SelectionDAG.cpp revision 3ea0b47f81caeb53f9594dd3f7702ae01c4f2cc6
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30// Temporary boolean for testing the dag combiner
31namespace llvm {
32  extern bool CombinerEnabled;
33}
34
35static bool isCommutativeBinOp(unsigned Opcode) {
36  switch (Opcode) {
37  case ISD::ADD:
38  case ISD::MUL:
39  case ISD::FADD:
40  case ISD::FMUL:
41  case ISD::AND:
42  case ISD::OR:
43  case ISD::XOR: return true;
44  default: return false; // FIXME: Need commutative info for user ops!
45  }
46}
47
48static bool isAssociativeBinOp(unsigned Opcode) {
49  switch (Opcode) {
50  case ISD::ADD:
51  case ISD::MUL:
52  case ISD::AND:
53  case ISD::OR:
54  case ISD::XOR: return true;
55  default: return false; // FIXME: Need associative info for user ops!
56  }
57}
58
59// isInvertibleForFree - Return true if there is no cost to emitting the logical
60// inverse of this node.
61static bool isInvertibleForFree(SDOperand N) {
62  if (isa<ConstantSDNode>(N.Val)) return true;
63  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
64    return true;
65  return false;
66}
67
68//===----------------------------------------------------------------------===//
69//                              ConstantFPSDNode Class
70//===----------------------------------------------------------------------===//
71
72/// isExactlyValue - We don't rely on operator== working on double values, as
73/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
74/// As such, this method can be used to do an exact bit-for-bit comparison of
75/// two floating point values.
76bool ConstantFPSDNode::isExactlyValue(double V) const {
77  return DoubleToBits(V) == DoubleToBits(Value);
78}
79
80//===----------------------------------------------------------------------===//
81//                              ISD Class
82//===----------------------------------------------------------------------===//
83
84/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
85/// when given the operation for (X op Y).
86ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
87  // To perform this operation, we just need to swap the L and G bits of the
88  // operation.
89  unsigned OldL = (Operation >> 2) & 1;
90  unsigned OldG = (Operation >> 1) & 1;
91  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
92                       (OldL << 1) |       // New G bit
93                       (OldG << 2));        // New L bit.
94}
95
96/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
97/// 'op' is a valid SetCC operation.
98ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
99  unsigned Operation = Op;
100  if (isInteger)
101    Operation ^= 7;   // Flip L, G, E bits, but not U.
102  else
103    Operation ^= 15;  // Flip all of the condition bits.
104  if (Operation > ISD::SETTRUE2)
105    Operation &= ~8;     // Don't let N and U bits get set.
106  return ISD::CondCode(Operation);
107}
108
109
110/// isSignedOp - For an integer comparison, return 1 if the comparison is a
111/// signed operation and 2 if the result is an unsigned comparison.  Return zero
112/// if the operation does not depend on the sign of the input (setne and seteq).
113static int isSignedOp(ISD::CondCode Opcode) {
114  switch (Opcode) {
115  default: assert(0 && "Illegal integer setcc operation!");
116  case ISD::SETEQ:
117  case ISD::SETNE: return 0;
118  case ISD::SETLT:
119  case ISD::SETLE:
120  case ISD::SETGT:
121  case ISD::SETGE: return 1;
122  case ISD::SETULT:
123  case ISD::SETULE:
124  case ISD::SETUGT:
125  case ISD::SETUGE: return 2;
126  }
127}
128
129/// getSetCCOrOperation - Return the result of a logical OR between different
130/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
131/// returns SETCC_INVALID if it is not possible to represent the resultant
132/// comparison.
133ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
134                                       bool isInteger) {
135  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
136    // Cannot fold a signed integer setcc with an unsigned integer setcc.
137    return ISD::SETCC_INVALID;
138
139  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
140
141  // If the N and U bits get set then the resultant comparison DOES suddenly
142  // care about orderedness, and is true when ordered.
143  if (Op > ISD::SETTRUE2)
144    Op &= ~16;     // Clear the N bit.
145  return ISD::CondCode(Op);
146}
147
148/// getSetCCAndOperation - Return the result of a logical AND between different
149/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
150/// function returns zero if it is not possible to represent the resultant
151/// comparison.
152ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
153                                        bool isInteger) {
154  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
155    // Cannot fold a signed setcc with an unsigned setcc.
156    return ISD::SETCC_INVALID;
157
158  // Combine all of the condition bits.
159  return ISD::CondCode(Op1 & Op2);
160}
161
162const TargetMachine &SelectionDAG::getTarget() const {
163  return TLI.getTargetMachine();
164}
165
166//===----------------------------------------------------------------------===//
167//                              SelectionDAG Class
168//===----------------------------------------------------------------------===//
169
170/// RemoveDeadNodes - This method deletes all unreachable nodes in the
171/// SelectionDAG, including nodes (like loads) that have uses of their token
172/// chain but no other uses and no side effect.  If a node is passed in as an
173/// argument, it is used as the seed for node deletion.
174void SelectionDAG::RemoveDeadNodes(SDNode *N) {
175  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
176
177  // Create a dummy node (which is not added to allnodes), that adds a reference
178  // to the root node, preventing it from being deleted.
179  HandleSDNode Dummy(getRoot());
180
181  // If we have a hint to start from, use it.
182  if (N) DeleteNodeIfDead(N, &AllNodeSet);
183
184 Restart:
185  unsigned NumNodes = AllNodeSet.size();
186  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
187       I != E; ++I) {
188    // Try to delete this node.
189    DeleteNodeIfDead(*I, &AllNodeSet);
190
191    // If we actually deleted any nodes, do not use invalid iterators in
192    // AllNodeSet.
193    if (AllNodeSet.size() != NumNodes)
194      goto Restart;
195  }
196
197  // Restore AllNodes.
198  if (AllNodes.size() != NumNodes)
199    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
200
201  // If the root changed (e.g. it was a dead load, update the root).
202  setRoot(Dummy.getValue());
203}
204
205
206void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
207  if (!N->use_empty())
208    return;
209
210  // Okay, we really are going to delete this node.  First take this out of the
211  // appropriate CSE map.
212  RemoveNodeFromCSEMaps(N);
213
214  // Next, brutally remove the operand list.  This is safe to do, as there are
215  // no cycles in the graph.
216  while (!N->Operands.empty()) {
217    SDNode *O = N->Operands.back().Val;
218    N->Operands.pop_back();
219    O->removeUser(N);
220
221    // Now that we removed this operand, see if there are no uses of it left.
222    DeleteNodeIfDead(O, NodeSet);
223  }
224
225  // Remove the node from the nodes set and delete it.
226  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
227  AllNodeSet.erase(N);
228
229  // Now that the node is gone, check to see if any of the operands of this node
230  // are dead now.
231  delete N;
232}
233
234void SelectionDAG::DeleteNode(SDNode *N) {
235  assert(N->use_empty() && "Cannot delete a node that is not dead!");
236
237  // First take this out of the appropriate CSE map.
238  RemoveNodeFromCSEMaps(N);
239
240  // Finally, remove uses due to operands of this node, remove from the
241  // AllNodes list, and delete the node.
242  DeleteNodeNotInCSEMaps(N);
243}
244
245void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
246
247  // Remove it from the AllNodes list.
248  for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
249    assert(I != AllNodes.end() && "Node not in AllNodes list??");
250    if (*I == N) {
251      // Erase from the vector, which is not ordered.
252      std::swap(*I, AllNodes.back());
253      AllNodes.pop_back();
254      break;
255    }
256  }
257
258  // Drop all of the operands and decrement used nodes use counts.
259  while (!N->Operands.empty()) {
260    SDNode *O = N->Operands.back().Val;
261    N->Operands.pop_back();
262    O->removeUser(N);
263  }
264
265  delete N;
266}
267
268/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
269/// correspond to it.  This is useful when we're about to delete or repurpose
270/// the node.  We don't want future request for structurally identical nodes
271/// to return N anymore.
272void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
273  bool Erased = false;
274  switch (N->getOpcode()) {
275  case ISD::HANDLENODE: return;  // noop.
276  case ISD::Constant:
277    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
278                                            N->getValueType(0)));
279    break;
280  case ISD::TargetConstant:
281    Erased = TargetConstants.erase(std::make_pair(
282                                    cast<ConstantSDNode>(N)->getValue(),
283                                                  N->getValueType(0)));
284    break;
285  case ISD::ConstantFP: {
286    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
287    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
288    break;
289  }
290  case ISD::CONDCODE:
291    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
292           "Cond code doesn't exist!");
293    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
294    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
295    break;
296  case ISD::GlobalAddress:
297    Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
298    break;
299  case ISD::TargetGlobalAddress:
300    Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
301    break;
302  case ISD::FrameIndex:
303    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
304    break;
305  case ISD::TargetFrameIndex:
306    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
307    break;
308  case ISD::ConstantPool:
309    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
310    break;
311  case ISD::TargetConstantPool:
312    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
313    break;
314  case ISD::BasicBlock:
315    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
316    break;
317  case ISD::ExternalSymbol:
318    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
319    break;
320  case ISD::VALUETYPE:
321    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
322    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
323    break;
324  case ISD::Register:
325    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
326                                           N->getValueType(0)));
327    break;
328  case ISD::SRCVALUE: {
329    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
330    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
331    break;
332  }
333  case ISD::LOAD:
334    Erased = Loads.erase(std::make_pair(N->getOperand(1),
335                                        std::make_pair(N->getOperand(0),
336                                                       N->getValueType(0))));
337    break;
338  default:
339    if (N->getNumValues() == 1) {
340      if (N->getNumOperands() == 0) {
341        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
342                                                 N->getValueType(0)));
343      } else if (N->getNumOperands() == 1) {
344        Erased =
345          UnaryOps.erase(std::make_pair(N->getOpcode(),
346                                        std::make_pair(N->getOperand(0),
347                                                       N->getValueType(0))));
348      } else if (N->getNumOperands() == 2) {
349        Erased =
350          BinaryOps.erase(std::make_pair(N->getOpcode(),
351                                         std::make_pair(N->getOperand(0),
352                                                        N->getOperand(1))));
353      } else {
354        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
355        Erased =
356          OneResultNodes.erase(std::make_pair(N->getOpcode(),
357                                              std::make_pair(N->getValueType(0),
358                                                             Ops)));
359      }
360    } else {
361      // Remove the node from the ArbitraryNodes map.
362      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
363      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
364      Erased =
365        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
366                                            std::make_pair(RV, Ops)));
367    }
368    break;
369  }
370#ifndef NDEBUG
371  // Verify that the node was actually in one of the CSE maps, unless it has a
372  // flag result (which cannot be CSE'd) or is one of the special cases that are
373  // not subject to CSE.
374  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
375      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
376      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
377
378    N->dump();
379    assert(0 && "Node is not in map!");
380  }
381#endif
382}
383
384/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
385/// has been taken out and modified in some way.  If the specified node already
386/// exists in the CSE maps, do not modify the maps, but return the existing node
387/// instead.  If it doesn't exist, add it and return null.
388///
389SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
390  assert(N->getNumOperands() && "This is a leaf node!");
391  if (N->getOpcode() == ISD::LOAD) {
392    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
393                                      std::make_pair(N->getOperand(0),
394                                                     N->getValueType(0)))];
395    if (L) return L;
396    L = N;
397  } else if (N->getOpcode() == ISD::HANDLENODE) {
398    return 0;  // never add it.
399  } else if (N->getNumOperands() == 1) {
400    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
401                                         std::make_pair(N->getOperand(0),
402                                                        N->getValueType(0)))];
403    if (U) return U;
404    U = N;
405  } else if (N->getNumOperands() == 2) {
406    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
407                                          std::make_pair(N->getOperand(0),
408                                                         N->getOperand(1)))];
409    if (B) return B;
410    B = N;
411  } else if (N->getNumValues() == 1) {
412    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
413    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
414                                  std::make_pair(N->getValueType(0), Ops))];
415    if (ORN) return ORN;
416    ORN = N;
417  } else {
418    // Remove the node from the ArbitraryNodes map.
419    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
420    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
421    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
422                                                std::make_pair(RV, Ops))];
423    if (AN) return AN;
424    AN = N;
425  }
426  return 0;
427
428}
429
430
431
432SelectionDAG::~SelectionDAG() {
433  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
434    delete AllNodes[i];
435}
436
437SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
438  if (Op.getValueType() == VT) return Op;
439  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
440  return getNode(ISD::AND, Op.getValueType(), Op,
441                 getConstant(Imm, Op.getValueType()));
442}
443
444SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
445  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
446  // Mask out any bits that are not valid for this constant.
447  if (VT != MVT::i64)
448    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
449
450  SDNode *&N = Constants[std::make_pair(Val, VT)];
451  if (N) return SDOperand(N, 0);
452  N = new ConstantSDNode(false, Val, VT);
453  AllNodes.push_back(N);
454  return SDOperand(N, 0);
455}
456
457SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
458  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
459  // Mask out any bits that are not valid for this constant.
460  if (VT != MVT::i64)
461    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
462
463  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
464  if (N) return SDOperand(N, 0);
465  N = new ConstantSDNode(true, Val, VT);
466  AllNodes.push_back(N);
467  return SDOperand(N, 0);
468}
469
470SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
471  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
472  if (VT == MVT::f32)
473    Val = (float)Val;  // Mask out extra precision.
474
475  // Do the map lookup using the actual bit pattern for the floating point
476  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
477  // we don't have issues with SNANs.
478  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
479  if (N) return SDOperand(N, 0);
480  N = new ConstantFPSDNode(Val, VT);
481  AllNodes.push_back(N);
482  return SDOperand(N, 0);
483}
484
485
486
487SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
488                                         MVT::ValueType VT) {
489  SDNode *&N = GlobalValues[GV];
490  if (N) return SDOperand(N, 0);
491  N = new GlobalAddressSDNode(false, GV, VT);
492  AllNodes.push_back(N);
493  return SDOperand(N, 0);
494}
495
496SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
497                                               MVT::ValueType VT) {
498  SDNode *&N = TargetGlobalValues[GV];
499  if (N) return SDOperand(N, 0);
500  N = new GlobalAddressSDNode(true, GV, VT);
501  AllNodes.push_back(N);
502  return SDOperand(N, 0);
503}
504
505SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
506  SDNode *&N = FrameIndices[FI];
507  if (N) return SDOperand(N, 0);
508  N = new FrameIndexSDNode(FI, VT, false);
509  AllNodes.push_back(N);
510  return SDOperand(N, 0);
511}
512
513SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
514  SDNode *&N = TargetFrameIndices[FI];
515  if (N) return SDOperand(N, 0);
516  N = new FrameIndexSDNode(FI, VT, true);
517  AllNodes.push_back(N);
518  return SDOperand(N, 0);
519}
520
521SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
522  SDNode *&N = ConstantPoolIndices[C];
523  if (N) return SDOperand(N, 0);
524  N = new ConstantPoolSDNode(C, VT, false);
525  AllNodes.push_back(N);
526  return SDOperand(N, 0);
527}
528
529SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
530  SDNode *&N = TargetConstantPoolIndices[C];
531  if (N) return SDOperand(N, 0);
532  N = new ConstantPoolSDNode(C, VT, true);
533  AllNodes.push_back(N);
534  return SDOperand(N, 0);
535}
536
537SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
538  SDNode *&N = BBNodes[MBB];
539  if (N) return SDOperand(N, 0);
540  N = new BasicBlockSDNode(MBB);
541  AllNodes.push_back(N);
542  return SDOperand(N, 0);
543}
544
545SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
546  if ((unsigned)VT >= ValueTypeNodes.size())
547    ValueTypeNodes.resize(VT+1);
548  if (ValueTypeNodes[VT] == 0) {
549    ValueTypeNodes[VT] = new VTSDNode(VT);
550    AllNodes.push_back(ValueTypeNodes[VT]);
551  }
552
553  return SDOperand(ValueTypeNodes[VT], 0);
554}
555
556SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
557  SDNode *&N = ExternalSymbols[Sym];
558  if (N) return SDOperand(N, 0);
559  N = new ExternalSymbolSDNode(Sym, VT);
560  AllNodes.push_back(N);
561  return SDOperand(N, 0);
562}
563
564SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
565  if ((unsigned)Cond >= CondCodeNodes.size())
566    CondCodeNodes.resize(Cond+1);
567
568  if (CondCodeNodes[Cond] == 0) {
569    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
570    AllNodes.push_back(CondCodeNodes[Cond]);
571  }
572  return SDOperand(CondCodeNodes[Cond], 0);
573}
574
575SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
576  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
577  if (!Reg) {
578    Reg = new RegisterSDNode(RegNo, VT);
579    AllNodes.push_back(Reg);
580  }
581  return SDOperand(Reg, 0);
582}
583
584/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
585/// this predicate to simplify operations downstream.  V and Mask are known to
586/// be the same type.
587static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
588                              const TargetLowering &TLI) {
589  unsigned SrcBits;
590  if (Mask == 0) return true;
591
592  // If we know the result of a setcc has the top bits zero, use this info.
593  switch (Op.getOpcode()) {
594    case ISD::Constant:
595      return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
596
597    case ISD::SETCC:
598      return ((Mask & 1) == 0) &&
599      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
600
601    case ISD::ZEXTLOAD:
602      SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
603      return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
604    case ISD::ZERO_EXTEND:
605      SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
606      return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
607    case ISD::AssertZext:
608      SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
609      return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
610    case ISD::AND:
611      // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
612      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
613        return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
614
615      // FALL THROUGH
616    case ISD::OR:
617    case ISD::XOR:
618      return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
619      MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
620    case ISD::SELECT:
621      return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
622      MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
623    case ISD::SELECT_CC:
624      return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
625      MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
626    case ISD::SRL:
627      // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
628      if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
629        uint64_t NewVal = Mask << ShAmt->getValue();
630        SrcBits = MVT::getSizeInBits(Op.getValueType());
631        if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
632        return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
633      }
634      return false;
635    case ISD::SHL:
636      // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
637      if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
638        uint64_t NewVal = Mask >> ShAmt->getValue();
639        return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
640      }
641      return false;
642    case ISD::CTTZ:
643    case ISD::CTLZ:
644    case ISD::CTPOP:
645      // Bit counting instructions can not set the high bits of the result
646      // register.  The max number of bits sets depends on the input.
647      return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
648
649      // TODO we could handle some SRA cases here.
650    default: break;
651  }
652
653  return false;
654}
655
656
657
658SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
659                                      SDOperand N2, ISD::CondCode Cond) {
660  // These setcc operations always fold.
661  switch (Cond) {
662  default: break;
663  case ISD::SETFALSE:
664  case ISD::SETFALSE2: return getConstant(0, VT);
665  case ISD::SETTRUE:
666  case ISD::SETTRUE2:  return getConstant(1, VT);
667  }
668
669  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
670    uint64_t C2 = N2C->getValue();
671    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
672      uint64_t C1 = N1C->getValue();
673
674      // Sign extend the operands if required
675      if (ISD::isSignedIntSetCC(Cond)) {
676        C1 = N1C->getSignExtended();
677        C2 = N2C->getSignExtended();
678      }
679
680      switch (Cond) {
681      default: assert(0 && "Unknown integer setcc!");
682      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
683      case ISD::SETNE:  return getConstant(C1 != C2, VT);
684      case ISD::SETULT: return getConstant(C1 <  C2, VT);
685      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
686      case ISD::SETULE: return getConstant(C1 <= C2, VT);
687      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
688      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
689      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
690      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
691      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
692      }
693    } else {
694      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
695      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
696        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
697
698        // If the comparison constant has bits in the upper part, the
699        // zero-extended value could never match.
700        if (C2 & (~0ULL << InSize)) {
701          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
702          switch (Cond) {
703          case ISD::SETUGT:
704          case ISD::SETUGE:
705          case ISD::SETEQ: return getConstant(0, VT);
706          case ISD::SETULT:
707          case ISD::SETULE:
708          case ISD::SETNE: return getConstant(1, VT);
709          case ISD::SETGT:
710          case ISD::SETGE:
711            // True if the sign bit of C2 is set.
712            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
713          case ISD::SETLT:
714          case ISD::SETLE:
715            // True if the sign bit of C2 isn't set.
716            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
717          default:
718            break;
719          }
720        }
721
722        // Otherwise, we can perform the comparison with the low bits.
723        switch (Cond) {
724        case ISD::SETEQ:
725        case ISD::SETNE:
726        case ISD::SETUGT:
727        case ISD::SETUGE:
728        case ISD::SETULT:
729        case ISD::SETULE:
730          return getSetCC(VT, N1.getOperand(0),
731                          getConstant(C2, N1.getOperand(0).getValueType()),
732                          Cond);
733        default:
734          break;   // todo, be more careful with signed comparisons
735        }
736      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
737                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
738        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
739        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
740        MVT::ValueType ExtDstTy = N1.getValueType();
741        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
742
743        // If the extended part has any inconsistent bits, it cannot ever
744        // compare equal.  In other words, they have to be all ones or all
745        // zeros.
746        uint64_t ExtBits =
747          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
748        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
749          return getConstant(Cond == ISD::SETNE, VT);
750
751        // Otherwise, make this a use of a zext.
752        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
753                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
754                        Cond);
755      }
756
757      uint64_t MinVal, MaxVal;
758      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
759      if (ISD::isSignedIntSetCC(Cond)) {
760        MinVal = 1ULL << (OperandBitSize-1);
761        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
762          MaxVal = ~0ULL >> (65-OperandBitSize);
763        else
764          MaxVal = 0;
765      } else {
766        MinVal = 0;
767        MaxVal = ~0ULL >> (64-OperandBitSize);
768      }
769
770      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
771      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
772        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
773        --C2;                                          // X >= C1 --> X > (C1-1)
774        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
775                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
776      }
777
778      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
779        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
780        ++C2;                                          // X <= C1 --> X < (C1+1)
781        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
782                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
783      }
784
785      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
786        return getConstant(0, VT);      // X < MIN --> false
787
788      // Canonicalize setgt X, Min --> setne X, Min
789      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
790        return getSetCC(VT, N1, N2, ISD::SETNE);
791
792      // If we have setult X, 1, turn it into seteq X, 0
793      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
794        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
795                        ISD::SETEQ);
796      // If we have setugt X, Max-1, turn it into seteq X, Max
797      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
798        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
799                        ISD::SETEQ);
800
801      // If we have "setcc X, C1", check to see if we can shrink the immediate
802      // by changing cc.
803
804      // SETUGT X, SINTMAX  -> SETLT X, 0
805      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
806          C2 == (~0ULL >> (65-OperandBitSize)))
807        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
808
809      // FIXME: Implement the rest of these.
810
811
812      // Fold bit comparisons when we can.
813      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
814          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
815        if (ConstantSDNode *AndRHS =
816                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
817          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
818            // Perform the xform if the AND RHS is a single bit.
819            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
820              return getNode(ISD::SRL, VT, N1,
821                             getConstant(Log2_64(AndRHS->getValue()),
822                                                   TLI.getShiftAmountTy()));
823            }
824          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
825            // (X & 8) == 8  -->  (X & 8) >> 3
826            // Perform the xform if C2 is a single bit.
827            if ((C2 & (C2-1)) == 0) {
828              return getNode(ISD::SRL, VT, N1,
829                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
830            }
831          }
832        }
833    }
834  } else if (isa<ConstantSDNode>(N1.Val)) {
835      // Ensure that the constant occurs on the RHS.
836    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
837  }
838
839  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
840    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
841      double C1 = N1C->getValue(), C2 = N2C->getValue();
842
843      switch (Cond) {
844      default: break; // FIXME: Implement the rest of these!
845      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
846      case ISD::SETNE:  return getConstant(C1 != C2, VT);
847      case ISD::SETLT:  return getConstant(C1 < C2, VT);
848      case ISD::SETGT:  return getConstant(C1 > C2, VT);
849      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
850      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
851      }
852    } else {
853      // Ensure that the constant occurs on the RHS.
854      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
855    }
856
857  if (N1 == N2) {
858    // We can always fold X == Y for integer setcc's.
859    if (MVT::isInteger(N1.getValueType()))
860      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
861    unsigned UOF = ISD::getUnorderedFlavor(Cond);
862    if (UOF == 2)   // FP operators that are undefined on NaNs.
863      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
864    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
865      return getConstant(UOF, VT);
866    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
867    // if it is not already.
868    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
869    if (NewCond != Cond)
870      return getSetCC(VT, N1, N2, NewCond);
871  }
872
873  if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
874    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
875        N1.getOpcode() == ISD::XOR) {
876      // Simplify (X+Y) == (X+Z) -->  Y == Z
877      if (N1.getOpcode() == N2.getOpcode()) {
878        if (N1.getOperand(0) == N2.getOperand(0))
879          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
880        if (N1.getOperand(1) == N2.getOperand(1))
881          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
882        if (isCommutativeBinOp(N1.getOpcode())) {
883          // If X op Y == Y op X, try other combinations.
884          if (N1.getOperand(0) == N2.getOperand(1))
885            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
886          if (N1.getOperand(1) == N2.getOperand(0))
887            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
888        }
889      }
890
891      // FIXME: move this stuff to the DAG Combiner when it exists!
892
893      // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.  Common for condcodes.
894      if (N1.getOpcode() == ISD::XOR)
895        if (ConstantSDNode *XORC = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
896          if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N2)) {
897            // If we know that all of the inverted bits are zero, don't bother
898            // performing the inversion.
899            if (MaskedValueIsZero(N1.getOperand(0), ~XORC->getValue(), TLI))
900              return getSetCC(VT, N1.getOperand(0),
901                              getConstant(XORC->getValue()^RHSC->getValue(),
902                                          N1.getValueType()), Cond);
903          }
904
905      // Simplify (X+Z) == X -->  Z == 0
906      if (N1.getOperand(0) == N2)
907        return getSetCC(VT, N1.getOperand(1),
908                        getConstant(0, N1.getValueType()), Cond);
909      if (N1.getOperand(1) == N2) {
910        if (isCommutativeBinOp(N1.getOpcode()))
911          return getSetCC(VT, N1.getOperand(0),
912                          getConstant(0, N1.getValueType()), Cond);
913        else {
914          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
915          // (Z-X) == X  --> Z == X<<1
916          return getSetCC(VT, N1.getOperand(0),
917                          getNode(ISD::SHL, N2.getValueType(),
918                                  N2, getConstant(1, TLI.getShiftAmountTy())),
919                          Cond);
920        }
921      }
922    }
923
924    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
925        N2.getOpcode() == ISD::XOR) {
926      // Simplify  X == (X+Z) -->  Z == 0
927      if (N2.getOperand(0) == N1) {
928        return getSetCC(VT, N2.getOperand(1),
929                        getConstant(0, N2.getValueType()), Cond);
930      } else if (N2.getOperand(1) == N1) {
931        if (isCommutativeBinOp(N2.getOpcode())) {
932          return getSetCC(VT, N2.getOperand(0),
933                          getConstant(0, N2.getValueType()), Cond);
934        } else {
935          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
936          // X == (Z-X)  --> X<<1 == Z
937          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
938                                      getConstant(1, TLI.getShiftAmountTy())),
939                          N2.getOperand(0), Cond);
940        }
941      }
942    }
943  }
944
945  // Fold away ALL boolean setcc's.
946  if (N1.getValueType() == MVT::i1) {
947    switch (Cond) {
948    default: assert(0 && "Unknown integer setcc!");
949    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
950      N1 = getNode(ISD::XOR, MVT::i1,
951                   getNode(ISD::XOR, MVT::i1, N1, N2),
952                   getConstant(1, MVT::i1));
953      break;
954    case ISD::SETNE:  // X != Y   -->  (X^Y)
955      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
956      break;
957    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
958    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
959      N1 = getNode(ISD::AND, MVT::i1, N2,
960                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
961      break;
962    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
963    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
964      N1 = getNode(ISD::AND, MVT::i1, N1,
965                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
966      break;
967    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
968    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
969      N1 = getNode(ISD::OR, MVT::i1, N2,
970                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
971      break;
972    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
973    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
974      N1 = getNode(ISD::OR, MVT::i1, N1,
975                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
976      break;
977    }
978    if (VT != MVT::i1)
979      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
980    return N1;
981  }
982
983  // Could not fold it.
984  return SDOperand();
985}
986
987SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
988                                         SDOperand N3, SDOperand N4,
989                                         ISD::CondCode CC) {
990  MVT::ValueType VT = N3.getValueType();
991  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
992  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
993  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
994  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
995
996  // Check to see if we can simplify the select into an fabs node
997  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
998    // Allow either -0.0 or 0.0
999    if (CFP->getValue() == 0.0) {
1000      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
1001      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
1002          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
1003          N1 == N4.getOperand(0))
1004        return getNode(ISD::FABS, VT, N1);
1005
1006      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
1007      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
1008          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
1009          N3.getOperand(0) == N4)
1010        return getNode(ISD::FABS, VT, N4);
1011    }
1012  }
1013
1014  // check to see if we're select_cc'ing a select_cc.
1015  // this allows us to turn:
1016  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
1017  // select_cc cc, lhs, rhs, true, false
1018  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
1019      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
1020      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1021    SDOperand SCC = N1C ? N2 : N1;
1022    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
1023    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
1024    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
1025      if (CC == ISD::SETEQ) std::swap(N3, N4);
1026      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
1027                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
1028    }
1029  }
1030
1031  // Check to see if we can perform the "gzip trick", transforming
1032  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
1033  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
1034      MVT::isInteger(N1.getValueType()) &&
1035      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
1036    MVT::ValueType XType = N1.getValueType();
1037    MVT::ValueType AType = N3.getValueType();
1038    if (XType >= AType) {
1039      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
1040      // single-bit constant.  FIXME: remove once the dag combiner
1041      // exists.
1042      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
1043        unsigned ShCtV = Log2_64(N3C->getValue());
1044        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
1045        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
1046        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
1047        if (XType > AType)
1048          Shift = getNode(ISD::TRUNCATE, AType, Shift);
1049        return getNode(ISD::AND, AType, Shift, N3);
1050      }
1051      SDOperand Shift = getNode(ISD::SRA, XType, N1,
1052                                getConstant(MVT::getSizeInBits(XType)-1,
1053                                            TLI.getShiftAmountTy()));
1054      if (XType > AType)
1055        Shift = getNode(ISD::TRUNCATE, AType, Shift);
1056      return getNode(ISD::AND, AType, Shift, N3);
1057    }
1058  }
1059
1060  // Check to see if this is the equivalent of setcc
1061  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
1062    MVT::ValueType XType = N1.getValueType();
1063    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
1064      SDOperand Res = getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
1065      if (Res.getValueType() != VT)
1066        Res = getNode(ISD::ZERO_EXTEND, VT, Res);
1067      return Res;
1068    }
1069
1070    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
1071    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
1072        TLI.isOperationLegal(ISD::CTLZ, XType)) {
1073      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
1074      return getNode(ISD::SRL, XType, Ctlz,
1075                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
1076                                 TLI.getShiftAmountTy()));
1077    }
1078    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
1079    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
1080      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
1081      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
1082      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
1083                     getConstant(MVT::getSizeInBits(XType)-1,
1084                                 TLI.getShiftAmountTy()));
1085    }
1086    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
1087    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
1088      SDOperand Sign = getNode(ISD::SRL, XType, N1,
1089                               getConstant(MVT::getSizeInBits(XType)-1,
1090                                           TLI.getShiftAmountTy()));
1091      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
1092    }
1093  }
1094
1095  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
1096  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
1097  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
1098      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
1099    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
1100      MVT::ValueType XType = N1.getValueType();
1101      if (SubC->isNullValue() && MVT::isInteger(XType)) {
1102        SDOperand Shift = getNode(ISD::SRA, XType, N1,
1103                                  getConstant(MVT::getSizeInBits(XType)-1,
1104                                              TLI.getShiftAmountTy()));
1105        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
1106                       Shift);
1107      }
1108    }
1109  }
1110
1111  // Could not fold it.
1112  return SDOperand();
1113}
1114
1115/// getNode - Gets or creates the specified node.
1116///
1117SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1118  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1119  if (!N) {
1120    N = new SDNode(Opcode, VT);
1121    AllNodes.push_back(N);
1122  }
1123  return SDOperand(N, 0);
1124}
1125
1126SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1127                                SDOperand Operand) {
1128  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1129    uint64_t Val = C->getValue();
1130    switch (Opcode) {
1131    default: break;
1132    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1133    case ISD::ANY_EXTEND:
1134    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1135    case ISD::TRUNCATE:    return getConstant(Val, VT);
1136    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1137    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1138    }
1139  }
1140
1141  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1142    switch (Opcode) {
1143    case ISD::FNEG:
1144      return getConstantFP(-C->getValue(), VT);
1145    case ISD::FP_ROUND:
1146    case ISD::FP_EXTEND:
1147      return getConstantFP(C->getValue(), VT);
1148    case ISD::FP_TO_SINT:
1149      return getConstant((int64_t)C->getValue(), VT);
1150    case ISD::FP_TO_UINT:
1151      return getConstant((uint64_t)C->getValue(), VT);
1152    }
1153
1154  unsigned OpOpcode = Operand.Val->getOpcode();
1155  switch (Opcode) {
1156  case ISD::TokenFactor:
1157    return Operand;         // Factor of one node?  No factor.
1158  case ISD::SIGN_EXTEND:
1159    if (Operand.getValueType() == VT) return Operand;   // noop extension
1160    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1161      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1162    break;
1163  case ISD::ZERO_EXTEND:
1164    if (Operand.getValueType() == VT) return Operand;   // noop extension
1165    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1166      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1167    break;
1168  case ISD::ANY_EXTEND:
1169    if (Operand.getValueType() == VT) return Operand;   // noop extension
1170    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1171      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1172      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1173    break;
1174  case ISD::TRUNCATE:
1175    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1176    if (OpOpcode == ISD::TRUNCATE)
1177      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1178    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1179             OpOpcode == ISD::ANY_EXTEND) {
1180      // If the source is smaller than the dest, we still need an extend.
1181      if (Operand.Val->getOperand(0).getValueType() < VT)
1182        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1183      else if (Operand.Val->getOperand(0).getValueType() > VT)
1184        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1185      else
1186        return Operand.Val->getOperand(0);
1187    }
1188    break;
1189  case ISD::FNEG:
1190    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1191      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1192                     Operand.Val->getOperand(0));
1193    if (OpOpcode == ISD::FNEG)  // --X -> X
1194      return Operand.Val->getOperand(0);
1195    break;
1196  case ISD::FABS:
1197    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1198      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1199    break;
1200  }
1201
1202  SDNode *N;
1203  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1204    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1205    if (E) return SDOperand(E, 0);
1206    E = N = new SDNode(Opcode, Operand);
1207  } else {
1208    N = new SDNode(Opcode, Operand);
1209  }
1210  N->setValueTypes(VT);
1211  AllNodes.push_back(N);
1212  return SDOperand(N, 0);
1213}
1214
1215
1216
1217SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1218                                SDOperand N1, SDOperand N2) {
1219#ifndef NDEBUG
1220  switch (Opcode) {
1221  case ISD::TokenFactor:
1222    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1223           N2.getValueType() == MVT::Other && "Invalid token factor!");
1224    break;
1225  case ISD::AND:
1226  case ISD::OR:
1227  case ISD::XOR:
1228  case ISD::UDIV:
1229  case ISD::UREM:
1230  case ISD::MULHU:
1231  case ISD::MULHS:
1232    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1233    // fall through
1234  case ISD::ADD:
1235  case ISD::SUB:
1236  case ISD::MUL:
1237  case ISD::SDIV:
1238  case ISD::SREM:
1239    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1240    // fall through.
1241  case ISD::FADD:
1242  case ISD::FSUB:
1243  case ISD::FMUL:
1244  case ISD::FDIV:
1245  case ISD::FREM:
1246    assert(N1.getValueType() == N2.getValueType() &&
1247           N1.getValueType() == VT && "Binary operator types must match!");
1248    break;
1249
1250  case ISD::SHL:
1251  case ISD::SRA:
1252  case ISD::SRL:
1253    assert(VT == N1.getValueType() &&
1254           "Shift operators return type must be the same as their first arg");
1255    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1256           VT != MVT::i1 && "Shifts only work on integers");
1257    break;
1258  case ISD::FP_ROUND_INREG: {
1259    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1260    assert(VT == N1.getValueType() && "Not an inreg round!");
1261    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1262           "Cannot FP_ROUND_INREG integer types");
1263    assert(EVT <= VT && "Not rounding down!");
1264    break;
1265  }
1266  case ISD::AssertSext:
1267  case ISD::AssertZext:
1268  case ISD::SIGN_EXTEND_INREG: {
1269    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1270    assert(VT == N1.getValueType() && "Not an inreg extend!");
1271    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1272           "Cannot *_EXTEND_INREG FP types");
1273    assert(EVT <= VT && "Not extending!");
1274  }
1275
1276  default: break;
1277  }
1278#endif
1279
1280  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1281  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1282  if (N1C) {
1283    if (N2C) {
1284      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1285      switch (Opcode) {
1286      case ISD::ADD: return getConstant(C1 + C2, VT);
1287      case ISD::SUB: return getConstant(C1 - C2, VT);
1288      case ISD::MUL: return getConstant(C1 * C2, VT);
1289      case ISD::UDIV:
1290        if (C2) return getConstant(C1 / C2, VT);
1291        break;
1292      case ISD::UREM :
1293        if (C2) return getConstant(C1 % C2, VT);
1294        break;
1295      case ISD::SDIV :
1296        if (C2) return getConstant(N1C->getSignExtended() /
1297                                   N2C->getSignExtended(), VT);
1298        break;
1299      case ISD::SREM :
1300        if (C2) return getConstant(N1C->getSignExtended() %
1301                                   N2C->getSignExtended(), VT);
1302        break;
1303      case ISD::AND  : return getConstant(C1 & C2, VT);
1304      case ISD::OR   : return getConstant(C1 | C2, VT);
1305      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1306      case ISD::SHL  : return getConstant(C1 << C2, VT);
1307      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1308      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1309      default: break;
1310      }
1311    } else {      // Cannonicalize constant to RHS if commutative
1312      if (isCommutativeBinOp(Opcode)) {
1313        std::swap(N1C, N2C);
1314        std::swap(N1, N2);
1315      }
1316    }
1317
1318    if (!CombinerEnabled) {
1319    switch (Opcode) {
1320    default: break;
1321    case ISD::SHL:    // shl  0, X -> 0
1322      if (N1C->isNullValue()) return N1;
1323      break;
1324    case ISD::SRL:    // srl  0, X -> 0
1325      if (N1C->isNullValue()) return N1;
1326      break;
1327    case ISD::SRA:    // sra -1, X -> -1
1328      if (N1C->isAllOnesValue()) return N1;
1329      break;
1330    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1331      // Extending a constant?  Just return the extended constant.
1332      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1333      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1334    }
1335    }
1336  }
1337
1338  if (!CombinerEnabled) {
1339  if (N2C) {
1340    uint64_t C2 = N2C->getValue();
1341
1342    switch (Opcode) {
1343    case ISD::ADD:
1344      if (!C2) return N1;         // add X, 0 -> X
1345      break;
1346    case ISD::SUB:
1347      if (!C2) return N1;         // sub X, 0 -> X
1348      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1349    case ISD::MUL:
1350      if (!C2) return N2;         // mul X, 0 -> 0
1351      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1352        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1353
1354      // FIXME: Move this to the DAG combiner when it exists.
1355      if ((C2 & C2-1) == 0) {
1356        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1357        return getNode(ISD::SHL, VT, N1, ShAmt);
1358      }
1359      break;
1360
1361    case ISD::MULHU:
1362    case ISD::MULHS:
1363      if (!C2) return N2;         // mul X, 0 -> 0
1364
1365      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1366        return getConstant(0, VT);
1367
1368      // Many others could be handled here, including -1, powers of 2, etc.
1369      break;
1370
1371    case ISD::UDIV:
1372      // FIXME: Move this to the DAG combiner when it exists.
1373      if ((C2 & C2-1) == 0 && C2) {
1374        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1375        return getNode(ISD::SRL, VT, N1, ShAmt);
1376      }
1377      break;
1378
1379    case ISD::SHL:
1380    case ISD::SRL:
1381    case ISD::SRA:
1382      // If the shift amount is bigger than the size of the data, then all the
1383      // bits are shifted out.  Simplify to undef.
1384      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1385        return getNode(ISD::UNDEF, N1.getValueType());
1386      }
1387      if (C2 == 0) return N1;
1388
1389      if (Opcode == ISD::SRA) {
1390        // If the sign bit is known to be zero, switch this to a SRL.
1391        if (MaskedValueIsZero(N1,
1392                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1393                              TLI))
1394          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1395      } else {
1396        // If the part left over is known to be zero, the whole thing is zero.
1397        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1398        if (Opcode == ISD::SRL) {
1399          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1400            return getConstant(0, N1.getValueType());
1401        } else if (Opcode == ISD::SHL) {
1402          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1403            return getConstant(0, N1.getValueType());
1404        }
1405      }
1406
1407      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1408        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1409          unsigned OpSAC = OpSA->getValue();
1410          if (N1.getOpcode() == ISD::SHL) {
1411            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1412              return getConstant(0, N1.getValueType());
1413            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1414                           getConstant(C2+OpSAC, N2.getValueType()));
1415          } else if (N1.getOpcode() == ISD::SRL) {
1416            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1417            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1418                                     getConstant(~0ULL << OpSAC, VT));
1419            if (C2 > OpSAC) {
1420              return getNode(ISD::SHL, VT, Mask,
1421                             getConstant(C2-OpSAC, N2.getValueType()));
1422            } else {
1423              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1424              return getNode(ISD::SRL, VT, Mask,
1425                             getConstant(OpSAC-C2, N2.getValueType()));
1426            }
1427          } else if (N1.getOpcode() == ISD::SRA) {
1428            // if C1 == C2, just mask out low bits.
1429            if (C2 == OpSAC)
1430              return getNode(ISD::AND, VT, N1.getOperand(0),
1431                             getConstant(~0ULL << C2, VT));
1432          }
1433        }
1434      break;
1435
1436    case ISD::AND:
1437      if (!C2) return N2;         // X and 0 -> 0
1438      if (N2C->isAllOnesValue())
1439        return N1;                // X and -1 -> X
1440
1441      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1442        return getConstant(0, VT);
1443
1444      {
1445        uint64_t NotC2 = ~C2;
1446        if (VT != MVT::i64)
1447          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1448
1449        if (MaskedValueIsZero(N1, NotC2, TLI))
1450          return N1;                // if (X & ~C2) -> 0, the and is redundant
1451      }
1452
1453      // FIXME: Should add a corresponding version of this for
1454      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1455      // we don't have yet.
1456      // FIXME: NOW WE DO, add this.
1457
1458      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1459      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1460        // If we are masking out the part of our input that was extended, just
1461        // mask the input to the extension directly.
1462        unsigned ExtendBits =
1463          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1464        if ((C2 & (~0ULL << ExtendBits)) == 0)
1465          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1466      } else if (N1.getOpcode() == ISD::OR) {
1467        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1468          if ((ORI->getValue() & C2) == C2) {
1469            // If the 'or' is setting all of the bits that we are masking for,
1470            // we know the result of the AND will be the AND mask itself.
1471            return N2;
1472          }
1473      }
1474      break;
1475    case ISD::OR:
1476      if (!C2)return N1;          // X or 0 -> X
1477      if (N2C->isAllOnesValue())
1478        return N2;                // X or -1 -> -1
1479      break;
1480    case ISD::XOR:
1481      if (!C2) return N1;        // X xor 0 -> X
1482      if (N2C->getValue() == 1 && N1.Val->getOpcode() == ISD::SETCC) {
1483          SDNode *SetCC = N1.Val;
1484          // !(X op Y) -> (X !op Y)
1485          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1486          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1487          return getSetCC(SetCC->getValueType(0),
1488                          SetCC->getOperand(0), SetCC->getOperand(1),
1489                          ISD::getSetCCInverse(CC, isInteger));
1490      } else if (N2C->isAllOnesValue()) {
1491        if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1492          SDNode *Op = N1.Val;
1493          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1494          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1495          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1496          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1497            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1498            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1499            if (Op->getOpcode() == ISD::AND)
1500              return getNode(ISD::OR, VT, LHS, RHS);
1501            return getNode(ISD::AND, VT, LHS, RHS);
1502          }
1503        }
1504        // X xor -1 -> not(x)  ?
1505      }
1506      break;
1507    }
1508
1509    // Reassociate ((X op C1) op C2) if possible.
1510    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1511      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1512        return getNode(Opcode, VT, N1.Val->getOperand(0),
1513                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1514  }
1515  }
1516
1517  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1518  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1519  if (N1CFP) {
1520    if (N2CFP) {
1521      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1522      switch (Opcode) {
1523      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1524      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1525      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1526      case ISD::FDIV:
1527        if (C2) return getConstantFP(C1 / C2, VT);
1528        break;
1529      case ISD::FREM :
1530        if (C2) return getConstantFP(fmod(C1, C2), VT);
1531        break;
1532      default: break;
1533      }
1534    } else {      // Cannonicalize constant to RHS if commutative
1535      if (isCommutativeBinOp(Opcode)) {
1536        std::swap(N1CFP, N2CFP);
1537        std::swap(N1, N2);
1538      }
1539    }
1540
1541    if (!CombinerEnabled) {
1542    if (Opcode == ISD::FP_ROUND_INREG)
1543      return getNode(ISD::FP_EXTEND, VT,
1544                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1545    }
1546  }
1547
1548  // Finally, fold operations that do not require constants.
1549  switch (Opcode) {
1550  case ISD::TokenFactor:
1551    if (!CombinerEnabled) {
1552    if (N1.getOpcode() == ISD::EntryToken)
1553      return N2;
1554    if (N2.getOpcode() == ISD::EntryToken)
1555      return N1;
1556    }
1557    break;
1558
1559  case ISD::AND:
1560  case ISD::OR:
1561    if (!CombinerEnabled) {
1562    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1563      SDNode *LHS = N1.Val, *RHS = N2.Val;
1564      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1565      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1566      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1567      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1568
1569      if (LR == RR && isa<ConstantSDNode>(LR) &&
1570          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1571        // (X != 0) | (Y != 0) -> (X|Y != 0)
1572        // (X == 0) & (Y == 0) -> (X|Y == 0)
1573        // (X <  0) | (Y <  0) -> (X|Y < 0)
1574        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1575            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1576             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1577             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1578          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1579                          Op2);
1580
1581        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1582          // (X == -1) & (Y == -1) -> (X&Y == -1)
1583          // (X != -1) | (Y != -1) -> (X&Y != -1)
1584          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1585          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1586              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1587              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1588            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1589                            LR, Op2);
1590          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1591          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1592            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1593                            LR, Op2);
1594        }
1595      }
1596
1597      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1598      if (LL == RR && LR == RL) {
1599        Op2 = ISD::getSetCCSwappedOperands(Op2);
1600        goto MatchedBackwards;
1601      }
1602
1603      if (LL == RL && LR == RR) {
1604      MatchedBackwards:
1605        ISD::CondCode Result;
1606        bool isInteger = MVT::isInteger(LL.getValueType());
1607        if (Opcode == ISD::OR)
1608          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1609        else
1610          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1611
1612        if (Result != ISD::SETCC_INVALID)
1613          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1614      }
1615    }
1616
1617    // and/or zext(a), zext(b) -> zext(and/or a, b)
1618    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1619        N2.getOpcode() == ISD::ZERO_EXTEND &&
1620        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1621      return getNode(ISD::ZERO_EXTEND, VT,
1622                     getNode(Opcode, N1.getOperand(0).getValueType(),
1623                             N1.getOperand(0), N2.getOperand(0)));
1624    }
1625    break;
1626  case ISD::XOR:
1627    if (!CombinerEnabled) {
1628    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1629    }
1630    break;
1631  case ISD::ADD:
1632    if (!CombinerEnabled) {
1633    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1634        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1635      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1636    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1637        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1638      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1639    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1))
1640      return N2.Val->getOperand(0); // A+(B-A) -> B
1641    }
1642    break;
1643  case ISD::FADD:
1644    if (!CombinerEnabled) {
1645    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1646      return getNode(ISD::FSUB, VT, N1, N2.getOperand(0));
1647    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1648      return getNode(ISD::FSUB, VT, N2, N1.getOperand(0));
1649    }
1650    break;
1651
1652  case ISD::SUB:
1653    if (!CombinerEnabled) {
1654    if (N1.getOpcode() == ISD::ADD) {
1655      if (N1.Val->getOperand(0) == N2)
1656        return N1.Val->getOperand(1);         // (A+B)-A == B
1657      if (N1.Val->getOperand(1) == N2)
1658        return N1.Val->getOperand(0);         // (A+B)-B == A
1659    }
1660    }
1661    break;
1662  case ISD::FSUB:
1663    if (!CombinerEnabled) {
1664    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1665      return getNode(ISD::FADD, VT, N1, N2.getOperand(0));
1666    }
1667    break;
1668  case ISD::FP_ROUND_INREG:
1669    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1670    break;
1671  case ISD::SIGN_EXTEND_INREG: {
1672    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1673    if (EVT == VT) return N1;  // Not actually extending
1674    if (!CombinerEnabled) {
1675    // If we are sign extending an extension, use the original source.
1676    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG ||
1677        N1.getOpcode() == ISD::AssertSext)
1678      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1679        return N1;
1680
1681    // If we are sign extending a sextload, return just the load.
1682    if (N1.getOpcode() == ISD::SEXTLOAD)
1683      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1684        return N1;
1685
1686    // If we are extending the result of a setcc, and we already know the
1687    // contents of the top bits, eliminate the extension.
1688    if (N1.getOpcode() == ISD::SETCC &&
1689        TLI.getSetCCResultContents() ==
1690                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1691      return N1;
1692
1693    // If we are sign extending the result of an (and X, C) operation, and we
1694    // know the extended bits are zeros already, don't do the extend.
1695    if (N1.getOpcode() == ISD::AND)
1696      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1697        uint64_t Mask = N1C->getValue();
1698        unsigned NumBits = MVT::getSizeInBits(EVT);
1699        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1700          return N1;
1701      }
1702    }
1703    break;
1704  }
1705
1706  // FIXME: figure out how to safely handle things like
1707  // int foo(int x) { return 1 << (x & 255); }
1708  // int bar() { return foo(256); }
1709#if 0
1710  case ISD::SHL:
1711  case ISD::SRL:
1712  case ISD::SRA:
1713    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1714        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1715      return getNode(Opcode, VT, N1, N2.getOperand(0));
1716    else if (N2.getOpcode() == ISD::AND)
1717      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1718        // If the and is only masking out bits that cannot effect the shift,
1719        // eliminate the and.
1720        unsigned NumBits = MVT::getSizeInBits(VT);
1721        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1722          return getNode(Opcode, VT, N1, N2.getOperand(0));
1723      }
1724    break;
1725#endif
1726  }
1727
1728  // Memoize this node if possible.
1729  SDNode *N;
1730  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1731      VT != MVT::Flag) {
1732    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1733    if (BON) return SDOperand(BON, 0);
1734
1735    BON = N = new SDNode(Opcode, N1, N2);
1736  } else {
1737    N = new SDNode(Opcode, N1, N2);
1738  }
1739
1740  N->setValueTypes(VT);
1741  AllNodes.push_back(N);
1742  return SDOperand(N, 0);
1743}
1744
1745// setAdjCallChain - This method changes the token chain of an
1746// CALLSEQ_START/END node to be the specified operand.
1747void SDNode::setAdjCallChain(SDOperand N) {
1748  assert(N.getValueType() == MVT::Other);
1749  assert((getOpcode() == ISD::CALLSEQ_START ||
1750          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1751
1752  Operands[0].Val->removeUser(this);
1753  Operands[0] = N;
1754  N.Val->Uses.push_back(this);
1755}
1756
1757
1758
1759SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1760                                SDOperand Chain, SDOperand Ptr,
1761                                SDOperand SV) {
1762  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1763  if (N) return SDOperand(N, 0);
1764  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1765
1766  // Loads have a token chain.
1767  N->setValueTypes(VT, MVT::Other);
1768  AllNodes.push_back(N);
1769  return SDOperand(N, 0);
1770}
1771
1772
1773SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1774                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1775                                   MVT::ValueType EVT) {
1776  std::vector<SDOperand> Ops;
1777  Ops.reserve(4);
1778  Ops.push_back(Chain);
1779  Ops.push_back(Ptr);
1780  Ops.push_back(SV);
1781  Ops.push_back(getValueType(EVT));
1782  std::vector<MVT::ValueType> VTs;
1783  VTs.reserve(2);
1784  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1785  return getNode(Opcode, VTs, Ops);
1786}
1787
1788SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1789                                SDOperand N1, SDOperand N2, SDOperand N3) {
1790  // Perform various simplifications.
1791  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1792  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1793  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1794  switch (Opcode) {
1795  case ISD::SETCC: {
1796    // Use SimplifySetCC  to simplify SETCC's.
1797    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1798    if (Simp.Val) return Simp;
1799    break;
1800  }
1801  case ISD::SELECT:
1802    if (N1C)
1803      if (N1C->getValue())
1804        return N2;             // select true, X, Y -> X
1805      else
1806        return N3;             // select false, X, Y -> Y
1807
1808    if (N2 == N3) return N2;   // select C, X, X -> X
1809
1810    if (VT == MVT::i1) {  // Boolean SELECT
1811      if (N2C) {
1812        if (N2C->getValue())   // select C, 1, X -> C | X
1813          return getNode(ISD::OR, VT, N1, N3);
1814        else                   // select C, 0, X -> ~C & X
1815          return getNode(ISD::AND, VT,
1816                         getNode(ISD::XOR, N1.getValueType(), N1,
1817                                 getConstant(1, N1.getValueType())), N3);
1818      } else if (N3C) {
1819        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1820          return getNode(ISD::OR, VT,
1821                         getNode(ISD::XOR, N1.getValueType(), N1,
1822                                 getConstant(1, N1.getValueType())), N2);
1823        else                   // select C, X, 0 -> C & X
1824          return getNode(ISD::AND, VT, N1, N2);
1825      }
1826
1827      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1828        return getNode(ISD::OR, VT, N1, N3);
1829      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1830        return getNode(ISD::AND, VT, N1, N2);
1831    }
1832    if (N1.getOpcode() == ISD::SETCC) {
1833      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1834                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1835      if (Simp.Val) return Simp;
1836    }
1837    break;
1838  case ISD::BRCOND:
1839    if (N2C)
1840      if (N2C->getValue()) // Unconditional branch
1841        return getNode(ISD::BR, MVT::Other, N1, N3);
1842      else
1843        return N1;         // Never-taken branch
1844    break;
1845  }
1846
1847  std::vector<SDOperand> Ops;
1848  Ops.reserve(3);
1849  Ops.push_back(N1);
1850  Ops.push_back(N2);
1851  Ops.push_back(N3);
1852
1853  // Memoize node if it doesn't produce a flag.
1854  SDNode *N;
1855  if (VT != MVT::Flag) {
1856    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1857    if (E) return SDOperand(E, 0);
1858    E = N = new SDNode(Opcode, N1, N2, N3);
1859  } else {
1860    N = new SDNode(Opcode, N1, N2, N3);
1861  }
1862  N->setValueTypes(VT);
1863  AllNodes.push_back(N);
1864  return SDOperand(N, 0);
1865}
1866
1867SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1868                                SDOperand N1, SDOperand N2, SDOperand N3,
1869                                SDOperand N4) {
1870  std::vector<SDOperand> Ops;
1871  Ops.reserve(4);
1872  Ops.push_back(N1);
1873  Ops.push_back(N2);
1874  Ops.push_back(N3);
1875  Ops.push_back(N4);
1876  return getNode(Opcode, VT, Ops);
1877}
1878
1879SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1880                                SDOperand N1, SDOperand N2, SDOperand N3,
1881                                SDOperand N4, SDOperand N5) {
1882  std::vector<SDOperand> Ops;
1883  Ops.reserve(5);
1884  Ops.push_back(N1);
1885  Ops.push_back(N2);
1886  Ops.push_back(N3);
1887  Ops.push_back(N4);
1888  Ops.push_back(N5);
1889  return getNode(Opcode, VT, Ops);
1890}
1891
1892
1893SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1894  assert((!V || isa<PointerType>(V->getType())) &&
1895         "SrcValue is not a pointer?");
1896  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1897  if (N) return SDOperand(N, 0);
1898
1899  N = new SrcValueSDNode(V, Offset);
1900  AllNodes.push_back(N);
1901  return SDOperand(N, 0);
1902}
1903
1904SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1905                                std::vector<SDOperand> &Ops) {
1906  switch (Ops.size()) {
1907  case 0: return getNode(Opcode, VT);
1908  case 1: return getNode(Opcode, VT, Ops[0]);
1909  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1910  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1911  default: break;
1912  }
1913
1914  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1915  switch (Opcode) {
1916  default: break;
1917  case ISD::BRCONDTWOWAY:
1918    if (N1C)
1919      if (N1C->getValue()) // Unconditional branch to true dest.
1920        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1921      else                 // Unconditional branch to false dest.
1922        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1923    break;
1924  case ISD::BRTWOWAY_CC:
1925    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1926    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1927           "LHS and RHS of comparison must have same type!");
1928    break;
1929  case ISD::TRUNCSTORE: {
1930    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1931    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1932#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1933    // If this is a truncating store of a constant, convert to the desired type
1934    // and store it instead.
1935    if (isa<Constant>(Ops[0])) {
1936      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1937      if (isa<Constant>(Op))
1938        N1 = Op;
1939    }
1940    // Also for ConstantFP?
1941#endif
1942    if (Ops[0].getValueType() == EVT)       // Normal store?
1943      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1944    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1945    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1946           "Can't do FP-INT conversion!");
1947    break;
1948  }
1949  case ISD::SELECT_CC: {
1950    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1951    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1952           "LHS and RHS of condition must have same type!");
1953    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1954           "True and False arms of SelectCC must have same type!");
1955    assert(Ops[2].getValueType() == VT &&
1956           "select_cc node must be of same type as true and false value!");
1957    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1958                                      cast<CondCodeSDNode>(Ops[4])->get());
1959    if (Simp.Val) return Simp;
1960    break;
1961  }
1962  case ISD::BR_CC: {
1963    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1964    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1965           "LHS/RHS of comparison should match types!");
1966
1967    if (CombinerEnabled) break;  // xforms moved to dag combine.
1968
1969    // Use SimplifySetCC  to simplify SETCC's.
1970    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1971                                   cast<CondCodeSDNode>(Ops[1])->get());
1972    if (Simp.Val) {
1973      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1974        if (C->getValue() & 1) // Unconditional branch
1975          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1976        else
1977          return Ops[0];          // Unconditional Fall through
1978      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1979        Ops[2] = Simp.getOperand(0);
1980        Ops[3] = Simp.getOperand(1);
1981        Ops[1] = Simp.getOperand(2);
1982      }
1983    }
1984    break;
1985  }
1986  }
1987
1988  // Memoize nodes.
1989  SDNode *N;
1990  if (VT != MVT::Flag) {
1991    SDNode *&E =
1992      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1993    if (E) return SDOperand(E, 0);
1994    E = N = new SDNode(Opcode, Ops);
1995  } else {
1996    N = new SDNode(Opcode, Ops);
1997  }
1998  N->setValueTypes(VT);
1999  AllNodes.push_back(N);
2000  return SDOperand(N, 0);
2001}
2002
2003SDOperand SelectionDAG::getNode(unsigned Opcode,
2004                                std::vector<MVT::ValueType> &ResultTys,
2005                                std::vector<SDOperand> &Ops) {
2006  if (ResultTys.size() == 1)
2007    return getNode(Opcode, ResultTys[0], Ops);
2008
2009  switch (Opcode) {
2010  case ISD::EXTLOAD:
2011  case ISD::SEXTLOAD:
2012  case ISD::ZEXTLOAD: {
2013    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
2014    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
2015    // If they are asking for an extending load from/to the same thing, return a
2016    // normal load.
2017    if (ResultTys[0] == EVT)
2018      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
2019    assert(EVT < ResultTys[0] &&
2020           "Should only be an extending load, not truncating!");
2021    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
2022           "Cannot sign/zero extend a FP load!");
2023    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
2024           "Cannot convert from FP to Int or Int -> FP!");
2025    break;
2026  }
2027
2028  // FIXME: figure out how to safely handle things like
2029  // int foo(int x) { return 1 << (x & 255); }
2030  // int bar() { return foo(256); }
2031#if 0
2032  case ISD::SRA_PARTS:
2033  case ISD::SRL_PARTS:
2034  case ISD::SHL_PARTS:
2035    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2036        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2037      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2038    else if (N3.getOpcode() == ISD::AND)
2039      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2040        // If the and is only masking out bits that cannot effect the shift,
2041        // eliminate the and.
2042        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2043        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2044          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2045      }
2046    break;
2047#endif
2048  }
2049
2050  // Memoize the node unless it returns a flag.
2051  SDNode *N;
2052  if (ResultTys.back() != MVT::Flag) {
2053    SDNode *&E =
2054      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
2055    if (E) return SDOperand(E, 0);
2056    E = N = new SDNode(Opcode, Ops);
2057  } else {
2058    N = new SDNode(Opcode, Ops);
2059  }
2060  N->setValueTypes(ResultTys);
2061  AllNodes.push_back(N);
2062  return SDOperand(N, 0);
2063}
2064
2065
2066/// SelectNodeTo - These are used for target selectors to *mutate* the
2067/// specified node to have the specified return type, Target opcode, and
2068/// operands.  Note that target opcodes are stored as
2069/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2070void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2071                                MVT::ValueType VT) {
2072  RemoveNodeFromCSEMaps(N);
2073  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2074  N->setValueTypes(VT);
2075}
2076void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2077                                MVT::ValueType VT, SDOperand Op1) {
2078  RemoveNodeFromCSEMaps(N);
2079  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2080  N->setValueTypes(VT);
2081  N->setOperands(Op1);
2082}
2083void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2084                                MVT::ValueType VT, SDOperand Op1,
2085                                SDOperand Op2) {
2086  RemoveNodeFromCSEMaps(N);
2087  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2088  N->setValueTypes(VT);
2089  N->setOperands(Op1, Op2);
2090}
2091void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2092                                MVT::ValueType VT1, MVT::ValueType VT2,
2093                                SDOperand Op1, SDOperand Op2) {
2094  RemoveNodeFromCSEMaps(N);
2095  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2096  N->setValueTypes(VT1, VT2);
2097  N->setOperands(Op1, Op2);
2098}
2099void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2100                                MVT::ValueType VT, SDOperand Op1,
2101                                SDOperand Op2, SDOperand Op3) {
2102  RemoveNodeFromCSEMaps(N);
2103  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2104  N->setValueTypes(VT);
2105  N->setOperands(Op1, Op2, Op3);
2106}
2107void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2108                                MVT::ValueType VT1, MVT::ValueType VT2,
2109                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2110  RemoveNodeFromCSEMaps(N);
2111  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2112  N->setValueTypes(VT1, VT2);
2113  N->setOperands(Op1, Op2, Op3);
2114}
2115
2116void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2117                                MVT::ValueType VT, SDOperand Op1,
2118                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
2119  RemoveNodeFromCSEMaps(N);
2120  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2121  N->setValueTypes(VT);
2122  N->setOperands(Op1, Op2, Op3, Op4);
2123}
2124void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2125                                MVT::ValueType VT, SDOperand Op1,
2126                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
2127                                SDOperand Op5) {
2128  RemoveNodeFromCSEMaps(N);
2129  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2130  N->setValueTypes(VT);
2131  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2132}
2133
2134/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2135/// This can cause recursive merging of nodes in the DAG.
2136///
2137/// This version assumes From/To have a single result value.
2138///
2139void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2140                                      std::vector<SDNode*> *Deleted) {
2141  SDNode *From = FromN.Val, *To = ToN.Val;
2142  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2143         "Cannot replace with this method!");
2144  assert(From != To && "Cannot replace uses of with self");
2145
2146  while (!From->use_empty()) {
2147    // Process users until they are all gone.
2148    SDNode *U = *From->use_begin();
2149
2150    // This node is about to morph, remove its old self from the CSE maps.
2151    RemoveNodeFromCSEMaps(U);
2152
2153    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2154      if (U->getOperand(i).Val == From) {
2155        From->removeUser(U);
2156        U->Operands[i].Val = To;
2157        To->addUser(U);
2158      }
2159
2160    // Now that we have modified U, add it back to the CSE maps.  If it already
2161    // exists there, recursively merge the results together.
2162    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2163      ReplaceAllUsesWith(U, Existing, Deleted);
2164      // U is now dead.
2165      if (Deleted) Deleted->push_back(U);
2166      DeleteNodeNotInCSEMaps(U);
2167    }
2168  }
2169}
2170
2171/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2172/// This can cause recursive merging of nodes in the DAG.
2173///
2174/// This version assumes From/To have matching types and numbers of result
2175/// values.
2176///
2177void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2178                                      std::vector<SDNode*> *Deleted) {
2179  assert(From != To && "Cannot replace uses of with self");
2180  assert(From->getNumValues() == To->getNumValues() &&
2181         "Cannot use this version of ReplaceAllUsesWith!");
2182  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2183    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2184    return;
2185  }
2186
2187  while (!From->use_empty()) {
2188    // Process users until they are all gone.
2189    SDNode *U = *From->use_begin();
2190
2191    // This node is about to morph, remove its old self from the CSE maps.
2192    RemoveNodeFromCSEMaps(U);
2193
2194    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2195      if (U->getOperand(i).Val == From) {
2196        From->removeUser(U);
2197        U->Operands[i].Val = To;
2198        To->addUser(U);
2199      }
2200
2201    // Now that we have modified U, add it back to the CSE maps.  If it already
2202    // exists there, recursively merge the results together.
2203    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2204      ReplaceAllUsesWith(U, Existing, Deleted);
2205      // U is now dead.
2206      if (Deleted) Deleted->push_back(U);
2207      DeleteNodeNotInCSEMaps(U);
2208    }
2209  }
2210}
2211
2212/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2213/// This can cause recursive merging of nodes in the DAG.
2214///
2215/// This version can replace From with any result values.  To must match the
2216/// number and types of values returned by From.
2217void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2218                                      const std::vector<SDOperand> &To,
2219                                      std::vector<SDNode*> *Deleted) {
2220  assert(From->getNumValues() == To.size() &&
2221         "Incorrect number of values to replace with!");
2222  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2223    // Degenerate case handled above.
2224    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2225    return;
2226  }
2227
2228  while (!From->use_empty()) {
2229    // Process users until they are all gone.
2230    SDNode *U = *From->use_begin();
2231
2232    // This node is about to morph, remove its old self from the CSE maps.
2233    RemoveNodeFromCSEMaps(U);
2234
2235    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2236      if (U->getOperand(i).Val == From) {
2237        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
2238        From->removeUser(U);
2239        U->Operands[i] = ToOp;
2240        ToOp.Val->addUser(U);
2241      }
2242
2243    // Now that we have modified U, add it back to the CSE maps.  If it already
2244    // exists there, recursively merge the results together.
2245    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2246      ReplaceAllUsesWith(U, Existing, Deleted);
2247      // U is now dead.
2248      if (Deleted) Deleted->push_back(U);
2249      DeleteNodeNotInCSEMaps(U);
2250    }
2251  }
2252}
2253
2254
2255//===----------------------------------------------------------------------===//
2256//                              SDNode Class
2257//===----------------------------------------------------------------------===//
2258
2259/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2260/// indicated value.  This method ignores uses of other values defined by this
2261/// operation.
2262bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2263  assert(Value < getNumValues() && "Bad value!");
2264
2265  // If there is only one value, this is easy.
2266  if (getNumValues() == 1)
2267    return use_size() == NUses;
2268  if (Uses.size() < NUses) return false;
2269
2270  SDOperand TheValue(this, Value);
2271
2272  std::set<SDNode*> UsersHandled;
2273
2274  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2275       UI != E; ++UI) {
2276    SDNode *User = *UI;
2277    if (User->getNumOperands() == 1 ||
2278        UsersHandled.insert(User).second)     // First time we've seen this?
2279      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2280        if (User->getOperand(i) == TheValue) {
2281          if (NUses == 0)
2282            return false;   // too many uses
2283          --NUses;
2284        }
2285  }
2286
2287  // Found exactly the right number of uses?
2288  return NUses == 0;
2289}
2290
2291
2292const char *SDNode::getOperationName(const SelectionDAG *G) const {
2293  switch (getOpcode()) {
2294  default:
2295    if (getOpcode() < ISD::BUILTIN_OP_END)
2296      return "<<Unknown DAG Node>>";
2297    else {
2298      if (G)
2299        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2300          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2301            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2302      return "<<Unknown Target Node>>";
2303    }
2304
2305  case ISD::PCMARKER:      return "PCMarker";
2306  case ISD::SRCVALUE:      return "SrcValue";
2307  case ISD::VALUETYPE:     return "ValueType";
2308  case ISD::EntryToken:    return "EntryToken";
2309  case ISD::TokenFactor:   return "TokenFactor";
2310  case ISD::AssertSext:    return "AssertSext";
2311  case ISD::AssertZext:    return "AssertZext";
2312  case ISD::Constant:      return "Constant";
2313  case ISD::TargetConstant: return "TargetConstant";
2314  case ISD::ConstantFP:    return "ConstantFP";
2315  case ISD::GlobalAddress: return "GlobalAddress";
2316  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2317  case ISD::FrameIndex:    return "FrameIndex";
2318  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2319  case ISD::BasicBlock:    return "BasicBlock";
2320  case ISD::Register:      return "Register";
2321  case ISD::ExternalSymbol: return "ExternalSymbol";
2322  case ISD::ConstantPool:  return "ConstantPool";
2323  case ISD::TargetConstantPool:  return "TargetConstantPool";
2324  case ISD::CopyToReg:     return "CopyToReg";
2325  case ISD::CopyFromReg:   return "CopyFromReg";
2326  case ISD::ImplicitDef:   return "ImplicitDef";
2327  case ISD::UNDEF:         return "undef";
2328
2329  // Unary operators
2330  case ISD::FABS:   return "fabs";
2331  case ISD::FNEG:   return "fneg";
2332  case ISD::FSQRT:  return "fsqrt";
2333  case ISD::FSIN:   return "fsin";
2334  case ISD::FCOS:   return "fcos";
2335
2336  // Binary operators
2337  case ISD::ADD:    return "add";
2338  case ISD::SUB:    return "sub";
2339  case ISD::MUL:    return "mul";
2340  case ISD::MULHU:  return "mulhu";
2341  case ISD::MULHS:  return "mulhs";
2342  case ISD::SDIV:   return "sdiv";
2343  case ISD::UDIV:   return "udiv";
2344  case ISD::SREM:   return "srem";
2345  case ISD::UREM:   return "urem";
2346  case ISD::AND:    return "and";
2347  case ISD::OR:     return "or";
2348  case ISD::XOR:    return "xor";
2349  case ISD::SHL:    return "shl";
2350  case ISD::SRA:    return "sra";
2351  case ISD::SRL:    return "srl";
2352  case ISD::FADD:   return "fadd";
2353  case ISD::FSUB:   return "fsub";
2354  case ISD::FMUL:   return "fmul";
2355  case ISD::FDIV:   return "fdiv";
2356  case ISD::FREM:   return "frem";
2357
2358  case ISD::SETCC:       return "setcc";
2359  case ISD::SELECT:      return "select";
2360  case ISD::SELECT_CC:   return "select_cc";
2361  case ISD::ADD_PARTS:   return "add_parts";
2362  case ISD::SUB_PARTS:   return "sub_parts";
2363  case ISD::SHL_PARTS:   return "shl_parts";
2364  case ISD::SRA_PARTS:   return "sra_parts";
2365  case ISD::SRL_PARTS:   return "srl_parts";
2366
2367  // Conversion operators.
2368  case ISD::SIGN_EXTEND: return "sign_extend";
2369  case ISD::ZERO_EXTEND: return "zero_extend";
2370  case ISD::ANY_EXTEND:  return "any_extend";
2371  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2372  case ISD::TRUNCATE:    return "truncate";
2373  case ISD::FP_ROUND:    return "fp_round";
2374  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2375  case ISD::FP_EXTEND:   return "fp_extend";
2376
2377  case ISD::SINT_TO_FP:  return "sint_to_fp";
2378  case ISD::UINT_TO_FP:  return "uint_to_fp";
2379  case ISD::FP_TO_SINT:  return "fp_to_sint";
2380  case ISD::FP_TO_UINT:  return "fp_to_uint";
2381
2382    // Control flow instructions
2383  case ISD::BR:      return "br";
2384  case ISD::BRCOND:  return "brcond";
2385  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2386  case ISD::BR_CC:  return "br_cc";
2387  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2388  case ISD::RET:     return "ret";
2389  case ISD::CALL:    return "call";
2390  case ISD::TAILCALL:return "tailcall";
2391  case ISD::CALLSEQ_START:  return "callseq_start";
2392  case ISD::CALLSEQ_END:    return "callseq_end";
2393
2394    // Other operators
2395  case ISD::LOAD:    return "load";
2396  case ISD::STORE:   return "store";
2397  case ISD::EXTLOAD:    return "extload";
2398  case ISD::SEXTLOAD:   return "sextload";
2399  case ISD::ZEXTLOAD:   return "zextload";
2400  case ISD::TRUNCSTORE: return "truncstore";
2401
2402  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2403  case ISD::EXTRACT_ELEMENT: return "extract_element";
2404  case ISD::BUILD_PAIR: return "build_pair";
2405  case ISD::MEMSET:  return "memset";
2406  case ISD::MEMCPY:  return "memcpy";
2407  case ISD::MEMMOVE: return "memmove";
2408
2409  // Bit counting
2410  case ISD::CTPOP:   return "ctpop";
2411  case ISD::CTTZ:    return "cttz";
2412  case ISD::CTLZ:    return "ctlz";
2413
2414  // IO Intrinsics
2415  case ISD::READPORT: return "readport";
2416  case ISD::WRITEPORT: return "writeport";
2417  case ISD::READIO: return "readio";
2418  case ISD::WRITEIO: return "writeio";
2419
2420  case ISD::CONDCODE:
2421    switch (cast<CondCodeSDNode>(this)->get()) {
2422    default: assert(0 && "Unknown setcc condition!");
2423    case ISD::SETOEQ:  return "setoeq";
2424    case ISD::SETOGT:  return "setogt";
2425    case ISD::SETOGE:  return "setoge";
2426    case ISD::SETOLT:  return "setolt";
2427    case ISD::SETOLE:  return "setole";
2428    case ISD::SETONE:  return "setone";
2429
2430    case ISD::SETO:    return "seto";
2431    case ISD::SETUO:   return "setuo";
2432    case ISD::SETUEQ:  return "setue";
2433    case ISD::SETUGT:  return "setugt";
2434    case ISD::SETUGE:  return "setuge";
2435    case ISD::SETULT:  return "setult";
2436    case ISD::SETULE:  return "setule";
2437    case ISD::SETUNE:  return "setune";
2438
2439    case ISD::SETEQ:   return "seteq";
2440    case ISD::SETGT:   return "setgt";
2441    case ISD::SETGE:   return "setge";
2442    case ISD::SETLT:   return "setlt";
2443    case ISD::SETLE:   return "setle";
2444    case ISD::SETNE:   return "setne";
2445    }
2446  }
2447}
2448
2449void SDNode::dump() const { dump(0); }
2450void SDNode::dump(const SelectionDAG *G) const {
2451  std::cerr << (void*)this << ": ";
2452
2453  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2454    if (i) std::cerr << ",";
2455    if (getValueType(i) == MVT::Other)
2456      std::cerr << "ch";
2457    else
2458      std::cerr << MVT::getValueTypeString(getValueType(i));
2459  }
2460  std::cerr << " = " << getOperationName(G);
2461
2462  std::cerr << " ";
2463  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2464    if (i) std::cerr << ", ";
2465    std::cerr << (void*)getOperand(i).Val;
2466    if (unsigned RN = getOperand(i).ResNo)
2467      std::cerr << ":" << RN;
2468  }
2469
2470  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2471    std::cerr << "<" << CSDN->getValue() << ">";
2472  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2473    std::cerr << "<" << CSDN->getValue() << ">";
2474  } else if (const GlobalAddressSDNode *GADN =
2475             dyn_cast<GlobalAddressSDNode>(this)) {
2476    std::cerr << "<";
2477    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2478  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2479    std::cerr << "<" << FIDN->getIndex() << ">";
2480  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2481    std::cerr << "<" << *CP->get() << ">";
2482  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2483    std::cerr << "<";
2484    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2485    if (LBB)
2486      std::cerr << LBB->getName() << " ";
2487    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2488  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2489    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2490      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2491    } else {
2492      std::cerr << " #" << R->getReg();
2493    }
2494  } else if (const ExternalSymbolSDNode *ES =
2495             dyn_cast<ExternalSymbolSDNode>(this)) {
2496    std::cerr << "'" << ES->getSymbol() << "'";
2497  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2498    if (M->getValue())
2499      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2500    else
2501      std::cerr << "<null:" << M->getOffset() << ">";
2502  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2503    std::cerr << ":" << getValueTypeString(N->getVT());
2504  }
2505}
2506
2507static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2508  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2509    if (N->getOperand(i).Val->hasOneUse())
2510      DumpNodes(N->getOperand(i).Val, indent+2, G);
2511    else
2512      std::cerr << "\n" << std::string(indent+2, ' ')
2513                << (void*)N->getOperand(i).Val << ": <multiple use>";
2514
2515
2516  std::cerr << "\n" << std::string(indent, ' ');
2517  N->dump(G);
2518}
2519
2520void SelectionDAG::dump() const {
2521  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2522  std::vector<SDNode*> Nodes(AllNodes);
2523  std::sort(Nodes.begin(), Nodes.end());
2524
2525  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2526    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2527      DumpNodes(Nodes[i], 2, this);
2528  }
2529
2530  DumpNodes(getRoot().Val, 2, this);
2531
2532  std::cerr << "\n\n";
2533}
2534
2535