT:  return "fp_to_sint";
5157  case ISD::FP_TO_UINT:  return "fp_to_uint";
5158  case ISD::BIT_CONVERT: return "bit_convert";
5159
5160  case ISD::CONVERT_RNDSAT: {
5161    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5162    default: assert(0 && "Unknown cvt code!");
5163    case ISD::CVT_FF:  return "cvt_ff";
5164    case ISD::CVT_FS:  return "cvt_fs";
5165    case ISD::CVT_FU:  return "cvt_fu";
5166    case ISD::CVT_SF:  return "cvt_sf";
5167    case ISD::CVT_UF:  return "cvt_uf";
5168    case ISD::CVT_SS:  return "cvt_ss";
5169    case ISD::CVT_SU:  return "cvt_su";
5170    case ISD::CVT_US:  return "cvt_us";
5171    case ISD::CVT_UU:  return "cvt_uu";
5172    }
5173  }
5174
5175    // Control flow instructions
5176  case ISD::BR:      return "br";
5177  case ISD::BRIND:   return "brind";
5178  case ISD::BR_JT:   return "br_jt";
5179  case ISD::BRCOND:  return "brcond";
5180  case ISD::BR_CC:   return "br_cc";
5181  case ISD::RET:     return "ret";
5182  case ISD::CALLSEQ_START:  return "callseq_start";
5183  case ISD::CALLSEQ_END:    return "callseq_end";
5184
5185    // Other operators
5186  case ISD::LOAD:               return "load";
5187  case ISD::STORE:              return "store";
5188  case ISD::VAARG:              return "vaarg";
5189  case ISD::VACOPY:             return "vacopy";
5190  case ISD::VAEND:              return "vaend";
5191  case ISD::VASTART:            return "vastart";
5192  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5193  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5194  case ISD::BUILD_PAIR:         return "build_pair";
5195  case ISD::STACKSAVE:          return "stacksave";
5196  case ISD::STACKRESTORE:       return "stackrestore";
5197  case ISD::TRAP:               return "trap";
5198
5199  // Bit manipulation
5200  case ISD::BSWAP:   return "bswap";
5201  case ISD::CTPOP:   return "ctpop";
5202  case ISD::CTTZ:    return "cttz";
5203  case ISD::CTLZ:    return "ctlz";
5204
5205  // Debug info
5206  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5207  case ISD::DEBUG_LOC: return "debug_loc";
5208
5209  // Trampolines
5210  case ISD::TRAMPOLINE: return "trampoline";
5211
5212  case ISD::CONDCODE:
5213    switch (cast<CondCodeSDNode>(this)->get()) {
5214    default: assert(0 && "Unknown setcc condition!");
5215    case ISD::SETOEQ:  return "setoeq";
5216    case ISD::SETOGT:  return "setogt";
5217    case ISD::SETOGE:  return "setoge";
5218    case ISD::SETOLT:  return "setolt";
5219    case ISD::SETOLE:  return "setole";
5220    case ISD::SETONE:  return "setone";
5221
5222    case ISD::SETO:    return "seto";
5223    case ISD::SETUO:   return "setuo";
5224    case ISD::SETUEQ:  return "setue";
5225    case ISD::SETUGT:  return "setugt";
5226    case ISD::SETUGE:  return "setuge";
5227    case ISD::SETULT:  return "setult";
5228    case ISD::SETULE:  return "setule";
5229    case ISD::SETUNE:  return "setune";
5230
5231    case ISD::SETEQ:   return "seteq";
5232    case ISD::SETGT:   return "setgt";
5233    case ISD::SETGE:   return "setge";
5234    case ISD::SETLT:   return "setlt";
5235    case ISD::SETLE:   return "setle";
5236    case ISD::SETNE:   return "setne";
5237    }
5238  }
5239}
5240
5241const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5242  switch (AM) {
5243  default:
5244    return "";
5245  case ISD::PRE_INC:
5246    return "<pre-inc>";
5247  case ISD::PRE_DEC:
5248    return "<pre-dec>";
5249  case ISD::POST_INC:
5250    return "<post-inc>";
5251  case ISD::POST_DEC:
5252    return "<post-dec>";
5253  }
5254}
5255
5256std::string ISD::ArgFlagsTy::getArgFlagsString() {
5257  std::string S = "< ";
5258
5259  if (isZExt())
5260    S += "zext ";
5261  if (isSExt())
5262    S += "sext ";
5263  if (isInReg())
5264    S += "inreg ";
5265  if (isSRet())
5266    S += "sret ";
5267  if (isByVal())
5268    S += "byval ";
5269  if (isNest())
5270    S += "nest ";
5271  if (getByValAlign())
5272    S += "byval-align:" + utostr(getByValAlign()) + " ";
5273  if (getOrigAlign())
5274    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5275  if (getByValSize())
5276    S += "byval-size:" + utostr(getByValSize()) + " ";
5277  return S + ">";
5278}
5279
5280void SDNode::dump() const { dump(0); }
5281void SDNode::dump(const SelectionDAG *G) const {
5282  print(errs(), G);
5283  errs().flush();
5284}
5285
5286void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5287  OS << (void*)this << ": ";
5288
5289  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5290    if (i) OS << ",";
5291    if (getValueType(i) == MVT::Other)
5292      OS << "ch";
5293    else
5294      OS << getValueType(i).getMVTString();
5295  }
5296  OS << " = " << getOperationName(G);
5297
5298  OS << " ";
5299  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5300    if (i) OS << ", ";
5301    OS << (void*)getOperand(i).getNode();
5302    if (unsigned RN = getOperand(i).getResNo())
5303      OS << ":" << RN;
5304  }
5305
5306  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5307    SDNode *Mask = getOperand(2).getNode();
5308    OS << "<";
5309    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5310      if (i) OS << ",";
5311      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5312        OS << "u";
5313      else
5314        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5315    }
5316    OS << ">";
5317  }
5318
5319  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5320    OS << '<' << CSDN->getAPIntValue() << '>';
5321  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5322    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5323      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5324    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5325      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5326    else {
5327      OS << "<APFloat(";
5328      CSDN->getValueAPF().bitcastToAPInt().dump();
5329      OS << ")>";
5330    }
5331  } else if (const GlobalAddressSDNode *GADN =
5332             dyn_cast<GlobalAddressSDNode>(this)) {
5333    int64_t offset = GADN->getOffset();
5334    OS << '<';
5335    WriteAsOperand(OS, GADN->getGlobal());
5336    OS << '>';
5337    if (offset > 0)
5338      OS << " + " << offset;
5339    else
5340      OS << " " << offset;
5341  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5342    OS << "<" << FIDN->getIndex() << ">";
5343  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5344    OS << "<" << JTDN->getIndex() << ">";
5345  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5346    int offset = CP->getOffset();
5347    if (CP->isMachineConstantPoolEntry())
5348      OS << "<" << *CP->getMachineCPVal() << ">";
5349    else
5350      OS << "<" << *CP->getConstVal() << ">";
5351    if (offset > 0)
5352      OS << " + " << offset;
5353    else
5354      OS << " " << offset;
5355  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5356    OS << "<";
5357    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5358    if (LBB)
5359      OS << LBB->getName() << " ";
5360    OS << (const void*)BBDN->getBasicBlock() << ">";
5361  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5362    if (G && R->getReg() &&
5363        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5364      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5365    } else {
5366      OS << " #" << R->getReg();
5367    }
5368  } else if (const ExternalSymbolSDNode *ES =
5369             dyn_cast<ExternalSymbolSDNode>(this)) {
5370    OS << "'" << ES->getSymbol() << "'";
5371  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5372    if (M->getValue())
5373      OS << "<" << M->getValue() << ">";
5374    else
5375      OS << "<null>";
5376  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5377    if (M->MO.getValue())
5378      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5379    else
5380      OS << "<null:" << M->MO.getOffset() << ">";
5381  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5382    OS << N->getArgFlags().getArgFlagsString();
5383  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5384    OS << ":" << N->getVT().getMVTString();
5385  }
5386  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5387    const Value *SrcValue = LD->getSrcValue();
5388    int SrcOffset = LD->getSrcValueOffset();
5389    OS << " <";
5390    if (SrcValue)
5391      OS << SrcValue;
5392    else
5393      OS << "null";
5394    OS << ":" << SrcOffset << ">";
5395
5396    bool doExt = true;
5397    switch (LD->getExtensionType()) {
5398    default: doExt = false; break;
5399    case ISD::EXTLOAD: OS << " <anyext "; break;
5400    case ISD::SEXTLOAD: OS << " <sext "; break;
5401    case ISD::ZEXTLOAD: OS << " <zext "; break;
5402    }
5403    if (doExt)
5404      OS << LD->getMemoryVT().getMVTString() << ">";
5405
5406    const char *AM = getIndexedModeName(LD->getAddressingMode());
5407    if (*AM)
5408      OS << " " << AM;
5409    if (LD->isVolatile())
5410      OS << " <volatile>";
5411    OS << " alignment=" << LD->getAlignment();
5412  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5413    const Value *SrcValue = ST->getSrcValue();
5414    int SrcOffset = ST->getSrcValueOffset();
5415    OS << " <";
5416    if (SrcValue)
5417      OS << SrcValue;
5418    else
5419      OS << "null";
5420    OS << ":" << SrcOffset << ">";
5421
5422    if (ST->isTruncatingStore())
5423      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5424
5425    const char *AM = getIndexedModeName(ST->getAddressingMode());
5426    if (*AM)
5427      OS << " " << AM;
5428    if (ST->isVolatile())
5429      OS << " <volatile>";
5430    OS << " alignment=" << ST->getAlignment();
5431  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5432    const Value *SrcValue = AT->getSrcValue();
5433    int SrcOffset = AT->getSrcValueOffset();
5434    OS << " <";
5435    if (SrcValue)
5436      OS << SrcValue;
5437    else
5438      OS << "null";
5439    OS << ":" << SrcOffset << ">";
5440    if (AT->isVolatile())
5441      OS << " <volatile>";
5442    OS << " alignment=" << AT->getAlignment();
5443  }
5444}
5445
5446static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5447  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5448    if (N->getOperand(i).getNode()->hasOneUse())
5449      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5450    else
5451      cerr << "\n" << std::string(indent+2, ' ')
5452           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5453
5454
5455  cerr << "\n" << std::string(indent, ' ');
5456  N->dump(G);
5457}
5458
5459void SelectionDAG::dump() const {
5460  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5461
5462  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5463       I != E; ++I) {
5464    const SDNode *N = I;
5465    if (!N->hasOneUse() && N != getRoot().getNode())
5466      DumpNodes(N, 2, this);
5467  }
5468
5469  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5470
5471  cerr << "\n\n";
5472}
5473
5474const Type *ConstantPoolSDNode::getType() const {
5475  if (isMachineConstantPoolEntry())
5476    return Val.MachineCPVal->getType();
5477  return Val.ConstVal->getType();
5478}
5479